This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Surprisal Driven kk-NN for Robust and Interpretable Nonparametric Learning

Amartya Banerjee    Christopher J. Hazard    Jacob Beel    Cade Mack    Jack Xia    Michael Resnick    Will Goddin
Abstract

Nonparametric learning is a fundamental concept in machine learning that aims to capture complex patterns and relationships in data without making strong assumptions about the underlying data distribution. Owing to simplicity and familiarity, one of the most well-known algorithms under this paradigm is the kk-nearest neighbors (kk-NN) algorithm. Driven by the usage of machine learning in safety-critical applications, in this work, we shed new light on the traditional nearest neighbors algorithm from the perspective of information theory and propose a robust and interpretable framework for tasks such as classification, regression, density estimation, and anomaly detection using a single model. We can determine data point weights as well as feature contributions by calculating the conditional entropy for adding a feature without the need for explicit model training. This allows us to compute feature contributions by providing detailed data point influence weights with perfect attribution and can be used to query counterfactuals. Instead of using a traditional distance measure which needs to be scaled and contextualized, we use a novel formulation of surprisal (amount of information required to explain the difference between the observed and expected result). Finally, our work showcases the architecture’s versatility by achieving state-of-the-art results in classification and anomaly detection, while also attaining competitive results for regression across a statistically significant number of datasets.

Machine Learning, ICML

1 Introduction

Nonparametric methods, such as kk-Nearest Neighbors (kk-NN), have been studied and applied in various domains of statistics and machine learning. Unlike parametric models, nonparametric methods do not rely on a fixed number of parameters or make strict distributional assumptions about the underlying data. This allows for algorithms to flexibly adapt to different types of data and capture intricate structures. First proposed by (Fix & Hodges, 1951), and (Cover & Hart, 1967), kk-NN has seen several modifications and evolutions over the past decades (Aha et al., 1991; Wang et al., 2009; Hastie et al., 2009; Alpaydın, 1999). Despite these advancements, kk-NN still has some disadvantages. For example, the curse of dimensionality (Hastie et al., 2009; Indyk & Motwani, 1998; Schuh et al., 2013; Tao et al., 2009), the selection of a distance metric (Prasath et al., 2017), and imbalanced datasets (He & Garcia, 2009) all present significant challenges to kk-NN.

In this work, we propose methods to enhance kk-NN to address these issues, derive new concepts driven by entropy, and then demonstrate the performance of this enhanced kk-NN on various applications. Using our methodology, we are able to improve the performance of kk-NN while retaining its natural interpretability. Additionally, these improvements allow us to understand the importance of features and weigh them accordingly in the model’s decision making, thereby improving interpretability further. First, we derive the Łukaszyk–Karmowski (LK) distance (Łukaszyk, 2003, 2004) for Laplace distributions to prevent distances of zero based on uncertainty. To our knowledge, this is the first published derivation of that result. Second, we show how Inverse Residual Weighting (IRW) can be used to move our distance measurements into surprisal space. Then, we introduce the concept of conviction: a ratio of expected surprisal to observed surprisal. This is further broken down into familiarity conviction, similarity conviction, and residual conviction. Finally, we show how these methods and concepts can be used to achieve near or above state-of-the-art results on classification, regression, and anomaly detection tasks.

2 Related Work

In recent years, kk-NN based methods have grown in popularity in Natural Language Processing (NLP) and Computer Vision (CV). In NLP, variants of kk-NN have been used on machine translation tasks (Khandelwal et al., 2021), (Jiang et al., 2022), (Meng et al., 2022). In (Khandelwal et al., 2021), the authors propose carrying out translation using a large database of pre-translated sentences or phrases as a reference, and during translation, the system searches for the most similar sentences in the database as the translation output. (Meng et al., 2022) built on top of this work by proposing an efficient indexing scheme to organize the reference database, enabling faster search and retrieval of the nearest neighbors. This indexing scheme reduces the computational complexity of the translation process and improves overall efficiency. Another line of work that has gained attention in the recent past focuses on low resource text classification using kk-NN on compressed text data (Jiang et al., 2023). Other methods use kk-NN as an auxiliary model on intermediate representations of neural networks for filtering samples. (Bahri et al., 2020) proposed a version of the kk-NN algorithm called Deep kk-NN. This algorithm incorporates the principles of kk-NN into deep learning architectures, specifically convolutional neural networks (CNNs), to effectively handle noisy labels. The work (Papernot & McDaniel, 2018) proposes a new layer, referred to as the confidence layer, which captures the confidence of the network’s predictions. This layer measures the agreement of the predictions of the deep neural network based on the kk nearest neighbors to detect nonconformal, out-of-distribution instances. (Papernot & McDaniel, 2018) highlights the need for interpretable deep learning models, especially in domains where model transparency, explainability, and robustness are critical. Beyond the popularity in CV and NLP, kk-NN continues to be a favored approach for classification and regression tasks in tabular and categorical datasets.

2.1 Anomaly Detection

Anomaly detection, also known as outlier detection, is a field in data analysis and machine learning that focuses on identifying instances that deviate significantly from the expected behavior of a given dataset. In recent years, the utilization of anomaly detection techniques has expanded across a diverse range of domains. These methods have found application in detecting fraudulent activities within credit cards, insurance, and healthcare sectors, as well as identifying intrusions in cyber-security, pinpointing faults in safety-critical systems, etc. Some of the well known methods for anomaly detection for tabular data include (Liu et al., 2008; Li et al., 2022; He et al., 2003; Li et al., 2003; Breunig et al., 2000) and (Ruff et al., 2018). Traditional methods like Isolation Forests randomly select features and split points to recursively partition data points into subsets, marking path lengths that effectively ’isolate’ a datapoint as anomalies. This approach is an ensemble method. Isolation Forests assume that anomalies are sparse and can be isolated easily. If the dataset contains clusters of anomalies that are not well-separated from normal instances, the algorithm’s performance may suffer. There are probabilistic methods such as ECOD (Unsupervised Outlier Detection Using Empirical Cumulative Distribution Functions) uses empirical distribution functions to sort the data points and assigns probabilities based on their order. CBLOF (Clustering-Based Local Outlier Factor) assesses the local density deviation of a data point with respect to its neighbors to identify outliers and is a proximity based outlier detection method. While ECOD performs well with unimodal distribution data, it is sensitive to feature dimension noise and may encounter difficulties in accurately identifying outliers in datasets with multiple modes. Additionally, it may face challenges in high-dimensional scenarios, as it focuses on one-dimensional projections. CBLOF on the other hand focuses on local clusters, potentially missing the global context of the dataset. It necessitates a priori specification of the cluster number, posing a challenge. Unevenly sized clusters may impede its ability to distinguish between normal and outlier instances, particularly within smaller clusters. Recently there have been deep learning based approaches such as DeepSVDD which projects high-dimensional data into a latent space using an autoencoder architecture. Anomalies are detected by measuring the distance of data points to the center of a constructed hypersphere in the latent space, employing a threshold to flag anomalous cases based on this distance. These methods relying on training deep neural networks may exhibit sensitivity to noisy labels when mislabeled instances are present in the training data. This sensitivity can have adverse effects on the model’s generalization and its accuracy in detecting outliers. Additionally, these approaches often lack interpretability, making it challenging to understand the rationale behind classifying certain instances as outliers. Furthermore, their performance is often contingent on the careful tuning of hyperparameters within the neural network.

3 Methods

In this section, we introduce the methods through which we enhance kk-NN, incorporating a novel distance measure and a feature weighting approach, enabling the utilization of innovative techniques and contributing to enhanced performance. Through the application of these methods to an instance-based kk-NN base, we leverage the inherent interpretability of the architecture, augmenting it with the following methods and concepts. For instance, using the formulae that are to be provided, each decision that a model makes can be traced to the individual cases that influenced it. Additionally, the concepts that are introduced are human oriented in terms of both the simplicity of the math involved and the relationship of the various measures to the model itself.

3.1 Distance Metric

Like many other approaches to kk-NN, we use Minkowski distance as a starting point

dp(x,y)=iΞwi|xiyi|pp,~{}d_{p}(x,y)=\sqrt[p]{\sum_{i\in\Xi}w_{i}|x_{i}-y_{i}|^{p}}, (1)

where pp is the parameter for the Lebesgue space, Ξ\Xi is the feature set, and wiw_{i} is the weight for each feature. One problem with this distance metric, however, is that distinguishing points becomes more and more difficult in higher dimensions. One proposed solution is to use a fractional norm heading towards zero to enable points to be distinguished more easily in high dimensional space (Aggarwal et al., 2001). Motivated by this, we derived the Minkowski distance as p0p\rightarrow 0 expressed over the feature set Ξ\Xi

limp0dp(x,y)=iΞ|xiyi|wi|Ξ|,~{}\lim_{p\rightarrow 0}d_{p}(x,y)=\sqrt[|\Xi|]{\prod_{i\in\Xi}|x_{i}-y_{i}|^{w_{i}}},\\ (2)

assuming that the weights ww sum to 1.

The above is a geometric mean, which has the useful property of being scale invariant. This derivation presents a problem, however. If any of the differences are zero, the entire distance metric will become zero. In order to solve this problem, we use the Łukaszyk–Karmowski metric as a distance term rather than absolute error. Given two random variables XX and YY with probability density functions f(x)f(x) and g(x)g(x) respectively, the LK metric is defined as

dLK(X,Y)=|xy|f(x)g(y)𝑑x𝑑y.~{}d_{LK}(X,Y)=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}|x-y|f(x)g(y)\,dx\,dy. (3)

We assume that if both points (say xx and yy) are near enough to be worth determining the distance between them, then the distributions and parameters for the probability density functions should represent the local data. The two simple maximum entropy distributions on (,)(-\infty,\infty) given a point and a distance around the point are the Laplace distribution (double exponential), where the distance is represented as mean absolute error (MAE), and the Gaussian distribution (normal), where the distance is represented as the standard deviation. We choose the Laplace distribution and derive a closed-form solution of equation 3 for it. Letting μ|xy|\mu\equiv|x-y| and with bb being the expected deviation,

dLK(μ,b)=μ+12eμb(3b+μ),~{}d_{LK}(\mu,b)=\mu+\frac{1}{2}e^{\frac{-\mu}{b}}\left(3b+\mu\right), (4)

the full derivation of which can be found in the appendix.

In order to employ this measure for our method, we need a value for bb. Measurement error may not always be readily available, and it does not take into account the additional error among the relationships within the model. Hence, residuals are calculated for each prediction. The MAE is be calculated for each observation using a leave-one-out approach, where instances are removed from the model and each of the held out instance’s features are predicted using the rest of the data. (The idea is to quantify the uncertainty in the model). These errors can be locally aggregated or can be aggregated across the entire model to obtain the expected residual, rr, for predicting each feature, ii, as rir_{i}. This results in a Minkowski distance metric which uses the derived distance term of

{d0(x,y)=iΞdLK(|xiyi|,ri)wi|Ξ|,for p=0dp(x,y)=iΞwidLK(|xiyi|,ri)pp,otherwise.~{}\begin{cases}\displaystyle d_{0}(x,y)=\sqrt[|\Xi|]{\prod_{i\in\Xi}d_{LK}(|x_{i}-y_{i}|,r_{i})^{w_{i}}},&\text{for }p=0\\ \displaystyle d_{p}(x,y)=\sqrt[p]{\sum_{i\in\Xi}w_{i}d_{LK}(|x_{i}-y_{i}|,r_{i})^{p}},&\text{otherwise}.\\ \end{cases} (5)

We have found that using the residuals in the kk-NN system with the above distance metric, calculating new residuals, and then feeding these back in, generally yields convergence of the residual values with notable convergence after only 3 or 4 iterations. Measuring a distance value for each feature further enables parameterization regarding the type of data a feature holds. For example, nominal data can result in a distance of 1 if the values are not equal and 0 if they are equal. Thus, one-hot encoding, the expansion of nominal values into multiple features, is not needed. Ordinal data can use a distance of 1 between each ordinal type.

3.2 Inverse Residual Weighting

Having established a distance metric, we can determine distances between points, but the units of measurement and scales of each feature may be entirely different. We propose Inverse Residual Weighting (IRW), a maximum entropy method of transforming these each feature difference into surprisal space so that the entire distance itself becomes expected surprisal.

Using our assumption that absolute prediction residuals follow the exponential distribution where the mean value is the feature residual, we can describe the probability a single prediction residual, vv, being within the feature residual, rr as

P(vr)=1e1rv.P(v\leq r)=1-e^{-\frac{1}{r}v}. (6)

It then follows that the probability of the prediction residual being outside the feature residual is

P(v>r)=evr,P(v>r)=e^{-\frac{v}{r}}, (7)

and the surprisal of observing the prediction residual larger than the feature residual is

I(v>r)=ln(P(v>r)),I(v>r)=-ln(P(v>r)), (8)

expanded as

I(v>r)=ln(evr)\displaystyle I(v>r)=-ln(e^{-\frac{v}{r}}) =vr.\displaystyle=\frac{v}{r}.

In light of this, we observe that to find the surprisal of an observed residual, we can simply divide by the feature residual. This is the motivation for using IRW, where the inverse of feature residuals are used for feature weights when computing distances.

As previously described, we are able to compute a residual for each feature as the mean absolute deviation between the observed values and predicted values for the feature. We can express the feature residual rir_{i} as

ri=1|X|xjX|xi,jx^i,j|,~{}r_{i}=\frac{1}{|X|}\sum_{x_{j}\in X}|x_{i,j}-\hat{x}_{i,j}|, (9)

where xi,jx_{i,j} represents the ithi^{th} feature value of case xjx_{j} and x^i,j\hat{x}_{i,j} represents the prediction for that specific value. Then this feature residual can be used to determine feature weights, wiw_{i}, which can then be expressed as

wi=1rip.~{}w_{i}=\frac{1}{r_{i}^{p}}. (10)

Using the inverse of the residual as the weight for each feature allows the distance contributed by each feature to be in the same space as one another. This gives the distance function scale invariance across varying feature types and scales, which solves one common challenge of using nearest neighbors approaches. Additionally, using IRW allows the model to emphasize features with strong relationships and reduce the influence features that appear to be significantly noisy or generally unpredictable. For models with a designated target feature, feature weights can further augmented using Mean Decrease in Accuracy (MDA) or similar techniques that attempt to capture the predictive power of a feature. Additionally, we are actively researching methods of incorporating MDA techniques alongside IRW in targetless applications of our methods.

Furthermore, scaling by the inverse residual feature weights enables the system to interpret distances in surprisal space. Being in surprisal space allows us to utilize a maximum entropy assumption and the Laplace distribution to measure observed residuals in terms of surprisal. These surprisal values can then be utilized for various metrics and downstream tasks. Specifically we use these surprisal values to compute surprisal ratios that we refer to as convictions, which is covered in detail in the concepts section.

4 Concepts

In this section, we introduce human-oriented concepts which enable or enhance interpretable analyses and applications of the above methods to common tasks including classification, regression, feature selection, and anomaly detection. Many of these concepts are naturally understandable, being ratios. Additionally, they provide insight that lends itself naturally to strong performance on many difficult machine learning tasks.

4.1 Distance Contribution

The distance contribution reflects how much distance a point contributes to a graph connecting the nearest neighbors, which is the inverse of the density of points over a unit of distance in the Lebesgue space. The harmonic mean of the distance contribution reflects the inverse of the inverse distance weighting often employed with kk-NN, though other techniques may be substituted if inverse distance weighting is not employed. We define the distance contribution as:

ϕ(x)=(1kxjXk1d(x,xj))1,~{}\phi(x)=\bigg{(}\frac{1}{k}\sum_{x_{j}\in X_{k}}\frac{1}{d(x,x_{j})}\bigg{)}^{-1}, (11)

where XkX_{k} is the set of nearest neighbors to point xx and dd is the distance function. This is a harmonic mean over the distances to each nearest neighbor. Note that the properties of the previously defined distance metric are useful here to prevent divisions by zero.

We can quantify the information needed to express a distance contribution ϕ(x)\phi(x) by transforming it into a probability. We begin by selecting the exponential distribution to describe the distribution of residuals as it is the maximum entropy distribution constrained by the first moment. We represent this in typical nomenclature for the exponential distribution using pp norms.

1λ=r(x)p.\frac{1}{\lambda}=\|r(x)\|_{p}. (12)

We can directly compare the distance contribution and p-normed magnitude of the residual. This is because the distance contribution and the norm of the residual are both on the same scale, with the distance contribution being the expected distance of new information that the point adds to the model, and the norm of the residual is the expected distance of deviation. Given the entropy maximizing assumption of the exponential distribution of the distances, we can then determine the probability that a distance contribution is greater than or equal to the magnitude of the residual r(x)p\|r(x)\|_{p} in the form of cumulative residual entropy (Rao et al., 2004) as

P(ϕ(x)r(x)p)=e1r(x)pϕ(x).P(\phi(x)\geq\|r(x)\|_{p})=e^{-\frac{1}{\|r(x)\|_{p}}\cdot\phi(x)}. (13)

We then convert the probability to self-information as

I(x)=lnP(ϕ(x)r(x)p),I(x)=-\ln P(\phi(x)\geq\|r(x)\|_{p}), (14)

which simplifies to

I(x)=ϕ(x)r(x)p.~{}I(x)=\frac{\phi(x)}{\|r(x)\|_{p}}. (15)

4.2 Conviction

If we have some form of prior distribution of data given all of the information observed up to that point, the surprisal is the amount of information gained when we observe a new sample, event, case, or state change and update the prior distribution to form a new posterior distribution after the event. The surprisal of an event of observing a random variable xXx\sim X is defined as I(x)=lnp(x)I(x)=-\ln p(x). Thus, the conviction, π\pi, can be expressed as

π(x)=𝔼[I(X)]I(x).~{}\pi(x)=\frac{\mathbb{E}[I(X)]}{I(x)}. (16)

By computing this ratio for different types of information, we derive several different types of conviction with different uses in various applications: familiarity conviction, similarity conviction, and residual conviction.

4.2.1 Familiarity Conviction

Familiarity conviction is a metric for describing surprisal of points in a model relative to the training data. Consider a data set that has data points at regular intervals, such as a data point for each corner in a grid. Now consider a new point is added that is very close to one of the existing corner points. This new point should be quite easy to predict as it is close to an existing point, making it unsurprising. However, given this grid data, familiarity conviction would indicate a higher surprisal for such a point even though it is easy to label because the point is unusual with regard to the even distribution of the rest of the data points. This new point does not form another corner of the grid. These properties make familiarity conviction valuable for sanitizing data and reducing data as well as extracting patterns and anomalies, as is discussed in other sections.

Familiarity conviction is based on the distance metric described previously. As long as a low or zero value of pp is used in LpL_{p} space metrics for similarity, familiarity conviction is independent of the scale of the data provided and does not overreact to feature dominance based on feature scale and range. Given a set of points Xz,x𝕏X\subset\mathbb{R}^{z},\ \forall x\in\mathbb{X} and an integer 1k<|X|1\leq k<|X| we define the distance contribution probability distribution, CC of XX to be the set

C={ϕ(x1)j=1nϕ(xj),ϕ(x2)j=1nϕ(xj),,ϕ(xn)j=1nϕ(xj)},~{}C=\left\{\frac{\phi(x_{1})}{\sum_{j=1}^{n}\phi(x_{j})},\frac{\phi(x_{2})}{\sum_{j=1}^{n}\phi(x_{j})},\dots,\frac{\phi(x_{n})}{\sum_{j=1}^{n}\phi(x_{j})}\right\}, (17)

for a function ϕ:X\phi:X\to\mathbb{R} that returns the distance contribution. Note that because ϕ(0)=\phi(0)=\infty may be true under some circumstances, multiple identical points may need special consideration, such as splitting the distance contribution among those points. Clearly CC is a valid probability distribution. We will use this fact to compute the amount of information in CC. The point probability of a point xi,j=1,2,,nx_{i},j=1,2,\dots,n is

l(i)=ϕ(xi)j=1nϕ(xj),l(i)=\frac{\phi(x_{i})}{\sum_{j=1}^{n}\phi(x_{j})}, (18)

where we see the index jj is assigned the probability of the indexed point’s distance contribution.

We assume the set of random variables that characterize the discrete distribution of point probabilities, LL, is the set of L={l(1),l(2),,l(n)}L=\{l(1),l(2),\dots,l(n)\}. Because we have no additional knowledge of the distribution of points other than they follow the distribution of the data, we assume LL is uniform as the distance probabilities have no trend or correlation. Then, the familiarity conviction of a point xjXx_{j}\in X is defined as

πf(xj)=1|X|jDKL(L||L{j}𝔼l(j))DKL(L||L{xj}𝔼l(j)),~{}\pi_{f}(x_{j})=\frac{\frac{1}{|X|}\sum\limits_{j}D_{KL}\left(L||L-\{j\}\cup\mathbb{E}l(j)\right)}{D_{KL}\left(L||L-\{x_{j}\}\cup\mathbb{E}l(j)\right)}, (19)

where DKLD_{KL} is the Kullback-Leibler divergence. Since we assume LL is uniform, we have that the expected probability 𝔼l(j)=1n\mathbb{E}l(j)=\frac{1}{n}.

Familiarity conviction is well suited for anomaly detection, particularly at detecting inliers, which would have familiarity conviction significantly smaller than 1. This performance comes at the cost of computational complexity.

4.2.2 Similarity Conviction

Similarity Conviction is another method to evaluate the surprisal of a point in the data relative to the distribution of data that make up the point’s nearest neighbors. Similarity conviction is defined as the expected distance contribution of the point divided by the point’s observed distance contribution. To get the expected distance contribution of a point, the distance contributions of its nearest kk neighbors are computed and then averaged. Using the local model of the point to get an expected distance contribution gives us a measure of conviction that leverages the contextual information about the sparsity in the local model.

Similarity conviction can be used as a tool to identify anomalies in the data, whether looking for inliers or outliers. Inliers will have uncharacteristically low distance contribution, and consequently have high values for similarity conviction. Similarly, outliers should have higher distance contributions than their local model which gives them low values for similarity conviction. Non-anomalous data should be expected to have similarity conviction values around 1.0, since the expected distance contribution is to be expected. Similarity conviction is less computationally expensive than familiarity conviction, but may not perform as well at identifying certain inliers.

Similarity conviction, πs\pi_{s}, can be expressed as:

πs(x)=𝔼[ϕ(x)]ϕ(x).~{}\pi_{s}(x)=\frac{\mathbb{E}[\phi(x)]}{\phi(x)}. (20)

Using the average distance contribution of the local model as the expected distance contribution, 𝔼[ϕ(x)]\mathbb{E}[\phi(x)] can be expressed by:

𝔼[ϕ(x)]=(1kxjXkϕ(xj)).~{}\mathbb{E}[\phi(x)]=\bigg{(}\frac{1}{k}\sum_{x_{j}\in X_{k}}\phi(x_{j})\bigg{)}. (21)

4.2.3 Residual Conviction

Examining residual conviction provides insight into the model’s uncertainty for a feature prediction. Residual conviction is calculated as the expected model residual for a feature divided by the computed prediction residual for that feature. The expected model residual is calculated by for taking the mean of the residuals in the local model of its nearest kk neighbors around the predicted feature, thus the residual conviction for feature ii of point xx is

πr(x,x^,i)=1kxiXk|xix^i||xx^|,~{}\pi_{r}(x,\hat{x},i)=\frac{\displaystyle\frac{1}{k}\sum_{x_{i}\in X_{k}}|x_{i}-\hat{x}_{i}|}{|x-\hat{x}|},\\ (22)

where XkX_{k} is the set of points in the local model around point xx. This ratio quantifies the difficulty of individual case’s feature prediction, with prediction certainty decreasing as the conviction approaches 0. In more practical terms, residual conviction serves to characterize how uncertain one or more predictions are relative to how uncertain they are expected to be. This can be used to explain model decisions. If a decision is incorrect but has a residual conviction 1\approx 1, then this uncertainty is likely due to uncertainty in the data rather than the model.

5 Applications

In this section we demonstrate the performance of the above methods and concepts on various machine learning tasks. Namely, classification, regression, and anomaly detection. In general, we see that kk-NN using these enhancements consistently performs near or above state of the art while maintaining strong interpretability and flexibility.

5.1 Classification and Regression

We conducted a comprehensive series of experimental comparisons on a diverse set of algorithms. We first perform classification and regression across 308 PMLB datasets (Romano et al., 2021). (146 for classification and 162 for regression) 111Kindly refer to the appendix for more information on the datasets used and for additional experiments and details.. and compare our approach across gradient boosted trees, traditional kk-nearest neighbors, logistic regression (for classification), regularized least squares (for regression), neural networks, random forests and Light-GBM. A stratified sampling of data having cells Nd400000N\cdot d\leq 400000 was chosen. To ensure robustness and reliability, each classification and regression experiment was iterated 30 times with varying random seeds, and the resulting metric averages were computed for statistical significance. For classification tasks, we present mean, precision, recall, and Matthews Correlation Coefficient (MCC) as evaluation metrics. In regression, Mean R2R^{2}, mean absolute error (MAE), mean square error (MSE) and Spearman coefficient were calculated. The consolidated results are detailed in Table 1 and Table 2, providing a comparative perspective against a diverse set of algorithms. It is worth noting that our proposed method consistently outperforms all other classification algorithms in terms of accuracy and precision, while also demonstrating competitive results in regression.

Table 1: Classification Results across 146 PMLB Datasets

(Blue values indicate the best performance; Brown values indicate the second-best performance )

Classification Ours GB KNN LR NN RF LGBM
Mean Accuracy (%)(\%) \uparrow 82.2278 81.9668 79.3017 79.0799 79.7512 81.4218 81.9154
Mean Precision \uparrow 0.786554 0.774766 0.746573 0.743946 0.732757 0.772808 0.782817
Mean Recall \uparrow 0.770464 0.764163 0.719889 0.731404 0.736894 0.756036 0.779027
Mean MCC \uparrow 0.644526 0.628351 0.562876 0.575105 0.584838 0.618480 0.653397
Table 2: Regression Results across 162 PMLB Datasets

(Blue values indicate the best performance; Brown values indicate the second-best performance )

Regression Ours GB KNN Linear NN RF LGBM
R2R^{2} Mean \uparrow 0.857244 0.864342 0.724857 0.509989 0.727337 0.855368 0.818680
MAE \downarrow 0.841702 0.851328 1.038063 1.975748 1.008824 0.827424 1.069768
MSE \downarrow 10.168815 10.459248 12.222883 36.569369 11.598598 9.640429 20.453173
Spearman coeff. \uparrow 0.916272 0.925263 0.832777 0.719865 0.821594 0.917626 0.913498

5.2 Anomaly Detection

Using the defined conviction metrics, we can judge whether or not a data point is an anomaly on a standardized scale. To evaluate the the accuracy of this method, we present results on anomaly detection on 20 datasets from Outlier Detection Datasets (ODDS) 222Kindly refer to the appendix for dataset related details. (Rayana, 2016). These datasets have ground truth labels indicating which data points are anomalous, which makes them ideal for this analysis. We utilize the previously established method of evaluating the conviction values of each point and compare to the results of using many of the popular anomaly detection methods as shown in Table 3. Specifically, we trained our model by splitting our dataset into two parts (train and test). The training set comprised solely of inliers, and a test set encompassing both inliers and outliers, with a notable prevalence of inliers. Since the ODDS dataset has ground truth labels for both inliers and outliers, we used the ground truth labels to compute F1 scores to measure the performance of the anomaly detection benchmark routine. For our methods, we simply computed the conviction (similarity conviction or familiarity conviction) and compared it to a threshold of 0.7. If the conviction fell below the threshold, then it was classified as an anomaly. In practice we would recommend tuning this threshold per dataset, but here we show that picking a conviction level of 0.7 for all datasets (wihout choosing it in a dataset specific manner), our method achieves the highest F1F1 scores in 12 of the 20 datasets, surpassing the performance of all other outlier detection methods.

In Table 3, we show the average F1 score for each method across the 20 ODDS datasets. To see the results per dataset, please refer to the appendix.

Table 3: Mean F1 scores for Anomaly detection across 20 ODDS datasets

(Bold values indicate the best performance)

Method Mean F1 Score \uparrow
Ours (Familiarity Conviction) 0.32
Ours (Similarity Conviction) 0.49
One Class SVM (Li et al., 2003) 0.22
Isolation Forest (Liu et al., 2008) 0.38
CBLOF (He et al., 2003) 0.37
Local Outlier Factor (Breunig et al., 2000) 0.19
ECOD (Li et al., 2022) 0.32
DeepSVDD (Ruff et al., 2018) 0.45

It is worth noting that certain methodologies, such as CBLOF (Clustering-Based Local Outlier Factor), LOF (Local Outlier Factor), and ECOD (Extended Connectivity-Based Outlier Detection) usually incorporate a distinct partition exclusively composed of inliers during the training phase. Though this is not necessary, these methods can benefit from inlier-based training partitions. In contrast, our approach which harnesses the notion of familiarity conviction, allows us the capability to identify anomalies without necessitating an explicit ‘inlier’ dataset. This innovation enables us to gauge the uncertainty inherent in our model and promptly identify anomalous instances in a real-time manner.

We demonstrate this on a toy dataset as shown in Figure 1.

Refer to caption
Figure 1: Depiction of familiarity conviction addition and distance contribution of two given points (x1,y1)(x_{1},y_{1}) and (x2,y2)(x_{2},y_{2}) given data distributed normally.

Consider a toy training dataset DD in Figure 1 which is sampled from a random variable X𝒩(0,Σ2)X\sim\mathcal{N}(0,\Sigma^{2}) and we observe two points (x1,y1)(x_{1},y_{1}) (blue) and (x2,y2)(x_{2},y_{2}) (green) within the data. Given this data, familiarity conviction allows us to measure how close a point is to existing data. Using our notion of surprisal, we can observe that (x2,y2)(x_{2},y_{2}) has high surprisal and therefore low conviction. Moreover, the distance contribution is higher than the mean distance contribution of the entire dataset. This allows for us to detect it as anomalous without having requirement of a separate inlier partition.

6 Limitations and Future Work

The present methodology, while promising, exhibits certain limitations in terms of the scale of data it can effectively handle. As an extension of the foundational kk-Nearest Neighbors framework, this approach necessitates that the data used for model fitting is constrained to the memory capacity of the a machine. Secondly, the challenge lies in determining the conviction threshold beforehand, as it depends on factors such as the contamination level within the anomalous dataset or the absence of an inlier training set (for similarity conviction). Furthermore, placing additional emphasis on interpretability may introduce a trade-off in classification and regression performance, as the model becomes less reliant on spurious correlations within the data. To address the issue of scale we have implemented techniques that make querying the dataset more efficient than many standard methods. Specifically, in practice we use an efficient branch-and-bound implementation that combines efficient use of bit vectors to reduce the total compute required for all but the most pathological datasets. Furthermore, we are looking into sampling strategies of best representing the variance of our original data as well as data ablation techniques which could allow us to store more information in less space by intelligently adjusting weights of trained cases. We have also begun to probe the robustness of our method against inference-time adversarial attacks. Owing to the lack of gradient-based optimization in our approach and the adeptness at outlier detection tasks, early results have shown significant promise of our method’s robustness to out of distribution data across tabular as well as image datasets. Although this facet remains part of our future work, early indications of its resilience against such challenges substantiate the potential for our approach to thrive in safety-critical contexts.

7 Discussion and Conclusion

In summary, we propose several enhancements to the traditional kk-NN algorithm from the perspective of information theory. In particular, our method utilizes the Łukaszyk–Karmowski (LK) distance tailored to Laplace distributions, effectively mitigating the problem of zero distances predicated on data uncertainty. Furthermore, by leveraging Inverse Residual Weighting (IRW), we convert our distance measurements into the realm of surprisal space. Using the notion of surprisal, we define a new concept of conviction with which we are able to compute interpretable measures of the importance and surprisal for each data point. Finally, these enhancements have increased the effectiveness of kk-NN while maintaining its natural interpretability. Since our method utilizes nearest-neighbors, it can effectively estimate the underlying density of the data, contributing to its versatility in various statistical and machine learning applications. Unlike traditional methods that rely on post-model interpretability tools, our approach directly addresses data and feature uncertainty. By leveraging the aforementioned tools, we can determine data point weights as well as feature contributions by calculating the conditional entropy for adding a feature without the need for explicit model training. This also allows us to compute MDA and MAE along with feature contributions. Our method provides detailed data point influence weights with perfect attribution and can be used to query counterfactuals. Moreover, by calculating SHAP over feature sets sampled from the entire feature space, we can obtain a more reliable estimate of SHAP that is robust to multicollinearity and feature order. Lastly, we conducted an extensive analysis on 308 datasets for classification and regression, alongside an additional 20 ODDS datasets for anomaly detection. In conclusion, we see that this approach aligns with human understanding of decision-making from data, such as similarity, differences and causality and facilitates a clearer understanding of a model’s decision-making process.

