This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Tail asymptotics for the bivariate equi-skew Variance-Gamma distribution

Thomas Funga,111Corresponding Author. Email address: [email protected] (Thomas Fung). Honorary Associate, University of Sydney.  and Eugene Senetab
a Department of Mathematics and Statistics, Macquarie University, NSW 2109, Australia
b School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia
Abstract

We derive the asymptotic rate of decay to zero of the tail dependence of the bivariate skew Variance Gamma (VG) distribution under the equal-skewness condition, as an explicit regularly varying function. Our development is in terms of a slightly more general bivariate skew Generalized Hyperbolic (GH) distribution. Our initial reduction of the bivariate problem to a univariate one is motivated by our earlier study of tail dependence rate for the bivariate skew normal distribution.
Keywords: Asymptotic tail dependence coefficient; bivariate variance gamma distribution; bivariate generalized hyperbolic distribution; convergence rate; equi-skew distribution; mean-variance mixing; quantile function.

1 Introduction

The coefficient of lower tail dependence of a random vector X=(X1,X2)\textbf{X}=(X_{1},X_{2})^{\top} with marginal inverse distribution functions F11F_{1}^{-1} and F21F_{2}^{-1} is defined as

λL=limu0+λL(u),whereλL(u)=P(X1F11(u)|X2F21(u)).\lambda_{L}=\lim_{u\rightarrow 0^{+}}\lambda_{L}(u),\quad\text{where}\quad\lambda_{L}(u)=P(X_{1}\leq F_{1}^{-1}(u)|X_{2}\leq F_{2}^{-1}(u)). (1)

X is said to have asymptotic lower tail dependence if λL\lambda_{L} exists and is positive. If λL=0\lambda_{L}=0, then X is said to be asymptotically independent in the lower tail.

This quantity provides insight on the tendency for the distribution to generate joint extreme event since it measures the strength of dependence (or association) in the lower tail of a bivariate distribution. If the marginal distributions of these random variables are continuous, then from (1), it follows that λL(u)\lambda_{L}(u) can be expressed in terms of the copula of X, C(u1,u2)C(u_{1},u_{2}), as

λL(u)=P(X1F11(u),X2F21(u))P(X2F21(u))=C(u,u)u.\lambda_{L}(u)=\frac{P(X_{1}\leq F_{1}^{-1}(u),X_{2}\leq F_{2}^{-1}(u))}{P(X_{2}\leq F_{2}^{-1}(u))}=\frac{C(u,u)}{u}.

If λL=0\lambda_{L}=0 in (1), that is, if asymptotic lower tail independence obtains, the asymptotic rate of convergence to zero as u0+u\to 0^{+} of the copula C(u,u)C(u,u) is tantamount to that of λL(u)\lambda_{L}(u) through the relation:

C(u,u)=uλL(u).C(u,u)=u\lambda_{L}(u).

The central purpose of this paper is to provide an analytic result on the asymptotic tail independence for the bivariate skew Variance-Gamma (VG) model. We will consider this problem in terms of the more general skew Generalized Hyperbolic (GH) distribution.

The (standardized) bivariate skew GH distribution, GH(0,R,𝜽,p,a,b)GH(0,R,\boldsymbol{\theta},p,a,b) is defined by its variance-mean mixing representation as

X=𝜽W+WZ\textbf{X}=\boldsymbol{\theta}W+\sqrt{W}\textbf{Z}\quad (2)

where X=(X1,X2),𝜽=(θ1,θ2)\textbf{X}=(X_{1},X_{2})^{\top},\boldsymbol{\theta}^{\top}=(\theta_{1},\theta_{2}), and WGIG(p,a,b)W\sim GIG(p,a,b) is independently distributed of ZN(0,R)\textbf{Z}\sim N(0,R). Here R=(1ρρ1)R=\left(\begin{smallmatrix}1&&\rho\\ \\ \rho&&1\end{smallmatrix}\right), with 1<ρ<1-1<\rho<1.

Recall that a random variable WW is said to have a (univariate) Generalised Inverse Gaussian (GIG) distribution, denoted by GIG(p,a,b)GIG(p,a,b), if it has density

fGIG(w)\displaystyle f_{GIG}(w) =\displaystyle= 12K¯p(a,b)wp1exp(12(a2w1+b2w)),w>0;\displaystyle\frac{1}{2\overline{K}_{p}(a,b)}w^{p-1}\exp(-\frac{1}{2}(a^{2}w^{-1}+b^{2}w)),\quad w>0;
=\displaystyle= 0,otherwise;\displaystyle 0,\quad\text{otherwise;}

where

K¯p(a,b)={(ab)pKp(ab), p, if a,b>0;b2pΓ(p)2p1, p,b>0, if a=0;a2pΓ(p)2p1, a>0 and p<0, if b=0,\overline{K}_{p}(a,b)=\begin{cases}(\frac{a}{b})^{p}K_{p}(ab),&\text{ $p\in\mathbb{R}$, if $a,b>0$;}\\ b^{-2p}\Gamma(p)2^{p-1},&\text{ $p,b>0$, if $a=0$;}\\ a^{2p}\Gamma(-p)2^{-p-1},&\text{ $a>0$ and $p<0$, if $b=0$,}\end{cases} (3)

Here Kp(ω),ω>0,K_{p}(\omega),\ \omega>0, is the modified Bessel function of the second kind (Erdélyi \BOthers. (\APACyear1954)) with index pp\in\mathbb{R}.

In the VG special case a=0a=0, b=2νb=\sqrt{\frac{2}{\nu}}, p=12p=\frac{1}{2}. We proceed more generally by assuming b>0b>0 in this note in the GIG(p,a,b)GIG(p,a,b) setting.

It was shown in Fung \BBA Seneta (\APACyear2011) that when XGH(0,R,𝜽,p,a,b)\textbf{X}\sim GH(0,R,\boldsymbol{\theta},p,a,b) with b>0b>0, then X is asymptotically independent in the lower tail; that is λL=0.\lambda_{L}=0. The proof in von Hammerstein (\APACyear2016) for the VG can be adjusted to give this same conclusion.

