Systematic trends of neutron skin thickness versus relative neutron excess
Abstract
Available experimental neutron skin thicknesses of even-even stable Ca, Ni, Sn, Pb, and Cd isotopes are evaluated, and separate trends of neutron skin thickness versus relative neutron excess are firstly observed for different isotopic chains. This phenomenon is quantitatively reproduced by the deformed Skyrme Hartree-Fock BCS model with SLy4 force.
I Introduction
Nucleus is a quantum many-body system consisting of neutrons and protons. The root-mean-square (rms) radii of neutron and proton, which characterize the spatial matter density distributions of neutrons and protons in a nucleus, are fundamental properties of the nucleus Tanihata13 ; Egelhof01 . Nuclear charge rms radii determined by different experimental methods were evaluated in Angeli13 , and the rms values with precisions better than 0.01 fm were reported. These valuable quantities are usually used to test and constrain microscopic theories, for instance, by which odd-even staggering of charge radii of exotic copper isotopes Groote20 and shape-staggering effects in mercury isotopes Marsh18 have been well explained by dedicated theoretical calculations. It is noted that the proton distribution rms radius can be deduced from nuclear charge rms radius Terashima08 , and therefore, the precision of proton rms radius is also high. Different from the proton rms radii which are related to the well-known electromagnetic interaction, the determinations of neutron distribution rms radii are model-dependent and are much more complicated Krasznahorkay04 . Consequently, uncertainties of extracted neutron rms radii are relatively large and depend on the model uncertainties. Nonetheless, these quantities are still sensitive for probing nuclear structure Tanihata85 ; Bagchi19 .
Neutron skin thicknesses, , defined as the difference of neutron and proton rms radii of a nucleus, are indispensable in nuclear reaction and nuclear astrophysics researches Li08 ; Fattoyev18 . A variety of microscopic Sarriguren07 ; Warda98-2 ; Seif15 ; Furnstahl02 and macroscopic Myers80 ; Pethick96 ; Warda09 ; Iida04 models were developed to describe . We emphasize that theories play a decisive role in constraining the parameters of the equation of state (EOS) of isospin asymmetric nuclear matter Li08 . For example, a linear correlation between the and the slope of symmetry energy at the saturation density was deduced through microscopic mean-field calculations Li08 ; Brown00 .
Experimentally, by using the data with large uncertainties, a linear dependence of on the relative neutron excess, , was reported with a fitting goodness () of 0.6, see Fig. 4 in Trzcinska01 . This result has extensively been used to constrain theories Warda09 ; Centelles09 ; Warda10 ; Bertulani12 ; Kumar18 ; Thiel19 and to predict the nuclear values as well. For instance, the predicted of 133Cs is employed in the study of atomic parity violation for testing the standard model of elementary particle physics at low energies Derevianko01 .
We know that the nuclear structure is reflected in the nucleon distribution radii Bagchi19 ; Suzuki98 ; Tanaka20 . For example, larger neutron and proton radii were observed in deformed nuclei Tanihata85 ; Rodriguez10 . Such deformation-related effects may alter the assumed linear behavior of nucleon radii for the isotopic chains Trzcinska01 . If the uncertainties of neutron skin thicknesses are improved, what can be observed on the linear trend reported in Trzcinska01 ? In this work, available data of even-even stable Ca, Ni, Sn, Pb, and Cd isotopes are evaluated in order to study the systematic behavior of versus .
II Experimental data evaluation
In order to study the systematic behavior of along with for different isotopic chains, of even-even stable Ca, Ni, Sn, Pb, and Cd isotopes are evaluated. Taking the rms radius, , of point-matter distribution, the is deduced via Chaumeaux78
(1) | |||
where and are point-neutron and point-proton distribution rms radii, respectively. The point-proton rms radius is related to the nuclear charge rms radius as in our analysis. Small corrections on resulting from spin-orbit term etc. were taken into account in some adopted data Brown07 . Compared to the uncertainties of neutron distribution rms radii, the difference are very small and thus the corrections are neglected in the present analysis. Since the folded matter distribution rms radii, , such as for the Cd isotopes Miller81 , contain the finite size of the nucleon, the corresponding point-matter rms radii are deduced via Chaumeaux78 . The evaluated neutron skin thicknesses are weighted averages. Table Appendix in Appendix lists the values evaluated in this work. The precisions of have been improved.
