This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Symmetric teleparallel cosmology with boundary corrections

Andronikos Paliathanasis [email protected] Institute of Systems Science, Durban University of Technology, Durban 4000, South Africa Departamento de Matemáticas, Universidad Católica del Norte, Avda. Angamos 0610, Casilla 1280 Antofagasta, Chile
Abstract

We investigate the geometrodynamical effects of introducing the boundary term in symmetric teleparallel gravity. Specifically, we consider a homogeneous and isotropic universe in f(Q,B)f\left(Q,B\right), where QQ is the non-metricity scalar, and BB is the boundary term that relates the non-metricity and Ricci scalars. For the connection in the coincidence gauge, we find that the field equations are of fourth-order, and the fluid components introduced by the boundary are attributed to a scalar field. In the coincidence gauge, the cosmological field equations are equivalent to those of teleparallelism with a boundary term. Nevertheless, for the connection defined in the non-coincidence gauge, the geometrodynamical fluid consists of three scalar fields. We focus on the special case of f(Q,B)=Q+F(B)f\left(Q,B\right)=Q+F\left(B\right) theory, and we determine a new analytic cosmological solution that can explain the late-time acceleration of the universe and provide a geometric mechanism for the unification of dark energy with dark matter.

Symmetric teleparallel; non-metricity gravity; non-coincidence gauge; scalar field description.

I Introduction

General Relativity is a well-tested theory gw1 ; however, it faces challenges on cosmological scales ten1 ; ten1a ; ten2 . Recent cosmological observations rr1 ; Teg ; Kowal ; Komatsu ; suzuki11 suggest that the universe is currently experiencing an acceleration phase driven by an exotic matter source known as dark energy jo1 ; jo . On the other hand, to address the homogeneity and flatness problems, it has been proposed that the universe underwent an inflationary epoch in its early stages driven by the inflaton field inf1 .

The nature and physical properties of the inflaton and dark energy remain subjects of debate among cosmologists. Cosmologists have proposed different models to explain cosmic acceleration, which can be broadly categorized into two groups. In the first category, a matter source with negative pressure is introduced into the field equations of General Relativity ratra ; de1 ; de2 ; de3 ; de4 ; de5 . In the second category of models, cosmologists focus on determining a new gravitational theory by modifying the gravitational Action Integral de01 ; de02 ; de03 .

The consideration of quantum-gravitational effects in the one-loop approximation in gravity df1 ; df2 leads to the introduction of the R2R^{2} term in the gravitational Lagrangian. This quadratic theory of gravity qua1 ; qua2 ; qua3 has been used as a mechanism to explain inflation star ; barc ; stt1 . Indeed, when the R2R^{2} term dominates, it leads to a de Sitter expansion bar1 . The success of the R2R^{2} term in describing acceleration has given rise to a family of theories known as f(R)f(R)-gravity Buda . For a comprehensive review, we recommend referring to Sotiriou .

The symmetric teleparallel f(Q)f(Q)-theory of gravity has garnered the attention of cosmologists lav2 ; lav3 . f(Q)f(Q)-theory is defined within the framework of symmetric teleparallel theory nester ; nester1 , where the physical space is described by the metric tensor. However, the fundamental connection in this theory is not the Levi-Civita connection but a symmetric and flat connection, leading to the definition of a nonzero non-metricity scalar QQ. When f(Q)f(Q) is linear, the gravitational theory becomes equivalent to General Relativity, known as Symmetric Teleparallel General Relativity (STGR) nester . In STGR, the Ricci scalar RR and the non-metricity scalar QQ differ only by a boundary term BB, which means that the variation of the boundary term is neglected, resulting in equivalent field equations. There is a plethora of studies in the literature on f(Q)f(Q)-theory; for example, see fq1 ; fq2 ; fq3 ; fq4 ; fq5 ; fq6 ; fq7 ; fq8 ; fq9 ; fq10 ; fq11 , and references therein.

In the process of constructing a gravitational theory, the boundary term BB has been utilized to modify the gravitational Action Integral. Inspired by teleparallelism bah , the symmetric teleparallel theory with a boundary term, expressed as f(Q,B)f(Q,B)-gravity, was introduced in ftc1 ; ftc2 . It was discovered that the introduction of the boundary term further modifies the field equations of the gravitational model. In this study, we aim to investigate the effects of the boundary term on cosmological dynamics.

Because the definition of the symmetric and flat connection is not unique, there can be multiple different connections that describe the same gravitational model. The corresponding non-metricity constants differ by a boundary term, which means that they lead to the same equations in STGR. However, this is not true in the case of a nonlinear Lagrangian. As a result, the definition of the connection affects the boundary term, implying that f(Q,B)f(Q,B)-gravity depends on the definition of the connection.

Recently, in min , it was proven that f(Q)f(Q)-theory of gravity admits a minisuperspace description, and the theory is of fourth- or sixth-order, depending on the connection used. The higher-order derivatives can be attributed to a scalar field, and the gravitational Lagrangian can be written as that of a higher-dimensional second-order dynamical system. This approach is applied in this study in the context of f(Q,B)f(Q,B)-gravity for a homogeneous and isotropic geometry. The structure of the paper is as follows.

In Section II, we present the definition of symmetric teleparallel gravity and its generalization, the f(Q)f(Q)-theory, where QQ represents the non-metricity scalar. The extension of symmetric teleparallel theory with a boundary term BB is discussed in Section III. For the f(Q,B)f(Q,B)-theory, we discuss when it is equivalent to teleparallel f(T,BT)f(T,B_{T}) theory and when it approaches the limit of f(R)f(R)-gravity. In Section IV, we present the gravitational field equations for a homogeneous and isotropic universe. Specifically, we employ Lagrange multipliers to demonstrate that the field equations in f(Q,B)f(Q,B)-theory can be described within a minisuperspace framework. It’s important to note that the definition of the symmetric and flat connection in a FLRW universe is not unique. Therefore, we provide the field equations for all four different families of connections. One novel aspect of the Lagrange multiplier approach is the introduction of scalar fields to account for the higher-order derivatives in the gravitational model. Consequently, f(Q,B)f(Q,B)-cosmology is a fourth-order gravitational theory, equivalent to teleparallel f(T,BT)f(T,B_{T})-cosmology, when the symmetric and flat connection is defined in the coincidence gauge. However, when the connection is defined in the non-coincidence gauge, the field equations become eighth-order and are described by three scalar fields.

Furthermore, in Section V, we focus on the particular case of f(Q,B)=Q+F(B)f(Q,B)=Q+F(B) cosmology, where the gravitational Action Integral is modified by nonlinear terms of the boundary. For this specific gravitational model, the order of the gravitational field equations is reduced by two in the non-coincidence gauge. Consequently, the geometric fluid is described by two scalar fields. In Section VI, we present a new analytic solution for symmetric teleparallel cosmology with a boundary term in the non-coincidence gauge. This new solution is capable of describing the Λ\LambdaCDM universe at the present time and possesses a de Sitter attractor. Finally, in Section VII, we summarize our findings and draw our conclusions.

II Symmetric teleparallel gravity

We examine a gravitational model described by the four-dimensional metric tensor gμνg_{\mu\nu} and the covariant derivative λ\nabla_{\lambda}~{} which is defined using the generic connection Γμνκ\Gamma_{\mu\nu}^{\kappa}\,, such that the autoparallels are defined as auto

d2xμds2+Γκνμdxκdsdxνds=0.\frac{d^{2}x^{\mu}}{ds^{2}}+\Gamma_{\kappa\nu}^{\mu}\frac{dx^{\kappa}}{ds}\frac{dx^{\nu}}{ds}=0.

Connection  Γμνκ\Gamma_{\mu\nu}^{\kappa} determines the nature of the geometry.

For the general connection we can define the the Riemann tensor

Rλμνκ=ΓλνκxμΓλμκxν+ΓλνσΓμσκΓλμσΓμσκ,R_{\;\lambda\mu\nu}^{\kappa}=\frac{\partial\Gamma_{\;\lambda\nu}^{\kappa}}{\partial x^{\mu}}-\frac{\partial\Gamma_{\;\lambda\mu}^{\kappa}}{\partial x^{\nu}}+\Gamma_{\;\lambda\nu}^{\sigma}\Gamma_{\;\mu\sigma}^{\kappa}-\Gamma_{\;\lambda\mu}^{\sigma}\Gamma_{\;\mu\sigma}^{\kappa}, (1)

the torsion tensor

Tμνλ=ΓμνλΓνμλ,\mathrm{T}_{\mu\nu}^{\lambda}=\Gamma_{\;\mu\nu}^{\lambda}-\Gamma_{\;\nu\mu}^{\lambda}, (2)

and the non-metricity tensor Eisenhart

Qλμν=λgμν=gμνxλΓλμσgσνΓλνσgμσ.Q_{\lambda\mu\nu}=\nabla_{\lambda}g_{\mu\nu}=\frac{\partial g_{\mu\nu}}{\partial x^{\lambda}}-\Gamma_{\;\lambda\mu}^{\sigma}g_{\sigma\nu}-\Gamma_{\;\lambda\nu}^{\sigma}g_{\mu\sigma}.

In General Relativity, Γμνκ\Gamma_{\mu\nu}^{\kappa} is recognized as the Levi-Civita connection, denoted as Γ~μνκ\tilde{\Gamma}{\mu\nu}^{\kappa}. Consequently, in this framework, Tμνλ=0\mathrm{T}{\mu\nu}^{\lambda}=0 and Qλμν=0Q_{\lambda\mu\nu}=0. Therefore, the primary scalar in General Relativity is the Ricci scalar RR.

On the other hand, in the Teleparallel Equivalent of General Relativity (TEGR) de03 , the connection Γμνκ\Gamma_{\mu\nu}^{\kappa} is replaced by the antisymmetric Weitzenb”ock connection, resulting in R;λμνκ=0R_{;\lambda\mu\nu}^{\kappa}=0 and Qλμν=0Q_{\lambda\mu\nu}=0. In this context, the torsion scalar TT takes on the role of the fundamental geometric object in teleparallel gravity.