Our specific focus in the sequel is to obtain a rate of convergence result of the form:

C(u,u)=uτL(u)C(u,u)=u^{\tau}L(u) (4)

where L(u)L(u) is a slowly varying function (SVF) as u0+u\to 0^{+} and τ>1,\tau>1, when θ1=θ2,=θ\theta_{1}=\theta_{2},=\theta, say, so XiθW+WZiX_{i}\sim\theta W+\sqrt{W}Z_{i}, i=1,2i=1,2, where ZiN(0,1).Z_{i}\sim N(0,1). That is, the distribution functions of the Xi,i=1,2X_{i},i=1,2 are the same: F1(u)=F2(u),=F(u)F_{1}(u)=F_{2}(u),=F(u), say. We call this assumption in a bivariate setting “equi-skewness”.

Our study thus parallels that of Fung \BBA Seneta (\APACyear2016), who treat the bivariate skew normal distributed X, that is XSN2(α,R)\textbf{X}\sim SN_{2}({\bf\alpha},R) where in α=(α1,α2){\bf\alpha}=(\alpha_{1},\alpha_{2})^{\top}, it is assumed that α1=α2,=α\alpha_{1}=\alpha_{2},=\alpha say, so equi-skewness obtains.

Both treatments depend on the same initial device: that

Z(2)=max(Z1,Z2)SN1(α), whereα=1ρ1+ρ,Z_{(2)}=\max(Z_{1},Z_{2})\sim SN_{1}(\alpha),{\text{ where}}\,\,\alpha=\sqrt{\frac{1-\rho}{1+\rho}}, (5)

to reduce the bivariate problem to a univariate one. Our subsequent treatment is quite different, since the setting in Fung \BBA Seneta (\APACyear2016) is just mean-mixing, and with a mixing distribution not encompassed by the GIG.

Clearly, since λL(u)\lambda_{L}(u) is a probability, the index τ\tau in (4) must satisfy τ1.\tau\geq 1. We note that Ledford \BBA Tawn (\APACyear1997), Ramos \BBA Ledford (\APACyear2009), Hashorva (\APACyear2010) and Hua \BBA Joe (\APACyear2011) all classified the degree of tail-dependence to the value of τ\tau in (4). Hua \BBA Joe (\APACyear2011) define τ\tau in (4) as the (lower) tail order of a copula. The tail order case 1<τ<21<\tau<2 is considered as intermediate tail dependence as it corresponds to the copula having some level of positive dependence in the tail when λL=0\lambda_{L}=0. Thus when λL(u)=C(u,u)/u=uτ1L(u)\lambda_{L}(u)=C(u,u)/u=u^{\tau-1}L(u), 1<τ<21<\tau<2, there is some measure of positive association when λL=0\lambda_{L}=0, but the association is not as strong as when τ=1\tau=1, and λL(u)=L(u)λL>0\lambda_{L}(u)=L(u)\to\lambda_{L}>0, u0+u\to 0^{+}, the case of asymptotic tail dependence. In our specific setting we shall find that 1<τ<.1<\tau<\infty.

For the case of b=0b=0 in the GIG(p,a,b)GIG(p,a,b) setting, X can be asymptotically dependent in the lower tail. The limiting and rate of convergence results for this case were discussed in Fung \BBA Seneta (\APACyear2010) and Fung \BBA Seneta (\APACyear2014) respectively.

2 The Reduction

For our equi-skew setting of (2):

P(X1F11(u),X2F21(u))\displaystyle P(X_{1}\leq F_{1}^{-1}(u),\,X_{2}\leq F_{2}^{-1}(u))
=\displaystyle= P(X1y,X2y),where y=F11(u)=F21(u);\displaystyle P(X_{1}\leq y,\,X_{2}\leq y),\quad\text{where $y=F_{1}^{-1}(u)=F_{2}^{-1}(u)$};
=\displaystyle= EW(P(θW+WZ1y,θW+WZ2y))\displaystyle E_{W}(P(\theta W+\sqrt{W}Z_{1}\leq y,\,\theta W+\sqrt{W}Z_{2}\leq y))
=\displaystyle= EW[P(Z1yθWW,Z2yθWW)]\displaystyle E_{W}\left[P\left(Z_{1}\leq\frac{y-\theta W}{\sqrt{W}},\,Z_{2}\leq\frac{y-\theta W}{\sqrt{W}}\right)\right]
=\displaystyle= EW[P(Z(2)yθWW)],\displaystyle E_{W}\left[P(Z_{(2)}\leq\frac{y-\theta W}{\sqrt{W}})\right],

where Z(2)Z_{(2)} has a skew normal distribution with skew parameter α\alpha according to (5);

=\displaystyle= 0P(Z(2)yθww)fW(w)𝑑w\displaystyle\int^{\infty}_{0}P\left(Z_{(2)}\leq\frac{y-\theta w}{\sqrt{w}}\right)f_{W}(w)\,dw
=\displaystyle= 0P(θw+wZ(2)y)fW(w)𝑑w\displaystyle\int^{\infty}_{0}P(\theta w+\sqrt{w}Z_{(2)}\leq y)f_{W}(w)\,dw
=\displaystyle= P(Xy),\displaystyle P(X^{*}\leq y),

where X=θW+WZ(2)X^{*}=\theta W+\sqrt{W}Z_{(2)} and XX^{*} is defined by a variance-mean mixing of a skew normal representation. This type of distribution was considered in Arslan (\APACyear2014), according to whose Proposition 1 the probability density of XX^{*} is given by:

fX(x)=2eθx2πK¯p(a,b)K¯p12((a2+x2)12,(θ2+b2)12)P(Yαx)f_{X^{*}}(x)=\frac{2e^{\theta x}}{\sqrt{2\pi}\,\overline{K}_{p}(a,b)}\overline{K}_{p-\frac{1}{2}}\left((a^{2}+x^{2})^{\frac{1}{2}},(\theta^{2}+b^{2})^{\frac{1}{2}}\right)P(Y\leq\alpha x) (6)

where YGH(0,1,αθ,p12,(a2+x2)12,(θ2+b2)12)Y\sim GH(0,1,\alpha\theta,p-\frac{1}{2},(a^{2}+x^{2})^{\frac{1}{2}},(\theta^{2}+b^{2})^{\frac{1}{2}}) i.e. YY has a univariate GH distribution. Now, setting: β=(α2θ2+θ2+b2)12,=(θ2(1+α2)+b2)12\,\,\beta=(\alpha^{2}\theta^{2}+\theta^{2}+b^{2})^{\frac{1}{2}},=(\theta^{2}(1+\alpha^{2})+b^{2})^{\frac{1}{2}}:

