This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Temporal decay of strong solutions for generalized Newtonian fluids with variable power-law index

Seungchan Ko
Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong.
Email: [email protected]
( )
Abstract

We consider the motion of a power-law-like generalized Newtonian fluid in 3\mathbb{R}^{3}, where the power-law index is a variable function. This system of nonlinear partial differential equations arises in mathematical models of electrorheological fluids. The aim of this paper is to investigate the decay properties of strong solutions for the model, based on the Fourier splitting method. We first prove that the L2L^{2}-norm of the solution has the decay rate (1+t)34(1+t)^{-\frac{3}{4}}. If the H1H^{1}-norm of the initial data is sufficiently small, we further show that the derivative of the solution decays in L2L^{2}-norm at the rate (1+t)54(1+t)^{-\frac{5}{4}}.

Keywords: Non-Newtonian fluid, variable exponent, electrorheological fluid, temporal decay

AMS Classification: 76A05, 76D05, 35B40

1 Introduction

We are interested in studying the decay properties for solutions of a system of nonlinear partial differential equations (PDEs) modelling the rheological response of electrorheological fluids. The electrorheological fluid is a viscous fluid with a special property: When it is disposed to an electro-magnetic field, the viscosity exhibits a significant change. For instance, there exist some electrorheological fluids whose viscosity changes by a factor of 10001000 as a response to the application of an electric field within 1ms. These days, some useful electrorheological fluids were found with the quality and potential for a wide range of scientific and industrial applications, including for example, clutches, shock absorbers and actuators. In this paper, we consider the reduced model for the incompressible electrorheological fluids, which consists of the following system of PDEs:

t𝒖+(𝒖)𝒖div𝑺(𝑫𝒖)+π\displaystyle\partial_{t}\boldsymbol{u}+(\boldsymbol{u}\cdot\nabla)\boldsymbol{u}-{\rm{div}}\,\boldsymbol{S}(\boldsymbol{D}\boldsymbol{u})+\nabla\pi =0\displaystyle=0\qquad inQT=(0,T)×d,\displaystyle{\rm{in}}\,\,Q_{T}=(0,T)\times\mathbb{R}^{d}, (1.1)
div𝒖\displaystyle{\rm{div}}\,\boldsymbol{u} =0\displaystyle=0\qquad inQT=(0,T)×d,\displaystyle{\rm{in}}\,\,Q_{T}=(0,T)\times\mathbb{R}^{d}, (1.2)

where the extra stress tensor is of the form

𝑺(𝑫𝒖)=(1+|𝑫𝒖|2)p(t,x)22𝑫𝒖.\boldsymbol{S}(\boldsymbol{D}\boldsymbol{u})=(1+|\boldsymbol{D}\boldsymbol{u}|^{2})^{\frac{p(t,x)-2}{2}}\boldsymbol{D}\boldsymbol{u}. (1.3)

Indeed, the exponent p()p(\cdot) depends on the magnitude of the electric field |𝑬||\boldsymbol{E}|, which is the solution of quasi-static Maxwell’s equations. However, since the equations for |𝑬||\boldsymbol{E}| decouple from (1.1)-(1.2), we can consider p()p(\cdot) as a given function and restrict ourselves to the study of the equations (1.1)-(1.3). In the above system of equations, 𝒖:QTd\boldsymbol{u}:Q_{T}\rightarrow\mathbb{R}^{d}, p:QTp:Q_{T}\rightarrow\mathbb{R}, denote the velocity field and pressure respectively, and 𝑫𝒖\boldsymbol{D}\boldsymbol{u} is the symmetric velocity gradient, i.e. 𝑫𝒖=12(𝒖+(𝒖)T)\boldsymbol{D}\boldsymbol{u}=\frac{1}{2}(\nabla\boldsymbol{u}+(\nabla\boldsymbol{u})^{T}). Here we prescribe the initial condition

𝒖(0,x)=𝒖0(x)ind.\boldsymbol{u}(0,x)=\boldsymbol{u}_{0}(x)\quad{\rm{in}}\,\,\mathbb{R}^{d}.

Such electrorheological models were studied in [17, 18], where the detailed description of the model is presented and existence theory and numerical approximation are developed.

In the present paper, we shall investigate the decay properties of the model (1.1)-(1.3). Regarding this matter, for the Navier–Stokes equations, there are a large number of contributions; see, for example, [19, 20] where the Fourier splitting method was developed, and [9, 8, 24, 21, 22, 15] with the references therein for related results such as upper and lower bounds on the decay rate for various norms and classes of initial data. For the magnetohydrodynamics equations where the Navier–Stokes equations are coupled with Maxwell’s equations, see [12, 23, 1, 6]. On the other hand, for the non-Newtonian fluid flow model, the algebraic L2L^{2} decay of solutions was examined in [5, 14, 4], and the similar results for the non-Newtonian fluids combined with Maxwell’s equations were studied in [10, 11].

To the best of our knowledge, there is no result for the decay properties of solutions to generalized Newtonian fluids with a variable power-law index. In this paper, we shall study the L2L^{2} decay rates for the L2L^{2}-norm and H1H^{1}-seminorm of strong solution to the electrorheological fluids.

2 Preliminaries and main theorem

In this section, we first introduce some notations and preliminaries which will be used throughout the paper. For two vectors 𝒂\boldsymbol{a} and 𝒃\boldsymbol{b}, 𝒂𝒃\boldsymbol{a}\cdot\boldsymbol{b} denotes the scalar product, and CC denotes a generic positive constant, which may differ at each appearance. For 1p1\leq p\leq\infty and kk\in\mathbb{N}, we mean by Wk,p(d)W^{k,p}(\mathbb{R}^{d}) the standard Sobolev space and we denote Hk(d)=Wk,2(d)H^{k}(\mathbb{R}^{d})=W^{k,2}(\mathbb{R}^{d}). Furthermore, for simplicity, we write p=Lp(d)\|\cdot\|_{p}=\|\cdot\|_{L^{p}(\mathbb{R}^{d})} and k,p=Wk,p(d)\|\cdot\|_{k,p}=\|\cdot\|_{W^{k,p}(\mathbb{R}^{d})}. We also recall Korn’s inequality (see, for instance, Lemma 2.7 in [16]).

Lemma 2.1.

Assume that 1<q<1<q<\infty. Then there exists a positive constant C>0C>0 depending on qq such that for any 𝐮W1,q(d)d\boldsymbol{u}\in W^{1,q}(\mathbb{R}^{d})^{d}, we have

𝒖qC𝑫𝒖q.\|\nabla\boldsymbol{u}\|_{q}\leq C\|\boldsymbol{D}\boldsymbol{u}\|_{q}.

Next, since we deal with the variable power-law index, we introduce the variable-exponent Lebesgue space. We denote a set of all measurable functions p:Ω[1,)p:\Omega\rightarrow[1,\infty) by 𝒫(Ω)\mathcal{P}(\Omega) and we call a function p𝒫(Ω)p\in\mathcal{P}(\Omega) a variable exponent. Let Ωd\Omega\subset\mathbb{R}^{d} be open and p𝒫(Ω)p\in\mathcal{P}(\Omega). We define the bounds for pp as p=essinfxΩp(x)p^{-}={\rm{ess}}\,\inf_{x\in\Omega}p(x) and p+=esssupxΩp(x).p^{+}={\rm{ess}}\,\sup_{x\in\Omega}p(x). For each measurable functions f:Ωf:\Omega\rightarrow\mathbb{R}, we define the modular |f|p()|f|_{p(\cdot)} by

|f|p()=Ω|f(x)|p(x)dx.|f|_{p(\cdot)}=\int_{\Omega}|f(x)|^{p(x)}\,\mathrm{d}x.

Then we define the variable-exponent Lebesgue spaces with the corresponding Luxembourg norms:

Lp()(Ω):={uLloc1(Ω):|u|p()<},withuLp()(Ω):=inf{λ>0:|u(x)λ|p()1}.L^{p(\cdot)}(\Omega)\mathrel{\mathop{:}}=\left\{u\in L^{1}_{\rm{loc}}(\Omega):|u|_{p(\cdot)}<\infty\right\},\quad{\rm{with}}\quad\left\lVert u\right\rVert_{L^{p(\cdot)}(\Omega)}\mathrel{\mathop{:}}=\inf\left\{\lambda>0:\bigg{|}\frac{u(x)}{\lambda}\bigg{|}_{p(\cdot)}\leq 1\right\}.

If 1<pp+<1<p^{-}\leq p^{+}<\infty, it is straightforward to show that the variable-exponent space Lp()(Ω)L^{p(\cdot)}(\Omega) is a reflexive, separable Banach space. Throughout this paper, we shall assume that 1<pp+<1<p^{-}\leq p^{+}<\infty.

Next we introduce the minimum regularity of the exponent p()p(\cdot), which guarantees the validity of various results from the theory of classical Lebesgue space: log-Hölder continuity.