In the theory under consideration, which is STGR, Γμνκ\Gamma_{\mu\nu}^{\kappa} possesses the property of being both flat and torsionless. This implies that R;λμνκ=0R_{;\lambda\mu\nu}^{\kappa}=0 and Tμνλ=0\mathrm{T}{\mu\nu}^{\lambda}=0. Additionally, it inherits the symmetries of the metric tensor gμνg{\mu\nu}. Thus, the nonmetricity scalar QQ defined as nester

Q=QλμνPλμνQ=Q_{\lambda\mu\nu}P^{\lambda\mu\nu} (3)

is the fundamental geometric quantity of gravity.

Tensor PλμνP^{\lambda\mu\nu} is defined as nester

Pμνλ=14Qμνλ+12Q(μν)λ+14(QλQ¯λ)gμν14δ(μλQν),P_{\;\mu\nu}^{\lambda}=-\frac{1}{4}Q_{\;\mu\nu}^{\lambda}+\frac{1}{2}Q_{(\mu\phantom{\lambda}\nu)}^{\phantom{(\mu}\lambda\phantom{\nu)}}+\frac{1}{4}\left(Q^{\lambda}-\bar{Q}^{\lambda}\right)g_{\mu\nu}-\frac{1}{4}\delta_{\;(\mu}^{\lambda}Q_{\nu)}, (4)

which is written with the help of the traces111Parenthesis in the indices denote symmetrization, that is, A(μν)=12(Aμν+Aνμ)A_{(\mu\nu)}=\frac{1}{2}\left(A_{\mu\nu}+A_{\nu\mu}\right); and δνμ\delta_{\;\nu}^{\mu} is the Kroncker delta. Qμ=QμννQ_{\mu}=Q_{\mu\nu}^{\phantom{\mu\nu}\nu} and Q¯μ=Qμνν\bar{Q}_{\mu}=Q_{\phantom{\nu}\mu\nu}^{\nu\phantom{\mu}\phantom{\mu}}.

The Ricci scalar RR correspond to the Levi-Civita connection Γ~μνκ\tilde{\Gamma}_{\mu\nu}^{\kappa} of the metric tensor gμνg_{\mu\nu}, and the nonmetricity scalar QQ for a symmetric and flat connection Γμνκ\Gamma_{\mu\nu}^{\kappa} differ by a boundary term B,B,defined as B=RQB=R-Q~{}.

The gravitational Action Integral of STGR reads nester

d4xgQd4xgR+boundary terms.\int d^{4}x\sqrt{-g}Q\simeq\int d^{4}x\sqrt{-g}R+\text{boundary terms.} (5)

from where it follows that STGR is dynamically equivalent to GR.

However, when nonlinear components of the non-metricity scalar QQ are introduced in the gravitational Action, as in f(Q)f(Q)-gravity, this equivalence is lost. Nevertheless, the corresponding gravitational theory does not possess any dynamical equivalence with General Relativity or its generalization, f(R)f(R)-gravity.

The Action Integral in symmetric teleparallel f(Q)f(Q)-gravity is defined lav2 ; lav3

Sf(Q)=d4xgf(Q).S_{f\left(Q\right)}=\int d^{4}x\sqrt{-g}f(Q). (6)

The resulting field equations are

2gλ(gf,QPμνλ)12f(Q)gμν+f,Q(PμρσQνρσ2QρσμPνρσ)=0,\frac{2}{\sqrt{-g}}\nabla_{\lambda}\left(\sqrt{-g}f_{,Q}P_{\;\mu\nu}^{\lambda}\right)-\frac{1}{2}f(Q)g_{\mu\nu}+f_{,Q}\left(P_{\mu\rho\sigma}Q_{\nu}^{\;\rho\sigma}-2Q_{\rho\sigma\mu}P_{\phantom{\rho\sigma}\nu}^{\rho\sigma}\right)=0, (7)
μν(gf,QPσμν)=0.\nabla_{\mu}\nabla_{\nu}\left(\sqrt{-g}f_{,Q}P_{\phantom{\mu\nu}\sigma}^{\mu\nu}\right)=0. (8)

Equations (7) represent the modified Einstein field equations in f(Q)f(Q)-gravity, while equation (8) corresponds to the equation of motion for the connection. . When equation (8) holds true for a specific connection at all times, that connection is referred to as the “coincidence gauge”. However, if the equation (8) is not always satisfied for a particular connection, then that connection is defined within the so-called “non-coincidence gauge”as discussed in lav3 .

III Symmetric teleparallel boundary gravity

Recently, a generalization of the f(Q)f(Q) theory was introduced ftc1 ; ftc2 by incorporating a boundary term into the gravitational Action Integral. More precisely, this extended framework includes the gravitational Action Integral as follows

Sf(Q,B)=d4xgf(Q,B)S_{f\left(Q,B\right)}=\int d^{4}x\sqrt{-g}f(Q,B)~{} (9)

where B=RQB=R-Q.

In the notation of ftc2 , the boundary term is noted as CC. This gravitational theory is equivalent to General Relativity, when f(Q,B)f\left(Q,B\right) is a linear function, that is, f(Q,B)=f1Q+f2B2Λf\left(Q,B\right)=f_{1}Q+f_{2}B-2\Lambda; the limit of f(Q)f\left(Q\right) is recovered when f(Q,B)=f(Q)+f2Bf\left(Q,B\right)=f\left(Q\right)+f_{2}B; while the fourth-order f(R)f\left(R\right) theory of gravity is recovered when f(Q,B)=f(Q+B)f\left(Q,B\right)=f\left(Q+B\right).

The gravitational field equations which correspond to the Action Integral (9) are

0\displaystyle 0 =2gλ(gf,QPμνλ)12f(Q,B)gμν+f,Q(PμρσQνρσ2QρσμPνρσ)\displaystyle=\frac{2}{\sqrt{-g}}\nabla_{\lambda}\left(\sqrt{-g}f_{,Q}P_{\;\mu\nu}^{\lambda}\right)-\frac{1}{2}f(Q,B)g_{\mu\nu}+f_{,Q}\left(P_{\mu\rho\sigma}Q_{\nu}^{\;\rho\sigma}-2Q_{\rho\sigma\mu}P_{\phantom{\rho\sigma}\nu}^{\rho\sigma}\right)
+(B2gμνμν+gμνgκλκλ2Pμνλλ)f,B\displaystyle+\left(\frac{B}{2}g_{\mu\nu}-\nabla_{\mu}\nabla_{\nu}+g_{\mu\nu}g^{\kappa\lambda}\nabla_{\kappa}\nabla_{\lambda}-2P_{~{}~{}\mu\nu}^{\lambda}\nabla_{\lambda}\right)f_{,B} (10)

f(Q,B)f\left(Q,B\right) has been inspired by the teleparallel boundary gravity f(T,BT)f\left(T,B_{T}\right)~{}bah , where now BTB_{T} is the boundary term relates the Ricciscalar RR and the torsion scalar TT for the Weitzenböck connection Weitzenb23 . In a similar way, f(T,BT)f\left(T,B_{T}\right) recovers f(R)f\left(R\right)-gravity when f(T,BT)=f(T+BT)f\left(T,B_{T}\right)=f\left(T+B_{T}\right)~{}bah , while the limit of GR is recovered when f(T,BT)=f1T+f2BT2Λ;f\left(T,B_{T}\right)=f_{1}T+f_{2}B_{T}-2\Lambda; and f(T)f\left(T\right)-theory follows when f(T,BT)=f(T)+f2BTf\left(T,B_{T}\right)=f\left(T\right)+f_{2}B_{T}. There are many astrophysical and cosmological applications of f(T,BT)f\left(T,B_{T}\right)-theory in the literature ftb1 ; ftb2 ; ftb3 ; ftb4 ; ftb5 ; ftb6 . From these results it is clear that the boundary BTB_{T} plays an important role in geometric description of dark energy. Thus, the generalization if symmetric teleparallel theory seems natural.

f(T,BT)f\left(T,B_{T}\right) theory of gravity is a fourth-order theory, similar to f(R)f\left(R\right)-theory, while when f(T,BT)=f(T)+f2BTf\left(T,B_{T}\right)=f\left(T\right)+f_{2}B_{T} the resulting field equations are of second-order ftb7 . The order of symmetric teleparallel f(Q)f\left(Q\right)-theory depends on the connection which is used for the definition of the nonmetricity scalar QQ. For the connection defined in the coincidence gauge f(Q)f\left(Q\right) is a second-order theory, while for a connection in the non-coincidence gauge f(Q)f\left(Q\right)-theory is a sixth-order theory of gravity.

To comprehend the degrees of freedom within f(Q,B)f(Q,B)-theory, we turn our attention to a cosmological model representing an isotropic and homogeneous universe. Employing the Lagrange multipliers method, we introduce scalar fields that account for the dynamical degrees of freedom within the f(Q,B)f(Q,B)-theory. Consequently, our analysis reveals that the theory introduces either one or three scalar fields.

IV Isotropic and Homogeneous Universe

The isotropic and homogeneous universe is described by the FLRW line element

ds2=N(t)2dt2+a(t)2[dr21kr2+r2(dθ2+sin2θdφ2)],ds^{2}=-N(t)^{2}dt^{2}+a(t)^{2}\left[\frac{dr^{2}}{1-kr^{2}}+r^{2}\left(d\theta^{2}+\sin^{2}\theta d\varphi^{2}\right)\right], (11)

in which N(t)N\left(t\right) is the lapse function and a(t)a\left(t\right) is the scale factor denotes the radius of the universe. Hence, H=1Na˙aH=\frac{1}{N}\frac{\dot{a}}{a}, where a˙=dadt\dot{a}=\frac{da}{dt} is the Hubble function. Parameter kk is the spatial curvature, for k=0k=0, the universe is spatially flat, k=+1k=+1 corresponds to a closed FLRW geometry and k=1k=-1 describes an open universe.

