This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Supporting Information: Polariton assisted incoherent to coherent excitation energy transfer between colloidal quantum dots

Kaiyue Peng [email protected] Department of Chemistry, University of California, Berkeley, California 94720, United States    Eran Rabani [email protected] Department of Chemistry, University of California, Berkeley, California 94720, United States Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv, Israel 69978

I Nanocrystal Configurations

We consider 33 quantum dot (QD) systems. The 33 nm CdSe core with a 22-monolayer CdS shell QD contains a total of 753753 Cd atoms, 252252 Se atoms, and 501501 S atoms. The 3.93.9 nm CdSe core with a 33-monolayer CdS shell QD contains a total of 17881788 Cd atoms, 483483 Se atoms, and 13051305 S atoms. The 3.93.9 nm CdSe core with a 44-monolayer CdS shell QD contains a total of 26372637 Cd atoms, 483483 Se atoms, and 21542154 S atoms.

The Stillinger–Weber force field [zhou2013stillinger] was utilized to determine the equilibrium structure and normal vibrational modes using LAMMPS.[plimpton1995fast] Following minimization, the outermost layer was replaced by ligands with a modification of the pseudopotential to represent the passivation layer.[rabani1999electronic]

II Polaron transformation

The total Hamiltonian in polaritonic basis:

H~\displaystyle\tilde{H} =nE~n|φnφn|+αωαbαbα+αnmV~nmα|φnφm|qα.\displaystyle=\sum_{n}\tilde{E}_{n}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|+\sum_{\alpha}\hbar\omega_{\alpha}b_{\alpha}^{\dagger}b_{\alpha}+\sum_{\alpha nm}\tilde{V}_{nm}^{\alpha}\left|\varphi_{n}\right\rangle\left\langle\varphi_{m}\right|q_{\alpha}. (S1)

Apply a unitary polaron transformation:[jasrasaria2023circumventing, peng2023polaritonic]

\displaystyle{\cal H} =eSH~eS=exp(αinV~nnαpαωα2|φnφn|)H~exp(αinV~nnαpαωα2|φnφn|)\displaystyle=e^{S}\tilde{H}e^{-S}=\exp\left(-\sum_{\alpha}\frac{i\sum_{n}\tilde{V}_{nn}^{\alpha}p_{\alpha}}{\hbar\omega_{\alpha}^{2}}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|\right)\tilde{H}\exp\left(\sum_{\alpha}\frac{i\sum_{n}\tilde{V}_{nn}^{\alpha}p_{\alpha}}{\hbar\omega_{\alpha}^{2}}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|\right) (S2)
=exp(αinV~nnαpαωα2|φnφn|)[αωαbαbα]exp(αinV~nnαpαωα2|φnφn|)\displaystyle=\exp\left(-\sum_{\alpha}\frac{i\sum_{n}\tilde{V}_{nn}^{\alpha}p_{\alpha}}{\hbar\omega_{\alpha}^{2}}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|\right)\left[\sum_{\alpha}\hbar\omega_{\alpha}b_{\alpha}^{\dagger}b_{\alpha}\right]\exp\left(\sum_{\alpha}\frac{i\sum_{n}\tilde{V}_{nn}^{\alpha}p_{\alpha}}{\hbar\omega_{\alpha}^{2}}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|\right) (S3)
+exp(αinV~nnαpαωα2|φnφn|)[nE~n|φnφn|]exp(αinV~nnαpαωα2|φnφn|)\displaystyle+\exp\left(-\sum_{\alpha}\frac{i\sum_{n}\tilde{V}_{nn}^{\alpha}p_{\alpha}}{\hbar\omega_{\alpha}^{2}}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|\right)\left[\sum_{n}\tilde{E}_{n}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|\right]\exp\left(\sum_{\alpha}\frac{i\sum_{n}\tilde{V}_{nn}^{\alpha}p_{\alpha}}{\hbar\omega_{\alpha}^{2}}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|\right) (S4)
+exp(αinV~nnαpαωα2|φnφn|)[αnmV~nmα|φnφm|qα]exp(αinV~nnαpαωα2|φnφn|).\displaystyle+\exp\left(-\sum_{\alpha}\frac{i\sum_{n}\tilde{V}_{nn}^{\alpha}p_{\alpha}}{\hbar\omega_{\alpha}^{2}}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|\right)\left[\sum_{\alpha nm}\tilde{V}_{nm}^{\alpha}\left|\varphi_{n}\right\rangle\left\langle\varphi_{m}\right|q_{\alpha}\right]\exp\left(\sum_{\alpha}\frac{i\sum_{n}\tilde{V}_{nn}^{\alpha}p_{\alpha}}{\hbar\omega_{\alpha}^{2}}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|\right). (S5)

