This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

T-odd transverse momentum dependent gluon fragmentation functions in a spectator model

Xiupeng Xie School of Physics, Southeast University, Nanjing 211189, China    Zhun Lu [email protected] School of Physics, Southeast University, Nanjing 211189, China
Abstract

We present a model calculation of the T-odd transverse momentum dependent (TMD) gluon fragmentation functions for a spin-1/2 hadron. Our model is based on the postulation that a time-like off-shell gluon can fragment into a hadron and a single spectator particle, which is considered to be on-shell. We consider the effect of the gluon exchange to calculate all necessary one-loop diagrams for the gluon-gluon correlation functions. Two out of four one-loop diagrams give sizeable contributions to the fragmentation functions. We obtain analytical expressions for the four T-odd TMD fragmentation functions of the gluon. We also provide numerical results on the z-dependence and kTk_{T}-dependence of the fragmentation functions.

I Introduction

In Quantum Chromodynamics (QCD), the nucleon emerges as a strongly interacting, relativistic bound state of quarks and gluon (collectively called partons). This concept of parton dynamics within the framework of QCD replies on two foundamental principles: Color confinement [1, 2] and asymptotic freedom [3, 4, 5, 6]. The former leads to the fact that quarks and gluon are tightly bound within hadrons, rendering the dynamics nonperturbative on the hadronic scale. Consequently, the exploration of the partonic structure of hadrons and the mechanisms underlying parton hadronization poses substantial challenges. Fortunately, the phenomenon of asymptotic freedom, enables the application of QCD factorization to analyze a variety of high-energy scattering processes. Within this framework, a collection of well-defined and fundamental functions provide valuable insights into the internal structure of the nucleon and the parton hadronization. These functions are known as the parton distribution functions (PDFs) and the parton fragmentation functions (FFs) respectively.

In general, leading-twist collinear PDFs/FFs are universal between different processes. These functions contain the information about 1-dimensional momentum structure. A much more comprehensive picture about the partonic structure of hadrons can be achieved by extending the PDFs to the objects in the 3-dimensional momentum space, namely, the transverse momentum dependent (TMD) PDFs and FFs. They explicitly depend on the parton transverse momenta and probe the 3-dimensional structure of hadrons [7, 8]. Furthermore, TMD PDFs and FFs play important roles in the high energy processes involving two hadrons, such as the semi-inclusive DIS, Drell-Yan process and hadron pair production in e+ee^{+}e^{-} annihilation. Different from the collinear PDFs/FFs, a proper treatment of the process dependent incoming or outgoing directions for the Wilson line [9, 7] of the TMD PDFs or FFs is necessary.

In this paper, we study the T-odd gluon TMD FFs in a spectator model. This model is based on the assumption that a time-link off-shell parton can fragment into a hadron and a single real spectator particle. This model was originally used to calculate the quark TMD PDFs of the nucleon [10, 11, 12, 13, 14, 15] and has been widely applied in different forms to calculate the quark TMD PDFs of the pion [16, 17, 18], the TMD FFs of the pion and kaon [19], and the gluon TMD PDFs [20, 21, 22, 23, 24]. The spectator model has also been extended [25] to calculate the T-even gluon TMD FFs D1h/g(z,𝒌T2)D_{1}^{h/g}(z,\bm{k}_{T}^{2}), G1Lh/g(z,𝒌T2)G_{1L}^{h/g}(z,\bm{k}_{T}^{2}), G1Th/g(z,𝒌T2)G_{1T}^{h/g}(z,\bm{k}_{T}^{2}), and H1,h/g(z,𝒌T2)H_{1}^{\perp,h/g}(z,\bm{k}_{T}^{2}) at the leading-twist level without considering the effects of the gauge-link. In this work, in order to obtain the necessary imaginary part required for T-odd gluon TMD FFs D1T,h/g(z,𝒌T2)D_{1T}^{\perp,h/g}(z,\bm{k}_{T}^{2}), H1Th/g(z,𝒌T2)H_{1T}^{h/g}(z,\bm{k}_{T}^{2}), H1L,h/g(z,𝒌T2)H_{1L}^{\perp,h/g}(z,\bm{k}_{T}^{2}) and H1T,h/g(z,𝒌T2)H_{1T}^{\perp,h/g}(z,\bm{k}_{T}^{2}), we consider the effect of the gluon rescattering at one loop level. The spectator model has also been applied to calculate the Collins function for pions [26, 27, 28, 29, 30, 19] and kaons [19] by considering the pion loop or the gluon loop. The twist-3 fragmentation functions H~(z,𝒌T2)\tilde{H}(z,\bm{k}_{T}^{2}), H(z,𝒌T2)H(z,\bm{k}_{T}^{2}), G~(z,𝒌T2)\tilde{G}^{\perp}(z,\bm{k}_{T}^{2}) and G(z,𝒌T2)G^{\perp}(z,\bm{k}_{T}^{2}) [31, 32] have also been calculated within the spectator model.

The rest of the paper is organized as follows. In Section. II, we provide the formalism of the spectator model with the incorporation the gluon rescattering effect. We obtain the model result of the one loop order gluon-gluon correlator and the leading-twist T-odd gluon TMD FFs using proper projecting operators. In Section. III, we present the numerical results of the FFs D1T,h/g(z,𝒌T2)D_{1T}^{\perp,h/g}(z,\bm{k}_{T}^{2}), H1Th/g(z,𝒌T2)H_{1T}^{h/g}(z,\bm{k}_{T}^{2}), H1L,h/g(z,𝒌T2)H_{1L}^{\perp,h/g}(z,\bm{k}_{T}^{2}) and H1T,h/g(z,𝒌T2)H_{1T}^{\perp,h/g}(z,\bm{k}_{T}^{2}) in the case the hadron is a proton. We summarize the paper in Section. IV.

II Analytic calculation of the T-odd FFs of a spin-1/2 hadron

We follow the conventions in Refs .[33, 25] and specify the kinematics of the final-state hadron and the fragmentation parton. In a reference frame in which the hadron has no transverse momentum, one can write

Ph\displaystyle P_{h} =Phn+Mh22Phn+,\displaystyle=P_{h}^{-}n_{-}+\frac{M_{h}^{2}}{2P_{h}^{-}}n_{+}\,, (1)
k\displaystyle k =Phzn+z(k2+𝒌T2)2Phn++𝒌T,\displaystyle=\frac{P_{h}^{-}}{z}n_{-}+\frac{z\left(k^{2}+\bm{k}_{T}^{2}\right)}{2P_{h}^{-}}n_{+}+\bm{k}_{T}\,, (2)
Sh\displaystyle S_{h} =ShLPhMhnShLMh2Phn++𝑺hT,\displaystyle=S_{hL}\frac{P_{h}^{-}}{M_{h}}n_{-}-S_{hL}\frac{M_{h}}{2P_{h}^{-}}n_{+}+\bm{S}_{hT}\,, (3)

where the light-cone vectors n±2=0n_{\pm}^{2}=0 and n+n=1n_{+}\cdot n_{-}=1 have been used, MhM_{h} is the mass of the final-state hadron, z=Ph/kz=P_{h}^{-}/k^{-} is the momentum fraction carried by the hadron, 𝒌T\bm{k}_{T} denotes the momentum component of the fragmentation parton, ShLS_{hL} and ShTS_{hT} describes longitudinal and transverse polarization of the hadron, respectively. The hadron is characterized by its 4-momentum PhP_{h} and the covariant spin vector ShS_{h}.

The appropriate gauge-invariant gluon-gluon correlator for fragmentation is defined as [33, 34]:

Δμν;ρσ(k;Ph,Sh)\displaystyle\Delta^{\mu\nu;\rho\sigma}\left(k;P_{h},S_{h}\right) =Xd4ξ(2π)4eikξ0|Fρσ(ξ)|Ph,Sh;XPh,Sh;X|𝒰(ξ,0)Fμν(0)|0,\displaystyle=\sum_{X}\int\frac{d^{4}\xi}{(2\pi)^{4}}e^{ik\cdot\xi}\left\langle 0\left|F^{\rho\sigma}(\xi)\right|P_{h},S_{h};X\right\rangle\left\langle P_{h},S_{h};X\left|\mathcal{U}(\xi,0)F^{\mu\nu}(0)\right|0\right\rangle\,, (4)

where 𝒰(ξ,0)\mathcal{U}(\xi,0) is the gauge-link operator connecting space-times ξ\xi and 0 to ensure the gauge-invariance of the operator definition. In general, we introduce the correlation function integrated over k+k^{+}:

Δh/g,ij(z,𝒌T2;Sh)=𝑑k+Δj;i(k;Ph,Sh),\displaystyle\Delta^{h/g,ij}\left(z,\bm{k}_{T}^{2};S_{h}\right)=\int dk^{+}\Delta^{-j;-i}\left(k;P_{h},S_{h}\right)\,, (5)

where ii and jj are transverse spatial indices.