FLRW spacetime admits a sixth-dimensional Killing algebra consisted by the vector fields

ζ1=sinφθ+cosφtanθφ,ζ2=cosφθ+sinφtanθφ,ζ3=φ\zeta_{1}=\sin\varphi\partial_{\theta}+\frac{\cos\varphi}{\tan\theta}\partial_{\varphi},\quad\zeta_{2}=-\cos\varphi\partial_{\theta}+\frac{\sin\varphi}{\tan\theta}\partial_{\varphi},\quad\zeta_{3}=-\partial_{\varphi} (12)
ξ1=1kr2sinθcosφr+1kr2rcosθcosφθ1kr2rsinφsinθφξ2=1kr2sinθsinφr+1kr2rcosθsinφθ+1kr2rcosφsinθφξ3=1kr2cosθr1kr2rsinθφ.\begin{split}\xi_{1}&=\sqrt{1-kr^{2}}\sin\theta\cos\varphi\partial_{r}+\frac{\sqrt{1-kr^{2}}}{r}\cos\theta\cos\varphi\partial_{\theta}-\frac{\sqrt{1-kr^{2}}}{r}\frac{\sin\varphi}{\sin\theta}\partial_{\varphi}\\ \xi_{2}&=\sqrt{1-kr^{2}}\sin\theta\sin\varphi\partial_{r}+\frac{\sqrt{1-kr^{2}}}{r}\cos\theta\sin\varphi\partial_{\theta}+\frac{\sqrt{1-kr^{2}}}{r}\frac{\cos\varphi}{\sin\theta}\partial_{\varphi}\\ \xi_{3}&=\sqrt{1-kr^{2}}\cos\theta\partial_{r}-\frac{\sqrt{1-kr^{2}}}{r}\sin\theta\partial_{\varphi}.\end{split} (13)

IV.1 Non-zero spatial curvature k0k\neq 0

For the FLRW with k0k\neq 0, there exist a unique connection defined in the non-coincidence gauge with non-zero components Heis2 ; Zhao

Γtrr=Γrtr=Γtθθ=Γθtθ=Γtφφ=Γφtφ=kγ(t),Γrrr=kr1kr2,Γθθr=r(1kr2),Γφφr=rsin2(θ)(1kr2)Γrθθ=Γθrθ=Γrφφ=Γφrφ=1r,Γφφθ=sinθcosθ,Γθφφ=Γφθφ=cotθ,\begin{split}&\Gamma_{\;tr}^{r}=\Gamma_{\;rt}^{r}=\Gamma_{\;t\theta}^{\theta}=\Gamma_{\;\theta t}^{\theta}=\Gamma_{\;t\varphi}^{\varphi}=\Gamma_{\;\varphi t}^{\varphi}=-\frac{k}{\gamma(t)},\quad\Gamma_{\;rr}^{r}=\frac{kr}{1-kr^{2}},\\ &\Gamma_{\;\theta\theta}^{r}=-r\left(1-kr^{2}\right),\quad\Gamma_{\;\varphi\varphi}^{r}=-r\sin^{2}(\theta)\left(1-kr^{2}\right)\quad\Gamma_{\;r\theta}^{\theta}=\Gamma_{\;\theta r}^{\theta}=\Gamma_{\;r\varphi}^{\varphi}=\Gamma_{\;\varphi r}^{\varphi}=\frac{1}{r},\\ &\Gamma_{\;\varphi\varphi}^{\theta}=-\sin\theta\cos\theta,\quad\Gamma_{\;\theta\varphi}^{\varphi}=\Gamma_{\;\varphi\theta}^{\varphi}=\cot\theta,\end{split} (14)

and

Γttt=k+γ˙(t)γ(t),Γrrt=γ(t)1kr2Γθθt=γ(t)r2,Γφφt=γ(t)r2sin2(θ).\Gamma_{\;tt}^{t}=-\frac{k+\dot{\gamma}(t)}{\gamma(t)},\quad\Gamma_{\;rr}^{t}=\frac{\gamma(t)}{1-kr^{2}}\quad\Gamma_{\;\theta\theta}^{t}=\gamma(t)r^{2},\quad\Gamma_{\;\varphi\varphi}^{t}=\gamma(t)r^{2}\sin^{2}(\theta).

For this connection, the calculation of the non-metricity scalar is produced

Qk=6(H2ka2)+3a3N(aNγka3γN).Q_{k}=-6\left(H^{2}-\frac{k}{a^{2}}\right)+\frac{3}{a^{3}N}\left(aN\gamma-k\frac{a^{3}}{\gamma N}\right)^{\cdot}. (15)

From the Levi-Civita connection of spacetime (11) we calculate the Ricciscalar

Rk=6(2H2+ka2)+6NH˙.R_{k}=6\left(2H^{2}+\frac{k}{a^{2}}\right)+\frac{6}{N}\dot{H}. (16)

Consequently, the boundary termB=RQ~{}B=R-Q~{}ftc2 is

Bk=RkQk=3(6H2+2NH˙1a3N(aNγka3γN)).B_{k}=R_{k}-Q_{k}=3\left(6H^{2}+\frac{2}{N}\dot{H}-\frac{1}{a^{3}N}\left(aN\gamma-k\frac{a^{3}}{\gamma N}\right)^{\cdot}\right). (17)

In order to derive the gravitational field equations we apply the mathematical manipulation introduced in min and we introduce the scalar field Ψ\Psi such that γ=1Ψ˙\gamma=\frac{1}{\dot{\Psi}}.

We introduce in (9) the Lagrange multipliers λ1\lambda_{1} and λ2\lambda_{2} such that

Sf(Q,B)=d4xg(f(Q,B)λ1(QQk)λ2(BBk)).S_{f\left(Q,B\right)}=\int d^{4}x\sqrt{-g}\left(f(Q,B)~{}-\lambda_{1}\left(Q-Q_{k}\right)-\lambda_{2}\left(B-B_{k}\right)\right). (18)

Variation with respect to the non-metricity scalar QQ and the boundary term BB, gives λ1=f,Q\lambda_{1}=f_{,Q} and λ2=f,B\lambda_{2}=f_{,B}.

Thus, by replacing in (18) it follows

Sf(Q,B)=𝑑t(Na3(ff,Qf,B)+Na3f,QQk+Na3f,BBk).S_{f\left(Q,B\right)}=\int dt\left(Na^{3}\left(f-f_{,Q}-f_{,B}\right)+Na^{3}f_{,Q}Q_{k}+Na^{3}f_{,B}B_{k}\right). (19)

Hence, integration by parts gives

𝑑t(Na3f,QQk)=𝑑t(6Na3f,Q(H2ka2)+3f,Q(aNΨ˙ka3NΨ˙)),\int dt\left(Na^{3}f_{,Q}Q_{k}\right)=\int dt\left(-6Na^{3}f_{,Q}\left(H^{2}-\frac{k}{a^{2}}\right)+3f_{,Q}\left(a\frac{N}{\dot{\Psi}}-k\frac{a^{3}}{N}\dot{\Psi}\right)^{\cdot}\right),
𝑑t(Na3f,BBk)=𝑑t(18Na3f,BH2+6a3f,BH˙3f,B(aNγka3γN)).\int dt\left(Na^{3}f_{,B}B_{k}\right)=\int dt\left(18Na^{3}f_{,B}H^{2}+6a^{3}f_{,B}\dot{H}-3f_{,B}\left(aN\gamma-k\frac{a^{3}}{\gamma N}\right)^{\cdot}\right).

Then

Sf(Q,B)=𝑑t(Na3(ff,Qf,B)6(f,Q3f,B)(Na3H2)+6Na3f,Qka2+6f,Ba3H˙+3(f,Qf,B)(aNΨ˙ka3NΨ˙)).S_{f\left(Q,B\right)}=\int dt\left(\begin{array}[c]{c}Na^{3}\left(f-f_{,Q}-f_{,B}\right)-6\left(f_{,Q}-3f_{,B}\right)\left(Na^{3}H^{2}\right)\\ +6Na^{3}f_{,Q}\frac{k}{a^{2}}+6f_{,B}a^{3}\dot{H}+3\left(f_{,Q}-f_{,B}\right)\left(a\frac{N}{\dot{\Psi}}-k\frac{a^{3}}{N}\dot{\Psi}\right)^{\cdot}\end{array}\right).

It follows

6f,Ba3H˙𝑑t=(18Nf,Ba3H26f˙,Ba3H)𝑑t,\int 6f_{,B}a^{3}\dot{H}dt=\int\left(-18Nf_{,B}a^{3}H^{2}-6\dot{f}_{,B}a^{3}H\right)dt,
3(f,Qf,B)(aNΨ˙ka3NΨ˙)𝑑t=3(f˙,Qf˙,B)(aNΨ˙ka3NΨ˙)dt.\int 3\left(f_{,Q}-f_{,B}\right)\left(a\frac{N}{\dot{\Psi}}-k\frac{a^{3}}{N}\dot{\Psi}\right)^{\cdot}dt=\int-3\left(\dot{f}_{,Q}-\dot{f}_{,B}\right)\left(a\frac{N}{\dot{\Psi}}-k\frac{a^{3}}{N}\dot{\Psi}\right)dt.

The minisuperspace Lagrangian is

L(N,a,a˙,Q,Q˙,B,B˙,Ψ,Ψ˙)\displaystyle L\left(N,a,\dot{a},Q,\dot{Q},B,\dot{B},\Psi,\dot{\Psi}\right) =6Nf,Qaa˙2+6Naf,Qk6Na2f˙,Ba˙\displaystyle=-\frac{6}{N}f_{,Q}a\dot{a}^{2}+6Naf_{,Q}k-\frac{6}{N}a^{2}\dot{f}_{,B}\dot{a}
3(f˙,Qf˙,B)(aNΨ˙ka3NΨ˙)+Na3(ff,Qf,B)\displaystyle-3\left(\dot{f}_{,Q}-\dot{f}_{,B}\right)\left(a\frac{N}{\dot{\Psi}}-k\frac{a^{3}}{N}\dot{\Psi}\right)+Na^{3}\left(f-f_{,Q}-f_{,B}\right) (20)

or equivalently

L(N,a,a˙,ϕ,ϕ˙,ζ,ζ˙,Ψ,Ψ˙)=6Nϕaa˙2+6Naϕk6Na2a˙ζ˙3(ϕ˙ζ˙)(aNΨ˙ka3NΨ˙)+Na3V(ϕ,ζ).L\left(N,a,\dot{a},\phi,\dot{\phi},\zeta,\dot{\zeta},\Psi,\dot{\Psi}\right)=-\frac{6}{N}\phi a\dot{a}^{2}+6Na\phi k-\frac{6}{N}a^{2}\dot{a}\dot{\zeta}-3\left(\dot{\phi}-\dot{\zeta}\right)\left(a\frac{N}{\dot{\Psi}}-k\frac{a^{3}}{N}\dot{\Psi}\right)+Na^{3}V\left(\phi,\zeta\right). (21)

in which ϕ=f,Q\phi=f_{,Q}, ζ=f,B\zeta=f_{,B} and V(ϕ,ζ)=(ff,Qf,B)V\left(\phi,\zeta\right)=\left(f-f_{,Q}-f_{,B}\right).