Use the relationship:

U(λ)\displaystyle U(\lambda) =eλq=eλip,\displaystyle=e^{-\lambda\frac{\partial}{\partial q}}=e^{-\lambda\frac{ip}{\hbar}}, (S6)
U(λ)qU(λ)\displaystyle U(\lambda)qU^{\dagger}(\lambda) =eλipqeλip=qλ,\displaystyle=e^{-\lambda\frac{ip}{\hbar}}qe^{\lambda\frac{ip}{\hbar}}=q-\lambda, (S7)
U(λ)pU(λ)\displaystyle U(\lambda)pU^{\dagger}(\lambda) =eλippeλip=p.\displaystyle=e^{-\lambda\frac{ip}{\hbar}}pe^{\lambda\frac{ip}{\hbar}}=p. (S8)

Eq. S3 transforms the phonon bath part:

exp(αinV~nnαpαωα2|φnφn|)[αωαbαbα]exp(αinV~nnαpαωα2|φnφn|)\displaystyle\exp\left(-\sum_{\alpha}\frac{i\sum_{n}\tilde{V}_{nn}^{\alpha}p_{\alpha}}{\hbar\omega_{\alpha}^{2}}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|\right)\left[\sum_{\alpha}\hbar\omega_{\alpha}b_{\alpha}^{\dagger}b_{\alpha}\right]\exp\left(\sum_{\alpha}\frac{i\sum_{n}\tilde{V}_{nn}^{\alpha}p_{\alpha}}{\hbar\omega_{\alpha}^{2}}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|\right)
=exp(αinV~nnαpαωα2|φnφn|)[α(pα22m+12ωα2qα2)]exp(αinV~nnαpαωα2|φnφn|)\displaystyle=\exp\left(-\sum_{\alpha}\frac{i\sum_{n}\tilde{V}_{nn}^{\alpha}p_{\alpha}}{\hbar\omega_{\alpha}^{2}}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|\right)\left[\sum_{\alpha}\left(\frac{p_{\alpha}^{2}}{2m}+\frac{1}{2}\omega_{\alpha}^{2}q_{\alpha}^{2}\right)\right]\exp\left(\sum_{\alpha}\frac{i\sum_{n}\tilde{V}_{nn}^{\alpha}p_{\alpha}}{\hbar\omega_{\alpha}^{2}}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|\right)
=α[pα22m+12ωα2(qαn(V~nnα|φnφn|)ωα2)2]\displaystyle=\sum_{\alpha}\left[\frac{p_{\alpha}^{2}}{2m}+\frac{1}{2}\omega_{\alpha}^{2}\left(q_{\alpha}-\frac{\sum_{n}\left(\tilde{V}_{nn}^{\alpha}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|\right)}{\omega_{\alpha}^{2}}\right)^{2}\right]
=αωαbαbα+n[α(V~nnα)22ωα2|φnφn|]n(αV~nnαqα|φnφn|).\displaystyle=\sum_{\alpha}\hbar\omega_{\alpha}b_{\alpha}^{\dagger}b_{\alpha}+\sum_{n}\left[\sum_{\alpha}\frac{\left(\tilde{V}_{nn}^{\alpha}\right)^{2}}{2\omega_{\alpha}^{2}}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|\right]-\sum_{n}\left(\sum_{\alpha}\tilde{V}_{nn}^{\alpha}q_{\alpha}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|\right). (S9)

