This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

11institutetext: M. Sipper 22institutetext: Department of Computer Science, Ben-Gurion University, Beer Sheva 84105, Israel
22email: [email protected]
33institutetext: J. H. Moore 44institutetext: Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA 19104-6021, USA
This is a preprint of an article published in Genetic Programming and Evolvable Machines. The final authenticated version is available online at https://link.springer.com/10.1007/s10710-021-09400-0

Symbolic-Regression Boosting

Moshe Sipper Jason H. Moore
(Received: / Accepted: date)
Abstract

Modifying standard gradient boosting by replacing the embedded weak learner in favor of a strong(er) one, we present SyRBo: Symbolic-Regression Boosting. Experiments over 98 regression datasets show that by adding a small number of boosting stages—between 2–5—to a symbolic regressor, statistically significant improvements can often be attained. We note that coding SyRBo on top of any symbolic regressor is straightforward, and the added cost is simply a few more evolutionary rounds. SyRBo is essentially a simple add-on that can be readily added to an extant symbolic regressor, often with beneficial results.

1 Introduction

In machine learning, a weak learner is defined as a learner that can produce an hypothesis that performs only slightly better than random guessing, while a strong learner can with high probability output an hypothesis that is correct on all but an arbitrarily small fraction of the instances.

In his seminal paper, “The strength of weak learnability”, Schapire schapire1990strength described a method “for converting a weak learning algorithm into one that achieves arbitrarily high accuracy.” Over the years, a plethora of highly successful boosting algorithms that transform weak learners into strong ones have been devised Chen:2016 ; freund1997decision ; friedman2001greedy ; LightGBM2017 .

A recent rigorous benchmarking study of four symbolic regression algorithms versus nine machine learning approaches found that “symbolic regression performs strongly compared to state-of-the-art gradient boosting algorithms” (they also found that “in terms of running times [symbolic regression] is among the slowest of the available methodologies”) orzechowski2018 . Herein we wish to combine boosting with symbolic regression, asking whether gradient boosting might improve a strong(er) learner in the form of a symbolic regressor. We answer in the affirmative, demonstrating that improved results can be readily obtained, at relatively little added cost.

In the next section we describe our method and discuss related work. Section 3 presents the experimental setup and our results, followed by concluding remarks in Section 4.

2 Symbolic-Regression Boosting (SyRBo)

For our experiments we used the popular scikit-learn Python package scikit-learn ; sklearn-website due to its superb ability to handle much of the tedious desiderata of machine learning coding and experimentation. We then chose the GPLearn package stephens2019gplearn , which implements tree-based genetic programming (GP) symbolic regression, is relatively fast, and—importantly—interfaces seamlessly with scikit-learn.

The main idea behind SyRBo is simple: we replace the boosted weak learner of gradient boosting (typically a decision tree) with a (possibly) strong learner, specifically, a GP-based symbolic regressor.

Algorithm 1 provides the pseudocode (the code is available at https://github.com/moshesipper). SyRBo receives the number of boosting stages as a parameter (one might consider the actual number of stages to be one less, as the first stage performs the initial prediction). Fitting a model to data is done in a standard gradient-boosting manner, through successive stages, where each stage fits a learner to the pseudo-residuals of the previous stage; prediction is performed by summing up all learner predictions. The only change involves the learners themselves, which are not decision trees but rather symbolic regressors, evolved by calling the SymbolicRegressor function with the given population size and generation count (both set to 200). The function set used by SymbolicRegressor is given in Table 1. To facilitate the symbolic regressor’s handling of diverse features scales, the dataset rows undergo L2 normalization (i.e., the feature values in a row have a unit L2 norm).

Algorithm 1 SyRBo.
1:
2:
3:stages \leftarrow number of boosting stages
4:population_size \leftarrow 200
5:generations \leftarrow 200
6:
7:function init(stages, population_size, generations)
8:     Initialize an empty SyRBo object with given parameters
9:     boosters = {}  #\# Initialize an empty list of boosters
10:
11:function fit(X, y)  #\# X: training inputs, y: target values
12:     for  stage \leftarrow 0 to stages-1  do
13:         gp = SymbolicRegressor(population_size, generations)#\# Initialize a GP regressor
14:         gp.fit(X,y)#\# Fit regressor to (training) data
15:         Add gp to boosters#\# Add the fitted GP regressor to the list of boosters
16:         y = y - gp.predict(X)#\# Compute pseudo-residuals      
17:
18:function predict(X)  #\# X: inputs
19:     prediction = 0#\# Vector of zeros whose length equals number of instances in dataset
20:     for  i \leftarrow 0 to stages-1  do
21:         prediction = prediction + boosters[i].predict(X)      
22:     Return prediction
Table 1: Function set used by SymbolicRegressor.
Function Arity Description
add 2 addition
sub 2 subtraction
mul 2 multiplication
div 2 protected division (near-zero denominator returns 1)
sqrt 1 protected square root (uses absolute value of argument)
log 1 protected log (uses absolute value of argument, near-zero argument returns 0)
abs 1 absolute value
neg 1 negative
inv 1 protected inverse (near-zero argument returns 0)
max 2 maximum
min 2 minimum
if3 3 if3(x1,x2,x3)if3(x1,x2,x3) returns x2x2 if x10x1\geq 0 else returns x3x3
if4 4 if4(x1,x2,x3,x4)if4(x1,x2,x3,x4) returns x3x3 if x1x2x1\geq x2 else returns x4x4

We note that our aim herein was to demonstrate SyRBo’s being an add-on that can be added to any symbolic regressor. As such, this paper is not about symbolic regression per se, but about performance benefits to be gained if one is using it. We thus contented ourselves with the standard function set of gplearn (adding only 2 conditionals), with all other parameters set to defaults (except for population size and generation count).

Regarding previous work, it would seem that by and large the emphasis in boosting techniques has been on weak learners, typically decision trees. Works using strong learners in the context of boosting employed mainly AdaBoost-like freund1997decision boosting. Modest success was attained by fink2004mutual ; Harries1999 . wickramaratna2001performance showed that boosting a strong learner with AdaBoost may, in fact, contribute to performance degradation. Within the domain of GP, AdaBoost-like boosting of dataset sample weights has been used with some success iba1999bagging ; karakativc2018building ; oliveira2006using ; paris2001applying . Perhaps closest to our work is that of Oliveira2015 , who presented an interesting iterative approach, Sequential Symbolic Regression, wherein each iteration applies a transformation based on a geometric semantic crossover operator. In contrast, our work is based on gradient boosting, is more generic in that it can work with any form of symbolic regression, and is also easier to code and apply to any extant project.

3 Experimental Setup and Results

Can this (fairly) simple gradient boosting-like setup improve symbolic regression? We tested SyRBo on regression datasets from the PMLB repository orzechowski2018 , using our cluster of Intel® Xeon® E5-2650L servers. Of the 120 datasets we selected the 98 with 3000 instances or less. Figure 1 shows a “bird’s-eye view” of the datasets.

Refer to caption
Figure 1: A “bird’s-eye view” of the 98 datasets used in this study: number of instances (left) and number of features (right).

The pseudo-code for the experimental setup is given in Algorithm 2. For each dataset we performed 30 replicate runs, with 5-fold cross validation per replicate. SyRBo and SymbolicRegressor (with equal population size and generations) were trained on 4 folds and tested on the left-out test fold.

Algorithm 2 Experimental setup.
1:
2:
3:dataset \leftarrow dataset to be used
4:algorithms \leftarrow {SyRBo, SymbolicRegressor}
5:
6:Performance measures (over test sets)
7:
8:for  rep \leftarrow 1 to 30  do
9:     Shuffle dataset and generate 5 folds
10:     for  fold \leftarrow 1 to 5  do
11:         Split dataset into training and test sets according to fold
12:         for  alg in algorithms  do
13:              Use alg to fit a model to training set
14:              Test resultant model on test set               

For each of the 98 datasets we recorded the mean absolute error attained per algorithm over each of the 30 replicate runs, per each of the 5 test folds (i.e., following training). We ran 4 separate experiments, over all 98 datasets, with number of stages equal to 2, 3, 4, and 5, respectively.

Table 2 shows a summary of our results (detailed results can be found in the Appendix). For each dataset we computed the median of the test scores of all 30 replicates, with 5 folds per replicate (a total of 150 test-score values). A win for SyRBo was then a better (lower) median value than SymbolicRegressor. To assess whether a win for a specific dataset was significant or not, we performed a 10,000-round permutation test, comparing the scores of SyRBo with SymbolicRegressor; if the p-value was <0.05<0.05 the win was considered significant, else it was not (in which case SyRBo was at least not performing worse than SymbolicRegressor). In addition, when SyRBo “lost” to SymbolicRegressor we performed a 10,000-round permutation test, comparing the two algorithms’ scores; if the p-value was >=0.05>=0.05 the loss was considered insignificant.

Table 2: Results. Datasets: number of datasets. Stages: number of stages. Wins: number of datasets for which SyRBo’s result was better than SymbolicRegressor’s. Significant: number of datasets for which SyRBo’s win was significant according to permutation testing. Losses: number of datasets for which SyRBo’s result was worse than SymbolicRegressor’s. Insignificant: number of datasets for which SyRBo’s loss was insignificant according to permutation testing.
Datasets Stages Wins Significant Losses Insignificant
98 2 78 48 20 16
98 3 83 63 15 13
98 4 84 71 14 12
98 5 87 70 11 9

As seen in the table, statistically significant improvements can often be attained, and, moreover, rarely does SyRBo result in statistically significant worse results. Using SyRBo is thus a good bet, and, furthermore, it is easily coded and the added computational cost is not high.