Definition 2.2.

We call a function p:Ωp:\Omega\rightarrow\mathbb{R} is locally log-Hölder continuous on Ω\Omega if there exists C1C_{1} satisfying for all x,yΩx,y\in\Omega,

|p(x)p(y)|C1log(e+1/|xy|).|p(x)-p(y)|\leq\frac{C_{1}}{{\rm{log}}(e+1/|x-y|)}. (2.1)

We also say that pp satisfies the log-Hölder decay condition if there exist constants pp_{\infty}\in\mathbb{R} and C2>0C_{2}>0 such that for all xΩ,x\in\Omega,

|p(x)p|C2log(e+|x|).|p(x)-p_{\infty}|\leq\frac{C_{2}}{{\rm{log}}(e+|x|)}. (2.2)

We say that pp is globally log-Hölder continuous in Ω\Omega if it satisfies both (2.1) and (2.2). We call Clog(p):=max{C1,C2}C_{\rm{log}}(p)\mathrel{\mathop{:}}=\max\{C_{1},C_{2}\} a log-Hölder constant of pp.

Definition 2.3.

We define the class of log-Hölder continuous variable exponents:

𝒫log(Ω):={p𝒫(Ω):1pisgloballylog-Höldercontinuous}.\mathcal{P}^{\rm{log}}(\Omega)\mathrel{\mathop{:}}=\left\{p\in\mathcal{P}(\Omega):\frac{1}{p}\,\,{\rm{is}}\,\,{\rm{globally}}\,\,{\textrm{log-H\"{o}lder}}\,\,{\rm{continuous}}\right\}.

If Ω\Omega is unbounded, we define pp_{\infty} by 1p:=lim|x|1p(x)\frac{1}{p_{\infty}}\mathrel{\mathop{:}}=\lim_{|x|\rightarrow\infty}\frac{1}{p(x)}.

Note that, since p1pp\mapsto\frac{1}{p} is bilipschitz form [p,p+][p^{-},p^{+}] to [1p+,1p]\left[\frac{1}{p^{+}},\frac{1}{p^{-}}\right], if p𝒫(Ω)p\in\mathcal{P}(\Omega) and p+<p^{+}<\infty, we can show that p𝒫log(Ω)p\in\mathcal{P}^{\rm{log}}(\Omega) if and only if pp is globally Hölder continuous. For further information, see [2] as an extensive source of information for the variable-exponent spaces.

Next, we introduce the notation

𝑫¯𝒖:=(1+|𝑫𝒖|2)12,\overline{\boldsymbol{D}}\boldsymbol{u}\mathrel{\mathop{:}}=(1+|\boldsymbol{D}\boldsymbol{u}|^{2})^{\frac{1}{2}},

and define the following energies:

p(𝒖)(t)\displaystyle\mathcal{I}_{p}(\boldsymbol{u})(t) =d(𝑫¯𝒖)p()2|𝑫𝒖|2dx,\displaystyle=\int_{\mathbb{R}^{d}}(\overline{\boldsymbol{D}}\boldsymbol{u})^{p(\cdot)-2}|\boldsymbol{D}\boldsymbol{u}|^{2}\,\mathrm{d}x,
𝒥p(𝒖)(t)\displaystyle\mathcal{J}_{p}(\boldsymbol{u})(t) =d(𝑫¯𝒖)p()2|𝑫𝒖|2dx.\displaystyle=\int_{\mathbb{R}^{d}}(\overline{\boldsymbol{D}}\boldsymbol{u})^{p(\cdot)-2}|\nabla\boldsymbol{D}\boldsymbol{u}|^{2}\,\mathrm{d}x.

In this paper, for the sake of simplicity, we consider the case of three space dimensions. Note that the proof for the general case follows in a similar manner. The existence of strong solutions of the model (1.1)-(1.3) can be found in some literatures. For example, in [3], it was shown that the local strong solutions exist under the condition 75<pp+2\frac{7}{5}<p^{-}\leq p^{+}\leq 2 in a bounded domain with periodic boundary conditions. On the other hand, for the case of the whole space 3\mathbb{R}^{3}, in [16] the authors considered the model with a constant exponent pp, and proved the existence of global-in-time strong solutions provided that p115p\geq\frac{11}{5}. For the variable-exponent case, we can show the existence of strong solutions in 3\mathbb{R}^{3} to the equations (1.1), (1.2) with

𝑺(𝑫𝒖)=(1+|𝑫𝒖|2)p(x)22𝑫𝒖,\boldsymbol{S}(\boldsymbol{D}\boldsymbol{u})=(1+|\boldsymbol{D}\boldsymbol{u}|^{2})^{\frac{p(x)-2}{2}}\boldsymbol{D}\boldsymbol{u}, (2.3)

where the exponent p()p(\cdot) only depends on the spatial variable x3x\in\mathbb{R}^{3}. Indeed, if we assume pW1,(3)𝒫log(3)p\in W^{1,\infty}(\mathbb{R}^{3})\cap\mathcal{P}^{\rm{log}}(\mathbb{R}^{3}) with p115p^{-}\geq\frac{11}{5}, by following the argument presented in [16] we can show in a straightforward manner that the global strong solutions of (1.1), (1.2) and (2.3) exist. Furthermore, based on the method presented in [13], we can also show the existence of global strong solutions to (1.1), (1.2) and (2.3) provided that pW1,(3)𝒫log(3)p\in W^{1,\infty}(\mathbb{R}^{3})\cap\mathcal{P}^{\rm{log}}(\mathbb{R}^{3}) and p>53p^{-}>\frac{5}{3}, under the smallness assumption of the initial data. The existence of global strong solutions of the model (1.1)-(1.3) in 3\mathbb{R}^{3} where p=p(t,x)p=p(t,x) depends on both time and space variables is still open.

In this paper, we consider the aforementioned global-in-time strong solutions of the model (1.1), (1.2) and (2.3) with the condition p115p^{-}\geq\frac{11}{5}. Note however, that our proofs of Theorem 2.4 and Theorem 2.5 also work for the space-time-dependent power-law index, and hence we can extend the current results to the case of the equations (1.1)-(1.3) if the existence of corresponding strong solutions for p=p(t,x)p=p(t,x) is guaranteed. Here strong solutions of the model (1.1), (1.2) and (2.3) mean that 𝒖L((0,T);H1(3)3)L2((0,T);H2(3)3)\boldsymbol{u}\in L^{\infty}((0,T);H^{1}(\mathbb{R}^{3})^{3})\cap L^{2}((0,T);H^{2}(\mathbb{R}^{3})^{3}), |𝒖|Lp()(QT)L((0,T);Lp()(3))|\nabla\boldsymbol{u}|\in L^{p(\cdot)}(Q_{T})\cap L^{\infty}((0,T);L^{p(\cdot)}(\mathbb{R}^{3})) and t𝒖L2(QT)3\partial_{t}\boldsymbol{u}\in L^{2}(Q_{T})^{3} with the following energy inequalities:

sup0tT𝒖(t)22+0Tp(𝒖)(t)dt\displaystyle\sup_{0\leq t\leq T}\|\boldsymbol{u}(t)\|^{2}_{2}+\int_{0}^{T}\mathcal{I}_{p}(\boldsymbol{u})(t)\,\mathrm{d}t 𝒖022,\displaystyle\leq\|\boldsymbol{u}_{0}\|^{2}_{2}, (2.4)
sup0tT𝒖(t)22+0T𝒥p(𝒖)(t)dt\displaystyle\sup_{0\leq t\leq T}\|\nabla\boldsymbol{u}(t)\|^{2}_{2}+\int_{0}^{T}\mathcal{J}_{p}(\boldsymbol{u})(t)\,\mathrm{d}t C(𝒖0H1).\displaystyle\leq C(\|\boldsymbol{u}_{0}\|_{H^{1}}). (2.5)

Now we are ready to state our main theorems. Note here that the condition p𝒫log(3)W1,(3)p\in\mathcal{P}^{\rm{log}}(\mathbb{R}^{3})\cap W^{1,\infty}(\mathbb{R}^{3}) is required for the existence of strong solutions, and not for the proof of Theorem 2.4, and hence will be omitted in the statement of the theorem. On the other hand, the condition pW1,(3)p\in W^{1,\infty}(\mathbb{R}^{3}) is needed for the proof of Theorem 2.5.

Theorem 2.4.

Suppose that 𝐮0L1(3)H1(3)\boldsymbol{u}_{0}\in L^{1}(\mathbb{R}^{3})\cap H^{1}(\mathbb{R}^{3}), and assume that p115p^{-}\geq\frac{11}{5}. Then for the strong solutions 𝐮\boldsymbol{u} of (1.1), (1.2) and (2.3) we have

𝒖(t)2C(1+t)34t>0,\|\boldsymbol{u}(t)\|_{2}\leq C(1+t)^{-\frac{3}{4}}\quad\forall t>0,

where the constant C>0C>0 depends on the L1L^{1} and H1H^{1}-norms of 𝐮0\boldsymbol{u}_{0}.