In the four-dimensional space a,ϕ,ζ,Ψ{a,\phi,\zeta,\Psi}, we calculate |2Lqq|=324a6N4Ψ˙4(N2+ka2Ψ˙2)20\left|\frac{\partial^{2}L}{\partial q\partial q}\right|=\frac{324a^{6}}{N^{4}\dot{\Psi}^{4}}(N^{2}+ka^{2}\dot{\Psi}^{2})^{2}\neq 0. This implies that the field equations are of eighth-order and are described by the three scalar fields ϕ,ζ,Ψ\phi,\zeta,\Psi. The Lagrangian function (21) represents a singular dynamical system in which variation with respect to the lapse function NN yields the modified Friedmann equation.

Moreover, variation with respect to the dynamical variables {a,ϕ,ζ,Ψ}\left\{a,\phi,\zeta,\Psi\right\} gives four second-order differential equations.

For a constant lapse function, i.e. N=1N=1, the cosmological field equation are

0=3ϕH2+3ϕka2+3Hζ˙32(ϕ˙ζ˙)(1a2Ψ˙+kΨ˙)+12V(ϕ,ζ),0=3\phi H^{2}+3\phi\frac{k}{a^{2}}+3H\dot{\zeta}-\frac{3}{2}\left(\dot{\phi}-\dot{\zeta}\right)\left(\frac{1}{a^{2}\dot{\Psi}}+k\dot{\Psi}\right)+\frac{1}{2}V\left(\phi,\zeta\right), (22)
0=H˙+32H2+k2a2+V4ϕ+Hϕ˙ϕ+ζ˙ϕ˙ϕ(14a2Ψ˙3k4Ψ˙)+12ζ¨,0=\dot{H}+\frac{3}{2}H^{2}+\frac{k}{2a^{2}}+\frac{V}{4\phi}+H\frac{\dot{\phi}}{\phi}+\frac{\dot{\zeta}-\dot{\phi}}{\phi}\left(\frac{1}{4a^{2}\dot{\Psi}}-\frac{3k}{4}\dot{\Psi}\right)+\frac{1}{2}\ddot{\zeta}, (23)
0=3(1+ka2Ψ˙2)Ψ¨Ψ(3H+6kΨ˙a2Ψ˙(6H2+9kHΨ˙V,ϕ)),0=3\left(1+ka^{2}\dot{\Psi}^{2}\right)\frac{\ddot{\Psi}}{\Psi}-\left(3H+6k\dot{\Psi}-a^{2}\dot{\Psi}\left(6H^{2}+9kH\dot{\Psi}-V_{,\phi}\right)\right), (24)
0=6H˙+9H(2H+kΨ˙)+3kΨ¨+V,ζ3a2Ψ˙2(HΨ˙Ψ¨),0=6\dot{H}+9H\left(2H+k\dot{\Psi}\right)+3k\ddot{\Psi}+V_{,\zeta}-\frac{3}{a^{2}\dot{\Psi}^{2}}\left(H\dot{\Psi}-\ddot{\Psi}\right), (25)
0=3aΨ˙(1+a2kΨ˙2)(ζ¨ϕ¨)+a(ζ˙ϕ˙)(Ψ˙H(1+3a2kΨ˙2)2Ψ¨).0=3a\dot{\Psi}\left(1+a^{2}k\dot{\Psi}^{2}\right)\left(\ddot{\zeta}-\ddot{\phi}\right)+a\left(\dot{\zeta}-\dot{\phi}\right)\left(\dot{\Psi}H\left(1+3a^{2}k\dot{\Psi}^{2}\right)-2\ddot{\Psi}\right). (26)

The modified Friedmann’s equations (22), (23) can be written in the equivalent form

3(H2+ka2)\displaystyle 3\left(H^{2}+\frac{k}{a^{2}}\right) =Geffρf(Q,B)Γk,\displaystyle=G_{eff}\rho_{f\left(Q,B\right)}^{\Gamma_{k}}, (27)
2H˙3Hka2\displaystyle-2\dot{H}-3H-\frac{k}{a^{2}} =Geffpf(Q,B)Γk,\displaystyle=G_{eff}p_{f\left(Q,B\right)}^{\Gamma_{k}}, (28)

in which ρf(Q,B)\rho_{f\left(Q,B\right)}, pf(Q,B)p_{f\left(Q,B\right)} are the components for the geometric fluid which follows by the nonlinear f(Q,B)f\left(Q,B\right)-theory defined as

ρf(Q,B)Γk\displaystyle\rho_{f\left(Q,B\right)}^{\Gamma_{k}} =(3Hζ˙32(ϕ˙ζ˙)(1a2Ψ˙+kΨ˙)+12V(ϕ,ζ)),\displaystyle=-\left(3H\dot{\zeta}-\frac{3}{2}\left(\dot{\phi}-\dot{\zeta}\right)\left(\frac{1}{a^{2}\dot{\Psi}}+k\dot{\Psi}\right)+\frac{1}{2}V\left(\phi,\zeta\right)\right), (29)
pf(Q,B)Γk\displaystyle p_{f\left(Q,B\right)}^{\Gamma_{k}} =V2+2Hϕ˙+ζ˙ϕ˙2(14a2Ψ˙3k4Ψ˙).\displaystyle=\frac{V}{2}+2H\dot{\phi}+\frac{\dot{\zeta}-\dot{\phi}}{2}\left(\frac{1}{4a^{2}\dot{\Psi}}-\frac{3k}{4}\dot{\Psi}\right). (30)

and

Geff=1ϕ.G_{eff}=\frac{1}{\phi}\text{.} (31)

We remark that scalar field ϕ\phi is defined in the Jordan frame.

IV.2 Spatially flat case k=0k=0

For the spatially flat case, k=0k=0, it has been found that there exist three families of connections. The common non-zero coefficients of the three connections are

Γθθr=r,Γφφr=rsin2θ\Gamma_{\theta\theta}^{r}=-r~{},~{}\Gamma_{\varphi\varphi}^{r}=-r\sin^{2}\theta
Γφφθ=sinθcosθ,Γθφφ=Γφθφ=cotθ\Gamma_{\varphi\varphi}^{\theta}=-\sin\theta\cos\theta~{},~{}\Gamma_{\theta\varphi}^{\varphi}=\Gamma_{\varphi\theta}^{\varphi}=\cot\theta
Γrθθ=Γθrθ=Γrφφ=Γφrφ=1r\Gamma_{\;r\theta}^{\theta}=\Gamma_{\;\theta r}^{\theta}=\Gamma_{\;r\varphi}^{\varphi}=\Gamma_{\;\varphi r}^{\varphi}=\frac{1}{r}

while the additional components for connections Γ1,Γ2\Gamma_{1},~{}\Gamma_{2} and Γ3\Gamma_{3} are Heis2 ; Zhao

Γ1:Γttt=γ(t),\Gamma_{1}:\Gamma_{\;tt}^{t}=\gamma(t),
Γ2:Γttt=γ˙(t)γ(t)+γ(t),Γtrr=Γrtr=Γtθθ=Γθtθ=Γtφφ=Γφtφ=γ(t),\Gamma_{2}:\Gamma_{\;tt}^{t}=\frac{\dot{\gamma}(t)}{\gamma(t)}+\gamma(t),\quad\Gamma_{\;tr}^{r}=\Gamma_{\;rt}^{r}=\Gamma_{\;t\theta}^{\theta}=\Gamma_{\;\theta t}^{\theta}=\Gamma_{\;t\varphi}^{\varphi}=\Gamma_{\;\varphi t}^{\varphi}=\gamma(t),

and

Γttt=γ˙(t)γ(t),Γrrt=γ(t),Γθθt=γ(t)r2,Γφφt=γ(t)r2sin2θ.\Gamma_{\;tt}^{t}=-\frac{\dot{\gamma}(t)}{\gamma(t)},\quad\Gamma_{\;rr}^{t}=\gamma(t),\quad\Gamma_{\;\theta\theta}^{t}=\gamma(t)r^{2},\quad\Gamma_{\;\varphi\varphi}^{t}=\gamma(t)r^{2}\sin^{2}\theta.

The non-metricity scalars for each connection are calculated

Q1(Γ1)=6H2Q_{1}\left(\Gamma_{1}\right)=-6H^{2} (32)
Q2(Γ2)=6H2+3a3N(a3γN)Q_{2}\left(\Gamma_{2}\right)=-6H^{2}+\frac{3}{a^{3}N}\left(\frac{a^{3}\gamma}{N}\right)^{\cdot} (33)

and

Q3(Γ3)=6H2+3a3N(aNγ).Q_{3}\left(\Gamma_{3}\right)=-6H^{2}+\frac{3}{a^{3}N}\left(aN\gamma\right)^{\cdot}. (34)

Connection Γ1\Gamma_{1} is the one defined in the coincidence gauge, while connections Γ2\Gamma_{2} and Γ3\Gamma_{3} are defined in the non-coincidence gauge. We observe that connection Γk\Gamma_{k} in the limit k=0,k=0, reduces to that of Γ3\Gamma_{3}, that is, Γk(k0)=Γ3\Gamma_{k}\left(k\rightarrow 0\right)=\Gamma_{3} and Qk(k0)=Q3(Γ3)Q_{k}\left(k\rightarrow 0\right)=Q_{3}\left(\Gamma_{3}\right).

We proceed with the derivation of the minisuperspace Lagrangian and the field equations for each family of connections in f(Q,B)f\left(Q,B\right)-theory of gravity.