III Systematic trends and discussions
A linear relationship between and was reported in Trzcinska01 , but the used data have large statistical errors. The of even-even stable Ca, Ni, Sn, Pb isotopes were determined by many experiments, and consequently, the evaluated values have less uncertainties as shown in Table Appendix of Appendix. Moreover, ground states of even-even nuclei with magic proton numbers have spherical shapes, and hence the influence of deformation on the neutron skin thickness is minimal. The evaluated neutron skin thicknesses for even-even Ca, Ni, Sn, Pb isotopes are thought to be reliable to study the systematic correlations between and .
The correlation between and is shown in Fig. 1. Although an overall linear relationship of versus is observed, the normalized chi value from a linear fit to all the data in Fig. 1 is 1.32. This value is apparently outside of the expected 1 range of . Thanks to the improved precisions of , the curves of versus for Ca, Ni, Sn, and Pb isotopic chains are separated from each other, as demonstrated in Fig. 1. We note that the overall linear relationship reported in Trzcinska01 is in fact composed of several individual curves for different isotopic chains.

It is known that there is a strong correlation between and nucleon separation energy Ozawa01 . In general, a larger proton separation energy, , results in a larger neutron skin thickness, and a larger neutron separation energy, , leads to a smaller neutron skin thickness Ozawa01 . Due to different separation energies, would be distinguishable for nuclides with the same relative neutron excess. Figure 2 shows the ratios as a function of . One see that the plot has a similar pattern as that of in Fig. 1.

Neutron skin thickness can be calculated by both microscopicSarriguren07 ; Warda98-2 ; Seif15 ; Furnstahl02 and macroscopic Myers80 ; Pethick96 ; Warda09 ; Iida04 models. In the present work, the deformed Hartree-Fock (HF) plus BCS method based on the SLy4 Skyrme force are used to calculate the neutron skin thickness. Details on the deformed Skyrme HF+BCS model are referred to Sarriguren07 ; Sarriguren19 .
Theoretical neutron skin thickness is extracted via , where neutron and charge rms radii are calculated by the HF+BCS Sarriguren07 . Figure 3(a) shows the comparison of evaluated and calculated values. One see that the evaluated data are practically reproduced by the theoretical calculations, and the theory yields separate curves for different isotopic chains. On the other hand, we re-calculated the values using the experimental charge rms radii and the theoretical neutron radii. The results are given in Fig. 3(b). It is worth noting that both calculations yield consistent results, and noticeably a better agreement is achieved for Pb isotopic chain by using the experimental nuclear charge radii.
We would like to point out that the unevaluated experimental values for Sn isotopes locate in-between the SLy4 and RMF predictions (see Fig. 4 in Sarriguren07 ). This indicates that the theoretical models can not be effectively constrained by the unevaluated data. However, as shown in Fig. 3, the high precision of our evaluated values makes it possible to constrain the theoretical models.

The macroscopic compressible liquid-drop model gives a formula of neutron skin thickness expressed as Iida04
(2) | ||||
where denotes the symmetry energy, the slope of the symmetry energy at saturation density , and the incompressibility of symmetric nuclear matter. and represent the coefficients of symmetric matter surface tension and surface-asymmetry, respectively. More details are given in Iida04 . The separated curves for different isotopic chains can be also obtained by the formula of macroscopic model, see the inset in Fig. 1. Let us now discuss the deformed nuclei Cd and Te. Figure 4 shows of the Cd, Sn, and Te isotopes as a function of . The data for Te isotopes were taken from Jastrzebski04 . The fitted curve for the spherical nuclei in Fig. 1 and the HF+BCS theoretical calculations Sarriguren07 are also shown for comparison. The theoretical values of Cd and Te are located above and below the calculated curve of the Sn isotopic chain, respectively, and their difference are very small for the Cd, Sn, and Te isotopic chains, see Fig. 4. However, the experimental values for the Cd and Te isotopes are generally smaller than the experimental ones of the Sn isotopes. Compared to the global linear fit, systematic lower values for the Te isotopes were also reported in klos04 .

If only the contribution due to the quadrupole deformation is considered, the for the deformed nucleus can be related to the proton and neutron radii of an assumed spherical shape via Seif15 ; Suzuki98
(3) | ||||
where and are the rms radii of the neutron (proton) distribution of the deformed and spherical nuclei, and and are the quadrupole deformation parameters for neutron and proton distributions, respectively.