We can decompose the gluon fragmentation correlator and define eight leading-twist TMD FFs of the gluon through the following projection [35, 7, 34]

δTijΔh/g,ij(z,𝒌T2;Sh)=\displaystyle\delta_{T}^{ij}\Delta^{h/g,ij}\left(z,\bm{k}_{T}^{2};S_{h}\right)= 2Ph[D1h/g(z,𝒌T2)+εTijkTiShTjMhD1Th/g(z,𝒌T2)],\displaystyle 2P_{h}^{-}\left[D_{1}^{h/g}\left(z,\bm{k}_{T}^{2}\right)+\frac{\varepsilon_{T}^{ij}k_{T}^{i}S_{hT}^{j}}{M_{h}}D_{1T}^{\perp h/g}\left(z,\bm{k}_{T}^{2}\right)\right]\,, (6)
iεTijΔh/g,ij(z,𝒌T2;Sh)=\displaystyle i\varepsilon_{T}^{ij}\Delta^{h/g,ij}\left(z,\bm{k}_{T}^{2};S_{h}\right)= 2Ph[ΛhG1Lh/g(z,𝒌T2)+kTShTMhG1Th/77g(z,𝒌T2)],\displaystyle 2P_{h}^{-}\left[\Lambda_{h}G_{1L}^{h/g}\left(z,\bm{k}_{T}^{2}\right)+\frac{\vec{k}_{T}\cdot\vec{S}_{hT}}{M_{h}}G_{1T}^{h/77g}\left(z,\bm{k}_{T}^{2}\right)\right]\,, (7)
S^Δh/g,ij(z,𝒌T2;Sh)=\displaystyle\hat{S}\Delta^{h/g,ij}\left(z,\bm{k}_{T}^{2};S_{h}\right)= 2PhS^[kTiεTjkShTk2MhH1Th/g(z,𝒌T2)+kTikTj2Mh2H1h/g(z,𝒌T2)\displaystyle 2P_{h}^{-}\hat{S}\left[\frac{k_{T}^{i}\varepsilon_{T}^{jk}S_{hT}^{k}}{2M_{h}}H_{1T}^{h/g}\left(z,\bm{k}_{T}^{2}\right)+\frac{k_{T}^{i}k_{T}^{j}}{2M_{h}^{2}}H_{1}^{\perp h/g}\left(z,\bm{k}_{T}^{2}\right)\right.
+kTiεTjkkTk2Mh2(ΛhH1Lh/g(z,𝒌T2)+kTShTMhH1Th/g(z,𝒌T2))],\displaystyle\left.+\frac{k_{T}^{i}\varepsilon_{T}^{jk}k_{T}^{k}}{2M_{h}^{2}}\left(\Lambda_{h}H_{1L}^{\perp h/g}\left(z,\bm{k}_{T}^{2}\right)+\frac{\vec{k}_{T}\cdot\vec{S}_{hT}}{M_{h}}H_{1T}^{\perp h/g}\left(z,\bm{k}_{T}^{2}\right)\right)\right]\,, (8)

and the four T-odd gluon TMD FFs can be projected into

εTijkTiShTjMhD1T,h/g(z,𝒌T2)=\displaystyle\frac{\varepsilon^{ij}_{T}k^{i}_{T}S^{j}_{hT}}{M_{h}}D_{1T}^{\perp,h/g}\left(z,\bm{k}_{T}^{2}\right)= 12PhδTij2[Δh/g,ij(z,𝒌T2;Sh)Δh/g,ij(z,𝒌T2;Sh)],\displaystyle\frac{1}{2P_{h}^{-}}\frac{\delta_{T}^{ij}}{2}\left[\Delta^{h/g,ij}\left(z,\bm{k}_{T}^{2};S_{h}\right)-\Delta^{h/g,ij}\left(z,\bm{k}_{T}^{2};-S_{h}\right)\right]\,, (9)
kTikTjS^kTiεTjkShTk2MhH1Th/g(z,𝒌T2)=\displaystyle k_{T}^{i}k_{T}^{j}\hat{S}\frac{k_{T}^{i}\varepsilon_{T}^{jk}S_{hT}^{k}}{2M_{h}}H_{1T}^{h/g}\left(z,\bm{k}_{T}^{2}\right)= kTikTj12PhS^2[Δh/g,ij(z,𝒌T2;Sh)Δh/g,ij(z,𝒌T2;Sh)],\displaystyle k_{T}^{i}k_{T}^{j}\frac{1}{2P_{h}^{-}}\frac{\hat{S}}{2}\left[\Delta^{h/g,ij}\left(z,\bm{k}_{T}^{2};S_{h}\right)-\Delta^{h/g,ij}\left(z,\bm{k}_{T}^{2};-S_{h}\right)\right]\,, (10)
STiSTjS^kTiεTjkkTk2Mh2(ΛhH1Lh/g(z,𝒌T2)+\displaystyle S_{T}^{i}S_{T}^{j}\hat{S}\frac{k_{T}^{i}\varepsilon_{T}^{jk}k_{T}^{k}}{2M_{h}^{2}}\left(\Lambda_{h}H_{1L}^{\perp h/g}\left(z,\bm{k}_{T}^{2}\right)+\right. kTShTMhH1Th/g(z,𝒌T2))\displaystyle\left.\frac{\vec{k}_{T}\cdot\vec{S}_{hT}}{M_{h}}H_{1T}^{\perp h/g}\left(z,\bm{k}_{T}^{2}\right)\right)
=\displaystyle= STiSTj12PhS^2[Δh/g,ij(z,𝒌T2;Sh)Δh/g,ij(z,𝒌T2;Sh)]\displaystyle S_{T}^{i}S_{T}^{j}\frac{1}{2P_{h}^{-}}\frac{\hat{S}}{2}\left[\Delta^{h/g,ij}\left(z,\bm{k}_{T}^{2};S_{h}\right)-\Delta^{h/g,ij}\left(z,\bm{k}_{T}^{2};-S_{h}\right)\right]
\displaystyle- STiSTjS^kTiεTjkShTk2MhH1Th/g(z,𝒌T2).\displaystyle S_{T}^{i}S_{T}^{j}\hat{S}\frac{k_{T}^{i}\varepsilon_{T}^{jk}S_{hT}^{k}}{2M_{h}}H_{1T}^{h/g}\left(z,\bm{k}_{T}^{2}\right)\,. (11)

Here, we have used the symmetric transverse tensor δTij=gTij\delta_{T}^{ij}=-g_{T}^{ij} with gTij=gijn+injn+jnig_{T}^{ij}=g^{ij}-n_{+}^{i}n_{-}^{j}-n_{+}^{j}n_{-}^{i}, the anti-symmetric transverse tensor ϵTij\epsilon_{T}^{ij} with ϵT12=1\epsilon_{T}^{12}=1, and a symmetrization operator S^\hat{S} for a generic tensor OijO^{ij} which is defined as:

S^Oij12(Oij+OjiδTijOkk).\displaystyle\hat{S}O^{ij}\equiv\frac{1}{2}\left(O^{ij}+O^{ji}-\delta_{T}^{ij}O^{kk}\right)\,. (12)
H\gH\backslash g U Circ Lin
U D1h/gD_{1}^{h/g} H1h/gH_{1}^{\perp h/g}
L G1h/gG_{1}^{h/g} H1Lh/gH_{1L}^{\perp h/g}
T D1Th/gD_{1T}^{\perp h/g} G1Th/gG_{1T}^{h/g} H1h/gH1Th/gH_{1}^{h/g}\quad H_{1T}^{\perp h/g}
Table 1: Eight leading-twist TMD FFs of the gluon. The columns indicate the gluon polarization \textendash unpolarized (U), circularly polarized(Circ), linearly polarized (Lin). The rows indicate the hadron prolarization \textendash unpolarized (U), longitudinally polarized (L), transverse polarized (T).
Refer to caption
Figure 1: One loop order corrections to the fragmentation function of a gluon into a proton in the spectator model. The double gluon lines in (c) and (d) represent the eikonal lines. The double lines correspond to the eikonal lines from the Wilson lines in the definition of gluon-gluon correlator. ”H.c.” stands for the hermitian conjugations of these diagrams.

The interpretation of the leading-twist TMD FFs in Eqs. (6)-(8) is summarized in Tab. 1. Here D1h/gD_{1}^{h/g} is the well-known unpolarized FF which describes the number density of unpolarized hadron in an unpolarized gluon. G1Lh/gG_{1L}^{h/g}, G1Th/gG_{1T}^{h/g}, and H1h/gH_{1}^{h/g} denote the longitudinally polarized, longi-transversely polarized, and linearly polarized FFs, respectively. These functions are T-even, while D1Th/gD_{1T}^{h/g}, H1Th/gH_{1T}^{h/g}, H1L,h/gH_{1L}^{\perp,h/g}, H1T,h/gH_{1T}^{\perp,h/g} are naive T-odd functions. In the spectator model, the tree level gluon-gluon correlator is modeled as:

Δij(z,𝒌T2;Sh)\displaystyle\Delta^{ij}\left(z,\bm{k}_{T}^{2};S_{h}\right)\sim 1(2π)312(1z)k[¯0j(z,𝒌T2;Sh)0i(z,𝒌T2;Sh)].\displaystyle\frac{1}{(2\pi)^{3}}\frac{1}{2(1-z)k^{-}}\left[\overline{\mathcal{M}}_{0}^{j}(z,\bm{k}_{T}^{2};S_{h})\mathcal{M}_{0}^{i}(z,\bm{k}_{T}^{2};S_{h})\right]\,. (13)

The tree level diagrams lead to vanishing result for T-odd FFs because of lack of the imaginary phases [36, 30]. T-odd functions typically require the interference between two amplitudes with different imaginary parts to exist. In order to obtain the necessary imaginary part in the scattering amplitude, one has to consider the diagrams at loop levels. In this paper, we will take into account the contribution of gluon rescattering at the one loop order. There are four different diagrams (and their hermitian conjugates) that may contribute to the correlator Δh/g,ij(z,𝒌T2;Sh)\Delta^{h/g,ij}\left(z,\bm{k}_{T}^{2};S_{h}\right), as shown in Fig. 1, including the self-energy diagram (Fig. 1a), the vertex diagram (Fig. 1b), the hard vertex diagram (Fig. 1c), and the box diagram (Fig. 1d).