4 Concluding Remarks

We presented SyRBo, a gradient boosting-style algorithm, wherein the decision tree is replaced by a symbolic regressor. Testing the merits of our new method we showed that symbolic regression results can be consistently improved. Moreover, as can be seen in Algorithm 1, coding SyRBo on top of any symbolic regressor is straightforward, and the added cost is simply a few more evolutionary rounds. SyRBo is essentially a simple add-on that can be readily added to a symbolic regressor, often with beneficial results.

There are a number of avenues we can offer for future exploration:

  • Add known boosting tricks of the trade, such as a learning rate and dynamic early stopping (similar to XGBRegressor’s ‘early stopping rounds’ parameter).

  • Our focus herein was on regression. It would seem worthwhile to examine SyRBo for classification.

  • We used a rather basic symbolic regressor. The GP literature is rife with many other types of regressors, which might be used in conjunction with SyRBo. More generally, other types of GP might offer productive ways to evolve programs that might serve as strong learners.

  • Comparison to non-symbolic-regressor methods.

  • While we focused on gradient boosting, other types of boosting techniques might be examined as to whether they might be a good fit for SyRBo.

Acknowledgments

This work was supported by National Institutes of Health (USA) grants LM010098, LM012601, AI116794. We thank Hagai Ravid for spotting an error in an earlier version of the code.

References

  • (1) Chen, T., Guestrin, C.: XGBoost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, pp. 785–794. ACM, New York, NY, USA (2016). DOI 10.1145/2939672.2939785. URL http://doi.acm.org/10.1145/2939672.2939785
  • (2) Fink, M., Perona, P.: Mutual boosting for contextual inference. In: Advances in neural information processing systems, pp. 1515–1522 (2004)
  • (3) Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences 55(1), 119–139 (1997)
  • (4) Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Annals of statistics pp. 1189–1232 (2001)
  • (5) GPLearn. https://gplearn.readthedocs.io/ (2020). Accessed: 2020-11-20
  • (6) Harries, M.B.: Boosting a strong learner: Evidence against the minimum margin. In: Proceedings of the Sixteenth International Conference on Machine Learning, ICML ’99, p. 171–180. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1999)
  • (7) Iba, H.: Bagging, boosting, and bloating in genetic programming. In: Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation-Volume 2, pp. 1053–1060 (1999)
  • (8) Karakatič, S., Podgorelec, V.: Building boosted classification tree ensemble with genetic programming. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 165–166 (2018)
  • (9) Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., Liu, T.Y.: LightGBM: A highly efficient gradient boosting decision tree. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17, p. 3149–3157. Curran Associates Inc., Red Hook, NY, USA (2017)
  • (10) Oliveira, E., Pozo, A., Vergilio, S.R.: Using boosting techniques to improve software reliability models based on genetic programming. In: 2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’06), pp. 643–650. IEEE (2006)
  • (11) Oliveira, L.O.V., Otero, F.E., Pappa, G.L., Albinati, J.: Sequential symbolic regression with genetic programming. In: R. Riolo, W.P. Worzel, M. Kotanchek (eds.) Genetic Programming Theory and Practice XII, pp. 73–90. Springer International Publishing, Cham (2015)
  • (12) Orzechowski, P., La Cava, W., Moore, J.H.: Where are we now? a large benchmark study of recent symbolic regression methods. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1183–1190 (2018)
  • (13) Paris, G., Robilliard, D., Fonlupt, C.: Applying boosting techniques to genetic programming. In: International Conference on Artificial Evolution (Evolution Artificielle), pp. 267–278. Springer (2001)
  • (14) Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)
  • (15) Schapire, R.E.: The strength of weak learnability. Machine learning 5(2), 197–227 (1990)
  • (16) Scikit-learn: Machine learning in Python. https://scikit-learn.org/ (2020). Accessed: 2020-11-20
  • (17) Wickramaratna, J., Holden, S., Buxton, B.: Performance degradation in boosting. In: International Workshop on Multiple Classifier Systems, pp. 11–21. Springer (2001)

Appendix: Detailed Results

The results of all experiments over all datasets are given in Tables 3,  4,  5, and 6 for number of stages equal to 2, 3, 4, and 5, respectively. As noted in Section 3, for each of the 98 datasets we recorded the mean absolute error attained per algorithm over each of the 30 replicate runs, per each of the 5 test folds. We then computed the median of these scores, which are presented under ‘mean absolute error’ in the tables. Under ‘pval’ we show the results of the 10,000-round permutation tests between the scores of SyRBo and SymbolicRegressor, with a ‘!’ denoting a significant win for SyRBo and a ‘=’ denoting an insignificant loss for SyRBo. Under ‘run times’ we show the median run times for SyRBo and SymbolicRegressor. ‘SR’ denotes SymbolicRegressor.