According to Eq. (3), a larger neutron skin thickness is expected for a deformed nucleus, assuming nucleus has the same deformation parameters for the neutron and proton distributions. However, owing to the strong Coulomb repulsion of protons, the calculations in Warda98 ; Barant95 showed that in general the neutron matter distribution is more spherical than the proton matter distribution. Hence, the quadrupole deformation for the proton distribution is larger than that for the neutron distribution Warda98 ; Pomorski97 ; Clement82 . This difference has been observed for Cd and Te isotopes Madsen84 . As a result, smaller is expected comparing to the corresponding spherical nuclei. Thus, different deformations for neutron and proton distributions may be a reason for the deviations in Fig. 4.
Including the deformed nuclei in the global linear fit, the goodness of the fit becomes evidently worse. The normalized is obtained to be 1.55 from the global fit to the data of the Ca, Ni, Sn, Pb, Cd, and Te isotopes. This value is significantly outside the expected range of . Due to large uncertainties, improved experimental data for Cd and Te isotopes are needed to confirm or disprove the present results.
Neutron skin thicknesses play an important role in constraining the EOS parameters. The SLy4 Skyrme force reproduces the separate trends observed in this work. With the SLy4 Skyrme force, the deduced EOS parameters , and at saturation density are 32.00 MeV, 45.94 MeV, and 229.91 MeV Dutra12 , respectively. These parameters are consistent with recent Bayesian analysis by using of Sn isotopes Xu20 , also in agreement with various new analyses based on neutron star data since GW170817 Li21 . However, a value of 106(37) MeV for was determined recently Reed21 by the of 0.283(71) fm for 208Pb Adhikari21 , which was deduced by model-independent parity violation electron scattering. Compared to our evaluated value for 208Pb, the deviation is 0.116(72) fm. The of 48Ca from the CREX experiment would help to clarify the difference Horowitz14 . As mentioned in Li21 , these interesting tensions inspirit the community to make further researches.
IV Summary
Experimental neutron skin thicknesses, , for the even-even stable Ca, Ni, Sn, Pb, and Cd isotopes have been evaluated. Systematic trends of the evaluated as a function of relative neutron excess are investigated. Separate curves of versus for different isotopic chains are observed from analysis of the evaluated data. This behavior has been practically reproduced by the microscopic and macroscopic models. Comparing to the experimental data of Sn isotopes, the values of Cd and Te isotopes are systematically smaller. This might be understood by taking into account the different deformations of proton and neutron distributions in these nuclei.
Acknowledgements
This work is supported in part by the NSFC (12022504, 11775273, U1932140,12121005), by the CAS Pioneer Hundred Talents Program, by the CAS Open Research Project of large research infrastructures, by the CAS Maintenance and Reform of large Research infrastructures (DSS-WXGZ-2018-0002), and by the Max-Plank-Society. Y.A.L. acknowledges the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 682841 “ASTRUm”) and P.S. acknowledges MCI/AEI/FEDER, UE (Spain) (grant PGC2018-093636-B-I00).