We can write the expressions of the correlator:

Δ(a)ij=\displaystyle\Delta^{ij}_{(a)}= 1(2π)312(1z)kd4l(2π)4Tr[(h+Mh)1+γ52𝒴v,bcGabjν(k,k)k2(h+MX)cc𝒴μ,bcigμρδbdk2+iε\displaystyle\frac{1}{(2\pi)^{3}}\frac{1}{2(1-z)k^{-}}\int\frac{d^{4}l}{(2\pi)^{4}}\operatorname{Tr}\left[\left(\not{P_{h}}+M_{h}\right)\frac{1+\gamma^{5}\not{S}}{2}\mathcal{Y}_{v,b^{\prime}c^{\prime}}^{*}\frac{G^{j\nu\ast}_{ab^{\prime}}(k,k)}{k^{2}}\left(\not{k}-\not{P_{h}}+M_{X}\right)_{cc^{\prime}}\mathcal{Y}_{\mu,bc}\frac{-ig^{\mu\rho}\delta_{bd}}{k^{2}+i\varepsilon}\right.
(gfdefVραβ(k,l,lk))(gfdfeVρβα(k,kl,l))igααδeel2+iεigββδff(kl)2+iεGadiρ(k,k)k2]+H.c.,\displaystyle\left.(-gf_{d^{\prime}e^{\prime}f^{\prime}}V^{\rho^{\prime}\alpha^{\prime}\beta^{\prime}}(k,-l,l-k))(-gf_{dfe}V^{\rho\beta\alpha}(-k,k-l,l))\frac{-ig^{\alpha\alpha^{\prime}}\delta_{ee^{\prime}}}{l^{2}+i\varepsilon}\cdot\frac{-ig^{\beta\beta^{\prime}}\delta_{ff^{\prime}}}{(k-l)^{2}+i\varepsilon}\cdot\frac{G^{i\rho^{\prime}}_{ad^{\prime}}(k,k)}{k^{2}}\right]+H.c.\,, (14)
Δ(b)ij=\displaystyle\Delta^{ij}_{(b)}= 1(2π)312(1z)kd4l(2π)4Tr[(h+Mh)1+γ52𝒴v,bcGabjν(k,k)k2(h+MX)cf(gγαffef)\displaystyle\frac{1}{(2\pi)^{3}}\frac{1}{2(1-z)k^{-}}\int\frac{d^{4}l}{(2\pi)^{4}}\operatorname{Tr}\left[\left(\not{P_{h}}+M_{h}\right)\frac{1+\gamma^{5}\not{S}}{2}\mathcal{Y}_{v,b^{\prime}c^{\prime}}^{*}\frac{G^{j\nu\ast}_{ab^{\prime}}(k,k)}{k^{2}}\left(\not{k}-\not{P_{h}}+M_{X}\right)_{c^{\prime}f^{\prime}}(g\gamma^{\alpha}f_{fe^{\prime}f^{\prime}})\right.
i(h+MX)cf(kPhl)2MX2+iε𝒴μ,bcigρρδbd(kl)2+iε(gfdedVραρ(k,l,lk))igααδeel2+iεGadiρ(k,k)k2]+H.c.,\displaystyle\left.\frac{i\left(\not{k}-\not{P_{h}}-\not{l}+M_{X}\right)_{cf}}{(k-P_{h}-l)^{2}-M_{X}^{2}+i\varepsilon}\mathcal{Y}_{\mu,bc}\frac{-ig^{\rho\rho^{\prime}}\delta_{bd}}{(k-l)^{2}+i\varepsilon}(-gf_{d^{\prime}ed}V^{\rho^{\prime}\alpha^{\prime}\rho}(k,-l,l-k))\frac{-ig^{\alpha\alpha^{\prime}}\delta_{ee^{\prime}}}{l^{2}+i\varepsilon}\cdot\frac{G^{i\rho^{\prime}}_{ad^{\prime}}(k,k)}{k^{2}}\right]+H.c.\,, (15)
Δ(c)ij=\displaystyle\Delta^{ij}_{(c)}= 1(2π)312(1z)kd4l(2π)4Tr[(h+Mh)1+γ52𝒴v,bcGabjν(k,k)k2(h+MX)cc𝒴μ,bcigμρδbdk2+iε\displaystyle\frac{1}{(2\pi)^{3}}\frac{1}{2(1-z)k^{-}}\int\frac{d^{4}l}{(2\pi)^{4}}\operatorname{Tr}\left[\left(\not{P_{h}}+M_{h}\right)\frac{1+\gamma^{5}\not{S}}{2}\mathcal{Y}_{v,b^{\prime}c^{\prime}}^{*}\frac{G^{j\nu\ast}_{ab^{\prime}}(k,k)}{k^{2}}\left(\not{k}-\not{P_{h}}+M_{X}\right)_{cc^{\prime}}\mathcal{Y}_{\mu,bc}\frac{-ig^{\mu\rho}\delta_{bd}}{k^{2}+i\varepsilon}\right.
(gfddfVρρα(k,kl,l))igαρδffl2+iεign+ρfeafln+±iεGadiρ(kl,kl)(kl)2+iε]+H.c.,\displaystyle\left.(-gf_{dd^{\prime}f}V^{\rho\rho^{\prime}\alpha}(-k,k-l,l))\frac{-ig^{\alpha\rho}\delta_{ff^{\prime}}}{l^{2}+i\varepsilon}\cdot\frac{ign_{+}^{\rho}f_{eaf^{\prime}}}{-l\cdot n_{+}\pm i\varepsilon}\cdot\frac{G^{i\rho^{\prime}}_{ad^{\prime}}(k-l,k-l)}{(k-l)^{2}+i\varepsilon}\right]+H.c.\,, (16)
Δ(d)ij=\displaystyle\Delta^{ij}_{(d)}= 1(2π)312(1z)kd4l(2π)4Tr[(h+Mh)1+γ52𝒴v,bcGabjν(k,k)k2(h+MX)cfign+ρffdfln+±iε\displaystyle\frac{1}{(2\pi)^{3}}\frac{1}{2(1-z)k^{-}}\int\frac{d^{4}l}{(2\pi)^{4}}\operatorname{Tr}\left[\left(\not{P_{h}}+M_{h}\right)\frac{1+\gamma^{5}\not{S}}{2}\mathcal{Y}_{v,b^{\prime}c^{\prime}}^{*}\frac{G^{j\nu\ast}_{ab^{\prime}}(k,k)}{k^{2}}\left(\not{k}-\not{P_{h}}+M_{X}\right)_{c^{\prime}f^{\prime}}\frac{ign_{+}^{\rho}f_{fd^{\prime}f^{\prime}}}{-l\cdot n_{+}\pm i\varepsilon}\right.
igαρδadl2+iε(gγαffdf)i(h+MX)cf(kPhl)2MX2+iε𝒴μ,bcGabiμ(kl,kl)(kl)2+iε]+H.c.,\displaystyle\left.\frac{-ig^{\alpha\rho}\delta_{ad^{\prime}}}{l^{2}+i\varepsilon}(g\gamma^{\alpha}f_{fd^{\prime}f^{\prime}})\frac{i\left(\not{k}-\not{P_{h}}-\not{l}+M_{X}\right)_{cf}}{(k-P_{h}-l)^{2}-M_{X}^{2}+i\varepsilon}\mathcal{Y}_{\mu,bc}\frac{G^{i\mu}_{ab}(k-l,k-l)}{(k-l)^{2}+i\varepsilon}\right]+H.c.\,, (17)

where a,b,c,d,e,fa,b,c,d,e,f are the color indices. Details of the Feynman rules for the eikonal propagator and the eikonal vertex can be found in Ref. [37]. Here, gg is the coupling of the three-gluon vertex and the spectator-gluon-spectator vertex, and MXM_{X} the mass of the spectator. We use the notation

Vμνρ(p,q,r)=(pq)ρgμν+(qr)μgνρ+(rp)νgρμ.\displaystyle V^{\mu\nu\rho}(p,q,r)=(p-q)^{\rho}g^{\mu\nu}+(q-r)^{\mu}g^{\nu\rho}+(r-p)^{\nu}g^{\rho\mu}\,. (18)

The same Feynman rules are used here as in Ref. [25]. The term

Gabiμ(k,k)\displaystyle G_{ab}^{i\mu}(k,k) =iδabk(giμkin+μk)\displaystyle=-i\delta_{ab}k^{-}\left(g^{i\mu}-\frac{k^{i}n_{+}^{\mu}}{k^{-}}\right) (19)

is the specific Feynman rule for the field strength tensor of the form i(pμgνρpνgμρ)δab-i\left(p^{\mu}g^{\nu\rho}-p^{\nu}g^{\mu\rho}\right)\delta_{ab} [38, 7], and the gluon-hadron-spectator vertex 𝒴bcμ\mathcal{Y}_{bc}^{\mu} is modeled as [21]:

𝒴bcμ\displaystyle\mathcal{Y}_{bc}^{\mu} =δbc[g1(k2)γμ+g2(k2)i2Mhσμνkν],\displaystyle=\delta_{bc}\left[g_{1}\left(k^{2}\right)\gamma^{\mu}+g_{2}\left(k^{2}\right)\frac{i}{2M_{h}}\sigma^{\mu\nu}k_{\nu}\right]\,, (20)

where σμν=i[γμ,γν]/2\sigma^{\mu\nu}=i\left[\gamma^{\mu},\gamma^{\nu}\right]/2, g1(k2)g_{1}(k^{2}) and g2(k2)g_{2}(k^{2}) are the gluon-hadron-spectator couplings. Here, the vertex is modeled by two Dirac structures γμ\gamma^{\mu} and σμν\sigma^{\mu\nu} which mimics the conserved electromagnetic current of a free nucleon obtained by applying a standard Gordon decomposition. The kind of coupling g1,2(k2)g_{1,2}(k^{2}) has several different choices in the literature [14]. Following Refs. [21, 25], we apply the dipolar form factor

g1,2(k2)\displaystyle g_{1,2}\left(k^{2}\right) =κ1,2k2|k2ΛX2|2,\displaystyle=\kappa_{1,2}\frac{k^{2}}{\left|k^{2}-\Lambda_{X}^{2}\right|^{2}}\,, (21)

where κ1,2\kappa_{1,2} are free parameters, and ΛX=kTmax\Lambda_{X}=k_{T}^{\textrm{max}} is cut-off parameter in order to regularize the divergence. The spectator-gluon-spectator vertex is also an important term which connects an anti-octet spectator to an octet gluon and an anti-octet spectator, while the gluon-hadron-spectator vertex connects a color-neutral hadron to an octet gluon and an anti-octet spectator. In this study, the spectator-gluon-spectator vertex is modeled as a Dirac structure gγμg\gamma^{\mu} with the color structure constant fabcf_{abc}. The three-gluon vertex and the ff-type eikonal vertex of Eqs. (16) and (17) will make sense in this case.

Since the spectator is on-shell (kPh)2=MX2(k-P_{h})^{2}=M_{X}^{2}, we can obtain the following expression for the virtuality k2k^{2} of the fragmentation gluon:

k2=z1zkT2+MX21z+Mh2z.\displaystyle k^{2}=\frac{z}{1-z}\vec{k}_{T}^{2}+\frac{M_{X}^{2}}{1-z}+\frac{M_{h}^{2}}{z}\,. (22)

In Eqs. (16) and (17) we have applied the Feynman rule i/(ln+±iε)i/(-l\cdot n_{+}\pm i\varepsilon) for the eikonal propagator. It should be noted that the sign of the factor iεi\varepsilon in the eikonal propagator is different for SIDIS (+)(+) and e+ee^{+}e^{-} annihilation ()(-). However, in the calculation of T-odd functions, we utilize the Cutkosky cut rule to put certain internal lines on the mass shell to obtain the necessary imaginary phase. For the result of Fig. 1, the only way of the cuts corresponds to the following replacements on the propagators by using the Dirac delta functions

1l2+iε2πiδ(l2),1(kl)2+iε2πiδ((kl)2).\displaystyle\frac{1}{l^{2}+i\varepsilon}\rightarrow-2\pi i\delta(l^{2})\,,\quad\frac{1}{(k-l)^{2}+i\varepsilon}\rightarrow-2\pi i\delta((k-l)^{2})\,. (23)

The other combinations (cutting through the eikonal line or the spectator line) do not contribute, as shown in Refs. [39, 31].

Now we can obtain the expressions of four the leading-twist T-odd gluon TMD FFs by projecting Δij\Delta^{ij} with δTij\delta_{T}^{ij}, εTij\varepsilon_{T}^{ij} and S^\hat{S} in Eqs. (6)-(8). However, using the correlator from Fig. 1a or Fig. 1c, we obtain the following result

Xh/g(z,𝒌T2)d4l(2π)4(kαlklα)δ(l2)δ((kl)2),\displaystyle X^{h/g}\left(z,\bm{k}^{2}_{T}\right)\propto\int\frac{d^{4}l}{(2\pi)^{4}}\left(k^{\alpha}l^{-}-k^{-}l^{\alpha}\right)\delta(l^{2})\delta((k-l)^{2})\,, (24)

Using the decomposition of the integral

d4lδ(l2)δ((kl)2)lμ=kμ,\displaystyle\int d^{4}l~{}\delta(l^{2})\delta((k-l)^{2})l^{\mu}=\mathcal{F}k^{\mu}\,, (25)

one can conclude that Eqs. (14) and (16) should generate zero contribution to the T-odd TMD FFs. Then the result of Eq. (15) reads

D1T(b),h/g(z,𝒌T2)=\displaystyle D_{1T(b)}^{\perp,h/g}\left(z,\bm{k}_{T}^{2}\right)= (2CA2CF)g2(k2(12z)+Mh2MX2)256π5k4(1z)Dg(z,𝒌T2),\displaystyle\frac{\left(-2C^{2}_{A}C_{F}\right)g^{2}\left(k^{2}\left(1-2z\right)+M_{h}^{2}-M_{X}^{2}\right)}{256\pi^{5}k^{4}\left(1-z\right)}D_{g}\left(z,\bm{k}_{T}^{2}\right)\,, (26)
H1T(b)h/g(z,𝒌T2)=\displaystyle H_{1T(b)}^{h/g}\left(z,\bm{k}_{T}^{2}\right)= (2CA2CF)g2(k2(12z)+Mh2MX2)128π5k4(1z)Dg(z,𝒌T2),\displaystyle-\frac{\left(-2C^{2}_{A}C_{F}\right)g^{2}\left(k^{2}\left(1-2z\right)+M_{h}^{2}-M_{X}^{2}\right)}{128\pi^{5}k^{4}\left(1-z\right)}D_{g}\left(z,\bm{k}_{T}^{2}\right)\,, (27)
H1T(b)h/g(z,𝒌T2)=\displaystyle H_{1T(b)}^{\perp h/g}\left(z,\bm{k}_{T}^{2}\right)= (2CA2CF)g2Mh2z64π5k4(1z)Dg(z,𝒌T2),\displaystyle\frac{\left(-2C^{2}_{A}C_{F}\right)g^{2}M_{h}^{2}z}{64\pi^{5}k^{4}\left(1-z\right)}D_{g}\left(z,\bm{k}_{T}^{2}\right)\,, (28)
H1L(b)h/g(z,𝒌T2)=\displaystyle H_{1L(b)}^{\perp h/g}\left(z,\bm{k}_{T}^{2}\right)= (2CA2CF)g2Mh264π5k4(1z)Dg(z,𝒌T2),\displaystyle\frac{\left(-2C^{2}_{A}C_{F}\right)g^{2}M_{h}^{2}}{64\pi^{5}k^{4}\left(1-z\right)}D_{g}\left(z,\bm{k}_{T}^{2}\right)\,, (29)
Dg(z,𝒌T2)=\displaystyle D_{g}\left(z,\bm{k}_{T}^{2}\right)= 16g12Mh2[(+𝒴)+Mh+MX2Mh(𝒜+I2+2𝒵)]2g1g2[(2𝒜++4𝒴+5𝒵)k2\displaystyle 16g_{1}^{2}M_{h}^{2}\left[\left(\mathcal{B}+\mathcal{Y}\right)+\frac{M_{h}+M_{X}}{2M_{h}}\left(\mathcal{A}+I_{2}+2\mathcal{Z}\right)\right]-2g_{1}g_{2}\left[\left(2\mathcal{A}+\mathcal{B}+4\mathcal{Y}+5\mathcal{Z}\right)k^{2}\right.
+(2𝒜+5+2I2+4𝒴+3𝒵)(Mh2MX2)+(46𝒴)MhMX]\displaystyle+\left.\left(2\mathcal{A}+5\mathcal{B}+2I_{2}+4\mathcal{Y}+3\mathcal{Z}\right)\left(M_{h}^{2}-M_{X}^{2}\right)+\left(4\mathcal{B}-6\mathcal{Y}\right)M_{h}M_{X}\right]
g22Mh[(k2(Mh5MX)(MhMX)(Mh+MX)2)𝒴(k2(3Mh4MX)\displaystyle-\frac{g_{2}^{2}}{M_{h}}\left[\mathcal{B}\left(k^{2}\left(M_{h}-5M_{X}\right)-\left(M_{h}-M_{X}\right)\left(M_{h}+M_{X}\right)^{2}\right)-\mathcal{Y}\left(k^{2}\left(3M_{h}-4M_{X}\right)\right.\right.
+(Mh25MhMX+4MX2)(Mh+MX))2𝒵k2(2Mh3MX)],\displaystyle+\left.\left.\left(M_{h}^{2}-5M_{h}M_{X}+4M_{X}^{2}\right)\left(M_{h}+M_{X}\right)\right)-2\mathcal{Z}k^{2}\left(2M_{h}-3M_{X}\right)\right]\,, (30)