Theorem 2.5.

Suppose that 𝐮0L1(3)H1(3)\boldsymbol{u}_{0}\in L^{1}(\mathbb{R}^{3})\cap H^{1}(\mathbb{R}^{3}), and assume that pW1,(3)p\in W^{1,\infty}(\mathbb{R}^{3}) with 115pp+<83\frac{11}{5}\leq p^{-}\leq p^{+}<\frac{8}{3}. Then there exists a small number ε>0\varepsilon>0 such that if 𝐮0H1<ε\|\boldsymbol{u}_{0}\|_{H^{1}}<\varepsilon, then for the strong solutions 𝐮\boldsymbol{u} of (1.1), (1.2) and (2.3) we have

𝒖(t)2C(1+t)54t>0,\|\nabla\boldsymbol{u}(t)\|_{2}\leq C(1+t)^{-\frac{5}{4}}\quad\forall t>0,

where the constant C>0C>0 depends on the L1L^{1} and H1H^{1}-norms of 𝐮0\boldsymbol{u}_{0}.

3 Proof of Theorem 2.4

In this section, we aim to prove Theorem 2.4. Note that the following lemma also holds for the case p=p(t,x)p=p(t,x) and the proof for this general case is exactly same as the proof below by adding tt to the exponent. We first define 𝑮(𝑫𝒖):=((𝑫¯𝒖)p(x)21)𝑫𝒖\boldsymbol{G}(\boldsymbol{D}\boldsymbol{u})\mathrel{\mathop{:}}=\left((\overline{\boldsymbol{D}}\boldsymbol{u})^{p(x)-2}-1\right)\boldsymbol{D}\boldsymbol{u} and rewrite the equations (1.1) as

t𝒖+(𝒖)𝒖div𝑮(𝑫𝒖)Δ𝒖+π=0.\partial_{t}\boldsymbol{u}+(\boldsymbol{u}\cdot\nabla)\boldsymbol{u}-{\rm{div}}\,\boldsymbol{G}(\boldsymbol{D}\boldsymbol{u})-\Delta\boldsymbol{u}+\nabla\pi=0. (3.1)
Lemma 3.1.

Suppose that p115p^{-}\geq\frac{11}{5} and 𝐮\boldsymbol{u} is sufficiently smooth. Then there exist positive constants C1C_{1}, C2C_{2} and C3C_{3} such that for almost all time t(0,T)t\in(0,T), the following inequality holds:

  • (Case  11) p3p^{-}\geq 3:

    0t3|𝑮(𝑫𝒖)|dxdsC1,\int^{t}_{0}\int_{\mathbb{R}^{3}}|\boldsymbol{G}(\boldsymbol{D}\boldsymbol{u})|\,\mathrm{d}x\,\mathrm{d}s\leq C_{1},
  • (Case  22) 115p<3\frac{11}{5}\leq p^{-}<3:

    0t3|𝑮(𝑫𝒖)|dxdsC2+C3(0t𝒖(s)22α2βds)2β2,\int^{t}_{0}\int_{\mathbb{R}^{3}}|\boldsymbol{G}(\boldsymbol{D}\boldsymbol{u})|\,\mathrm{d}x\,\mathrm{d}s\leq C_{2}+C_{3}\left(\int^{t}_{0}\|\boldsymbol{u}(s)\|_{2}^{\frac{2\alpha}{2-\beta}}\,\mathrm{d}s\right)^{\frac{2-\beta}{2}},

where α=7p4\alpha=\frac{7-p^{-}}{4} and β=5p114\beta=\frac{5p^{-}-11}{4}.

Proof.

We first note that the inequality (1+s)α1s+sα(1+s)^{\alpha}-1\lesssim s+s^{\alpha} for s0s\geq 0 and α>0\alpha>0. Then we have

3|𝑮(𝑫𝒖)|dx\displaystyle\int_{\mathbb{R}^{3}}|\boldsymbol{G}(\boldsymbol{D}\boldsymbol{u})|\,\mathrm{d}x 3((1+|𝑫𝒖|)p(x)21)|𝑫𝒖|dx\displaystyle\lesssim\int_{\mathbb{R}^{3}}\left((1+|\boldsymbol{D}\boldsymbol{u}|)^{p(x)-2}-1\right)|\boldsymbol{D}\boldsymbol{u}|\,\mathrm{d}x
3(|𝑫𝒖|+|𝑫𝒖|p(x)2)|𝑫𝒖|dx\displaystyle\lesssim\int_{\mathbb{R}^{3}}\left(|\boldsymbol{D}\boldsymbol{u}|+|\boldsymbol{D}\boldsymbol{u}|^{p(x)-2}\right)|\boldsymbol{D}\boldsymbol{u}|\,\mathrm{d}x
=3|𝑫𝒖|2dx+3|𝑫𝒖|p(x)1dx\displaystyle=\int_{\mathbb{R}^{3}}|\boldsymbol{D}\boldsymbol{u}|^{2}\,\mathrm{d}x+\int_{\mathbb{R}^{3}}|\boldsymbol{D}\boldsymbol{u}|^{p(x)-1}\,\mathrm{d}x
p(𝒖)+{|𝑫𝒖|1}|𝑫𝒖|p(x)1dx+{|𝑫𝒖|<1}|𝑫𝒖|p(x)1dx\displaystyle\lesssim\mathcal{I}_{p}(\boldsymbol{u})+\int_{\{|\boldsymbol{D}\boldsymbol{u}|\geq 1\}}|\boldsymbol{D}\boldsymbol{u}|^{p(x)-1}\,\mathrm{d}x+\int_{\{|\boldsymbol{D}\boldsymbol{u}|<1\}}|\boldsymbol{D}\boldsymbol{u}|^{p(x)-1}\,\mathrm{d}x
p(𝒖)+3|𝑫𝒖|p(x)dx+3|𝑫𝒖|p1dx\displaystyle\lesssim\mathcal{I}_{p}(\boldsymbol{u})+\int_{\mathbb{R}^{3}}|\boldsymbol{D}\boldsymbol{u}|^{p(x)}\,\mathrm{d}x+\int_{\mathbb{R}^{3}}|\boldsymbol{D}\boldsymbol{u}|^{p^{-}-1}\,\mathrm{d}x
p(𝒖)+3|𝑫𝒖|p1dx.\displaystyle\lesssim\mathcal{I}_{p}(\boldsymbol{u})+\int_{\mathbb{R}^{3}}|\boldsymbol{D}\boldsymbol{u}|^{p^{-}-1}\,\mathrm{d}x.

It remains to estimate the second term on the right-hand side. For p3p^{-}\geq 3, by (2.4) and the interpolation inequality,

0t𝒖(s)p1p1ds0t𝒖(s)22p2𝒖(s)pp(p3)p2ds𝒖L2((0,T);L2)2p2𝒖Lp((0,T);Lp)p(p3)p2<.\int^{t}_{0}\|\nabla\boldsymbol{u}(s)\|^{p^{-}-1}_{p^{-}-1}\,\mathrm{d}s\lesssim\int^{t}_{0}\|\nabla\boldsymbol{u}(s)\|_{2}^{\frac{2}{p^{-}-2}}\|\nabla\boldsymbol{u}(s)\|^{\frac{p^{-}(p^{-}-3)}{p^{-}-2}}_{p^{-}}\,\mathrm{d}s\lesssim\|\nabla\boldsymbol{u}\|_{L^{2}((0,T);L^{2})}^{\frac{2}{p^{-}-2}}\|\nabla\boldsymbol{u}\|_{L^{p^{-}}((0,T);L^{p^{-}})}^{\frac{p^{-}(p^{-}-3)}{p^{-}-2}}<\infty.

For 115p<3\frac{11}{5}\leq p^{-}<3, as shown in [4], by (2.5) and Gagliardo–Nirenberg interpolation inequality (see, for example, [7])

0t𝒖(s)p1p1ds\displaystyle\int^{t}_{0}\|\nabla\boldsymbol{u}(s)\|^{p^{-}-1}_{p^{-}-1}\,\mathrm{d}s 0t𝒖(s)2α2𝒖(s)2βds\displaystyle\lesssim\int^{t}_{0}\|\boldsymbol{u}(s)\|_{2}^{\alpha}\|\nabla^{2}\boldsymbol{u}(s)\|_{2}^{\beta}\,\mathrm{d}s
(0t𝒖(s)22α2βds)2β2(0t2𝒖(s)22ds)β2\displaystyle\lesssim\left(\int^{t}_{0}\|\boldsymbol{u}(s)\|_{2}^{\frac{2\alpha}{2-\beta}}\,\mathrm{d}s\right)^{\frac{2-\beta}{2}}\left(\int^{t}_{0}\|\nabla^{2}\boldsymbol{u}(s)\|_{2}^{2}\,\mathrm{d}s\right)^{\frac{\beta}{2}}
(0t𝒖(s)22α2βds)2β2,\displaystyle\lesssim\left(\int^{t}_{0}\|\boldsymbol{u}(s)\|_{2}^{\frac{2\alpha}{2-\beta}}\,\mathrm{d}s\right)^{\frac{2-\beta}{2}},

where α=7p4\alpha=\frac{7-p^{-}}{4} and β=5p114\beta=\frac{5p^{-}-11}{4}. ∎

Furthermore, we need the following estimate, where f^\widehat{f} denotes the Fourier transformation of ff.