Appendix
Experimental and evaluated neutron skin thicknesses. , AA, GDR, SDR, and PDR denote the interaction cross section, antiprotonic atom, giant dipole resonance, spin dipole resonance, and pygmy dipole resonance, respectively.
\tablefirsthead
Experimental
Method
Evaluated
Difference
(fm)
(fm)
\tablehead
Experimental
Method
Evaluated
Difference
(fm)
(fm)
\tabletail
\tablelasttail
{xtabular}ccccc
40Ca &-0.080(1000) Trzcinska01 ; Jastrzebski04 AA 0.007(13) 0.1
0.020(30) Chaumeaux78 (p,p) -0.4
-0.070(120) Brissaud72 0.6
-0.016(50) Alkhazov77-1 0.5
-0.009(140) Papanicolas82 0.1
-0.009(40) Gils84 0.4
0.010(140) Lombardi72 (p,p) 0.0
0.000(60) Alkhazov75 (p,p) 0.1
0.014(30) Alkhazov76 (p,p) -0.2
-0.070(50) Varma77 (p,p) 1.5
0.100(50) Ray79 (p,p) -1.9
0.010(80) Igo79 (p,p) 0.0
-0.010(100) Alkhazov82 (p,p) 0.2
0.030(50) McCamis86 (p,p) -0.5
-0.010(49) Zenihiro18 (p,p) 0.3
42Ca 0.080(30) Chaumeaux78 (p,p) 0.055(16) -0.8
0.043(47) Alkhazov77-1 0.3
-0.030(134) Papanicolas82 0.6
0.027(38) Gils84 0.7
0.055(30) Alkhazov76 (p,p) 0.0
0.080(80) Igo79 (p,p) -0.3
0.060(130) McCamis86 (p,p) 0.0
0.049(60) Tanaka20 ; Tagami20 0.1
44Ca0.130(30) Chaumeaux78 (p,p) 0.091(15) -1.3
0.090(160) Brissaud72 0.0
0.079(45) Alkhazov77-1 0.3
-0.011(129) Papanicolas82 0.8
0.044(36) Gils84 1.3
-0.020(120) Lombardi72 (p,p) 0.9
0.088(30) Alkhazov76 (p,p) 0.1
0.100(80) Igo79 (p,p) -0.1
0.110(170) McCamis86 (p,p) -0.1
0.125(50) Tanaka20 ; Tagami20 -0.7
46Ca0.151(50) Tanaka20 ; Tagami20 0.151(50) 0.0
48Ca 0.090(50) Trzcinska01 ; Jastrzebski04 AA 0.191(13) 2.0
0.210(30) Chaumeaux78 (p,p) -0.6
0.330(120) Brissaud72 -1.2
0.196(42) Alkhazov77-1 -0.1
0.096(119) Papanicolas82 0.8
0.214(50) Gils84 -0.5
0.390(100) Lombardi72 (p,p) -2.0
0.130(60) Alkhazov75 (p,p) 1.0
0.190(30) Alkhazov76 (p,p) 0.0
0.210(50) Varma77 (p,p) -0.4
0.230(50) Ray79 (p,p) -0.8
0.180(80) Igo79 (p,p) 0.1
0.160(100) Alkhazov82 (p,p) 0.3
0.220(110) McCamis86 (p,p) -0.3
0.168(55) Zenihiro18 (p,p) 0.4
0.146(60) Tanaka20 ; Tagami20 0.8
58Ni -0.090(160) Trzcinska01 ; Jastrzebski04 AA -0.008(17) 0.5
-0.010(30) Chaumeaux78 (p,p) 0.1
0.010(100) Brissaud72 -0.2
-0.097(137) Papanicolas82 0.6
0.010(50) Ray79 (p,p) -0.4
0.030(120) Zamora17 -0.3
0.180(200) Greenlees70 (p,p) -0.9
0.010(80) Hoffmann78-1 (p,p) -0.2
-0.011(30) Blanpied77 (p,p) 0.1
-0.036(70) Ray78 (p,p) 0.4
-0.010(100) Lombard81 (p,p) 0.0
0.096(248) Yue19 (p,p) -0.4
60Ni-0.010(150) Trzcinska01 ; Jastrzebski04 AA -0.011(58) 0.0
0.080(100) Brissaud72 -0.9
-0.051(132) Papanicolas82 0.3
-0.080(100) Lombard81 (p,p) 0.7
62Ni0.090(100) Brissaud72 0.075(62) -0.2
0.044(127) Papanicolas82 0.2
0.080(100) Lombard81 (p,p) -0.1
64Ni 0.040(80) Trzcinska01 ; Jastrzebski04 AA 0.129(34) 1.1
0.100(123) Papanicolas82 0.2
0.170(50) Ray79 (p,p) -0.8
0.180(80) Hoffmann78-1 (p,p) -0.6
0.040(100) Lombard81 (p,p) 0.9
112Sn0.070(20) Trzcinska01 ; Jastrzebski04 AA 0.070(20) 0.0
114Sn0.040(50) Krasznahorkay99 SDR 0.040(50) 0.0
116Sn 0.110(18) Terashima08 (p,p) 0.111(13) 0.1
0.100(30) Trzcinska01 ; Jastrzebski04 AA 0.4
0.080(90) Brissaud72 0.3
0.150(50) Ray79 (p,p) -0.8
0.130(70) Ray78 (p,p) -0.3