and the result of Eq. (17) has the form

D1T(d),h/g(z,𝒌T2)\displaystyle D_{1T(d)}^{\perp,h/g}\left(z,\bm{k}_{T}^{2}\right)
=\displaystyle= (2CA2CF)g2128π5k2(1z)z[8g12Mh[z(Mh(z1)𝒜MX)+𝒞k(z1)(Mh(z1)+zMX)\displaystyle\frac{\left(-2C^{2}_{A}C_{F}\right)g^{2}}{128\pi^{5}k^{2}\left(1-z\right)z}\left[8g_{1}^{2}M_{h}\left[z\left(\mathcal{B}M_{h}\left(z-1\right)-\mathcal{A}M_{X}\right)+\mathcal{C}k_{-}\left(z-1\right)\left(M_{h}\left(z-1\right)+zM_{X}\right)\right.\right.
+I2(Mh(z1)2+z2MX)]+2g1g2[z(𝒜k2(2z1)+(2k2(z1)+Mh2(2z1)\displaystyle+\left.I_{2}\left(M_{h}\left(z-1\right)^{2}+z^{2}M_{X}\right)\right]+2g_{1}g_{2}\left[-z\left(\mathcal{A}k^{2}\left(2z-1\right)+\mathcal{B}\left(2k^{2}\left(z-1\right)+M_{h}^{2}\left(2z-1\right)\right.\right.\right.
+3MhMX2MX2(z1)))+(𝒞k+I2)(z1)(k2Mh2(2z1)4MhMXMX2(z1))]\displaystyle+\left.\left.\left.3M_{h}M_{X}-2M_{X}^{2}\left(z-1\right)\right)\right)+\left(\mathcal{C}k_{-}+I_{2}\right)\left(z-1\right)\left(k^{2}-M_{h}^{2}\left(2z-1\right)-4M_{h}M_{X}-M_{X}^{2}\left(z-1\right)\right)\right]
+g22Mh[z(𝒜k2(Mh+3MX)+(2k2MX+Mh3+2Mh2MXMhMX22MX3))\displaystyle+\frac{g_{2}^{2}}{M_{h}}\left[z\left(\mathcal{A}k^{2}\left(M_{h}+3M_{X}\right)+\mathcal{B}\left(2k^{2}M_{X}+M_{h}^{3}+2M_{h}^{2}M_{X}-M_{h}M_{X}^{2}-2M_{X}^{3}\right)\right)\right.
(𝒞k+I2)(z1)(MhMX)(k2(Mh+MX)2)2I2MXk2z]],\displaystyle-\left.\left.\left(\mathcal{C}k_{-}+I_{2}\right)\left(z-1\right)\left(M_{h}-M_{X}\right)\left(k^{2}-\left(M_{h}+M_{X}\right)^{2}\right)-2I_{2}M_{X}k^{2}z\right]\right]\,, (31)
H1T(d)h/g(z,𝒌T2)\displaystyle H_{1T(d)}^{h/g}\left(z,\bm{k}_{T}^{2}\right)
=\displaystyle= (2CA2CF)g2128π5k2(1z)z[16g12Mhz[𝒜Mh+Mhz+𝒞k(Mh(z1)+zMX)+I2(Mh(z2)+zMX)]\displaystyle-\frac{\left(-2C^{2}_{A}C_{F}\right)g^{2}}{128\pi^{5}k^{2}\left(1-z\right)z}\left[16g_{1}^{2}M_{h}z\left[\mathcal{A}M_{h}+\mathcal{B}M_{h}z+\mathcal{C}k_{-}\left(M_{h}\left(z-1\right)+zM_{X}\right)+I_{2}\left(M_{h}\left(z-2\right)+zM_{X}\right)\right]\right.
+4g1g2[z(𝒜(k2(2z1)+2(Mh2MX2))+(2z(k2MX2+Mh2)+Mh2MhMX))\displaystyle+4g_{1}g_{2}\left[-z\left(\mathcal{A}\left(k^{2}\left(2z-1\right)+2\left(M_{h}^{2}-M_{X}^{2}\right)\right)+\mathcal{B}\left(2z\left(k^{2}-M_{X}^{2}+M_{h}^{2}\right)+M_{h}^{2}-M_{h}M_{X}\right)\right)\right.
+𝒞k((1z)(k2+(2z+1)(Mh2MX2))4zMhMX)+I2((z+1)(k2(2z1)(Mh2MX2))\displaystyle+\mathcal{C}k_{-}\left(\left(1-z\right)\left(k^{2}+\left(2z+1\right)\left(M_{h}^{2}-M_{X}^{2}\right)\right)-4zM_{h}M_{X}\right)+I_{2}\left(\left(z+1\right)\left(k^{2}-\left(2z-1\right)\left(M_{h}^{2}-M_{X}^{2}\right)\right)\right.
+4z(Mh2MX2MhMX))]+2g22Mh[z(𝒜k2(3Mh+MX)+(2k2+Mh2MX2))\displaystyle+\left.\left.4z\left(M_{h}^{2}-M_{X}^{2}-M_{h}M_{X}\right)\right)\right]+\frac{2g_{2}^{2}}{M_{h}}\left[z\left(\mathcal{A}k^{2}\left(3M_{h}+M_{X}\right)+\mathcal{B}\left(2k^{2}+M_{h}^{2}-M_{X}^{2}\right)\right)\right.
+(𝒞k+I2)(MhMX)(k2(z1)+(Mh+MX)(Mh(z1)+MX(z+1)))2I2Mhk2z]],\displaystyle+\left.\left.\left(\mathcal{C}k_{-}+I_{2}\right)\left(M_{h}-M_{X}\right)\left(k^{2}\left(z-1\right)+\left(M_{h}+M_{X}\right)\left(M_{h}\left(z-1\right)+M_{X}\left(z+1\right)\right)\right)-2I_{2}M_{h}k^{2}z\right]\right]\,, (32)
H1T(d)h/g(z,𝒌T2)\displaystyle H_{1T(d)}^{\perp h/g}\left(z,\bm{k}_{T}^{2}\right)
=\displaystyle= (2CA2CF)g2Mh32π5k2(1z)2z𝒌T2[2(1z)g1g2Mh[𝒜(z(1z)k22z2𝒌T2)+z𝒌T2((1z)𝒞k+(1+z)I2)\displaystyle\frac{\left(-2C^{2}_{A}C_{F}\right)g^{2}M_{h}}{32\pi^{5}k^{2}\left(1-z\right)^{2}z\bm{k}_{T}^{2}}\left[2\left(1-z\right)g_{1}g_{2}M_{h}\left[\mathcal{A}\left(z\left(1-z\right)k^{2}-2z^{2}\bm{k}_{T}^{2}\right)+z\bm{k}_{T}^{2}\left(\left(1-z\right)\mathcal{C}k_{-}+\left(1+z\right)I_{2}\right)\right.\right.
+Mh2(1z)]+g22[𝒜MXz(1z)k2+Mh(1z)(MhMXz2𝒌T2)\displaystyle+\left.\mathcal{B}M_{h}^{2}\left(1-z\right)\right]+g_{2}^{2}\left[\mathcal{A}M_{X}z\left(1-z\right)k^{2}+\mathcal{B}M_{h}\left(1-z\right)\left(M_{h}M_{X}-z^{2}\bm{k}_{T}^{2}\right)\right.
+z𝒌T2(𝒞k+I2)(Mh(1z)2+MX(1z2))]],\displaystyle+\left.\left.z\bm{k}_{T}^{2}\left(\mathcal{C}k_{-}+I_{2}\right)\left(M_{h}\left(1-z\right)^{2}+M_{X}\left(1-z^{2}\right)\right)\right]\right]\,, (33)
H1L(d)h/g(z,𝒌T2)\displaystyle H_{1L(d)}^{\perp h/g}\left(z,\bm{k}_{T}^{2}\right)
=\displaystyle= (2CA2CF)g2g12Mh2z(𝒜I2)8π5(1z)k2(2CA2CF)g2128π5z2(1z)k2𝒌T2[2g1g2Mh[2(Mh(z1)+MXz)(𝒜zk2+Mh2)\displaystyle\frac{\left(-2C^{2}_{A}C_{F}\right)g^{2}g_{1}^{2}M_{h}^{2}z\left(\mathcal{A}-I_{2}\right)}{8\pi^{5}\left(1-z\right)k^{2}}-\frac{\left(-2C^{2}_{A}C_{F}\right)g^{2}}{128\pi^{5}z^{2}\left(1-z\right)k^{2}\bm{k}_{T}^{2}}\left[2g_{1}g_{2}M_{h}\left[2\left(M_{h}\left(z-1\right)+M_{X}z\right)\left(\mathcal{A}zk^{2}+\mathcal{B}M_{h}^{2}\right)\right.\right.
+z𝒌T2(2zMh(4𝒜+)+𝒞k(5Mh(z1)+8MXz2)+𝒟kMh(z1)z+I2(8MXz2Mh(3z+5)))]\displaystyle+\left.z\bm{k}_{T}^{2}\left(2zM_{h}\left(4\mathcal{A}+\mathcal{B}\right)+\mathcal{C}k_{-}\left(5M_{h}\left(z-1\right)+8M_{X}z^{2}\right)+\mathcal{D}k_{-}M_{h}\left(z-1\right)z+I_{2}\left(8M_{X}z^{2}-M_{h}\left(3z+5\right)\right)\right)\right]
g22[2(MhMX)(Mh(z1)+zMX)(𝒜zk2+Mh2+2z(z1)𝒌T2(𝒞k+I2))\displaystyle-g_{2}^{2}\left[2\left(M_{h}-M_{X}\right)\left(M_{h}\left(z-1\right)+zM_{X}\right)\left(\mathcal{A}zk^{2}+\mathcal{B}M_{h}^{2}+2z\left(z-1\right)\bm{k}_{T}^{2}\left(\mathcal{C}k_{-}+I_{2}\right)\right)\right.
+z𝒌T2(4zk2(z(𝒜+)I2)4𝒞kz(1z)k2+(𝒞k+I2)Mh(9MXMh)2z(Mh2(32z)\displaystyle+z\bm{k}_{T}^{2}\left(4zk^{2}\left(z\left(\mathcal{A}+\mathcal{B}\right)-I_{2}\right)-4\mathcal{C}k_{-}z\left(1-z\right)k^{2}+\left(\mathcal{C}k_{-}+I_{2}\right)M_{h}\left(9M_{X}-M_{h}\right)-2\mathcal{B}z\left(M_{h}^{2}\left(3-2z\right)\right.\right.
+MhMX+2zMX2)𝒟kzMh(MhMX))]].\displaystyle+\left.\left.\left.\left.M_{h}M_{X}+2zM_{X}^{2}\right)-\mathcal{D}k_{-}zM_{h}\left(M_{h}-M_{X}\right)\right)\right]\right]\,. (34)