IV.2.1 Connection Γ1\Gamma_{1}

For connection Γ1\Gamma_{1}, and the Ricciscalar (16) for the spatially flat FLRW geometry we derive the boundary term

B1=B(Γ1)=3(6H2+2NH˙).B_{1}=B\left(\Gamma_{1}\right)=3\left(6H^{2}+\frac{2}{N}\dot{H}\right). (35)

For the coincidence gauge, scalars Q1Q_{1} and B1B_{1} have the same functional form with the torsion scalar TT and the boundary BTB_{T}. As a result f(Q,B)f\left(Q,B\right)-gravity for the connection Γ1\Gamma_{1} is equivalent with the teleparallel f(T,BT)f\left(T,B_{T}\right)-gravity.

The Lagrangian of the field equations is

L(N,a,a˙,Q,B,B˙)=6Nf,Qaa˙26Na2f˙,Ba˙+Na3(ff,Qf,B)L\left(N,a,\dot{a},Q,B,\dot{B}\right)=-\frac{6}{N}f_{,Q}a\dot{a}^{2}-\frac{6}{N}a^{2}\dot{f}_{,B}\dot{a}+Na^{3}\left(f-f_{,Q}-f_{,B}\right) (36)

or equivalently in scalar field description

L(N,a,a˙,ϕ,ζ,ζ˙)=6Nϕaa˙26Na2a˙ζ˙+Na3V(ϕ,ζ).L\left(N,a,\dot{a},\phi,\zeta,\dot{\zeta}\right)=-\frac{6}{N}\phi a\dot{a}^{2}-\frac{6}{N}a^{2}\dot{a}\dot{\zeta}+Na^{3}V\left(\phi,\zeta\right). (37)

where similarly as before ϕ=f,Q\phi=f_{,Q}, ζ=f,B\zeta=f_{,B} and V(ϕ,ζ)=(ff,Qf,B)V\left(\phi,\zeta\right)=\left(f-f_{,Q}-f_{,B}\right).

For the Lagrangian (37) in the three-dimensional space {a,ϕ,ζ}\left\{a,\phi,\zeta\right\} we derive |2Lqq|=0\left|\frac{\partial^{2}L}{\partial q\partial q}\right|=0. Hence, the field equations are of fourth-order.

We select the constant lapse function N=1N=1, and we derive the field equations

0=6H(ϕH+ζ˙)+V(ϕ,ζ),0=6H\left(\phi H+\dot{\zeta}\right)+V\left(\phi,\zeta\right), (38)
0=2ϕ(2H˙+3H2)+4Hϕ˙+2ζ¨+V(ϕ,ζ),0=2\phi\left(2\dot{H}+3H^{2}\right)+4H\dot{\phi}+2\ddot{\zeta}+V\left(\phi,\zeta\right), (39)
0=6H2V,ϕ,0=6H^{2}-V_{,\phi}, (40)
0=H˙+3H2+16V,ζ.0=\dot{H}+3H^{2}+\frac{1}{6}V_{,\zeta}. (41)

Modified Friedmann’s equations are written in the equivalent form

3H2\displaystyle 3H^{2} =Geffρf(Q,B)Γ1,\displaystyle=G_{eff}\rho_{f\left(Q,B\right)}^{\Gamma_{1}},
2H˙3H2\displaystyle-2\dot{H}-3H^{2} =Geffpf(Q,B)Γ1,\displaystyle=G_{eff}p_{f\left(Q,B\right)}^{\Gamma_{1}},

with energy densityρf(Q,B)Γ1~{}\rho_{f\left(Q,B\right)}^{\Gamma_{1}} and pressure pf(Q,B)Γ1p_{f\left(Q,B\right)}^{\Gamma_{1}} for the effective fluid

ρf(Q,B)Γ1\displaystyle\rho_{f\left(Q,B\right)}^{\Gamma_{1}} =(3ζ˙H+12V(ϕ,ζ)),\displaystyle=-\left(3\dot{\zeta}H+\frac{1}{2}V\left(\phi,\zeta\right)\right), (42)
pf(Q,B)Γ1\displaystyle p_{f\left(Q,B\right)}^{\Gamma_{1}} =(2Hϕ˙+ζ¨+12V(ϕ,ζ)).\displaystyle=\left(2H\dot{\phi}+\ddot{\zeta}+\frac{1}{2}V\left(\phi,\zeta\right)\right). (43)

and Geff=1ϕG_{eff}=\frac{1}{\phi}.

IV.2.2 Connection Γ2\Gamma_{2}

For the non-coincidence connection Γ2\Gamma_{2} it follows the boundary term

B2=B(Γ2)=3(6H2+2NH˙3a3N(a3γN)).B_{2}=B\left(\Gamma_{2}\right)=3\left(6H^{2}+\frac{2}{N}\dot{H}-\frac{3}{a^{3}N}\left(\frac{a^{3}\gamma}{N}\right)^{\cdot}\right). (44)

Hence, by introducing Lagrange multipliers as we did for the generic connection Γk\Gamma_{k}, we determine the point-like Lagrangian

L(N,a,a˙,Q,Q˙,B,B˙,ψ,ψ˙)=6Nf,Qaa˙26Na2f˙,Ba˙+3(f˙,Qf˙,B)a3ψ˙N+Na3(f(Q,B)f,Qf,B),L\left(N,a,\dot{a},Q,\dot{Q},B,\dot{B},\psi,\dot{\psi}\right)=-\frac{6}{N}f_{,Q}a\dot{a}^{2}-\frac{6}{N}a^{2}\dot{f}_{,B}\dot{a}+3\left(\dot{f}_{,Q}-\dot{f}_{,B}\right)\frac{a^{3}\dot{\psi}}{N}+Na^{3}\left(f\left(Q,B\right)-f_{,Q}-f_{,B}\right), (45)

or equivalently

L(N,a,a˙,ϕ,ϕ˙,ζ,ζ˙,ψ,ψ˙)=6Nϕaa˙26Na2a˙ζ˙+3(ϕ˙ζ˙)a3ψ˙N+Na3V(ϕ,ζ),L\left(N,a,\dot{a},\phi,\dot{\phi},\zeta,\dot{\zeta},\psi,\dot{\psi}\right)=-\frac{6}{N}\phi a\dot{a}^{2}-\frac{6}{N}a^{2}\dot{a}\dot{\zeta}+3\left(\dot{\phi}-\dot{\zeta}\right)\frac{a^{3}\dot{\psi}}{N}+Na^{3}V\left(\phi,\zeta\right), (46)

in which γ=ψ˙\gamma=\dot{\psi}, ϕ=f,Q\phi=f_{,Q}, ζ=f,B\zeta=f_{,B} and V(ϕ,ζ)=(ff,Qf,B)V\left(\phi,\zeta\right)=\left(f-f_{,Q}-f_{,B}\right).

The field equations are of eight-order described by three scalar fields. For N=1N=1, the equations of motions for the scale factor and the three scalar fields are

0=6H(ϕH+ζ˙)3(ϕ˙ζ˙)ψ˙+NV(ϕ,ζ),0=6H\left(\phi H+\dot{\zeta}\right)-3\left(\dot{\phi}-\dot{\zeta}\right)\dot{\psi}+NV\left(\phi,\zeta\right), (47)
0=2ϕ(2H˙+3H2)+4Hϕ˙3(ϕ˙ζ˙)ψ˙+2ζ¨+V(ϕ,ζ),0=2\phi\left(2\dot{H}+3H^{2}\right)+4H\dot{\phi}-3\left(\dot{\phi}-\dot{\zeta}\right)\dot{\psi}+2\ddot{\zeta}+V\left(\phi,\zeta\right), (48)
0=3ψ¨+9Hψ˙6H2+V,ϕ0=3\ddot{\psi}+9H\dot{\psi}-6H^{2}+V_{,\phi} (49)
0=6H˙+18H29Hψ˙3ψ¨+V,ζ0=6\dot{H}+18H^{2}-9H\dot{\psi}-3\ddot{\psi}+V_{,\zeta}
0=ϕ¨ζ¨+3H(ϕ˙ζ˙).0=\ddot{\phi}-\ddot{\zeta}+3H\left(\dot{\phi}-\dot{\zeta}\right). (50)

Hence. the effective geometric fluid has the following energy density and pressure components

ρf(Q,B)Γ2\displaystyle\rho_{f\left(Q,B\right)}^{\Gamma_{2}} =(3ζ˙H+32(ϕ˙ζ˙)ψ˙+12V(ϕ,ζ)),\displaystyle=-\left(3\dot{\zeta}H+\frac{3}{2}\left(\dot{\phi}-\dot{\zeta}\right)\dot{\psi}+\frac{1}{2}V\left(\phi,\zeta\right)\right), (51)
pf(Q,B)Γ2\displaystyle p_{f\left(Q,B\right)}^{\Gamma_{2}} =(2Hϕ˙32(ϕ˙ζ˙)ψ˙+ζ¨+12V(ϕ,ζ)),\displaystyle=\left(2H\dot{\phi}-\frac{3}{2}\left(\dot{\phi}-\dot{\zeta}\right)\dot{\psi}+\ddot{\zeta}+\frac{1}{2}V\left(\phi,\zeta\right)\right), (52)

such that

3H2\displaystyle 3H^{2} =Geffρf(Q,B)Γ2\displaystyle=G_{eff}\rho_{f\left(Q,B\right)}^{\Gamma_{2}}
2H˙3H2\displaystyle-2\dot{H}-3H^{2} =Geffpf(Q,B)Γ2,\displaystyle=G_{eff}p_{f\left(Q,B\right)}^{\Gamma_{2}},

and Geff=1ϕG_{eff}=\frac{1}{\phi}.