0.120(60) Krasznahorkay99 SDR -0.2
0.120(60) Hoffmann78-2 (p,p) -0.2
0.020(120) Krasznahorkay94 GDR 0.8
118Sn0.145(16) Terashima08 (p,p) 0.145(15) 0.0
0.170(90) Brissaud72 -0.3
0.130(60) Krasznahorkay99 SDR 0.3
120Sn 0.147(33) Terashima08 (p,p) 0.137(23) -0.3
0.080(40) Trzcinska01 ; Jastrzebski04 AA 1.4
0.230(90) Brissaud72 -1.0
0.250(200) Greenlees70 (p,p) -0.6
0.180(60) Krasznahorkay99 SDR -0.7
122Sn0.146(16) Terashima08 (p,p) 0.151(15) 0.3
0.220(70) Krasznahorkay99 SDR -1.0
0.200(90) Mailandt73 -0.5
124Sn 0.185(17) Terashima08 (p,p) 0.183(13) -0.1
0.140(30) Trzcinska01 ; Jastrzebski04 AA 1.4
0.160(90) Brissaud72 0.3
0.250(50) Ray79 (p,p) -1.3
0.220(70) Ray78 (p,p) -0.5
0.190(70) Krasznahorkay99 SDR -0.1
0.200(60) Hoffmann78-2 (p,p) -0.3
0.210(110) Krasznahorkay94 GDR -0.2
204Pb0.220(90) Gils76 0.191(49) -0.3
0.178(59) Zenihiro10 (p,p) 0.2
206Pb0.190(90) Gils76 0.182(34) -0.1
0.180(64) Zenihiro10 (p,p) 0.0
0.181(45) Starodubsky94 (p,p) 0.0
208Pb0.150(20) Trzcinska01 ; Jastrzebski04 AA 0.167(11) 0.9
0.250(90) Brissaud72 -0.9
0.080(50) Varma77 (p,p) 1.7
0.160(50) Ray79 (p,p) 0.1
0.060(100) Alkhazov82 (p,p) 1.1
0.360(200) Greenlees70 (p,p) -1.0
0.180(70) Ray78 (p,p) -0.2
0.190(90) Krasznahorkay94 GDR -0.3
0.300(70) Gils76 -1.9
0.211(63) Zenihiro10 (p,p) -0.7
0.197(42) Starodubsky94 (p,p) -0.7
0.260(130) Bernstein72 -0.7
0.420(200) Bernstein72 -1.3
0.273(90) Tatischeff72 -1.2
0.182(70) Blanpied78 (p,p) -0.2
0.140(40) Hoffmann80 (p,p) 0.7
0.180(35) Klimkiewicz07 PDR -0.4
0.200(64) Brown07 AA -0.5
106Cd0.100(140) Trzcinska01 ; Jastrzebski04 AA0.100(140)0.0
110Cd0.076(14) Miller81 0.076(14)0.0
112Cd0.074(14) Miller81 0.074(14)0.0
114Cd0.090(15) Miller81 0.090(15)0.0
116Cd0.150(40) Trzcinska01 ; Jastrzebski04 AA0.111(14)-1.0
0.105(15) Miller81 0.4
References
- (1) I.Tanihata , H. Savajols, and R. Kanungo, Prog. Part. Nucl. Phys. 68, 215 (2013).
- (2) P. Egelhof, Prog. Part. Nucl. Phys. 46, 307 (2001).
- (3) I. Angeli and K. P. Marinova, At. Data Nucl. Data Tables 99, 69 (2013).
- (4) R. P. de Groote, J. Billowes, C. L. Binnersley, M. L. Bissell, T. E. Cocolios, T. Day Goodacre, G. J. Farooq-Smith, D. V. Fedorov, K. T. Flanagan, S. Franchoo et al., Nature Physics 16, 620 (2020).
- (5) B. A. Marsh, T. Day Goodacre, S. Sels, Y. Tsunoda, B. Andel, A. N. Andreyev, N. A. Althubiti, D. Atanasov, A. E. Barzakh, J. Billowes et al., Nature Physics 14, 1163 (2018).
- (6) S. Terashima, H. Sakaguchi, H. Takeda, T. Ishikawa, M. Itoh, T. Kawabata, T. Murakami, M. Uchida, Y. Yasuda, M. Yosoi et al., Phys. Rev. C 77, 024317 (2008).
- (7) A. Krasznahorkay, H. Akimune, A .M. van den Berg, N. Blasi, S. Brandenburg, M. Csatlós, M. Fujiwara, J. Gulyás, M. N. Harakeh, M. Hunyadi et al., Nucl. Phys. A 731, 224 (2004).
- (8) I. Tanihata, H. Hamagaki, O. Hashimoto, Y. Shida, N. Yoshikawa, K. Sugimoto, O. Yamakawa, T. Kobayashi, and N. Takahashi, Phys. Rev. Lett. 55, 2676 (1985).
- (9) S. Bagchi, R. Kanungo, W. Horiuchi, G. Hagen, T. D. Morris, S. R. Stroberg, T. Suzuki, F. Ameil, J. Atkinson, Y. Ayyad et al., Phys. Lett. B 790, 251 (2019).
- (10) B. A. Li, L. W. Chen, and C. M. Ko, Phys. Rep. 464, 113 (2008).
- (11) F. J. Fattoyev, J. Piekarewicz, and C. J. Horowitz, Phys. Rev. Lett. 120, 172702 (2018).