Here the functions IiI_{i} are defined as

I1=\displaystyle I_{1}= d4lδ(l2)δ((kl)2m2)=π2k2(k2m2),\displaystyle\int d^{4}l~{}\delta(l^{2})\delta((k-l)^{2}-m^{2})=\frac{\pi}{2k^{2}}\left(k^{2}-m^{2}\right)\,, (35)
I2=\displaystyle I_{2}= d4lδ(l2)δ((kl)2m2)(kPhl)2MX2=π2λ(Mh,MX)ln(12λ(Mh,MX)k2Mh2+MX2+λ(Mh,MX)),\displaystyle\int d^{4}l~{}\frac{\delta(l^{2})\delta((k-l)^{2}-m^{2})}{\left(k-P_{h}-l\right)^{2}-M_{X}^{2}}=\frac{\pi}{2\sqrt{\lambda\left(M_{h},M_{X}\right)}}\ln\left(1-\frac{2\sqrt{\lambda\left(M_{h},M_{X}\right)}}{k^{2}-M_{h}^{2}+M_{X}^{2}+\sqrt{\lambda\left(M_{h},M_{X}\right)}}\right)\,, (36)
I3=\displaystyle I_{3}= d4lδ(l2)δ((kl)2m2)ln++iε,\displaystyle\int d^{4}l~{}\frac{\delta(l^{2})\delta((k-l)^{2}-m^{2})}{-l\cdot n_{+}+i\varepsilon}\,, (37)
I4=\displaystyle I_{4}= d4lδ(l2)δ((kl)2m2)(ln++iε)((kPhl)2MX2),\displaystyle\int d^{4}l~{}\frac{\delta(l^{2})\delta((k-l)^{2}-m^{2})}{\left(-l\cdot n_{+}+i\varepsilon\right)\left(\left(k-P_{h}-l\right)^{2}-M_{X}^{2}\right)}\,, (38)

with λ(Mh,MX)=(k2(Mh+MX)2)(k2(MhMX)2)\lambda\left(M_{h},M_{X}\right)=\left(k^{2}-\left(M_{h}+M_{X}\right)^{2}\right)\left(k^{2}-\left(M_{h}-M_{X}\right)^{2}\right), and I34I_{34} is the linear combination of I3I_{3} and I4I_{4},

I34=k(I3+(1z)(k2m2)I4)=πlnk2(1z)MX.\displaystyle I_{34}=k_{-}\left(I_{3}+(1-z)(k^{2}-m^{2})I_{4}\right)=\pi\ln\frac{\sqrt{k^{2}}(1-z)}{M_{X}}\,. (39)

𝒜\mathcal{A} and \mathcal{B} denote the following functions

𝒜=\displaystyle\mathcal{A}= I1λ(Mh,MX)(2k2(k2Mh2MX2)I2π+(k2+Mh2MX2)),\displaystyle\frac{I_{1}}{\lambda\left(M_{h},M_{X}\right)}\left(2k^{2}\left(k^{2}-M_{h}^{2}-M_{X}^{2}\right)\frac{I_{2}}{\pi}+\left(k^{2}+M_{h}^{2}-M_{X}^{2}\right)\right)\,, (40)
=\displaystyle\mathcal{B}= 2k2λ(Mh,MX)I1(1+k2Mh2+MX2πI2),\displaystyle-\frac{2k^{2}}{\lambda\left(M_{h},M_{X}\right)}I_{1}\left(1+\frac{k^{2}-M_{h}^{2}+M_{X}^{2}}{\pi}I_{2}\right)\,, (41)

which appear in the decomposition of the integral

d4llμδ(l2)δ((kl)2m2)(kPhl)2MX2=𝒜kμ+Phμ.\displaystyle\int d^{4}l~{}\frac{l^{\mu}\delta(l^{2})\delta((k-l)^{2}-m^{2})}{\left(k-P_{h}-l\right)^{2}-M_{X}^{2}}=\mathcal{A}k^{\mu}+\mathcal{B}P_{h}^{\mu}\,. (42)

𝒞\mathcal{C}, 𝒟\mathcal{D} and \mathcal{E} denote the following functions

𝒞Ph=\displaystyle\mathcal{C}P_{h}^{-}= I342𝒌T2+12z𝒌T2[zk2+(2z)Mh2+zMX2]I2,\displaystyle\frac{I_{34}}{2\bm{k}_{T}^{2}}+\frac{1}{2z\bm{k}_{T}^{2}}\left[-zk^{2}+(2-z)M_{h}^{2}+zM_{X}^{2}\right]I_{2}\,, (43)
𝒟Ph=\displaystyle\mathcal{D}P_{h}^{-}= I342z𝒌T212z𝒌T2[(12z)k2+Mh2MX2]I2,\displaystyle\frac{-I_{34}}{2z\bm{k}_{T}^{2}}-\frac{1}{2z\bm{k}_{T}^{2}}\left[(1-2z)k^{2}+M_{h}^{2}-M_{X}^{2}\right]I_{2}\,, (44)
k=\displaystyle\mathcal{E}k^{-}= λ(Mh,MX)4zPh𝒌T2I214z2𝒌T2[(12z)k2+Mh2MX2]I34+k2m22I4,\displaystyle\frac{\lambda\left(M_{h},M_{X}\right)}{4zP_{h}^{-}\bm{k}_{T}^{2}}I_{2}-\frac{1}{4z^{2}\bm{k}_{T}^{2}}\left[(1-2z)k^{2}+M_{h}^{2}-M_{X}^{2}\right]I_{34}+\frac{k^{2}-m^{2}}{2}I_{4}\,, (45)

which appear in the decomposition of the integral

d4llμδ(l2)δ((kl)2m2)(ln++iε)((kPhl)2MX2)=𝒞kμ+𝒟Phμ+n+μ.\displaystyle\int d^{4}l~{}\frac{l^{\mu}\delta(l^{2})\delta((k-l)^{2}-m^{2})}{\left(-l\cdot n_{+}+i\varepsilon\right)\left(\left(k-P_{h}-l\right)^{2}-M_{X}^{2}\right)}=\mathcal{C}k^{\mu}+\mathcal{D}P_{h}^{\mu}+\mathcal{E}n_{+}^{\mu}\,. (46)

𝒳\mathcal{X}, 𝒴\mathcal{Y} and 𝒵\mathcal{Z} denote the following functions

𝒳=\displaystyle\mathcal{X}= I12πMX2λ(Mh,MX)[(k2+MX2)(Mh2+2MX2)3MX4k4],\displaystyle\frac{I_{1}^{2}}{\pi M_{X}^{2}\lambda\left(M_{h},M_{X}\right)}\left[(k^{2}+M_{X}^{2})(M_{h}^{2}+2M_{X}^{2})-3M_{X}^{4}-k^{4}\right]\,, (47)
𝒴=\displaystyle\mathcal{Y}= I12πMX2λ(Mh,MX)[k2(Mh2MX2)k4],\displaystyle\frac{I_{1}^{2}}{\pi M_{X}^{2}\lambda\left(M_{h},M_{X}\right)}\left[k^{2}(M_{h}^{2}-M_{X}^{2})-k^{4}\right]\,, (48)
𝒵=\displaystyle\mathcal{Z}= I12πMX2λ(Mh,MX)[k4k2(Mh2+MX2)],\displaystyle\frac{I_{1}^{2}}{\pi M_{X}^{2}\lambda\left(M_{h},M_{X}\right)}\left[k^{4}-k^{2}(M_{h}^{2}+M_{X}^{2})\right]\,, (49)

which appear in the decomposition of the integral

d4llμlνδ(l2)δ((kl)2m2)(kPhl)2MX2=𝒳kμkν+𝒴PhμPhν+𝒵(kμPhν+Phμkν).\displaystyle\int d^{4}l~{}\frac{l^{\mu}l^{\nu}\delta(l^{2})\delta((k-l)^{2}-m^{2})}{\left(k-P_{h}-l\right)^{2}-M_{X}^{2}}=\mathcal{X}k^{\mu}k^{\nu}+\mathcal{Y}P_{h}^{\mu}P_{h}^{\nu}+\mathcal{Z}\left(k^{\mu}P_{h}^{\nu}+P_{h}^{\mu}k^{\nu}\right)\,. (50)

III Numerical Results

κ1p\kappa_{1}^{p} κ2p\kappa_{2}^{p} ΛXp\Lambda_{X}^{p} MXpM_{X}^{p} χ2/d.o.f.\chi^{2}/\mathrm{d.o.f.}
7.742±\pm0.460 2.238±\pm1.563 1.589±\pm0.014 1.252±\pm0.016 2.906
Table 2: Fitted values of the parameters in the spectator model using the AKK08 parametrization for the gluon FFs.