Lemma 3.2.

Suppose that 𝐮0H1(3)L1(3)\boldsymbol{u}_{0}\in H^{1}(\mathbb{R}^{3})\cap L^{1}(\mathbb{R}^{3}) and p115p^{-}\geq\frac{11}{5}. Then for a strong solution 𝐮\boldsymbol{u} to the equations (1.1), (1.2) and (2.3), we have the following:

(Case  11) p3p^{-}\geq 3:

|𝒖^(t,ξ)|C|𝒖^0(ξ)|+C|ξ|(1+0t𝒖(s)22ds).|\widehat{\boldsymbol{u}}(t,\xi)|\leq C|\widehat{\boldsymbol{u}}_{0}(\xi)|+C|\xi|\left(1+\int^{t}_{0}\|\boldsymbol{u}(s)\|^{2}_{2}\,\mathrm{d}s\right). (3.2)

(Case  22) 115p<3\frac{11}{5}\leq p^{-}<3:

|𝒖^(t,ξ)|C|𝒖^0(ξ)|+C|ξ|(1+(0t𝒖(s)22α2βds)2β2+0t𝒖(s)22ds).|\widehat{\boldsymbol{u}}(t,\xi)|\leq C|\widehat{\boldsymbol{u}}_{0}(\xi)|+C|\xi|\left(1+\left(\int^{t}_{0}\|\boldsymbol{u}(s)\|_{2}^{\frac{2\alpha}{2-\beta}}\,\mathrm{d}s\right)^{\frac{2-\beta}{2}}+\int^{t}_{0}\|\boldsymbol{u}(s)\|^{2}_{2}\,\mathrm{d}s\right). (3.3)
Proof.

If we take the Fourier transformation on (3.1), we have

𝒖^t+|ξ|2𝒖^=F(t,ξ)and𝒖^0(ξ):=𝒖^(0,ξ)=𝒖^0,\widehat{\boldsymbol{u}}_{t}+|\xi|^{2}\widehat{\boldsymbol{u}}=F(t,\xi)\quad{\rm{and}}\quad\widehat{\boldsymbol{u}}_{0}(\xi)\mathrel{\mathop{:}}=\widehat{\boldsymbol{u}}(0,\xi)=\widehat{\boldsymbol{u}}_{0}, (3.4)

where

F(t,ξ):=𝑮^(t,ξ)(𝒖)𝒖^(t,ξ)π^(t,ξ).F(t,\xi)\mathrel{\mathop{:}}=\widehat{\nabla\cdot\boldsymbol{G}}(t,\xi)-\widehat{(\boldsymbol{u}\cdot\nabla)\boldsymbol{u}}(t,\xi)-\widehat{\nabla\pi}(t,\xi). (3.5)

Note that

|𝒖^0(ξ)||3eixξ𝒖0(x)dx|3|𝒖0(x)|dxC,|\widehat{\boldsymbol{u}}_{0}(\xi)|\leq\bigg{|}\int_{\mathbb{R}^{3}}e^{-ix\cdot\xi}\boldsymbol{u}_{0}(x)\,\mathrm{d}x\bigg{|}\leq\int_{\mathbb{R}^{3}}|\boldsymbol{u}_{0}(x)|\,\mathrm{d}x\leq C, (3.6)

For the stress tensor term,

|𝑮^(t,ξ)|=|3eixξ𝑮(𝑫𝒖)dx||ξ|3|𝑮(𝑫𝒖)|dx.\big{|}\widehat{\nabla\cdot\boldsymbol{G}}(t,\xi)\big{|}=\bigg{|}\int_{\mathbb{R}^{3}}e^{-ix\cdot\xi}\nabla\cdot\boldsymbol{G}(\boldsymbol{D}\boldsymbol{u})\,\mathrm{d}x\bigg{|}\leq|\xi|\int_{\mathbb{R}^{3}}|\boldsymbol{G}(\boldsymbol{D}\boldsymbol{u})|\,\mathrm{d}x. (3.7)

Next, by Hölder’s inequality with (1.2), we have

|(𝒖)𝒖^(t,ξ)|=|3eixξ(𝒖𝒖)dx||ξ|𝒖(t)𝒖(t)1|ξ|𝒖(t)22.\big{|}\widehat{(\boldsymbol{u}\cdot\nabla)\boldsymbol{u}}(t,\xi)\big{|}=\bigg{|}\int_{\mathbb{R}^{3}}e^{-ix\cdot\xi}\nabla\cdot(\boldsymbol{u}\otimes\boldsymbol{u})\,\mathrm{d}x\bigg{|}\leq|\xi|\|\boldsymbol{u}(t)\otimes\boldsymbol{u}(t)\|_{1}\leq|\xi|\|\boldsymbol{u}(t)\|_{2}^{2}. (3.8)

Finally, taking divergence operator on (1.1) gives

Δπ=i,j2xixj(𝒖i𝒖j+𝑮(𝑫𝒖)ij),\Delta\pi=\sum_{i,j}\frac{\partial^{2}}{\partial x_{i}\partial x_{j}}(-\boldsymbol{u}_{i}\boldsymbol{u}_{j}+\boldsymbol{G}(\boldsymbol{D}\boldsymbol{u})_{ij}),

and therefore, by Hölder’s inequality, we have

|π^(t,ξ)||ξ|𝑮(𝑫𝒖)1+|ξ|𝒖(t)𝒖(t)1|ξ|𝑮(𝑫𝒖)1+|ξ|𝒖(t)22.|\widehat{\nabla\pi}(t,\xi)|\leq|\xi|\|\boldsymbol{G}(\boldsymbol{D}\boldsymbol{u})\|_{1}+|\xi|\|\boldsymbol{u}(t)\otimes\boldsymbol{u}(t)\|_{1}\leq|\xi|\|\boldsymbol{G}(\boldsymbol{D}\boldsymbol{u})\|_{1}+|\xi|\|\boldsymbol{u}(t)\|_{2}^{2}. (3.9)

Now, it follows from (3.4) that

𝒖^(t,ξ)=e|ξ|2t𝒖^0(ξ)+0tF(s,ξ)e|ξ|2(ts)ds.\widehat{\boldsymbol{u}}(t,\xi)=e^{-|\xi|^{2}t}\widehat{\boldsymbol{u}}_{0}(\xi)+\int^{t}_{0}F(s,\xi)e^{-|\xi|^{2}(t-s)}\,\mathrm{d}s.

Therefore, by (3.5)-(3.9) and Lemma 3.1, we obtain the desired result. ∎

Proof of Theorem 2.4.

We shall use the standard Fourier splitting method to prove the theorem. From the energy inequality and Korn’s inequality with the condition p115>2p^{-}\geq\frac{11}{5}>2, we have

12ddt3|𝒖(t,x)|2dx+C3|𝒖(t,x)|2dx0.\frac{1}{2}\frac{{\rm{d}}}{\,\mathrm{d}t}\int_{\mathbb{R}^{3}}|\boldsymbol{u}(t,x)|^{2}\,\mathrm{d}x+C\int_{\mathbb{R}^{3}}|\nabla\boldsymbol{u}(t,x)|^{2}\,\mathrm{d}x\leq 0.

By Plancherel’s theorem, it follows that

12ddt3|𝒖^(t,ξ)|2dξ+C3|ξ|2|𝒖^(t,ξ)|2dξ0.\frac{1}{2}\frac{{\rm{d}}}{\,\mathrm{d}t}\int_{\mathbb{R}^{3}}|\widehat{\boldsymbol{u}}(t,\xi)|^{2}{\rm{d}}\xi+C\int_{\mathbb{R}^{3}}|\xi|^{2}|\widehat{\boldsymbol{u}}(t,\xi)|^{2}{\rm{d}}\xi\leq 0.