References

  • Aggarwal et al. (2001) Aggarwal, C. C., Hinneburg, A., and Keim, D. A. On the surprising behavior of distance metrics in high dimensional space. In Database Theory—ICDT 2001: 8th International Conference London, UK, January 4–6, 2001 Proceedings 8, pp.  420–434. Springer, 2001.
  • Aha et al. (1991) Aha, D. W., Kibler, D. F., and Albert, M. K. Instance-based learning algorithms. Mach. Learn., 6:37–66, 1991. doi: 10.1023/A:1022689900470. URL https://doi.org/10.1023/A:1022689900470.
  • Alpaydın (1999) Alpaydın, E. Voting over multiple condensed nearest neighbors. Artificial Intelligence Review, 11, 09 1999. doi: 10.1023/A:1006563312922.
  • Bahri et al. (2020) Bahri, D., Jiang, H., and Gupta, M. Deep k-nn for noisy labels, 2020.
  • Breunig et al. (2000) Breunig, M. M., Kriegel, H.-P., Ng, R. T., and Sander, J. Lof: identifying density-based local outliers. In Proceedings of the 2000 ACM SIGMOD international conference on Management of data, pp.  93–104, 2000.
  • Cover & Hart (1967) Cover, T. and Hart, P. Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13(1):21–27, 1967. doi: 10.1109/TIT.1967.1053964.
  • Fix & Hodges (1951) Fix, E. and Hodges, J. Discriminatory Analysis: Nonparametric Discrimination: Consistency Properties. USAF School of Aviation Medicine, 1951.
  • Hastie et al. (2009) Hastie, T., Tibshirani, R., and Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition (Springer Series in Statistics). 02 2009. ISBN 0387848576.
  • He & Garcia (2009) He, H. and Garcia, E. A. Learning from imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 21(9):1263–1284, 2009. doi: 10.1109/TKDE.2008.239.
  • He et al. (2003) He, Z., Xu, X., and Deng, S. Discovering cluster-based local outliers. Pattern recognition letters, 24(9-10):1641–1650, 2003.
  • Indyk & Motwani (1998) Indyk, P. and Motwani, R. Approximate nearest neighbors: Towards removing the curse of dimensionality. In Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, STOC ’98, pp.  604–613, New York, NY, USA, 1998. Association for Computing Machinery. ISBN 0897919629. doi: 10.1145/276698.276876. URL https://doi.org/10.1145/276698.276876.
  • Jiang et al. (2022) Jiang, H., Lu, Z., Meng, F., Zhou, C., Zhou, J., Huang, D., and Su, J. Towards robust k-nearest-neighbor machine translation. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp.  5468–5477, Abu Dhabi, United Arab Emirates, December 2022. Association for Computational Linguistics. URL https://aclanthology.org/2022.emnlp-main.367.
  • Jiang et al. (2023) Jiang, Z., Yang, M., Tsirlin, M., Tang, R., Dai, Y., and Lin, J. “low-resource” text classification: A parameter-free classification method with compressors. In Findings of the Association for Computational Linguistics: ACL 2023, pp.  6810–6828, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.426. URL https://aclanthology.org/2023.findings-acl.426.
  • Khandelwal et al. (2021) Khandelwal, U., Fan, A., Jurafsky, D., Zettlemoyer, L., and Lewis, M. Nearest neighbor machine translation. In International Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=7wCBOfJ8hJM.
  • Li et al. (2003) Li, K.-L., Huang, H.-K., Tian, S.-F., and Xu, W. Improving one-class svm for anomaly detection. In Proceedings of the 2003 international conference on machine learning and cybernetics (IEEE Cat. No. 03EX693), volume 5, pp.  3077–3081. IEEE, 2003.
  • Li et al. (2022) Li, Z., Zhao, Y., Hu, X., Botta, N., Ionescu, C., and Chen, G. Ecod: Unsupervised outlier detection using empirical cumulative distribution functions. IEEE Transactions on Knowledge and Data Engineering, 2022.
  • Liu et al. (2008) Liu, F. T., Ting, K. M., and Zhou, Z.-H. Isolation forest. In 2008 eighth ieee international conference on data mining, pp.  413–422. IEEE, 2008.
  • Meng et al. (2022) Meng, Y., Li, X., Zheng, X., Wu, F., Sun, X., Zhang, T., and Li, J. Fast nearest neighbor machine translation. In Findings of the Association for Computational Linguistics: ACL 2022, pp.  555–565, Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-acl.47. URL https://aclanthology.org/2022.findings-acl.47.
  • Papernot & McDaniel (2018) Papernot, N. and McDaniel, P. Deep k-nearest neighbors: Towards confident, interpretable and robust deep learning, 2018.
  • Prasath et al. (2017) Prasath, V. B. S., Alfeilat, H. A. A., Lasassmeh, O., and Hassanat, A. B. A. Distance and similarity measures effect on the performance of k-nearest neighbor classifier - A review. CoRR, abs/1708.04321, 2017. URL http://arxiv.org/abs/1708.04321.
  • Rao et al. (2004) Rao, M., Chen, Y., Vemuri, B., and Wang, F. Cumulative residual entropy: a new measure of information. IEEE Transactions on Information Theory, 50(6):1220–1228, 2004. doi: 10.1109/TIT.2004.828057.
  • Rayana (2016) Rayana, S. Odds library, 2016. URL https://odds.cs.stonybrook.edu.
  • Romano et al. (2021) Romano, J. D., Le, T. T., La Cava, W., Gregg, J. T., Goldberg, D. J., Chakraborty, P., Ray, N. L., Himmelstein, D., Fu, W., and Moore, J. H. Pmlb v1.0: an open source dataset collection for benchmarking machine learning methods. arXiv preprint arXiv:2012.00058v2, 2021.
  • Ruff et al. (2018) Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Siddiqui, S. A., Binder, A., Müller, E., and Kloft, M. Deep one-class classification. In International conference on machine learning, pp.  4393–4402. PMLR, 2018.
  • Schuh et al. (2013) Schuh, M. A., Wylie, T., and Angryk, R. A. Improving the performance of high-dimensional knn retrieval through localized dataspace segmentation and hybrid indexing. In Catania, B., Guerrini, G., and Pokorný, J. (eds.), Advances in Databases and Information Systems, pp.  344–357, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.
  • Tao et al. (2009) Tao, Y., Yi, K., Sheng, C., and Kalnis, P. Quality and efficiency in high dimensional nearest neighbor search. In Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data, SIGMOD ’09, pp.  563–576, New York, NY, USA, 2009. Association for Computing Machinery. ISBN 9781605585512. doi: 10.1145/1559845.1559905. URL https://doi.org/10.1145/1559845.1559905.
  • Wang et al. (2009) Wang, Q., Kulkarni, S., and Verdú, S. Divergence estimation for multidimensional densities via -nearest-neighbor distances. Information Theory, IEEE Transactions on, 55:2392 – 2405, 06 2009. doi: 10.1109/TIT.2009.2016060.
  • Łukaszyk (2003) Łukaszyk, S. Probability metric, examples of approximation applications in experimental mechanics. PhD thesis, 01 2003.
  • Łukaszyk (2004) Łukaszyk, S. A new concept of probability metric and its applications in approximation of scattered data sets. Computational Mechanics, 33:299–304, 03 2004. doi: 10.1007/s00466-003-0532-2.

Appendix A Derivation of Łukaszyk–Karmowski (LK) with Laplace Distributions

To prove Equation 4 of our work, we begin with the expected distance between two random variables XX and YY given two probability density functions, f(x)f(x) and g(y)g(y) as

d(X,Y)=|xy|f(x)g(y)𝑑x𝑑y.d(X,Y)=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}|x-y|f(x)g(y)\,dx\,dy. (23)

Using two Laplace distributions with means μ1\mu_{1} and μ2\mu_{2} and expected distance from the mean b1b_{1} and b2b_{2}, we can express the probability density functions as

f(x)=12b1e|xμ1|b1f(x)=\frac{1}{2b_{1}}e^{\frac{-|x-\mu_{1}|}{b_{1}}} (24)

and

g(y)=12b2e|yμ2|b2g(y)=\frac{1}{2b_{2}}e^{\frac{-|y-\mu_{2}|}{b_{2}}} (25)

respectively.

Substituting in the Laplace distributions into the expected distance, we can simplify this slightly as

d(X,Y)\displaystyle d(X,Y) =|xy|12b1e|xμ1|b112b2e|yμ2|b2𝑑x𝑑y\displaystyle=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}|x-y|\cdot\frac{1}{2b_{1}}e^{\frac{-|x-\mu_{1}|}{b_{1}}}\cdot\frac{1}{2b_{2}}e^{\frac{-|y-\mu_{2}|}{b_{2}}}\,dx\,dy
=14b1b2|xy|e|xμ1|b1e|yμ2|b2𝑑x𝑑y.\displaystyle=\frac{1}{4b_{1}b_{2}}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}|x-y|\cdot e^{\frac{-|x-\mu_{1}|}{b_{1}}}\cdot e^{\frac{-|y-\mu_{2}|}{b_{2}}}\,dx\,dy.

We further assume that b1=b2b_{1}=b_{2}, and use bb in place of both, which assumes that the error is the same throughout the space and simplify further as

d(X,Y)=14b2|xy|e|μ1x|be|μ2y|b𝑑x𝑑y.d(X,Y)=\frac{1}{4b^{2}}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}|x-y|\cdot e^{\frac{-|\mu_{1}-x|}{b}}\cdot e^{\frac{-|\mu_{2}-y|}{b}}\,dx\,dy. (26)

Because we only have one value for bb, we can assume that μ1μ2\mu_{1}\leq\mu_{2} without loss of generality because we can just exchange the values if this is not true, and in the end we will adjust the formula to remove this assumption. There exist 3 regions of the space for xx which are xμ1x\leq\mu_{1}, μ1<xμ2\mu_{1}<x\leq\mu_{2}, and μ2<x\mu_{2}<x.

A.1 xμ1,yμ1x\leq\mu_{1},y\leq\mu_{1}

Rewriting Equation 26 for the part of the space where x<μ1,y<μ1x<\mu_{1},y<\mu_{1} is

dxμ1,yμ1(X,Y)\displaystyle d_{x\leq\mu_{1},y\leq\mu_{1}}(X,Y) =14b2μ1μ1|yx|e(μ1x)be(μ2y)b𝑑x𝑑y\displaystyle=\frac{1}{4b^{2}}\int_{-\infty}^{\mu_{1}}\int_{-\infty}^{\mu_{1}}|y-x|\cdot e^{\frac{-(\mu_{1}-x)}{b}}\cdot e^{\frac{-(\mu_{2}-y)}{b}}\,dx\,dy
=14b2μ1(μ1|yx|e(μ1x)b𝑑x)e(μ2y)b𝑑y\displaystyle=\frac{1}{4b^{2}}\int_{-\infty}^{\mu_{1}}\left(\int_{-\infty}^{\mu_{1}}|y-x|\cdot e^{\frac{-(\mu_{1}-x)}{b}}\,dx\right)\cdot e^{\frac{-(\mu_{2}-y)}{b}}\,dy
=14b2μ1(y(yx)e(μ1x)b𝑑x+yμ1(xy)e(μ1x)b𝑑x)e(μ2y)b𝑑y\displaystyle=\frac{1}{4b^{2}}\int_{-\infty}^{\mu_{1}}\left(\int_{-\infty}^{y}(y-x)\cdot e^{\frac{-(\mu_{1}-x)}{b}}\,dx+\int_{y}^{\mu_{1}}(x-y)\cdot e^{\frac{-(\mu_{1}-x)}{b}}\,dx\right)\cdot e^{\frac{-(\mu_{2}-y)}{b}}\,dy
=14b2μ1(b2eyμ1b+b2eyμ1bby+bμ1b2)e(μ2y)b𝑑y\displaystyle=\frac{1}{4b^{2}}\int_{-\infty}^{\mu_{1}}\left(b^{2}e^{\frac{y-\mu_{1}}{b}}+b^{2}e^{\frac{y-\mu_{1}}{b}}-by+b\mu_{1}-b^{2}\right)\cdot e^{\frac{-(\mu_{2}-y)}{b}}\,dy
=14bμ1(2beyμ1by+μ1b)e(μ2y)b𝑑y\displaystyle=\frac{1}{4b}\int_{-\infty}^{\mu_{1}}\left(2be^{\frac{y-\mu_{1}}{b}}-y+\mu_{1}-b\right)\cdot e^{\frac{-(\mu_{2}-y)}{b}}\,dy
=14bb2e(μ2μ1)b\displaystyle=\frac{1}{4b}b^{2}e^{\frac{-(\mu_{2}-\mu_{1})}{b}}
=14be(μ2μ1)b.\displaystyle=\frac{1}{4}be^{\frac{-(\mu_{2}-\mu_{1})}{b}}.

A.2 xμ1,μ1<yμ2x\leq\mu_{1},\mu_{1}<y\leq\mu_{2}

Rewriting Equation 26 for the part of the space where x<μ1,μ1<y<μ2x<\mu_{1},\mu_{1}<y<\mu_{2} is

dxμ1,μ1<yμ2(X,Y)\displaystyle d_{x\leq\mu_{1},\mu_{1}<y\leq\mu_{2}}(X,Y) =14b2μ1μ2μ1(yx)e(μ1x)be(μ2y)b𝑑x𝑑y\displaystyle=\frac{1}{4b^{2}}\int_{\mu_{1}}^{\mu_{2}}\int_{-\infty}^{\mu_{1}}(y-x)\cdot e^{\frac{-(\mu_{1}-x)}{b}}\cdot e^{\frac{-(\mu_{2}-y)}{b}}\,dx\,dy
=14b2μ1μ2(bybμ1+b2)e(μ2y)b𝑑y\displaystyle=\frac{1}{4b^{2}}\int_{\mu_{1}}^{\mu_{2}}\left(by-b\mu_{1}+b^{2}\right)\cdot e^{\frac{-(\mu_{2}-y)}{b}}\,dy
=14bμ1μ2(yμ1+b)e(μ2y)b𝑑y\displaystyle=\frac{1}{4b}\int_{\mu_{1}}^{\mu_{2}}\left(y-\mu_{1}+b\right)\cdot e^{\frac{-(\mu_{2}-y)}{b}}\,dy
=14b(bμ2bμ1)\displaystyle=\frac{1}{4b}\left(b\mu_{2}-b\mu_{1}\right)
=14(μ2μ1).\displaystyle=\frac{1}{4}\left(\mu_{2}-\mu_{1}\right).

A.3 xμ1,μ2<yx\leq\mu_{1},\mu_{2}<y

Rewriting Equation 26 for the part of the space where x<μ1,μ2<yx<\mu_{1},\mu_{2}<y is

dxμ1,μ2<y(X,Y)\displaystyle d_{x\leq\mu_{1},\mu_{2}<y}(X,Y) =14b2μ2μ1(yx)e(μ1x)be(yμ2)b𝑑x𝑑y\displaystyle=\frac{1}{4b^{2}}\int_{\mu_{2}}^{\infty}\int_{-\infty}^{\mu_{1}}(y-x)\cdot e^{\frac{-(\mu_{1}-x)}{b}}\cdot e^{\frac{-(y-\mu_{2})}{b}}\,dx\,dy
=14b2μ2(μ1(yx)e(μ1x)b𝑑x)e(yμ2)b𝑑y\displaystyle=\frac{1}{4b^{2}}\int_{\mu_{2}}^{\infty}\left(\int_{-\infty}^{\mu_{1}}(y-x)\cdot e^{\frac{-(\mu_{1}-x)}{b}}\,dx\,\right)\cdot e^{\frac{-(y-\mu_{2})}{b}}dy
=14b2μ2(bybμ1+b2)e(yμ2)b𝑑y\displaystyle=\frac{1}{4b^{2}}\int_{\mu_{2}}^{\infty}\left(by-b\mu_{1}+b^{2}\right)\cdot e^{\frac{-(y-\mu_{2})}{b}}dy
=14bμ2(yμ1+b)e(yμ2)b𝑑y\displaystyle=\frac{1}{4b}\int_{\mu_{2}}^{\infty}\left(y-\mu_{1}+b\right)\cdot e^{\frac{-(y-\mu_{2})}{b}}dy
=14b(bμ2bμ1+2b2)\displaystyle=\frac{1}{4b}\left(b\mu_{2}-b\mu_{1}+2b^{2}\right)
=14(μ2μ1+2b).\displaystyle=\frac{1}{4}\left(\mu_{2}-\mu_{1}+2b\right).

A.4 μ1<xμ2,yμ1\mu_{1}<x\leq\mu_{2},y\leq\mu_{1}

Rewriting Equation 26 for the part of the space where μ1<x<μ2,y<μ1\mu_{1}<x<\mu_{2},y<\mu_{1} is

dμ1<xμ2,yμ1(X,Y)\displaystyle d_{\mu_{1}<x\leq\mu_{2},y\leq\mu_{1}}(X,Y) =14b2μ1μ1μ2(xy)e(xμ1)be(μ2y)b𝑑x𝑑y\displaystyle=\frac{1}{4b^{2}}\int_{-\infty}^{\mu_{1}}\int_{\mu_{1}}^{\mu_{2}}(x-y)\cdot e^{\frac{-(x-\mu_{1})}{b}}\cdot e^{\frac{-(\mu_{2}-y)}{b}}\,dx\,dy
=14b2μ1(μ1μ2(xy)e(xμ1)b𝑑x)e(μ2y)b𝑑y\displaystyle=\frac{1}{4b^{2}}\int_{-\infty}^{\mu_{1}}\left(\int_{\mu_{1}}^{\mu_{2}}(x-y)\cdot e^{\frac{-(x-\mu_{1})}{b}}\,dx\right)\cdot e^{\frac{-(\mu_{2}-y)}{b}}\,dy
=14b2μ1(eμ1μ2b(bybμ2b2)by+bμ1+b2)e(μ2y)b𝑑y\displaystyle=\frac{1}{4b^{2}}\int_{-\infty}^{\mu_{1}}\left(e^{\frac{\mu_{1}-\mu_{2}}{b}}\left(by-b\mu_{2}-b^{2}\right)-by+b\mu_{1}+b^{2}\right)\cdot e^{\frac{-(\mu_{2}-y)}{b}}\,dy
=14bμ1(eμ1μ2b(yμ2b)y+μ1+b)e(μ2y)b𝑑y\displaystyle=\frac{1}{4b}\int_{-\infty}^{\mu_{1}}\left(e^{\frac{\mu_{1}-\mu_{2}}{b}}\left(y-\mu_{2}-b\right)-y+\mu_{1}+b\right)\cdot e^{\frac{-(\mu_{2}-y)}{b}}\,dy
=14b(2b2eμ1μ2b+e2μ12μ2b(bμ2+bμ12b2))\displaystyle=\frac{1}{4b}\left(2b^{2}e^{\frac{\mu_{1}-\mu_{2}}{b}}+e^{\frac{2\mu_{1}-2\mu_{2}}{b}}\left(-b\mu_{2}+b\mu_{1}-2b^{2}\right)\right)
=14(2beμ1μ2b+e2μ12μ2b(μ1μ22b)).\displaystyle=\frac{1}{4}\left(2be^{\frac{\mu_{1}-\mu_{2}}{b}}+e^{\frac{2\mu_{1}-2\mu_{2}}{b}}\left(\mu_{1}-\mu_{2}-2b\right)\right).

A.5 μ1<xμ2,μ1<yμ2\mu_{1}<x\leq\mu_{2},\mu_{1}<y\leq\mu_{2}

Rewriting Equation 26 for the part of the space where μ1<x<μ2,μ1<y<μ2\mu_{1}<x<\mu_{2},\mu_{1}<y<\mu_{2} is

dμ1<xμ2,μ1<yμ2(X,Y)\displaystyle d_{\mu_{1}<x\leq\mu_{2},\mu_{1}<y\leq\mu_{2}}(X,Y) =14b2μ1μ2μ1μ2|yx|e(xμ1)be(μ2y)b𝑑x𝑑y\displaystyle=\frac{1}{4b^{2}}\int_{\mu_{1}}^{\mu_{2}}\int_{\mu_{1}}^{\mu_{2}}|y-x|\cdot e^{\frac{-(x-\mu_{1})}{b}}\cdot e^{\frac{-(\mu_{2}-y)}{b}}\,dx\,dy
=14b2μ1μ2(μ1μ2|yx|e(xμ1)b𝑑x)e(μ2y)b𝑑y\displaystyle=\frac{1}{4b^{2}}\int_{\mu_{1}}^{\mu_{2}}\left(\int_{\mu_{1}}^{\mu_{2}}|y-x|\cdot e^{\frac{-(x-\mu_{1})}{b}}\,dx\right)\cdot e^{\frac{-(\mu_{2}-y)}{b}}\,dy
=14b2μ1μ2(μ1y(yx)e(xμ1)b𝑑x+yμ2(xy)e(xμ1)b𝑑x)e(μ2y)b𝑑y\displaystyle=\frac{1}{4b^{2}}\int_{\mu_{1}}^{\mu_{2}}\left(\int_{\mu_{1}}^{y}(y-x)\cdot e^{\frac{-(x-\mu_{1})}{b}}\,dx+\int_{y}^{\mu_{2}}(x-y)\cdot e^{\frac{-(x-\mu_{1})}{b}}\,dx\right)\cdot e^{\frac{-(\mu_{2}-y)}{b}}\,dy
=14b2μ1μ2((b2eμ1yb+bybμ1b2)\displaystyle=\frac{1}{4b^{2}}\int_{\mu_{1}}^{\mu_{2}}\bigg{(}\left(b^{2}e^{\frac{\mu_{1}-y}{b}}+by-b\mu_{1}-b^{2}\right)
+(b2eμ1yb+eμ1μ2b(bybμ2b2)))e(μ2y)bdy\displaystyle\qquad+\left(b^{2}e^{\frac{\mu_{1}-y}{b}}+e^{\frac{\mu_{1}-\mu_{2}}{b}}\left(by-b\mu_{2}-b^{2}\right)\right)\bigg{)}\cdot e^{\frac{-(\mu_{2}-y)}{b}}\,dy
=14bμ1μ2(2beμ1yb+yμ1b+eμ1μ2b(yμ2b))e(μ2y)b𝑑y\displaystyle=\frac{1}{4b}\int_{\mu_{1}}^{\mu_{2}}\left(2be^{\frac{\mu_{1}-y}{b}}+y-\mu_{1}-b+e^{\frac{\mu_{1}-\mu_{2}}{b}}\left(y-\mu_{2}-b\right)\right)\cdot e^{\frac{-(\mu_{2}-y)}{b}}\,dy
=14b(bμ2bμ12b2+eμ1μ2b(2bμ22b2)\displaystyle=\frac{1}{4b}\bigg{(}b\mu_{2}-b\mu_{1}-2b^{2}+e^{\frac{\mu_{1}-\mu_{2}}{b}}\left(2b\mu_{2}-2b^{2}\right)
+eμ1μ2b(2bμ1+2b2)+e2μ12μ2b(bμ2bμ1+2b2))\displaystyle\qquad+e^{\frac{\mu_{1}-\mu_{2}}{b}}\left(-2b\mu_{1}+2b^{2}\right)+e^{\frac{2\mu_{1}-2\mu_{2}}{b}}\left(b\mu_{2}-b\mu_{1}+2b^{2}\right)\bigg{)}
=14(μ2μ12b+eμ1μ2b(2μ22μ1)+e2μ12μ2b(μ2μ1+2b)).\displaystyle=\frac{1}{4}\left(\mu_{2}-\mu_{1}-2b+e^{\frac{\mu_{1}-\mu_{2}}{b}}\left(2\mu_{2}-2\mu_{1}\right)+e^{\frac{2\mu_{1}-2\mu_{2}}{b}}\left(\mu_{2}-\mu_{1}+2b\right)\right).

A.6 μ1<xμ2,μ2<y\mu_{1}<x\leq\mu_{2},\mu_{2}<y

Rewriting Equation 26 for the part of the space where μ1<x<μ2,μ2<y\mu_{1}<x<\mu_{2},\mu_{2}<y is

dμ1<xμ2,μ2<y(X,Y)\displaystyle d_{\mu_{1}<x\leq\mu_{2},\mu_{2}<y}(X,Y) =14b2μ2μ1μ2(yx)e(xμ1)be(yμ2)b𝑑x𝑑y\displaystyle=\frac{1}{4b^{2}}\int_{\mu_{2}}^{\infty}\int_{\mu_{1}}^{\mu_{2}}(y-x)\cdot e^{\frac{-(x-\mu_{1})}{b}}\cdot e^{\frac{-(y-\mu_{2})}{b}}\,dx\,dy
=14b2μ2(μ1μ2(yx)e(xμ1)b𝑑x)e(yμ2)b𝑑y\displaystyle=\frac{1}{4b^{2}}\int_{\mu_{2}}^{\infty}\left(\int_{\mu_{1}}^{\mu_{2}}(y-x)\cdot e^{\frac{-(x-\mu_{1})}{b}}\,dx\right)\cdot e^{\frac{-(y-\mu_{2})}{b}}\,dy
=14b2μ2(bybμ1b2eμ1μ2b(bybμ2b2))e(yμ2)b𝑑y\displaystyle=\frac{1}{4b^{2}}\int_{\mu_{2}}^{\infty}\left(by-b\mu_{1}-b^{2}-e^{\frac{\mu_{1}-\mu_{2}}{b}}\left(by-b\mu_{2}-b^{2}\right)\right)\cdot e^{\frac{-(y-\mu_{2})}{b}}\,dy
=14bμ2(yμ1beμ1μ2b(yμ2b))e(yμ2)b𝑑y\displaystyle=\frac{1}{4b}\int_{\mu_{2}}^{\infty}\left(y-\mu_{1}-b-e^{\frac{\mu_{1}-\mu_{2}}{b}}\left(y-\mu_{2}-b\right)\right)\cdot e^{\frac{-(y-\mu_{2})}{b}}\,dy
=14b(bμ2bμ1)\displaystyle=\frac{1}{4b}\left(b\mu_{2}-b\mu_{1}\right)
=14(μ2μ1)\displaystyle=\frac{1}{4}\left(\mu_{2}-\mu_{1}\right)

A.7 μ2<x,yμ1\mu_{2}<x,y\leq\mu_{1}

Rewriting Equation 26 for the part of the space where μ2<x,y<μ1\mu_{2}<x,y<\mu_{1} is

dμ2<x,yμ1(X,Y)\displaystyle d_{\mu_{2}<x,y\leq\mu_{1}}(X,Y) =14b2μ1μ2(xy)e(xμ1)be(μ2y)b𝑑x𝑑y\displaystyle=\frac{1}{4b^{2}}\int_{-\infty}^{\mu_{1}}\int_{\mu_{2}}^{\infty}(x-y)\cdot e^{\frac{-(x-\mu_{1})}{b}}\cdot e^{\frac{-(\mu_{2}-y)}{b}}\,dx\,dy
=14b2μ1(μ2(xy)e(xμ1)b𝑑x)e(μ2y)b𝑑y\displaystyle=\frac{1}{4b^{2}}\int_{-\infty}^{\mu_{1}}\left(\int_{\mu_{2}}^{\infty}(x-y)\cdot e^{\frac{-(x-\mu_{1})}{b}}\,dx\right)\cdot e^{\frac{-(\mu_{2}-y)}{b}}\,dy
=14b2μ1eμ1μ2b(by+bμ2+b2)e(μ2y)b𝑑y\displaystyle=\frac{1}{4b^{2}}\int_{-\infty}^{\mu_{1}}e^{\frac{\mu_{1}-\mu_{2}}{b}}\left(-by+b\mu_{2}+b^{2}\right)\cdot e^{\frac{-(\mu_{2}-y)}{b}}\,dy
=14bμ1eμ1μ2b(y+μ2+b)e(μ2y)b𝑑y\displaystyle=\frac{1}{4b}\int_{-\infty}^{\mu_{1}}e^{\frac{\mu_{1}-\mu_{2}}{b}}\left(-y+\mu_{2}+b\right)\cdot e^{\frac{-(\mu_{2}-y)}{b}}\,dy
=14be2μ12μ2b(bμ2+2b2bμ1)\displaystyle=\frac{1}{4b}e^{\frac{2\mu_{1}-2\mu_{2}}{b}}\left(b\mu_{2}+2b^{2}-b\mu_{1}\right)
=14e2μ12μ2b(μ2+2bμ1)\displaystyle=\frac{1}{4}e^{\frac{2\mu_{1}-2\mu_{2}}{b}}\left(\mu_{2}+2b-\mu_{1}\right)
=14e2(μ2μ1)b(2b+μ2μ1)\displaystyle=\frac{1}{4}e^{\frac{-2(\mu_{2}-\mu_{1})}{b}}\left(2b+\mu_{2}-\mu_{1}\right)

A.8 μ2<x,μ1<yμ2\mu_{2}<x,\mu_{1}<y\leq\mu_{2}

Rewriting Equation 26 for the part of the space where μ2<x,μ1<y<μ2\mu_{2}<x,\mu_{1}<y<\mu_{2} is

dμ2<x,μ1<yμ2(X,Y)\displaystyle d_{\mu_{2}<x,\mu_{1}<y\leq\mu_{2}}(X,Y) =14b2μ1μ2μ2(xy)e(xμ1)be(μ2y)b𝑑x𝑑y\displaystyle=\frac{1}{4b^{2}}\int_{\mu_{1}}^{\mu_{2}}\int_{\mu_{2}}^{\infty}(x-y)\cdot e^{\frac{-(x-\mu_{1})}{b}}\cdot e^{\frac{-(\mu_{2}-y)}{b}}\,dx\,dy
=14b2μ1μ2(μ2(xy)e(xμ1)b𝑑x)e(μ2y)b𝑑y\displaystyle=\frac{1}{4b^{2}}\int_{\mu_{1}}^{\mu_{2}}\left(\int_{\mu_{2}}^{\infty}(x-y)\cdot e^{\frac{-(x-\mu_{1})}{b}}\,dx\right)\cdot e^{\frac{-(\mu_{2}-y)}{b}}\,dy
=14b2μ1μ2(eμ1μ2b(by+bμ2+b2))e(μ2y)b𝑑y\displaystyle=\frac{1}{4b^{2}}\int_{\mu_{1}}^{\mu_{2}}\left(e^{\frac{\mu_{1}-\mu_{2}}{b}}\left(-by+b\mu_{2}+b^{2}\right)\right)\cdot e^{\frac{-(\mu_{2}-y)}{b}}\,dy
=14bμ1μ2(eμ1μ2b(y+μ2+b))e(μ2y)b𝑑y\displaystyle=\frac{1}{4b}\int_{\mu_{1}}^{\mu_{2}}\left(e^{\frac{\mu_{1}-\mu_{2}}{b}}\left(-y+\mu_{2}+b\right)\right)\cdot e^{\frac{-(\mu_{2}-y)}{b}}\,dy
=14b(2b2eμ1μ2be2μ12μ2b(bμ2bμ1+2b2))\displaystyle=\frac{1}{4b}\left(2b^{2}e^{\frac{\mu_{1}-\mu_{2}}{b}}-e^{\frac{2\mu_{1}-2\mu_{2}}{b}}\left(b\mu_{2}-b\mu_{1}+2b^{2}\right)\right)
=14(2beμ1μ2b+e2μ12μ2b(μ1μ22b))\displaystyle=\frac{1}{4}\left(2be^{\frac{\mu_{1}-\mu_{2}}{b}}+e^{\frac{2\mu_{1}-2\mu_{2}}{b}}\left(\mu_{1}-\mu_{2}-2b\right)\right)

Rewriting Equation 26 for the part of the space where μ2<x,μ2<y\mu_{2}<x,\mu_{2}<y is

dμ2<x,μ2<y(X,Y)\displaystyle d_{\mu_{2}<x,\mu_{2}<y}(X,Y) =14b2μ2μ2|xy|e(xμ1)be(yμ2)b𝑑x𝑑y\displaystyle=\frac{1}{4b^{2}}\int_{\mu_{2}}^{\infty}\int_{\mu_{2}}^{\infty}|x-y|\cdot e^{\frac{-(x-\mu_{1})}{b}}\cdot e^{\frac{-(y-\mu_{2})}{b}}\,dx\,dy
=14b2μ2(μ2|xy|e(xμ1)b𝑑x)e(yμ2)b𝑑y\displaystyle=\frac{1}{4b^{2}}\int_{\mu_{2}}^{\infty}\left(\int_{\mu_{2}}^{\infty}|x-y|\cdot e^{\frac{-(x-\mu_{1})}{b}}\,dx\right)\cdot e^{\frac{-(y-\mu_{2})}{b}}\,dy
=14b2μ2(μ2y(yx)e(xμ1)b𝑑x+y(xy)e(xμ1)b𝑑x)e(yμ2)b𝑑y\displaystyle=\frac{1}{4b^{2}}\int_{\mu_{2}}^{\infty}\left(\int_{\mu_{2}}^{y}(y-x)\cdot e^{\frac{-(x-\mu_{1})}{b}}\,dx+\int_{y}^{\infty}(x-y)\cdot e^{\frac{-(x-\mu_{1})}{b}}\,dx\right)\cdot e^{\frac{-(y-\mu_{2})}{b}}\,dy
=14b2μ2((b2eμ1yb+eμ1μ2b(bybμ2b2))+(b2eμ1yb))e(yμ2)b𝑑y\displaystyle=\frac{1}{4b^{2}}\int_{\mu_{2}}^{\infty}\left(\left(b^{2}e^{\frac{\mu_{1}-y}{b}}+e^{\frac{\mu_{1}-\mu_{2}}{b}}\left(by-b\mu_{2}-b^{2}\right)\right)+\left(b^{2}e^{\frac{\mu_{1}-y}{b}}\right)\right)\cdot e^{\frac{-(y-\mu_{2})}{b}}\,dy
=14bμ2(2beμ1yb+eμ1μ2b(yμ2b))e(yμ2)b𝑑y\displaystyle=\frac{1}{4b}\int_{\mu_{2}}^{\infty}\left(2be^{\frac{\mu_{1}-y}{b}}+e^{\frac{\mu_{1}-\mu_{2}}{b}}\left(y-\mu_{2}-b\right)\right)\cdot e^{\frac{-(y-\mu_{2})}{b}}\,dy
=14bb2eμ1μ2b\displaystyle=\frac{1}{4b}b^{2}e^{\frac{\mu_{1}-\mu_{2}}{b}}
=14be(μ2μ1)b.\displaystyle=\frac{1}{4}be^{\frac{-(\mu_{2}-\mu_{1})}{b}}.