P(Yαx)\displaystyle P(Y\leq\alpha x)
=\displaystyle= αxeαθz2πK¯p12((a2+x2)12,(θ2+b2)12)K¯p1((a2+x2+z2)12,β)𝑑z,\displaystyle\int^{\alpha x}_{-\infty}\frac{e^{\alpha\theta z}}{\sqrt{2\pi}\,\overline{K}_{p-\frac{1}{2}}((a^{2}+x^{2})^{\frac{1}{2}},(\theta^{2}+b^{2})^{\frac{1}{2}})}\overline{K}_{p-1}\left((a^{2}+x^{2}+z^{2})^{\frac{1}{2}},\beta\right)\,dz,
=\displaystyle= αxeαθz2πK¯p12((a2+x2)12,(θ2+b2)12)((a2+x2+z2)12β)p1Kp1(β(a2+x2+z2)12)𝑑z\displaystyle\int^{\alpha x}_{-\infty}\frac{e^{\alpha\theta z}}{\sqrt{2\pi}\,\overline{K}_{p-\frac{1}{2}}((a^{2}+x^{2})^{\frac{1}{2}},(\theta^{2}+b^{2})^{\frac{1}{2}})}\left(\frac{(a^{2}+x^{2}+z^{2})^{\frac{1}{2}}}{\beta}\right)^{p-1}K_{p-1}\left(\beta(a^{2}+x^{2}+z^{2})^{\frac{1}{2}}\right)\,dz

from (3). As zxyz\leq x\leq y, so when yy\to-\infty, (a2+x2+z2)12(a^{2}+x^{2}+z^{2})^{\frac{1}{2}}\to\infty, we can use the asymptotic behaviour of the Bessel function (see Jørgensen (\APACyear1982)):

Kν(y)=π2yey(1+O(1y)),as yK_{\nu}(y)=\sqrt{\frac{\pi}{2y}}e^{-y}\left(1+O\left(\frac{1}{y}\right)\right),\quad\text{as $y\to\infty$} (7)

and P(Yαx)P(Y\leq\alpha x) becomes

=\displaystyle= αxeαθz2πK¯p12((a2+x2),(θ2+b2)12)((a2+x2+z2)12β)p1\displaystyle\int^{\alpha x}_{-\infty}\frac{e^{\alpha\theta z}}{\sqrt{2\pi}\,\overline{K}_{p-\frac{1}{2}}((a^{2}+x^{2}),(\theta^{2}+b^{2})^{\frac{1}{2}})}\left(\frac{(a^{2}+x^{2}+z^{2})^{\frac{1}{2}}}{\beta}\right)^{p-1}
×π2β(a2+x2+z2)12eβ(a2+x2+z2)12(1+O(1a2+x2+z2))dz\displaystyle\quad\times\sqrt{\frac{\pi}{2\beta(a^{2}+x^{2}+z^{2})^{\frac{1}{2}}}}e^{-\beta(a^{2}+x^{2}+z^{2})^{\frac{1}{2}}}\left(1+O\left(\frac{1}{\sqrt{a^{2}+x^{2}+z^{2}}}\right)\right)\,dz
=\displaystyle= α|x|eαθz2πK¯p12((a2+x2)12,(θ2+b2)12)((a2+x2+z2)12β)p1\displaystyle\int^{\infty}_{\alpha|x|}\frac{e^{-\alpha\theta z}}{\sqrt{2\pi}\,\overline{K}_{p-\frac{1}{2}}((a^{2}+x^{2})^{\frac{1}{2}},(\theta^{2}+b^{2})^{\frac{1}{2}})}\left(\frac{(a^{2}+x^{2}+z^{2})^{\frac{1}{2}}}{\beta}\right)^{p-1}
×π2β(a2+x2+z2)12eβ(a2+x2+z2)12(1+O(1|x|))dz\displaystyle\quad\times\sqrt{\frac{\pi}{2\beta(a^{2}+x^{2}+z^{2})^{\frac{1}{2}}}}e^{-\beta(a^{2}+x^{2}+z^{2})^{\frac{1}{2}}}\left(1+O\left(\frac{1}{|x|}\right)\right)\,dz
=\displaystyle= αeαθ|x|s2πK¯p12((a2+x2)12,(θ2+b2)12)(|x|(1+a2x2+s2)12β)p1\displaystyle\int^{\infty}_{\alpha}\frac{e^{-\alpha\theta|x|s}}{\sqrt{2\pi}\,\overline{K}_{p-\frac{1}{2}}((a^{2}+x^{2})^{\frac{1}{2}},(\theta^{2}+b^{2})^{\frac{1}{2}})}\left(|x|\frac{\left(1+\frac{a^{2}}{x^{2}}+s^{2}\right)^{\frac{1}{2}}}{\beta}\right)^{p-1}
×π2β|x|(1+a2x2+s2)12eβ|x|(1+a2x2+s2)12|x|(1+O(1|x|))ds,\displaystyle\quad\times\sqrt{\frac{\pi}{2\beta|x|\left(1+\frac{a^{2}}{x^{2}}+s^{2}\right)^{\frac{1}{2}}}}e^{-\beta|x|\left(1+\frac{a^{2}}{x^{2}}+s^{2}\right)^{\frac{1}{2}}}|x|\left(1+O\left(\frac{1}{|x|}\right)\right)\,ds,

by letting z=|x|sz=|x|s;