Next, let us assume that f(t)f(t) is a smooth function with f(0)=1f(0)=1, f(t)>0f(t)>0 and f(t)>0f^{\prime}(t)>0. Then for some constant C0>0C_{0}>0, we have

ddt(f(t)3|𝒖^(t,ξ)|2dξ)+C0f(t)3|ξ|2|𝒖^(t,ξ)|2dξf(t)3|𝒖^(t,ξ)|2dξ.\frac{{\rm{d}}}{\,\mathrm{d}t}\left(f(t)\int_{\mathbb{R}^{3}}|\widehat{\boldsymbol{u}}(t,\xi)|^{2}{\rm{d}}\xi\right)+C_{0}f(t)\int_{\mathbb{R}^{3}}|\xi|^{2}|\widehat{\boldsymbol{u}}(t,\xi)|^{2}{\rm{d}}\xi\leq f^{\prime}(t)\int_{\mathbb{R}^{3}}|\widehat{\boldsymbol{u}}(t,\xi)|^{2}{\rm{d}}\xi. (3.10)

If we define the set L(t)={ξ3:C0|ξ|2f(t)f(t)}L(t)=\{\xi\in\mathbb{R}^{3}:C_{0}|\xi|^{2}f(t)\leq f^{\prime}(t)\} where C0>0C_{0}>0 is the constant appearing in (3.10), we obtain

C0f(t)3|ξ|2|𝒖^(t,ξ)|2dξC0f(t)L(t)c|ξ|2|𝒖^(t,ξ)|2dξf(t)3|𝒖^(t,ξ)|2dξf(t)L(t)|𝒖^(t,ξ)|2dξ,C_{0}f(t)\int_{\mathbb{R}^{3}}|\xi|^{2}|\widehat{\boldsymbol{u}}(t,\xi)|^{2}{\rm{d}}\xi\geq C_{0}f(t)\int_{L(t)^{c}}|\xi|^{2}|\widehat{\boldsymbol{u}}(t,\xi)|^{2}{\rm{d}}\xi\geq f^{\prime}(t)\int_{\mathbb{R}^{3}}|\widehat{\boldsymbol{u}}(t,\xi)|^{2}{\rm{d}}\xi-f^{\prime}(t)\int_{L(t)}|\widehat{\boldsymbol{u}}(t,\xi)|^{2}{\rm{d}}\xi,

and therefore, from (3.10), we deduce

ddt(f(t)3|𝒖^(t,ξ)|2dξ)f(t)L(t)|𝒖^(t,ξ)|2dξ.\frac{\rm{d}}{\,\mathrm{d}t}\left(f(t)\int_{\mathbb{R}^{3}}|\widehat{\boldsymbol{u}}(t,\xi)|^{2}{\rm{d}}\xi\right)\leq f^{\prime}(t)\int_{L(t)}|\widehat{\boldsymbol{u}}(t,\xi)|^{2}{\rm{d}}\xi.

Integrating the above inequality over (0,t)(0,t) yields

f(t)3|𝒖^(t,ξ)|2dξ3|𝒖^0(ξ)|2dξ+0tf(s)L(s)|𝒖^(s,ξ)|2dξds.f(t)\int_{\mathbb{R}^{3}}|\widehat{\boldsymbol{u}}(t,\xi)|^{2}{\rm{d}}\xi\leq\int_{\mathbb{R}^{3}}|\widehat{\boldsymbol{u}}_{0}(\xi)|^{2}{\rm{d}}\xi+\int^{t}_{0}f^{\prime}(s)\int_{L(s)}|\widehat{\boldsymbol{u}}(s,\xi)|^{2}{\rm{d}}\xi\,\mathrm{d}s. (3.11)

(Case  11) p3p^{-}\geq 3: Now we set f(t)=(1+t)3f(t)=(1+t)^{3}. Then by Lemma 3.2 with (3.6), (3.11) and the energy inequality (2.4), we obtain that

(1+t)33|𝒖^(t,ξ)|2dξ\displaystyle(1+t)^{3}\int_{\mathbb{R}^{3}}|\widehat{\boldsymbol{u}}(t,\xi)|^{2}{\rm{d}}\xi 3|𝒖^0(ξ)|2dξ+C0t(1+s)2L(s)|𝒖^0(ξ)|2dξds\displaystyle\leq\int_{\mathbb{R}^{3}}|\widehat{\boldsymbol{u}}_{0}(\xi)|^{2}{\rm{d}}\xi+C\int^{t}_{0}(1+s)^{2}\int_{L(s)}|\widehat{\boldsymbol{u}}_{0}(\xi)|^{2}{\rm{d}}\xi\,\mathrm{d}s
+C0t(1+s)2L(s)|ξ|2(1+0s𝒖(τ)22dτ)2dξds\displaystyle\hskip 14.22636pt+C\int^{t}_{0}(1+s)^{2}\int_{L(s)}|\xi|^{2}\left(1+\int^{s}_{0}\|\boldsymbol{u}(\tau)\|^{2}_{2}{\rm{d}}\tau\right)^{2}{\rm{d}}\xi\,\mathrm{d}s
C+C0t(1+s)12ds+C0t(1+s)12ds+C0t(1+s)32ds\displaystyle\leq C+C\int^{t}_{0}(1+s)^{\frac{1}{2}}\,\mathrm{d}s+C\int^{t}_{0}(1+s)^{-\frac{1}{2}}\,\mathrm{d}s+C\int^{t}_{0}(1+s)^{\frac{3}{2}}\,\mathrm{d}s
C+C(1+t)32+C(1+t)12+C(1+t)52.\displaystyle\leq C+C(1+t)^{\frac{3}{2}}+C(1+t)^{\frac{1}{2}}+C(1+t)^{\frac{5}{2}}.

From Plancherel’s theorem, we have

𝒖(t)22C(1+t)12.\|\boldsymbol{u}(t)\|^{2}_{2}\leq C(1+t)^{-\frac{1}{2}}. (3.12)

Now if we substitute (3.12) into (3.2), and repeat the same process, we finally obtain the desired estimate.

(Case  22) 115p<3\frac{11}{5}\leq p^{-}<3: In this case, we first note that 12<2β2<1\frac{1}{2}<\frac{2-\beta}{2}<1 and 4α2β>2\frac{4\alpha}{2-\beta}>2. Then by Hölder’s inequality and (2.4), we obtain

0t(\displaystyle\int^{t}_{0}( 1+s)2L(s)|ξ|2(1+(0s𝒖(τ)22α2βdτ)2β2+0s𝒖(τ)22dτ)2dξds\displaystyle 1+s)^{2}\int_{L(s)}|\xi|^{2}\left(1+\left(\int^{s}_{0}\|\boldsymbol{u}(\tau)\|_{2}^{\frac{2\alpha}{2-\beta}}{\rm{d}}\tau\right)^{\frac{2-\beta}{2}}+\int^{s}_{0}\|\boldsymbol{u}(\tau)\|^{2}_{2}{\rm{d}}\tau\right)^{2}{\rm{d}}\xi\,\mathrm{d}s
C0t(1+s)2L(s)|ξ|2dξds+C0t(1+s)2L(s)|ξ|2(0s𝒖(τ)22α2βdτ)2βdξds\displaystyle\leq C\int^{t}_{0}(1+s)^{2}\int_{L(s)}|\xi|^{2}\,{\rm{d}}\xi\,\mathrm{d}s+C\int^{t}_{0}(1+s)^{2}\int_{L(s)}|\xi|^{2}\left(\int^{s}_{0}\|\boldsymbol{u}(\tau)\|_{2}^{\frac{2\alpha}{2-\beta}}\,{\rm{d}}\tau\right)^{2-\beta}\,{\rm{d}}\xi\,\mathrm{d}s
+C0t(1+s)2L(s)|ξ|2(0s𝒖(τ)22dτ)2dξds\displaystyle\hskip 14.22636pt+C\int^{t}_{0}(1+s)^{2}\int_{L(s)}|\xi|^{2}\left(\int^{s}_{0}\|\boldsymbol{u}(\tau)\|^{2}_{2}\,{\rm{d}}\tau\right)^{2}\,{\rm{d}}\xi\,\mathrm{d}s
C0t(1+s)2L(s)|ξ|2dξds+C0t(1+s)2L(s)|ξ|2s2β2(0s𝒖(τ)24α2βdτ)2β2dξds\displaystyle\leq C\int^{t}_{0}(1+s)^{2}\int_{L(s)}|\xi|^{2}\,{\rm{d}}\xi\,\mathrm{d}s+C\int^{t}_{0}(1+s)^{2}\int_{L(s)}|\xi|^{2}s^{\frac{2-\beta}{2}}\left(\int^{s}_{0}\|\boldsymbol{u}(\tau)\|_{2}^{\frac{4\alpha}{2-\beta}}\,{\rm{d}}\tau\right)^{\frac{2-\beta}{2}}\,{\rm{d}}\xi\,\mathrm{d}s
+C0t(1+s)2L(s)|ξ|2s(0s𝒖(τ)24dτ)dξds\displaystyle\hskip 14.22636pt+C\int^{t}_{0}(1+s)^{2}\int_{L(s)}|\xi|^{2}s\left(\int^{s}_{0}\|\boldsymbol{u}(\tau)\|^{4}_{2}\,{\rm{d}}\tau\right)\,{\rm{d}}\xi\,\mathrm{d}s
C0t(1+s)2L(s)|ξ|2dξds+C0t(1+s)2L(s)|ξ|2s2β2(0t𝒖(τ)22dτ+C)dξds\displaystyle\leq C\int^{t}_{0}(1+s)^{2}\int_{L(s)}|\xi|^{2}\,{\rm{d}}\xi\,\mathrm{d}s+C\int^{t}_{0}(1+s)^{2}\int_{L(s)}|\xi|^{2}s^{\frac{2-\beta}{2}}\left(\int^{t}_{0}\|\boldsymbol{u}(\tau)\|_{2}^{2}\,{\rm{d}}\tau+C\right)\,{\rm{d}}\xi\,\mathrm{d}s
+C0t(1+s)2L(s)|ξ|2s(0t𝒖(τ)22dτ)dξds\displaystyle\hskip 14.22636pt+C\int^{t}_{0}(1+s)^{2}\int_{L(s)}|\xi|^{2}s\left(\int^{t}_{0}\|\boldsymbol{u}(\tau)\|^{2}_{2}\,{\rm{d}}\tau\right)\,{\rm{d}}\xi\,\mathrm{d}s
C(1+t)32+C(1+t)32(0t𝒖(τ)22dτ).\displaystyle\leq C(1+t)^{\frac{3}{2}}+C(1+t)^{\frac{3}{2}}\left(\int^{t}_{0}\|\boldsymbol{u}(\tau)\|^{2}_{2}\,{\rm{d}}\tau\right).