- (12) P. Sarriguren, M. K. Gaidarov, E. Moya de Guerra, and A. N. Antonov, Phys. Rev. C 76, 044322 (2007).
- (13) M. Warda, B. Nerlo-Pomorska, and K. Pomorski, Nucl. Phys. A 635, 484 (1998).
- (14) W. M. Seif and H. Mansour, Int. J. Mod. Phys. E 24, 1550083 (2015).
- (15) R. J. Furnstahl, Nucl. Phys. A 706, 85 (2002).
- (16) W. D. Myers and W. J . Swiatecki, Nucl. Phys. A 336, 267 (1980).
- (17) C. J. Pethick and D. G. Ravenhall, Nucl. Phys. A 606, 173 (1996).
- (18) M. Warda, X. Viñas, X. Roca-Maza, and M. Centelles, Phys. Rev. C 80, 024316 (2009).
- (19) K. Iida and K. Oyamatsu, Phys. Rev. C 69, 037301 (2004).
- (20) B. A. Brown, Phys. Rev. Lett. 85, 5296 (2000).
- (21) A. Trzcińska, J. Jastrzȩbski, P. Lubiński, F. J. Hartmann, R. Schmidt, T. von Egidy, and B. Kłos, Phys. Rev. Lett. 87, 082501 (2001).
- (22) M. Centelles, X. Roca-Maza, X. Viñas, and M. Warda, Phys. Rev. Lett. 102, 122502 (2009).
- (23) M. Warda, X. Viñas, X. Roca-Maza, and M. Centelles, Phys. Rev. C 81, 054309 (2010).
- (24) C. A. Bertulani, H. Liu, and H. Sagawa, Phys. Rev. C 85, 014321 (2012).
- (25) B. Kumar, S. K. Patra, and B. K. Agrawal, Phys. Rev. C 97, 045806 (2018).
- (26) M. Thiel, C. Sfienti, J. Piekarewicz, C. J. Horowitz, and M. Vanderhaeghen, J. Phys. G: Nucl. Part. Phys. 46, 093003 (2019).
- (27) A. Derevianko, Phys. Rev. A 65, 012106 (2001).
- (28) T. Suzuki, H. Geissel, O. Bochkarev, L. Chulkov, M. Golovkov, N. Fukunishi, D. Hirata, H. Irnich, Z. Janas, H. Keller et al., Nucl. Phys. A 630, 661 (1998).
- (29) M. Tanaka, M. Takechi, A. Homma, M. Fukuda, D. Nishimura, T. Suzuki, Y. Tanaka, T. Moriguchi, D. S. Ahn, A. Aimaganbetov et al., Phys. Rev. Lett. 124, 102501 (2020).
- (30) R. Rodríguez-Guzmán, P. Sarriguren, L.M. Robledo, and S. Perez-Martin, Phys. Lett. B 691, 202 (2010).
- (31) A. Chaumeaux, V. Layly, and R. Schaeffer, Ann. Phys. 116, 247 (1978).
- (32) B. A. Brown, G. Shen, G. C. Hillhouse, J. Meng, and A. Trzcińska, Phys. Rev. C 76, 034305 (2007).
- (33) M. Miller, A. M. Kleinfeld, A. Bockisch, and K. Bharuth-Ram, Z. Phys. A 300, 97 (1981).
- (34) A. Ozawa, T. Suzuki, and I. Tanihata, Nucl. Phys. A 693, 32 (2001).
- (35) P. Sarriguren, Phys. Rev. C 100, 054306 (2019).
- (36) J. Jastrzȩbski, A. Trzcińska, P. Lubiński, B. Kłos, F. J .Hartmann, T. von Egidy, and S. Wycech, Int. J. Mod. Phys. E 13, 343 (2004).
- (37) B. Kłos, S. Wycech, A. Trzcińska, J. Jastrzȩbski, T. Czosnyka, M. Kisieliński, P. Lubiński, P. Napiorkowski, L. Pieńkowski, F. J. Hartmann et al., Phys. Rev. C 69, 044311 (2004).
- (38) M. Warda, Acta Phys. Pol. B 29, 463 (1998).
- (39) A. Baran, J. L. Egido, B. Nerlo-Pomorska, K. Pomorski, P. Ring, and L. M. Robledo, J. Phys. G: Nucl. Part. Phys. 21, 657 (1995).
- (40) K. Pomorski, P. Ring, G. A. Lalazissis, A. Baran, Z. Łojewski, B. Nerlo-Pomorska, and M. Warda, Nucl. Phys. A 624, 349 (1997).