Table 3: 2-stage SyRBo: Results of all datasets.
dataset mean absolute error and pval run times
1027_ESL SyRBo: 1.02, SR: 1.04, pval: 9.5E-02 SyRBo: 59.89s, SR: 31.17s
1028_SWD SyRBo: 0.61, SR: 0.62, pval: 2.2E-01 SyRBo: 46.61s, SR: 23.87s
1029_LEV SyRBo: 0.62, SR: 0.65, pval: 0.0E+00 ! SyRBo: 54.6s, SR: 26.46s
1030_ERA SyRBo: 1.45, SR: 1.46, pval: 3.9E-01 SyRBo: 61.8s, SR: 30.06s
1089_USCrime SyRBo: 25.59, SR: 27.52, pval: 2.3E-01 SyRBo: 123.68s, SR: 73.81s
1096_FacultySalaries SyRBo: 3.56, SR: 3.63, pval: 6.2E-01 SyRBo: 61.05s, SR: 36.83s
192_vineyard SR: 2.44, SyRBo: 2.52, pval: 2.1E-01 = SyRBo: 66.24s, SR: 37.82s
195_auto_price SR: 1990.78, SyRBo: 2090.58, pval: 8.9E-02 = SyRBo: 316.35s, SR: 195.05s
207_autoPrice SR: 1955.88, SyRBo: 2093.54, pval: 2.8E-02 SyRBo: 424.44s, SR: 176.55s
210_cloud SR: 0.51, SyRBo: 0.52, pval: 4.1E-01 = SyRBo: 44.47s, SR: 22.64s
228_elusage SyRBo: 12.97, SR: 13.72, pval: 3.2E-01 SyRBo: 126.28s, SR: 89.94s
229_pwLinear SyRBo: 1.56, SR: 1.66, pval: 1.2E-02 ! SyRBo: 65.29s, SR: 35.59s
230_machine_cpu SyRBo: 43.04, SR: 45.95, pval: 1.2E-01 SyRBo: 166.36s, SR: 92.74s
4544_GeographicalOriginalofMusic SR: 0.49, SyRBo: 0.5, pval: 8.2E-02 = SyRBo: 62.38s, SR: 36.86s
485_analcatdata_vehicle SyRBo: 151.48, SR: 179.22, pval: 1.5E-03 ! SyRBo: 220.1s, SR: 135.99s
505_tecator SR: 5.17, SyRBo: 5.83, pval: 1.0E-02 SyRBo: 92.7s, SR: 51.74s
519_vinnie SR: 1.27, SyRBo: 1.31, pval: 1.3E-02 SyRBo: 64.34s, SR: 35.1s
522_pm10 SyRBo: 0.68, SR: 0.69, pval: 2.1E-01 SyRBo: 44.3s, SR: 22.12s
523_analcatdata_neavote SR: 0.51, SyRBo: 0.52, pval: 7.6E-01 = SyRBo: 59.63s, SR: 35.95s
527_analcatdata_election2000 SR: 38724.65, SyRBo: 39617.02, pval: 7.8E-01 = SyRBo: 562.68s, SR: 230.48s
542_pollution SR: 176.33, SyRBo: 185.12, pval: 5.9E-01 = SyRBo: 215.87s, SR: 141.38s
547_no2 SR: 0.58, SyRBo: 0.58, pval: 8.7E-01 = SyRBo: 57.51s, SR: 29.23s
556_analcatdata_apnea2 SR: 825.75, SyRBo: 840.89, pval: 7.3E-01 = SyRBo: 164.27s, SR: 68.58s
557_analcatdata_apnea1 SyRBo: 828.37, SR: 844.69, pval: 7.1E-01 SyRBo: 130.15s, SR: 50.06s
560_bodyfat SR: 4.21, SyRBo: 4.64, pval: 4.0E-04 SyRBo: 59.26s, SR: 33.41s
561_cpu SyRBo: 30.99, SR: 34.95, pval: 8.4E-02 SyRBo: 115.22s, SR: 77.02s
579_fri_c0_250_5 SyRBo: 0.42, SR: 0.45, pval: 0.0E+00 ! SyRBo: 53.18s, SR: 26.01s
581_fri_c3_500_25 SyRBo: 0.71, SR: 0.72, pval: 2.3E-03 ! SyRBo: 43.32s, SR: 21.5s
582_fri_c1_500_25 SyRBo: 0.7, SR: 0.72, pval: 3.8E-02 ! SyRBo: 53.82s, SR: 26.82s
583_fri_c1_1000_50 SyRBo: 0.73, SR: 0.74, pval: 1.5E-02 ! SyRBo: 61.81s, SR: 30.2s
584_fri_c4_500_25 SyRBo: 0.7, SR: 0.71, pval: 3.6E-02 ! SyRBo: 53.68s, SR: 26.69s
586_fri_c3_1000_25 SyRBo: 0.69, SR: 0.71, pval: 6.7E-03 ! SyRBo: 54.44s, SR: 27.13s
588_fri_c4_1000_100 SyRBo: 0.73, SR: 0.73, pval: 8.7E-01 SyRBo: 41.83s, SR: 21.16s
589_fri_c2_1000_25 SyRBo: 0.7, SR: 0.71, pval: 2.2E-02 ! SyRBo: 53.3s, SR: 26.58s
590_fri_c0_1000_50 SyRBo: 0.39, SR: 0.4, pval: 1.0E-02 ! SyRBo: 55.05s, SR: 28.77s
591_fri_c1_100_10 SyRBo: 0.71, SR: 0.73, pval: 1.6E-01 SyRBo: 55.02s, SR: 26.14s
592_fri_c4_1000_25 SyRBo: 0.72, SR: 0.72, pval: 2.2E-01 SyRBo: 52.62s, SR: 26.27s
593_fri_c1_1000_10 SyRBo: 0.65, SR: 0.71, pval: 0.0E+00 ! SyRBo: 54.59s, SR: 26.25s
594_fri_c2_100_5 SyRBo: 0.64, SR: 0.68, pval: 1.9E-02 ! SyRBo: 55.12s, SR: 27.14s
595_fri_c0_1000_10 SyRBo: 0.39, SR: 0.44, pval: 0.0E+00 ! SyRBo: 54.06s, SR: 27.02s
596_fri_c2_250_5 SyRBo: 0.63, SR: 0.68, pval: 0.0E+00 ! SyRBo: 45.99s, SR: 22.61s
597_fri_c2_500_5 SyRBo: 0.61, SR: 0.67, pval: 0.0E+00 ! SyRBo: 55.13s, SR: 26.54s
598_fri_c0_1000_25 SyRBo: 0.41, SR: 0.43, pval: 2.0E-04 ! SyRBo: 53.61s, SR: 27.51s
599_fri_c2_1000_5 SyRBo: 0.57, SR: 0.67, pval: 0.0E+00 ! SyRBo: 55.04s, SR: 26.24s
601_fri_c1_250_5 SyRBo: 0.58, SR: 0.65, pval: 0.0E+00 ! SyRBo: 55.37s, SR: 26.62s
602_fri_c3_250_10 SyRBo: 0.69, SR: 0.72, pval: 7.3E-03 ! SyRBo: 52.95s, SR: 25.94s
603_fri_c0_250_50 SyRBo: 0.4, SR: 0.4, pval: 9.6E-01 SyRBo: 42.83s, SR: 22.17s
604_fri_c4_500_10 SyRBo: 0.68, SR: 0.72, pval: 0.0E+00 ! SyRBo: 43.33s, SR: 21.33s
605_fri_c2_250_25 SyRBo: 0.69, SR: 0.69, pval: 7.7E-01 SyRBo: 44.26s, SR: 21.92s
606_fri_c2_1000_10 SyRBo: 0.64, SR: 0.67, pval: 0.0E+00 ! SyRBo: 54.98s, SR: 26.73s
607_fri_c4_1000_50 SyRBo: 0.72, SR: 0.73, pval: 1.7E-01 SyRBo: 43.72s, SR: 21.98s
608_fri_c3_1000_10 SyRBo: 0.66, SR: 0.7, pval: 0.0E+00 ! SyRBo: 57.53s, SR: 28.12s
609_fri_c0_1000_5 SyRBo: 0.41, SR: 0.44, pval: 0.0E+00 ! SyRBo: 42.59s, SR: 20.94s
611_fri_c3_100_5 SyRBo: 0.64, SR: 0.66, pval: 3.1E-01 SyRBo: 56.53s, SR: 27.55s
612_fri_c1_1000_5 SyRBo: 0.59, SR: 0.69, pval: 0.0E+00 ! SyRBo: 56.08s, SR: 26.31s
613_fri_c3_250_5 SyRBo: 0.59, SR: 0.62, pval: 0.0E+00 ! SyRBo: 54.03s, SR: 26.4s
615_fri_c4_250_10 SyRBo: 0.67, SR: 0.7, pval: 5.6E-03 ! SyRBo: 51.54s, SR: 25.62s
616_fri_c4_500_50 SyRBo: 0.74, SR: 0.74, pval: 9.6E-01 SyRBo: 52.4s, SR: 26.34s
617_fri_c3_500_5 SyRBo: 0.58, SR: 0.65, pval: 0.0E+00 ! SyRBo: 54.41s, SR: 26.8s
618_fri_c3_1000_50 SyRBo: 0.72, SR: 0.73, pval: 1.0E-01 SyRBo: 51.91s, SR: 26.01s
620_fri_c1_1000_25 SyRBo: 0.72, SR: 0.74, pval: 1.5E-03 ! SyRBo: 42.36s, SR: 21.08s
621_fri_c0_100_10 SyRBo: 0.44, SR: 0.47, pval: 2.9E-02 ! SyRBo: 43.37s, SR: 21.4s
622_fri_c2_1000_50 SyRBo: 0.72, SR: 0.73, pval: 1.4E-01 SyRBo: 44.87s, SR: 22.63s
623_fri_c4_1000_10 SyRBo: 0.64, SR: 0.69, pval: 0.0E+00 ! SyRBo: 53.96s, SR: 26.17s
624_fri_c0_100_5 SR: 0.46, SyRBo: 0.46, pval: 9.3E-01 = SyRBo: 43.75s, SR: 21.15s
626_fri_c2_500_50 SyRBo: 0.73, SR: 0.73, pval: 2.6E-01 SyRBo: 42.0s, SR: 21.23s