Now, by again from Lemma 3.2, (3.6) and (3.11) with f(t)=(1+t)3f(t)=(1+t)^{3}, we have that

(1+t)3𝒖(t)22=(1+t)33|𝒖^(t,ξ)|2dξC(1+t)32+C(1+t)32(0t𝒖(τ)22dτ).(1+t)^{3}\|\boldsymbol{u}(t)\|^{2}_{2}=(1+t)^{3}\int_{\mathbb{R}^{3}}|\widehat{\boldsymbol{u}}(t,\xi)|^{2}{\rm{d}}\xi\leq C(1+t)^{\frac{3}{2}}+C(1+t)^{\frac{3}{2}}\left(\int^{t}_{0}\|\boldsymbol{u}(\tau)\|^{2}_{2}\,{\rm{d}}\tau\right).

This yields

(1+t)32𝒖(t)22C+C0t(1+τ)32𝒖(τ)22(1+τ)32dτ,(1+t)^{\frac{3}{2}}\|\boldsymbol{u}(t)\|^{2}_{2}\leq C+C\int^{t}_{0}(1+\tau)^{\frac{3}{2}}\|\boldsymbol{u}(\tau)\|^{2}_{2}(1+\tau)^{-\frac{3}{2}}\,{\rm{d}}\tau,

and therefore, by Gronwall’s inequality, we obtain the desired decay estimate. ∎

4 Proof of Theorem 2.5

We begin with the following a priori estimate.

Lemma 4.1.

Assume that pW1,(3)p\in W^{1,\infty}(\mathbb{R}^{3}) with p+<83p^{+}<\frac{8}{3}. Then there exists a small number δ>0\delta>0 such that if

sup0tT𝒖(t)H1<2δ,\sup_{0\leq t\leq T}\|\boldsymbol{u}(t)\|_{H^{1}}<2\delta, (4.1)

we have the following differential inequality: for almost all time t(0,T)t\in(0,T),

ddt𝒖(t)22+2𝒖(t)220.\frac{\rm{d}}{\,\mathrm{d}t}\|\nabla\boldsymbol{u}(t)\|^{2}_{2}+\|\nabla^{2}\boldsymbol{u}(t)\|^{2}_{2}\leq 0. (4.2)
Proof.

We shall derive some formal inequalities which are essential for the correct arguments. For the detailed arguments, see for example, [3, 13]. We first differentiate (1.1) formally with respect to the spatial variable xjx_{j} and take scalar product with 𝒖xj\frac{\partial\boldsymbol{u}}{\partial x_{j}}. Summing over j=1,2,3j=1,2,3 yields the following a priori estimate (see [3]):

12ddt\displaystyle\frac{1}{2}\frac{\rm{d}}{\,\mathrm{d}t}\| 𝒖22+2𝒖22+𝒥p(u)\displaystyle\nabla\boldsymbol{u}\|^{2}_{2}+\|\nabla^{2}\boldsymbol{u}\|^{2}_{2}+\mathcal{J}_{p}(u)
3(𝒖)𝒖Δ𝒖dx+3|p|(𝑫¯𝒖)p(x)2log(𝑫¯𝒖)|𝑫𝒖||2𝒖|dx\displaystyle\lesssim\int_{\mathbb{R}^{3}}(\boldsymbol{u}\cdot\nabla)\boldsymbol{u}\cdot\Delta\boldsymbol{u}\,\mathrm{d}x+\int_{\mathbb{R}^{3}}|\nabla p|(\overline{\boldsymbol{D}}\boldsymbol{u})^{p(x)-2}\log(\overline{\boldsymbol{D}}\boldsymbol{u})|\boldsymbol{D}\boldsymbol{u}||\nabla^{2}\boldsymbol{u}|\,\mathrm{d}x
𝒖3𝒖62𝒖2+3log(𝑫¯𝒖)|𝑫𝒖||2𝒖|dx\displaystyle\lesssim\|\boldsymbol{u}\|_{3}\|\nabla\boldsymbol{u}\|_{6}\|\nabla^{2}\boldsymbol{u}\|_{2}+\int_{\mathbb{R}^{3}}\log(\overline{\boldsymbol{D}}\boldsymbol{u})|\boldsymbol{D}\boldsymbol{u}||\nabla^{2}\boldsymbol{u}|\,\mathrm{d}x
+3|𝑫𝒖|p+2log(𝑫¯𝒖)|𝑫𝒖||2𝒖|dx\displaystyle\,\,\,\,\,+\int_{\mathbb{R}^{3}}|\boldsymbol{D}\boldsymbol{u}|^{p^{+}-2}\log(\overline{\boldsymbol{D}}\boldsymbol{u})|\boldsymbol{D}\boldsymbol{u}||\nabla^{2}\boldsymbol{u}|\,\mathrm{d}x
:=I1+I2+I3.\displaystyle\mathrel{\mathop{:}}={\rm{I}}_{1}+{\rm{I}}_{2}+{\rm{I}}_{3}.

Note that the logarithmic term appears above when we differentiate the stress tensor with the variable exponent p(x)p(x). By the interpolation inequality and the Sobolev embedding,

I1𝒖212𝒖612𝒖62𝒖2𝒖212𝒖2122𝒖22.{\rm{I}}_{1}\lesssim\|\boldsymbol{u}\|_{2}^{\frac{1}{2}}\|\boldsymbol{u}\|_{6}^{\frac{1}{2}}\|\nabla\boldsymbol{u}\|_{6}\|\nabla^{2}\boldsymbol{u}\|_{2}\lesssim\|\boldsymbol{u}\|^{\frac{1}{2}}_{2}\|\nabla\boldsymbol{u}\|^{\frac{1}{2}}_{2}\|\nabla^{2}\boldsymbol{u}\|^{2}_{2}.

Next, by the inequality log(𝑫¯𝒖)Cα|𝑫𝒖|α\log(\overline{\boldsymbol{D}}\boldsymbol{u})\leq C_{\alpha}|\boldsymbol{D}\boldsymbol{u}|^{\alpha} for any 0<α10<\alpha\leq 1, we have

I23|𝑫𝒖|23|𝑫𝒖||2𝒖|dx|𝑫𝒖|233𝑫𝒖62𝒖2𝒖2232𝒖22.{\rm{I}}_{2}\lesssim\int_{\mathbb{R}^{3}}|\boldsymbol{D}\boldsymbol{u}|^{\frac{2}{3}}|\boldsymbol{D}\boldsymbol{u}||\nabla^{2}\boldsymbol{u}|\,\mathrm{d}x\lesssim\||\boldsymbol{D}\boldsymbol{u}|^{\frac{2}{3}}\|_{3}\|\boldsymbol{D}\boldsymbol{u}\|_{6}\|\nabla^{2}\boldsymbol{u}\|_{2}\lesssim\|\nabla\boldsymbol{u}\|_{2}^{\frac{2}{3}}\|\nabla^{2}\boldsymbol{u}\|^{2}_{2}.

Finally, due to the condition p+<83p^{+}<\frac{8}{3},

I33|𝑫𝒖|23|𝑫𝒖||2𝒖|dx𝒖2232𝒖22.{\rm{I}}_{3}\lesssim\int_{\mathbb{R}^{3}}|\boldsymbol{D}\boldsymbol{u}|^{\frac{2}{3}}|\boldsymbol{D}\boldsymbol{u}||\nabla^{2}\boldsymbol{u}|\,\mathrm{d}x\lesssim\|\nabla\boldsymbol{u}\|^{\frac{2}{3}}_{2}\|\nabla^{2}\boldsymbol{u}\|^{2}_{2}.