IV.2.3 Connection Γ3\Gamma_{3}

We set k=0k=0 in (21), thus, the minisuperspace Lagrangian function is

L(N,a,a˙,ϕ,ϕ˙,ζ,ζ˙,Ψ,Ψ˙)=6Nϕaa˙26Na2a˙ζ˙3Na(ϕ˙ζ˙)Ψ˙+Na3V(ϕ,ζ).L\left(N,a,\dot{a},\phi,\dot{\phi},\zeta,\dot{\zeta},\Psi,\dot{\Psi}\right)=-\frac{6}{N}\phi a\dot{a}^{2}-\frac{6}{N}a^{2}\dot{a}\dot{\zeta}-3Na\frac{\left(\dot{\phi}-\dot{\zeta}\right)}{\dot{\Psi}}+Na^{3}V\left(\phi,\zeta\right). (53)

in which ϕ=f,Q\phi=f_{,Q}, ζ=f,B\zeta=f_{,B} and V(ϕ,ζ)=(ff,Qf,B)V\left(\phi,\zeta\right)=\left(f-f_{,Q}-f_{,B}\right), and the field equations are

0=3ϕH2+3Hζ˙32(ϕ˙ζ˙)(1a2Ψ˙)+12V(ϕ,ζ),0=3\phi H^{2}+3H\dot{\zeta}-\frac{3}{2}\left(\dot{\phi}-\dot{\zeta}\right)\left(\frac{1}{a^{2}\dot{\Psi}}\right)+\frac{1}{2}V\left(\phi,\zeta\right), (54)
0=H˙+32H2+V4ϕ+Hϕ˙ϕ+ζ˙ϕ˙ϕ(14a2Ψ˙)+12ζ¨,0=\dot{H}+\frac{3}{2}H^{2}+\frac{V}{4\phi}+H\frac{\dot{\phi}}{\phi}+\frac{\dot{\zeta}-\dot{\phi}}{\phi}\left(\frac{1}{4a^{2}\dot{\Psi}}\right)+\frac{1}{2}\ddot{\zeta}, (55)
0=3Ψ¨Ψ(3Ha2Ψ˙(6H2+9kHΨ˙V,ϕ)),0=3\frac{\ddot{\Psi}}{\Psi}-\left(3H-a^{2}\dot{\Psi}\left(6H^{2}+9kH\dot{\Psi}-V_{,\phi}\right)\right), (56)
0=6H˙+18H2+V,ζ3a2Ψ˙2(HΨ˙Ψ¨),0=6\dot{H}+18H^{2}+V_{,\zeta}-\frac{3}{a^{2}\dot{\Psi}^{2}}\left(H\dot{\Psi}-\ddot{\Psi}\right), (57)
0=3aΨ˙(ζ¨ϕ¨)+a(ζ˙ϕ˙)(Ψ˙H2Ψ¨).0=3a\dot{\Psi}\left(\ddot{\zeta}-\ddot{\phi}\right)+a\left(\dot{\zeta}-\dot{\phi}\right)\left(\dot{\Psi}H-2\ddot{\Psi}\right). (58)

We conclude that the field equations are of eighth-order. Furthermore, the geometric fluid has the energy density and pressure given by expressions (29) and (30).

V f(Q,B)=Q+F(B)f\left(Q,B\right)=Q+F\left(B\right)-Cosmology

Based on the above analysis, we observe that f(Q,B)f\left(Q,B\right)-theory introduces a varying parameter Geff=1ϕG_{eff}=\frac{1}{\phi}ϕ=f,Q\phi=f_{,Q}. Of special interest are the f(Q,B)=Q+F(B)f\left(Q,B\right)=Q+F\left(B\right) models, in which Geff=constG_{eff}=const. and ϕ\phi is always a constant. In this theory the nonlinear terms of the Action Integral follow correspond to boundary corrections. This approach has been previously explored in teleparallel f(T,BT)f(T,B_{T})-gravity, yielding numerous interesting results. Specifically, f(T,BT)=T+F(BT)f(T,B_{T})=T+F(B_{T}) has the potential to explain both the late and early-time acceleration phases of the universe ftb5 .

In the f(Q,B)=Q+F(B)f(Q,B)=Q+F(B) theory, the number of field equations is reduced by one, as ϕ\phi is not a dynamic parameter but a constant, i.e., ϕ=1\phi=1. Below, we provide the sets of field equations in f(Q,B)=Q+F(B)f(Q,B)=Q+F(B)-theory for the four different families of connections.

V.1 Connection Γ1\Gamma_{1}

For the connection Γ1\Gamma_{1} defined in the coincidence gauge, the minisuperspace Lagrangian is

L(N,a,a˙,ϕ,ζ,ζ˙)=6Naa˙26Na2a˙ζ˙+Na3V(ζ).L\left(N,a,\dot{a},\phi,\zeta,\dot{\zeta}\right)=-\frac{6}{N}a\dot{a}^{2}-\frac{6}{N}a^{2}\dot{a}\dot{\zeta}+Na^{3}V\left(\zeta\right). (59)

where ζ=f,B\zeta=f_{,B} and V(ζ)=(ff,B)V\left(\zeta\right)=\left(f-f_{,B}\right).

Thus, for N=1N=1, the field equations are

3H2\displaystyle 3H^{2} =ρf(Q,B)Γ1,\displaystyle=\rho_{f\left(Q,B\right)}^{\Gamma_{1}}, (60)
2H˙3H2\displaystyle-2\dot{H}-3H^{2} =pf(Q,B)Γ1,\displaystyle=p_{f\left(Q,B\right)}^{\Gamma_{1}}, (61)

in which

ρf(Q,B)Γ1\displaystyle\rho_{f\left(Q,B\right)}^{\Gamma_{1}} =(3ζ˙H+12V(ζ)),\displaystyle=-\left(3\dot{\zeta}H+\frac{1}{2}V\left(\zeta\right)\right), (62)
pf(Q,B)Γ1\displaystyle p_{f\left(Q,B\right)}^{\Gamma_{1}} =(ζ¨+12V(ζ)),\displaystyle=\left(\ddot{\zeta}+\frac{1}{2}V\left(\zeta\right)\right), (63)

and the scalar field ζ\zeta satisfies the equation of motion (41). Because the theory is equivalent to the teleparallel f(T,BT)=T+F(BT)f\left(T,B_{T}\right)=T+F\left(B_{T}\right) model, the results of the latter theory are valid for the the symmetric teleparallel theory with boundary term.

V.2 Connection Γ2\Gamma_{2}

For connection Γ2\Gamma_{2} defined in the non-coincidence gauge, the minisuperspace Lagrangian reads

L(N,a,a˙,ϕ,ϕ˙,ζ,ζ˙,ψ,ψ˙)=6Naa˙26Na2a˙ζ˙3a3ζ˙ψ˙N+Na3V(ζ),L\left(N,a,\dot{a},\phi,\dot{\phi},\zeta,\dot{\zeta},\psi,\dot{\psi}\right)=-\frac{6}{N}a\dot{a}^{2}-\frac{6}{N}a^{2}\dot{a}\dot{\zeta}-3a^{3}\frac{\dot{\zeta}\dot{\psi}}{N}+Na^{3}V\left(\zeta\right), (64)

in which γ=ψ˙\gamma=\dot{\psi}, ζ=f,B\zeta=f_{,B} and V(ϕ,ζ)=(ff,B)V\left(\phi,\zeta\right)=\left(f-f_{,B}\right).

For N=1N=1, modified Friedmann’s equations are

3H2\displaystyle 3H^{2} =ρf(Q,B)Γ2\displaystyle=\rho_{f\left(Q,B\right)}^{\Gamma_{2}} (65)
2H˙3H2\displaystyle-2\dot{H}-3H^{2} =pf(Q,B)Γ2,\displaystyle=p_{f\left(Q,B\right)}^{\Gamma_{2}}, (66)

with

ρf(Q,B)Γ2\displaystyle\rho_{f\left(Q,B\right)}^{\Gamma_{2}} =(3ζ˙H32ζ˙ψ˙+12V(ζ)),\displaystyle=-\left(3\dot{\zeta}H-\frac{3}{2}\dot{\zeta}\dot{\psi}+\frac{1}{2}V\left(\zeta\right)\right), (67)
pf(Q,B)Γ2\displaystyle p_{f\left(Q,B\right)}^{\Gamma_{2}} =(32ζ˙ψ˙+ζ¨+12V(ζ)),\displaystyle=\left(\frac{3}{2}\dot{\zeta}\dot{\psi}+\ddot{\zeta}+\frac{1}{2}V\left(\zeta\right)\right), (68)

where the scalar fields ζ\zeta and ψ\psi satisfy the field equations

0\displaystyle 0 =6H˙+18H29Hψ˙3ψ¨+V,ζ\displaystyle=6\dot{H}+18H^{2}-9H\dot{\psi}-3\ddot{\psi}+V_{,\zeta} (69)
0\displaystyle 0 =ζ¨+3Hζ˙.\displaystyle=\ddot{\zeta}+3H\dot{\zeta}. (70)

V.3 Connection Γ3\Gamma_{3}

For the connection Γ3\Gamma_{3} the minisuperspace Lagrangian becomes

L(N,a,a˙,ϕ,ϕ˙,ζ,ζ˙,Ψ,Ψ˙)=6Naa˙26Na2a˙ζ˙+3Naζ˙Ψ˙+Na3V(ζ).L\left(N,a,\dot{a},\phi,\dot{\phi},\zeta,\dot{\zeta},\Psi,\dot{\Psi}\right)=-\frac{6}{N}a\dot{a}^{2}-\frac{6}{N}a^{2}\dot{a}\dot{\zeta}+3Na\frac{\dot{\zeta}}{\dot{\Psi}}+Na^{3}V\left(\zeta\right). (71)

with γ=1Ψ˙\gamma=\frac{1}{\dot{\Psi}},, ζ=f,B\zeta=f_{,B} and V(ζ)=(ff,B)V\left(\zeta\right)=\left(f-f_{,B}\right).