Eq. S4 transforms the diagonal system part, which is unchanged:

exp(αinV~nnαpαωα2|φnφn|)[nE~n|φnφn|]exp(αinV~nnαpαωα2|φnφn|)\displaystyle\exp\left(-\sum_{\alpha}\frac{i\sum_{n}\tilde{V}_{nn}^{\alpha}p_{\alpha}}{\hbar\omega_{\alpha}^{2}}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|\right)\left[\sum_{n}\tilde{E}_{n}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|\right]\exp\left(\sum_{\alpha}\frac{i\sum_{n}\tilde{V}_{nn}^{\alpha}p_{\alpha}}{\hbar\omega_{\alpha}^{2}}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|\right)
=nE~n|φnφn|.\displaystyle=\sum_{n}\tilde{E}_{n}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|. (S10)

Eq. S5 transforms the polariton-phonon interaction part:

exp(αinV~nnαpαωα2|φnφn|)[αnmV~nmα|φnφm|qα]exp(αinV~nnαpαωα2|φnφn|)\displaystyle\exp\left(-\sum_{\alpha}\frac{i\sum_{n}\tilde{V}_{nn}^{\alpha}p_{\alpha}}{\hbar\omega_{\alpha}^{2}}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|\right)\left[\sum_{\alpha nm}\tilde{V}_{nm}^{\alpha}\left|\varphi_{n}\right\rangle\left\langle\varphi_{m}\right|q_{\alpha}\right]\exp\left(\sum_{\alpha}\frac{i\sum_{n}\tilde{V}_{nn}^{\alpha}p_{\alpha}}{\hbar\omega_{\alpha}^{2}}\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|\right)
=nm[exp(αiV~nnαpαωα2)[αV~nmαqα]exp(αiV~mmαpαωα2)]|φnφm|\displaystyle=\sum_{nm}\left[\exp\left(-\sum_{\alpha}\frac{i\tilde{V}_{nn}^{\alpha}p_{\alpha}}{\hbar\omega_{\alpha}^{2}}\right)\left[\sum_{\alpha}\tilde{V}_{nm}^{\alpha}q_{\alpha}\right]\exp\left(\sum_{\alpha}\frac{i\tilde{V}_{mm}^{\alpha}p_{\alpha}}{\hbar\omega_{\alpha}^{2}}\right)\right]\left|\varphi_{n}\right\rangle\left\langle\varphi_{m}\right|
=n(αV~nnαqαα(V~nnα)2ωα2)|φnφn|\displaystyle=\sum_{n}\left(\sum_{\alpha}\tilde{V}_{nn}^{\alpha}q_{\alpha}-\sum_{\alpha}\frac{\left(\tilde{V}_{nn}^{\alpha}\right)^{2}}{\omega_{\alpha}^{2}}\right)\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|
+nmexp(αiV~nnαpαωα2)[αV~nmαqα]exp(αiV~mmαpαωα2)|φnφm|.\displaystyle+\sum_{n\neq m}\exp\left(-\sum_{\alpha}\frac{i\tilde{V}_{nn}^{\alpha}p_{\alpha}}{\hbar\omega_{\alpha}^{2}}\right)\left[\sum_{\alpha}\tilde{V}_{nm}^{\alpha}q_{\alpha}\right]\exp\left(\sum_{\alpha}\frac{i\tilde{V}_{mm}^{\alpha}p_{\alpha}}{\hbar\omega_{\alpha}^{2}}\right)\left|\varphi_{n}\right\rangle\left\langle\varphi_{m}\right|. (S11)

Then the transformed total Hamiltonian is given by:

\displaystyle{\cal H} =n(E~nα(V~nnα)22ωα2)|φnφn|+αωαbαbα\displaystyle=\sum_{n}\left(\tilde{E}_{n}-\sum_{\alpha}\frac{\left(\tilde{V}_{nn}^{\alpha}\right)^{2}}{2\omega_{\alpha}^{2}}\right)\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|+\sum_{\alpha}\hbar\omega_{\alpha}b_{\alpha}^{\dagger}b_{\alpha}
+nmexp(αiV~nnαpαωα2)[αV~nmαqα]exp(αiV~mmαpαωα2)|φnφm|.\displaystyle+\sum_{n\neq m}\exp\left(-\sum_{\alpha}\frac{i\tilde{V}_{nn}^{\alpha}p_{\alpha}}{\hbar\omega_{\alpha}^{2}}\right)\left[\sum_{\alpha}\tilde{V}_{nm}^{\alpha}q_{\alpha}\right]\exp\left(\sum_{\alpha}\frac{i\tilde{V}_{mm}^{\alpha}p_{\alpha}}{\hbar\omega_{\alpha}^{2}}\right)\left|\varphi_{n}\right\rangle\left\langle\varphi_{m}\right|. (S12)