627_fri_c2_500_10 SyRBo: 0.63, SR: 0.69, pval: 0.0E+00 ! SyRBo: 52.34s, SR: 25.3s
628_fri_c3_1000_5 SyRBo: 0.59, SR: 0.66, pval: 0.0E+00 ! SyRBo: 56.7s, SR: 27.28s
631_fri_c1_500_5 SyRBo: 0.6, SR: 0.68, pval: 0.0E+00 ! SyRBo: 55.86s, SR: 26.53s
633_fri_c0_500_25 SyRBo: 0.4, SR: 0.42, pval: 0.0E+00 ! SyRBo: 51.78s, SR: 26.37s
634_fri_c2_100_10 SyRBo: 0.68, SR: 0.69, pval: 9.0E-01 SyRBo: 54.48s, SR: 26.52s
635_fri_c0_250_10 SyRBo: 0.44, SR: 0.52, pval: 0.0E+00 ! SyRBo: 43.65s, SR: 21.72s
637_fri_c1_500_50 SyRBo: 0.75, SR: 0.76, pval: 1.1E-01 SyRBo: 44.14s, SR: 22.12s
641_fri_c1_500_10 SyRBo: 0.67, SR: 0.74, pval: 0.0E+00 ! SyRBo: 54.06s, SR: 26.39s
643_fri_c2_500_25 SyRBo: 0.74, SR: 0.75, pval: 1.8E-01 SyRBo: 42.11s, SR: 20.85s
644_fri_c4_250_25 SyRBo: 0.73, SR: 0.74, pval: 4.2E-01 SyRBo: 41.93s, SR: 20.77s
645_fri_c3_500_50 SyRBo: 0.7, SR: 0.7, pval: 8.6E-01 SyRBo: 41.84s, SR: 20.81s
646_fri_c3_500_10 SyRBo: 0.64, SR: 0.68, pval: 1.0E-04 ! SyRBo: 52.88s, SR: 25.77s
647_fri_c1_250_10 SyRBo: 0.65, SR: 0.73, pval: 0.0E+00 ! SyRBo: 54.08s, SR: 25.95s
648_fri_c1_250_50 SyRBo: 0.72, SR: 0.73, pval: 3.8E-01 SyRBo: 52.98s, SR: 26.88s
649_fri_c0_500_5 SyRBo: 0.4, SR: 0.46, pval: 0.0E+00 ! SyRBo: 52.84s, SR: 25.93s
650_fri_c0_500_50 SyRBo: 0.38, SR: 0.39, pval: 2.7E-02 ! SyRBo: 52.92s, SR: 27.49s
651_fri_c0_100_25 SyRBo: 0.52, SR: 0.53, pval: 4.9E-01 SyRBo: 51.51s, SR: 25.99s
653_fri_c0_250_25 SyRBo: 0.4, SR: 0.41, pval: 8.7E-03 ! SyRBo: 53.46s, SR: 27.13s
654_fri_c0_500_10 SyRBo: 0.42, SR: 0.46, pval: 0.0E+00 ! SyRBo: 52.64s, SR: 26.29s
656_fri_c1_100_5 SyRBo: 0.57, SR: 0.66, pval: 0.0E+00 ! SyRBo: 55.37s, SR: 27.63s
657_fri_c2_250_10 SyRBo: 0.63, SR: 0.7, pval: 0.0E+00 ! SyRBo: 53.59s, SR: 25.96s
658_fri_c3_250_25 SyRBo: 0.73, SR: 0.75, pval: 1.6E-01 SyRBo: 51.63s, SR: 25.6s
659_sleuth_ex1714 SyRBo: 6745.19, SR: 8208.12, pval: 2.2E-02 ! SyRBo: 366.9s, SR: 179.81s
663_rabe_266 SR: 19.76, SyRBo: 20.19, pval: 4.7E-01 = SyRBo: 95.03s, SR: 54.36s
665_sleuth_case2002 SR: 5.08, SyRBo: 5.33, pval: 6.8E-02 = SyRBo: 53.61s, SR: 31.3s
666_rmftsa_ladata SR: 1.64, SyRBo: 1.64, pval: 9.2E-01 = SyRBo: 45.69s, SR: 25.33s
678_visualizing_environmental SyRBo: 2.46, SR: 2.51, pval: 4.4E-01 SyRBo: 50.56s, SR: 28.09s
687_sleuth_ex1605 SR: 13.26, SyRBo: 14.33, pval: 5.4E-02 = SyRBo: 90.32s, SR: 51.23s
690_visualizing_galaxy SyRBo: 259.23, SR: 461.52, pval: 0.0E+00 ! SyRBo: 263.2s, SR: 137.71s
695_chatfield_4 SR: 17.47, SyRBo: 17.81, pval: 4.0E-01 = SyRBo: 112.3s, SR: 57.87s
706_sleuth_case1202 SR: 48.76, SyRBo: 52.21, pval: 8.1E-02 = SyRBo: 120.17s, SR: 77.54s
712_chscase_geyser1 SyRBo: 8.3, SR: 9.0, pval: 1.0E-04 ! SyRBo: 71.33s, SR: 47.21s
Table 4: 3-stage SyRBo: Results of all datasets.
dataset mean absolute error and pval run times
1027_ESL SyRBo: 1.01, SR: 1.04, pval: 1.1E-02 ! SyRBo: 70.24s, SR: 24.65s
1028_SWD SyRBo: 0.61, SR: 0.62, pval: 1.7E-01 SyRBo: 70.79s, SR: 25.03s
1029_LEV SyRBo: 0.62, SR: 0.64, pval: 0.0E+00 ! SyRBo: 69.2s, SR: 22.65s
1030_ERA SyRBo: 1.43, SR: 1.46, pval: 2.0E-02 ! SyRBo: 72.45s, SR: 24.73s
1089_USCrime SyRBo: 25.31, SR: 27.01, pval: 1.8E-01 SyRBo: 134.46s, SR: 57.85s
1096_FacultySalaries SR: 3.57, SyRBo: 3.6, pval: 7.5E-01 = SyRBo: 74.28s, SR: 30.96s
192_vineyard SR: 2.42, SyRBo: 2.54, pval: 5.9E-02 = SyRBo: 72.9s, SR: 30.64s
195_auto_price SyRBo: 1955.32, SR: 2049.73, pval: 2.0E-01 SyRBo: 558.45s, SR: 164.11s
207_autoPrice SyRBo: 1945.66, SR: 1968.41, pval: 8.6E-01 SyRBo: 465.0s, SR: 133.33s
210_cloud SyRBo: 0.5, SR: 0.51, pval: 5.9E-01 SyRBo: 68.09s, SR: 23.48s
228_elusage SyRBo: 12.68, SR: 14.45, pval: 2.9E-03 ! SyRBo: 127.75s, SR: 64.49s
229_pwLinear SyRBo: 1.49, SR: 1.63, pval: 1.9E-03 ! SyRBo: 73.73s, SR: 27.64s
230_machine_cpu SyRBo: 40.74, SR: 44.23, pval: 1.2E-01 SyRBo: 244.09s, SR: 101.61s
4544_GeographicalOriginalofMusic SyRBo: 0.49, SR: 0.49, pval: 9.7E-01 SyRBo: 91.17s, SR: 38.4s
485_analcatdata_vehicle SyRBo: 155.87, SR: 184.07, pval: 5.8E-03 ! SyRBo: 363.3s, SR: 144.26s
505_tecator SR: 5.02, SyRBo: 5.35, pval: 1.8E-01 = SyRBo: 140.1s, SR: 60.43s
519_vinnie SR: 1.26, SyRBo: 1.27, pval: 5.5E-01 = SyRBo: 92.19s, SR: 35.46s
522_pm10 SyRBo: 0.67, SR: 0.69, pval: 3.1E-02 ! SyRBo: 81.01s, SR: 27.42s
523_analcatdata_neavote SyRBo: 0.49, SR: 0.5, pval: 5.4E-01 SyRBo: 91.61s, SR: 39.44s
527_analcatdata_election2000 SR: 42367.13, SyRBo: 42794.6, pval: 8.7E-01 = SyRBo: 782.84s, SR: 187.09s
542_pollution SR: 179.19, SyRBo: 183.2, pval: 6.9E-01 = SyRBo: 323.15s, SR: 137.38s
547_no2 SyRBo: 0.57, SR: 0.59, pval: 8.1E-03 ! SyRBo: 84.6s, SR: 28.94s
556_analcatdata_apnea2 SR: 838.3, SyRBo: 841.71, pval: 9.2E-01 = SyRBo: 253.91s, SR: 91.68s
557_analcatdata_apnea1 SR: 838.25, SyRBo: 871.41, pval: 4.8E-01 = SyRBo: 209.53s, SR: 55.88s
560_bodyfat SR: 4.23, SyRBo: 4.34, pval: 2.1E-01 = SyRBo: 104.88s, SR: 41.81s
561_cpu SyRBo: 30.41, SR: 33.93, pval: 1.8E-01 SyRBo: 208.96s, SR: 89.89s
579_fri_c0_250_5 SyRBo: 0.4, SR: 0.45, pval: 0.0E+00 ! SyRBo: 79.88s, SR: 25.77s
581_fri_c3_500_25 SyRBo: 0.7, SR: 0.72, pval: 3.1E-03 ! SyRBo: 79.92s, SR: 26.46s
582_fri_c1_500_25 SyRBo: 0.68, SR: 0.72, pval: 0.0E+00 ! SyRBo: 77.19s, SR: 25.52s
583_fri_c1_1000_50 SyRBo: 0.72, SR: 0.74, pval: 0.0E+00 ! SyRBo: 75.06s, SR: 25.16s
584_fri_c4_500_25 SyRBo: 0.68, SR: 0.71, pval: 0.0E+00 ! SyRBo: 75.45s, SR: 24.92s
586_fri_c3_1000_25 SyRBo: 0.68, SR: 0.7, pval: 0.0E+00 ! SyRBo: 79.06s, SR: 26.17s
588_fri_c4_1000_100 SyRBo: 0.72, SR: 0.73, pval: 1.7E-01 SyRBo: 78.02s, SR: 26.38s