=\displaystyle= |x|p122K¯p12((a2+x2)12,(θ2+b2)12)βp12(1+O(1|x|))\displaystyle\frac{|x|^{p-\frac{1}{2}}}{2\,\overline{K}_{p-\frac{1}{2}}((a^{2}+x^{2})^{\frac{1}{2}},(\theta^{2}+b^{2})^{\frac{1}{2}})\beta^{p-\frac{1}{2}}}\left(1+O\left(\frac{1}{|x|}\right)\right)
×α(1+a2x2+s2)12(p32)e|x|[β(1+a2x2+s2)12+αθs]ds.\displaystyle\quad\times\int^{\infty}_{\alpha}\left(1+\frac{a^{2}}{x^{2}}+s^{2}\right)^{\frac{1}{2}(p-\frac{3}{2})}e^{-|x|[\beta\left(1+\frac{a^{2}}{x^{2}}+s^{2}\right)^{\frac{1}{2}}+\alpha\theta s]}\,ds. (8)

Hence, from (6) and (8), as xx\to-\infty:

fX(x)=\displaystyle f_{X{*}}(x)= eθ|x||x|p122πK¯p(a,b)βp12(1+O(1|x|))\displaystyle\frac{e^{-\theta|x|}|x|^{p-\frac{1}{2}}}{\sqrt{2\pi}\,\overline{K}_{p}(a,b)\beta^{p-\frac{1}{2}}}\left(1+O\left(\frac{1}{|x|}\right)\right)
×α(1+a2x2+s2)12(p32)e|x|[β(1+a2x2+s2)12+αθs]ds\displaystyle\quad\times\int^{\infty}_{\alpha}\left(1+\frac{a^{2}}{x^{2}}+s^{2}\right)^{\frac{1}{2}(p-\frac{3}{2})}e^{-|x|[\beta\left(1+\frac{a^{2}}{x^{2}}+s^{2}\right)^{\frac{1}{2}}+\alpha\theta s]}\,ds (9)

3 Asymptotic bivariate equi-skew form

We next need to investigate the asymptotic behaviour of the integral in (9) as xx\to-\infty. To this end define

ϕ(s)=β(1+a2x2+s2)12+αθs\phi(s)=\beta\left(1+\frac{a^{2}}{x^{2}}+s^{2}\right)^{\frac{1}{2}}+\alpha\theta s (10)

where as before β=(α2θ2+θ2+b2)12,α>0,θ.\beta=(\alpha^{2}\theta^{2}+\theta^{2}+b^{2})^{\frac{1}{2}},\alpha>0,\theta\in\mathbb{R}.

We shall need in the sequel

ϕ(α)+θ>0,ϕ(α)>0,\phi(\alpha)+\theta>0,\,\,\phi(\alpha)>0, (11)

To see this

ϕ(α)|θ|\displaystyle\phi(\alpha)-|\theta| =\displaystyle= β(1+a2x2+α2)12+α2θ|θ|\displaystyle\beta\left(1+\frac{a^{2}}{x^{2}}+\alpha^{2}\right)^{\frac{1}{2}}+\alpha^{2}\theta-|\theta|
\displaystyle\geq β(1+α2)12+α2θ|θ|\displaystyle\beta(1+\alpha^{2})^{\frac{1}{2}}+\alpha^{2}\theta-|\theta|
=\displaystyle= (1+α2)12((α2θ+θ2+b2)12+α2θ|θ|\displaystyle(1+\alpha^{2})^{\frac{1}{2}}((\alpha^{2}\theta+\theta^{2}+b^{2})^{\frac{1}{2}}+\alpha^{2}\theta-|\theta|
>\displaystyle> (1+α2)12((α2θ2+θ2)12+α2θ|θ|, since b>0,\displaystyle(1+\alpha^{2})^{\frac{1}{2}}((\alpha^{2}\theta^{2}+\theta^{2})^{\frac{1}{2}}+\alpha^{2}\theta-|\theta|,\text{ since $b>0$,}
=\displaystyle= (1+α2)|θ|+α2θ|θ|\displaystyle(1+\alpha^{2})|\theta|+\alpha^{2}\theta-|\theta|
=\displaystyle= α2(|θ|+θ)0.\displaystyle\alpha^{2}(|\theta|+\theta)\geq 0.

Hence ϕ(α)>|θ|>0\phi(\alpha)>|\theta|>0, and (11) follows. Next

ϕ(s)=βs(1+a2x2+s2)12+αθ>0\phi^{{}^{\prime}}(s)=\frac{\beta s}{\left(1+\frac{a^{2}}{x^{2}}+s^{2}\right)^{\frac{1}{2}}}+\alpha\theta>0 (12)

for all sαs\geq\alpha with α\alpha, β>0\beta>0 and θ\theta\in\mathbb{R} providing |x||θa|b|x|\geq\frac{|\theta a|}{b}. To see this we can show, similarly to the above, that

(βsα|θ|(1+a2x2+s2)12)>0\left(\beta s-\alpha|\theta|\left(1+\frac{a^{2}}{x^{2}}+s^{2}\right)^{\frac{1}{2}}\right)>0

providing s2>(αθaxb)2,s^{2}>(\frac{\alpha\theta a}{xb})^{2}, so that, if we take sαs\geq\alpha, providing |x|>|θa|b.|x|>\frac{|\theta a|}{b}. Given that we shall need |x||x|\rightarrow\infty, the inequality (12) will hold for all sαs\geq\alpha for any fixed α>0,b>0,θ.\alpha>0,b>0,\theta\in\mathbb{R}.

Thus in view of (10), (12), ϕ(s)\phi(s), sα,s\geq\alpha, has an inverse function ϕ1(s),sϕ(α)\phi^{-1}(s),s\geq\phi(\alpha). Next we consider,with reference to (9),

|x|p12α(1+a2x2+s2)12(p32)e|x|ϕ(s)𝑑s|x|^{p-\frac{1}{2}}\int^{\infty}_{\alpha}\left(1+\frac{a^{2}}{x^{2}}+s^{2}\right)^{\frac{1}{2}(p-\frac{3}{2})}e^{-|x|\phi(s)}\,ds (13)

and change variable of integration to w=ϕ(s)ϕ(α)w=\phi(s)-\phi(\alpha), so the expression becomes:

=\displaystyle= |x|p12e|x|ϕ(α)w=0w=(1+a2x2+(ϕ1(w+ϕ(α)))2)12(p32)ϕ(ϕ1(w+ϕ(α))e|x|w𝑑w\displaystyle|x|^{p-\frac{1}{2}}e^{-|x|\phi(\alpha)}\int^{w=\infty}_{w=0}\frac{\left(1+\frac{a^{2}}{x^{2}}+\left(\phi^{-1}\left(w+\phi(\alpha)\right)\right)^{2}\right)^{\frac{1}{2}\left(p-\frac{3}{2}\right)}}{\phi^{\prime}\left(\phi^{-1}(w+\phi(\alpha)\right)}e^{-|x|w}\,dw (14)
=\displaystyle= |x|p32e|x|ϕ(α){|x|w=0w=θ~(w)e|x|w𝑑w}\displaystyle|x|^{p-\frac{3}{2}}e^{-|x|\phi(\alpha)}\{|x|\int^{w=\infty}_{w=0}\tilde{\theta}(w)e^{-|x|w}\,dw\}

where

θ~(w)=(1+a2x2+(ϕ1(w+ϕ(α)))2)12(p32)ϕ(ϕ1(w+ϕ(α)).\tilde{\theta}(w)=\frac{\left(1+\frac{a^{2}}{x^{2}}+\left(\phi^{-1}\left(w+\phi(\alpha)\right)\right)^{2}\right)^{\frac{1}{2}\left(p-\frac{3}{2}\right)}}{\phi^{\prime}\left(\phi^{-1}(w+\phi(\alpha)\right)}. (15)

We now consider each of the multiplicands in (14) separately. First, using integration by parts, and putting for convenience v=|x|v=|x| we have

vw=0w=θ~(w)evw𝑑w\displaystyle v\int^{w=\infty}_{w=0}\tilde{\theta}(w)e^{-vw}\,dw
=\displaystyle= v[θ~(w)evwv]w=0vw=0evwvθ~(w)𝑑w\displaystyle v\left[\frac{\tilde{\theta}(w)e^{-vw}}{-v}\right]^{\infty}_{w=0}-v\int^{\infty}_{w=0}\frac{e^{-vw}}{-v}\tilde{\theta}^{\prime}(w)\,dw
=\displaystyle= θ~(0)+w=0θ~(w)evw𝑑w.\displaystyle\tilde{\theta}(0)+\int^{\infty}_{w=0}\tilde{\theta}^{\prime}(w)e^{-vw}\,dw.

We now assume for the moment that a=0a=0, so that θ~(w)\tilde{\theta}(w) does not involve v=|x|v=|x|; and note in passing that the case of the GH of special interest to us, the VG, would still be encompassed by an initial assumption that a=0a=0.

From the the fact that θ~(w)\tilde{\theta}^{\prime}(w) is bounded near w=0+w=0^{+} and θ~(w)\tilde{\theta}^{\prime}(w) for large positive ww is of asymptotic growth: Const.×wκ,\text{Const.}\times w^{\kappa}, for some fixed κ\kappa as ww\to\infty, we obtain as vv\to\infty:

w=0θ~(w)evw𝑑w=O(1v)\int^{\infty}_{w=0}\tilde{\theta}^{\prime}(w)e^{-vw}\,dw=O\left(\frac{1}{v}\right)

so that

vw=0w=θ~(w)evw𝑑w=θ~(0)(1+O(1v)),v,v\int^{w=\infty}_{w=0}\tilde{\theta}(w)e^{-vw}\,dw=\tilde{\theta}(0)\left(1+O\left(\frac{1}{v}\right)\right),\,v\to\infty,

where from (15) and (12) with a=0a=0

θ~(0)\displaystyle\tilde{\theta}(0) =(1+α2)12(p32)ϕ(α)=(1+α2)12(p32)βα(1+α2)12+αθ=(1+α2)12(p12)α(β+θ(1+α2)12).\displaystyle=\frac{\left(1+\alpha^{2}\right)^{\frac{1}{2}(p-\frac{3}{2})}}{\phi^{\prime}(\alpha)}=\frac{(1+\alpha^{2})^{\frac{1}{2}(p-\frac{3}{2})}}{\frac{\beta\alpha}{(1+\alpha^{2})^{\frac{1}{2}}}+\alpha\theta}=\frac{(1+\alpha^{2})^{\frac{1}{2}(p-\frac{1}{2})}}{\alpha(\beta+\theta(1+\alpha^{2})^{\frac{1}{2}})}. (16)

Thus from (13)

|x|p12α(1+a2x2+s2)12(p32)e|x|ϕ(s)𝑑s=θ~(0)|x|p32e|x|ϕ(α)(1+O(1|x|))|x|^{p-\frac{1}{2}}\int^{\infty}_{\alpha}\left(1+\frac{a^{2}}{x^{2}}+s^{2}\right)^{\frac{1}{2}(p-\frac{3}{2})}e^{-|x|\phi(s)}\,ds=\tilde{\theta}(0)|x|^{p-\frac{3}{2}}e^{-|x|\phi(\alpha)}\left(1+O\left(\frac{1}{|x|}\right)\right) (17)

when a=0a=0 as xx\to-\infty, where θ~(0)\tilde{\theta}(0) is given by (16), and

ϕ(α)=β(1+α2)12+α2θ\phi(\alpha)=\beta\left(1+\alpha^{2}\right)^{\frac{1}{2}}+\alpha^{2}\theta (18)

It can be shown that (17) holds with these same values of θ~(0)\tilde{\theta}(0) and ϕ(α)\phi(\alpha) for general aa. Hence, for GH,

fX(x)=θ~(0)eθ|x||x|p32e|x|ϕ(α)2πK¯p(a,b)βp12(1+O(1|x|))f_{X^{*}}(x)=\frac{\tilde{\theta}(0)e^{-\theta|x|}|x|^{p-\frac{3}{2}}e^{-|x|\phi(\alpha)}}{\sqrt{2\pi}\,\overline{K}_{p}(a,b)\beta^{p-\frac{1}{2}}}\left(1+O\left(\frac{1}{|x|}\right)\right)

as xx\to-\infty.
Thus for large negative yy, noting from (11) that ϕ(α)+θ>0\phi(\alpha)+\theta>0, so the integral is well-defined:

P(Xy)\displaystyle P(X^{*}\leq y) =θ~(0)2πK¯p(a,b)βp12y|x|p32e|x|(ϕ(α)+θ)(1+O(1|x|))𝑑x\displaystyle=\frac{\tilde{\theta}(0)}{\sqrt{2\pi}\,\overline{K}_{p}(a,b)\beta^{p-\frac{1}{2}}}\int_{-\infty}^{y}|x|^{p-\frac{3}{2}}e^{-|x|(\phi(\alpha)+\theta)}\left(1+O\left(\frac{1}{|x|}\right)\right)dx
=θ~(0)2πK¯p(a,b)βp12|y|vp32ev(ϕ(α)+θ)(1+O(1v))𝑑v\displaystyle=\frac{\tilde{\theta}(0)}{\sqrt{2\pi}\,\overline{K}_{p}(a,b)\beta^{p-\frac{1}{2}}}\int_{|y|}^{\infty}v^{p-\frac{3}{2}}e^{-v(\phi(\alpha)+\theta)}\left(1+O\left(\frac{1}{v}\right)\right)dv

where v=x=|x|v=-x=|x|.