- (41) H. Clement, R. Frick, G. Graw, F. Merz, H. J. Scheerer, P. Schiemenz, N. Seichert, and Sun Tsu Hsun, Phys. Rev. Lett. 48, 1082 (1982).
- (42) V. A. Madsen and V. R. Brown, Phys. Rev. Lett. 52, 176 (1984).
- (43) M. Dutra, O. Lourenço, J. S. Sá Martins, A. Delfino, J. R. Stone, and P. D. Stevenson, Phys. Rev. C 85, 035201 (2012).
- (44) J. Xu, W. J. Xie, and B. A. Li, Phys. Rev. C 102, 044316 (2020).
- (45) B. A. Li, B. J. Cai, W. J. Xie, and N. B. Zhang, Universe 7, 182 (2021).
- (46) B. T. Reed, F. J. Fattoyev, C. J. Horowitz, and J. Piekarewicz, Phys. Rev. Lett. 126, 172503 (2021).
- (47) D. Adhikari, H. Albataineh, D. Androic, K. Aniol, D. S. Armstrong, T. Averett, C. Ayerbe Gayoso, S. Barcus, V. Bellini, R. S. Beminiwattha et al., Phys. Rev. Lett. 126, 172502 (2021).
- (48) C. J. Horowitz, K. S. Kumar, and R. Michaels, Eur. Phys. J. A 50, 48 (2014).
- (49) I. Brissaud, Y. Le Bornec, B. Tatischeff, L. Bimbot, M. K. Brussel, and G. Duhamel, Nucl. Phys. A 191, 145 (1972).
- (50) G. D. Alkhazov, T. Bauer, R. Bertini, L. Bimbot, O. Bing, A. Boudard, G. Bruge, H. Catz, A. Chaumeaux, P. Couvert et al., Nucl. Phys. A 280, 365 (1977).
- (51) C. N. Papanicolas, W. Q. Sumner, J. S. Blair, and A. M. Bernstein, Phys. Rev. C 25 1296 (1982).
- (52) H. J. Gils, H. Rebel, and E. Friedman, Phys. Rev. C 29, 1295 (1984).
- (53) J. C. Lombardi, R. N. Boyd, R. Arking, and A. B. Robbins, Nucl. Phys. A 188, 103 (1972).
- (54) G. D. Alkhazov, S. L. Belostotsky, O. A. Domchenkov, Yu. V. Dotsenko, N. P. Kuropatkin, M. A. Schuvaev, and A. A. Vorobyov, Phys. Lett. B 57, 47 (1975).
- (55) G. D. Alkhazov, T. Bauer, R. Beurtey, A. Boudard, G. Bruge, A. Chaumeaux, P. Couvert, G. Cvijanovich, H. H. Duhm, J. M. Fontaine et al., Nucl. Phys. A 274, 443 (1976).
- (56) G. K. Varma and L. Zamick, Nucl. Phys. A 306, 343 (1978); Phys. Rev. C 16 308 (1977).
- (57) L. Ray, Phys. Rev. C 19, 1855 (1979).
- (58) G. Igo, G. S. Adams, T. S. Bauer, G. Pauletta, C. A. Whitten Jr., A. Wreikat, G. W. Hoffmann, G. S. Blanpied, W. R. Coker, C. Harvey et al., Phys. Lett. B 81, 151 (1979).
- (59) G. D. Alkhazov, S. L. Belostotsky, O. A. Domchenkov, Yu. V. Dotsenko, N. P. Kuropatkin, V. N. Nikulin, M. A. Shuvaev, and A. A. Vorobyov, Nucl. Phys. A 381, 430 (1982).
- (60) R. H. McCamis, T. N. Nasr, J. Birchall, N. E. Davison, W. T. H. van Oers, P. J. T. Verheijen, R. F. Carlson, A. J. Cox, B. C. Clark, E. D. Cooper et al., Phys. Rev. C 33, 1624 (1986).
- (61) J. Zenihiro, H. Sakaguchi, S. Terashima, T. Uesaka, G. Hagen, M. Itoh, T. Murakami, Y. Nakatsugawa, T. Ohnishi, H. Sagawa et al., arXiv:1810.11796 (2018).
- (62) S. Tagami, J. Matsui, M. Takechi, and M. Yahiro, arXiv:2005.13197 (2020).
- (63) J. C. Zamora, T. Aumann, S. Bagchi, S. Bönig, M. Csatlós, I. Dillmann, C. Dimopoulou, P. Egelhof, V. Eremin, T. Furuno et al., Phys. Rev. C 96, 034617 (2017).