In this section, we present the numerical results of the T-odd gluon fragmentation functions D1T,h/g(z,𝒌T2)D_{1T}^{\perp,h/g}(z,\bm{k}_{T}^{2}), H1Th/g(z,𝒌T2)H_{1T}^{h/g}(z,\bm{k}_{T}^{2}), H1L,h/g(z,𝒌T2)H_{1L}^{\perp,h/g}(z,\bm{k}_{T}^{2}) and H1T,h/g(z,𝒌T2)H_{1T}^{\perp,h/g}(z,\bm{k}_{T}^{2}). To do this the integrated FFs are defined as

D1T(1),h/g(z)=\displaystyle D_{1T}^{\perp(1),h/g}(z)= z2d2𝒌T𝒌T22Mh2D1T,h/g(z,𝒌T2),\displaystyle z^{2}\int d^{2}\bm{k}_{T}\frac{\bm{k}_{T}^{2}}{2M_{h}^{2}}D_{1T}^{\perp,h/g}(z,\bm{k}_{T}^{2})\,, (51)
H1Th/g(z)=\displaystyle H_{1T}^{h/g}(z)= z2d2𝒌TH1Th/g(z,𝒌T2),\displaystyle z^{2}\int d^{2}\bm{k}_{T}H_{1T}^{h/g}(z,\bm{k}_{T}^{2})\,, (52)
H1L(1),h/g(z)=\displaystyle H_{1L}^{\perp(1),h/g}(z)= z2d2𝒌T𝒌T22Mh2H1L,h/g(z,𝒌T2),\displaystyle z^{2}\int d^{2}\bm{k}_{T}\frac{\bm{k}_{T}^{2}}{2M_{h}^{2}}H_{1L}^{\perp,h/g}(z,\bm{k}_{T}^{2})\,, (53)
H1T,h/g(z)=\displaystyle H_{1T}^{\perp,h/g}(z)= z2d2𝒌TH1T,h/g(z,𝒌T2).\displaystyle z^{2}\int d^{2}\bm{k}_{T}H_{1T}^{\perp,h/g}(z,\bm{k}_{T}^{2})\,. (54)

Note that in the reference of Eqs. (1)-(3) the fragmentation parton has the transverse momentum 𝒌T\bm{k}_{T} and the hadron has no transverse momentum, while in a frame of reference in which the fragmentation parton has no transverse momentum and the hadron has the transverse momentum 𝑷hT\bm{P}_{hT}, one can show that 𝑷hT=z𝒌T\bm{P}_{hT}=-z\bm{k}_{T}, and z2𝒌T=𝑷hT2z^{2}\bm{k}_{T}=\bm{P}_{hT}^{2}.

In this work, we take proton as the spin-1/21/2 hadron (hph\equiv p) to perform the calculation. The original values of the parameters (AKK08) from Ref. [25] are presented in Table 2. In the fit we adopt the AKK08 parametrization at the scale Q0=1.5GeVQ_{0}=1.5~{}\mathrm{GeV} to avoid negative values for D1h/g(z)D_{1}^{h/g}(z) in the small zz region and low-QQ. And we consider the range 0.1<z<0.70.1<z<0.7 in the fit. In the following, the strong coupling constant is fixed to α(Q0)=g2/4π=0.35\alpha(Q_{0})=g^{2}/4\pi=0.35.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 2: T-odd gluon fragmentation functions zD1T(1),h/g(z)zD_{1T}^{\perp(1),h/g}(z) (upper-left), zH1Th/g(z)zH_{1T}^{h/g}(z) (upper-right), zH1L(1),h/g(z)zH_{1L}^{\perp(1),h/g}(z) (lower-left), and zH1T,h/g(z)zH_{1T}^{\perp,h/g}(z) (lower-right) vs zz, respectively, at Q0=1.5GeVQ_{0}=1.5~{}\mathrm{GeV} in the spectator model. The solid lines depict the spectator model results. The bands depict the uncertainties from the uncertainties of the parameters.

In Fig. 2 we present the numerical results of zD1T(1),h/g(z)zD_{1T}^{\perp(1),h/g}(z), zH1Th/g(z)zH_{1T}^{h/g}(z), zH1L(1),h/g(z)zH_{1L}^{\perp(1),h/g}(z), and zH1T,h/g(z)zH_{1T}^{\perp,h/g}(z) vs zz using the parameters in Table 2. We find that the magnitudes of zD1T(1),h/g(z)zD_{1T}^{\perp(1),h/g}(z) and zH1T,h/g(z)zH_{1T}^{\perp,h/g}(z) are sizable. The sizes of zH1Th/g(z)zH_{1T}^{h/g}(z) and zH1L(1),h/g(z)zH_{1L}^{\perp(1),h/g}(z) are several times less than that of zD1T(1),h/g(z)zD_{1T}^{\perp(1),h/g}(z) and zH1T,h/g(z)zH_{1T}^{\perp,h/g}(z). This finding indicates that the effects of these fragmentation functions could be significant and can be probed in future experimental measurements. There is a node at z=0.6z=0.6 for zD1T(1),h/g(z)zD_{1T}^{\perp(1),h/g}(z). The sign of zD1T(1),h/g(z)zD_{1T}^{\perp(1),h/g}(z) flip when zz increases from lower region to higher region, while zH1T,h/g(z)zH_{1T}^{\perp,h/g}(z) is positive in the entire zz region. Moreover, we observe that zH1Th/g(z)zH_{1T}^{h/g}(z) and zH1L(1),h/g(z)zH_{1L}^{\perp(1),h/g}(z) have the opposite trend, while their signs flip at 0.3<z<0.40.3<z<0.4.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 3: T-odd gluon fragmentation functions D1T,h/g(z,𝒌T2)D_{1T}^{\perp,h/g}(z,\bm{k}_{T}^{2}) (upper-left), H1Th/g(z,𝒌T2)H_{1T}^{h/g}(z,\bm{k}_{T}^{2}) (upper-right), H1L,h/g(z,𝒌T2)H_{1L}^{\perp,h/g}(z,\bm{k}_{T}^{2}) (lower-left), and H1T,h/g(z,𝒌T2)H_{1T}^{\perp,h/g}(z,\bm{k}_{T}^{2}) (lower-right) vs z𝒌Tz\bm{k}_{T} in the case hph\equiv p at z=0.2z=0.2, 0.40.4 and 0.60.6, respectively.

In Fig. 3, we depict the transverse momentum dependence of the four T-odd TMD FFs of the gluon as functions of z𝒌T=|𝑷hT|z\bm{k}_{T}=\left|\bm{P}_{hT}\right| at z=0.2z=0.2, 0.40.4 and 0.60.6, respectively. These functions have quite different sizes and TMD-shapes at different zz values. Furthermore, the sizes of D1T,h/g(z,𝒌T2)D_{1T}^{\perp,h/g}(z,\bm{k}_{T}^{2}) and H1Th/g(z,𝒌T2)H_{1T}^{h/g}(z,\bm{k}_{T}^{2}) decrease smoothly with increasing z𝒌Tz\bm{k}_{T}, while H1L,h/g(z,𝒌T2)H_{1L}^{\perp,h/g}(z,\bm{k}_{T}^{2}) and H1T,h/g(z,𝒌T2)H_{1T}^{\perp,h/g}(z,\bm{k}_{T}^{2}) have larger values in the small z𝒌Tz\bm{k}_{T} region and decrease rapidly in the large z𝒌Tz\bm{k}_{T} region.

For fragmentation functions, positivity bounds are important model-independent constraints. For gluon TMD FFs, the constraints become [34, 40]

𝒌T2Mh2(|G1T,h/g(z,𝒌T2)|2+|D1T,h/g(z,𝒌T2)|2)\displaystyle\frac{\bm{k}_{T}^{2}}{M_{h}^{2}}\left(\left|G_{1T}^{\perp,h/g}(z,\bm{k}_{T}^{2})\right|^{2}+\left|D_{1T}^{\perp,h/g}(z,\bm{k}_{T}^{2})\right|^{2}\right) D1h/g(z,𝒌T2),\displaystyle\leq D_{1}^{h/g}(z,\bm{k}_{T}^{2})\,, (55)
𝒌T44Mh4(|H1,h/g(z,𝒌T2)|2+|H1L,h/g(z,𝒌T2)|2)\displaystyle\frac{\bm{k}_{T}^{4}}{4M_{h}^{4}}\left(\left|H_{1}^{\perp,h/g}(z,\bm{k}_{T}^{2})\right|^{2}+\left|H_{1L}^{\perp,h/g}(z,\bm{k}_{T}^{2})\right|^{2}\right) D1h/g(z,𝒌T2),\displaystyle\leq D_{1}^{h/g}(z,\bm{k}_{T}^{2})\,, (56)
𝒌T44Mh4|H1T,h/g(z,𝒌T2)|\displaystyle\frac{\bm{k}_{T}^{4}}{4M_{h}^{4}}\left|H_{1T}^{\perp,h/g}(z,\bm{k}_{T}^{2})\right| |𝒌T|2Mh(D1h/g(z,𝒌T2)G1L,h/g(z,𝒌T2)),\displaystyle\leq\frac{\left|\bm{k}_{T}\right|}{2M_{h}}\left(D_{1}^{h/g}(z,\bm{k}_{T}^{2})-G_{1L}^{\perp,h/g}(z,\bm{k}_{T}^{2})\right)\,, (57)
𝒌T22Mh2|H1Th/g(z,𝒌T2)+𝒌T22Mh2H1T,h/g(z,𝒌T2)|\displaystyle\frac{\bm{k}_{T}^{2}}{2M_{h}^{2}}\left|H_{1T}^{h/g}(z,\bm{k}_{T}^{2})+\frac{\bm{k}_{T}^{2}}{2M_{h}^{2}}H_{1T}^{\perp,h/g}(z,\bm{k}_{T}^{2})\right| |𝒌T|2Mh(D1h/g(z,𝒌T2)+G1L,h/g(z,𝒌T2)),\displaystyle\leq\frac{\left|\bm{k}_{T}\right|}{2M_{h}}\left(D_{1}^{h/g}(z,\bm{k}_{T}^{2})+G_{1L}^{\perp,h/g}(z,\bm{k}_{T}^{2})\right)\,, (58)

We have conducted numerical verifications and found that our model results for the T-odd gluon TMD FFs D1T,h/g(z,𝒌T2)D_{1T}^{\perp,h/g}(z,\bm{k}_{T}^{2}), H1Th/g(z,𝒌T2)H_{1T}^{h/g}(z,\bm{k}_{T}^{2}), H1L,h/g(z,𝒌T2)H_{1L}^{\perp,h/g}(z,\bm{k}_{T}^{2}), and H1T,h/g(z,𝒌T2)H_{1T}^{\perp,h/g}(z,\bm{k}_{T}^{2}) satisfy the bounds in Eqs. (55)-(58).