A.9 Combining the Parts

We can combine each of the probability weighted distances as

d(X,Y)\displaystyle d(X,Y) =dxμ1,yμ1(X,Y)+dxμ1,μ1<yμ2(X,Y)+dxμ1,μ2<y(X,Y)+dμ1<xμ2,yμ1(X,Y)\displaystyle=d_{x\leq\mu_{1},y\leq\mu_{1}}(X,Y)+d_{x\leq\mu_{1},\mu_{1}<y\leq\mu_{2}}(X,Y)+d_{x\leq\mu_{1},\mu_{2}<y}(X,Y)+d_{\mu_{1}<x\leq\mu_{2},y\leq\mu_{1}}(X,Y)
+dμ1<xμ2,μ1<yμ2(X,Y)+dμ1<xμ2,μ2<y(X,Y)+dμ2<x,yμ1(X,Y)+dμ2<x,μ1<yμ2(X,Y)\displaystyle\quad+d_{\mu_{1}<x\leq\mu_{2},\mu_{1}<y\leq\mu_{2}}(X,Y)+d_{\mu_{1}<x\leq\mu_{2},\mu_{2}<y}(X,Y)+d_{\mu_{2}<x,y\leq\mu_{1}}(X,Y)+d_{\mu_{2}<x,\mu_{1}<y\leq\mu_{2}}(X,Y)
+dμ2<x,μ2<y(X,Y)\displaystyle\quad+d_{\mu_{2}<x,\mu_{2}<y}(X,Y)
=14be(μ2μ1)b\displaystyle=\frac{1}{4}be^{\frac{-(\mu_{2}-\mu_{1})}{b}}
+14(μ2μ1)\displaystyle\quad+\frac{1}{4}\left(\mu_{2}-\mu_{1}\right)
+14(μ2μ1+2b)\displaystyle\quad+\frac{1}{4}\left(\mu_{2}-\mu_{1}+2b\right)
+14(2beμ1μ2b+e2μ12μ2b(μ1μ22b))\displaystyle\quad+\frac{1}{4}\left(2be^{\frac{\mu_{1}-\mu_{2}}{b}}+e^{\frac{2\mu_{1}-2\mu_{2}}{b}}\left(\mu_{1}-\mu_{2}-2b\right)\right)
+14(μ2μ12b+eμ1μ2b(2μ22μ1)+e2μ12μ2b(μ2μ1+2b))\displaystyle\quad+\frac{1}{4}\left(\mu_{2}-\mu_{1}-2b+e^{\frac{\mu_{1}-\mu_{2}}{b}}\left(2\mu_{2}-2\mu_{1}\right)+e^{\frac{2\mu_{1}-2\mu_{2}}{b}}\left(\mu_{2}-\mu_{1}+2b\right)\right)
+14(μ2μ1)\displaystyle\quad+\frac{1}{4}\left(\mu_{2}-\mu_{1}\right)
+14e2(μ2μ1)b(2b+μ2μ1)\displaystyle\quad+\frac{1}{4}e^{\frac{-2(\mu_{2}-\mu_{1})}{b}}\left(2b+\mu_{2}-\mu_{1}\right)
+14(2beμ1μ2b+e2μ12μ2b(μ1μ22b))\displaystyle\quad+\frac{1}{4}\left(2be^{\frac{\mu_{1}-\mu_{2}}{b}}+e^{\frac{2\mu_{1}-2\mu_{2}}{b}}\left(\mu_{1}-\mu_{2}-2b\right)\right)
+14be(μ2μ1)b\displaystyle\quad+\frac{1}{4}be^{\frac{-(\mu_{2}-\mu_{1})}{b}}
=be(μ2μ1)b\displaystyle=be^{\frac{-(\mu_{2}-\mu_{1})}{b}}
+12(μ2μ1+b)\displaystyle\quad+\frac{1}{2}\left(\mu_{2}-\mu_{1}+b\right)
+14(2beμ1μ2b+e2μ12μ2b(μ1μ22b))\displaystyle\quad+\frac{1}{4}\left(2be^{\frac{\mu_{1}-\mu_{2}}{b}}+e^{\frac{2\mu_{1}-2\mu_{2}}{b}}\left(\mu_{1}-\mu_{2}-2b\right)\right)
+14(μ2μ12b+eμ1μ2b(2μ22μ1)+e2μ12μ2b(μ2μ1+2b))\displaystyle\quad+\frac{1}{4}\left(\mu_{2}-\mu_{1}-2b+e^{\frac{\mu_{1}-\mu_{2}}{b}}\left(2\mu_{2}-2\mu_{1}\right)+e^{\frac{2\mu_{1}-2\mu_{2}}{b}}\left(\mu_{2}-\mu_{1}+2b\right)\right)
+14(μ2μ1)\displaystyle\quad+\frac{1}{4}\left(\mu_{2}-\mu_{1}\right)
=be(μ2μ1)b\displaystyle=be^{\frac{-(\mu_{2}-\mu_{1})}{b}}
+(μ2μ1)\displaystyle\quad+\left(\mu_{2}-\mu_{1}\right)
+14(2beμ1μ2b)\displaystyle\quad+\frac{1}{4}\left(2be^{\frac{\mu_{1}-\mu_{2}}{b}}\right)
+14(eμ1μ2b(2μ22μ1))\displaystyle\quad+\frac{1}{4}\left(e^{\frac{\mu_{1}-\mu_{2}}{b}}\left(2\mu_{2}-2\mu_{1}\right)\right)
=be(μ2μ1)b+(μ2μ1)+12beμ1μ2b+12eμ1μ2b(μ2μ1)\displaystyle=be^{\frac{-(\mu_{2}-\mu_{1})}{b}}+\left(\mu_{2}-\mu_{1}\right)+\frac{1}{2}be^{\frac{\mu_{1}-\mu_{2}}{b}}+\frac{1}{2}e^{\frac{\mu_{1}-\mu_{2}}{b}}\left(\mu_{2}-\mu_{1}\right)
d(X,Y)\displaystyle d(X,Y) =μ2μ1+12e(μ2μ1)b(3b+μ2μ1).\displaystyle=\mu_{2}-\mu_{1}+\frac{1}{2}e^{\frac{-(\mu_{2}-\mu_{1})}{b}}\left(3b+\mu_{2}-\mu_{1}\right).

To remove the assumption that μ1μ2\mu_{1}\leq\mu_{2}, we can rewrite this result as

d(X,Y)=|μ2μ1|+12e|μ2μ1|b(3b+|μ2μ1|).d(X,Y)=|\mu_{2}-\mu_{1}|+\frac{1}{2}e^{\frac{-|\mu_{2}-\mu_{1}|}{b}}\left(3b+|\mu_{2}-\mu_{1}|\right). (27)

This completes the derivation of LK distance with Laplace Distributions.

Appendix B Information about the Benchmarked Algorithms

  • Gradient Boosted Trees

    K-fold cross-validation was carried out with K=6K=6. Grid search was carried out on the number of estimators (NestN_{\text{est}}) such that Nest{ei}i=18N_{\text{est}}\in\{\lceil e^{i}\rceil\}_{i=1}^{8}.

  • Tradional KNN

    K-fold cross-validation was carried out with K=6K=6. Grid search was carried out on the number of the number of neighbors (knk_{n}) and the value of pp in lpl_{p} norms such that kn[1,2,3,5,8,13,21,34,55,89,144]k_{n}\in[1,2,3,5,8,13,21,34,55,89,144] and p[1,2]p\in[1,2]. Note that the search space of neighbors are picked according to the Fibonacci sequence since it grows at a slower rate than some other sequences (e.g. exponential), which is advantageous when exploring hyperparameter values. It provides a versatile set of values that can adapt to different datasets and problem characteristics leading to a more diverse exploration of the search space, helping to identify a wider range of potential optimal knk_{n} values.

  • Regularized Least Squares

    Elastic Net was used in the case of regression. K-fold cross-validation was carried out with K=6K=6. Grid search was carried out on the scaling ration of the l1l_{1} and l2l_{2} penalties ranging from values [0.1,0.5,0.7,0.9,0.95,0.99,1.0][0.1,0.5,0.7,0.9,0.95,0.99,1.0]

  • Logistic Regression

    K-fold cross-validation was carried out with K=6K=6. Grid search was carried out on the inverse of regularization strength CC in the logarithmic scale such that

    C[0.0001,0.0008,0.006,0.0464,0.3594,2.7826,21.5443,166.8101,1291.5497,10000.0]C\in[0.0001,0.0008,0.006,0.0464,0.3594,2.7826,21.5443,166.8101,1291.5497,10000.0]

    The optimization problem was solved using stochastic average gradient with l2l_{2} penalty.

  • Neural Network

    For both classification and regression datasets, Adam Optimizer was used with batch size 128 and learning rate of 0.0010.001. An internal validation set of 10%10\% was used from the training data for an early stopping criteria, with maximum epochs set to 10001000 using swish activation for each hidden layer. A dropout rate of 10%10\% with Layer Norm was used after each hidden layer. The details of the architecture can be found in the table below.

    Layer # Parameter Type Parameter Size
    layers 1 0.weight (512, Input Size)
    layers 1 0.bias (512,)
    dropout 1 1.weight (512,)
    dropout 1 1.bias (512,)
    layers 2 4.weight (512, 512)
    layers 2 4.bias (512,)
    dropout 2 5.weight (512,)
    dropout 2 5.bias (512,)
    layers 3 8.weight (512, 512)
    layers 3 8.bias (512,)
    dropout 3 9.weight (512,)
    dropout 3 9.bias (512,)
    Output Layer weight (Output Size, 512)
    Output Layer bias (Output Size,)
  • Random Forests

    K-fold cross-validation was carried out with K=6K=6. Grid search was carried out on the number of estimators (NestN_{\text{est}}) such that Nest{ei}i=18N_{\text{est}}\in\{\lceil e^{i}\rceil\}_{i=1}^{8}.

  • Light-GBM

    K-fold cross-validation was carried out with K=6K=6. The number of estimators used was 100 with number of leaves = 31

Appendix C Detailed Information about the PMLB Classificaton Datasets


Dataset Name Rows Columns Rows ×\times Columns
1 GAMETES_Epistasis_2_Way_20atts_0.1H_EDM_1_1 1600 21 33600
2 GAMETES_Epistasis_2_Way_20atts_0.4H_EDM_1_1 1600 21 33600
3 GAMETES_Epistasis_3_Way_20atts_0.2H_EDM_1_1 1600 21 33600
4 GAMETES_Heterogeneity_20atts_1600_Het_0.4_0.2_… 1600 21 33600
5 GAMETES_Heterogeneity_20atts_1600_Het_0.4_0.2_… 1600 21 33600
6 Hill_Valley_with_noise 1212 101 122412
7 Hill_Valley_without_noise 1212 101 122412
8 agaricus_lepiota 8145 23 187335
9 allbp 3772 30 113160
10 allhyper 3771 30 113130
11 allhypo 3770 30 113100
12 allrep 3772 30 113160
13 analcatdata_aids 50 5 250
14 analcatdata_asbestos 83 4 332
15 analcatdata_authorship 841 71 59711
16 analcatdata_bankruptcy 50 7 350
17 analcatdata_boxing1 120 4 480
18 analcatdata_boxing2 132 4 528
19 analcatdata_creditscore 100 7 700
20 analcatdata_cyyoung8092 97 11 1067
21 analcatdata_cyyoung9302 92 11 1012
22 analcatdata_dmft 797 5 3985
23 analcatdata_fraud 42 12 504
24 analcatdata_germangss 400 6 2400
25 analcatdata_happiness 60 4 240
26 analcatdata_japansolvent 52 10 520
27 analcatdata_lawsuit 264 5 1320
28 ann_thyroid 7200 22 158400
29 appendicitis 106 8 848
30 australian 690 15 10350
31 auto 202 26 5252
32 backache 180 33 5940
33 balance_scale 625 5 3125
34 banana 5300 3 15900
35 biomed 209 9 1881
36 breast 699 11 7689
37 breast_cancer 286 10 2860
38 breast_cancer_wisconsin 569 31 17639
39 breast_w 699 10 6990
40 buggyCrx 690 16 11040
41 bupa 345 6 2070
42 calendarDOW 399 33 13167
43 car 1728 7 12096
44 car_evaluation 1728 22 38016
45 cars 392 9 3528
46 chess 3196 37 118252
47 churn 5000 21 105000
48 clean1 476 169 80444
49 cleve 303 14 4242
50 cleveland 303 14 4242
51 cleveland_nominal 303 8 2424
52 cloud 108 8 864
53 cmc 1473 10 14730
54 colic 368 23 8464
55 collins 485 24 11640
56 confidence 72 4 288
57 contraceptive 1473 10 14730
58 corral 160 7 1120
59 credit_a 690 16 11040
60 credit_g 1000 21 21000
61 crx 690 16 11040
62 dermatology 366 35 12810
63 diabetes 768 9 6912
64 dis 3772 30 113160
65 ecoli 327 8 2616
66 flags 178 44 7832
67 flare 1066 11 11726
68 german 1000 21 21000
69 glass 205 10 2050
70 glass2 163 10 1630
71 haberman 306 4 1224
72 hayes_roth 160 5 800
73 heart_c 303 14 4242
Dataset Name Rows Columns Rows ×\times Columns
74 heart_h 294 14 4116
75 heart_statlog 270 14 3780
76 hepatitis 155 20 3100
77 horse_colic 368 23 8464
78 house_votes_84 435 17 7395
79 hungarian 294 14 4116
80 hypothyroid 3163 26 82238
81 ionosphere 351 35 12285
82 iris 150 5 750
83 irish 500 6 3000
84 kr_vs_kp 3196 37 118252
85 krkopt 28056 7 196392
86 labor 57 17 969
87 led24 3200 25 80000
88 led7 3200 8 25600
89 lupus 87 4 348
90 lymphography 148 19 2812
91 magic 19020 11 209220
92 mfeat_fourier 2000 77 154000
93 mfeat_karhunen 2000 65 130000
94 mfeat_morphological 2000 7 14000
95 mfeat_zernike 2000 48 96000
96 mofn_3_7_10 1324 11 14564
97 molecular_biology_promoters 106 58 6148
98 monk1 556 7 3892
99 monk2 601 7 4207
100 monk3 554 7 3878
101 movement_libras 360 91 32760
102 mushroom 8124 23 186852
103 mux6 128 7 896
104 new_thyroid 215 6 1290
105 nursery 12958 9 116622
106 page_blocks 5473 11 60203
107 parity5 32 6 192
108 parity5+5 1124 11 12364
109 pendigits 10992 17 186864
110 phoneme 5404 6 32424
111 pima 768 9 6912
112 postoperative_patient_data 88 9 792
113 prnn_crabs 200 8 1600
114 prnn_fglass 205 10 2050
115 prnn_synth 250 3 750
116 profb 672 10 6720
117 ring 7400 21 155400
118 saheart 462 10 4620
119 satimage 6435 37 238095
120 schizo 340 15 5100
121 segmentation 2310 20 46200
122 solar_flare_1 315 13 4095
123 solar_flare_2 1066 13 13858
124 sonar 208 61 12688
125 soybean 675 36 24300
126 spambase 4601 58 266858
127 spect 267 23 6141
128 spectf 349 45 15705
129 splice 3188 61 194468
130 tae 151 6 906
131 texture 5500 41 225500
132 threeOf9 512 10 5120
133 tic_tac_toe 958 10 9580
134 tokyo1 959 45 43155
135 twonorm 7400 21 155400
136 vehicle 846 19 16074
137 vote 435 17 7395
138 vowel 990 14 13860
139 waveform_21 5000 22 110000
140 waveform_40 5000 41 205000
141 wdbc 569 31 17639
142 wine_quality_red 1599 12 19188
143 wine_quality_white 4898 12 58776
144 wine_recognition 178 14 2492
145 xd6 973 10 9730
146 yeast 1479 9 13311

Appendix D Detailed Information about the PMLB Regression Datasets


Dataset Name Rows Columns Rows ×\times Columns
1 1027_ESL 488 5 2440
2 1028_SWD 1000 11 11000
3 1029_LEV 1000 5 5000
4 1030_ERA 1000 5 5000
5 1089_USCrime 47 14 658
6 1096_FacultySalaries 50 5 250
7 1199_BNG_echoMonths 17496 10 174960
8 192_vineyard 52 3 156
9 197_cpu_act 8192 22 180224
10 210_cloud 108 6 648
11 225_puma8NH 8192 9 73728
12 227_cpu_small 8192 13 106496
13 228_elusage 55 3 165
14 229_pwLinear 200 11 2200
15 294_satellite_image 6435 37 238095
16 4544_GeographicalOriginalofMusic 1059 118 124962
17 503_wind 6574 15 98610
18 505_tecator 240 125 30000
19 519_vinnie 380 3 1140
20 522_pm10 500 8 4000
21 523_analcatdata_neavote 100 3 300
22 529_pollen 3848 5 19240
23 547_no2 500 8 4000
24 560_bodyfat 252 15 3780
25 562_cpu_small 8192 13 106496
26 573_cpu_act 8192 22 180224
27 579_fri_c0_250_5 250 6 1500
28 581_fri_c3_500_25 500 26 13000
29 582_fri_c1_500_25 500 26 13000
30 583_fri_c1_1000_50 1000 51 51000
31 584_fri_c4_500_25 500 26 13000
32 586_fri_c3_1000_25 1000 26 26000
33 588_fri_c4_1000_100 1000 101 101000
34 589_fri_c2_1000_25 1000 26 26000
35 590_fri_c0_1000_50 1000 51 51000
36 591_fri_c1_100_10 100 11 1100
37 592_fri_c4_1000_25 1000 26 26000
38 593_fri_c1_1000_10 1000 11 11000
39 594_fri_c2_100_5 100 6 600
40 595_fri_c0_1000_10 1000 11 11000
41 596_fri_c2_250_5 250 6 1500
42 597_fri_c2_500_5 500 6 3000
43 598_fri_c0_1000_25 1000 26 26000
44 599_fri_c2_1000_5 1000 6 6000
45 601_fri_c1_250_5 250 6 1500
46 602_fri_c3_250_10 250 11 2750
47 603_fri_c0_250_50 250 51 12750
48 604_fri_c4_500_10 500 11 5500
49 605_fri_c2_250_25 250 26 6500
50 606_fri_c2_1000_10 1000 11 11000
51 607_fri_c4_1000_50 1000 51 51000
52 608_fri_c3_1000_10 1000 11 11000
53 609_fri_c0_1000_5 1000 6 6000
54 611_fri_c3_100_5 100 6 600
Dataset Name Rows Columns Rows ×\times Columns
55 612_fri_c1_1000_5 1000 6 6000
56 613_fri_c3_250_5 250 6 1500
57 615_fri_c4_250_10 250 11 2750
58 616_fri_c4_500_50 500 51 25500
59 617_fri_c3_500_5 500 6 3000
60 618_fri_c3_1000_50 1000 51 51000
61 620_fri_c1_1000_25 1000 26 26000
62 621_fri_c0_100_10 100 11 1100
63 622_fri_c2_1000_50 1000 51 51000
64 623_fri_c4_1000_10 1000 11 11000
65 624_fri_c0_100_5 100 6 600
66 626_fri_c2_500_50 500 51 25500
67 627_fri_c2_500_10 500 11 5500
68 628_fri_c3_1000_5 1000 6 6000
69 631_fri_c1_500_5 500 6 3000
70 633_fri_c0_500_25 500 26 13000
71 634_fri_c2_100_10 100 11 1100
72 635_fri_c0_250_10 250 11 2750
73 637_fri_c1_500_50 500 51 25500
74 641_fri_c1_500_10 500 11 5500
75 643_fri_c2_500_25 500 26 13000
76 644_fri_c4_250_25 250 26 6500
77 645_fri_c3_500_50 500 51 25500
78 646_fri_c3_500_10 500 11 5500
79 647_fri_c1_250_10 250 11 2750
80 648_fri_c1_250_50 250 51 12750
81 649_fri_c0_500_5 500 6 3000
82 650_fri_c0_500_50 500 51 25500
83 651_fri_c0_100_25 100 26 2600
84 653_fri_c0_250_25 250 26 6500
85 654_fri_c0_500_10 500 11 5500
86 656_fri_c1_100_5 100 6 600
87 657_fri_c2_250_10 250 11 2750
88 658_fri_c3_250_25 250 26 6500
89 663_rabe_266 120 3 360
90 665_sleuth_case2002 147 7 1029
91 666_rmftsa_ladata 508 11 5588
92 678_visualizing_environmental 111 4 444
93 687_sleuth_ex1605 62 6 372
94 690_visualizing_galaxy 323 5 1615
95 695_chatfield_4 235 13 3055
96 712_chscase_geyser1 222 3 666
97 feynman_III_12_43 100000 3 300000
98 feynman_III_15_12 100000 4 400000
99 feynman_III_15_14 100000 4 400000
100 feynman_III_15_27 100000 4 400000
101 feynman_III_17_37 100000 4 400000
102 feynman_III_7_38 100000 4 400000
103 feynman_III_8_54 100000 4 400000
104 feynman_II_10_9 100000 4 400000
105 feynman_II_11_28 100000 3 300000
106 feynman_II_13_23 100000 4 400000
107 feynman_II_13_34 100000 4 400000
108 feynman_II_15_4 100000 4 400000
Dataset Name Rows Columns Rows ×\times Columns
109 feynman_II_15_5 100000 4 400000
110 feynman_II_24_17 100000 4 400000
111 feynman_II_27_16 100000 4 400000
112 feynman_II_27_18 100000 3 300000
113 feynman_II_34_2 100000 4 400000
114 feynman_II_34_29a 100000 4 400000
115 feynman_II_34_2a 100000 4 400000
116 feynman_II_37_1 100000 4 400000
117 feynman_II_38_14 100000 3 300000
118 feynman_II_3_24 100000 3 300000
119 feynman_II_4_23 100000 4 400000
120 feynman_II_8_31 100000 3 300000
121 feynman_II_8_7 100000 4 400000
122 feynman_I_10_7 100000 4 400000
123 feynman_I_12_1 100000 3 300000
124 feynman_I_12_4 100000 4 400000
125 feynman_I_12_5 100000 3 300000
126 feynman_I_14_3 100000 4 400000
127 feynman_I_14_4 100000 3 300000
128 feynman_I_15_10 100000 4 400000
129 feynman_I_16_6 100000 4 400000
130 feynman_I_18_12 100000 4 400000
131 feynman_I_25_13 100000 3 300000
132 feynman_I_26_2 100000 3 300000
133 feynman_I_27_6 100000 4 400000
134 feynman_I_29_4 100000 3 300000
135 feynman_I_30_3 100000 4 400000
136 feynman_I_30_5 100000 4 400000
137 feynman_I_34_1 100000 4 400000
138 feynman_I_34_14 100000 4 400000
139 feynman_I_34_27 100000 3 300000
140 feynman_I_37_4 100000 4 400000
141 feynman_I_39_1 100000 3 300000
142 feynman_I_39_11 100000 4 400000
143 feynman_I_43_31 100000 4 400000
144 feynman_I_47_23 100000 4 400000
145 feynman_I_48_2 100000 4 400000
146 feynman_I_6_2 100000 3 300000
147 feynman_I_6_2b 100000 4 400000
148 nikuradse_1 362 3 1086
149 strogatz_bacres1 400 3 1200
150 strogatz_bacres2 400 3 1200
151 strogatz_barmag1 400 3 1200
152 strogatz_barmag2 400 3 1200
153 strogatz_glider1 400 3 1200
154 strogatz_glider2 400 3 1200
155 strogatz_lv1 400 3 1200
156 strogatz_lv2 400 3 1200
157 strogatz_predprey1 400 3 1200
158 strogatz_predprey2 400 3 1200
159 strogatz_shearflow1 400 3 1200
160 strogatz_shearflow2 400 3 1200
161 strogatz_vdp1 400 3 1200
162 strogatz_vdp2 400 3 1200