- (64) G. W. Greenlees, V. Hnizdo, O. Karban, J. Lowe, and W. Makofske, Phys. Rev. C 2, 1063 (1970).
- (65) G. W. Hoffmann, G. S. Blanpied, W. R. Coker, C. Harvey, R. P. Liljestrand, G. S. Adams, T. S. Bauer, G. Igo, G. Pauletta, C. A. Whitten Jr.et al., Phys. Lett. B 79, 376 (1978).
- (66) G. S. Blanpied, W. R. Coker, R. P. Liljestrand, L. Ray, G. W. Hoffman, D. Madland, C. L. Morris, J. C. Pratt, J. E. Spencer, H. A. Thiessen et al., Phys. Rev. Lett. 39, 1447 (1977).
- (67) L. Ray, W. R. Coker, and G. W. Hoffmann, Phys. Rev. C 18, 2641(1978).
- (68) R. M. Lombard, G. D. Alkhazov, and O. A. Domchenkov, Nucl. Phys. A 360, 233 (1981).
- (69) K. Yue, J. T. Zhang, X. L. Tu, C. J. Shao, H. X. Li, P. Ma, B. Mei, X. C. Chen, Y. Y. Yang, X. Q. Liu et al., Phys. Rev. C 100, 054609 (2019).
- (70) A. Krasznahorkay, M. Fujiwara, P. van Aarle, H. Akimune, I. Daito, H. Fujimura, Y. Fujita, M. N. Harakeh, T. Inomata, J. Jänecke et al., Phys. Rev. Lett. 82, 3216 (1999).
- (71) G. W. Hoffmann, G. S. Blanpied, W. R. Coker, R. P. Liljestrand, L. Ray, J. E. Spencer, H. A. Thiessen, N. M. Hintz, M. A. Oothoudt, T. S. Bauer et al., Phys. Lett. B 76, 383 (1978).
- (72) A. Krasznahorkay, A. Balanda, J.A. Bordewijk, S. Brandenburg, M. N. Harakeh, N. Kalantar-Nayestanaki, B .M. Nyakó, J. Timár, and A. van der Woude, Nucl. Phys. A 567, 521 (1994).
- (73) P. Mailandt, J. S. Lilley, and G. W. Greenlees, Phys. Rev. C 8, 2189 (1973).
- (74) H. J. Gils and H. Rebel, Phys. Rev. C 13, 2159 (1976).
- (75) J. Zenihiro, H. Sakaguchi, T. Murakami, M. Yosoi, Y. Yasuda, S. Terashima, Y. Iwao, H. Takeda, M. Itoh, H. P. Yoshida et al., Phys. Rev. C 82, 044611 (2010).
- (76) V. E. Starodubsky and N. M. Hintz, Phys. Rev. C 49, 2118 (1994).
- (77) A. M. Bernstein and W. A. Seidler, Phys. Lett. B 39, 583 (1972).
- (78) B. Tatischeff, I. Brissaud, and L. Bimbot, Phys. Rev. C 5, 234 (1972).
- (79) G. S. Blanpied, W. R. Coker, R. P. Liljestrand, G. W. Hoffmann, L. Ray, D. Madland, C. L. Morris, J. C. Pratt, J. E. Spencer, H. A. Thiessen et al., Phys. Rev. C 18, 1436 (1978).
- (80) G. W. Hoffmann, L. Ray, M. Barlett, J. McGill, G. S. Adams, G. J. Igo, F. Irom, A. T. M. Wang, C. A. Whitten, Jr., R. L. Boudrie et al., Phys. Rev. C 21, 1488 (1980).
- (81) A. Klimkiewicz, N. Paar, P. Adrich, M. Fallot, K. Boretzky, T. Aumann, D. Cortina-Gil, U. Datta Pramanik, Th. W. Elze, H. Emling et al., Phys. Rev. C 76, 051603(R) (2007).
- (82) M. Csatlós, A. Krasznahorkay, D. Sohler, A. M. van den Berg, N. Blasi, J. Gulyás, M. N. Harakeh, M. Hunyadi, M. A. de Huu, Z. Máté et al., Nucl. Phys. A 719, 304c (2003).
- (83) B. Kłos, A. Trzcińska, J. Jastrzȩbski, T. Czosnyka, M. Kisieliński, P. Lubiński, P. Napiorkowski, L. Pieńkowski, F. J. Hartmann, B. Ketzer et al., Phys. Rev. C 76, 014311 (2007).