IV Conclusions

In this work, we have studied the T-odd gluon fragmentation functions D1T,h/g(z,𝒌T2)D_{1T}^{\perp,h/g}(z,\bm{k}_{T}^{2}), H1Th/g(z,𝒌T2)H_{1T}^{h/g}(z,\bm{k}_{T}^{2}), H1L,h/g(z,𝒌T2)H_{1L}^{\perp,h/g}(z,\bm{k}_{T}^{2}), and H1T,h/g(z,𝒌T2)H_{1T}^{\perp,h/g}(z,\bm{k}_{T}^{2}) in a spectator model, which is based on a assumption that a time-like off-shell gluon can fragment into a hadron and a single spectator particle. The tree level diagrams lead to a vanishing result of T-odd FFs because of lack of the imaginary phase. We considered the effect gluon exchange to calculate all necessary one-loop diagrams for the gluon-gluon correlation functions. We found that two of them have nonzero contribution to T-odd gluon TMD FFs. We obtained the analytical expressions of four T-odd gluon TMD FFs by projecting the correlators to the symmetric and antisymmetric tensors δTij\delta_{T}^{ij}, ϵTij\epsilon_{T}^{ij} and S^\hat{S}. In the calculation we adopted a dipolar form factor for the gluon-hadron-spectator coupling and a spectator-gluon-spectator vertex. With the parameters fitted from the AKK08 parametrization, we presented the numerical results of the zz-dependence and TMD-dependence of the FFs D1T,p/gD_{1T}^{\perp,p/g}, H1Tp/gH_{1T}^{p/g}, H1L,p/gH_{1L}^{\perp,p/g}, and H1T,p/gH_{1T}^{\perp,p/g}. We also checked the positivity bounds for T-odd FFs showing that our model results satisfy these bounds. Our investigation indicates that the magnitudes of the T-odd gluon FFs could be significant, and can provides useful information for future experimental measurements and theoretical model improvements.

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China under grant number 12150013.

References

  • [1] G. ’t Hooft, Nucl. Phys. B 72 (1974), 461
  • [2] K. G. Wilson, Phys. Rev. D 10 (1974), 2445-2459
  • [3] S. R. Coleman and D. J. Gross, Phys. Rev. Lett. 31 (1973), 851-854
  • [4] D. J. Gross, Proc. Nat. Acad. Sci. 102 (2005), 9099-9108
  • [5] D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30 (1973), 1343-1346
  • [6] H. D. Politzer, Phys. Rev. Lett. 30 (1973), 1346-1349
  • [7] J. Collins, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 32 (2011), 1-624 Cambridge University Press, 2023, ISBN 978-1-00-940184-5, 978-1-00-940183-8, 978-1-00-940182-1
  • [8] R. Angeles-Martinez, A. Bacchetta, I. I. Balitsky, D. Boer, M. Boglione, R. Boussarie, F. A. Ceccopieri, I. O. Cherednikov, P. Connor and M. G. Echevarria, et al. Acta Phys. Polon. B 46 (2015) no.12, 2501-2534 [arXiv:1507.05267 [hep-ph]].
  • [9] J. C. Collins and A. Metz, Phys. Rev. Lett. 93 (2004), 252001 [arXiv:hep-ph/0408249 [hep-ph]].
  • [10] R. Jakob, P. J. Mulders and J. Rodrigues, Nucl. Phys. A 626, 937-965 (1997) [arXiv:hep-ph/9704335 [hep-ph]].
  • [11] S. J. Brodsky, D. S. Hwang and I. Schmidt, Phys. Lett. B 530, 99-107 (2002) [arXiv:hep-ph/0201296 [hep-ph]].
  • [12] L. P. Gamberg, G. R. Goldstein and K. A. Oganessyan, Phys. Rev. D 67, 071504 (2003) [arXiv:hep-ph/0301018 [hep-ph]].
  • [13] A. Bacchetta, A. Schaefer and J. J. Yang, Phys. Lett. B 578, 109-118 (2004) [arXiv:hep-ph/0309246 [hep-ph]].
  • [14] A. Bacchetta, F. Conti and M. Radici, Phys. Rev. D 78 (2008). [arXiv:0807.0323 [hep-ph]].
  • [15] A. Bacchetta, M. Radici, F. Conti and M. Guagnelli, Eur. Phys. J. A 45, 373-388 (2010) [arXiv:1003.1328 [hep-ph]].
  • [16] Z. Lu and B. Q. Ma, Phys. Rev. D 70, 094044 (2004) [arXiv:hep-ph/0411043 [hep-ph]].
  • [17] S. Meissner, A. Metz, M. Schlegel and K. Goeke, JHEP 08, 038 (2008) [arXiv:0805.3165 [hep-ph]].
  • [18] Z. L. Ma, J. Q. Zhu and Z. Lu, Phys. Rev. D 101, no.11, 114005 (2020) [arXiv:1912.12816 [hep-ph]].
  • [19] A. Bacchetta, L. P. Gamberg, G. R. Goldstein and A. Mukherjee, Phys. Lett. B 659, 234-243 (2008) [arXiv:0707.3372 [hep-ph]].
  • [20] Z. Lu and B. Q. Ma, Phys. Rev. D 94, no.9, 094022 (2016) [arXiv:1611.00125 [hep-ph]].
  • [21] A. Bacchetta, F. G. Celiberto, M. Radici and P. Taels, Eur. Phys. J. C 80 (2020). [arXiv:2005.02288 [hep-ph]].
  • [22] A. Bacchetta, F. G. Celiberto and M. Radici, PoS EPS-HEP2021, 376 (2022) [arXiv:2111.01686 [hep-ph]].
  • [23] A. Bacchetta, F. G. Celiberto and M. Radici, PoS PANIC2021, 378 (2022) [arXiv:2111.03567 [hep-ph]].
  • [24] A. Bacchetta, F. G. Celiberto and M. Radici, [arXiv:2402.17556 [hep-ph]].
  • [25] X. Xie and Z. Lu, Phys. Lett. B 842 (2023), 137973 [arXiv:2210.16532 [hep-ph]].
  • [26] A. Bacchetta, R. Kundu, A. Metz and P. J. Mulders, Phys. Lett. B 506 (2001), 155-160 [arXiv:hep-ph/0102278 [hep-ph]].
  • [27] A. Bacchetta, R. Kundu, A. Metz and P. J. Mulders, Phys. Rev. D 65 (2002), 094021 [arXiv:hep-ph/0201091 [hep-ph]].
  • [28] L. P. Gamberg, G. R. Goldstein and K. A. Oganessyan, Phys. Rev. D 68 (2003), 051501 [arXiv:hep-ph/0307139 [hep-ph]].
  • [29] A. Bacchetta, A. Metz and J. J. Yang, Phys. Lett. B 574 (2003), 225-231 [arXiv:hep-ph/0307282 [hep-ph]].
  • [30] D. Amrath, A. Bacchetta and A. Metz, Phys. Rev. D 71 (2005), 114018 [arXiv:hep-ph/0504124 [hep-ph]].
  • [31] Z. Lu and I. Schmidt, Phys. Lett. B 747 (2015), 357-364 [arXiv:1501.04379 [hep-ph]].
  • [32] Y. Yang, Z. Lu and I. Schmidt, Phys. Lett. B 761 (2016), 333-339 [arXiv:1607.01638 [hep-ph]].
  • [33] A. Metz and A. Vossen, Prog. Part. Nucl. Phys. 91 (2016), 136-202 [arXiv:1607.02521 [hep-ex]].
  • [34] P. J. Mulders and J. Rodrigues, Phys. Rev. D 63 (2001), 094021 [arXiv:hep-ph/0009343 [hep-ph]].
  • [35] J. C. Collins and D. E. Soper, Nucl. Phys. B 194 (1982), 445-492
  • [36] A. Metz, Phys. Lett. B 549 (2002), 139-145 [arXiv:hep-ph/0209054 [hep-ph]].
  • [37] M. G. A. Buffing, M. Diehl and T. Kasemets, JHEP 01 (2018), 044 [arXiv:1708.03528 [hep-ph]].
  • [38] K. Goeke, S. Meissner, A. Metz and M. Schlegel, Phys. Lett. B 637 (2006). [arXiv:hep-ph/0601133 [hep-ph]].
  • [39] F. Yuan and J. Zhou, Phys. Lett. B 668 (2008), 216-220 [arXiv:0806.1932 [hep-ph]].
  • [40] A. Bacchetta, M. Boglione, A. Henneman and P. J. Mulders, Phys. Rev. Lett. 85 (2000), 712-715 [arXiv:hep-ph/9912490 [hep-ph]].