589_fri_c2_1000_25 SyRBo: 0.68, SR: 0.71, pval: 0.0E+00 ! SyRBo: 79.93s, SR: 26.46s
590_fri_c0_1000_50 SyRBo: 0.37, SR: 0.41, pval: 0.0E+00 ! SyRBo: 80.78s, SR: 28.43s
591_fri_c1_100_10 SyRBo: 0.71, SR: 0.74, pval: 3.9E-02 ! SyRBo: 79.19s, SR: 25.39s
592_fri_c4_1000_25 SyRBo: 0.7, SR: 0.72, pval: 1.0E-04 ! SyRBo: 81.93s, SR: 27.1s
593_fri_c1_1000_10 SyRBo: 0.61, SR: 0.71, pval: 0.0E+00 ! SyRBo: 82.54s, SR: 26.59s
594_fri_c2_100_5 SyRBo: 0.64, SR: 0.71, pval: 0.0E+00 ! SyRBo: 80.74s, SR: 26.65s
595_fri_c0_1000_10 SyRBo: 0.35, SR: 0.44, pval: 0.0E+00 ! SyRBo: 82.43s, SR: 27.34s
596_fri_c2_250_5 SyRBo: 0.6, SR: 0.68, pval: 0.0E+00 ! SyRBo: 80.88s, SR: 26.18s
597_fri_c2_500_5 SyRBo: 0.58, SR: 0.68, pval: 0.0E+00 ! SyRBo: 81.55s, SR: 26.48s
598_fri_c0_1000_25 SyRBo: 0.36, SR: 0.43, pval: 0.0E+00 ! SyRBo: 80.75s, SR: 27.68s
599_fri_c2_1000_5 SyRBo: 0.56, SR: 0.66, pval: 0.0E+00 ! SyRBo: 83.39s, SR: 26.86s
601_fri_c1_250_5 SyRBo: 0.56, SR: 0.67, pval: 0.0E+00 ! SyRBo: 81.61s, SR: 26.23s
602_fri_c3_250_10 SyRBo: 0.68, SR: 0.72, pval: 0.0E+00 ! SyRBo: 78.76s, SR: 25.62s
603_fri_c0_250_50 SyRBo: 0.39, SR: 0.41, pval: 7.3E-03 ! SyRBo: 77.87s, SR: 27.07s
604_fri_c4_500_10 SyRBo: 0.66, SR: 0.71, pval: 0.0E+00 ! SyRBo: 79.58s, SR: 26.2s
605_fri_c2_250_25 SyRBo: 0.69, SR: 0.7, pval: 5.3E-01 SyRBo: 79.46s, SR: 26.31s
606_fri_c2_1000_10 SyRBo: 0.59, SR: 0.67, pval: 0.0E+00 ! SyRBo: 82.15s, SR: 26.38s
607_fri_c4_1000_50 SyRBo: 0.71, SR: 0.73, pval: 1.4E-02 ! SyRBo: 78.32s, SR: 26.14s
608_fri_c3_1000_10 SyRBo: 0.61, SR: 0.7, pval: 0.0E+00 ! SyRBo: 82.63s, SR: 26.62s
609_fri_c0_1000_5 SyRBo: 0.37, SR: 0.44, pval: 0.0E+00 ! SyRBo: 79.77s, SR: 25.95s
611_fri_c3_100_5 SyRBo: 0.61, SR: 0.67, pval: 8.0E-03 ! SyRBo: 84.03s, SR: 28.26s
612_fri_c1_1000_5 SyRBo: 0.55, SR: 0.69, pval: 0.0E+00 ! SyRBo: 82.23s, SR: 26.03s
613_fri_c3_250_5 SyRBo: 0.58, SR: 0.64, pval: 0.0E+00 ! SyRBo: 79.23s, SR: 25.57s
615_fri_c4_250_10 SyRBo: 0.66, SR: 0.7, pval: 0.0E+00 ! SyRBo: 79.95s, SR: 26.18s
616_fri_c4_500_50 SyRBo: 0.74, SR: 0.74, pval: 6.5E-01 SyRBo: 80.63s, SR: 26.95s
617_fri_c3_500_5 SyRBo: 0.57, SR: 0.65, pval: 0.0E+00 ! SyRBo: 80.92s, SR: 26.7s
618_fri_c3_1000_50 SyRBo: 0.71, SR: 0.73, pval: 4.0E-04 ! SyRBo: 78.7s, SR: 26.25s
620_fri_c1_1000_25 SyRBo: 0.7, SR: 0.73, pval: 0.0E+00 ! SyRBo: 79.9s, SR: 26.4s
621_fri_c0_100_10 SyRBo: 0.41, SR: 0.45, pval: 8.0E-03 ! SyRBo: 78.91s, SR: 25.96s
622_fri_c2_1000_50 SyRBo: 0.71, SR: 0.73, pval: 3.0E-04 ! SyRBo: 66.25s, SR: 22.17s
623_fri_c4_1000_10 SyRBo: 0.62, SR: 0.68, pval: 0.0E+00 ! SyRBo: 81.44s, SR: 26.48s
624_fri_c0_100_5 SyRBo: 0.42, SR: 0.47, pval: 0.0E+00 ! SyRBo: 78.17s, SR: 25.11s
626_fri_c2_500_50 SyRBo: 0.71, SR: 0.72, pval: 4.6E-01 SyRBo: 78.22s, SR: 26.39s
627_fri_c2_500_10 SyRBo: 0.61, SR: 0.69, pval: 0.0E+00 ! SyRBo: 85.52s, SR: 27.54s
628_fri_c3_1000_5 SyRBo: 0.59, SR: 0.66, pval: 0.0E+00 ! SyRBo: 86.2s, SR: 27.97s
631_fri_c1_500_5 SyRBo: 0.56, SR: 0.66, pval: 0.0E+00 ! SyRBo: 82.42s, SR: 26.2s
633_fri_c0_500_25 SyRBo: 0.37, SR: 0.43, pval: 0.0E+00 ! SyRBo: 78.32s, SR: 26.68s
634_fri_c2_100_10 SyRBo: 0.64, SR: 0.68, pval: 9.0E-04 ! SyRBo: 80.8s, SR: 26.22s
635_fri_c0_250_10 SyRBo: 0.39, SR: 0.52, pval: 0.0E+00 ! SyRBo: 61.06s, SR: 20.16s
637_fri_c1_500_50 SyRBo: 0.76, SR: 0.76, pval: 7.5E-01 SyRBo: 79.6s, SR: 26.58s
641_fri_c1_500_10 SyRBo: 0.62, SR: 0.73, pval: 0.0E+00 ! SyRBo: 81.02s, SR: 26.14s
643_fri_c2_500_25 SyRBo: 0.74, SR: 0.76, pval: 2.1E-02 ! SyRBo: 78.8s, SR: 26.08s
644_fri_c4_250_25 SyRBo: 0.72, SR: 0.74, pval: 2.0E-01 SyRBo: 80.38s, SR: 26.48s
645_fri_c3_500_50 SyRBo: 0.7, SR: 0.71, pval: 3.6E-01 SyRBo: 80.26s, SR: 26.57s
646_fri_c3_500_10 SyRBo: 0.63, SR: 0.69, pval: 0.0E+00 ! SyRBo: 80.1s, SR: 26.1s
647_fri_c1_250_10 SyRBo: 0.64, SR: 0.73, pval: 0.0E+00 ! SyRBo: 80.7s, SR: 26.13s
648_fri_c1_250_50 SyRBo: 0.74, SR: 0.74, pval: 8.4E-01 SyRBo: 77.4s, SR: 26.33s
649_fri_c0_500_5 SyRBo: 0.37, SR: 0.46, pval: 0.0E+00 ! SyRBo: 76.0s, SR: 24.91s
650_fri_c0_500_50 SyRBo: 0.37, SR: 0.4, pval: 0.0E+00 ! SyRBo: 82.74s, SR: 28.93s
651_fri_c0_100_25 SyRBo: 0.5, SR: 0.53, pval: 1.7E-02 ! SyRBo: 77.58s, SR: 26.06s
653_fri_c0_250_25 SyRBo: 0.37, SR: 0.41, pval: 0.0E+00 ! SyRBo: 62.56s, SR: 21.2s
654_fri_c0_500_10 SyRBo: 0.37, SR: 0.46, pval: 0.0E+00 ! SyRBo: 63.3s, SR: 20.95s
656_fri_c1_100_5 SyRBo: 0.55, SR: 0.65, pval: 0.0E+00 ! SyRBo: 87.52s, SR: 28.95s
657_fri_c2_250_10 SyRBo: 0.64, SR: 0.69, pval: 0.0E+00 ! SyRBo: 84.08s, SR: 27.15s
658_fri_c3_250_25 SyRBo: 0.73, SR: 0.74, pval: 1.4E-01 SyRBo: 77.71s, SR: 25.61s
659_sleuth_ex1714 SyRBo: 7231.48, SR: 7604.58, pval: 5.2E-01 SyRBo: 660.4s, SR: 183.78s
663_rabe_266 SR: 19.49, SyRBo: 20.01, pval: 2.4E-01 = SyRBo: 167.69s, SR: 72.88s
665_sleuth_case2002 SR: 5.3, SyRBo: 5.3, pval: 9.7E-01 = SyRBo: 97.79s, SR: 38.17s
666_rmftsa_ladata SyRBo: 1.58, SR: 1.62, pval: 3.0E-01 SyRBo: 83.81s, SR: 32.08s
678_visualizing_environmental SR: 2.44, SyRBo: 2.46, pval: 8.1E-01 = SyRBo: 72.36s, SR: 28.73s
687_sleuth_ex1605 SR: 13.04, SyRBo: 14.99, pval: 1.0E-04 SyRBo: 130.96s, SR: 46.48s
690_visualizing_galaxy SyRBo: 212.82, SR: 440.08, pval: 1.0E-04 ! SyRBo: 408.21s, SR: 125.28s
695_chatfield_4 SR: 16.79, SyRBo: 18.34, pval: 9.0E-03 SyRBo: 155.94s, SR: 57.64s
706_sleuth_case1202 SR: 49.57, SyRBo: 51.69, pval: 1.8E-01 = SyRBo: 172.97s, SR: 75.44s
712_chscase_geyser1 SyRBo: 8.2, SR: 8.88, pval: 0.0E+00 ! SyRBo: 100.15s, SR: 47.06s
Table 5: 4-stage SyRBo: Results of all datasets.
dataset mean absolute error and pval run times