Appendix E Detailed Results: Classification


Dataset Name Algorithm Mean Accuracy [0-1] \uparrow Mean Precision \uparrow Mean Recall \uparrow Mean MCC \uparrow
1 GAMETES_Epistasis_2_Way_20atts_0.1H_EDM_1_1 Ours 0.653854 0.669697 0.655529 0.32489
2 GAMETES_Epistasis_2_Way_20atts_0.4H_EDM_1_1 Ours 0.759479 0.777411 0.761283 0.538387
3 GAMETES_Epistasis_3_Way_20atts_0.2H_EDM_1_1 Ours 0.659583 0.662087 0.660329 0.322405
4 GAMETES_Heterogeneity_20atts_1600_Het_0.4_0.2_… Ours 0.691042 0.692929 0.691785 0.384708
5 GAMETES_Heterogeneity_20atts_1600_Het_0.4_0.2_… Ours 0.671354 0.674906 0.672593 0.347478
6 Hill_Valley_with_noise Ours 0.555693 0.56096 0.555904 0.116711
7 Hill_Valley_without_noise Ours 0.634979 0.63918 0.635376 0.274511
8 agaricus_lepiota Ours 0.999959 0.999961 0.999957 0.999918
9 allbp Ours 0.96287 0.607804 0.511241 0.486371
10 allhyper Ours 0.98 0.514222 0.470816 0.562103
11 allhypo Ours 0.956366 0.787001 0.737647 0.698695
12 allrep Ours 0.967285 0.573905 0.476258 0.385945
13 analcatdata_aids Ours 0.496667 0.575589 0.528433 0.127752
14 analcatdata_asbestos Ours 0.747059 0.756768 0.759368 0.514386
15 analcatdata_authorship Ours 0.998817 0.9992 0.99921 0.998268
16 analcatdata_bankruptcy Ours 0.83 0.829187 0.813175 0.641827
17 analcatdata_boxing1 Ours 0.834722 0.826879 0.801451 0.625709
18 analcatdata_boxing2 Ours 0.771605 0.778168 0.769354 0.547147
19 analcatdata_creditscore Ours 0.971667 0.947156 0.981818 0.925927
20 analcatdata_cyyoung8092 Ours 0.741667 0.642799 0.584171 0.224909
21 analcatdata_cyyoung9302 Ours 0.864912 0.755211 0.758342 0.505288
22 analcatdata_dmft Ours 0.206875 0.209936 0.210983 0.053707
23 analcatdata_fraud Ours 0.677778 0.631362 0.640972 0.246998
24 analcatdata_germangss Ours 0.321667 0.389592 0.339092 0.129106
25 analcatdata_happiness Ours 0.491667 0.493704 0.51127 0.30306
26 analcatdata_japansolvent Ours 0.706061 0.72914 0.702196 0.4281
27 analcatdata_lawsuit Ours 0.978616 0.913018 0.915771 0.82225
28 ann_thyroid Ours 0.949676 0.872635 0.755052 0.664545
29 appendicitis Ours 0.862121 0.749118 0.752361 0.492146
30 australian Ours 0.853623 0.852566 0.852809 0.705318
31 auto Ours 0.847967 0.857068 0.8448 0.802945
32 backache Ours 0.819444 0.615342 0.562372 0.165026
33 balance_scale Ours 0.890667 0.593734 0.642615 0.806576
34 banana Ours 0.89978 0.902141 0.895135 0.79724
35 biomed Ours 0.965079 0.968146 0.955684 0.923524
36 breast Ours 0.959286 0.956566 0.953688 0.910165
37 breast_cancer Ours 0.698851 0.622068 0.579049 0.194912
38 breast_cancer_wisconsin Ours 0.961696 0.966384 0.952519 0.918735
39 breast_w Ours 0.959286 0.955439 0.955047 0.910433
40 buggyCrx Ours 0.849275 0.848633 0.850343 0.698912
41 bupa Ours 0.589372 0.623767 0.597582 0.219039
42 calendarDOW Ours 0.594583 0.575761 0.563412 0.489319
43 car Ours 0.941522 0.863757 0.874365 0.874208
44 car_evaluation Ours 0.950193 0.872229 0.916856 0.895672
45 cars Ours 0.995359 0.995025 0.99148 0.991464
46 chess Ours 0.985729 0.985873 0.985597 0.971471
47 churn Ours 0.884433 0.780368 0.654586 0.414033
48 clean1 Ours 0.881944 0.883391 0.891644 0.774906
49 cleve Ours 0.808197 0.808921 0.805756 0.614373
50 cleveland Ours 0.535519 0.289752 0.288754 0.246545
51 cleveland_nominal Ours 0.531694 0.281539 0.282674 0.23382
52 cloud Ours 0.837879 0.845554 0.845053 0.788497
53 cmc Ours 0.537401 0.520275 0.505161 0.276955
54 colic Ours 0.820721 0.814725 0.801837 0.616045
55 collins Ours 1 1 1 1
56 confidence Ours 0.793333 0.796278 0.802759 0.760388
57 contraceptive Ours 0.456384 0.438475 0.436322 0.156417
58 corral Ours 1 1 1 1
59 credit_a Ours 0.851449 0.851033 0.853532 0.704528
60 credit_g Ours 0.727333 0.666042 0.640079 0.304229
61 crx Ours 0.846377 0.846859 0.847505 0.694331
62 dermatology Ours 0.954505 0.952888 0.954587 0.944266
63 diabetes Ours 0.750866 0.732876 0.692291 0.422677
64 dis Ours 0.984592 0.761389 0.645043 0.37364
65 ecoli Ours 0.867677 0.852846 0.818471 0.814701
66 flags Ours 0.425 0.413098 0.392699 0.254926
67 flare Ours 0.806231 0.594014 0.542021 0.122528
68 german Ours 0.723 0.667077 0.634947 0.299559
69 glass Ours 0.69187 0.663835 0.65902 0.575001
70 glass2 Ours 0.80303 0.813394 0.80243 0.615146
71 haberman Ours 0.734946 0.656579 0.588955 0.228624
72 hayes_roth Ours 0.741667 0.807642 0.723313 0.593912
73 heart_c Ours 0.808197 0.808419 0.801124 0.609371
Dataset Name Algorithm Mean Accuracy [0-1] \uparrow Mean Precision \uparrow Mean Recall \uparrow Mean MCC \uparrow
74 heart_h Ours 0.79661 0.791894 0.765024 0.555181
75 heart_statlog Ours 0.828395 0.832279 0.818623 0.650413
76 hepatitis Ours 0.815054 0.716643 0.635302 0.335239
77 horse_colic Ours 0.82027 0.814153 0.801003 0.614658
78 house_votes_84 Ours 0.95249 0.948284 0.952441 0.900652
79 hungarian Ours 0.812429 0.803013 0.781021 0.582977
80 hypothyroid Ours 0.972617 0.889952 0.795092 0.675621
81 ionosphere Ours 0.901878 0.895478 0.892366 0.787616
82 iris Ours 0.946667 0.948496 0.946156 0.921595
83 irish Ours 1 1 1 1
84 kr_vs_kp Ours 0.985573 0.985682 0.985419 0.971101
85 krkopt Ours 0.695747 0.729317 0.62841 0.659415
86 labor Ours 0.913889 0.906515 0.916243 0.818887
87 led24 Ours 0.723698 0.722053 0.723278 0.693398
88 led7 Ours 0.733542 0.733753 0.731413 0.704506
89 lupus Ours 0.731481 0.719018 0.713359 0.427516
90 lymphography Ours 0.801111 0.696942 0.711982 0.620561
91 magic Ours 0.835156 0.849248 0.787159 0.633245
92 mfeat_fourier Ours 0.843417 0.84611 0.844234 0.8265
93 mfeat_karhunen Ours 0.973667 0.974178 0.973739 0.970786
94 mfeat_morphological Ours 0.730333 0.731324 0.72966 0.701354
95 mfeat_zernike Ours 0.825667 0.823871 0.826379 0.806484
96 mofn_3_7_10 Ours 1 1 1 1
97 molecular_biology_promoters Ours 0.833333 0.85465 0.83638 0.689479
98 monk1 Ours 0.999107 0.999 0.999231 0.99823
99 monk2 Ours 0.81157 0.867278 0.736535 0.587969
100 monk3 Ours 0.980781 0.980822 0.980718 0.961539
101 movement_libras Ours 0.814815 0.830163 0.823724 0.803783
102 mushroom Ours 1 1 1 1
103 mux6 Ours 0.974359 0.975281 0.976794 0.951989
104 new_thyroid Ours 0.94186 0.944832 0.905906 0.874122
105 nursery Ours 0.965509 0.961679 0.882496 0.949436
106 page_blocks Ours 0.963866 0.852621 0.794459 0.79896
107 parity5 Ours 0.952381 0.956111 0.97 0.924597
108 parity5+5 Ours 1 1 1 1
109 pendigits Ours 0.993285 0.993397 0.993287 0.99254
110 phoneme Ours 0.892969 0.877483 0.860792 0.738053
111 pima Ours 0.745887 0.726364 0.688215 0.412293
112 postoperative_patient_data Ours 0.75 0.37791 0.495556 -0.007968
113 prnn_crabs Ours 0.9675 0.967838 0.96769 0.935501
114 prnn_fglass Ours 0.687805 0.653144 0.655095 0.569007
115 prnn_synth Ours 0.876667 0.879281 0.876959 0.756139
116 profb Ours 0.640741 0.558732 0.535917 0.091385
117 ring Ours 0.711644 0.817582 0.709742 0.515948
118 saheart Ours 0.716846 0.692179 0.635139 0.321519
119 satimage Ours 0.910282 0.897146 0.890226 0.889301
120 schizo Ours 0.556373 0.426085 0.380525 0.077767
121 segmentation Ours 0.970491 0.970609 0.970437 0.965598
122 solar_flare_1 Ours 0.695767 0.673568 0.650753 0.607893
123 solar_flare_2 Ours 0.716511 0.609754 0.585798 0.637871
124 sonar Ours 0.810317 0.817667 0.810397 0.627877
125 soybean Ours 0.908642 0.951553 0.940519 0.90012
126 spambase Ours 0.916793 0.919352 0.90635 0.825531
127 spect Ours 0.769753 0.677874 0.740606 0.412112
128 spectf Ours 0.865238 0.83142 0.861399 0.690856
129 splice Ours 0.913584 0.896234 0.932801 0.868379
130 tae Ours 0.603226 0.619652 0.608631 0.418806
131 texture Ours 0.987909 0.988061 0.987948 0.986709
132 threeOf9 Ours 0.984142 0.984099 0.984287 0.968383
133 tic_tac_toe Ours 0.989062 0.990975 0.985149 0.976097
134 tokyo1 Ours 0.925 0.920875 0.915029 0.83581
135 twonorm Ours 0.975518 0.975525 0.97553 0.951054
136 vehicle Ours 0.714706 0.704578 0.724239 0.623572
137 vote Ours 0.959004 0.956313 0.959582 0.915865
138 vowel Ours 0.969529 0.97055 0.971676 0.966636
139 waveform_21 Ours 0.853967 0.860253 0.853314 0.785179
140 waveform_40 Ours 0.8584 0.86213 0.85963 0.790698
141 wdbc Ours 0.960819 0.964085 0.952579 0.916542
142 wine_quality_red Ours 0.66625 0.378358 0.337689 0.458883
143 wine_quality_white Ours 0.625544 0.463491 0.361405 0.429912
144 wine_recognition Ours 0.984259 0.982731 0.986844 0.97621
145 xd6 Ours 0.999829 0.999863 0.999775 0.999638
146 yeast Ours 0.590991 0.5583 0.536017 0.467647
Dataset Name Algorithm Mean Accuracy [0-1] \uparrow Mean Precision \uparrow Mean Recall \uparrow Mean MCC \uparrow
1 GAMETES_Epistasis_2_Way_20atts_0.1H_EDM_1_1 GB 0.623229 0.624565 0.623842 0.248402
2 GAMETES_Epistasis_2_Way_20atts_0.4H_EDM_1_1 GB 0.726458 0.728732 0.726848 0.455558
3 GAMETES_Epistasis_3_Way_20atts_0.2H_EDM_1_1 GB 0.538438 0.538718 0.538705 0.077424
4 GAMETES_Heterogeneity_20atts_1600_Het_0.4_0.2_… GB 0.681458 0.682047 0.6818 0.363846
5 GAMETES_Heterogeneity_20atts_1600_Het_0.4_0.2_… GB 0.699792 0.700784 0.700226 0.401008
6 Hill_Valley_with_noise GB 0.554321 0.555855 0.555435 0.111285
7 Hill_Valley_without_noise GB 0.592044 0.592688 0.592331 0.185017
8 agaricus_lepiota GB 0.999939 0.999944 0.999932 0.999876
9 allbp GB 0.95766 0.590159 0.443807 0.342181
10 allhyper GB 0.970508 0.423912 0.353124 0.206518
11 allhypo GB 0.953714 0.811196 0.641956 0.644284
12 allrep GB 0.969581 0.609249 0.364862 0.302243
13 analcatdata_aids GB 0.583333 0.589636 0.580516 0.182331
14 analcatdata_asbestos GB 0.747059 0.747547 0.751964 0.49769
15 analcatdata_authorship GB 0.984615 0.985233 0.969084 0.977613
16 analcatdata_bankruptcy GB 0.83 0.824993 0.822897 0.649452
17 analcatdata_boxing1 GB 0.813889 0.812901 0.779798 0.588689
18 analcatdata_boxing2 GB 0.777778 0.78448 0.777737 0.561874
19 analcatdata_creditscore GB 0.968333 0.961483 0.960753 0.91991
20 analcatdata_cyyoung8092 GB 0.775 0.717926 0.682384 0.398269
21 analcatdata_cyyoung9302 GB 0.822807 0.675207 0.653659 0.328368
22 analcatdata_dmft GB 0.178542 0.183872 0.180861 0.015109
23 analcatdata_fraud GB 0.648148 0.500728 0.543459 0.10025
24 analcatdata_germangss GB 0.379583 0.389557 0.387283 0.183886
25 analcatdata_happiness GB 0.416667 0.416698 0.421005 0.175526
26 analcatdata_japansolvent GB 0.784848 0.792169 0.779848 0.568687
27 analcatdata_lawsuit GB 0.97673 0.90845 0.913457 0.80917
28 ann_thyroid GB 0.996366 0.975408 0.988119 0.974825
29 appendicitis GB 0.859091 0.77631 0.739596 0.499832
30 australian GB 0.849034 0.847615 0.84868 0.696252
31 auto GB 0.769919 0.773981 0.757548 0.701018
32 backache GB 0.841667 0.460661 0.509057 0.029151
33 balance_scale GB 0.865333 0.606516 0.631755 0.758318
34 banana GB 0.900314 0.90167 0.89636 0.798009
35 biomed GB 0.894444 0.892326 0.87181 0.762962
36 breast GB 0.960476 0.955636 0.957545 0.913107
37 breast_cancer GB 0.705172 0.6248 0.560431 0.175343
38 breast_cancer_wisconsin GB 0.963158 0.964401 0.957024 0.921303
39 breast_w GB 0.961429 0.957154 0.958785 0.915855
40 buggyCrx GB 0.858696 0.859042 0.86369 0.722678
41 bupa GB 0.583575 0.591633 0.589798 0.181393
42 calendarDOW GB 0.61625 0.62223 0.584366 0.517025
43 car GB 0.994509 0.978554 0.981028 0.988196
44 car_evaluation GB 0.993064 0.979688 0.974963 0.985009
45 cars GB 0.994515 0.997182 0.989806 0.989731
46 chess GB 0.995104 0.995157 0.995047 0.990204
47 churn GB 0.9474 0.938357 0.832441 0.763161
48 clean1 GB 0.987153 0.985786 0.988452 0.974225
49 cleve GB 0.791803 0.793232 0.793268 0.586226
50 cleveland GB 0.546448 0.270395 0.275676 0.22961
51 cleveland_nominal GB 0.537705 0.238366 0.26069 0.193917
52 cloud GB 0.818182 0.828609 0.829335 0.762896
53 cmc GB 0.557966 0.54335 0.527052 0.31305
54 colic GB 0.826126 0.824393 0.806089 0.629612
55 collins GB 0.998282 0.998984 0.99794 0.998115
56 confidence GB 0.737778 0.750556 0.75937 0.699787
57 contraceptive GB 0.521921 0.499421 0.489867 0.253712
58 corral GB 0.997917 0.998039 0.998039 0.996078
59 credit_a GB 0.851208 0.851167 0.854755 0.705898
60 credit_g GB 0.751833 0.701701 0.66482 0.363336
61 crx GB 0.848792 0.849765 0.851219 0.700959
62 dermatology GB 0.972072 0.967065 0.970117 0.965051
63 diabetes GB 0.762987 0.744642 0.716934 0.460197
64 dis GB 0.981987 0.65732 0.579602 0.214954
65 ecoli GB 0.870707 0.849951 0.806586 0.819111
66 flags GB 0.450926 0.394487 0.385558 0.280164
67 flare GB 0.826791 0.473673 0.515531 0.047305
68 german GB 0.751833 0.710151 0.664039 0.370144
69 glass GB 0.760163 0.70551 0.667744 0.662973
70 glass2 GB 0.853535 0.851578 0.853562 0.704992
71 haberman GB 0.72043 0.466626 0.525402 0.059925
72 hayes_roth GB 0.814583 0.851083 0.849469 0.715987
73 heart_c GB 0.803825 0.801057 0.7984 0.599376
Dataset Name Algorithm Mean Accuracy [0-1] \uparrow Mean Precision \uparrow Mean Recall \uparrow Mean MCC \uparrow
74 heart_h GB 0.810734 0.802262 0.788048 0.589686
75 heart_statlog GB 0.809259 0.810886 0.801569 0.611764
76 hepatitis GB 0.809677 0.679517 0.615463 0.297586
77 horse_colic GB 0.825676 0.824893 0.803777 0.627761
78 house_votes_84 GB 0.956322 0.952215 0.956129 0.908305
79 hungarian GB 0.822599 0.812434 0.796415 0.608083
80 hypothyroid GB 0.960295 0.821943 0.690758 0.492934
81 ionosphere GB 0.930047 0.934373 0.912484 0.846345
82 iris GB 0.941111 0.942046 0.940897 0.912551
83 irish GB 1 1 1 1
84 kr_vs_kp GB 0.995833 0.995906 0.995753 0.991659
85 krkopt GB 0.741625 0.760553 0.740988 0.711356
86 labor GB 0.858333 0.853776 0.853226 0.698621
87 led24 GB 0.72375 0.72816 0.723058 0.693332
88 led7 GB 0.735573 0.743535 0.73404 0.707107
89 lupus GB 0.711111 0.709199 0.67349 0.377305
90 lymphography GB 0.841111 0.807208 0.820962 0.698158
91 magic GB 0.882404 0.881367 0.858048 0.739042
92 mfeat_fourier GB 0.8295 0.834299 0.829938 0.810929
93 mfeat_karhunen GB 0.9455 0.945762 0.946128 0.939481
94 mfeat_morphological GB 0.725333 0.723968 0.726472 0.698335
95 mfeat_zernike GB 0.78575 0.793694 0.786749 0.762353
96 mofn_3_7_10 GB 1 1 1 1
97 molecular_biology_promoters GB 0.868182 0.868368 0.876079 0.743991
98 monk1 GB 1 1 1 1
99 monk2 GB 0.990909 0.989906 0.991143 0.981029
100 monk3 GB 0.989189 0.989524 0.988837 0.97836
101 movement_libras GB 0.694444 0.708348 0.704736 0.674975
102 mushroom GB 0.999795 0.999802 0.999787 0.99959
103 mux6 GB 0.997436 0.997778 0.997436 0.995212
104 new_thyroid GB 0.945736 0.941511 0.924322 0.886921
105 nursery GB 0.999961 0.999969 0.99997 0.999943
106 page_blocks GB 0.972664 0.868281 0.827087 0.850277
107 parity5 GB 0.090476 0.067937 0.117778 -0.796165
108 parity5+5 GB 0.418667 0.365513 0.436051 -0.148251
109 pendigits GB 0.992345 0.992358 0.992296 0.991493
110 phoneme GB 0.875948 0.851969 0.848601 0.700499
111 pima GB 0.761255 0.74057 0.714152 0.453575
112 postoperative_patient_data GB 0.753704 0.378159 0.497421 -0.010038
113 prnn_crabs GB 0.900833 0.899298 0.902222 0.801455
114 prnn_fglass GB 0.752846 0.707223 0.675052 0.652292
115 prnn_synth GB 0.850667 0.853065 0.852173 0.705186
116 profb GB 0.681975 0.63178 0.597035 0.220191
117 ring GB 0.969257 0.969738 0.96917 0.938908
118 saheart GB 0.70681 0.67291 0.639235 0.309307
119 satimage GB 0.914193 0.901445 0.893554 0.894136
120 schizo GB 0.593137 0.201384 0.331625 -0.011261
121 segmentation GB 0.981097 0.981188 0.980893 0.977969
122 solar_flare_1 GB 0.726455 0.683291 0.670855 0.647261
123 solar_flare_2 GB 0.750623 0.645701 0.601199 0.682929
124 sonar GB 0.842063 0.852871 0.841717 0.694243
125 soybean GB 0.926914 0.961583 0.947355 0.920555
126 spambase GB 0.952805 0.951705 0.949151 0.900847
127 spect GB 0.825309 0.723452 0.687107 0.404084
128 spectf GB 0.885238 0.85755 0.861073 0.717264
129 splice GB 0.966092 0.959544 0.965494 0.945171
130 tae GB 0.570968 0.576691 0.571238 0.362031
131 texture GB 0.987394 0.987468 0.987381 0.98614
132 threeOf9 GB 0.999029 0.998991 0.999088 0.998079
133 tic_tac_toe GB 1 1 1 1
134 tokyo1 GB 0.924132 0.919607 0.914589 0.834114
135 twonorm GB 0.9725 0.972497 0.97251 0.945006
136 vehicle GB 0.757843 0.760925 0.766135 0.677476
137 vote GB 0.955556 0.95252 0.956258 0.908732
138 vowel GB 0.904209 0.907806 0.907502 0.894871
139 waveform_21 GB 0.849167 0.849025 0.848961 0.773966
140 waveform_40 GB 0.856067 0.856348 0.856601 0.784493
141 wdbc GB 0.963743 0.965021 0.957761 0.922668
142 wine_quality_red GB 0.669896 0.37233 0.355688 0.474829
143 wine_quality_white GB 0.655816 0.467276 0.390307 0.47736
144 wine_recognition GB 0.941667 0.944792 0.945446 0.912963
145 xd6 GB 1 1 1 1
146 yeast GB 0.597973 0.558935 0.518458 0.47637
Dataset Name Algorithm Mean Accuracy [0-1] \uparrow Mean Precision \uparrow Mean Recall \uparrow Mean MCC \uparrow
1 GAMETES_Epistasis_2_Way_20atts_0.1H_EDM_1_1 KNN 0.575208 0.580815 0.576832 0.157566
2 GAMETES_Epistasis_2_Way_20atts_0.4H_EDM_1_1 KNN 0.700521 0.707414 0.702078 0.409406
3 GAMETES_Epistasis_3_Way_20atts_0.2H_EDM_1_1 KNN 0.54875 0.550881 0.549925 0.100793
4 GAMETES_Heterogeneity_20atts_1600_Het_0.4_0.2_… KNN 0.635208 0.637862 0.636591 0.274444
5 GAMETES_Heterogeneity_20atts_1600_Het_0.4_0.2_… KNN 0.641563 0.644375 0.642843 0.287202
6 Hill_Valley_with_noise KNN 0.58011 0.58036 0.580044 0.160401
7 Hill_Valley_without_noise KNN 0.625652 0.626107 0.625637 0.251741
8 agaricus_lepiota KNN 1 1 1 1
9 allbp KNN 0.960839 0.594804 0.410202 0.357546
10 allhyper KNN 0.973201 0.356974 0.296536 0.074057
11 allhypo KNN 0.922016 0.381923 0.335883 0.030621
12 allrep KNN 0.967329 0.291937 0.260474 0.052416
13 analcatdata_aids KNN 0.296667 0.310278 0.291746 -0.38327
14 analcatdata_asbestos KNN 0.764706 0.761949 0.763459 0.524178
15 analcatdata_authorship KNN 0.99645 0.996997 0.995303 0.994826
16 analcatdata_bankruptcy KNN 0.84 0.830575 0.839841 0.670505
17 analcatdata_boxing1 KNN 0.715278 0.706486 0.667477 0.364821
18 analcatdata_boxing2 KNN 0.681481 0.697911 0.688397 0.385563
19 analcatdata_creditscore KNN 0.975 0.959535 0.976108 0.933492
20 analcatdata_cyyoung8092 KNN 0.738333 0.677489 0.598784 0.265392
21 analcatdata_cyyoung9302 KNN 0.859649 0.75266 0.739636 0.488029
22 analcatdata_dmft KNN 0.182292 0.197581 0.185948 0.019608
23 analcatdata_fraud KNN 0.688889 0.576025 0.591276 0.199142
24 analcatdata_germangss KNN 0.30125 0.308871 0.310429 0.079609
25 analcatdata_happiness KNN 0.458333 0.469555 0.460833 0.22387
26 analcatdata_japansolvent KNN 0.712121 0.744517 0.701263 0.438671
27 analcatdata_lawsuit KNN 0.977358 0.906733 0.913347 0.810517
28 ann_thyroid KNN 0.940208 0.832906 0.571052 0.463327
29 appendicitis KNN 0.860606 0.741393 0.755686 0.486307
30 australian KNN 0.72343 0.728803 0.709709 0.4379
31 auto KNN 0.579675 0.594855 0.540941 0.449717
32 backache KNN 0.848148 0.615213 0.553968 0.167803
33 balance_scale KNN 0.8944 0.596403 0.645229 0.813959
34 banana KNN 0.901006 0.902585 0.896997 0.799558
35 biomed KNN 0.957143 0.961794 0.944795 0.906047
36 breast KNN 0.661905 0.613687 0.586445 0.197624
37 breast_cancer KNN 0.721264 0.666939 0.592926 0.247492
38 breast_cancer_wisconsin KNN 0.929825 0.934065 0.916267 0.849919
39 breast_w KNN 0.965476 0.961363 0.9628 0.924101
40 buggyCrx KNN 0.757729 0.760932 0.748297 0.50896
41 bupa KNN 0.572464 0.59432 0.581677 0.175034
42 calendarDOW KNN 0.610833 0.592366 0.584055 0.510121
43 car KNN 0.927168 0.895108 0.703662 0.838492
44 car_evaluation KNN 0.922158 0.919812 0.711223 0.825496
45 cars KNN 0.722363 0.640956 0.617134 0.483621
46 chess KNN 0.964323 0.964682 0.963998 0.928678
47 churn KNN 0.8914 0.868898 0.628793 0.434725
48 clean1 KNN 0.857292 0.858204 0.865504 0.723617
49 cleve KNN 0.683607 0.684074 0.682067 0.365891
50 cleveland KNN 0.527869 0.161106 0.21256 0.070687
51 cleveland_nominal KNN 0.545902 0.290312 0.289269 0.248132
52 cloud KNN 0.771212 0.781427 0.776051 0.699808
53 cmc KNN 0.52226 0.505838 0.494587 0.260738
54 colic KNN 0.806306 0.80382 0.782485 0.585441
55 collins KNN 0.991409 0.989001 0.990664 0.990539
56 confidence KNN 0.788889 0.804741 0.799648 0.753815
57 contraceptive KNN 0.479322 0.457819 0.448306 0.183288
58 corral KNN 0.9375 0.939173 0.936509 0.875434
59 credit_a KNN 0.755072 0.759579 0.743276 0.502428
60 credit_g KNN 0.7035 0.59722 0.518064 0.082173
61 crx KNN 0.764493 0.769839 0.754682 0.524168
62 dermatology KNN 0.966216 0.962508 0.961136 0.958376
63 diabetes KNN 0.741558 0.724068 0.685483 0.406733
64 dis KNN 0.984459 0.492425 0.499798 -0.001237
65 ecoli KNN 0.874747 0.855106 0.83126 0.824807
66 flags KNN 0.437037 0.400088 0.381754 0.268685
67 flare KNN 0.815576 0.620187 0.550175 0.153951
68 german KNN 0.694167 0.605427 0.51138 0.066478
69 glass KNN 0.708943 0.660893 0.665182 0.598934
70 glass2 KNN 0.836364 0.838123 0.832347 0.669981
71 haberman KNN 0.74086 0.658995 0.592716 0.237863
72 hayes_roth KNN 0.703125 0.744172 0.672182 0.532058
73 heart_c KNN 0.693443 0.693642 0.682456 0.375656
Dataset Name Algorithm Mean Accuracy [0-1] \uparrow Mean Precision \uparrow Mean Recall \uparrow Mean MCC \uparrow
74 heart_h KNN 0.79096 0.785242 0.758757 0.542648
75 heart_statlog KNN 0.701235 0.699152 0.692409 0.391261
76 hepatitis KNN 0.823656 0.777807 0.633933 0.371221
77 horse_colic KNN 0.8 0.796235 0.773937 0.569391
78 house_votes_84 KNN 0.918774 0.912232 0.919218 0.831325
79 hungarian KNN 0.811299 0.802042 0.776375 0.577313
80 hypothyroid KNN 0.957609 0.890294 0.604244 0.38972
81 ionosphere KNN 0.899531 0.918884 0.866985 0.783441
82 iris KNN 0.96 0.959955 0.961187 0.940858
83 irish KNN 0.895333 0.893324 0.899321 0.792576
84 kr_vs_kp KNN 0.962708 0.963357 0.962118 0.925472
85 krkopt KNN 0.694393 0.723243 0.616437 0.657941
86 labor KNN 0.902778 0.88994 0.904609 0.790458
87 led24 KNN 0.719375 0.71828 0.719201 0.688519
88 led7 KNN 0.734844 0.735903 0.732953 0.706234
89 lupus KNN 0.707407 0.697309 0.678856 0.370492
90 lymphography KNN 0.828889 0.665212 0.669381 0.663572
91 magic KNN 0.820128 0.836148 0.766126 0.598151
92 mfeat_fourier KNN 0.843167 0.845374 0.844022 0.826185
93 mfeat_karhunen KNN 0.974167 0.974626 0.974237 0.971342
94 mfeat_morphological KNN 0.49625 0.503202 0.499322 0.442156
95 mfeat_zernike KNN 0.80375 0.803931 0.804011 0.782129
96 mofn_3_7_10 KNN 0.94956 0.942055 0.905287 0.845842
97 molecular_biology_promoters KNN 0.787879 0.807907 0.796693 0.603439
98 monk1 KNN 0.977976 0.978604 0.978628 0.957228
99 monk2 KNN 0.819284 0.888553 0.741561 0.611311
100 monk3 KNN 0.967568 0.967501 0.967727 0.935225
101 movement_libras KNN 0.834722 0.846461 0.846434 0.824496
102 mushroom KNN 1 1 1 1
103 mux6 KNN 0.964103 0.965422 0.967609 0.93287
104 new_thyroid KNN 0.952713 0.950851 0.926477 0.899944
105 nursery KNN 0.971052 0.97872 0.831748 0.957694
106 page_blocks KNN 0.960974 0.854309 0.745411 0.778077
107 parity5 KNN 0.295238 0.302262 0.331111 -0.353682
108 parity5+5 KNN 0.564148 0.568952 0.564415 0.133119
109 pendigits KNN 0.993406 0.993464 0.993404 0.992673
110 phoneme KNN 0.899414 0.884585 0.870135 0.754534
111 pima KNN 0.749351 0.73247 0.688519 0.41817
112 postoperative_patient_data KNN 0.694444 0.371555 0.459955 -0.107881
113 prnn_crabs KNN 0.9575 0.956101 0.959952 0.916017
114 prnn_fglass KNN 0.708943 0.661658 0.675863 0.600603
115 prnn_synth KNN 0.880667 0.883485 0.88098 0.764359
116 profb KNN 0.665679 0.609744 0.527343 0.107218
117 ring KNN 0.74464 0.827009 0.743116 0.563877
118 saheart KNN 0.666667 0.579849 0.550582 0.141674
119 satimage KNN 0.910256 0.896759 0.892094 0.889304
120 schizo KNN 0.594118 0.199057 0.331733 -0.00342
121 segmentation KNN 0.970635 0.970616 0.970609 0.965743
122 solar_flare_1 KNN 0.710582 0.662313 0.649605 0.626002
123 solar_flare_2 KNN 0.735981 0.609737 0.583493 0.66378
124 sonar KNN 0.834127 0.83663 0.832012 0.668502
125 soybean KNN 0.912346 0.945973 0.934624 0.90453
126 spambase KNN 0.929099 0.929205 0.921804 0.850957
127 spect KNN 0.803704 0.682675 0.67267 0.3521
128 spectf KNN 0.902857 0.909448 0.858244 0.761771
129 splice KNN 0.915569 0.898316 0.932485 0.870437
130 tae KNN 0.595699 0.607383 0.598616 0.401498
131 texture KNN 0.990879 0.990947 0.990867 0.989972
132 threeOf9 KNN 0.973463 0.974155 0.97316 0.947306
133 tic_tac_toe KNN 0.973785 0.974429 0.968572 0.942939
134 tokyo1 KNN 0.914062 0.905875 0.90773 0.813534
135 twonorm KNN 0.976171 0.976173 0.976199 0.952372
136 vehicle KNN 0.683529 0.678035 0.694529 0.579958
137 vote KNN 0.924521 0.919829 0.926626 0.846383
138 vowel KNN 0.988215 0.988325 0.988808 0.987057
139 waveform_21 KNN 0.855633 0.862016 0.85494 0.787715
140 waveform_40 KNN 0.858433 0.861729 0.859645 0.790496
141 wdbc KNN 0.930117 0.932585 0.917786 0.850077
142 wine_quality_red KNN 0.645208 0.400918 0.317696 0.418081
143 wine_quality_white KNN 0.629558 0.617262 0.340278 0.424703
144 wine_recognition KNN 0.962037 0.965207 0.966592 0.943086
145 xd6 KNN 0.999316 0.999478 0.999029 0.998505
146 yeast KNN 0.607545 0.565962 0.516628 0.488806
Dataset Name Algorithm Mean Accuracy [0-1] \uparrow Mean Precision \uparrow Mean Recall \uparrow Mean MCC \uparrow
1 GAMETES_Epistasis_2_Way_20atts_0.1H_EDM_1_1 Linear 0.480938 0.458951 0.48729 -0.028143
2 GAMETES_Epistasis_2_Way_20atts_0.4H_EDM_1_1 Linear 0.473333 0.496988 0.479564 -0.039612
3 GAMETES_Epistasis_3_Way_20atts_0.2H_EDM_1_1 Linear 0.505729 0.507804 0.507221 0.014985
4 GAMETES_Heterogeneity_20atts_1600_Het_0.4_0.2_… Linear 0.478437 0.48032 0.485211 -0.030165
5 GAMETES_Heterogeneity_20atts_1600_Het_0.4_0.2_… Linear 0.484792 0.479447 0.490373 -0.01969
6 Hill_Valley_with_noise Linear 0.750754 0.822602 0.752891 0.570721
7 Hill_Valley_without_noise Linear 0.707133 0.810475 0.709951 0.510171
8 agaricus_lepiota Linear 0.999795 0.999807 0.999782 0.999589
9 allbp Linear 0.961943 0.583252 0.435259 0.409765
10 allhyper Linear 0.974923 0.487764 0.368148 0.297414
11 allhypo Linear 0.96702 0.83573 0.798871 0.772537
12 allrep Linear 0.970508 0.683944 0.352076 0.311429
13 analcatdata_aids Linear 0.496667 0.512831 0.534504 0.114762
14 analcatdata_asbestos Linear 0.752941 0.764759 0.771761 0.53506
15 analcatdata_authorship Linear 0.997041 0.997884 0.997759 0.995666
16 analcatdata_bankruptcy Linear 0.89 0.900066 0.871944 0.772301
17 analcatdata_boxing1 Linear 0.838889 0.831318 0.809579 0.638054
18 analcatdata_boxing2 Linear 0.77284 0.77663 0.775514 0.551979
19 analcatdata_creditscore Linear 0.915 0.888418 0.923768 0.806581
20 analcatdata_cyyoung8092 Linear 0.748333 0.71625 0.618471 0.310801
21 analcatdata_cyyoung9302 Linear 0.859649 0.760837 0.770128 0.520873
22 analcatdata_dmft Linear 0.19 0.164537 0.194179 0.033217
23 analcatdata_fraud Linear 0.67037 0.481918 0.551085 0.111244
24 analcatdata_germangss Linear 0.372917 0.374384 0.377683 0.17133
25 analcatdata_happiness Linear 0.469444 0.499339 0.480794 0.265205
26 analcatdata_japansolvent Linear 0.787879 0.795813 0.777249 0.569436
27 analcatdata_lawsuit Linear 0.978616 0.916424 0.921551 0.828755
28 ann_thyroid Linear 0.955069 0.868876 0.70503 0.635564
29 appendicitis Linear 0.872727 0.788722 0.761552 0.537643
30 australian Linear 0.849758 0.848129 0.849725 0.697812
31 auto Linear 0.752033 0.758928 0.751128 0.678864
32 backache Linear 0.839815 0.438873 0.500904 0.005885
33 balance_scale Linear 0.985067 0.944644 0.989285 0.974323
34 banana Linear 0.574811 0.642197 0.526298 0.113951
35 biomed Linear 0.736508 0.71901 0.706934 0.423777
36 breast Linear 0.96119 0.958669 0.955371 0.913977
37 breast_cancer Linear 0.69023 0.535635 0.53289 0.101867
38 breast_cancer_wisconsin Linear 0.974269 0.97617 0.969331 0.945425
39 breast_w Linear 0.964048 0.96164 0.959009 0.920576
40 buggyCrx Linear 0.849517 0.84847 0.84804 0.696465
41 bupa Linear 0.613043 0.620401 0.618705 0.239021
42 calendarDOW Linear 0.624583 0.61399 0.605714 0.530132
43 car Linear 0.917341 0.872273 0.863776 0.820822
44 car_evaluation Linear 0.921291 0.855849 0.854512 0.827701
45 cars Linear 0.992405 0.991843 0.9892 0.986014
46 chess Linear 0.972656 0.972628 0.972708 0.945335
47 churn Linear 0.864333 0.809637 0.513192 0.125185
48 clean1 Linear 0.971181 0.969412 0.972937 0.942318
49 cleve Linear 0.851366 0.849208 0.851395 0.700411
50 cleveland Linear 0.572678 0.282709 0.299559 0.293684
51 cleveland_nominal Linear 0.563388 0.279341 0.293658 0.255622
52 cloud Linear 0.342424 0.353508 0.358721 0.142428
53 cmc Linear 0.501356 0.485464 0.472785 0.218378
54 colic Linear 0.812162 0.808513 0.788018 0.595843
55 collins Linear 1 1 1 1
56 confidence Linear 0.791111 0.773889 0.793056 0.759626
57 contraceptive Linear 0.540565 0.518234 0.509752 0.28441
58 corral Linear 0.882292 0.880782 0.883999 0.764551
59 credit_a Linear 0.852415 0.851813 0.850519 0.702298
60 credit_g Linear 0.757333 0.710864 0.665865 0.372272
61 crx Linear 0.85 0.850795 0.846674 0.697414
62 dermatology Linear 0.969369 0.966814 0.96621 0.961977
63 diabetes Linear 0.768831 0.753791 0.717294 0.469189
64 dis Linear 0.984857 0.492428 0.5 0
65 ecoli Linear 0.885859 0.87216 0.85102 0.841187
66 flags Linear 0.462037 0.348462 0.377677 0.287972
67 flare Linear 0.829283 0.595478 0.535652 0.12783
68 german Linear 0.753167 0.708126 0.670058 0.375508
69 glass Linear 0.621138 0.535314 0.528464 0.461073
70 glass2 Linear 0.684848 0.693779 0.689655 0.383066
71 haberman Linear 0.731183 0.603774 0.540267 0.131531
72 hayes_roth Linear 0.521875 0.555751 0.568605 0.265495
73 heart_c Linear 0.847541 0.846791 0.841921 0.688653
Dataset Name Algorithm Mean Accuracy [0-1] \uparrow Mean Precision \uparrow Mean Recall \uparrow Mean MCC \uparrow
74 heart_h Linear 0.819774 0.81881 0.789051 0.606259
75 heart_statlog Linear 0.842593 0.84248 0.835538 0.677814
76 hepatitis Linear 0.825806 0.718776 0.661382 0.373473
77 horse_colic Linear 0.813964 0.8109 0.789035 0.599212