Now, from L’Hôpital’s rule, for α,β>0\alpha\in\mathbb{R},\beta>0

syα1eβy𝑑y\displaystyle\int_{s}^{\infty}y^{\alpha-1}e^{-\beta y}dy\, =\displaystyle= 1βsα1eβs(1+o(1)),s,\displaystyle\,\frac{1}{\beta}s^{\alpha-1}e^{-\beta s}\left(1+o(1)\right),\,s\to\infty,
=\displaystyle= 1βsα1eβs+α1βsyα2eβy𝑑y\displaystyle\frac{1}{\beta}s^{\alpha-1}e^{-\beta s}+\frac{\alpha-1}{\beta}\int_{s}^{\infty}y^{\alpha-2}e^{-\beta y}dy

by integration by parts. Thus

|syα1eβy𝑑y1βsα1eβs|\displaystyle\left|\int_{s}^{\infty}y^{\alpha-1}e^{-\beta y}dy-\frac{1}{\beta}s^{\alpha-1}e^{-\beta s}\right| \displaystyle\leq |α1|βssyα1eβy𝑑y\displaystyle\frac{|\alpha-1|}{\beta s}\int_{s}^{\infty}y^{\alpha-1}e^{-\beta y}dy
=\displaystyle= |α1|βs1βsα1eβs(1+o(1)),from (3),\displaystyle\frac{|\alpha-1|}{\beta s}\frac{1}{\beta}s^{\alpha-1}e^{-\beta s}\left(1+o(1)\right),\quad\text{from (\ref{thesis.p26}), }
=\displaystyle= 1βsα1eβs(O(1s))\displaystyle\frac{1}{\beta}s^{\alpha-1}e^{-\beta s}\left(O\left(\frac{1}{s}\right)\right)

so that

syα1eβy𝑑y=1βsα1eβs(1+O(1s)),s,\int_{s}^{\infty}y^{\alpha-1}e^{-\beta y}dy=\frac{1}{\beta}s^{\alpha-1}e^{-\beta s}\left(1+O\left(\frac{1}{s}\right)\right),\,s\to\infty,

whence , as yy\to-\infty:

P(Xy)=θ~(0)2πK¯p(a,b)βp12(ϕ(α)+θ)|y|p32e|y|(ϕ(α)+θ)(1+O(1|y|))P(X^{*}\leq y)=\frac{\tilde{\theta}(0)}{\sqrt{2\pi}\,\overline{K}_{p}(a,b)\beta^{p-\frac{1}{2}}(\phi(\alpha)+\theta)}|y|^{p-\frac{3}{2}}e^{-|y|(\phi(\alpha)+\theta)}\left(1+O\left(\frac{1}{|y|}\right)\right) (20)

where θ~(0)\tilde{\theta}(0) is given by (16), and ϕ(α)+θ=(1+α2)12(β+θ(1+α2)12),\phi(\alpha)+\theta=(1+\alpha^{2})^{\frac{1}{2}}(\beta+\theta(1+\alpha^{2})^{\frac{1}{2}}), and recall:

P(X1y,X2y)=P(Xy).P(X_{1}\leq y,\,X_{2}\leq y)=P(X^{*}\leq y). (21)

4 Quantile function and asymptotic copula

The marginal density of each of X1,X2X_{1},X_{2} is given by

fX1(x)=eθx2πK¯p(a,b)K¯p1/2((x2+a2)1/2,(θ2+b2)1/2),x,f_{X_{1}}(x)=\frac{e^{\theta x}}{\sqrt{2\pi}\,{\overline{K}}_{p}(a,b)}\overline{K}_{p-1/2}((x^{2}+a^{2})^{1/2},(\theta^{2}+b^{2})^{1/2}),x\in\mathbb{R},

as expressed in Fung \BBA Seneta (\APACyear2011), equation (20), following Blæsild (\APACyear1981). Hence after some algebra using (7)

F1(x)=P(X1x)=A|x|p1e((θ2+b2)12+θ)|x|(1+O(1|x|))F_{1}(x)=P(X_{1}\leq x)=A|x|^{p-1}e^{-\left((\theta^{2}+b^{2})^{\frac{1}{2}}+\theta\right)|x|}\left(1+O\left(\frac{1}{|x|}\right)\right) (22)

where A1=2K¯p(a,b)(θ2+b2)p2((θ2+b2)12+θ)A^{-1}=2\overline{K}_{p}(a,b)\left(\theta^{2}+b^{2}\right)^{\frac{p}{2}}\left((\theta^{2}+b^{2})^{\frac{1}{2}}+\theta\right), as xx\to-\infty. In the VG special case where a=0,b=2ν,p=1/2,μ=0,σ2=1,a=0,b=\sqrt{\frac{2}{\nu}},p=1/2,\mu=0,\sigma^{2}=1, this is equation (18) of Fung \BBA Seneta (\APACyear2011).