1027_ESL SyRBo: 1.0, SR: 1.04, pval: 2.0E-04 ! SyRBo: 93.37s, SR: 24.88s
1028_SWD SyRBo: 0.61, SR: 0.62, pval: 1.3E-02 ! SyRBo: 93.66s, SR: 24.91s
1029_LEV SyRBo: 0.62, SR: 0.65, pval: 0.0E+00 ! SyRBo: 92.83s, SR: 22.9s
1030_ERA SyRBo: 1.42, SR: 1.45, pval: 2.0E-04 ! SyRBo: 96.63s, SR: 24.49s
1089_USCrime SyRBo: 25.17, SR: 25.74, pval: 7.2E-01 SyRBo: 168.69s, SR: 59.24s
1096_FacultySalaries SR: 3.51, SyRBo: 3.53, pval: 8.4E-01 = SyRBo: 87.13s, SR: 27.14s
192_vineyard SR: 2.34, SyRBo: 2.55, pval: 4.0E-02 SyRBo: 97.59s, SR: 31.41s
195_auto_price SyRBo: 1881.2, SR: 2047.73, pval: 8.4E-03 ! SyRBo: 606.2s, SR: 156.64s
207_autoPrice SyRBo: 1883.63, SR: 2046.39, pval: 6.0E-02 SyRBo: 759.26s, SR: 155.12s
210_cloud SyRBo: 0.49, SR: 0.5, pval: 9.4E-01 SyRBo: 89.57s, SR: 23.4s
228_elusage SyRBo: 12.45, SR: 14.36, pval: 6.0E-04 ! SyRBo: 176.15s, SR: 77.55s
229_pwLinear SyRBo: 1.49, SR: 1.59, pval: 1.4E-02 ! SyRBo: 111.62s, SR: 33.75s
230_machine_cpu SyRBo: 43.28, SR: 47.09, pval: 7.9E-02 SyRBo: 273.04s, SR: 91.55s
4544_GeographicalOriginalofMusic SyRBo: 0.49, SR: 0.49, pval: 2.9E-01 SyRBo: 117.26s, SR: 38.11s
485_analcatdata_vehicle SyRBo: 151.23, SR: 186.52, pval: 8.0E-04 ! SyRBo: 391.71s, SR: 131.13s
505_tecator SR: 5.01, SyRBo: 5.05, pval: 9.0E-01 = SyRBo: 161.8s, SR: 58.38s
519_vinnie SR: 1.26, SyRBo: 1.3, pval: 9.1E-02 = SyRBo: 118.67s, SR: 35.63s
522_pm10 SyRBo: 0.66, SR: 0.69, pval: 2.0E-04 ! SyRBo: 111.11s, SR: 28.72s
523_analcatdata_neavote SyRBo: 0.5, SR: 0.5, pval: 9.4E-01 SyRBo: 114.11s, SR: 37.29s
527_analcatdata_election2000 SR: 41409.25, SyRBo: 43867.25, pval: 4.9E-01 = SyRBo: 865.92s, SR: 160.52s
542_pollution SyRBo: 180.88, SR: 188.26, pval: 4.4E-01 SyRBo: 367.71s, SR: 141.35s
547_no2 SyRBo: 0.56, SR: 0.59, pval: 4.0E-04 ! SyRBo: 109.17s, SR: 28.85s
556_analcatdata_apnea2 SR: 869.07, SyRBo: 881.56, pval: 8.6E-01 = SyRBo: 238.22s, SR: 75.84s
557_analcatdata_apnea1 SyRBo: 861.47, SR: 869.01, pval: 9.1E-01 SyRBo: 215.12s, SR: 54.48s
560_bodyfat SR: 4.24, SyRBo: 4.37, pval: 3.0E-01 = SyRBo: 129.35s, SR: 40.74s
561_cpu SyRBo: 29.33, SR: 35.67, pval: 3.6E-03 ! SyRBo: 254.82s, SR: 95.29s
579_fri_c0_250_5 SyRBo: 0.38, SR: 0.45, pval: 0.0E+00 ! SyRBo: 83.29s, SR: 20.24s
581_fri_c3_500_25 SyRBo: 0.68, SR: 0.72, pval: 0.0E+00 ! SyRBo: 107.74s, SR: 26.62s
582_fri_c1_500_25 SyRBo: 0.66, SR: 0.72, pval: 0.0E+00 ! SyRBo: 83.86s, SR: 20.72s
583_fri_c1_1000_50 SyRBo: 0.7, SR: 0.74, pval: 0.0E+00 ! SyRBo: 107.04s, SR: 26.75s
584_fri_c4_500_25 SyRBo: 0.67, SR: 0.72, pval: 0.0E+00 ! SyRBo: 106.2s, SR: 26.11s
586_fri_c3_1000_25 SyRBo: 0.66, SR: 0.71, pval: 0.0E+00 ! SyRBo: 106.28s, SR: 26.3s
588_fri_c4_1000_100 SyRBo: 0.72, SR: 0.72, pval: 6.5E-01 SyRBo: 105.29s, SR: 26.7s
589_fri_c2_1000_25 SyRBo: 0.67, SR: 0.71, pval: 0.0E+00 ! SyRBo: 89.31s, SR: 22.21s
590_fri_c0_1000_50 SyRBo: 0.36, SR: 0.4, pval: 0.0E+00 ! SyRBo: 107.96s, SR: 28.67s
591_fri_c1_100_10 SyRBo: 0.68, SR: 0.74, pval: 6.6E-03 ! SyRBo: 107.71s, SR: 26.22s
592_fri_c4_1000_25 SyRBo: 0.69, SR: 0.72, pval: 0.0E+00 ! SyRBo: 104.6s, SR: 25.92s
593_fri_c1_1000_10 SyRBo: 0.58, SR: 0.71, pval: 0.0E+00 ! SyRBo: 84.35s, SR: 20.31s
594_fri_c2_100_5 SyRBo: 0.62, SR: 0.7, pval: 0.0E+00 ! SyRBo: 86.38s, SR: 21.38s
595_fri_c0_1000_10 SyRBo: 0.33, SR: 0.44, pval: 0.0E+00 ! SyRBo: 110.51s, SR: 27.53s
596_fri_c2_250_5 SyRBo: 0.59, SR: 0.69, pval: 0.0E+00 ! SyRBo: 106.65s, SR: 26.23s
597_fri_c2_500_5 SyRBo: 0.57, SR: 0.67, pval: 0.0E+00 ! SyRBo: 106.16s, SR: 26.2s
598_fri_c0_1000_25 SyRBo: 0.35, SR: 0.43, pval: 0.0E+00 ! SyRBo: 106.81s, SR: 27.65s
599_fri_c2_1000_5 SyRBo: 0.54, SR: 0.67, pval: 0.0E+00 ! SyRBo: 110.59s, SR: 26.69s
601_fri_c1_250_5 SyRBo: 0.53, SR: 0.66, pval: 0.0E+00 ! SyRBo: 106.99s, SR: 26.05s
602_fri_c3_250_10 SyRBo: 0.66, SR: 0.73, pval: 0.0E+00 ! SyRBo: 107.64s, SR: 26.21s
603_fri_c0_250_50 SyRBo: 0.39, SR: 0.4, pval: 2.9E-02 ! SyRBo: 104.74s, SR: 27.57s
604_fri_c4_500_10 SyRBo: 0.63, SR: 0.71, pval: 0.0E+00 ! SyRBo: 105.4s, SR: 25.79s
605_fri_c2_250_25 SyRBo: 0.68, SR: 0.7, pval: 6.7E-02 SyRBo: 103.7s, SR: 25.76s
606_fri_c2_1000_10 SyRBo: 0.57, SR: 0.68, pval: 0.0E+00 ! SyRBo: 110.65s, SR: 26.65s
607_fri_c4_1000_50 SyRBo: 0.72, SR: 0.73, pval: 6.9E-02 SyRBo: 111.03s, SR: 27.78s
608_fri_c3_1000_10 SyRBo: 0.59, SR: 0.7, pval: 0.0E+00 ! SyRBo: 118.4s, SR: 28.63s
609_fri_c0_1000_5 SyRBo: 0.34, SR: 0.44, pval: 0.0E+00 ! SyRBo: 116.25s, SR: 28.29s
611_fri_c3_100_5 SyRBo: 0.62, SR: 0.65, pval: 1.3E-02 ! SyRBo: 106.5s, SR: 26.92s
612_fri_c1_1000_5 SyRBo: 0.54, SR: 0.69, pval: 0.0E+00 ! SyRBo: 95.28s, SR: 22.96s
613_fri_c3_250_5 SyRBo: 0.56, SR: 0.64, pval: 0.0E+00 ! SyRBo: 85.81s, SR: 20.96s
615_fri_c4_250_10 SyRBo: 0.64, SR: 0.7, pval: 0.0E+00 ! SyRBo: 103.59s, SR: 25.5s
616_fri_c4_500_50 SyRBo: 0.73, SR: 0.74, pval: 7.3E-01 SyRBo: 101.64s, SR: 25.4s
617_fri_c3_500_5 SyRBo: 0.55, SR: 0.66, pval: 0.0E+00 ! SyRBo: 106.97s, SR: 26.56s
618_fri_c3_1000_50 SyRBo: 0.7, SR: 0.72, pval: 0.0E+00 ! SyRBo: 106.08s, SR: 26.47s
620_fri_c1_1000_25 SyRBo: 0.68, SR: 0.74, pval: 0.0E+00 ! SyRBo: 109.58s, SR: 27.21s
621_fri_c0_100_10 SyRBo: 0.4, SR: 0.45, pval: 0.0E+00 ! SyRBo: 103.48s, SR: 25.55s
622_fri_c2_1000_50 SyRBo: 0.71, SR: 0.73, pval: 6.0E-04 ! SyRBo: 106.03s, SR: 26.9s
623_fri_c4_1000_10 SyRBo: 0.6, SR: 0.69, pval: 0.0E+00 ! SyRBo: 109.83s, SR: 26.66s
624_fri_c0_100_5 SyRBo: 0.41, SR: 0.47, pval: 0.0E+00 ! SyRBo: 110.93s, SR: 26.78s
626_fri_c2_500_50 SyRBo: 0.72, SR: 0.73, pval: 8.7E-02 SyRBo: 104.49s, SR: 26.41s