78 house_votes_84 Linear 0.952107 0.948088 0.951188 0.899222
79 hungarian Linear 0.837853 0.835924 0.803843 0.638102
80 hypothyroid Linear 0.972828 0.879405 0.809378 0.683784
81 ionosphere Linear 0.881221 0.897518 0.84736 0.742733
82 iris Linear 0.961111 0.96375 0.963009 0.943526
83 irish Linear 1 1 1 1
84 kr_vs_kp Linear 0.97151 0.971492 0.971469 0.94296
85 krkopt Linear 0.404936 0.417892 0.412894 0.332323
86 labor Linear 0.925 0.91797 0.926321 0.84014
87 led24 Linear 0.725365 0.724639 0.725013 0.695144
88 led7 Linear 0.739688 0.741364 0.736986 0.711586
89 lupus Linear 0.764815 0.755433 0.746526 0.499081
90 lymphography Linear 0.835556 0.723817 0.725014 0.684257
91 magic Linear 0.790124 0.781407 0.745224 0.525377
92 mfeat_fourier Linear 0.8195 0.820409 0.820496 0.799844
93 mfeat_karhunen Linear 0.948167 0.948802 0.948749 0.942459
94 mfeat_morphological Linear 0.74125 0.747294 0.743323 0.71533
95 mfeat_zernike Linear 0.821 0.817336 0.821383 0.801516
96 mofn_3_7_10 Linear 1 1 1 1
97 molecular_biology_promoters Linear 0.919697 0.924414 0.92116 0.845227
98 monk1 Linear 0.738393 0.826608 0.741431 0.561117
99 monk2 Linear 0.65427 0.327135 0.5 0
100 monk3 Linear 0.97958 0.979676 0.979446 0.959118
101 movement_libras Linear 0.741204 0.756347 0.754199 0.724956
102 mushroom Linear 0.999754 0.999763 0.999745 0.999508
103 mux6 Linear 0.619231 0.62953 0.630525 0.25987
104 new_thyroid Linear 0.95814 0.952671 0.940826 0.912416
105 nursery Linear 0.924884 0.903061 0.874039 0.889699
106 page_blocks Linear 0.962861 0.869096 0.741621 0.790378
107 parity5 Linear 0.295238 0.161111 0.411111 -0.177778
108 parity5+5 Linear 0.465037 0.260692 0.491501 -0.017747
109 pendigits Linear 0.955556 0.954989 0.955076 0.950612
110 phoneme Linear 0.746068 0.690885 0.660528 0.350007
111 pima Linear 0.774026 0.761064 0.721232 0.480235
112 postoperative_patient_data Linear 0.751852 0.377968 0.496337 -0.011313
113 prnn_crabs Linear 0.991667 0.990527 0.992572 0.983082
114 prnn_fglass Linear 0.625203 0.53561 0.532143 0.46585
115 prnn_synth Linear 0.872 0.872465 0.873961 0.74639
116 profb Linear 0.742963 0.713757 0.694255 0.406987
117 ring Linear 0.76268 0.775659 0.762389 0.537863
118 saheart Linear 0.704659 0.695624 0.601297 0.278692
119 satimage Linear 0.86001 0.827536 0.814275 0.827081
120 schizo Linear 0.594118 0.198789 0.33184 -0.00623
121 segmentation Linear 0.950866 0.95124 0.950425 0.942725
122 solar_flare_1 Linear 0.742857 0.68659 0.672345 0.669937
123 solar_flare_2 Linear 0.761215 0.640604 0.604137 0.695362
124 sonar Linear 0.777778 0.781779 0.779092 0.560707
125 soybean Linear 0.92642 0.957506 0.948757 0.919781
126 spambase Linear 0.903294 0.901447 0.894805 0.796205
127 spect Linear 0.843827 0.766715 0.710397 0.468957
128 spectf Linear 0.803333 0.758452 0.74046 0.496567
129 splice Linear 0.960293 0.953551 0.957961 0.935626
130 tae Linear 0.52043 0.536375 0.530949 0.299079
131 texture Linear 0.997697 0.997742 0.997653 0.997468
132 threeOf9 Linear 0.804207 0.804279 0.803193 0.607446
133 tic_tac_toe Linear 0.984201 0.988054 0.977674 0.965661
134 tokyo1 Linear 0.919792 0.917604 0.906875 0.824321
135 twonorm Linear 0.97795 0.977926 0.977993 0.955919
136 vehicle Linear 0.797843 0.802044 0.804879 0.730841
137 vote Linear 0.954789 0.952864 0.953859 0.906684
138 vowel Linear 0.845118 0.847877 0.848793 0.830133
139 waveform_21 Linear 0.8675 0.868035 0.867198 0.801874
140 waveform_40 Linear 0.868067 0.868539 0.868586 0.802597
141 wdbc Linear 0.973977 0.976152 0.968829 0.9449
142 wine_quality_red Linear 0.596458 0.317116 0.279905 0.339421
143 wine_quality_white Linear 0.538095 0.338107 0.238882 0.264965
144 wine_recognition Linear 0.936111 0.943046 0.93633 0.904157
145 xd6 Linear 0.82188 0.816704 0.767 0.581403
146 yeast Linear 0.594482 0.554987 0.513609 0.475075
Dataset Name Algorithm Mean Accuracy [0-1] \uparrow Mean Precision \uparrow Mean Recall \uparrow Mean MCC \uparrow
1 GAMETES_Epistasis_2_Way_20atts_0.1H_EDM_1_1 NeuralNet 0.585729 0.585261 0.585838 0.171095
2 GAMETES_Epistasis_2_Way_20atts_0.4H_EDM_1_1 NeuralNet 0.708542 0.708453 0.709424 0.417870
3 GAMETES_Epistasis_3_Way_20atts_0.2H_EDM_1_1 NeuralNet 0.517500 0.517558 0.517636 0.035193
4 GAMETES_Heterogeneity_20atts_1600_Het_0.4_0.2_… NeuralNet 0.644687 0.645142 0.646459 0.291590
5 GAMETES_Heterogeneity_20atts_1600_Het_0.4_0.2_… NeuralNet 0.650833 0.651469 0.652644 0.304104
6 Hill_Valley_with_noise NeuralNet 0.545405 0.550122 0.610026 0.146337
7 Hill_Valley_without_noise NeuralNet 0.554458 0.560038 0.622925 0.168091
8 agaricus_lepiota NeuralNet 0.985820 0.985703 0.985919 0.971621
9 allbp NeuralNet 0.956777 0.359956 0.360469 0.074941
10 allhyper NeuralNet 0.973466 0.275000 0.267759 0.000000
11 allhypo NeuralNet 0.922060 0.333333 0.307353 0.000000
12 allrep NeuralNet 0.967241 0.250000 0.241810 0.000000
13 analcatdata_aids NeuralNet 0.470000 0.502937 0.524160 0.040197
14 analcatdata_asbestos NeuralNet 0.766667 0.785112 0.779735 0.563728
15 analcatdata_authorship NeuralNet 0.995266 0.996488 0.994588 0.993077
16 analcatdata_bankruptcy NeuralNet 0.813333 0.829782 0.822063 0.659108
17 analcatdata_boxing1 NeuralNet 0.688889 0.598661 0.652703 0.243174
18 analcatdata_boxing2 NeuralNet 0.669136 0.668420 0.694571 0.361372
19 analcatdata_creditscore NeuralNet 0.805000 0.793736 0.774231 0.556686
20 analcatdata_cyyoung8092 NeuralNet 0.776667 0.710353 0.738116 0.439706
21 analcatdata_cyyoung9302 NeuralNet 0.873684 0.815863 0.795422 0.597854
22 analcatdata_dmft NeuralNet 0.205208 0.211099 0.221483 0.052217
23 analcatdata_fraud NeuralNet 0.648148 0.584841 0.613591 0.207258
24 analcatdata_germangss NeuralNet 0.311250 0.316450 0.324626 0.090982
25 analcatdata_happiness NeuralNet 0.491667 0.486905 0.473810 0.259076
26 analcatdata_japansolvent NeuralNet 0.781818 0.809458 0.805020 0.614055
27 analcatdata_lawsuit NeuralNet 0.961006 0.897202 0.824873 0.707293
28 ann_thyroid NeuralNet 0.967685 0.809154 0.826367 0.743097
29 appendicitis NeuralNet 0.851515 0.767637 0.752789 0.501828
30 australian NeuralNet 0.843720 0.842648 0.841904 0.684523
31 auto NeuralNet 0.688618 0.667752 0.695618 0.595821
32 backache NeuralNet 0.821296 0.536126 0.545019 0.091842
33 balance_scale NeuralNet 0.928000 0.795545 0.799846 0.875203
34 banana NeuralNet 0.864403 0.854274 0.876375 0.730268
35 biomed NeuralNet 0.891270 0.879832 0.882356 0.761581
36 breast NeuralNet 0.961190 0.964554 0.952326 0.916753
37 breast_cancer NeuralNet 0.722414 0.615661 0.678091 0.284733
38 breast_cancer_wisconsin NeuralNet 0.960234 0.959006 0.957697 0.916536
39 breast_w NeuralNet 0.964762 0.967518 0.956630 0.924005
40 buggyCrx NeuralNet 0.853382 0.852646 0.852663 0.705261
41 bupa NeuralNet 0.582609 0.587326 0.590296 0.177548
42 calendarDOW NeuralNet 0.591250 0.564882 0.572987 0.485498
43 car NeuralNet 0.886705 0.645797 0.678965 0.743524
44 car_evaluation NeuralNet 0.957707 0.760487 0.730270 0.909268
45 cars NeuralNet 0.764557 0.656525 0.689043 0.562526
46 chess NeuralNet 0.990937 0.990997 0.990887 0.981884
47 churn NeuralNet 0.905467 0.705715 0.855562 0.539217
48 clean1 NeuralNet 0.965625 0.966918 0.964145 0.931036
49 cleve NeuralNet 0.781421 0.789767 0.785457 0.575013
50 cleveland NeuralNet 0.556284 0.292572 0.284658 0.274622
51 cleveland_nominal NeuralNet 0.546995 0.277967 0.268059 0.259451
52 cloud NeuralNet 0.251515 0.268453 0.263668 0.014947
53 cmc NeuralNet 0.552768 0.526055 0.537211 0.305936
54 colic NeuralNet 0.800901 0.784415 0.794422 0.578367
55 collins NeuralNet 0.631959 0.603885 0.575876 0.596168
56 confidence NeuralNet 0.748889 0.775926 0.774537 0.723127
57 contraceptive NeuralNet 0.549605 0.521371 0.531815 0.300551
58 corral NeuralNet 0.990625 0.993262 0.989018 0.982066
59 credit_a NeuralNet 0.855314 0.853688 0.854426 0.708084
60 credit_g NeuralNet 0.718500 0.633586 0.655008 0.286997
61 crx NeuralNet 0.847585 0.846356 0.846279 0.692615
62 dermatology NeuralNet 0.958559 0.957059 0.952279 0.948802
63 diabetes NeuralNet 0.745238 0.704854 0.721165 0.425190
64 dis NeuralNet 0.984857 0.500000 0.492428 0.000000
65 ecoli NeuralNet 0.866162 0.822123 0.835700 0.814340
66 flags NeuralNet 0.454630 0.410999 0.418892 0.292760
67 flare NeuralNet 0.820093 0.568488 0.642486 0.193622
68 german NeuralNet 0.721833 0.644865 0.664890 0.308723
69 glass NeuralNet 0.634959 0.556708 0.535536 0.490254
70 glass2 NeuralNet 0.754545 0.764611 0.763772 0.528184
71 haberman NeuralNet 0.721505 0.581981 0.616532 0.193974
72 hayes_roth NeuralNet 0.725000 0.773298 0.741867 0.597668
73 heart_c NeuralNet 0.812022 0.815221 0.812394 0.627410
Dataset Name Algorithm Mean Accuracy [0-1] \uparrow Mean Precision \uparrow Mean Recall \uparrow Mean MCC \uparrow
74 heart_h NeuralNet 0.774576 0.745714 0.767058 0.511602
75 heart_statlog NeuralNet 0.801235 0.799560 0.798810 0.598298
76 hepatitis NeuralNet 0.816129 0.691785 0.717233 0.404004
77 horse_colic NeuralNet 0.791441 0.767537 0.787856 0.554577
78 house_votes_84 NeuralNet 0.949425 0.948397 0.945097 0.893421
79 hungarian NeuralNet 0.793785 0.770260 0.781005 0.550523
80 hypothyroid NeuralNet 0.950395 0.500000 0.475197 0.000000
81 ionosphere NeuralNet 0.927230 0.916240 0.927374 0.843267
82 iris NeuralNet 0.916667 0.918241 0.924952 0.884396
83 irish NeuralNet 0.976667 0.977974 0.975260 0.953207
84 kr_vs_kp NeuralNet 0.990000 0.989985 0.990051 0.980036
85 krkopt NeuralNet 0.745432 0.478336 0.429315 0.717063
86 labor NeuralNet 0.883333 0.892945 0.868836 0.755731
87 led24 NeuralNet 0.705365 0.705415 0.703774 0.672870
88 led7 NeuralNet 0.735469 0.733776 0.739016 0.706936
89 lupus NeuralNet 0.712963 0.710248 0.705527 0.413480
90 lymphography NeuralNet 0.836667 0.742958 0.734830 0.693317
91 magic NeuralNet 0.874658 0.847898 0.874354 0.721732
92 mfeat_fourier NeuralNet 0.818500 0.819016 0.815613 0.798834
93 mfeat_karhunen NeuralNet 0.961833 0.962581 0.962295 0.957653
94 mfeat_morphological NeuralNet 0.737667 0.738714 0.730848 0.712418
95 mfeat_zernike NeuralNet 0.827750 0.828335 0.823932 0.809025
96 mofn_3_7_10 NeuralNet 0.999874 0.999921 0.999691 0.999612
97 molecular_biology_promoters NeuralNet 0.745455 0.769183 0.767587 0.536550
98 monk1 NeuralNet 0.900893 0.903577 0.911824 0.815310
99 monk2 NeuralNet 0.915152 0.903421 0.910310 0.818805
100 monk3 NeuralNet 0.976276 0.976377 0.976514 0.952887
101 movement_libras NeuralNet 0.778704 0.795320 0.795058 0.766881
102 mushroom NeuralNet 0.993415 0.993650 0.993265 0.986915
103 mux6 NeuralNet 0.943590 0.949145 0.945417 0.894395
104 new_thyroid NeuralNet 0.916279 0.914935 0.890192 0.838054
105 nursery NeuralNet 0.970473 0.746161 0.728799 0.957097
106 page_blocks NeuralNet 0.956195 0.599961 0.622472 0.754415
107 parity5 NeuralNet 0.128571 0.125833 0.120278 -0.749556
108 parity5+5 NeuralNet 0.901481 0.901240 0.905031 0.806210
109 pendigits NeuralNet 0.992102 0.992029 0.992150 0.991228
110 phoneme NeuralNet 0.858125 0.819394 0.834342 0.653326
111 pima NeuralNet 0.757576 0.722562 0.737934 0.459277
112 postoperative_patient_data NeuralNet 0.616667 0.430137 0.422865 -0.134581
113 prnn_crabs NeuralNet 0.970833 0.974441 0.969353 0.943719
114 prnn_fglass NeuralNet 0.642276 0.573701 0.555254 0.503537
115 prnn_synth NeuralNet 0.863333 0.869550 0.867224 0.736697
116 profb NeuralNet 0.660000 0.569709 0.599023 0.165549
117 ring NeuralNet 0.967320 0.967348 0.967515 0.934863
118 saheart NeuralNet 0.698208 0.654281 0.661048 0.314901
119 satimage NeuralNet 0.894380 0.865557 0.882729 0.869960
120 schizo NeuralNet 0.560784 0.416122 0.438102 0.134946
121 segmentation NeuralNet 0.955772 0.955819 0.956235 0.948619
122 solar_flare_1 NeuralNet 0.711111 0.641237 0.634488 0.630834
123 solar_flare_2 NeuralNet 0.743458 0.595600 0.617318 0.672688
124 sonar NeuralNet 0.844444 0.847896 0.848892 0.696714
125 soybean NeuralNet 0.885679 0.908994 0.903971 0.875395
126 spambase NeuralNet 0.933623 0.929705 0.931154 0.860840
127 spect NeuralNet 0.822840 0.717052 0.719485 0.433855
128 spectf NeuralNet 0.855714 0.818914 0.829624 0.645212
129 splice NeuralNet 0.868025 0.859335 0.855673 0.786508
130 tae NeuralNet 0.535484 0.543220 0.545302 0.311698
131 texture NeuralNet 0.997182 0.997211 0.997186 0.996905
132 threeOf9 NeuralNet 0.988673 0.988757 0.988827 0.977576
133 tic_tac_toe NeuralNet 0.910417 0.886942 0.916250 0.802401
134 tokyo1 NeuralNet 0.919965 0.910703 0.914601 0.825215
135 twonorm NeuralNet 0.973649 0.973740 0.973626 0.947366
136 vehicle NeuralNet 0.795098 0.804081 0.800503 0.729591
137 vote NeuralNet 0.948276 0.947088 0.947381 0.894389
138 vowel NeuralNet 0.963300 0.964049 0.962838 0.959821
139 waveform_21 NeuralNet 0.855033 0.855107 0.856384 0.783666
140 waveform_40 NeuralNet 0.846667 0.847626 0.848218 0.771493
141 wdbc NeuralNet 0.961404 0.958843 0.959549 0.918218
142 wine_quality_red NeuralNet 0.599792 0.286262 0.284769 0.351061
143 wine_quality_white NeuralNet 0.562789 0.251547 0.252105 0.313237
144 wine_recognition NeuralNet 0.969444 0.973278 0.966759 0.954492
145 xd6 NeuralNet 1.000000 1.000000 1.000000 1.000000
146 yeast NeuralNet 0.588401 0.512226 0.507737 0.467686
Dataset Name Algorithm Mean Accuracy [0-1] \uparrow Mean Precision \uparrow Mean Recall \uparrow Mean MCC \uparrow
1 GAMETES_Epistasis_2_Way_20atts_0.1H_EDM_1_1 RF 0.592813 0.593805 0.593487 0.18729
2 GAMETES_Epistasis_2_Way_20atts_0.4H_EDM_1_1 RF 0.716042 0.717502 0.716862 0.434362
3 GAMETES_Epistasis_3_Way_20atts_0.2H_EDM_1_1 RF 0.569167 0.570024 0.569777 0.1398
4 GAMETES_Heterogeneity_20atts_1600_Het_0.4_0.2_… RF 0.65 0.650981 0.650655 0.301635
5 GAMETES_Heterogeneity_20atts_1600_Het_0.4_0.2_… RF 0.676042 0.676914 0.676607 0.35352
6 Hill_Valley_with_noise RF 0.566667 0.567162 0.566994 0.134155
7 Hill_Valley_without_noise RF 0.591358 0.592646 0.592079 0.18472
8 agaricus_lepiota RF 1 1 1 1
9 allbp RF 0.961192 0.602601 0.412937 0.363661
10 allhyper RF 0.973289 0.348426 0.280262 0.059236
11 allhypo RF 0.942175 0.803611 0.509489 0.499523
12 allrep RF 0.966976 0.344607 0.268917 0.076523
13 analcatdata_aids RF 0.353333 0.387989 0.361032 -0.235453
14 analcatdata_asbestos RF 0.747059 0.751587 0.757251 0.507501
15 analcatdata_authorship RF 0.990533 0.99233 0.984122 0.986218
16 analcatdata_bankruptcy RF 0.84 0.830198 0.836468 0.666737
17 analcatdata_boxing1 RF 0.804167 0.789302 0.774962 0.562319
18 analcatdata_boxing2 RF 0.746914 0.753484 0.750487 0.503755
19 analcatdata_creditscore RF 0.968333 0.949908 0.973839 0.921332
20 analcatdata_cyyoung8092 RF 0.808333 0.817405 0.70781 0.502572
21 analcatdata_cyyoung9302 RF 0.857895 0.764068 0.721255 0.46788
22 analcatdata_dmft RF 0.184792 0.19342 0.18849 0.022857
23 analcatdata_fraud RF 0.7 0.609319 0.612659 0.209653
24 analcatdata_germangss RF 0.161667 0.158693 0.161677 -0.116714
25 analcatdata_happiness RF 0.216667 0.247496 0.232063 -0.121818
26 analcatdata_japansolvent RF 0.842424 0.859372 0.841978 0.699035
27 analcatdata_lawsuit RF 0.978616 0.937273 0.906068 0.828542
28 ann_thyroid RF 0.996111 0.974214 0.985039 0.97328
29 appendicitis RF 0.862121 0.77616 0.761159 0.516606
30 australian RF 0.858696 0.856531 0.857277 0.713777
31 auto RF 0.8 0.82009 0.792282 0.741249
32 backache RF 0.837963 0.487991 0.519393 0.054565
33 balance_scale RF 0.841333 0.564501 0.606117 0.712345
34 banana RF 0.89522 0.895011 0.892572 0.787576
35 biomed RF 0.903968 0.913905 0.873959 0.785684
36 breast RF 0.96881 0.963213 0.969114 0.932255
37 breast_cancer RF 0.722989 0.663864 0.616834 0.275302
38 breast_cancer_wisconsin RF 0.955848 0.95673 0.949492 0.906034
39 breast_w RF 0.970714 0.965086 0.971185 0.9362
40 buggyCrx RF 0.87029 0.868878 0.87036 0.739192
41 bupa RF 0.555072 0.55896 0.55824 0.117196
42 calendarDOW RF 0.6225 0.601339 0.598965 0.523132
43 car RF 0.962813 0.90768 0.891529 0.920316
44 car_evaluation RF 0.964162 0.90028 0.9145 0.923467
45 cars RF 0.95443 0.945243 0.934689 0.916105
46 chess RF 0.990938 0.991027 0.990844 0.981871
47 churn RF 0.917 0.938249 0.707636 0.602217
48 clean1 RF 0.904861 0.905297 0.900208 0.80544
49 cleve RF 0.821858 0.820319 0.823499 0.643642
50 cleveland RF 0.554098 0.284665 0.287316 0.257013
51 cleveland_nominal RF 0.538251 0.29455 0.298114 0.255859
52 cloud RF 0.348485 0.35541 0.37207 0.149374
53 cmc RF 0.506667 0.482102 0.477236 0.228526
54 colic RF 0.840991 0.844669 0.815516 0.658974
55 collins RF 0.999313 0.999313 0.999038 0.999242
56 confidence RF 0.782222 0.815463 0.797389 0.743977
57 contraceptive RF 0.510847 0.484453 0.477114 0.233082
58 corral RF 0.99375 0.993687 0.993942 0.987625
59 credit_a RF 0.861836 0.86093 0.861414 0.722311
60 credit_g RF 0.762667 0.727824 0.65338 0.372782
61 crx RF 0.862319 0.861499 0.860795 0.722277
62 dermatology RF 0.972973 0.971601 0.968303 0.966415
63 diabetes RF 0.758442 0.736482 0.716768 0.452329
64 dis RF 0.985033 0.573135 0.508874 0.050971
65 ecoli RF 0.879293 0.859011 0.833699 0.832325
66 flags RF 0.469444 0.446879 0.428278 0.306985
67 flare RF 0.804206 0.606957 0.562855 0.162851
68 german RF 0.7615 0.735306 0.656369 0.382524
69 glass RF 0.793496 0.768921 0.737416 0.709925
70 glass2 RF 0.866667 0.868614 0.86623 0.734613
71 haberman RF 0.706452 0.597622 0.57313 0.167371
72 hayes_roth RF 0.81875 0.849932 0.854616 0.718032
73 heart_c RF 0.823497 0.821805 0.821258 0.642999
Dataset Name Algorithm Mean Accuracy [0-1] \uparrow Mean Precision \uparrow Mean Recall \uparrow Mean MCC \uparrow
74 heart_h RF 0.812429 0.803651 0.791494 0.594451
75 heart_statlog RF 0.824074 0.822665 0.816857 0.639373
76 hepatitis RF 0.8 0.729485 0.625241 0.325763
77 horse_colic RF 0.843243 0.847947 0.817756 0.664626
78 house_votes_84 RF 0.954023 0.951141 0.952488 0.903554
79 hungarian RF 0.833333 0.823948 0.807803 0.631089
80 hypothyroid RF 0.961664 0.871592 0.661778 0.486384
81 ionosphere RF 0.934272 0.933031 0.923157 0.855937
82 iris RF 0.948889 0.950367 0.949603 0.924185
83 irish RF 0.999 0.999006 0.998942 0.997946
84 kr_vs_kp RF 0.990938 0.991119 0.990747 0.981865
85 krkopt RF 0.750249 0.760036 0.747196 0.721422
86 labor RF 0.925 0.919127 0.920991 0.836918
87 led24 RF 0.71724 0.716457 0.716799 0.685937
88 led7 RF 0.732656 0.737603 0.730783 0.703823
89 lupus RF 0.677778 0.662729 0.668674 0.328853
90 lymphography RF 0.861111 0.727772 0.73409 0.729926
91 magic RF 0.880967 0.879621 0.856553 0.735806
92 mfeat_fourier RF 0.832417 0.83273 0.8336 0.814312
93 mfeat_karhunen RF 0.962333 0.962286 0.962723 0.958194
94 mfeat_morphological RF 0.7005 0.699192 0.700314 0.667651
95 mfeat_zernike RF 0.781583 0.777452 0.782013 0.757641
96 mofn_3_7_10 RF 0.997484 0.998403 0.994355 0.992711
97 molecular_biology_promoters RF 0.907576 0.907391 0.912776 0.819971
98 monk1 RF 1 1 1 1
99 monk2 RF 0.832782 0.82718 0.79573 0.621766
100 monk3 RF 0.98048 0.980418 0.980483 0.960899
101 movement_libras RF 0.790278 0.797014 0.798489 0.777306
102 mushroom RF 1 1 1 1
103 mux6 RF 0.939744 0.944234 0.9448 0.888858
104 new_thyroid RF 0.949612 0.949849 0.923227 0.895017
105 nursery RF 0.990856 0.992722 0.969001 0.98661
106 page_blocks RF 0.974795 0.885377 0.856833 0.862329
107 parity5 RF 0.061905 0.054444 0.067778 -0.87586
108 parity5+5 RF 0.596889 0.598563 0.598106 0.196663
109 pendigits RF 0.991617 0.991755 0.991702 0.990689
110 phoneme RF 0.907524 0.891557 0.884286 0.775755
111 pima RF 0.759957 0.73681 0.715334 0.451304
112 postoperative_patient_data RF 0.640741 0.389869 0.431934 -0.154795
113 prnn_crabs RF 0.92 0.919792 0.921353 0.841109
114 prnn_fglass RF 0.788618 0.760492 0.731584 0.703691
115 prnn_synth RF 0.846 0.851007 0.845242 0.696126
116 profb RF 0.668395 0.607657 0.559177 0.158267
117 ring RF 0.95205 0.952935 0.952216 0.905151
118 saheart RF 0.70681 0.674563 0.62945 0.29905
119 satimage RF 0.916887 0.908773 0.890325 0.897563
120 schizo RF 0.587745 0.199647 0.329257 -0.021156
121 segmentation RF 0.979509 0.979535 0.979382 0.97612
122 solar_flare_1 RF 0.730688 0.714603 0.688479 0.654436
123 solar_flare_2 RF 0.740187 0.632358 0.610569 0.668219
124 sonar RF 0.820635 0.832932 0.818413 0.650891
125 soybean RF 0.931358 0.965342 0.959584 0.925446
126 spambase RF 0.954542 0.956436 0.948223 0.904614
127 spect RF 0.821605 0.714415 0.695816 0.407145
128 spectf RF 0.90381 0.888917 0.867458 0.754996
129 splice RF 0.969592 0.966513 0.965407 0.950437
130 tae RF 0.621505 0.626625 0.623188 0.439679
131 texture RF 0.979061 0.979271 0.979157 0.976976
132 threeOf9 RF 0.992233 0.99182 0.992679 0.984498
133 tic_tac_toe RF 0.988194 0.990204 0.983946 0.974115
134 tokyo1 RF 0.927778 0.922725 0.919434 0.842092
135 twonorm RF 0.974077 0.974071 0.974099 0.94817
136 vehicle RF 0.747059 0.743724 0.755626 0.664236
137 vote RF 0.957854 0.956191 0.956952 0.913103
138 vowel RF 0.970707 0.971521 0.972488 0.967922
139 waveform_21 RF 0.854867 0.855389 0.854524 0.783095
140 waveform_40 RF 0.856033 0.857514 0.856918 0.785608
141 wdbc RF 0.958187 0.959796 0.951737 0.911386
142 wine_quality_red RF 0.699062 0.398787 0.358419 0.514626
143 wine_quality_white RF 0.68932 0.571892 0.399087 0.522513
144 wine_recognition RF 0.969444 0.969947 0.973605 0.953864
145 xd6 RF 0.999316 0.999479 0.999034 0.998511
146 yeast RF 0.621396 0.565004 0.529681 0.506088
Dataset Name Algorithm Mean Accuracy [0-1] \uparrow Mean Precision \uparrow Mean Recall \uparrow Mean MCC \uparrow
1 GAMETES_Epistasis_2_Way_20atts_0.1H_EDM_1_1 LGBM 0.600625 0.601217 0.600913 0.20213
2 GAMETES_Epistasis_2_Way_20atts_0.4H_EDM_1_1 LGBM 0.725521 0.727364 0.72608 0.453438
3 GAMETES_Epistasis_3_Way_20atts_0.2H_EDM_1_1 LGBM 0.546354 0.54645 0.546371 0.092821
4 GAMETES_Heterogeneity_20atts_1600_Het_0.4_0.2_… LGBM 0.665 0.665684 0.665486 0.33117
5 GAMETES_Heterogeneity_20atts_1600_Het_0.4_0.2_… LGBM 0.682604 0.683213 0.682965 0.366177
6 Hill_Valley_with_noise LGBM 0.580247 0.580742 0.580552 0.161293
7 Hill_Valley_without_noise LGBM 0.594513 0.596329 0.59553 0.191853
8 agaricus_lepiota LGBM 1 1 1 1
9 allbp LGBM 0.974525 0.804793 0.678941 0.67448
10 allhyper LGBM 0.988565 0.717225 0.650713 0.76277
11 allhypo LGBM 0.985853 0.923067 0.895773 0.902718
12 allrep LGBM 0.984768 0.796444 0.735259 0.750835
13 analcatdata_aids LGBM 0.35 0.175 0.483333 0
14 analcatdata_asbestos LGBM 0.77451 0.782152 0.786 0.566685
15 analcatdata_authorship LGBM 0.990335 0.991843 0.982204 0.985941
16 analcatdata_bankruptcy LGBM 0.676667 0.613571 0.710516 0.421595
17 analcatdata_boxing1 LGBM 0.668056 0.645938 0.595761 0.233457
18 analcatdata_boxing2 LGBM 0.780247 0.794117 0.779873 0.573408
19 analcatdata_creditscore LGBM 0.986667 0.973684 0.990276 0.962419
20 analcatdata_cyyoung8092 LGBM 0.798333 0.765406 0.732137 0.492857
21 analcatdata_cyyoung9302 LGBM 0.847368 0.735986 0.747946 0.47124
22 analcatdata_dmft LGBM 0.200208 0.208616 0.203876 0.041659
23 analcatdata_fraud LGBM 0.7 0.366667 0.516667 0
24 analcatdata_germangss LGBM 0.373333 0.380059 0.376709 0.169657
25 analcatdata_happiness LGBM 0.444444 0.426318 0.43869 0.237565
26 analcatdata_japansolvent LGBM 0.815152 0.821257 0.809405 0.627538
27 analcatdata_lawsuit LGBM 0.986792 0.955017 0.938743 0.8882
28 ann_thyroid LGBM 0.99669 0.978271 0.986658 0.97706
29 appendicitis LGBM 0.859091 0.753043 0.758115 0.496495
30 australian LGBM 0.855314 0.853435 0.854054 0.707463
31 auto LGBM 0.823577 0.843036 0.822394 0.771473
32 backache LGBM 0.835185 0.586381 0.533229 0.112935
33 balance_scale LGBM 0.861333 0.64243 0.646857 0.753419
34 banana LGBM 0.896918 0.897183 0.893869 0.79104
35 biomed LGBM 0.901587 0.895857 0.884865 0.779757
36 breast LGBM 0.964524 0.958979 0.963574 0.922501
37 breast_cancer LGBM 0.712644 0.660383 0.615009 0.266742
38 breast_cancer_wisconsin LGBM 0.964912 0.966561 0.958654 0.925122
39 breast_w LGBM 0.965476 0.959964 0.96463 0.924528
40 buggyCrx LGBM 0.872947 0.871543 0.871865 0.743374
41 bupa LGBM 0.559903 0.562541 0.561954 0.12449
42 calendarDOW LGBM 0.600833 0.5825 0.574801 0.497894
43 car LGBM 0.994316 0.98707 0.986767 0.987641
44 car_evaluation LGBM 0.993738 0.985846 0.985837 0.98658
45 cars LGBM 0.972152 0.965391 0.963578 0.948032
46 chess LGBM 0.994062 0.994134 0.993976 0.98811
47 churn LGBM 0.960233 0.952108 0.876124 0.824569
48 clean1 LGBM 0.997917 0.998125 0.997707 0.995829
49 cleve LGBM 0.800546 0.799896 0.800955 0.600648
50 cleveland LGBM 0.548087 0.314911 0.304379 0.277223
51 cleveland_nominal LGBM 0.539891 0.30768 0.302665 0.263412
52 cloud LGBM 0.465152 0.490845 0.477279 0.293241
53 cmc LGBM 0.531751 0.510656 0.505896 0.272571
54 colic LGBM 0.823874 0.818533 0.804626 0.622744
55 collins LGBM 0.990378 0.988866 0.989741 0.989378
56 confidence LGBM 0.777778 0.791537 0.79613 0.744283
57 contraceptive LGBM 0.531751 0.510656 0.505896 0.272571
58 corral LGBM 1 1 1 1
59 credit_a LGBM 0.862319 0.8612 0.860714 0.721891
60 credit_g LGBM 0.760667 0.712023 0.6798 0.389833
61 crx LGBM 0.862319 0.861024 0.860974 0.721986
62 dermatology LGBM 0.966667 0.957741 0.962793 0.958454
63 diabetes LGBM 0.743506 0.7179 0.708364 0.425803
64 dis LGBM 0.990552 0.902409 0.759103 0.637092
65 ecoli LGBM 0.866162 0.825708 0.800146 0.81292
66 flags LGBM 0.47963 0.451151 0.432137 0.324978
67 flare LGBM 0.816822 0.64016 0.573647 0.202066
68 german LGBM 0.757667 0.713125 0.680203 0.39152
69 glass LGBM 0.762602 0.712419 0.68008 0.666747
70 glass2 LGBM 0.872727 0.870638 0.873207 0.743677
71 haberman LGBM 0.70914 0.604596 0.576643 0.176236
72 hayes_roth LGBM 0.80625 0.824961 0.826361 0.701695
73 heart_c LGBM 0.811475 0.809545 0.807614 0.617022
Dataset Name Algorithm Mean Accuracy [0-1] \uparrow Mean Precision \uparrow Mean Recall \uparrow Mean MCC \uparrow
74 heart_h LGBM 0.784746 0.770482 0.769739 0.539905
75 heart_statlog LGBM 0.812346 0.811347 0.807426 0.618626
76 hepatitis LGBM 0.811828 0.718382 0.685423 0.393035
77 horse_colic LGBM 0.82027 0.816101 0.801575 0.617131
78 house_votes_84 LGBM 0.955172 0.951344 0.953965 0.905267
79 hungarian LGBM 0.79548 0.779852 0.771316 0.550672
80 hypothyroid LGBM 0.982096 0.919059 0.887098 0.803823
81 ionosphere LGBM 0.941315 0.94698 0.926107 0.872606
82 iris LGBM 0.945556 0.947153 0.946102 0.919454
83 irish LGBM 1 1 1 1
84 kr_vs_kp LGBM 0.994167 0.99427 0.994067 0.988337
85 krkopt LGBM 0.669435 0.575325 0.617445 0.632213
86 labor LGBM 0.830556 0.819286 0.827496 0.639012
87 led24 LGBM 0.689531 0.689134 0.689131 0.65508
88 led7 LGBM 0.733333 0.737842 0.731273 0.704584
89 lupus LGBM 0.746296 0.740188 0.730262 0.465089
90 lymphography LGBM 0.831111 0.74156 0.743542 0.669946
91 magic LGBM 0.880827 0.880668 0.855238 0.73546
92 mfeat_fourier LGBM 0.844167 0.844966 0.845643 0.827265
93 mfeat_karhunen LGBM 0.957833 0.957751 0.958593 0.953202
94 mfeat_morphological LGBM 0.681667 0.680566 0.681202 0.646662
95 mfeat_zernike LGBM 0.789167 0.797656 0.789418 0.766043
96 mofn_3_7_10 LGBM 0.998742 0.999192 0.997327 0.99649
97 molecular_biology_promoters LGBM 0.892424 0.891829 0.894953 0.786658
98 monk1 LGBM 1 1 1 1
99 monk2 LGBM 0.906887 0.906045 0.886986 0.792558
100 monk3 LGBM 0.98018 0.980204 0.980092 0.960293
101 movement_libras LGBM 0.749537 0.770434 0.761865 0.733694
102 mushroom LGBM 1 1 1 1
103 mux6 LGBM 0.861538 0.867661 0.865525 0.732914
104 new_thyroid LGBM 0.942636 0.937915 0.916178 0.87871
105 nursery LGBM 0.999987 0.99999 0.99999 0.999981
106 page_blocks LGBM 0.972785 0.867976 0.843822 0.85222
107 parity5 LGBM 0.366667 0.183333 0.5 0
108 parity5+5 LGBM 0.858815 0.859047 0.859071 0.718117
109 pendigits LGBM 0.991572 0.991622 0.991519 0.990634
110 phoneme LGBM 0.895035 0.874754 0.872023 0.746735
111 pima LGBM 0.748052 0.721769 0.710611 0.431994
112 postoperative_patient_data LGBM 0.740741 0.376373 0.488783 -0.032547
113 prnn_crabs LGBM 0.948333 0.946881 0.950147 0.89697
114 prnn_fglass LGBM 0.762602 0.712419 0.68008 0.666747
115 prnn_synth LGBM 0.852 0.854008 0.851682 0.705631
116 profb LGBM 0.64716 0.587869 0.573848 0.160865
117 ring LGBM 0.970248 0.970265 0.970235 0.9405
118 saheart LGBM 0.677419 0.635696 0.623404 0.258328
119 satimage LGBM 0.922145 0.912742 0.901401 0.903979
120 schizo LGBM 0.49902 0.38156 0.374371 0.048628
121 segmentation LGBM 0.985786 0.985921 0.985762 0.983441
122 solar_flare_1 LGBM 0.767196 0.746387 0.718967 0.701043
123 solar_flare_2 LGBM 0.740343 0.640344 0.618496 0.668787
124 sonar LGBM 0.852381 0.856818 0.853737 0.710409
125 soybean LGBM 0.929877 0.958896 0.95042 0.923242
126 spambase LGBM 0.957691 0.955772 0.955507 0.911273
127 spect LGBM 0.827778 0.724311 0.699483 0.420503
128 spectf LGBM 0.882857 0.850989 0.858873 0.708961
129 splice LGBM 0.962644 0.954979 0.96381 0.93975
130 tae LGBM 0.504301 0.517239 0.507952 0.264958
131 texture LGBM 0.987879 0.987909 0.98791 0.986671
132 threeOf9 LGBM 1 1 1 1
133 tic_tac_toe LGBM 0.999653 0.999733 0.999517 0.99925
134 tokyo1 LGBM 0.926736 0.920958 0.919076 0.839989
135 twonorm LGBM 0.96982 0.96981 0.969834 0.939645
136 vehicle LGBM 0.762941 0.76602 0.770803 0.684356
137 vote LGBM 0.949425 0.946945 0.949192 0.896069
138 vowel LGBM 0.938889 0.942074 0.941 0.933086
139 waveform_21 LGBM 0.850967 0.850802 0.850766 0.776635
140 waveform_40 LGBM 0.8539 0.85423 0.854521 0.781403
141 wdbc LGBM 0.966959 0.968536 0.961098 0.929554
142 wine_quality_red LGBM 0.684479 0.393475 0.360834 0.493296
143 wine_quality_white LGBM 0.671395 0.521475 0.399357 0.497333
144 wine_recognition LGBM 0.980556 0.977947 0.982913 0.970321
145 xd6 LGBM 0.999658 0.999479 0.999749 0.999227
146 yeast LGBM 0.579167 0.479634 0.457764 0.44834