Altogether, we conclude that there exist positive constants C1C_{1} and C2C_{2} such that

ddt𝒖22+2𝒖22C1𝒖212𝒖2122𝒖22+C2𝒖2232𝒖22,\frac{\rm{d}}{\,\mathrm{d}t}\|\nabla\boldsymbol{u}\|^{2}_{2}+\|\nabla^{2}\boldsymbol{u}\|^{2}_{2}\leq C_{1}\|\boldsymbol{u}\|^{\frac{1}{2}}_{2}\|\nabla\boldsymbol{u}\|^{\frac{1}{2}}_{2}\|\nabla^{2}\boldsymbol{u}\|^{2}_{2}+C_{2}\|\nabla\boldsymbol{u}\|^{\frac{2}{3}}_{2}\|\nabla^{2}\boldsymbol{u}\|^{2}_{2},

and hence

ddt𝒖22+(1C1𝒖212𝒖212C2𝒖223)2𝒖220.\frac{\rm{d}}{\,\mathrm{d}t}\|\nabla\boldsymbol{u}\|^{2}_{2}+(1-C_{1}\|\boldsymbol{u}\|^{\frac{1}{2}}_{2}\|\nabla\boldsymbol{u}\|^{\frac{1}{2}}_{2}-C_{2}\|\nabla\boldsymbol{u}\|^{\frac{2}{3}}_{2})\|\nabla^{2}\boldsymbol{u}\|^{2}_{2}\leq 0.

Therefore, we obtain the desired inequality if sup0tT𝒖(t)H1<2δ\sup_{0\leq t\leq T}\|\boldsymbol{u}(t)\|_{H^{1}}<2\delta for sufficiently small δ>0\delta>0. ∎

Lemma 4.2.

Assume that pW1,(3)p\in W^{1,\infty}(\mathbb{R}^{3}) with 115pp+<83\frac{11}{5}\leq p^{-}\leq p^{+}<\frac{8}{3}. Then there exists a small number ε>0\varepsilon>0 such that if 𝐮0H1<ε\|\boldsymbol{u}_{0}\|_{H^{1}}<\varepsilon, we have

sup0tT𝒖(t)H1<2δ,\sup_{0\leq t\leq T}\|\boldsymbol{u}(t)\|_{H^{1}}<2\delta, (4.3)

where δ>0\delta>0 is the constant defined in Lemma 4.1.

Proof.

With the same argument as above and by Hölder’s inequality and Young’s inequality, we have

12ddt\displaystyle\frac{1}{2}\frac{\rm{d}}{\,\mathrm{d}t}\| 𝒖22+2𝒖22+𝒥p(𝒖)\displaystyle\nabla\boldsymbol{u}\|^{2}_{2}+\|\nabla^{2}\boldsymbol{u}\|^{2}_{2}+\mathcal{J}_{p}(\boldsymbol{u})
𝒖33+C3(𝑫¯𝒖)p(x)2log(𝑫¯𝒖)|𝑫𝒖||2𝒖|dx\displaystyle\leq\|\nabla\boldsymbol{u}\|^{3}_{3}+C\int_{\mathbb{R}^{3}}(\overline{\boldsymbol{D}}\boldsymbol{u})^{p(x)-2}\log(\overline{\boldsymbol{D}}\boldsymbol{u})|\boldsymbol{D}\boldsymbol{u}||\nabla^{2}\boldsymbol{u}|\,\mathrm{d}x
𝒖33+ε𝒥p(u)+C3(𝑫¯𝒖)p+log2(𝑫¯𝒖)\displaystyle\leq\|\nabla\boldsymbol{u}\|^{3}_{3}+\varepsilon\mathcal{J}_{p}(u)+C\int_{\mathbb{R}^{3}}(\overline{\boldsymbol{D}}\boldsymbol{u})^{p^{+}}\log^{2}(\overline{\boldsymbol{D}}\boldsymbol{u})
𝒖33+ε𝒥p(u)+C3log2(𝑫¯𝒖)dx+C3|𝑫𝒖|83log2(𝑫¯𝒖)dx\displaystyle\leq\|\nabla\boldsymbol{u}\|^{3}_{3}+\varepsilon\mathcal{J}_{p}(u)+C\int_{\mathbb{R}^{3}}\log^{2}(\overline{\boldsymbol{D}}\boldsymbol{u})\,\mathrm{d}x+C\int_{\mathbb{R}^{3}}|\boldsymbol{D}\boldsymbol{u}|^{\frac{8}{3}}\log^{2}(\overline{\boldsymbol{D}}\boldsymbol{u})\,\mathrm{d}x
C𝒖22+C𝒖33+ε𝒥p(u).\displaystyle\leq C\|\nabla\boldsymbol{u}\|^{2}_{2}+C\|\nabla\boldsymbol{u}\|^{3}_{3}+\varepsilon\mathcal{J}_{p}(u).

Next, for 115p\frac{11}{5}\leq p^{-}, we have that (see [13])

𝒖33Cε𝒖pp𝒖22+ε𝒥p(𝒖)Cε𝒖pp𝒖22+ε𝒥p(𝒖).\|\nabla\boldsymbol{u}\|^{3}_{3}\leq C_{\varepsilon}\|\nabla\boldsymbol{u}\|^{p^{-}}_{p^{-}}\|\nabla\boldsymbol{u}\|^{2}_{2}+\varepsilon\mathcal{J}_{p^{-}}(\boldsymbol{u})\leq C_{\varepsilon}\|\nabla\boldsymbol{u}\|^{p^{-}}_{p^{-}}\|\nabla\boldsymbol{u}\|^{2}_{2}+\varepsilon\mathcal{J}_{p}(\boldsymbol{u}).

Therefore, we finally have

ddt𝒖22C(1+𝒖pp)𝒖22,\frac{\rm{d}}{\,\mathrm{d}t}\|\nabla\boldsymbol{u}\|^{2}_{2}\leq C(1+\|\nabla\boldsymbol{u}\|^{p^{-}}_{p^{-}})\|\nabla\boldsymbol{u}\|^{2}_{2},

which yields by Gronwall’s inequality

𝒖22𝒖022exp(0t(1+𝒖(s)pp)ds).\|\nabla\boldsymbol{u}\|^{2}_{2}\leq\|\nabla\boldsymbol{u}_{0}\|^{2}_{2}\exp\left(\int^{t}_{0}(1+\|\nabla\boldsymbol{u}(s)\|^{p^{-}}_{p^{-}})\,\mathrm{d}s\right).

Thanks to (2.4), 𝒖(t)pp\|\nabla\boldsymbol{u}(t)\|^{p^{-}}_{p^{-}} is integrable with respect to time, and hence, there exists small T>0T^{*}>0 such that

sup0tT𝒖222𝒖022.\sup_{0\leq t\leq T^{*}}\|\nabla\boldsymbol{u}\|^{2}_{2}\leq 2\|\nabla\boldsymbol{u}_{0}\|^{2}_{2}. (4.4)

Now, suppose that 𝒖0H1<δ2\|\boldsymbol{u}_{0}\|_{H^{1}}<\frac{\delta}{\sqrt{2}}. Then by (4.4) and (2.4),

sup0tT𝒖H1<2δ.\sup_{0\leq t\leq T^{*}}\|\boldsymbol{u}\|_{H^{1}}<2\delta. (4.5)

Then by Lemma 4.1,

ddt𝒖220,\frac{\rm{d}}{\,\mathrm{d}t}\|\nabla\boldsymbol{u}\|^{2}_{2}\leq 0,

which implies that

𝒖(T)22sup0tT𝒖22𝒖022<δ22.\|\nabla\boldsymbol{u}(T^{*})\|^{2}_{2}\leq\sup_{0\leq t\leq T^{*}}\|\nabla\boldsymbol{u}\|^{2}_{2}\leq\|\nabla\boldsymbol{u}_{0}\|^{2}_{2}<\frac{\delta^{2}}{2}. (4.6)

Next, we consider the original problem (1.1)–(1.2) for tTt\geq T^{*} with the initial data 𝒖(T)\boldsymbol{u}(T^{*}). With the same argument as above,

supTt2T𝒖222𝒖(T)22<δ2,\sup_{T^{*}\leq t\leq 2T^{*}}\|\nabla\boldsymbol{u}\|^{2}_{2}\leq 2\|\nabla\boldsymbol{u}(T^{*})\|^{2}_{2}<\delta^{2},

and hence

supTt2T𝒖H1<2δ.\sup_{T^{*}\leq t\leq 2T^{*}}\|\boldsymbol{u}\|_{H^{1}}<2\delta.