Furthermore, for N=1N=1, the gravitational field equations are

3H2\displaystyle 3H^{2} =ρf(Q,B)Γ3\displaystyle=\rho_{f\left(Q,B\right)}^{\Gamma_{3}} (72)
2H˙3H2\displaystyle-2\dot{H}-3H^{2} =pf(Q,B)Γ3,\displaystyle=p_{f\left(Q,B\right)}^{\Gamma_{3}}, (73)

where

ρf(Q,B)Γk\displaystyle\rho_{f\left(Q,B\right)}^{\Gamma_{k}} =(3Hζ˙+32ζ˙a2Ψ˙+12V(ζ)),\displaystyle=-\left(3H\dot{\zeta}+\frac{3}{2}\frac{\dot{\zeta}}{a^{2}\dot{\Psi}}+\frac{1}{2}V\left(\zeta\right)\right), (74)
pf(Q,B)Γk\displaystyle p_{f\left(Q,B\right)}^{\Gamma_{k}} =V2+ζ˙8a2Ψ˙.\displaystyle=\frac{V}{2}+\frac{\dot{\zeta}}{8a^{2}\dot{\Psi}}. (75)
0=3ϕH2+3Hζ˙32(ϕ˙ζ˙)(1a2Ψ˙)+12V(ϕ,ζ),0=3\phi H^{2}+3H\dot{\zeta}-\frac{3}{2}\left(\dot{\phi}-\dot{\zeta}\right)\left(\frac{1}{a^{2}\dot{\Psi}}\right)+\frac{1}{2}V\left(\phi,\zeta\right), (76)

where the scalar fields ζ\zeta and Ψ\Psi satisfy the equations of motion

0=6H˙+18H2+V,ζ3a2Ψ˙2(HΨ˙Ψ¨),0=6\dot{H}+18H^{2}+V_{,\zeta}-\frac{3}{a^{2}\dot{\Psi}^{2}}\left(H\dot{\Psi}-\ddot{\Psi}\right), (77)
0=3Ψ˙ζ¨+ζ˙(Ψ˙H2Ψ¨).0=3\dot{\Psi}\ddot{\zeta}+\dot{\zeta}\left(\dot{\Psi}H-2\ddot{\Psi}\right). (78)

V.4 Connection Γk\Gamma_{k}

Finally, for the fourth connection Γk\Gamma_{k} where curvature is nonzero, the minisuperspace Lagrangian is written

L(N,a,a˙,ϕ,ϕ˙,ζ,ζ˙,Ψ,Ψ˙)=6Naa˙2+6Nak6Na2a˙ζ˙+3ζ˙(aNΨ˙ka3NΨ˙)+Na3V(ζ).L\left(N,a,\dot{a},\phi,\dot{\phi},\zeta,\dot{\zeta},\Psi,\dot{\Psi}\right)=-\frac{6}{N}a\dot{a}^{2}+6Nak-\frac{6}{N}a^{2}\dot{a}\dot{\zeta}+3\dot{\zeta}\left(a\frac{N}{\dot{\Psi}}-k\frac{a^{3}}{N}\dot{\Psi}\right)+Na^{3}V\left(\zeta\right). (79)

in which γ=1Ψ˙\gamma=\frac{1}{\dot{\Psi}},, ζ=f,B\zeta=f_{,B} and V(ζ)=(ff,B)V\left(\zeta\right)=\left(f-f_{,B}\right).

The gravitational field equations in the presence of curvature are

3(H2+ka2)\displaystyle 3\left(H^{2}+\frac{k}{a^{2}}\right) =Geffρf(Q,B)Γk,\displaystyle=G_{eff}\rho_{f\left(Q,B\right)}^{\Gamma_{k}}, (80)
2H˙3Hka2\displaystyle-2\dot{H}-3H-\frac{k}{a^{2}} =Geffpf(Q,B)Γk.\displaystyle=G_{eff}p_{f\left(Q,B\right)}^{\Gamma_{k}}. (81)

The energy density and pressure components of the geometric fluid are defined as

ρf(Q,B)Γk\displaystyle\rho_{f\left(Q,B\right)}^{\Gamma_{k}} =(3Hζ˙+32ζ˙(1a2Ψ˙+kΨ˙)+12V(ζ)),\displaystyle=-\left(3H\dot{\zeta}+\frac{3}{2}\dot{\zeta}\left(\frac{1}{a^{2}\dot{\Psi}}+k\dot{\Psi}\right)+\frac{1}{2}V\left(\zeta\right)\right), (82)
pf(Q,B)Γk\displaystyle p_{f\left(Q,B\right)}^{\Gamma_{k}} =V2+ζ˙2(14a2Ψ˙3k4Ψ˙).\displaystyle=\frac{V}{2}+\frac{\dot{\zeta}}{2}\left(\frac{1}{4a^{2}\dot{\Psi}}-\frac{3k}{4}\dot{\Psi}\right). (83)

For the scalar fields we derive the equations of motion

0=6H˙+9H(2H+kΨ˙)+3kΨ¨+V,ζ3a2Ψ˙2(HΨ˙Ψ¨),0=6\dot{H}+9H\left(2H+k\dot{\Psi}\right)+3k\ddot{\Psi}+V_{,\zeta}-\frac{3}{a^{2}\dot{\Psi}^{2}}\left(H\dot{\Psi}-\ddot{\Psi}\right), (84)
0=3aΨ˙(1+a2kΨ˙2)ζ¨+ζ˙(Ψ˙H(1+3a2kΨ˙2)2Ψ¨).0=3a\dot{\Psi}\left(1+a^{2}k\dot{\Psi}^{2}\right)\ddot{\zeta}+\dot{\zeta}\left(\dot{\Psi}H\left(1+3a^{2}k\dot{\Psi}^{2}\right)-2\ddot{\Psi}\right). (85)

From the above results we remark that in f(Q,B)=Q+F(B)f\left(Q,B\right)=Q+F\left(B\right) gravity the field equations are of fourth-order in the coincidence gauge and of sixth-order in the non-coincidence gauge.

VI New solution in the non-coincidence gauge

We focus on the field equations (65)-(70) for the connection Γ2\Gamma_{2} in the case of f(Q,B)=Q+F(B)f\left(Q,B\right)=Q+F\left(B\right) theory. From equation (70) we construct the conservation law

I0=a3ζ˙.I_{0}=a^{3}\dot{\zeta}. (86)

For the exponential potential V(ζ)=V0eλζV\left(\zeta\right)=V_{0}e^{\lambda\zeta}, i.e. F(B)=Bλln(BλV0)BλF\left(B\right)=-\frac{B}{\lambda}\ln\left(-\frac{B}{\lambda V_{0}}\right)-\frac{B}{\lambda}; we are able to write the second conservation law

I1=a2(2(λ3)a˙+a(λζ˙3ψ˙)).I_{1}=a^{2}\left(2\left(\lambda-3\right)\dot{a}+a\left(\lambda\dot{\zeta}-3\dot{\psi}\right)\right). (87)

In order to determine the latter conservation law we applied the method of variational symmetries which has been widely used in modified theories of gravity, for more details we refer the reader to nos1 ; nos2 and references therein.

With the use of the two conservation laws and of the constraint equation (65), the second Friedmann equation reads

2a5a¨2a2a˙(I0λ+a2a˙)I0(I0λI1)=0.2a^{5}\ddot{a}-2a^{2}\dot{a}\left(I_{0}\lambda+a^{2}\dot{a}\right)-I_{0}\left(I_{0}\lambda-I_{1}\right)=0. (88)

For I0λI1=0I_{0}\lambda-I_{1}=0, we are able to determine the closed form solution

a(t)=(a1ea0t+I0λ)13.a\left(t\right)=\left(a_{1}e^{a_{0}t}+I_{0}\lambda\right)^{\frac{1}{3}}. (89)

Consequently, the Hubble function is derived

H2(a)=(a03)22a0I0λ9a3+(I0λ)29a6.H^{2}\left(a\right)=\sqrt{\left(\frac{a_{0}}{3}\right)^{2}-\frac{2a_{0}I_{0}\lambda}{9}a^{-3}+\frac{\left(I_{0}\lambda\right)^{2}}{9}a^{-6}}. (90)

This analytic solution describes a universe with a cosmological constant, dark matter and a stiff fluid. Indeed when (I0λ)29a6\frac{\left(I_{0}\lambda\right)^{2}}{9}a^{-6} is neglected, i.e. (I0λ)29a60\frac{\left(I_{0}\lambda\right)^{2}}{9}a^{-6}\rightarrow 0 , the limit of Λ\LambdaCDM universe is recovered. Furthermore, we calculate the deceleration parameter

q(a)=23a3a3I0λ,q\left(a\right)=2-\frac{3a^{3}}{a^{3}-I_{0}\lambda}\text{,}

from where it follows that for large values of aa, q(a)1q\left(a\right)\rightarrow-1, that is, the de Sitter universe is recovered. Acceleration point is occurred when 2<3a3a3I0λ2<\frac{3a^{3}}{a^{3}-I_{0}\lambda}.

In order to solve equation (88) we apply the Lie symmetry analysis nos1 . We find that equation (88) is invariant under the action of the elements of a two-dimensional Lie algebra consisted by the vector fields X1=tX_{1}=\partial_{t} and X2=3tt+aaX_{2}=3t\partial_{t}+a\partial_{a}.  The application of the Lie invariants of X2X_{2} indicate the existence of the exact solution a(t)=a¯0t13a\left(t\right)=\bar{a}_{0}t^{\frac{1}{3}} with constraint equation 2a03(a03+λI0)=3I0(I0λI1)2a_{0}^{3}\left(a_{0}^{3}+\lambda I_{0}\right)=3I_{0}\left(I_{0}\lambda-I_{1}\right).

On the other hand, the application of the Lie symmetry vector X1X_{1} provides the reduced equation

dAda=I0(I1I0λ)2a5A3I0λa3A21aA,A(t)=1a˙.\frac{dA}{da}=\frac{I_{0}\left(I_{1}-I_{0}\lambda\right)}{2a^{5}}A^{3}-\frac{I_{0}\lambda}{a^{3}}A^{2}-\frac{1}{a}A~{},~{}A\left(t\right)=\frac{1}{\dot{a}}~{}. (91)

This is an Abel type equation.

In Figs. 1 and 2 we present the qualitative evolution of the deceleration parameter q=1H˙H2q=-1-\frac{\dot{H}}{H^{2}} and of the function γ=ψ˙\gamma=\dot{\psi}, as it is given after the numerical simulation of equation (88). We observe that the de Sitter universe is a future attractor for the cosmological model, and in the limit of the de Sitter universe connection Γ2\Gamma_{2} takes the form of Γ1\Gamma_{1}.

Refer to caption
Figure 1: Qualitative evolution for the effective deceleration parameter q=1H˙H2q=-1-\frac{\dot{H}}{H^{2}}~{}as it is given by the numerical solution of equation (88). The plots are for different values of the free parameters.
Refer to caption
Figure 2: Qualitative evolution for the function γ=ψ˙\gamma=\dot{\psi}~{}as it is given by the numerical solution of equation (88). The plots are for different values of the free parameters. We observe that as the solution reaches the de Sitter universe connection Γ2\Gamma_{2} reach to the limit of Γ1\Gamma_{1}.