Appendix F Detailed Results: Regression


Dataset Name Algorithm R2R^{2} Mean \uparrow MAE \downarrow MSE \downarrow Spearman coeff. \uparrow
1 1027_ESL Ours 0.814821 0.32415 0.364286 0.915777
2 1028_SWD Ours 0.242729 0.453667 0.488667 0.547945
3 1029_LEV Ours 0.441602 0.4215 0.503833 0.693376
4 1030_ERA Ours 0.326374 1.253 2.581 0.533985
5 1089_USCrime Ours 0.761386 13.656667 343.763333 0.85516
6 1096_FacultySalaries Ours 0.554916 1.917929 6.254915 0.881548
7 1199_BNG_echoMonths Ours 0.457349 8.99762 135.514966 0.642297
8 192_vineyard Ours 0.48772 2.319091 9.080212 0.733184
9 197_cpu_act Ours 0.954674 2.228371 15.159589 0.933337
10 210_cloud Ours 0.724912 0.327201 0.320947 0.899352
11 225_puma8NH Ours 0.655114 2.554851 10.963756 0.802862
12 227_cpu_small Ours 0.962504 2.425178 12.472524 0.915629
13 228_elusage Ours 0.668637 9.680586 168.506463 0.800816
14 229_pwLinear Ours 0.778315 1.596004 4.202897 0.889358
15 294_satellite_image Ours 0.903787 0.243849 0.469801 0.960742
16 4544_GeographicalOriginalofMusic Ours 0.647891 0.42381 0.365307 0.804204
17 503_wind Ours 0.764658 2.485348 10.531015 0.876728
18 505_tecator Ours 0.990744 0.83921 1.839203 0.984015
19 519_vinnie Ours 0.714124 1.248684 2.573246 0.8475
20 522_pm10 Ours 0.231741 0.590352 0.589455 0.521897
21 523_analcatdata_neavote Ours 0.936044 0.508333 0.911667 0.867378
22 529_pollen Ours 0.736858 1.254833 2.573448 0.852636
23 547_no2 Ours 0.451527 0.433395 0.306515 0.675206
24 560_bodyfat Ours 0.967746 0.797175 2.210489 0.986474
25 562_cpu_small Ours 0.96248 2.425747 12.479398 0.91551
26 573_cpu_act Ours 0.954674 2.228371 15.159589 0.933337
27 579_fri_c0_250_5 Ours 0.747212 0.378935 0.234794 0.867755
28 581_fri_c3_500_25 Ours 0.880145 0.274256 0.119619 0.927998
29 582_fri_c1_500_25 Ours 0.862309 0.287687 0.138304 0.92724
30 583_fri_c1_1000_50 Ours 0.874207 0.275637 0.125888 0.933612
31 584_fri_c4_500_25 Ours 0.862294 0.278452 0.137559 0.922143
32 586_fri_c3_1000_25 Ours 0.922484 0.217843 0.07711 0.950582
33 588_fri_c4_1000_100 Ours 0.833808 0.317965 0.168277 0.916987
34 589_fri_c2_1000_25 Ours 0.864343 0.28611 0.133228 0.914812
35 590_fri_c0_1000_50 Ours 0.777288 0.367084 0.215868 0.886631
36 591_fri_c1_100_10 Ours 0.79392 0.355943 0.205423 0.891629
37 592_fri_c4_1000_25 Ours 0.910138 0.230571 0.088991 0.939652
38 593_fri_c1_1000_10 Ours 0.918017 0.223762 0.081748 0.95081
39 594_fri_c2_100_5 Ours 0.698965 0.404108 0.277513 0.822206
40 595_fri_c0_1000_10 Ours 0.836771 0.320007 0.163036 0.917968
41 596_fri_c2_250_5 Ours 0.855819 0.288189 0.137918 0.908562
42 597_fri_c2_500_5 Ours 0.902917 0.242846 0.096258 0.930817
43 598_fri_c0_1000_25 Ours 0.807318 0.348594 0.190418 0.904452
44 599_fri_c2_1000_5 Ours 0.928995 0.205654 0.070798 0.953063
45 601_fri_c1_250_5 Ours 0.874268 0.260361 0.117707 0.931272
46 602_fri_c3_250_10 Ours 0.852551 0.287054 0.139902 0.915365
47 603_fri_c0_250_50 Ours 0.550945 0.522681 0.427257 0.765852
48 604_fri_c4_500_10 Ours 0.903939 0.2345 0.095063 0.936377
49 605_fri_c2_250_25 Ours 0.776405 0.366254 0.219222 0.866843
50 606_fri_c2_1000_10 Ours 0.895583 0.251408 0.102217 0.92564
51 607_fri_c4_1000_50 Ours 0.904882 0.233976 0.093041 0.9444
52 608_fri_c3_1000_10 Ours 0.928383 0.201985 0.070179 0.955772
53 609_fri_c0_1000_5 Ours 0.883291 0.272286 0.119157 0.945173
54 611_fri_c3_100_5 Ours 0.843342 0.290307 0.13585 0.878346
Dataset Name Algorithm R2R^{2} Mean \uparrow MAE \downarrow MSE \downarrow Spearman coeff. \uparrow
55 612_fri_c1_1000_5 Ours 0.929314 0.204331 0.067296 0.961312
56 613_fri_c3_250_5 Ours 0.879142 0.269598 0.123383 0.919196
57 615_fri_c4_250_10 Ours 0.821346 0.326316 0.17978 0.879216
58 616_fri_c4_500_50 Ours 0.860252 0.288322 0.138104 0.915084
59 617_fri_c3_500_5 Ours 0.902494 0.233656 0.095288 0.944492
60 618_fri_c3_1000_50 Ours 0.89088 0.254606 0.105341 0.924638
61 620_fri_c1_1000_25 Ours 0.896452 0.25679 0.103944 0.943626
62 621_fri_c0_100_10 Ours 0.514948 0.504627 0.420885 0.719398
63 622_fri_c2_1000_50 Ours 0.868326 0.285977 0.130393 0.908663
64 623_fri_c4_1000_10 Ours 0.910817 0.225429 0.085886 0.942258
65 624_fri_c0_100_5 Ours 0.680657 0.409647 0.264711 0.828772
66 626_fri_c2_500_50 Ours 0.81207 0.339832 0.185641 0.868545
67 627_fri_c2_500_10 Ours 0.870395 0.265378 0.120164 0.90524
68 628_fri_c3_1000_5 Ours 0.935337 0.19653 0.064458 0.959792
69 631_fri_c1_500_5 Ours 0.887184 0.251644 0.111008 0.937762
70 633_fri_c0_500_25 Ours 0.755927 0.38867 0.23952 0.870913
71 634_fri_c2_100_10 Ours 0.681313 0.430383 0.299145 0.775288
72 635_fri_c0_250_10 Ours 0.747336 0.383817 0.229537 0.858411
73 637_fri_c1_500_50 Ours 0.756928 0.384564 0.240337 0.873713
74 641_fri_c1_500_10 Ours 0.903447 0.248122 0.096938 0.947524
75 643_fri_c2_500_25 Ours 0.815767 0.340522 0.183284 0.861509
76 644_fri_c4_250_25 Ours 0.831484 0.298289 0.159565 0.899765
77 645_fri_c3_500_50 Ours 0.853164 0.292239 0.14205 0.911955
78 646_fri_c3_500_10 Ours 0.904141 0.237812 0.093509 0.941917
79 647_fri_c1_250_10 Ours 0.844011 0.30014 0.153291 0.902739
80 648_fri_c1_250_50 Ours 0.731215 0.40498 0.267496 0.853423
81 649_fri_c0_500_5 Ours 0.825379 0.322537 0.173292 0.912715
82 650_fri_c0_500_50 Ours 0.731406 0.409569 0.265992 0.86738
83 651_fri_c0_100_25 Ours 0.464538 0.616188 0.580735 0.723058
84 653_fri_c0_250_25 Ours 0.714149 0.420427 0.275512 0.840435
85 654_fri_c0_500_10 Ours 0.763131 0.375268 0.230507 0.875866
86 656_fri_c1_100_5 Ours 0.67904 0.380913 0.25083 0.859699
87 657_fri_c2_250_10 Ours 0.845575 0.294064 0.144781 0.850391
88 658_fri_c3_250_25 Ours 0.813686 0.323878 0.188254 0.904333
89 663_rabe_266 Ours 0.986557 3.859722 34.615278 0.990176
90 665_sleuth_case2002 Ours 0.30437 5.34 59.04 0.363676
91 666_rmftsa_ladata Ours 0.571491 1.314268 3.314505 0.619187
92 678_visualizing_environmental Ours 0.2157 2.418534 9.419031 0.525967
93 687_sleuth_ex1605 Ours 0.304948 8.969231 130.948718 0.584203
94 690_visualizing_galaxy Ours 0.975347 10.611795 221.629231 0.982753
95 695_chatfield_4 Ours 0.827115 13.107853 363.147952 0.923092
96 712_chscase_geyser1 Ours 0.743774 5.067407 40.359259 0.726834
97 feynman_III_12_43 Ours 0.999991 0.001792 0.000006 0.999995
98 feynman_III_15_12 Ours 0.995147 0.243424 0.12736 0.996878
99 feynman_III_15_14 Ours 0.997892 0.000219 0.000001 0.999857
100 feynman_III_15_27 Ours 0.998984 0.036029 0.007256 0.999844
101 feynman_III_17_37 Ours 0.999504 0.072285 0.012494 0.999817
102 feynman_III_7_38 Ours 0.999296 0.44518 0.910481 0.999843
103 feynman_III_8_54 Ours 0.983559 0.028682 0.002052 0.989254
104 feynman_II_10_9 Ours 0.99925 0.003165 0.000046 0.999862
105 feynman_II_11_28 Ours 0.999989 0.000632 0.000001 0.999986
106 feynman_II_13_23 Ours 0.999854 0.007621 0.000216 0.999949
107 feynman_II_13_34 Ours 0.999318 0.031981 0.003025 0.999782
108 feynman_II_15_4 Ours 0.999476 0.0789 0.014319 0.999783
Dataset Name Algorithm R2R^{2} Mean \uparrow MAE \downarrow MSE \downarrow Spearman coeff. \uparrow
109 feynman_II_15_5 Ours 0.999482 0.07829 0.014174 0.999788
110 feynman_II_24_17 Ours 0.999776 0.0083 0.000166 0.999914
111 feynman_II_27_16 Ours 0.999722 0.879617 2.226821 0.999874
112 feynman_II_27_18 Ours 0.999991 0.05168 0.006177 0.999996
113 feynman_II_34_2 Ours 0.999737 0.104771 0.024674 0.999839
114 feynman_II_34_29a Ours 0.999321 0.002835 0.000036 0.999847
115 feynman_II_34_2a Ours 0.999342 0.005635 0.000138 0.999846
116 feynman_II_37_1 Ours 0.999751 0.252268 0.137842 0.999861
117 feynman_II_38_14 Ours 0.999986 0.000496 0.000001 0.999995
118 feynman_II_3_24 Ours 0.999958 0.000135 0.0 0.999996
119 feynman_II_4_23 Ours 0.99888 0.000461 0.000001 0.999842
120 feynman_II_8_31 Ours 0.999991 0.025679 0.001567 0.999996
121 feynman_II_8_7 Ours 0.998964 0.001101 0.000008 0.999871
122 feynman_I_10_7 Ours 0.999848 0.007695 0.000223 0.999948
123 feynman_I_12_1 Ours 0.999991 0.011145 0.000234 0.999995
124 feynman_I_12_4 Ours 0.998486 0.000332 0.000001 0.99987
125 feynman_I_12_5 Ours 0.999991 0.011157 0.000232 0.999995
126 feynman_I_14_3 Ours 0.999736 0.209823 0.098519 0.99984
127 feynman_I_14_4 Ours 0.99999 0.025775 0.001563 0.999996
128 feynman_I_15_10 Ours 0.999485 0.031841 0.002294 0.999806
129 feynman_I_16_6 Ours 0.999825 0.009806 0.000227 0.999923
130 feynman_I_18_12 Ours 0.999752 0.079259 0.013642 0.999844
131 feynman_I_25_13 Ours 0.999975 0.001993 0.000015 0.999994
132 feynman_I_26_2 Ours 0.999975 0.001382 0.000006 0.999993
133 feynman_I_27_6 Ours 0.999587 0.0044 0.000053 0.999807
134 feynman_I_29_4 Ours 0.999931 0.003808 0.000121 0.999993
135 feynman_I_30_3 Ours 0.994476 0.105824 0.036724 0.996563
136 feynman_I_30_5 Ours 0.999392 0.001463 0.000009 0.999856
137 feynman_I_34_1 Ours 0.999445 0.018951 0.001767 0.999906
138 feynman_I_34_14 Ours 0.999759 0.014131 0.000633 0.999936
139 feynman_I_34_27 Ours 0.999991 0.001779 0.000006 0.999995
140 feynman_I_37_4 Ours 0.999656 0.035048 0.002833 0.999879
141 feynman_I_39_1 Ours 0.999991 0.016769 0.000526 0.999995
142 feynman_I_39_11 Ours 0.999296 0.039029 0.006582 0.999853
143 feynman_I_43_31 Ours 0.999746 0.209029 0.095828 0.99984
144 feynman_I_47_23 Ours 0.999546 0.008663 0.000206 0.999846
145 feynman_I_48_2 Ours 0.999926 0.575089 0.766039 0.999952
146 feynman_I_6_2 Ours 0.999986 0.000099 0.0 0.999994
147 feynman_I_6_2b Ours 0.999519 0.000746 0.000002 0.999776
148 nikuradse_1 Ours 0.997497 0.004895 0.000064 0.989449
149 strogatz_bacres1 Ours 0.997635 0.04384 0.016487 0.987143
150 strogatz_bacres2 Ours 0.995697 0.031386 0.018891 0.997317
151 strogatz_barmag1 Ours 0.988846 0.005775 0.000823 0.998904
152 strogatz_barmag2 Ours 0.997224 0.005008 0.000216 0.99758
153 strogatz_glider1 Ours 0.985167 0.061423 0.009102 0.991621
154 strogatz_glider2 Ours 0.977176 0.073873 0.019675 0.978445
155 strogatz_lv1 Ours 0.467779 0.227348 7.977268 0.994459
156 strogatz_lv2 Ours 0.627065 0.087129 0.584009 0.992025
157 strogatz_predprey1 Ours 0.931857 0.127998 0.776514 0.991957
158 strogatz_predprey2 Ours 0.990725 0.060801 0.022346 0.996018
159 strogatz_shearflow1 Ours 0.98088 0.019286 0.006435 0.996114
160 strogatz_shearflow2 Ours 0.990451 0.007028 0.000487 0.993458
161 strogatz_vdp1 Ours 0.956707 0.100081 0.144906 0.946581
162 strogatz_vdp2 Ours 0.999936 0.000357 0.000001 0.999972
Dataset Name Algorithm R2R^{2} Mean \uparrow MAE \downarrow MSE \downarrow Spearman coeff. \uparrow
1 1027_ESL GB 0.843825 0.411648 0.306425 0.933898
2 1028_SWD GB 0.40216 0.500758 0.386582 0.629681
3 1029_LEV GB 0.544847 0.487292 0.41125 0.741157
4 1030_ERA GB 0.354067 1.265373 2.476943 0.561748
5 1089_USCrime GB 0.735817 15.812908 388.658039 0.829873
6 1096_FacultySalaries GB 0.655666 1.692329 5.266757 0.867306
7 1199_BNG_echoMonths GB 0.459803 9.042931 134.895122 0.647074
8 192_vineyard GB 0.414016 2.540394 10.447293 0.70301
9 197_cpu_act GB 0.985098 1.577219 4.927499 0.966054
10 210_cloud GB 0.744946 0.315625 0.247581 0.911323
11 225_puma8NH GB 0.666022 2.541262 10.616178 0.810667
12 227_cpu_small GB 0.977728 1.927811 7.364241 0.95139
13 228_elusage GB 0.662711 9.845451 185.548119 0.769757
14 229_pwLinear GB 0.866772 1.230784 2.497797 0.929715
15 294_satellite_image GB 0.891701 0.427456 0.528769 0.944031
16 4544_GeographicalOriginalofMusic GB 0.735437 0.370617 0.272636 0.8508
17 503_wind GB 0.792332 2.344334 9.286841 0.890397
18 505_tecator GB 0.994561 0.720312 1.089333 0.990542
19 519_vinnie GB 0.677588 1.331072 2.918281 0.835808
20 522_pm10 GB 0.40249 0.52595 0.458839 0.643265
21 523_analcatdata_neavote GB 0.946617 0.587192 0.766019 0.86266
22 529_pollen GB 0.766195 1.194947 2.284538 0.866195
23 547_no2 GB 0.579428 0.376816 0.23371 0.744537
24 560_bodyfat GB 0.96948 0.447498 2.047946 0.989411
25 562_cpu_small GB 0.977697 1.928112 7.378158 0.951374
26 573_cpu_act GB 0.985101 1.574965 4.926176 0.966219
27 579_fri_c0_250_5 GB 0.826108 0.310522 0.159872 0.905514
28 581_fri_c3_500_25 GB 0.901667 0.241635 0.097505 0.942909
29 582_fri_c1_500_25 GB 0.896002 0.247032 0.104206 0.945404
30 583_fri_c1_1000_50 GB 0.92859 0.206142 0.070994 0.959217
31 584_fri_c4_500_25 GB 0.892647 0.248087 0.105783 0.93504
32 586_fri_c3_1000_25 GB 0.934247 0.197888 0.06533 0.958883
33 588_fri_c4_1000_100 GB 0.91912 0.221115 0.081493 0.94965
34 589_fri_c2_1000_25 GB 0.932203 0.201979 0.066672 0.962761
35 590_fri_c0_1000_50 GB 0.887233 0.261766 0.109249 0.940085
36 591_fri_c1_100_10 GB 0.764455 0.35971 0.233366 0.858847
37 592_fri_c4_1000_25 GB 0.917861 0.217352 0.080926 0.95125
38 593_fri_c1_1000_10 GB 0.950663 0.172583 0.049184 0.970845
39 594_fri_c2_100_5 GB 0.680408 0.406565 0.294247 0.809223
40 595_fri_c0_1000_10 GB 0.905908 0.240498 0.093701 0.950441
41 596_fri_c2_250_5 GB 0.885681 0.255633 0.108273 0.927558
42 597_fri_c2_500_5 GB 0.932894 0.199733 0.066737 0.953171
43 598_fri_c0_1000_25 GB 0.906981 0.241539 0.091942 0.952676
44 599_fri_c2_1000_5 GB 0.956357 0.162371 0.043482 0.971351
45 601_fri_c1_250_5 GB 0.903114 0.23158 0.090293 0.941958
46 602_fri_c3_250_10 GB 0.819989 0.302515 0.170535 0.912131
47 603_fri_c0_250_50 GB 0.779161 0.359235 0.209984 0.892731
48 604_fri_c4_500_10 GB 0.911427 0.228038 0.087185 0.938375
49 605_fri_c2_250_25 GB 0.841342 0.308476 0.154068 0.903712
50 606_fri_c2_1000_10 GB 0.942107 0.186805 0.056795 0.962095
51 607_fri_c4_1000_50 GB 0.920848 0.214492 0.076891 0.953161
52 608_fri_c3_1000_10 GB 0.933739 0.191745 0.064433 0.960649
53 609_fri_c0_1000_5 GB 0.925105 0.218052 0.07637 0.960385
54 611_fri_c3_100_5 GB 0.787867 0.332415 0.184403 0.874185
Dataset Name Algorithm R2R^{2} Mean \uparrow MAE \downarrow MSE \downarrow Spearman coeff. \uparrow
55 612_fri_c1_1000_5 GB 0.950666 0.167881 0.0469 0.971885
56 613_fri_c3_250_5 GB 0.888793 0.255482 0.112866 0.930164
57 615_fri_c4_250_10 GB 0.825742 0.309544 0.175729 0.899653
58 616_fri_c4_500_50 GB 0.870546 0.266212 0.126715 0.918094
59 617_fri_c3_500_5 GB 0.91477 0.212436 0.083035 0.952741
60 618_fri_c3_1000_50 GB 0.917416 0.217763 0.079267 0.941898
61 620_fri_c1_1000_25 GB 0.930267 0.20674 0.070272 0.959332
62 621_fri_c0_100_10 GB 0.673515 0.409779 0.282499 0.833133
63 622_fri_c2_1000_50 GB 0.928422 0.208101 0.070624 0.951736
64 623_fri_c4_1000_10 GB 0.9289 0.198136 0.068375 0.952496
65 624_fri_c0_100_5 GB 0.775367 0.344426 0.185308 0.86807
66 626_fri_c2_500_50 GB 0.89591 0.252418 0.103325 0.934982
67 627_fri_c2_500_10 GB 0.913013 0.21429 0.080541 0.946179
68 628_fri_c3_1000_5 GB 0.945819 0.180783 0.053809 0.967147
69 631_fri_c1_500_5 GB 0.914616 0.224312 0.083882 0.951624
70 633_fri_c0_500_25 GB 0.866778 0.28306 0.130135 0.927416
71 634_fri_c2_100_10 GB 0.707546 0.403375 0.27576 0.802657
72 635_fri_c0_250_10 GB 0.795412 0.341222 0.183931 0.883243
73 637_fri_c1_500_50 GB 0.891905 0.25252 0.106855 0.944885
74 641_fri_c1_500_10 GB 0.92871 0.207534 0.071374 0.961263
75 643_fri_c2_500_25 GB 0.900465 0.247269 0.098138 0.933107
76 644_fri_c4_250_25 GB 0.784022 0.333082 0.209017 0.878636
77 645_fri_c3_500_50 GB 0.861811 0.277696 0.133277 0.907534
78 646_fri_c3_500_10 GB 0.911923 0.220252 0.085503 0.945606
79 647_fri_c1_250_10 GB 0.887172 0.252802 0.109562 0.928647
80 648_fri_c1_250_50 GB 0.837642 0.303371 0.159559 0.905972
81 649_fri_c0_500_5 GB 0.903218 0.241655 0.096167 0.949057
82 650_fri_c0_500_50 GB 0.862419 0.289007 0.135707 0.930885
83 651_fri_c0_100_25 GB 0.567311 0.556682 0.462681 0.804561
84 653_fri_c0_250_25 GB 0.775675 0.36665 0.215326 0.87306
85 654_fri_c0_500_10 GB 0.868828 0.277005 0.127472 0.931783
86 656_fri_c1_100_5 GB 0.693063 0.372854 0.241055 0.859148
87 657_fri_c2_250_10 GB 0.883046 0.255819 0.110549 0.905226
88 658_fri_c3_250_25 GB 0.809951 0.331847 0.192954 0.88508
89 663_rabe_266 GB 0.99757 1.6694 6.247533 0.997376
90 665_sleuth_case2002 GB 0.301035 5.605296 59.782738 0.463527
91 666_rmftsa_ladata GB 0.531554 1.35438 3.540895 0.612809
92 678_visualizing_environmental GB 0.182869 2.393865 9.85989 0.524717
93 687_sleuth_ex1605 GB 0.424127 8.230798 109.769692 0.664333
94 690_visualizing_galaxy GB 0.972577 11.648016 246.035465 0.980595
95 695_chatfield_4 GB 0.811831 13.754273 394.666729 0.928151
96 712_chscase_geyser1 GB 0.708235 5.390796 46.218939 0.72483
97 feynman_III_12_43 GB 0.999777 0.009144 0.000146 0.999862
98 feynman_III_15_12 GB 0.891242 1.271665 2.854668 0.952377
99 feynman_III_15_14 GB 0.99803 0.000417 0.000001 0.997153
100 feynman_III_15_27 GB 0.998772 0.061388 0.00875 0.999203
101 feynman_III_17_37 GB 0.998614 0.146078 0.03494 0.999072
102 feynman_III_7_38 GB 0.998941 0.823206 1.369195 0.999285
103 feynman_III_8_54 GB 0.303233 0.250471 0.086956 0.53352
104 feynman_II_10_9 GB 0.998956 0.005424 0.000064 0.999375
105 feynman_II_11_28 GB 0.999746 0.00345 0.000022 0.999751
106 feynman_II_13_23 GB 0.999942 0.006635 0.000085 0.999973
107 feynman_II_13_34 GB 0.999747 0.025141 0.001124 0.999878
108 feynman_II_15_4 GB 0.998739 0.145999 0.034424 0.999112
Dataset Name Algorithm R2R^{2} Mean \uparrow MAE \downarrow MSE \downarrow Spearman coeff. \uparrow
109 feynman_II_15_5 GB 0.998703 0.148046 0.035469 0.999086
110 feynman_II_24_17 GB 0.999786 0.009717 0.000159 0.999882
111 feynman_II_27_16 GB 0.999038 2.006489 7.70378 0.999233
112 feynman_II_27_18 GB 0.99981 0.258533 0.124766 0.999873
113 feynman_II_34_2 GB 0.999065 0.224284 0.087908 0.999368
114 feynman_II_34_29a GB 0.998903 0.005328 0.000058 0.999263
115 feynman_II_34_2a GB 0.99894 0.010497 0.000223 0.999292
116 feynman_II_37_1 GB 0.999126 0.526923 0.483049 0.999449
117 feynman_II_38_14 GB 0.99978 0.002308 0.00001 0.999871
118 feynman_II_3_24 GB 0.999799 0.0005 0.000001 0.999807
119 feynman_II_4_23 GB 0.998778 0.000766 0.000001 0.999227
120 feynman_II_8_31 GB 0.999808 0.130123 0.031723 0.999874
121 feynman_II_8_7 GB 0.998564 0.002103 0.000012 0.999034
122 feynman_I_10_7 GB 0.999942 0.006637 0.000085 0.999973
123 feynman_I_12_1 GB 0.999779 0.057045 0.005667 0.999862
124 feynman_I_12_4 GB 0.998729 0.000545 0.000001 0.99867
125 feynman_I_12_5 GB 0.999781 0.056772 0.005631 0.999864
126 feynman_I_14_3 GB 0.999038 0.452357 0.35937 0.999355
127 feynman_I_14_4 GB 0.999809 0.128623 0.031144 0.999872
128 feynman_I_15_10 GB 0.999736 0.025599 0.001176 0.999875
129 feynman_I_16_6 GB 0.999426 0.021044 0.000744 0.999705
130 feynman_I_18_12 GB 0.999048 0.177748 0.052272 0.999372
131 feynman_I_25_13 GB 0.999765 0.008456 0.000144 0.999842
132 feynman_I_26_2 GB 0.999807 0.005237 0.000048 0.999892
133 feynman_I_27_6 GB 0.999183 0.007485 0.000104 0.999555
134 feynman_I_29_4 GB 0.999734 0.01411 0.000467 0.999786
135 feynman_I_30_3 GB 0.944169 0.456395 0.371263 0.949052
136 feynman_I_30_5 GB 0.999247 0.002193 0.000011 0.999604
137 feynman_I_34_1 GB 0.999499 0.027293 0.001592 0.999795
138 feynman_I_34_14 GB 0.999718 0.019595 0.00074 0.999877
139 feynman_I_34_27 GB 0.999779 0.009122 0.000145 0.999862
140 feynman_I_37_4 GB 0.999358 0.055282 0.005287 0.999542
141 feynman_I_39_1 GB 0.999782 0.085379 0.01271 0.999865
142 feynman_I_39_11 GB 0.998941 0.071568 0.009894 0.999318
143 feynman_I_43_31 GB 0.999045 0.452485 0.359654 0.999359
144 feynman_I_47_23 GB 0.999262 0.013819 0.000336 0.99958
145 feynman_I_48_2 GB 0.999781 1.116941 2.259847 0.999851
146 feynman_I_6_2 GB 0.999765 0.000483 0.0 0.999888
147 feynman_I_6_2b GB 0.996133 0.002474 0.000014 0.99801
148 nikuradse_1 GB 0.996922 0.006384 0.000078 0.989391
149 strogatz_bacres1 GB 0.998239 0.045395 0.01087 0.972479
150 strogatz_bacres2 GB 0.993985 0.047292 0.026821 0.9961
151 strogatz_barmag1 GB 0.981286 0.009798 0.001255 0.992695
152 strogatz_barmag2 GB 0.991133 0.011211 0.000591 0.984098
153 strogatz_glider1 GB 0.979589 0.079676 0.012392 0.988568
154 strogatz_glider2 GB 0.96412 0.092327 0.031138 0.976937
155 strogatz_lv1 GB 0.340567 0.223821 6.248533 0.938462
156 strogatz_lv2 GB -0.898451 0.150845 0.729317 0.759218
157 strogatz_predprey1 GB 0.940588 0.146252 0.646596 0.988357
158 strogatz_predprey2 GB 0.989898 0.077975 0.024433 0.994818
159 strogatz_shearflow1 GB 0.940203 0.030389 0.013452 0.987928
160 strogatz_shearflow2 GB 0.978294 0.012743 0.001115 0.994161
161 strogatz_vdp1 GB 0.966731 0.115695 0.090597 0.953146
162 strogatz_vdp2 GB 0.999862 0.000618 0.000001 0.999838
Dataset Name Algorithm R2R^{2} Mean \uparrow MAE \downarrow MSE \downarrow Spearman coeff. \uparrow
1 1027_ESL KNN 0.807879 0.41613 0.37531 0.913604
2 1028_SWD KNN 0.343418 0.510123 0.424094 0.600515
3 1029_LEV KNN 0.513662 0.493256 0.439421 0.722121
4 1030_ERA KNN 0.345674 1.26361 2.507198 0.552753
5 1089_USCrime KNN 0.703708 14.772808 412.108062 0.826278
6 1096_FacultySalaries KNN 0.53663 1.953896 6.991502 0.868185
7 1199_BNG_echoMonths KNN 0.334282 10.376265 166.239817 0.569137
8 192_vineyard KNN 0.373565 2.628693 10.633359 0.689823
9 197_cpu_act KNN 0.888774 4.247011 36.847611 0.795425
10 210_cloud KNN 0.658076 0.36535 0.381462 0.854528
11 225_puma8NH KNN 0.616011 2.766587 12.207019 0.78323
12 227_cpu_small KNN 0.886621 4.300175 37.553102 0.791214
13 228_elusage KNN 0.67304 9.506251 174.1098 0.784325
14 229_pwLinear KNN 0.70406 1.855126 5.603834 0.857754
15 294_satellite_image KNN 0.908938 0.257462 0.444755 0.957693
16 4544_GeographicalOriginalofMusic KNN 0.388877 0.554609 0.637352 0.600053
17 503_wind KNN 0.745951 2.583735 11.36322 0.866253
18 505_tecator KNN 0.987731 1.073242 2.476996 0.981551
19 519_vinnie KNN 0.569558 1.526279 3.896591 0.775169
20 522_pm10 KNN 0.180996 0.626031 0.634458 0.442965
21 523_analcatdata_neavote KNN 0.924445 0.611024 1.116954 0.845462
22 529_pollen KNN 0.695374 1.337789 2.97923 0.832418
23 547_no2 KNN 0.16756 0.528659 0.466909 0.431959
24 560_bodyfat KNN 0.594354 4.289598 27.442293 0.768671
25 562_cpu_small KNN 0.88669 4.299562 37.534212 0.791279
26 573_cpu_act KNN 0.888807 4.246408 36.835197 0.795559
27 579_fri_c0_250_5 KNN 0.757979 0.370055 0.226623 0.88502
28 581_fri_c3_500_25 KNN 0.406513 0.614419 0.594702 0.641756
29 582_fri_c1_500_25 KNN 0.299068 0.671775 0.702257 0.590878
30 583_fri_c1_1000_50 KNN 0.273415 0.695145 0.725051 0.52937
31 584_fri_c4_500_25 KNN 0.398744 0.628441 0.600895 0.633638
32 586_fri_c3_1000_25 KNN 0.424535 0.602009 0.574932 0.671286
33 588_fri_c4_1000_100 KNN 0.16538 0.731393 0.843612 0.446299
34 589_fri_c2_1000_25 KNN 0.430646 0.60814 0.561002 0.663878
35 590_fri_c0_1000_50 KNN 0.361098 0.639875 0.622629 0.655584
36 591_fri_c1_100_10 KNN 0.389413 0.631294 0.603467 0.625965
37 592_fri_c4_1000_25 KNN 0.406186 0.615368 0.590089 0.604161
38 593_fri_c1_1000_10 KNN 0.661404 0.458173 0.338014 0.817027
39 594_fri_c2_100_5 KNN 0.502196 0.518513 0.462946 0.755388
40 595_fri_c0_1000_10 KNN 0.698886 0.441745 0.301583 0.863617
41 596_fri_c2_250_5 KNN 0.719608 0.395027 0.26364 0.853442
42 597_fri_c2_500_5 KNN 0.850351 0.289368 0.147574 0.906158
43 598_fri_c0_1000_25 KNN 0.463055 0.593894 0.531968 0.742612
44 599_fri_c2_1000_5 KNN 0.890694 0.248991 0.108977 0.934203
45 601_fri_c1_250_5 KNN 0.793778 0.324212 0.193876 0.884709
46 602_fri_c3_250_10 KNN 0.455146 0.563242 0.516874 0.658824
47 603_fri_c0_250_50 KNN 0.235183 0.68487 0.728843 0.557173
48 604_fri_c4_500_10 KNN 0.609512 0.480458 0.38484 0.777255
49 605_fri_c2_250_25 KNN 0.271431 0.696507 0.713535 0.526729
50 606_fri_c2_1000_10 KNN 0.650717 0.45814 0.343237 0.809788
51 607_fri_c4_1000_50 KNN 0.281967 0.663103 0.700438 0.538739
52 608_fri_c3_1000_10 KNN 0.696365 0.420994 0.296792 0.824605
53 609_fri_c0_1000_5 KNN 0.884304 0.270184 0.118083 0.945111
54 611_fri_c3_100_5 KNN 0.771813 0.358065 0.198926 0.83584
Dataset Name Algorithm R2R^{2} Mean \uparrow MAE \downarrow MSE \downarrow Spearman coeff. \uparrow
55 612_fri_c1_1000_5 KNN 0.889513 0.246193 0.105308 0.942656
56 613_fri_c3_250_5 KNN 0.826467 0.322477 0.175191 0.893465
57 615_fri_c4_250_10 KNN 0.530654 0.543859 0.468519 0.708213
58 616_fri_c4_500_50 KNN 0.210018 0.706435 0.783715 0.476024
59 617_fri_c3_500_5 KNN 0.859534 0.273003 0.137508 0.922143
60 618_fri_c3_1000_50 KNN 0.311386 0.653644 0.664081 0.557806
61 620_fri_c1_1000_25 KNN 0.375528 0.65647 0.631844 0.608514
62 621_fri_c0_100_10 KNN 0.340703 0.582888 0.578592 0.623509
63 622_fri_c2_1000_50 KNN 0.30276 0.681954 0.691447 0.546624
64 623_fri_c4_1000_10 KNN 0.639109 0.454332 0.34839 0.782942
65 624_fri_c0_100_5 KNN 0.673186 0.407632 0.274295 0.828027
66 626_fri_c2_500_50 KNN 0.271654 0.69571 0.725827 0.533412
67 627_fri_c2_500_10 KNN 0.512372 0.521552 0.452715 0.723344
68 628_fri_c3_1000_5 KNN 0.91219 0.222372 0.08751 0.949091
69 631_fri_c1_500_5 KNN 0.79166 0.328605 0.205153 0.885727
70 633_fri_c0_500_25 KNN 0.429249 0.614029 0.565441 0.726973
71 634_fri_c2_100_10 KNN 0.387796 0.588892 0.585368 0.667469
72 635_fri_c0_250_10 KNN 0.567253 0.509036 0.396825 0.780319
73 637_fri_c1_500_50 KNN 0.190612 0.726046 0.802992 0.454106
74 641_fri_c1_500_10 KNN 0.587863 0.509599 0.414111 0.768669
75 643_fri_c2_500_25 KNN 0.274152 0.678898 0.723671 0.520608
76 644_fri_c4_250_25 KNN 0.258696 0.673705 0.715887 0.551216
77 645_fri_c3_500_50 KNN 0.256191 0.680995 0.726216 0.473903
78 646_fri_c3_500_10 KNN 0.583347 0.496202 0.410688 0.736341
79 647_fri_c1_250_10 KNN 0.509284 0.555339 0.478257 0.700949
80 648_fri_c1_250_50 KNN 0.239375 0.73117 0.763044 0.527385
81 649_fri_c0_500_5 KNN 0.825017 0.323343 0.173445 0.91166
82 650_fri_c0_500_50 KNN 0.329263 0.653483 0.668729 0.665897
83 651_fri_c0_100_25 KNN 0.273143 0.722003 0.791156 0.576842
84 653_fri_c0_250_25 KNN 0.362009 0.629356 0.618463 0.648122
85 654_fri_c0_500_10 KNN 0.624287 0.478936 0.368239 0.821772
86 656_fri_c1_100_5 KNN 0.615747 0.408661 0.303597 0.832531
87 657_fri_c2_250_10 KNN 0.52039 0.524871 0.457067 0.705652
88 658_fri_c3_250_25 KNN 0.244797 0.690289 0.760943 0.501852
89 663_rabe_266 KNN 0.986017 3.951143 36.343619 0.990686
90 665_sleuth_case2002 KNN 0.319907 5.308863 57.668582 0.364329
91 666_rmftsa_ladata KNN 0.543656 1.347936 3.553963 0.594365
92 678_visualizing_environmental KNN 0.216664 2.405815 9.418845 0.509588
93 687_sleuth_ex1605 KNN 0.362567 8.921237 126.531474 0.616783
94 690_visualizing_galaxy KNN 0.974681 10.682558 227.37364 0.98197
95 695_chatfield_4 KNN 0.790414 14.388273 433.325924 0.907828
96 712_chscase_geyser1 KNN 0.680253 5.669016 50.502146 0.714195
97 feynman_III_12_43 KNN 0.999991 0.001777 0.000006 0.999995
98 feynman_III_15_12 KNN 0.994051 0.270764 0.156133 0.996194
99 feynman_III_15_14 KNN 0.997769 0.000253 0.000001 0.999808
100 feynman_III_15_27 KNN 0.999043 0.038169 0.006827 0.999828
101 feynman_III_17_37 KNN 0.99911 0.096243 0.022444 0.999635
102 feynman_III_7_38 KNN 0.999347 0.477064 0.844295 0.999832
103 feynman_III_8_54 KNN 0.983681 0.02859 0.002037 0.989199
104 feynman_II_10_9 KNN 0.99927 0.003401 0.000045 0.999839
105 feynman_II_11_28 KNN 0.99999 0.000628 0.000001 0.999989
106 feynman_II_13_23 KNN 0.999866 0.010269 0.000198 0.999946
107 feynman_II_13_34 KNN 0.999176 0.043096 0.003654 0.999666
108 feynman_II_15_4 KNN 0.999175 0.098492 0.022525 0.999618
Dataset Name Algorithm R2R^{2} Mean \uparrow MAE \downarrow MSE \downarrow Spearman coeff. \uparrow
109 feynman_II_15_5 KNN 0.999182 0.097892 0.02238 0.999623
110 feynman_II_24_17 KNN 0.999337 0.015251 0.000493 0.99979
111 feynman_II_27_16 KNN 0.999712 0.943228 2.311306 0.999871
112 feynman_II_27_18 KNN 0.99999 0.05433 0.006645 0.999995
113 feynman_II_34_2 KNN 0.999754 0.104578 0.023089 0.999851
114 feynman_II_34_29a KNN 0.999327 0.003067 0.000035 0.999831
115 feynman_II_34_2a KNN 0.999376 0.00603 0.000131 0.999834
116 feynman_II_37_1 KNN 0.999759 0.25402 0.133153 0.999863
117 feynman_II_38_14 KNN 0.999988 0.000494 0.000001 0.999995
118 feynman_II_3_24 KNN 0.999937 0.000166 0.0 0.999995
119 feynman_II_4_23 KNN 0.999001 0.000481 0.000001 0.999828
120 feynman_II_8_31 KNN 0.99999 0.027024 0.001644 0.999996
121 feynman_II_8_7 KNN 0.999104 0.001143 0.000007 0.999852
122 feynman_I_10_7 KNN 0.999864 0.010321 0.000201 0.999946
123 feynman_I_12_1 KNN 0.999991 0.011106 0.000228 0.999995
124 feynman_I_12_4 KNN 0.997699 0.000432 0.000002 0.99983
125 feynman_I_12_5 KNN 0.999991 0.011098 0.000227 0.999995
126 feynman_I_14_3 KNN 0.999752 0.209515 0.092489 0.99985
127 feynman_I_14_4 KNN 0.99999 0.02702 0.001652 0.999995
128 feynman_I_15_10 KNN 0.999192 0.043141 0.0036 0.999669
129 feynman_I_16_6 KNN 0.999751 0.012993 0.000322 0.999905
130 feynman_I_18_12 KNN 0.999626 0.093342 0.020564 0.99971
131 feynman_I_25_13 KNN 0.999976 0.002032 0.000015 0.999994
132 feynman_I_26_2 KNN 0.999978 0.001406 0.000005 0.999994
133 feynman_I_27_6 KNN 0.999582 0.004684 0.000053 0.999834
134 feynman_I_29_4 KNN 0.999932 0.004091 0.00012 0.999992
135 feynman_I_30_3 KNN 0.99288 0.119795 0.047354 0.995613
136 feynman_I_30_5 KNN 0.999445 0.00152 0.000008 0.99985
137 feynman_I_34_1 KNN 0.999636 0.021039 0.001158 0.999894
138 feynman_I_34_14 KNN 0.999778 0.016803 0.000582 0.999919
139 feynman_I_34_27 KNN 0.999991 0.001764 0.000006 0.999995
140 feynman_I_37_4 KNN 0.999138 0.05649 0.007095 0.999686
141 feynman_I_39_1 KNN 0.999991 0.01667 0.000513 0.999995
142 feynman_I_39_11 KNN 0.999384 0.04124 0.005749 0.999838
143 feynman_I_43_31 KNN 0.999757 0.209387 0.091568 0.99985
144 feynman_I_47_23 KNN 0.999595 0.008944 0.000184 0.999845
145 feynman_I_48_2 KNN 0.999928 0.589222 0.745672 0.999961
146 feynman_I_6_2 KNN 0.999987 0.000101 0.0 0.999994
147 feynman_I_6_2b KNN 0.999483 0.000834 0.000002 0.999805
148 nikuradse_1 KNN 0.997674 0.004855 0.000059 0.989526
149 strogatz_bacres1 KNN 0.997879 0.053442 0.013004 0.972305
150 strogatz_bacres2 KNN 0.996195 0.03314 0.016602 0.99762
151 strogatz_barmag1 KNN 0.992561 0.004546 0.000537 0.998896
152 strogatz_barmag2 KNN 0.997663 0.003313 0.000188 0.995749
153 strogatz_glider1 KNN 0.985515 0.056925 0.008836 0.992129
154 strogatz_glider2 KNN 0.966362 0.074246 0.030366 0.976969
155 strogatz_lv1 KNN 0.50793 0.217824 7.069078 0.990073
156 strogatz_lv2 KNN 0.717427 0.073722 0.390647 0.986078
157 strogatz_predprey1 KNN 0.928159 0.129424 0.802643 0.991541
158 strogatz_predprey2 KNN 0.989005 0.071363 0.027123 0.996229
159 strogatz_shearflow1 KNN 0.982855 0.013993 0.006231 0.998894
160 strogatz_shearflow2 KNN 0.99096 0.005983 0.000436 0.997075
161 strogatz_vdp1 KNN 0.954852 0.101241 0.147223 0.942659
162 strogatz_vdp2 KNN 0.999066 0.000899 0.000007 0.998801
Dataset Name Algorithm R2R^{2} Mean \uparrow MAE \downarrow MSE \downarrow Spearman coeff. \uparrow
1 1027_ESL Linear 0.850755 0.40513 0.292207 0.935449
2 1028_SWD Linear 0.378101 0.511349 0.401739 0.620222
3 1029_LEV Linear 0.557796 0.488484 0.399588 0.749403
4 1030_ERA Linear 0.369205 1.243903 2.418982 0.579253
5 1089_USCrime Linear 0.812045 13.428465 265.112604 0.843669
6 1096_FacultySalaries Linear 0.001744 1.531526 10.476934 0.902399
7 1199_BNG_echoMonths Linear 0.439689 9.255462 139.918052 0.614086
8 192_vineyard Linear 0.454057 2.328044 9.162236 0.735941
9 197_cpu_act Linear 0.723461 6.035876 92.707762 0.775688
10 210_cloud Linear 0.822553 0.268041 0.16666 0.917689
11 225_puma8NH Linear 0.372844 3.661451 19.939988 0.657494
12 227_cpu_small Linear 0.711964 6.121275 96.531839 0.766317
13 228_elusage Linear 0.713334 9.274947 152.617535 0.847493
14 229_pwLinear Linear 0.740945 1.75077 4.883573 0.865478
15 294_satellite_image Linear 0.698746 1.017789 1.47091 0.881093
16 4544_GeographicalOriginalofMusic Linear 0.798082 0.33812 0.206275 0.874131
17 503_wind Linear 0.758431 2.523946 10.804286 0.87057
18 505_tecator Linear 0.995984 0.601854 0.810324 0.993431
19 519_vinnie Linear 0.690202 1.309108 2.799677 0.842285
20 522_pm10 Linear 0.141843 0.63939 0.665433 0.391699
21 523_analcatdata_neavote Linear 0.936059 0.646718 0.917932 0.858835
22 529_pollen Linear 0.790313 1.133391 2.047134 0.875056
23 547_no2 Linear 0.490508 0.410635 0.283465 0.719061
24 560_bodyfat Linear 0.976067 0.491859 1.56724 0.990758
25 562_cpu_small Linear 0.711911 6.116167 96.550215 0.766791
26 573_cpu_act Linear 0.723469 6.036166 92.704662 0.775619
27 579_fri_c0_250_5 Linear 0.660825 0.434944 0.311665 0.816355
28 581_fri_c3_500_25 Linear 0.264277 0.720032 0.733977 0.498327
29 582_fri_c1_500_25 Linear 0.257659 0.713191 0.743551 0.50301
30 583_fri_c1_1000_50 Linear 0.281638 0.718036 0.716633 0.519465
31 584_fri_c4_500_25 Linear 0.281899 0.714623 0.713502 0.513447
32 586_fri_c3_1000_25 Linear 0.279202 0.705495 0.718378 0.509394
33 588_fri_c4_1000_100 Linear 0.267338 0.708425 0.738718 0.46675
34 589_fri_c2_1000_25 Linear 0.276266 0.707726 0.712125 0.528804
35 590_fri_c0_1000_50 Linear 0.699727 0.413517 0.290709 0.83999
36 591_fri_c1_100_10 Linear 0.178503 0.785305 0.799211 0.465915
37 592_fri_c4_1000_25 Linear 0.246001 0.727384 0.748549 0.445209
38 593_fri_c1_1000_10 Linear 0.287045 0.712731 0.712397 0.541301
39 594_fri_c2_100_5 Linear 0.041581 0.76735 0.901306 0.366065
40 595_fri_c0_1000_10 Linear 0.704631 0.420814 0.294328 0.837616
41 596_fri_c2_250_5 Linear 0.277518 0.688422 0.685956 0.540818
42 597_fri_c2_500_5 Linear 0.276542 0.70663 0.720696 0.528983
43 598_fri_c0_1000_25 Linear 0.703118 0.4217 0.293105 0.834738
44 599_fri_c2_1000_5 Linear 0.28865 0.712516 0.710183 0.545248
45 601_fri_c1_250_5 Linear 0.289959 0.682671 0.662813 0.530686
46 602_fri_c3_250_10 Linear 0.180244 0.742043 0.779903 0.40493
47 603_fri_c0_250_50 Linear 0.712692 0.407259 0.274058 0.841514
48 604_fri_c4_500_10 Linear 0.248273 0.728724 0.744357 0.480085
49 605_fri_c2_250_25 Linear 0.24698 0.717057 0.736453 0.513876
50 606_fri_c2_1000_10 Linear 0.308385 0.690089 0.680073 0.557761
51 607_fri_c4_1000_50 Linear 0.220702 0.714655 0.758194 0.458222
52 608_fri_c3_1000_10 Linear 0.278023 0.707177 0.706622 0.475936
53 609_fri_c0_1000_5 Linear 0.728649 0.408021 0.276379 0.853735
54 611_fri_c3_100_5 Linear 0.194105 0.703612 0.689233 0.559348
Dataset Name Algorithm R2R^{2} Mean \uparrow MAE \downarrow MSE \downarrow Spearman coeff. \uparrow
55 612_fri_c1_1000_5 Linear 0.229149 0.728327 0.735948 0.470516
56 613_fri_c3_250_5 Linear 0.263946 0.724662 0.746828 0.505514
57 615_fri_c4_250_10 Linear 0.276361 0.708448 0.71733 0.471958
58 616_fri_c4_500_50 Linear 0.205509 0.728739 0.788715 0.453025
59 617_fri_c3_500_5 Linear 0.216635 0.735879 0.76765 0.449461
60 618_fri_c3_1000_50 Linear 0.265698 0.69623 0.7071 0.472572
61 620_fri_c1_1000_25 Linear 0.250131 0.738213 0.757734 0.478474
62 621_fri_c0_100_10 Linear 0.602227 0.44443 0.341376 0.774586
63 622_fri_c2_1000_50 Linear 0.263696 0.715922 0.729433 0.507265
64 623_fri_c4_1000_10 Linear 0.267106 0.710196 0.709202 0.452199
65 624_fri_c0_100_5 Linear 0.603562 0.462771 0.321688 0.771278
66 626_fri_c2_500_50 Linear 0.217673 0.728059 0.777863 0.472951
67 627_fri_c2_500_10 Linear 0.243343 0.694881 0.702719 0.532132
68 628_fri_c3_1000_5 Linear 0.266377 0.7262 0.731738 0.472058
69 631_fri_c1_500_5 Linear 0.241078 0.733383 0.74539 0.469951
70 633_fri_c0_500_25 Linear 0.690121 0.432924 0.302853 0.828156
71 634_fri_c2_100_10 Linear 0.299368 0.636631 0.675419 0.605714
72 635_fri_c0_250_10 Linear 0.603044 0.476327 0.356965 0.774646
73 637_fri_c1_500_50 Linear 0.217729 0.739307 0.775907 0.463339
74 641_fri_c1_500_10 Linear 0.258236 0.729422 0.743619 0.532342
75 643_fri_c2_500_25 Linear 0.147409 0.755978 0.850757 0.386658
76 644_fri_c4_250_25 Linear 0.184237 0.725411 0.784909 0.448349
77 645_fri_c3_500_50 Linear 0.235281 0.69956 0.744604 0.461882
78 646_fri_c3_500_10 Linear 0.311535 0.690855 0.674736 0.474915
79 647_fri_c1_250_10 Linear 0.258723 0.7324 0.721684 0.523531
80 648_fri_c1_250_50 Linear 0.309327 0.717734 0.685753 0.570247
81 649_fri_c0_500_5 Linear 0.722406 0.390243 0.275346 0.846715
82 650_fri_c0_500_50 Linear 0.745277 0.389934 0.252129 0.862324
83 651_fri_c0_100_25 Linear 0.565772 0.554044 0.460616 0.784511
84 653_fri_c0_250_25 Linear 0.700389 0.41904 0.287578 0.822729
85 654_fri_c0_500_10 Linear 0.676016 0.43907 0.31314 0.829225
86 656_fri_c1_100_5 Linear 0.144937 0.704332 0.691867 0.486115
87 657_fri_c2_250_10 Linear 0.19816 0.719233 0.771387 0.515301
88 658_fri_c3_250_25 Linear 0.1306 0.755051 0.86765 0.41002
89 663_rabe_266 Linear 0.968315 6.917994 81.304113 0.98143
90 665_sleuth_case2002 Linear 0.292627 5.592663 59.912708 0.426888
91 666_rmftsa_ladata Linear 0.526431 1.38051 3.611345 0.633792
92 678_visualizing_environmental Linear 0.309626 2.215614 8.264205 0.596919
93 687_sleuth_ex1605 Linear 0.445392 8.476614 106.578743 0.691451