By Lemma 4.1 again, we have

𝒖(2T)22supTt2T𝒖22𝒖(T)22<δ22.\|\nabla\boldsymbol{u}(2T^{*})\|^{2}_{2}\leq\sup_{T^{*}\leq t\leq 2T^{*}}\|\nabla\boldsymbol{u}\|^{2}_{2}\leq\|\nabla\boldsymbol{u}(T^{*})\|^{2}_{2}<\frac{\delta^{2}}{2}.

If we repeat the same process for (n1)T<t<nT(n-1)T^{*}<t<nT^{*} with nn\in\mathbb{N}, we finally obtain that

sup0tT𝒖H1<2δ.\sup_{0\leq t\leq T}\|\boldsymbol{u}\|_{H^{1}}<2\delta.

Proof of Theorem 2.5.

Let L(t)={ξ3:|ξ|f(t)}L(t)=\{\xi\in\mathbb{R}^{3}:|\xi|\leq f(t)\} where f(t)=(11+t)12f(t)=\left(\frac{1}{1+t}\right)^{\frac{1}{2}}. By Plancherel’s theorem, we have

2𝒖(t)22\displaystyle\|\nabla^{2}\boldsymbol{u}(t)\|^{2}_{2} =3|ξ|4|𝒖^(t,ξ)|2dξ|f(t)|2L(t)c|ξ|2|𝒖^(t,ξ)|2dξ\displaystyle=\int_{\mathbb{R}^{3}}|\xi|^{4}|\widehat{\boldsymbol{u}}(t,\xi)|^{2}{\rm{d}}\xi\geq|f(t)|^{2}\int_{L(t)^{c}}|\xi|^{2}|\widehat{\boldsymbol{u}}(t,\xi)|^{2}{\rm{d}}\xi
=|f(t)|23|ξ|2|𝒖^(t,ξ)|2dξ|f(t)|2L(t)|ξ|2|𝒖^(t,ξ)|2dξ\displaystyle=|f(t)|^{2}\int_{\mathbb{R}^{3}}|\xi|^{2}|\widehat{\boldsymbol{u}}(t,\xi)|^{2}{\rm{d}}\xi-|f(t)|^{2}\int_{L(t)}|\xi|^{2}|\widehat{\boldsymbol{u}}(t,\xi)|^{2}{\rm{d}}\xi
|f(t)|2𝒖(t)22|f(t)|4L(t)|𝒖^(t,ξ)|2dξ\displaystyle\geq|f(t)|^{2}\|\nabla\boldsymbol{u}(t)\|^{2}_{2}-|f(t)|^{4}\int_{L(t)}|\widehat{\boldsymbol{u}}(t,\xi)|^{2}{\rm{d}}\xi
|f(t)|2𝒖(t)22|f(t)|4𝒖(t)22.\displaystyle\geq|f(t)|^{2}\|\nabla\boldsymbol{u}(t)\|^{2}_{2}-|f(t)|^{4}\|\boldsymbol{u}(t)\|^{2}_{2}.

From Lemma (4.1) and (4.2), we can deduce that for almost all t(0,T)t\in(0,T),

ddt𝒖(t)22+2𝒖(t)220.\frac{\rm{d}}{\rm{d}t}\|\nabla\boldsymbol{u}(t)\|^{2}_{2}+\|\nabla^{2}\boldsymbol{u}(t)\|^{2}_{2}\leq 0.

Therefore, we obtain

ddt𝒖(t)22+11+t2𝒖(t)22(11+t)2𝒖(t)22.\frac{\rm{d}}{\rm{d}t}\|\nabla\boldsymbol{u}(t)\|^{2}_{2}+\frac{1}{1+t}\|\nabla^{2}\boldsymbol{u}(t)\|^{2}_{2}\leq\left(\frac{1}{1+t}\right)^{2}\|\boldsymbol{u}(t)\|^{2}_{2}.

Then for >52\ell>\frac{5}{2}, by Theorem 2.4

ddt((1+t)𝒖(t)22)(1+t)2𝒖(t)22C(1+t)232.\frac{\rm{d}}{{\rm{d}}t}\left((1+t)^{\ell}\|\nabla\boldsymbol{u}(t)\|^{2}_{2}\right)\leq(1+t)^{\ell-2}\|\boldsymbol{u}(t)\|^{2}_{2}\leq C(1+t)^{\ell-2-\frac{3}{2}}.

By integrating the above inequality over time, we have the desired decay estimate. ∎

References

  • [1] R. Agapito and M. Schonbek. Non-uniform decay of MHD equations with and without magnetic diffusion. Comm. Partial Differential Equations, 32(10-12):1791–1812, 2007.
  • [2] L. Diening, P. Harjulehto, P. Hästö, and M. Ružička. Lebesgue and Sobolev spaces with variable exponents, volume 2017 of Lecture Notes in Mathematics. Springer, Heidelberg, 2011.
  • [3] L. Diening and M. Ružička. Strong solutions for generalized Newtonian fluids. J. Math. Fluid Mech., 7(3):413–450, 2005.
  • [4] B.-Q. Dong. Decay of solutions to equations modelling incompressible bipolar non-Newtonian fluids. Electron. J. Differential Equations, pages No. 125, 13, 2005.
  • [5] B. Guo and P. Zhu. Algebraic L2L^{2} decay for the solution to a class system of non-Newtonian fluid in n\mathbb{R}^{n}. J. Math. Phys., 41(1):349–356, 2000.
  • [6] P. Han and C. He. Decay properties of solutions to the incompressible magnetohydrodynamics equations in a half space. Math. Methods Appl. Sci., 35(12):1472–1488, 2012.
  • [7] D. Henry. Geometric theory of semilinear parabolic equations, volume 840 of Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York, 1981.
  • [8] R. Kajikiya and T. Miyakawa. On L2L^{2} decay of weak solutions of the Navier-Stokes equations in 𝐑n{\bf R}^{n}. Math. Z., 192(1):135–148, 1986.
  • [9] T. Kato. Strong LpL^{p}-solutions of the Navier-Stokes equation in 𝐑m{\bf R}^{m}, with applications to weak solutions. Math. Z., 187(4):471–480, 1984.
  • [10] H. K. Kim, K. Kang, and J.-M. Kim. Existence and temporal decay of regular solutions to non-Newtonian fluids combined with Maxwell equations. Nonlinear Anal., 180:284–307, 2019.
  • [11] J.-M. Kim. Temporal decay of strong solutions to the magnetohydrodynamics with power-law type nonlinear viscous fluid. J. Math. Phys., 61(1):011504, 6, 2020.
  • [12] H. Kozono. On the energy decay of a weak solution of the MHD equations in a three-dimensional exterior domain. Hokkaido Math. J., 16(2):151–166, 1987.
  • [13] J. Málek, J. Nečas, M. Rokyta, and M. Ružička. Weak and measure-valued solutions to evolutionary PDEs, volume 13 of Applied Mathematics and Mathematical Computation. Chapman & Hall, London, 1996.
  • [14] Š. Nečasová and P. Penel. L2L^{2} decay for weak solution to equations of non-Newtonian incompressible fluids in the whole space. In Proceedings of the Third World Congress of Nonlinear Analysts, Part 6 (Catania, 2000), volume 47, pages 4181–4192, 2001.
  • [15] M. Oliver and E. S. Titi. Remark on the rate of decay of higher order derivatives for solutions to the Navier-Stokes equations in 𝐑n{\bf R}^{n}. J. Funct. Anal., 172(1):1–18, 2000.
  • [16] M. Pokorný. Cauchy problem for the non-Newtonian viscous incompressible fluid. Appl. Math., 41(3):169–201, 1996.
  • [17] M. Ružička. Electrorheological fluids: modeling and mathematical theory, volume 1748 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2000.
  • [18] M. Ružička. Modeling, mathematical and numerical analysis of electrorheological fluids. Appl. Math., 49(6):565–609, 2004.
  • [19] M. E. Schonbek. L2L^{2} decay for weak solutions of the Navier-Stokes equations. Arch. Rational Mech. Anal., 88(3):209–222, 1985.
  • [20] M. E. Schonbek. Large time behaviour of solutions to the Navier-Stokes equations. Comm. Partial Differential Equations, 11(7):733–763, 1986.
  • [21] M. E. Schonbek. Lower bounds of rates of decay for solutions to the Navier-Stokes equations. J. Amer. Math. Soc., 4(3):423–449, 1991.
  • [22] M. E. Schonbek. Asymptotic behavior of solutions to the three-dimensional Navier-Stokes equations. Indiana Univ. Math. J., 41(3):809–823, 1992.
  • [23] M. E. Schonbek, T. P. Schonbek, and E. Süli. Large-time behaviour of solutions to the magnetohydrodynamics equations. Math. Ann., 304(4):717–756, 1996.
  • [24] M. Wiegner. Decay results for weak solutions of the Navier-Stokes equations on 𝐑n{\bf R}^{n}. J. London Math. Soc. (2), 35(2):303–313, 1987.