VII Conclusions

We conducted a study on FLRW cosmology within the framework of symmetric teleparallel theory, considering boundary corrections in the gravitational Lagrangian. In this context, and for the four different families of connections, we determined the minisuperspace description of the field equations. To achieve this, we introduced Lagrange multipliers, enabling us to express the higher-order derivatives of the field equations in terms of scalar fields. As a result, we were able to recast the cosmological field equations into the equivalent form of multi-scalar field cosmology. In the case of connections defined in the non-coincidence gauge, f(Q,B)f(Q,B)-gravity is characterized by three scalar fields. However, in the limiting case of the f(Q,B)=Q+F(B)f(Q,B)=Q+F(B) model, the field equations are described by two scalar fields. Conversely, for the connection defined in the coincidence gauge, there exists only one scalar field, and the field equations are of fourth-order. It’s worth noting that f(Q)f(Q)-gravity introduces two scalar fields when the connection is defined in the non-coincidence gauge.

This scalar field description and the derivation of the minisuperspace representation are crucial for further investigations into the dynamic evolution of physical variables within the theory. Moreover, the minisuperspace Lagrangian can be employed to establish the Hamiltonian formalism of the model and derive the Wheeler-DeWitt equation of quantum cosmology.

To illustrate the practical application of the minisuperspace description, we employed the method of variational symmetries and successfully determined an integrable cosmological model. We were able to express the analytic solution in terms of the Abel equation. This particular cosmological model not only accounts for cosmic acceleration but also includes a dark matter component in the Hubble function.

These results suggest that f(Q,B)f(Q,B)-theory holds promise as a viable cosmological framework. However, one notable implication is the significant increase in degrees of freedom introduced by this theory. Therefore, the new scalar fields must be capable of describing a wide range of cosmological phenomena. In future work, we plan to investigate whether boundary correction terms in symmetric teleparallel theory can resolve cosmological tensions and whether the theory can provide explanations for eras in the cosmological history beyond late-time acceleration.

Data Availability Statements: Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Acknowledgements.
The author thanks the support of Vicerrectoría de Investigación y Desarrollo Tecnológico (Vridt) at Universidad Católica del Norte through Núcleo de Investigación Geometría Diferencial y Aplicaciones, Resolución Vridt No - 098/2022.

References

  • (1) B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), Phys. Rev. Lett. 116,  061102 (2016)
  • (2) K. Akiyama et al. (The Event Horizon Telescope Collaboration), ApJL 875, L1 (2019)
  • (3) E. Abdalla et. al. JHEAp 34, 49 (2022)
  • (4) E. Di Valentino etl. al. Astropart. Phys. 131, 102605 (2021)
  • (5) E. Di Valentino etl. al. Astropart. Phys. 131, 102604 (2021)
  • (6) A.G. Riess et al., Astron. J. 116, 1009 (1998)
  • (7) M. Tegmark et al., Astrophys. J. 606, 702 (2004)
  • (8) M. Kowalski et al., Astrophys. J. 686, 749 (2008)
  • (9) E. Komatsu et al., Astrophys. J. Suppl. Ser. 180, 330 (2009)
  • (10) N. Suzuki et al., Astrophys. J. 746, 85 (2012)
  • (11) P. Brax, Rep. Prog. Phys. 81, 016902 (2018)
  • (12) J. Yoo and Y. Watanabe, Int. J. Mod. Phys. D 21, 1230002 (2012)
  • (13) A.H. Guth, Phys. Rev. D 23, 347 (1981)
  • (14) P. Ratra and L. Peebles, Phys. Rev. D 37, 3406 (1988)
  • (15) V. Gorini, A. Kamenshchik and U. Moschella, Phys. Rev. D 67, 063509 (2003)
  • (16) J.S. Bagla, H.K. Jassal and T. Padmanabhan, Phys.Rev. D 67, 063504 (2003)
  • (17) M.C. Bento, O. Bertolami and A.A. Sen, Phys. Rev. D 70, 083519 (2004)
  • (18) J.D. Barrow and A. Paliathanasis, Phys. Rev. D 94, 083518 (2016)
  • (19) C. Deffayet, X. Gao, D.A. Steer and G. Zahariade, Phys. Rev. D 84, 064039 (2011)
  • (20) T. Clifton, P.G. Ferreira, A. Padilla and C. Skordis, Phys. Rept. 513, 1 (2012)
  • (21) S. Nojiri, S.D. Odintsov and V.K. Oikonomou, Phys.Rept. 692, 1 (2017)
  • (22) R. Ferraro and F. Fiorini, Phys. Rev. D 75, 084031 (2007)
  • (23) H. Nariai, Prog. Theor. Phys. 46, 433 (1971)
  • (24) F.C. Michel, Ann. Phys. 76, 281 (1973)
  • (25) H. Nariai and K. Tomita, Prog. Theor. Phys. 46, 776 (1971)
  • (26) G.V. Bicknell, J. Phys. A.: Math. Nucl. Gen. 7, 1061 (1974)
  • (27) J.D. Barrow, Nucl. Phys. B 296, 679 (1988)
  • (28) A.A. Starobinsky, Phys. Lett. B 91, 99 (1980)
  • (29) J.D. Barrow and S. Cotsakis, Phys. Lett. B 214, 515 (1988)
  • (30) V.R. Ivanov, S.V. Ketov, E.O. Pozdeeva and S.Yu. Vernov, JCAP 03, 058 (2022)
  • (31) J.D. Barrow and A.C. Ottewill, J. Phys. A: Math. Gen. 16, 2757 (1983)
  • (32) H.A. Buchdahl, Mon. Not. Roy. Astron. Soc. 150, 1 (1970)
  • (33) T.P. Sotiriou and V. Faraoni Rev. Mod. Phys. 82 451 (2010)
  • (34) L. Heisenberg, Phys. Reports 796, 1 (2019)
  • (35) J.B. Jimenez, L. Heisenberg, T. Koivisto and S. Pekar, Phys. Rev. D 101, 103507 (2020)
  • (36) J.M. Nester and H-J Yo, Chinese Journal of Physics 37, 113 (1999)
  • (37) M. Hohmann, Phys. Rev. D 104, 124077 (2021)
  • (38) R. Solanki, A. De, P.K. Sahoo, Phys. Dark Univ. 36, 100996 (2022)
  • (39) A. Lymperis, JCAP 11, 018 (2022)
  • (40) L. Atayde and N. Frusciante, Phys. Rev. D 104, 064052 (2021)
  • (41) N. Dimakis, A. Paliathanasis, M. Roumeliotis and T. Christodoulakis, Phys. Rev. D 106, 043509 (2022)
  • (42) B.J. Barros, T. Barreiro, T. Koivisto and N.J. Nunes, Phys. Dark Univ. 30, 100616 (2020)
  • (43) O. Sokoliuk, S. Arora, S. Praharaj, A. Baransky and P.K. Sahoo, Mon. Not. Roy. Astron. Soc. 522, 252 (2023)
  • (44) A. Paliathanasis, Phys. Dark Universe 41, 101255 (2023)
  • (45) S.K. Maurya, K.N. Singh, M. Govender, G. Mustafa and S. Ray, The effect of gravitational decoupling on constraining the mass and radius for the secondary component of GW190814 and other self-bound strange stars in f(Q)-gravity theory, [arXiv:2309.10130]
  • (46) W. Wang, H. Chen and T. Katsuragawa, Phys. Rev. D 105, 024060 (2022)
  • (47) F.K. Anagnostopoulos, S. Basilakos and E.N. Saridakis, Phys. Lett. B 822, 136634 (2021)
  • (48) F.K. Anagnostopoulos, V. Gakis, E.N. Saridakis, and S. Basilakos, EPJC 83, 58 (2023)
  • (49) S. Bahamonde, C.G. Bohmer and M. Wright, Phys. Rev. D 10, 104042 (2015)
  • (50) S. Capozziello, V. De Falco and C. Ferrara, The role of the boundary term in f(Q,B) symmetric teleparallel gravity, (2023) [arXiv:2307.13280]
  • (51) A. De, T.-H. Loo and E.N. Saridakis, Non-metricity with bounday terms: f(Q,C) gravity and cosmology, (2023) [arXiv:2308.00652]
  • (52) A. Paliathanais, N. Dimakis and T. Christodoulakis, Minisuperspace description of f(Q)-cosmology, (2023) [arXiv:2308.15207]
  • (53) Y.N. Obuklov and D. Puetzeld, Phys. Rev. D 104, 044031 (2021)
  • (54) L. P. Eisenhart, “Non-Riemannian Geometry”, American Mathematical Society, Colloquium Publications Vol. VIII, New York, (1927)
  • (55) R. Weitzenböck, Invarianten Theorie, Nordhoff, Groningen (1923)
  • (56) M. Wright, Phys. Rev. D 93, 103002 (2016)
  • (57) M. Caruana, G. Farrugia and J.L. Said, EPJC 80, 640 (2020)
  • (58) S. Bahamonde, A. Golovnev, M.-J. Guzmán, J.L. Said and C. Pfeifer, JCAP 01, 037 (2022)
  • (59) A. R. P. Moreira, J. E. G. Silva and C.A.S. EPJC 81, 298 (2021)
  • (60) A. Paliathanasis, JCAP 1708, 027 (2017)
  • (61) C. Escamilla-Rivera, J.L. Said, EPJC 80, 677 (2020)
  • (62) A. Paliathanasis and G. Leon, EPJC 81, 718 (2021)
  • (63) F. D’ Ambrosio, L. Heisenberg and S. Kuhn, Revisiting cosmologies in teleparallelism, Class. Quantum Grav. 39 025013 (2022)
  • (64) D. Zhao, Covariant formulation of f(Q) theory, Eur. Phys. J. C 82, 303 (2022)
  • (65) M. Tsamparlis and A. Paliathanasis, Symmetry 10, 233 (2018)
  • (66) P.A. Terzis, N. Dimakis, T. Christodoulakis, A. Paliathanasis and M. Tsamparlis, J. Geom. Phys. 101, 52 (2016)