94 690_visualizing_galaxy Linear 0.897886 25.120121 922.100554 0.96885
95 695_chatfield_4 Linear 0.858441 12.031508 291.075407 0.935352
96 712_chscase_geyser1 Linear 0.758773 4.990649 38.312636 0.759
97 feynman_III_12_43 Linear 0.93145 0.159014 0.044833 0.983169
98 feynman_III_15_12 Linear 0.233931 3.736997 20.107373 0.423118
99 feynman_III_15_14 Linear 0.508537 0.007291 0.000148 0.975434
100 feynman_III_15_27 Linear 0.724087 0.910702 1.967749 0.979986
101 feynman_III_17_37 Linear 0.139988 3.57535 21.677414 0.376456
102 feynman_III_7_38 Linear 0.786887 11.464593 275.623411 0.979451
103 feynman_III_8_54 Linear 0.014734 0.314506 0.12296 0.111697
104 feynman_II_10_9 Linear 0.781668 0.07861 0.013397 0.982423
105 feynman_II_11_28 Linear 0.818812 0.093008 0.015337 0.95077
106 feynman_II_13_23 Linear 0.994665 0.057811 0.007887 0.998096
107 feynman_II_13_34 Linear 0.962289 0.299731 0.167243 0.991382
108 feynman_II_15_4 Linear 0.212968 3.567289 21.483525 0.428445
Dataset Name Algorithm R2R^{2} Mean \uparrow MAE \downarrow MSE \downarrow Spearman coeff. \uparrow
109 feynman_II_15_5 Linear 0.210697 3.561805 21.58674 0.430193
110 feynman_II_24_17 Linear 0.970472 0.118832 0.021962 0.997035
111 feynman_II_27_16 Linear 0.802556 29.222483 1581.939504 0.983116
112 feynman_II_27_18 Linear 0.878876 6.927826 79.418532 0.988165
113 feynman_II_34_2 Linear 0.866166 2.617153 12.578403 0.981266
114 feynman_II_34_29a Linear 0.786954 0.072809 0.011172 0.979481
115 feynman_II_34_2a Linear 0.784677 0.146543 0.045263 0.979331
116 feynman_II_37_1 Linear 0.886671 5.839289 62.60404 0.983136
117 feynman_II_38_14 Linear 0.912099 0.048427 0.003988 0.989152
118 feynman_II_3_24 Linear 0.637401 0.02403 0.001155 0.988254
119 feynman_II_4_23 Linear 0.725582 0.01138 0.000309 0.979904
120 feynman_II_8_31 Linear 0.879779 3.471949 19.902419 0.9882
121 feynman_II_8_7 Linear 0.685304 0.032074 0.002524 0.97742
122 feynman_I_10_7 Linear 0.994747 0.057704 0.007724 0.998101
123 feynman_I_12_1 Linear 0.93089 0.999035 1.7756 0.983305
124 feynman_I_12_4 Linear 0.556217 0.011239 0.000322 0.984439
125 feynman_I_12_5 Linear 0.930938 0.998005 1.776479 0.983035
126 feynman_I_14_3 Linear 0.865788 5.214275 50.142761 0.98086
127 feynman_I_14_4 Linear 0.8794 3.437868 19.629161 0.987973
128 feynman_I_15_10 Linear 0.961738 0.301978 0.170416 0.991385
129 feynman_I_16_6 Linear 0.889599 0.286332 0.143153 0.944657
130 feynman_I_18_12 Linear 0.505163 4.022895 27.178362 0.74989
131 feynman_I_25_13 Linear 0.827937 0.242161 0.105885 0.983643
132 feynman_I_26_2 Linear 0.68287 0.215662 0.079607 0.881601
133 feynman_I_27_6 Linear 0.879933 0.089215 0.015361 0.971672
134 feynman_I_29_4 Linear 0.688935 0.514013 0.545926 0.967886
135 feynman_I_30_3 Linear 0.207866 1.646033 5.267315 0.398884
136 feynman_I_30_5 Linear 0.788509 0.03806 0.003043 0.989051
137 feynman_I_34_1 Linear 0.931204 0.309854 0.218704 0.986952
138 feynman_I_34_14 Linear 0.966801 0.202536 0.08714 0.992547
139 feynman_I_34_27 Linear 0.931503 0.158808 0.044902 0.983234
140 feynman_I_37_4 Linear 0.13927 2.24074 7.086374 0.283763
141 feynman_I_39_1 Linear 0.931472 1.499868 3.9914 0.983478
142 feynman_I_39_11 Linear 0.822776 0.899057 1.655431 0.98159
143 feynman_I_43_31 Linear 0.866215 5.246956 50.412573 0.981239
144 feynman_I_47_23 Linear 0.916652 0.14283 0.037889 0.981369
145 feynman_I_48_2 Linear 0.897016 25.196579 1063.490439 0.989542
146 feynman_I_6_2 Linear 0.758179 0.016475 0.00044 0.918804
147 feynman_I_6_2b Linear 0.658535 0.022427 0.001232 0.846275
148 nikuradse_1 Linear 0.638503 0.083324 0.009218 0.910944
149 strogatz_bacres1 Linear 0.988248 0.216058 0.06944 0.856053
150 strogatz_bacres2 Linear 0.984511 0.216704 0.06989 0.993564
151 strogatz_barmag1 Linear 0.834231 0.034753 0.009313 0.944294
152 strogatz_barmag2 Linear 0.04003 0.150235 0.067818 0.335486
153 strogatz_glider1 Linear 0.108586 0.669491 0.542974 0.32942
154 strogatz_glider2 Linear 0.687994 0.359401 0.264734 0.747661
155 strogatz_lv1 Linear -5.097275 0.700792 5.861402 -0.445025
156 strogatz_lv2 Linear 0.11747 0.186607 0.1198 0.602734
157 strogatz_predprey1 Linear 0.329958 1.0811 4.190106 0.719844
158 strogatz_predprey2 Linear 0.898527 0.290779 0.234859 0.968529
159 strogatz_shearflow1 Linear 0.071259 0.251107 0.256582 0.231905
160 strogatz_shearflow2 Linear 0.220299 0.125655 0.041106 0.615767
161 strogatz_vdp1 Linear 0.039449 0.775422 2.897968 0.654878
162 strogatz_vdp2 Linear 0.999999 0.000078 0.0 1
Dataset Name Algorithm R2R^{2} Mean \uparrow MAE \downarrow MSE \downarrow Spearman coeff. \uparrow
1 1027_ESL NeuralNet 0.852823 0.410395 2.893702e-01 0.937654
2 1028_SWD NeuralNet 0.366961 0.506931 4.093295e-01 0.617072
3 1029_LEV NeuralNet 0.545263 0.484831 4.109138e-01 0.742203
4 1030_ERA NeuralNet 0.365520 1.244535 2.433973e+00 0.568572
5 1089_USCrime NeuralNet 0.740107 15.647898 3.739526e+02 0.804915
6 1096_FacultySalaries NeuralNet 0.784680 1.450788 3.476780e+00 0.883562
7 1199_BNG_echoMonths NeuralNet 0.442570 9.068394 1.392056e+02 0.631720
8 192_vineyard NeuralNet 0.600099 1.991144 6.537614e+00 0.726718
9 197_cpu_act NeuralNet 0.975503 2.025710 8.246882e+00 0.954770
10 210_cloud NeuralNet 0.747172 0.329699 2.759520e-01 0.888264
11 225_puma8NH NeuralNet 0.662979 2.507061 1.071329e+01 0.810947
12 227_cpu_small NeuralNet 0.968858 2.311537 1.036657e+01 0.938835
13 228_elusage NeuralNet 0.784584 8.330419 1.142678e+02 0.810997
14 229_pwLinear NeuralNet 0.798872 1.529199 3.789153e+00 0.898095
15 294_satellite_image NeuralNet 0.902530 0.374750 4.760028e-01 0.951210
16 4544_GeographicalOriginalofMusic NeuralNet 0.690027 0.408876 3.214000e-01 0.827174
17 503_wind NeuralNet 0.795892 2.320634 9.126839e+00 0.892835
18 505_tecator NeuralNet 0.918205 2.942551 1.807219e+01 0.945851
19 519_vinnie NeuralNet 0.734397 1.232201 2.396868e+00 0.854593
20 522_pm10 NeuralNet 0.235241 0.599024 5.889134e-01 0.514193
21 523_analcatdata_neavote NeuralNet 0.914215 0.796473 1.220032e+00 0.850378
22 529_pollen NeuralNet 0.783172 1.153324 2.117322e+00 0.874001
23 547_no2 NeuralNet 0.542080 0.399243 2.557379e-01 0.730360
24 560_bodyfat NeuralNet 0.961306 1.117585 2.658125e+00 0.981898
25 562_cpu_small NeuralNet 0.969328 2.303671 1.022009e+01 0.938424
26 573_cpu_act NeuralNet 0.976396 1.977254 7.861949e+00 0.954865
27 579_fri_c0_250_5 NeuralNet 0.858902 0.284880 1.311714e-01 0.925673
28 581_fri_c3_500_25 NeuralNet 0.215711 0.702565 7.842227e-01 0.490247
29 582_fri_c1_500_25 NeuralNet 0.140094 0.735744 8.611706e-01 0.469505
30 583_fri_c1_1000_50 NeuralNet 0.129949 0.748683 8.678001e-01 0.435474
31 584_fri_c4_500_25 NeuralNet 0.260464 0.672682 7.394183e-01 0.519414
32 586_fri_c3_1000_25 NeuralNet 0.594551 0.468416 4.028868e-01 0.764326
33 588_fri_c4_1000_100 NeuralNet 0.151236 0.740214 8.556538e-01 0.374383
34 589_fri_c2_1000_25 NeuralNet 0.492925 0.539173 4.984187e-01 0.707398
35 590_fri_c0_1000_50 NeuralNet 0.649386 0.456280 3.401131e-01 0.805546
36 591_fri_c1_100_10 NeuralNet -0.020986 0.782549 1.005607e+00 0.401704
37 592_fri_c4_1000_25 NeuralNet 0.562524 0.494321 4.340235e-01 0.742200
38 593_fri_c1_1000_10 NeuralNet 0.873999 0.257171 1.261005e-01 0.930841
39 594_fri_c2_100_5 NeuralNet 0.383327 0.569770 6.085111e-01 0.667519
40 595_fri_c0_1000_10 NeuralNet 0.906380 0.243312 9.331033e-02 0.953951
41 596_fri_c2_250_5 NeuralNet 0.646729 0.427951 3.347499e-01 0.817476
42 597_fri_c2_500_5 NeuralNet 0.863733 0.274547 1.379375e-01 0.928026
43 598_fri_c0_1000_25 NeuralNet 0.819596 0.335204 1.778779e-01 0.904785
44 599_fri_c2_1000_5 NeuralNet 0.921722 0.205985 7.961486e-02 0.956788
45 601_fri_c1_250_5 NeuralNet 0.697394 0.390633 2.808596e-01 0.854169
46 602_fri_c3_250_10 NeuralNet 0.471516 0.542086 5.032179e-01 0.667044
47 603_fri_c0_250_50 NeuralNet 0.548627 0.519214 4.271940e-01 0.751120
48 604_fri_c4_500_10 NeuralNet 0.774700 0.342309 2.168632e-01 0.871671
49 605_fri_c2_250_25 NeuralNet 0.243484 0.693581 7.410648e-01 0.488701
50 606_fri_c2_1000_10 NeuralNet 0.875064 0.259213 1.219226e-01 0.934479
51 607_fri_c4_1000_50 NeuralNet 0.103459 0.743767 8.717138e-01 0.393737
52 608_fri_c3_1000_10 NeuralNet 0.892355 0.234260 1.056955e-01 0.941152
53 609_fri_c0_1000_5 NeuralNet 0.936046 0.201667 6.523782e-02 0.968197
54 611_fri_c3_100_5 NeuralNet 0.578785 0.474465 3.541383e-01 0.744211
Dataset Name Algorithm R2R^{2} Mean \uparrow MAE \downarrow MSE \downarrow Spearman coeff. \uparrow
55 612_fri_c1_1000_5 NeuralNet 0.901813 0.232382 9.276487e-02 0.951857
56 613_fri_c3_250_5 NeuralNet 0.687361 0.412556 3.149878e-01 0.831824
57 615_fri_c4_250_10 NeuralNet 0.497194 0.537168 4.991084e-01 0.693061
58 616_fri_c4_500_50 NeuralNet 0.091603 0.764015 9.019947e-01 0.375784
59 617_fri_c3_500_5 NeuralNet 0.769612 0.338511 2.308483e-01 0.885101
60 618_fri_c3_1000_50 NeuralNet 0.198645 0.696363 7.710063e-01 0.445806
61 620_fri_c1_1000_25 NeuralNet 0.242152 0.686101 7.655733e-01 0.523801
62 621_fri_c0_100_10 NeuralNet 0.564102 0.461186 3.743486e-01 0.780952
63 622_fri_c2_1000_50 NeuralNet 0.152152 0.733028 8.396476e-01 0.436914
64 623_fri_c4_1000_10 NeuralNet 0.840967 0.283853 1.582716e-01 0.912371
65 624_fri_c0_100_5 NeuralNet 0.786115 0.338335 1.760822e-01 0.881955
66 626_fri_c2_500_50 NeuralNet 0.071821 0.768397 9.230840e-01 0.395946
67 627_fri_c2_500_10 NeuralNet 0.638732 0.419177 3.381697e-01 0.810315
68 628_fri_c3_1000_5 NeuralNet 0.905089 0.227557 9.340655e-02 0.949961
69 631_fri_c1_500_5 NeuralNet 0.771559 0.351438 2.325012e-01 0.886770
70 633_fri_c0_500_25 NeuralNet 0.690277 0.429273 3.037191e-01 0.832301
71 634_fri_c2_100_10 NeuralNet 0.329548 0.613479 6.359580e-01 0.580100
72 635_fri_c0_250_10 NeuralNet 0.781054 0.349538 1.974406e-01 0.881223
73 637_fri_c1_500_50 NeuralNet 0.050588 0.788616 9.418987e-01 0.358172
74 641_fri_c1_500_10 NeuralNet 0.734171 0.380561 2.662472e-01 0.863063
75 643_fri_c2_500_25 NeuralNet -0.047030 0.803269 1.042054e+00 0.334503
76 644_fri_c4_250_25 NeuralNet -0.098817 0.811740 1.055398e+00 0.307765
77 645_fri_c3_500_50 NeuralNet 0.119247 0.736821 8.586971e-01 0.380650
78 646_fri_c3_500_10 NeuralNet 0.750305 0.363450 2.430099e-01 0.846999
79 647_fri_c1_250_10 NeuralNet 0.306954 0.633942 6.688702e-01 0.557775
80 648_fri_c1_250_50 NeuralNet 0.211333 0.728166 7.866983e-01 0.493093
81 649_fri_c0_500_5 NeuralNet 0.911711 0.232881 8.730737e-02 0.956813
82 650_fri_c0_500_50 NeuralNet 0.664720 0.451717 3.326932e-01 0.818101
83 651_fri_c0_100_25 NeuralNet 0.547258 0.555754 4.817018e-01 0.733383
84 653_fri_c0_250_25 NeuralNet 0.620513 0.473479 3.620537e-01 0.789404
85 654_fri_c0_500_10 NeuralNet 0.858299 0.296183 1.380846e-01 0.931270
86 656_fri_c1_100_5 NeuralNet 0.426208 0.526906 4.847716e-01 0.728221
87 657_fri_c2_250_10 NeuralNet 0.379947 0.587696 5.957274e-01 0.641508
88 658_fri_c3_250_25 NeuralNet 0.039462 0.762112 9.574166e-01 0.388744
89 663_rabe_266 NeuralNet 0.975598 5.949144 6.214602e+01 0.991636
90 665_sleuth_case2002 NeuralNet 0.137285 6.182009 7.395436e+01 0.352857
91 666_rmftsa_ladata NeuralNet 0.600076 1.276154 2.988638e+00 0.613317
92 678_visualizing_environmental NeuralNet 0.300701 2.304259 8.481555e+00 0.545703
93 687_sleuth_ex1605 NeuralNet 0.499403 7.711171 9.685532e+01 0.719613
94 690_visualizing_galaxy NeuralNet 0.949464 16.315438 4.578051e+02 0.976084
95 695_chatfield_4 NeuralNet 0.823126 13.605473 3.618121e+02 0.924415
96 712_chscase_geyser1 NeuralNet 0.758728 4.979575 3.836666e+01 0.746288
97 feynman_III_12_43 NeuralNet 0.999754 0.009627 1.609622e-04 0.999973
98 feynman_III_15_12 NeuralNet 0.994964 0.257667 1.323041e-01 0.996570
99 feynman_III_15_14 NeuralNet 0.997831 0.000405 6.528335e-07 0.999321
100 feynman_III_15_27 NeuralNet 0.998860 0.058674 8.163461e-03 0.999868
101 feynman_III_17_37 NeuralNet 0.998990 0.113484 2.548044e-02 0.999682
102 feynman_III_7_38 NeuralNet 0.999198 0.659432 1.038934e+00 0.999906
103 feynman_III_8_54 NeuralNet 0.973600 0.027549 3.294157e-03 0.985185
104 feynman_II_10_9 NeuralNet 0.999302 0.004321 4.284257e-05 0.999918
105 feynman_II_11_28 NeuralNet 0.999608 0.004045 3.319564e-05 0.999887
106 feynman_II_13_23 NeuralNet 0.999734 0.015028 3.925164e-04 0.999982
107 feynman_II_13_34 NeuralNet 0.999698 0.026780 1.341865e-03 0.999974
108 feynman_II_15_4 NeuralNet 0.999088 0.115679 2.489679e-02 0.999704
Dataset Name Algorithm R2R^{2} Mean \uparrow MAE \downarrow MSE \downarrow Spearman coeff. \uparrow
109 feynman_II_15_5 NeuralNet 0.999063 0.117654 2.562177e-02 0.999707
110 feynman_II_24_17 NeuralNet 0.999730 0.010473 2.008074e-04 0.999984
111 feynman_II_27_16 NeuralNet 0.999488 1.392176 4.111538e+00 0.999896
112 feynman_II_27_18 NeuralNet 0.999613 0.360378 2.543454e-01 0.999967
113 feynman_II_34_2 NeuralNet 0.999546 0.147771 4.276658e-02 0.999939
114 feynman_II_34_29a NeuralNet 0.999319 0.003836 3.560954e-05 0.999918
115 feynman_II_34_2a NeuralNet 0.999368 0.008007 1.326014e-04 0.999930
116 feynman_II_37_1 NeuralNet 0.999598 0.338736 2.221163e-01 0.999941
117 feynman_II_38_14 NeuralNet 0.999705 0.002604 1.338456e-05 0.999974
118 feynman_II_3_24 NeuralNet 0.999165 0.000894 2.658922e-06 0.999905
119 feynman_II_4_23 NeuralNet 0.998947 0.000658 1.181480e-06 0.999882
120 feynman_II_8_31 NeuralNet 0.999722 0.165760 4.603600e-02 0.999971
121 feynman_II_8_7 NeuralNet 0.998873 0.001809 9.074480e-06 0.999819
122 feynman_I_10_7 NeuralNet 0.999815 0.012788 2.725433e-04 0.999984
123 feynman_I_12_1 NeuralNet 0.999730 0.060529 6.957336e-03 0.999961
124 feynman_I_12_4 NeuralNet 0.998552 0.000566 1.052145e-06 0.999400
125 feynman_I_12_5 NeuralNet 0.999754 0.059734 6.328985e-03 0.999961
126 feynman_I_14_3 NeuralNet 0.999627 0.270023 1.399226e-01 0.999927
127 feynman_I_14_4 NeuralNet 0.999756 0.148655 3.972920e-02 0.999971
128 feynman_I_15_10 NeuralNet 0.999703 0.027272 1.321566e-03 0.999974
129 feynman_I_16_6 NeuralNet 0.999708 0.015255 3.794285e-04 0.999960
130 feynman_I_18_12 NeuralNet 0.999239 0.151583 4.176557e-02 0.999755
131 feynman_I_25_13 NeuralNet 0.999491 0.011609 3.132732e-04 0.999956
132 feynman_I_26_2 NeuralNet 0.999546 0.007840 1.140345e-04 0.999932
133 feynman_I_27_6 NeuralNet 0.999589 0.005413 5.256776e-05 0.999935
134 feynman_I_29_4 NeuralNet 0.999101 0.024454 1.573681e-03 0.999931
135 feynman_I_30_3 NeuralNet 0.995185 0.119984 3.204372e-02 0.995882
136 feynman_I_30_5 NeuralNet 0.999058 0.002344 1.356262e-05 0.999919
137 feynman_I_34_1 NeuralNet 0.999599 0.025631 1.276745e-03 0.999964
138 feynman_I_34_14 NeuralNet 0.999574 0.025699 1.120748e-03 0.999979
139 feynman_I_34_27 NeuralNet 0.999768 0.009631 1.522168e-04 0.999972
140 feynman_I_37_4 NeuralNet 0.999066 0.065067 7.688136e-03 0.999745
141 feynman_I_39_1 NeuralNet 0.999704 0.099840 1.730699e-02 0.999972
142 feynman_I_39_11 NeuralNet 0.999561 0.045397 4.087927e-03 0.999941
143 feynman_I_43_31 NeuralNet 0.999625 0.277835 1.415122e-01 0.999930
144 feynman_I_47_23 NeuralNet 0.999516 0.010906 2.208181e-04 0.999953
145 feynman_I_48_2 NeuralNet 0.999736 1.187750 2.731035e+00 0.999964
146 feynman_I_6_2 NeuralNet 0.999627 0.000603 6.789286e-07 0.999945
147 feynman_I_6_2b NeuralNet 0.999403 0.001030 2.152602e-06 0.999781
148 nikuradse_1 NeuralNet 0.917551 0.035698 2.117774e-03 0.975503
149 strogatz_bacres1 NeuralNet 0.969642 0.252176 1.666494e-01 0.913027
150 strogatz_bacres2 NeuralNet 0.974906 0.241574 1.112301e-01 0.993503
151 strogatz_barmag1 NeuralNet 0.902097 0.036250 5.435290e-03 0.940557
152 strogatz_barmag2 NeuralNet 0.680461 0.084798 1.988241e-02 0.643502
153 strogatz_glider1 NeuralNet 0.118384 0.662337 5.375853e-01 0.306711
154 strogatz_glider2 NeuralNet 0.797370 0.283208 1.690502e-01 0.765416
155 strogatz_lv1 NeuralNet 0.439642 0.570618 5.150794e+00 0.163208
156 strogatz_lv2 NeuralNet 0.607377 0.160983 2.700868e-01 0.694346
157 strogatz_predprey1 NeuralNet 0.804045 0.589049 1.026594e+00 0.908491
158 strogatz_predprey2 NeuralNet 0.948876 0.243723 1.185541e-01 0.983712
159 strogatz_shearflow1 NeuralNet 0.467181 0.211420 1.315940e-01 0.444693
160 strogatz_shearflow2 NeuralNet 0.462558 0.111373 2.764929e-02 0.729255
161 strogatz_vdp1 NeuralNet 0.752528 0.523250 7.033177e-01 0.675935
162 strogatz_vdp2 NeuralNet 0.980716 0.008563 1.598424e-04 0.992766
Dataset Name Algorithm R2R^{2} Mean \uparrow MAE \downarrow MSE \downarrow Spearman coeff. \uparrow
1 1027_ESL RF 0.828191 0.401064 0.337169 0.926962
2 1028_SWD RF 0.351163 0.509689 0.419149 0.603557
3 1029_LEV RF 0.513733 0.494058 0.439321 0.721755
4 1030_ERA RF 0.344498 1.263994 2.511468 0.551032
5 1089_USCrime RF 0.787284 14.124231 307.610681 0.825673
6 1096_FacultySalaries RF 0.646406 1.674051 5.056379 0.86207
7 1199_BNG_echoMonths RF 0.466759 8.845958 133.148714 0.658935
8 192_vineyard RF 0.436878 2.431581 9.063079 0.677302
9 197_cpu_act RF 0.98191 1.698497 5.986437 0.960177
10 210_cloud RF 0.749484 0.309371 0.26005 0.909837
11 225_puma8NH RF 0.665886 2.50206 10.62004 0.810112
12 227_cpu_small RF 0.975433 1.976695 8.121429 0.947948
13 228_elusage RF 0.738112 8.737147 144.746379 0.792774
14 229_pwLinear RF 0.836583 1.346275 3.055031 0.913973
15 294_satellite_image RF 0.901088 0.356574 0.482946 0.948016
16 4544_GeographicalOriginalofMusic RF 0.709701 0.391354 0.299695 0.832358
17 503_wind RF 0.782594 2.380768 9.724192 0.886184
18 505_tecator RF 0.988714 1.058452 2.278102 0.985042
19 519_vinnie RF 0.65268 1.386581 3.146539 0.819722
20 522_pm10 RF 0.38052 0.536843 0.476258 0.635714
21 523_analcatdata_neavote RF 0.946035 0.584734 0.773968 0.859502
22 529_pollen RF 0.753629 1.222244 2.407963 0.859562
23 547_no2 RF 0.590758 0.372885 0.227522 0.737098
24 560_bodyfat RF 0.967986 0.437872 2.131262 0.989025
25 562_cpu_small RF 0.975361 1.978607 8.143903 0.947786
26 573_cpu_act RF 0.98196 1.698095 5.969805 0.960181
27 579_fri_c0_250_5 RF 0.747678 0.384239 0.233941 0.870979
28 581_fri_c3_500_25 RF 0.864109 0.289336 0.135995 0.926033
29 582_fri_c1_500_25 RF 0.825411 0.323105 0.174802 0.910122
30 583_fri_c1_1000_50 RF 0.862768 0.284879 0.136845 0.926156
31 584_fri_c4_500_25 RF 0.846209 0.302163 0.152214 0.909411
32 586_fri_c3_1000_25 RF 0.892224 0.251459 0.107145 0.940938
33 588_fri_c4_1000_100 RF 0.876883 0.274382 0.124012 0.923148
34 589_fri_c2_1000_25 RF 0.875381 0.274231 0.122588 0.932206
35 590_fri_c0_1000_50 RF 0.770152 0.376476 0.22257 0.879496
36 591_fri_c1_100_10 RF 0.688072 0.424705 0.307654 0.831629
37 592_fri_c4_1000_25 RF 0.886852 0.258927 0.111977 0.934837
38 593_fri_c1_1000_10 RF 0.904628 0.242149 0.095112 0.944207
39 594_fri_c2_100_5 RF 0.653107 0.431547 0.323924 0.785614
40 595_fri_c0_1000_10 RF 0.825544 0.328153 0.173882 0.910602
41 596_fri_c2_250_5 RF 0.835352 0.310415 0.156812 0.902047
42 597_fri_c2_500_5 RF 0.894523 0.249443 0.104584 0.93249
43 598_fri_c0_1000_25 RF 0.810615 0.343871 0.187126 0.90705
44 599_fri_c2_1000_5 RF 0.92493 0.208877 0.074809 0.951968
45 601_fri_c1_250_5 RF 0.855096 0.2867 0.135888 0.916325
46 602_fri_c3_250_10 RF 0.795581 0.329389 0.19609 0.901573
47 603_fri_c0_250_50 RF 0.659874 0.449403 0.323374 0.833863
48 604_fri_c4_500_10 RF 0.882066 0.260423 0.116341 0.930626
49 605_fri_c2_250_25 RF 0.725294 0.403836 0.266039 0.850122
50 606_fri_c2_1000_10 RF 0.900382 0.244165 0.097612 0.942411
51 607_fri_c4_1000_50 RF 0.880011 0.263028 0.116614 0.931114
52 608_fri_c3_1000_10 RF 0.903813 0.233693 0.093653 0.946613
53 609_fri_c0_1000_5 RF 0.868003 0.290612 0.134467 0.933037
54 611_fri_c3_100_5 RF 0.714641 0.402382 0.24842 0.841404
Dataset Name Algorithm R2R^{2} Mean \uparrow MAE \downarrow MSE \downarrow Spearman coeff. \uparrow
55 612_fri_c1_1000_5 RF 0.922967 0.208122 0.073467 0.958037
56 613_fri_c3_250_5 RF 0.849498 0.301571 0.152947 0.906948
57 615_fri_c4_250_10 RF 0.76537 0.36884 0.235968 0.871497
58 616_fri_c4_500_50 RF 0.835236 0.309777 0.16219 0.90138
59 617_fri_c3_500_5 RF 0.879998 0.255318 0.117882 0.933057
60 618_fri_c3_1000_50 RF 0.883478 0.264537 0.112224 0.923763
61 620_fri_c1_1000_25 RF 0.874473 0.282563 0.126939 0.931109
62 621_fri_c0_100_10 RF 0.569101 0.473485 0.378732 0.776792
63 622_fri_c2_1000_50 RF 0.874072 0.278149 0.124303 0.922776
64 623_fri_c4_1000_10 RF 0.897811 0.237144 0.098251 0.936852
65 624_fri_c0_100_5 RF 0.704611 0.393722 0.245705 0.847368
66 626_fri_c2_500_50 RF 0.823008 0.321812 0.175854 0.903049
67 627_fri_c2_500_10 RF 0.872773 0.259418 0.117884 0.925824
68 628_fri_c3_1000_5 RF 0.923906 0.212655 0.075839 0.955071
69 631_fri_c1_500_5 RF 0.866227 0.275814 0.131199 0.92734
70 633_fri_c0_500_25 RF 0.765071 0.386825 0.229933 0.875553
71 634_fri_c2_100_10 RF 0.638825 0.458935 0.335267 0.770125
72 635_fri_c0_250_10 RF 0.703241 0.413184 0.266993 0.838454
73 637_fri_c1_500_50 RF 0.797855 0.345077 0.19983 0.890665
74 641_fri_c1_500_10 RF 0.885827 0.265389 0.114417 0.939647
75 643_fri_c2_500_25 RF 0.828081 0.3241 0.170461 0.895178
76 644_fri_c4_250_25 RF 0.729438 0.386083 0.26263 0.869125
77 645_fri_c3_500_50 RF 0.828978 0.314482 0.165812 0.892874
78 646_fri_c3_500_10 RF 0.880021 0.266839 0.116977 0.926986
79 647_fri_c1_250_10 RF 0.811044 0.331034 0.185019 0.881623
80 648_fri_c1_250_50 RF 0.751043 0.383354 0.247733 0.861605
81 649_fri_c0_500_5 RF 0.82724 0.317792 0.171945 0.911659
82 650_fri_c0_500_50 RF 0.739479 0.404096 0.257992 0.870969
83 651_fri_c0_100_25 RF 0.474601 0.620371 0.56962 0.741504
84 653_fri_c0_250_25 RF 0.691073 0.435891 0.297447 0.840384
85 654_fri_c0_500_10 RF 0.787069 0.355176 0.207396 0.892637
86 656_fri_c1_100_5 RF 0.622067 0.420105 0.29974 0.826065
87 657_fri_c2_250_10 RF 0.841526 0.296253 0.150434 0.88202
88 658_fri_c3_250_25 RF 0.716241 0.411146 0.28833 0.851425
89 663_rabe_266 RF 0.988249 3.699082 29.70961 0.990613
90 665_sleuth_case2002 RF 0.21152 5.729268 66.67892 0.393441
91 666_rmftsa_ladata RF 0.534759 1.339757 3.505726 0.620323
92 678_visualizing_environmental RF 0.167423 2.409752 9.850855 0.519201
93 687_sleuth_ex1605 RF 0.478443 7.47383 97.048396 0.713633
94 690_visualizing_galaxy RF 0.972833 10.963723 244.234181 0.980709
95 695_chatfield_4 RF 0.822858 13.143151 367.921677 0.928416
96 712_chscase_geyser1 RF 0.681945 5.679489 50.057784 0.715691
97 feynman_III_12_43 RF 0.999994 0.001455 0.000004 0.999997
98 feynman_III_15_12 RF 0.996401 0.218054 0.094469 0.997972
99 feynman_III_15_14 RF 0.998693 0.000186 0.0 0.999891
100 feynman_III_15_27 RF 0.999309 0.032186 0.004928 0.999866
101 feynman_III_17_37 RF 0.99973 0.056548 0.006815 0.999917
102 feynman_III_7_38 RF 0.999573 0.409599 0.552861 0.999868
103 feynman_III_8_54 RF 0.965408 0.039261 0.004317 0.97834
104 feynman_II_10_9 RF 0.999448 0.002955 0.000034 0.999874
105 feynman_II_11_28 RF 0.999992 0.000481 0.000001 0.999997
106 feynman_II_13_23 RF 0.999951 0.004556 0.000073 0.99998
107 feynman_II_13_34 RF 0.999861 0.015029 0.000616 0.999954
108 feynman_II_15_4 RF 0.999696 0.062073 0.008304 0.999894
Dataset Name Algorithm R2R^{2} Mean \uparrow MAE \downarrow MSE \downarrow Spearman coeff. \uparrow
109 feynman_II_15_5 RF 0.999697 0.062022 0.00828 0.999894
110 feynman_II_24_17 RF 0.999885 0.006752 0.000086 0.999944
111 feynman_II_27_16 RF 0.99971 0.891547 2.322599 0.999906
112 feynman_II_27_18 RF 0.999992 0.044954 0.005057 0.999997
113 feynman_II_34_2 RF 0.999737 0.104984 0.024754 0.999887
114 feynman_II_34_29a RF 0.999531 0.002667 0.000025 0.999868
115 feynman_II_34_2a RF 0.999604 0.005112 0.000083 0.999869
116 feynman_II_37_1 RF 0.999754 0.250366 0.135856 0.999893
117 feynman_II_38_14 RF 0.999991 0.000411 0.0 0.999996
118 feynman_II_3_24 RF 0.999981 0.000101 0.0 0.999997
119 feynman_II_4_23 RF 0.999287 0.000406 0.000001 0.999869
120 feynman_II_8_31 RF 0.999993 0.02147 0.001142 0.999997
121 feynman_II_8_7 RF 0.999148 0.001033 0.000007 0.999891
122 feynman_I_10_7 RF 0.99995 0.00454 0.000073 0.999981
123 feynman_I_12_1 RF 0.999994 0.009182 0.000162 0.999997
124 feynman_I_12_4 RF 0.999006 0.000286 0.000001 0.999896
125 feynman_I_12_5 RF 0.999994 0.009267 0.000166 0.999997
126 feynman_I_14_3 RF 0.999739 0.209379 0.097592 0.999884
127 feynman_I_14_4 RF 0.999993 0.02161 0.001161 0.999997
128 feynman_I_15_10 RF 0.999872 0.01471 0.000571 0.999957
129 feynman_I_16_6 RF 0.999897 0.007634 0.000133 0.999946
130 feynman_I_18_12 RF 0.9998 0.073355 0.010974 0.999927
131 feynman_I_25_13 RF 0.999987 0.001564 0.000008 0.999996
132 feynman_I_26_2 RF 0.999993 0.00082 0.000002 0.999998
133 feynman_I_27_6 RF 0.999747 0.003801 0.000032 0.999894
134 feynman_I_29_4 RF 0.999979 0.00267 0.000038 0.999995
135 feynman_I_30_3 RF 0.997875 0.07419 0.014129 0.998623
136 feynman_I_30_5 RF 0.999473 0.001381 0.000008 0.999891
137 feynman_I_34_1 RF 0.999739 0.015217 0.000829 0.999932
138 feynman_I_34_14 RF 0.999841 0.012027 0.000418 0.99995
139 feynman_I_34_27 RF 0.999993 0.001505 0.000004 0.999997
140 feynman_I_37_4 RF 0.999741 0.030484 0.002131 0.999903
141 feynman_I_39_1 RF 0.999993 0.014017 0.000382 0.999997
142 feynman_I_39_11 RF 0.999621 0.034505 0.003542 0.999879
143 feynman_I_43_31 RF 0.999744 0.209035 0.096614 0.999887
144 feynman_I_47_23 RF 0.999705 0.007894 0.000134 0.999871
145 feynman_I_48_2 RF 0.999949 0.5204 0.529267 0.999975
146 feynman_I_6_2 RF 0.99999 0.000082 0.0 0.999996
147 feynman_I_6_2b RF 0.999608 0.000729 0.000001 0.999819
148 nikuradse_1 RF 0.998261 0.004636 0.000043 0.990062
149 strogatz_bacres1 RF 0.99768 0.051648 0.014431 0.971473
150 strogatz_bacres2 RF 0.993031 0.050096 0.031067 0.99526
151 strogatz_barmag1 RF 0.959565 0.01236 0.00262 0.995512
152 strogatz_barmag2 RF 0.990584 0.009236 0.000698 0.991259
153 strogatz_glider1 RF 0.971766 0.088604 0.017235 0.986356
154 strogatz_glider2 RF 0.950929 0.114753 0.043182 0.969765
155 strogatz_lv1 RF 0.600604 0.217083 8.024616 0.993335
156 strogatz_lv2 RF 0.596278 0.089651 0.526566 0.971766
157 strogatz_predprey1 RF 0.926847 0.148677 0.806437 0.989732
158 strogatz_predprey2 RF 0.984844 0.08214 0.036595 0.993528
159 strogatz_shearflow1 RF 0.954483 0.026438 0.012076 0.992629
160 strogatz_shearflow2 RF 0.978411 0.010467 0.00115 0.995866
161 strogatz_vdp1 RF 0.877137 0.162954 0.317669 0.937715
162 strogatz_vdp2 RF 0.999721 0.000652 0.000002 0.999759
Dataset Name Algorithm R2R^{2} Mean \uparrow MAE \downarrow MSE \downarrow Spearman coeff. \uparrow
1 1027_ESL LGBM 0.844445 0.413833 0.305865 0.931222
2 1028_SWD LGBM 0.359984 0.506554 0.413474 0.609287
3 1029_LEV LGBM 0.524891 0.490583 0.429172 0.728595
4 1030_ERA LGBM 0.346505 1.262428 2.504109 0.552466
5 1089_USCrime LGBM -0.160501 36.23973 1727.36776 NaN
6 1096_FacultySalaries LGBM -0.103898 3.356827 20.915339 0.760385
7 1199_BNG_echoMonths LGBM 0.476546 8.791663 130.713328 0.666369
8 192_vineyard LGBM -0.063398 3.319048 19.168705 0.715896
9 197_cpu_act LGBM 0.98535 1.555198 4.839184 0.966604
10 210_cloud LGBM 0.607391 0.401731 0.409442 0.873838
11 225_puma8NH LGBM 0.667638 2.499582 10.564509 0.810515
12 227_cpu_small LGBM 0.979111 1.856602 6.902363 0.954275
13 228_elusage LGBM 0.536545 10.575459 245.965478 0.658258
14 229_pwLinear LGBM 0.849223 1.3139 2.845389 0.923151
15 294_satellite_image LGBM 0.901703 0.366712 0.479844 0.947657
16 4544_GeographicalOriginalofMusic LGBM 0.725209 0.382052 0.281681 0.84111
17 503_wind LGBM 0.794789 2.322967 9.178021 0.891768
18 505_tecator LGBM 0.980731 1.27209 4.103341 0.987641
19 519_vinnie LGBM 0.703883 1.31389 2.669673 0.839341
20 522_pm10 LGBM 0.452875 0.509969 0.419688 0.684123
21 523_analcatdata_neavote LGBM 0.913691 0.620019 1.24188 0.870881
22 529_pollen LGBM 0.7574 1.215903 2.369972 0.862246
23 547_no2 LGBM 0.589485 0.373971 0.228427 0.753452
24 560_bodyfat LGBM 0.95801 0.896907 2.929498 0.988279
25 562_cpu_small LGBM 0.979111 1.856602 6.902363 0.954275
26 573_cpu_act LGBM 0.98535 1.555198 4.839184 0.966604
27 579_fri_c0_250_5 LGBM 0.817921 0.310909 0.168316 0.899617
28 581_fri_c3_500_25 LGBM 0.895226 0.245636 0.104176 0.93901
29 582_fri_c1_500_25 LGBM 0.889654 0.254534 0.110448 0.941618
30 583_fri_c1_1000_50 LGBM 0.919194 0.21828 0.080416 0.956086
31 584_fri_c4_500_25 LGBM 0.879668 0.256692 0.118972 0.929843
32 586_fri_c3_1000_25 LGBM 0.929915 0.200981 0.069801 0.959121
33 588_fri_c4_1000_100 LGBM 0.911337 0.223146 0.089196 0.945709
34 589_fri_c2_1000_25 LGBM 0.918465 0.219992 0.080058 0.956587
35 590_fri_c0_1000_50 LGBM 0.874126 0.277299 0.121789 0.932544
36 591_fri_c1_100_10 LGBM 0.472097 0.570042 0.512804 0.684612
37 592_fri_c4_1000_25 LGBM 0.917119 0.215887 0.081934 0.951337
38 593_fri_c1_1000_10 LGBM 0.937294 0.190624 0.062492 0.962283
39 594_fri_c2_100_5 LGBM 0.486797 0.518448 0.468199 0.732305
40 595_fri_c0_1000_10 LGBM 0.893363 0.255197 0.106264 0.943872
41 596_fri_c2_250_5 LGBM 0.849539 0.284548 0.142847 0.908598
42 597_fri_c2_500_5 LGBM 0.925056 0.207562 0.074506 0.948969
43 598_fri_c0_1000_25 LGBM 0.899637 0.24992 0.099142 0.9502
44 599_fri_c2_1000_5 LGBM 0.943596 0.179893 0.056196 0.962465
45 601_fri_c1_250_5 LGBM 0.885572 0.246478 0.106492 0.933273
46 602_fri_c3_250_10 LGBM 0.796471 0.306398 0.194118 0.908101
47 603_fri_c0_250_50 LGBM 0.805041 0.338462 0.185065 0.903421
48 604_fri_c4_500_10 LGBM 0.911491 0.224825 0.087365 0.943372
49 605_fri_c2_250_25 LGBM 0.801806 0.329571 0.193584 0.889578
50 606_fri_c2_1000_10 LGBM 0.933535 0.196463 0.0653 0.959411
51 607_fri_c4_1000_50 LGBM 0.915084 0.213321 0.082569 0.950092
52 608_fri_c3_1000_10 LGBM 0.923461 0.201144 0.074706 0.958283
53 609_fri_c0_1000_5 LGBM 0.919816 0.225162 0.081722 0.957937
54 611_fri_c3_100_5 LGBM 0.608191 0.465827 0.340244 0.739156
Dataset Name Algorithm R2R^{2} Mean \uparrow MAE \downarrow MSE \downarrow Spearman coeff. \uparrow
55 612_fri_c1_1000_5 LGBM 0.943877 0.178135 0.053381 0.969261
56 613_fri_c3_250_5 LGBM 0.854812 0.281067 0.147232 0.91031
57 615_fri_c4_250_10 LGBM 0.815332 0.309522 0.188706 0.895958
58 616_fri_c4_500_50 LGBM 0.856199 0.277982 0.140655 0.908752
59 617_fri_c3_500_5 LGBM 0.895849 0.225265 0.102203 0.944819
60 618_fri_c3_1000_50 LGBM 0.915046 0.217885 0.081729 0.942882
61 620_fri_c1_1000_25 LGBM 0.928287 0.209569 0.072189 0.959867
62 621_fri_c0_100_10 LGBM 0.725334 0.374063 0.235699 0.849173
63 622_fri_c2_1000_50 LGBM 0.915263 0.222149 0.08352 0.946356
64 623_fri_c4_1000_10 LGBM 0.9176 0.206872 0.079421 0.946893
65 624_fri_c0_100_5 LGBM 0.663385 0.414732 0.279963 0.807866
66 626_fri_c2_500_50 LGBM 0.881852 0.262801 0.116937 0.927061
67 627_fri_c2_500_10 LGBM 0.895066 0.229627 0.097222 0.937239
68 628_fri_c3_1000_5 LGBM 0.939786 0.185646 0.060039 0.96369
69 631_fri_c1_500_5 LGBM 0.894575 0.235954 0.103217 0.94264
70 633_fri_c0_500_25 LGBM 0.867758 0.28009 0.128961 0.928568
71 634_fri_c2_100_10 LGBM 0.554713 0.489593 0.412479 0.755689
72 635_fri_c0_250_10 LGBM 0.808018 0.325511 0.173748 0.888413
73 637_fri_c1_500_50 LGBM 0.88029 0.262 0.117988 0.935986
74 641_fri_c1_500_10 LGBM 0.920707 0.21553 0.079372 0.957008
75 643_fri_c2_500_25 LGBM 0.886997 0.256788 0.111016 0.929579
76 644_fri_c4_250_25 LGBM 0.763602 0.343271 0.229947 0.88179
77 645_fri_c3_500_50 LGBM 0.861184 0.269186 0.134287 0.910007
78 646_fri_c3_500_10 LGBM 0.895953 0.229111 0.101617 0.938216
79 647_fri_c1_250_10 LGBM 0.871382 0.272282 0.12434 0.920986
80 648_fri_c1_250_50 LGBM 0.826962 0.309924 0.169927 0.896567
81 649_fri_c0_500_5 LGBM 0.894272 0.251709 0.104998 0.946873
82 650_fri_c0_500_50 LGBM 0.847083 0.302548 0.150672 0.923984
83 651_fri_c0_100_25 LGBM 0.553901 0.551767 0.477772 0.769774
84 653_fri_c0_250_25 LGBM 0.790537 0.34996 0.201084 0.879091
85 654_fri_c0_500_10 LGBM 0.871514 0.272861 0.125055 0.934404
86 656_fri_c1_100_5 LGBM 0.523393 0.464672 0.378993 0.794858
87 657_fri_c2_250_10 LGBM 0.864705 0.273345 0.126912 0.894812
88 658_fri_c3_250_25 LGBM 0.768969 0.348552 0.235693 0.872487
89 663_rabe_266 LGBM 0.951179 8.545605 128.061611 0.970164
90 665_sleuth_case2002 LGBM 0.158356 6.037853 70.656119 0.396523
91 666_rmftsa_ladata LGBM 0.427431 1.453889 4.351936 0.561823
92 678_visualizing_environmental LGBM 0.192604 2.398792 9.545897 0.512608
93 687_sleuth_ex1605 LGBM 0.149332 10.431353 171.115995 0.501394
94 690_visualizing_galaxy LGBM 0.970978 12.036517 261.18156 0.980453
95 695_chatfield_4 LGBM 0.816784 13.612425 379.114996 0.91925
96 712_chscase_geyser1 LGBM 0.719652 5.295068 44.129887 0.724247
97 feynman_III_12_43 LGBM 0.999807 0.008734 0.000126 0.999884
98 feynman_III_15_12 LGBM 0.943683 0.877025 1.478416 0.966702
99 feynman_III_15_14 LGBM 0.998361 0.000355 0.0 0.998577
100 feynman_III_15_27 LGBM 0.99867 0.063433 0.009479 0.999169
101 feynman_III_17_37 LGBM 0.998974 0.123542 0.025872 0.999485
102 feynman_III_7_38 LGBM 0.998856 0.857281 1.47939 0.999199
103 feynman_III_8_54 LGBM 0.55409 0.186592 0.055649 0.787142
104 feynman_II_10_9 LGBM 0.998836 0.005788 0.000071 0.999288
105 feynman_II_11_28 LGBM 0.99982 0.002903 0.000015 0.999845
106 feynman_II_13_23 LGBM 0.999909 0.008282 0.000135 0.999959
107 feynman_II_13_34 LGBM 0.99967 0.0289 0.001463 0.999854
108 feynman_II_15_4 LGBM 0.999007 0.123948 0.027096 0.99948
Dataset Name Algorithm R2R^{2} Mean \uparrow MAE \downarrow MSE \downarrow Spearman coeff. \uparrow
109 feynman_II_15_5 LGBM 0.998989 0.125219 0.027641 0.999477
110 feynman_II_24_17 LGBM 0.999691 0.011978 0.00023 0.999832
111 feynman_II_27_16 LGBM 0.999096 1.917405 7.245248 0.999355
112 feynman_II_27_18 LGBM 0.999833 0.246181 0.109237 0.999893
113 feynman_II_34_2 LGBM 0.998982 0.234243 0.095705 0.999271
114 feynman_II_34_29a LGBM 0.998847 0.005464 0.00006 0.999204
115 feynman_II_34_2a LGBM 0.998851 0.010951 0.000242 0.999194
116 feynman_II_37_1 LGBM 0.999066 0.546615 0.515954 0.999381
117 feynman_II_38_14 LGBM 0.999788 0.002343 0.00001 0.999883
118 feynman_II_3_24 LGBM 0.999771 0.000514 0.000001 0.999797
119 feynman_II_4_23 LGBM 0.998652 0.0008 0.000002 0.999158
120 feynman_II_8_31 LGBM 0.999833 0.124132 0.027658 0.999891
121 feynman_II_8_7 LGBM 0.99865 0.001993 0.000011 0.999217
122 feynman_I_10_7 LGBM 0.999906 0.008359 0.000138 0.999958
123 feynman_I_12_1 LGBM 0.999805 0.054983 0.005011 0.999884
124 feynman_I_12_4 LGBM 0.998701 0.000526 0.000001 0.998989
125 feynman_I_12_5 LGBM 0.999803 0.055327 0.005072 0.999883
126 feynman_I_14_3 LGBM 0.99897 0.468719 0.384822 0.999263
127 feynman_I_14_4 LGBM 0.99983 0.123958 0.027743 0.999889
128 feynman_I_15_10 LGBM 0.999675 0.028835 0.00145 0.999852
129 feynman_I_16_6 LGBM 0.99934 0.021985 0.000856 0.999655
130 feynman_I_18_12 LGBM 0.999291 0.150274 0.038946 0.99961
131 feynman_I_25_13 LGBM 0.999774 0.008472 0.000139 0.999854
132 feynman_I_26_2 LGBM 0.999856 0.004474 0.000036 0.999931
133 feynman_I_27_6 LGBM 0.999205 0.007532 0.000102 0.999539
134 feynman_I_29_4 LGBM 0.999725 0.013899 0.000482 0.999811
135 feynman_I_30_3 LGBM 0.970219 0.332563 0.197979 0.965192
136 feynman_I_30_5 LGBM 0.99902 0.00253 0.000014 0.999463
137 feynman_I_34_1 LGBM 0.999405 0.029987 0.00189 0.999756
138 feynman_I_34_14 LGBM 0.999609 0.022975 0.001025 0.999836
139 feynman_I_34_27 LGBM 0.999808 0.008736 0.000126 0.999886
140 feynman_I_37_4 LGBM 0.999146 0.06299 0.007028 0.999475
141 feynman_I_39_1 LGBM 0.999804 0.083128 0.011441 0.999882
142 feynman_I_39_11 LGBM 0.998859 0.074227 0.010657 0.999252
143 feynman_I_43_31 LGBM 0.998984 0.468055 0.382724 0.999274
144 feynman_I_47_23 LGBM 0.998968 0.016486 0.000469 0.999409
145 feynman_I_48_2 LGBM 0.999779 1.147807 2.279839 0.999849
146 feynman_I_6_2 LGBM 0.99978 0.000467 0.0 0.999882
147 feynman_I_6_2b LGBM 0.997631 0.00187 0.000009 0.998732
148 nikuradse_1 LGBM 0.992314 0.008647 0.000192 0.984635
149 strogatz_bacres1 LGBM 0.978434 0.139073 0.138135 0.918411
150 strogatz_bacres2 LGBM 0.980091 0.086343 0.089204 0.985652
151 strogatz_barmag1 LGBM 0.945527 0.017393 0.003195 0.98347
152 strogatz_barmag2 LGBM 0.774422 0.034429 0.017593 0.930467
153 strogatz_glider1 LGBM 0.935193 0.132137 0.039287 0.962894
154 strogatz_glider2 LGBM 0.908837 0.1514 0.07748 0.939587
155 strogatz_lv1 LGBM -2.331265 0.39982 8.297826 0.445691
156 strogatz_lv2 LGBM -0.336276 0.170791 0.591586 0.795204
157 strogatz_predprey1 LGBM 0.711828 0.340823 2.44352 0.93433
158 strogatz_predprey2 LGBM 0.983054 0.096986 0.041181 0.991001
159 strogatz_shearflow1 LGBM 0.812026 0.085183 0.059188 0.909604
160 strogatz_shearflow2 LGBM 0.946065 0.023819 0.002921 0.978591
161 strogatz_vdp1 LGBM 0.759776 0.291957 0.62354 0.852349
162 strogatz_vdp2 LGBM 0.998405 0.001758 0.000013 0.999232