627_fri_c2_500_10 SyRBo: 0.58, SR: 0.69, pval: 0.0E+00 ! SyRBo: 106.73s, SR: 25.88s
628_fri_c3_1000_5 SyRBo: 0.58, SR: 0.66, pval: 0.0E+00 ! SyRBo: 108.33s, SR: 26.76s
631_fri_c1_500_5 SyRBo: 0.54, SR: 0.67, pval: 0.0E+00 ! SyRBo: 107.88s, SR: 26.04s
633_fri_c0_500_25 SyRBo: 0.34, SR: 0.42, pval: 0.0E+00 ! SyRBo: 104.15s, SR: 26.69s
634_fri_c2_100_10 SyRBo: 0.67, SR: 0.71, pval: 7.3E-03 ! SyRBo: 106.29s, SR: 26.07s
635_fri_c0_250_10 SyRBo: 0.37, SR: 0.52, pval: 0.0E+00 ! SyRBo: 102.86s, SR: 25.5s
637_fri_c1_500_50 SyRBo: 0.74, SR: 0.76, pval: 5.0E-04 ! SyRBo: 104.06s, SR: 26.12s
641_fri_c1_500_10 SyRBo: 0.59, SR: 0.74, pval: 0.0E+00 ! SyRBo: 108.72s, SR: 26.43s
643_fri_c2_500_25 SyRBo: 0.71, SR: 0.76, pval: 0.0E+00 ! SyRBo: 105.35s, SR: 26.16s
644_fri_c4_250_25 SyRBo: 0.72, SR: 0.75, pval: 4.9E-03 ! SyRBo: 104.33s, SR: 25.79s
645_fri_c3_500_50 SR: 0.7, SyRBo: 0.7, pval: 7.6E-01 = SyRBo: 103.7s, SR: 25.8s
646_fri_c3_500_10 SyRBo: 0.61, SR: 0.69, pval: 0.0E+00 ! SyRBo: 91.22s, SR: 22.33s
647_fri_c1_250_10 SyRBo: 0.61, SR: 0.74, pval: 0.0E+00 ! SyRBo: 103.42s, SR: 25.12s
648_fri_c1_250_50 SyRBo: 0.72, SR: 0.75, pval: 2.1E-03 ! SyRBo: 108.59s, SR: 27.71s
649_fri_c0_500_5 SyRBo: 0.34, SR: 0.46, pval: 0.0E+00 ! SyRBo: 112.89s, SR: 27.46s
650_fri_c0_500_50 SyRBo: 0.36, SR: 0.39, pval: 0.0E+00 ! SyRBo: 85.82s, SR: 22.59s
651_fri_c0_100_25 SyRBo: 0.51, SR: 0.53, pval: 4.4E-02 ! SyRBo: 111.2s, SR: 28.12s
653_fri_c0_250_25 SyRBo: 0.36, SR: 0.41, pval: 0.0E+00 ! SyRBo: 83.61s, SR: 21.3s
654_fri_c0_500_10 SyRBo: 0.35, SR: 0.46, pval: 0.0E+00 ! SyRBo: 84.78s, SR: 21.04s
656_fri_c1_100_5 SyRBo: 0.54, SR: 0.64, pval: 0.0E+00 ! SyRBo: 86.37s, SR: 21.66s
657_fri_c2_250_10 SyRBo: 0.63, SR: 0.69, pval: 0.0E+00 ! SyRBo: 105.03s, SR: 25.64s
658_fri_c3_250_25 SyRBo: 0.72, SR: 0.75, pval: 8.2E-03 ! SyRBo: 103.48s, SR: 25.53s
659_sleuth_ex1714 SyRBo: 6437.7, SR: 7641.02, pval: 7.0E-03 ! SyRBo: 723.0s, SR: 171.93s
663_rabe_266 SR: 19.85, SyRBo: 20.79, pval: 6.7E-02 = SyRBo: 188.09s, SR: 66.1s
665_sleuth_case2002 SR: 5.06, SyRBo: 5.15, pval: 4.3E-01 = SyRBo: 125.81s, SR: 37.11s
666_rmftsa_ladata SyRBo: 1.58, SR: 1.65, pval: 3.1E-02 ! SyRBo: 110.41s, SR: 31.81s
678_visualizing_environmental SR: 2.44, SyRBo: 2.46, pval: 8.1E-01 = SyRBo: 116.57s, SR: 35.84s
687_sleuth_ex1605 SR: 13.27, SyRBo: 15.03, pval: 1.5E-03 SyRBo: 187.9s, SR: 58.29s
690_visualizing_galaxy SyRBo: 219.9, SR: 470.38, pval: 0.0E+00 ! SyRBo: 599.04s, SR: 171.58s
695_chatfield_4 SR: 16.84, SyRBo: 17.27, pval: 4.3E-01 = SyRBo: 245.5s, SR: 82.54s
706_sleuth_case1202 SR: 46.85, SyRBo: 48.25, pval: 2.8E-01 = SyRBo: 286.46s, SR: 95.73s
712_chscase_geyser1 SyRBo: 8.27, SR: 9.11, pval: 0.0E+00 ! SyRBo: 114.63s, SR: 43.05s
Table 6: 5-stage SyRBo: Results of all datasets.
dataset mean absolute error and pval run times
1027_ESL SyRBo: 0.99, SR: 1.04, pval: 0.0E+00 ! SyRBo: 138.45s, SR: 30.02s
1028_SWD SyRBo: 0.6, SR: 0.62, pval: 3.2E-02 ! SyRBo: 112.18s, SR: 24.21s
1029_LEV SyRBo: 0.61, SR: 0.65, pval: 0.0E+00 ! SyRBo: 108.52s, SR: 21.54s
1030_ERA SyRBo: 1.41, SR: 1.46, pval: 0.0E+00 ! SyRBo: 114.87s, SR: 23.88s
1089_USCrime SR: 25.79, SyRBo: 26.52, pval: 6.2E-01 = SyRBo: 244.05s, SR: 70.49s
1096_FacultySalaries SR: 3.44, SyRBo: 3.66, pval: 2.0E-01 = SyRBo: 137.41s, SR: 36.12s
192_vineyard SR: 2.45, SyRBo: 2.53, pval: 2.7E-01 = SyRBo: 145.21s, SR: 37.57s
195_auto_price SyRBo: 1846.49, SR: 1984.64, pval: 2.5E-02 ! SyRBo: 1136.73s, SR: 181.96s
207_autoPrice SyRBo: 1917.2, SR: 2004.04, pval: 3.0E-01 SyRBo: 840.85s, SR: 146.49s
210_cloud SyRBo: 0.5, SR: 0.51, pval: 5.9E-01 SyRBo: 136.83s, SR: 28.6s
228_elusage SyRBo: 11.83, SR: 13.25, pval: 8.6E-03 ! SyRBo: 168.85s, SR: 59.4s
229_pwLinear SyRBo: 1.49, SR: 1.58, pval: 4.6E-02 ! SyRBo: 147.58s, SR: 35.66s
230_machine_cpu SyRBo: 41.55, SR: 47.64, pval: 6.6E-03 ! SyRBo: 302.39s, SR: 89.29s
4544_GeographicalOriginalofMusic SyRBo: 0.49, SR: 0.5, pval: 5.6E-01 SyRBo: 139.81s, SR: 37.08s
485_analcatdata_vehicle SyRBo: 152.36, SR: 185.49, pval: 6.0E-04 ! SyRBo: 402.2s, SR: 123.11s
505_tecator SyRBo: 5.03, SR: 5.42, pval: 9.3E-02 SyRBo: 192.01s, SR: 56.36s
519_vinnie SR: 1.26, SyRBo: 1.28, pval: 2.0E-01 = SyRBo: 144.14s, SR: 34.81s
522_pm10 SyRBo: 0.66, SR: 0.69, pval: 0.0E+00 ! SyRBo: 109.71s, SR: 22.76s
523_analcatdata_neavote SyRBo: 0.5, SR: 0.51, pval: 2.4E-01 SyRBo: 145.96s, SR: 40.78s
527_analcatdata_election2000 SyRBo: 41978.87, SR: 42335.38, pval: 9.2E-01 SyRBo: 1276.47s, SR: 189.6s
542_pollution SyRBo: 184.53, SR: 186.47, pval: 8.6E-01 SyRBo: 482.44s, SR: 152.25s
547_no2 SyRBo: 0.56, SR: 0.59, pval: 1.2E-03 ! SyRBo: 149.77s, SR: 32.23s
556_analcatdata_apnea2 SyRBo: 831.42, SR: 837.88, pval: 9.0E-01 SyRBo: 374.25s, SR: 108.94s
557_analcatdata_apnea1 SR: 833.02, SyRBo: 845.73, pval: 7.5E-01 = SyRBo: 333.67s, SR: 66.34s
560_bodyfat SyRBo: 4.26, SR: 4.28, pval: 9.1E-01 SyRBo: 127.64s, SR: 31.6s
561_cpu SyRBo: 28.02, SR: 32.76, pval: 2.5E-02 ! SyRBo: 268.56s, SR: 94.84s
579_fri_c0_250_5 SyRBo: 0.38, SR: 0.45, pval: 0.0E+00 ! SyRBo: 127.54s, SR: 24.79s
581_fri_c3_500_25 SyRBo: 0.68, SR: 0.72, pval: 0.0E+00 ! SyRBo: 105.16s, SR: 20.78s
582_fri_c1_500_25 SyRBo: 0.66, SR: 0.71, pval: 0.0E+00 ! SyRBo: 104.49s, SR: 20.64s
583_fri_c1_1000_50 SyRBo: 0.7, SR: 0.74, pval: 0.0E+00 ! SyRBo: 109.61s, SR: 21.76s
584_fri_c4_500_25 SyRBo: 0.66, SR: 0.71, pval: 0.0E+00 ! SyRBo: 131.15s, SR: 26.05s
586_fri_c3_1000_25 SyRBo: 0.67, SR: 0.7, pval: 0.0E+00 ! SyRBo: 111.2s, SR: 21.99s
588_fri_c4_1000_100 SyRBo: 0.72, SR: 0.72, pval: 5.1E-01 SyRBo: 109.24s, SR: 21.66s