The expression (22) itself is a special case of distribution functions with a generalized gamma-type tail considered by Fung \BBA Seneta (\APACyear2018), equation (6), where in the notation of that paper on the left-hand side of the following: a=A,b=p1,c=(θ2+b2)12+θ,d=1,e=1.a=A,b=p-1,c=(\theta^{2}+b^{2})^{\frac{1}{2}}+\theta,d=1,e=1. So from (9) of that paper, in our notation, we have

F11(u)=logu(θ2+b2)12+θ(p1)log|logu|(θ2+b2)12+θ(p1)log(A1p1(θ2+b2)12+θ)(θ2+b2)12+θ+O(log|logu||logu|)F_{1}^{-1}(u)=\frac{\log u}{(\theta^{2}+b^{2})^{\frac{1}{2}}+\theta}-\frac{\left(p-1\right)\log|\log u|}{(\theta^{2}+b^{2})^{\frac{1}{2}}+\theta}-\frac{\left(p-1\right)\log\left(\frac{A^{\frac{1}{p-1}}}{(\theta^{2}+b^{2})^{\frac{1}{2}}+\theta}\right)}{(\theta^{2}+b^{2})^{\frac{1}{2}}+\theta}+O\left(\frac{\log|\log u|}{|\log u|}\right)

as u0+u\to 0^{+}.

We finally address the rate of convergence. To simplify notation put

γ\displaystyle\gamma =(β+(1+α2)12θ)(=(ϕ(α)+θ)/(1+α2)12)\displaystyle=\left(\beta+(1+\alpha^{2})^{\frac{1}{2}}\theta\right)\quad\left(=\left(\phi(\alpha)+\theta\right)/\left(1+\alpha^{2}\right)^{\frac{1}{2}}\right)
δ\displaystyle\delta =(θ2+b2)12+θ\displaystyle=(\theta^{2}+b^{2})^{\frac{1}{2}}+\theta
τ\displaystyle\tau =(1+α2)12γδ\displaystyle=\frac{(1+\alpha^{2})^{\frac{1}{2}}\gamma}{\delta}
C1\displaystyle C_{1} =(1+α2)12(p32)2πK¯p(a,b)βp12α(1+α2)12γ2δp32\displaystyle=\frac{(1+\alpha^{2})^{\frac{1}{2}\left(p-\frac{3}{2}\right)}}{\sqrt{2\pi}\overline{K}_{p}(a,b)\beta^{p-\frac{1}{2}}\alpha(1+\alpha^{2})^{\frac{1}{2}}\gamma^{2}\delta^{p-\frac{3}{2}}}
C2\displaystyle C_{2} =Aτδ(p1)τ\displaystyle=A^{-\tau}\delta^{(p-1)\tau}

Then from (20), (21) we have

P(X1F11(u),X2F21(u))\displaystyle P(X_{1}\leq F_{1}^{-1}(u),\,X_{2}\leq F_{2}^{-1}(u))
\displaystyle\sim C1(|logu+O(log|logu|)|)p32e|loguδ(p1)log|logu|δ(p1)logC2δ+O(log|logu||logu|)|(1+α2)12γ\displaystyle C_{1}\left(\left|\log u+O\left(\log|\log u|\right)\right|\right)^{p-\frac{3}{2}}e^{-\left|\frac{\log u}{\delta}-\frac{\left(p-1\right)\log|\log u|}{\delta}-\frac{\left(p-1\right)\log C_{2}}{\delta}+O\left(\frac{\log|\log u|}{|\log u|}\right)\right|(1+\alpha^{2})^{\frac{1}{2}}\gamma}
\displaystyle\sim C1×uτ×(|logu|)(p32)(p1)τ×C2.\displaystyle C_{1}\times u^{\tau}\times\left(|\log u|\right)^{\left(p-\frac{3}{2}\right)-\left(p-1\right)\tau}\times C_{2}.

As a result,

P(X1F11(u),X2F21(u))u=uτ1L(u)\frac{P(X_{1}\leq F_{1}^{-1}(u),\,X_{2}\leq F_{2}^{-1}(u))}{u}=u^{\tau-1}L(u)

where

L(u)C1C2(|logu|)(p1)(1τ)12L(u)\sim C_{1}C_{2}\left(|\log u|\right)^{\left(p-1\right)\left(1-\tau\right)-\frac{1}{2}}

is a slowly varying function.

Obviously, the rate for the VG is obtained explicitly by letting a=0a=0, b=2νb=\sqrt{\frac{2}{\nu}}, p=12p=\frac{1}{2}.