Appendix G Detailed Results for Anomaly Detection

Our method Familiarity Conviction (FC) and Similarity conviction (SC) is compared with six other popular methods for carrying out anomaly detection. DeepSVDD was trained on 20 epochs with the inlier set of training data. Picking a conviction level of 0.7 for all datasets (wihout choosing it in a dataset specific manner), our method achieves the highest F1F1 scores in 12 of the 20 datasets.

Table 4: Information of the 20 ODDS dataset used for anomaly detection
Dataset Dataset Size % Anomalies
wine.mat [129, 13] 7.70%
wbc.mat [278, 30] 5.60%
vowels.mat [456, 12] 3.40%
vertebral.mat [240, 6] 12.50%
thyroid.mat [3772, 6] 2.50%
speech.mat [3686, 400] 1.65%
shuttle.mat [49097, 9] 7%
satimage-2.mat [5803, 36] 1.20%
satellite.mat [6435, 36] 32%
pima.mat [768, 8] 35%
optdigits.mat [5216, 64] 3%
musk.mat [3062, 166] 3.20%
mnist.mat [7603, 100] 9.20%
lympho.mat [148, 18] 4.10%
letter.mat [1600, 32] 6.25%
ionosphere.mat [351, 33] 36%
glass.mat [214, 9] 4.20%
cardio.mat [1831, 21] 9.60%
breastw.mat [683, 9] 35%
arrhythmia.mat [452, 274] 15 %
Table 5: F1 scores of Anomaly Detection on ODDS datasets.

(Blue values indicate the best performance; Brown values indicate the second-best performance ) Dataset Ours (FC) Ours (SC) OCSVM IForest CBLOF LOF ECOD DeepSVDD wine 0.44 0.18 0.31 0.1 0.87 0.95 0.24 0.53 wbc 0.57 0.65 0.54 0.61 0.51 0.40 0.44 0.49 vowels 0.20 0.75 0.21 0.21 0.37 0.10 0.17 0.42 vertebral 0.28 0.19 0.05 0.04 0.04 0.00 0.14 0.05 thyroid 0.26 0.64 0.29 0.54 0.30 0.19 0.56 0.33 speech 0.06 0.10 0.02 0.00 0.03 0.00 0.06 0.06 shuttle 0.26 0.60 0.33 0.89 0.82 0.10 0.75 0.60 satimage-2 0.10 0.94 0.39 0.41 0.22 0.14 0.34 0.26 satellite 0.58 0.75 0.14 0.51 0.48 0.04 0.29 0.66 pima 0.52 0.01 0.12 0.29 0.25 0.06 0.22 0.52 optdigits 0.10 0.00 0.03 0.08 0.18 0.00 0.03 0.26 musk 0.22 0.78 0.14 0.71 0.48 0.00 0.20 0.48 mnist 0.34 0.24 0.19 0.39 0.34 0.01 0.20 0.43 lympho 0.35 0.73 0.38 0.36 0.29 0.00 0.09 0.26 letter 0.17 0.43 0.18 0.10 0.22 0.08 0.13 0.31 ionosphere 0.59 0.85 0.27 0.67 0.43 0.78 0.32 0.90 glass 0.20 0.14 0.13 0.14 0.13 0.30 0.19 0.30 cardio 0.35 0.51 0.24 0.44 0.54 0.10 0.48 0.61 breastw 0.33 0.86 0.17 0.90 0.42 0.09 0.32 0.94 arrhythmia 0.47 0.51 0.23 0.11 0.41 0.37 0.43 0.51