589_fri_c2_1000_25 SyRBo: 0.67, SR: 0.71, pval: 0.0E+00 ! SyRBo: 131.08s, SR: 26.12s
590_fri_c0_1000_50 SyRBo: 0.35, SR: 0.4, pval: 0.0E+00 ! SyRBo: 130.53s, SR: 27.88s
591_fri_c1_100_10 SyRBo: 0.68, SR: 0.74, pval: 1.1E-02 ! SyRBo: 108.96s, SR: 21.35s
592_fri_c4_1000_25 SyRBo: 0.68, SR: 0.72, pval: 0.0E+00 ! SyRBo: 106.21s, SR: 20.99s
593_fri_c1_1000_10 SyRBo: 0.55, SR: 0.71, pval: 0.0E+00 ! SyRBo: 108.31s, SR: 20.94s
594_fri_c2_100_5 SyRBo: 0.61, SR: 0.68, pval: 0.0E+00 ! SyRBo: 111.13s, SR: 22.03s
595_fri_c0_1000_10 SyRBo: 0.31, SR: 0.44, pval: 0.0E+00 ! SyRBo: 106.28s, SR: 21.17s
596_fri_c2_250_5 SyRBo: 0.58, SR: 0.69, pval: 0.0E+00 ! SyRBo: 104.44s, SR: 20.42s
597_fri_c2_500_5 SyRBo: 0.55, SR: 0.67, pval: 0.0E+00 ! SyRBo: 106.51s, SR: 20.93s
598_fri_c0_1000_25 SyRBo: 0.33, SR: 0.43, pval: 0.0E+00 ! SyRBo: 107.87s, SR: 22.01s
599_fri_c2_1000_5 SyRBo: 0.53, SR: 0.67, pval: 0.0E+00 ! SyRBo: 107.85s, SR: 20.91s
601_fri_c1_250_5 SyRBo: 0.52, SR: 0.66, pval: 0.0E+00 ! SyRBo: 132.58s, SR: 25.88s
602_fri_c3_250_10 SyRBo: 0.63, SR: 0.72, pval: 0.0E+00 ! SyRBo: 103.12s, SR: 19.87s
603_fri_c0_250_50 SyRBo: 0.38, SR: 0.41, pval: 0.0E+00 ! SyRBo: 104.63s, SR: 21.89s
604_fri_c4_500_10 SyRBo: 0.62, SR: 0.72, pval: 0.0E+00 ! SyRBo: 107.77s, SR: 21.26s
605_fri_c2_250_25 SyRBo: 0.67, SR: 0.7, pval: 5.1E-03 ! SyRBo: 100.7s, SR: 20.1s
606_fri_c2_1000_10 SyRBo: 0.56, SR: 0.68, pval: 0.0E+00 ! SyRBo: 132.9s, SR: 25.78s
607_fri_c4_1000_50 SyRBo: 0.71, SR: 0.73, pval: 3.3E-02 ! SyRBo: 128.27s, SR: 25.68s
608_fri_c3_1000_10 SyRBo: 0.57, SR: 0.7, pval: 0.0E+00 ! SyRBo: 137.65s, SR: 26.7s
609_fri_c0_1000_5 SyRBo: 0.33, SR: 0.44, pval: 0.0E+00 ! SyRBo: 137.83s, SR: 26.65s
611_fri_c3_100_5 SyRBo: 0.61, SR: 0.66, pval: 3.3E-03 ! SyRBo: 133.97s, SR: 27.56s
612_fri_c1_1000_5 SyRBo: 0.53, SR: 0.68, pval: 0.0E+00 ! SyRBo: 142.24s, SR: 27.26s
613_fri_c3_250_5 SyRBo: 0.56, SR: 0.65, pval: 0.0E+00 ! SyRBo: 138.42s, SR: 27.06s
615_fri_c4_250_10 SyRBo: 0.64, SR: 0.7, pval: 0.0E+00 ! SyRBo: 105.66s, SR: 20.78s
616_fri_c4_500_50 SyRBo: 0.73, SR: 0.74, pval: 3.6E-01 SyRBo: 129.48s, SR: 25.82s
617_fri_c3_500_5 SyRBo: 0.55, SR: 0.64, pval: 0.0E+00 ! SyRBo: 134.39s, SR: 26.93s
618_fri_c3_1000_50 SyRBo: 0.71, SR: 0.73, pval: 1.8E-03 ! SyRBo: 128.38s, SR: 25.71s
620_fri_c1_1000_25 SyRBo: 0.66, SR: 0.74, pval: 0.0E+00 ! SyRBo: 128.35s, SR: 25.35s
621_fri_c0_100_10 SyRBo: 0.39, SR: 0.47, pval: 0.0E+00 ! SyRBo: 125.76s, SR: 24.98s
622_fri_c2_1000_50 SyRBo: 0.7, SR: 0.73, pval: 0.0E+00 ! SyRBo: 130.39s, SR: 26.39s
623_fri_c4_1000_10 SyRBo: 0.58, SR: 0.69, pval: 0.0E+00 ! SyRBo: 137.99s, SR: 26.69s
624_fri_c0_100_5 SyRBo: 0.41, SR: 0.47, pval: 0.0E+00 ! SyRBo: 132.62s, SR: 25.69s
626_fri_c2_500_50 SyRBo: 0.71, SR: 0.73, pval: 8.3E-02 SyRBo: 127.3s, SR: 25.7s
627_fri_c2_500_10 SyRBo: 0.58, SR: 0.69, pval: 0.0E+00 ! SyRBo: 129.13s, SR: 25.24s
628_fri_c3_1000_5 SyRBo: 0.57, SR: 0.66, pval: 0.0E+00 ! SyRBo: 108.94s, SR: 21.41s
631_fri_c1_500_5 SyRBo: 0.54, SR: 0.68, pval: 0.0E+00 ! SyRBo: 136.54s, SR: 26.34s
633_fri_c0_500_25 SyRBo: 0.33, SR: 0.43, pval: 0.0E+00 ! SyRBo: 101.34s, SR: 20.79s
634_fri_c2_100_10 SyRBo: 0.64, SR: 0.7, pval: 8.9E-03 ! SyRBo: 135.04s, SR: 26.73s
635_fri_c0_250_10 SyRBo: 0.36, SR: 0.51, pval: 0.0E+00 ! SyRBo: 132.75s, SR: 26.19s
637_fri_c1_500_50 SyRBo: 0.75, SR: 0.76, pval: 1.6E-01 SyRBo: 132.3s, SR: 26.57s
641_fri_c1_500_10 SyRBo: 0.57, SR: 0.73, pval: 0.0E+00 ! SyRBo: 128.61s, SR: 25.01s
643_fri_c2_500_25 SyRBo: 0.72, SR: 0.75, pval: 8.3E-03 ! SyRBo: 105.24s, SR: 20.85s
644_fri_c4_250_25 SyRBo: 0.7, SR: 0.74, pval: 2.5E-03 ! SyRBo: 129.54s, SR: 25.53s
645_fri_c3_500_50 SyRBo: 0.69, SR: 0.71, pval: 2.4E-02 ! SyRBo: 125.64s, SR: 24.97s
646_fri_c3_500_10 SyRBo: 0.58, SR: 0.69, pval: 0.0E+00 ! SyRBo: 134.8s, SR: 26.19s
647_fri_c1_250_10 SyRBo: 0.6, SR: 0.74, pval: 0.0E+00 ! SyRBo: 105.11s, SR: 20.46s
648_fri_c1_250_50 SyRBo: 0.73, SR: 0.74, pval: 5.4E-01 SyRBo: 128.78s, SR: 26.5s
649_fri_c0_500_5 SyRBo: 0.34, SR: 0.46, pval: 0.0E+00 ! SyRBo: 129.74s, SR: 25.21s
650_fri_c0_500_50 SyRBo: 0.34, SR: 0.39, pval: 0.0E+00 ! SyRBo: 128.54s, SR: 27.19s
651_fri_c0_100_25 SyRBo: 0.51, SR: 0.53, pval: 4.6E-02 ! SyRBo: 131.91s, SR: 26.73s
653_fri_c0_250_25 SyRBo: 0.35, SR: 0.41, pval: 0.0E+00 ! SyRBo: 127.19s, SR: 26.07s
654_fri_c0_500_10 SyRBo: 0.34, SR: 0.46, pval: 0.0E+00 ! SyRBo: 108.92s, SR: 21.67s
656_fri_c1_100_5 SyRBo: 0.55, SR: 0.64, pval: 0.0E+00 ! SyRBo: 141.71s, SR: 28.99s
657_fri_c2_250_10 SyRBo: 0.62, SR: 0.68, pval: 0.0E+00 ! SyRBo: 129.88s, SR: 25.33s
658_fri_c3_250_25 SyRBo: 0.73, SR: 0.74, pval: 1.2E-01 SyRBo: 125.15s, SR: 24.64s
659_sleuth_ex1714 SyRBo: 6464.12, SR: 7876.73, pval: 5.2E-02 SyRBo: 976.99s, SR: 183.76s
663_rabe_266 SR: 19.33, SyRBo: 20.57, pval: 1.4E-02 SyRBo: 212.59s, SR: 60.57s
665_sleuth_case2002 SR: 5.18, SyRBo: 5.37, pval: 4.0E-01 = SyRBo: 148.57s, SR: 37.37s
666_rmftsa_ladata SyRBo: 1.59, SR: 1.63, pval: 1.6E-01 SyRBo: 134.26s, SR: 32.33s
678_visualizing_environmental SR: 2.42, SyRBo: 2.49, pval: 6.4E-01 = SyRBo: 138.89s, SR: 34.34s
687_sleuth_ex1605 SR: 13.24, SyRBo: 14.84, pval: 1.1E-03 SyRBo: 217.53s, SR: 61.9s
690_visualizing_galaxy SyRBo: 205.0, SR: 444.22, pval: 0.0E+00 ! SyRBo: 739.6s, SR: 171.47s
695_chatfield_4 SR: 17.49, SyRBo: 18.39, pval: 6.1E-02 = SyRBo: 253.22s, SR: 80.88s
706_sleuth_case1202 SR: 48.42, SyRBo: 52.14, pval: 1.5E-01 = SyRBo: 331.85s, SR: 85.21s
712_chscase_geyser1 SyRBo: 8.32, SR: 8.9, pval: 3.0E-04 ! SyRBo: 178.29s, SR: 57.9s