References

  • Arslan (\APACyear2014) \APACinsertmetastarArslan2014{APACrefauthors}Arslan, O.  \APACrefYear2014. \BBOQ\APACrefatitleVariance-mean mixture of the multivariate skew normal distribution Variance-mean mixture of the multivariate skew normal distribution.\BBCQ \APACjournalVolNumPagesStatistical Papers. http://link.springer.com/10.1007/s00362-014-0585-7 {APACrefDOI} 10.1007/s00362-014-0585-7 \PrintBackRefs\CurrentBib
  • Blæsild (\APACyear1981) \APACinsertmetastarBlaesild1981{APACrefauthors}Blæsild, P.  \APACrefYear1981. \BBOQ\APACrefatitleThe two-dimensional hyperbolic distribution and related distributions, with an application to Johannsen’s bean data The two-dimensional hyperbolic distribution and related distributions, with an application to Johannsen’s bean data.\BBCQ \APACjournalVolNumPagesBiometrika681251–263. {APACrefDOI} 10.1093/biomet/68.1.251 \PrintBackRefs\CurrentBib
  • Erdélyi \BOthers. (\APACyear1954) \APACinsertmetastarBatemanManuscriptProject.1954{APACrefauthors}Erdélyi, A., Magnus, W., Oberhettinger, F.\BCBL \BBA Tricomi, F.  \APACrefYear1954. \APACrefbtitleBateman Manuscript Project: Tables of integral transforms, vol 2 Bateman Manuscript Project: Tables of integral transforms, vol 2. \APACaddressPublisherNew YorkMcGraw-Hill. https://books.google.com.au/books?id=BvpQAAAAMAAJ \PrintBackRefs\CurrentBib
  • Fung \BBA Seneta (\APACyear2010) \APACinsertmetastarFung2010{APACrefauthors}Fung, T.\BCBT \BBA Seneta, E.  \APACrefYear2010. \BBOQ\APACrefatitleTail dependence for two skew tt distributions Tail dependence for two skew tt distributions.\BBCQ \APACjournalVolNumPagesStatistics and Probability Letters809-10784–791. http://linkinghub.elsevier.com/retrieve/pii/S0167715210000167 {APACrefDOI} 10.1016/j.spl.2010.01.011 \PrintBackRefs\CurrentBib
  • Fung \BBA Seneta (\APACyear2011) \APACinsertmetastarFung2011a{APACrefauthors}Fung, T.\BCBT \BBA Seneta, E.  \APACrefYear2011. \BBOQ\APACrefatitleTail dependence and skew distributions Tail dependence and skew distributions.\BBCQ \APACjournalVolNumPagesQuantitative Finance113327–333. http://www.tandfonline.com/doi/abs/10.1080/14697681003724826 {APACrefDOI} 10.1080/14697681003724826 \PrintBackRefs\CurrentBib
  • Fung \BBA Seneta (\APACyear2014) \APACinsertmetastarFung2014{APACrefauthors}Fung, T.\BCBT \BBA Seneta, E.  \APACrefYear2014. \BBOQ\APACrefatitleConvergence rate to a lower tail dependence coefficient of a skew-tt distribution Convergence rate to a lower tail dependence coefficient of a skew-tt distribution.\BBCQ \APACjournalVolNumPagesJournal of Multivariate Analysis12862–72. http://linkinghub.elsevier.com/retrieve/pii/S0047259X14000517 {APACrefDOI} 10.1016/j.jmva.2014.03.004 \PrintBackRefs\CurrentBib
  • Fung \BBA Seneta (\APACyear2016) \APACinsertmetastarFung2016{APACrefauthors}Fung, T.\BCBT \BBA Seneta, E.  \APACrefYear2016. \BBOQ\APACrefatitleTail asymptotics for the bivariate skew normal Tail asymptotics for the bivariate skew normal.\BBCQ \APACjournalVolNumPagesJournal of Multivariate Analysis144129–138. http://linkinghub.elsevier.com/retrieve/pii/S0047259X15002705 {APACrefDOI} 10.1016/j.jmva.2015.11.002 \PrintBackRefs\CurrentBib
  • Fung \BBA Seneta (\APACyear2018) \APACinsertmetastarFungSeneta2018{APACrefauthors}Fung, T.\BCBT \BBA Seneta, E.  \APACrefYear2018. \BBOQ\APACrefatitleQuantile function expansion using regularly varying functions Quantile function expansion using regularly varying functions.\BBCQ \APACjournalVolNumPagesMethodol Comput Appl Probab201091–1103. {APACrefDOI} 10.1007/s11009-017-9593-0 \PrintBackRefs\CurrentBib
  • Hashorva (\APACyear2010) \APACinsertmetastarHashorva2010{APACrefauthors}Hashorva, E.  \APACrefYear2010. \BBOQ\APACrefatitleOn the residual dependence index of elliptical distributions On the residual dependence index of elliptical distributions.\BBCQ \APACjournalVolNumPagesStatistics and Probability Letters8013-141070–1078. http://dx.doi.org/10.1016/j.spl.2010.03.001 {APACrefDOI} 10.1016/j.spl.2010.03.001 \PrintBackRefs\CurrentBib
  • Hua \BBA Joe (\APACyear2011) \APACinsertmetastarHua2011{APACrefauthors}Hua, L.\BCBT \BBA Joe, H.  \APACrefYear2011. \BBOQ\APACrefatitleTail order and intermediate tail dependence of multivariate copulas Tail order and intermediate tail dependence of multivariate copulas.\BBCQ \APACjournalVolNumPagesJournal of Multivariate Analysis102101454–1471. http://linkinghub.elsevier.com/retrieve/pii/S0047259X11000911 {APACrefDOI} 10.1016/j.jmva.2011.05.011 \PrintBackRefs\CurrentBib
  • Jørgensen (\APACyear1982) \APACinsertmetastarJorgensen1982{APACrefauthors}Jørgensen, B.  \APACrefYear1982. \APACrefbtitleStatistical Properties of the Generalized Inverse Gaussian Distribution Statistical Properties of the Generalized Inverse Gaussian Distribution (\BVOL 9). \APACaddressPublisherNew York, NYSpringer New York. http://link.springer.com/10.1007/978-1-4612-5698-4 {APACrefDOI} 10.1007/978-1-4612-5698-4 \PrintBackRefs\CurrentBib
  • Ledford \BBA Tawn (\APACyear1997) \APACinsertmetastarLedford1997{APACrefauthors}Ledford, A\BPBIW.\BCBT \BBA Tawn, J\BPBIA.  \APACrefYear1997. \BBOQ\APACrefatitleModelling Dependence within Joint Tail Regions Modelling Dependence within Joint Tail Regions.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society: Series B (Statistical Methodology)592475–499. http://doi.wiley.com/10.1111/1467-9868.00080 {APACrefDOI} 10.1111/1467-9868.00080 \PrintBackRefs\CurrentBib
  • Ramos \BBA Ledford (\APACyear2009) \APACinsertmetastarRamos2009{APACrefauthors}Ramos, A.\BCBT \BBA Ledford, A.  \APACrefYear2009. \BBOQ\APACrefatitleA new class of models for bivariate joint tails A new class of models for bivariate joint tails.\BBCQ \APACjournalVolNumPagesJournal of the Royal Statistical Society: Series B (Statistical Methodology)711219–241. http://doi.wiley.com/10.1111/j.1467-9868.2008.00684.x {APACrefDOI} 10.1111/j.1467-9868.2008.00684.x \PrintBackRefs\CurrentBib
  • von Hammerstein (\APACyear2016) \APACinsertmetastarHammerstein2016{APACrefauthors}von Hammerstein, E\BPBIA.  \APACrefYear2016. \BBOQ\APACrefatitleTail behaviour and tail dependence of generalized hyperbolic distributions Tail behaviour and tail dependence of generalized hyperbolic distributions.\BBCQ \BIn \APACrefbtitleSpringer Proceedings in Mathematics and Statistics Springer proceedings in mathematics and statistics (\BVOL 189, \BPGS 3–40). http://link.springer.com/book/10.1007/978-3-319-45875-5http://link.springer.com/10.1007/978-3-319-45875-5_1 {APACrefDOI} 10.1007/978-3-319-45875-5_1 \PrintBackRefs\CurrentBib