We label reorganization energy λn=12α(V~nnα)2/ωα2\lambda_{n}=\frac{1}{2}\sum_{\alpha}\left(\tilde{V}_{nn}^{\alpha}\right)^{2}/\omega_{\alpha}^{2} and the transformed polariton-phonon coupling Wnm=exp(αiV~nnαpαωα2)[αV~nmαqα]exp(αiV~mmαpαωα2)W_{nm}=\exp\left(-\sum_{\alpha}\frac{i\tilde{V}_{nn}^{\alpha}p_{\alpha}}{\hbar\omega_{\alpha}^{2}}\right)\left[\sum_{\alpha}\tilde{V}_{nm}^{\alpha}q_{\alpha}\right]\exp\left(\sum_{\alpha}\frac{i\tilde{V}_{mm}^{\alpha}p_{\alpha}}{\hbar\omega_{\alpha}^{2}}\right), then total Hamiltonian \mathcal{H} can be written as:

\displaystyle{\cal H} =n(E~nλn)|φnφn|S+αωαbαbα+BnmWnm|φnφm|I.\displaystyle=\overset{{\scriptstyle\mathcal{H}_{{\rm S}}}}{\overbrace{\sum_{n}\left(\tilde{E}_{n}-\lambda_{n}\right)\left|\varphi_{n}\right\rangle\left\langle\varphi_{n}\right|}}+\overset{{\scriptstyle\mathcal{H}_{\text{B}}}}{\overbrace{\sum_{\alpha}\hbar\omega_{\alpha}b_{\alpha}^{\dagger}b_{\alpha}}+}\overset{{\scriptstyle\mathcal{H}_{\text{I}}}}{\overbrace{\sum_{n\neq m}W_{nm}\left|\varphi_{n}\right\rangle\left\langle\varphi_{m}\right|}}. (S13)

III Time–local Redfield Equations

We use polaritonic basis |φn\left|\varphi_{n}\right\rangle, to express the reduced density matrix and the system Hamiltonian:

σnm(t)=φn|σ(t)|φm,\displaystyle\sigma_{nm}\left(t\right)=\left\langle\varphi_{n}\right|\sigma\left(t\right)\left|\varphi_{m}\right\rangle, (S14)
φn|[S,σ(t)]|φm/=ωnmσnm.\displaystyle\left\langle\varphi_{n}\right|\left[\mathcal{H}_{\text{S}},\sigma\left(t\right)\right]\left|\varphi_{m}\right\rangle/\hbar=\omega_{nm}\sigma_{nm}. (S15)

Using second order perturbation in I\mathcal{H}_{\text{I}}, the equation of motion of the reduced density matrix is given by:[nitzan2006chemical]

σnmt\displaystyle\frac{\partial\sigma_{nm}}{\partial t} =iωnmσnmi[lnWnlBσlmlmσnlWlmB]\displaystyle=-i\omega_{nm}\sigma_{nm}-\frac{i}{\hbar}\left[\sum_{l\neq n}\left\langle W_{nl}\right\rangle_{{\rm B}}\sigma_{lm}-\sum_{l\neq m}\sigma_{nl}\left\langle W_{lm}\right\rangle_{{\rm B}}\right]
+kl0tdτ[Mnk,kl(τ)eiωmkτσlm(tτ)Mkl,lm(τ)eiωlnτσnk(tτ)\displaystyle+\sum_{kl}\int_{0}^{t}d\tau\left[-M_{nk,kl}\left(\tau\right)e^{i\omega_{mk}\tau}\sigma_{lm}\left(t-\tau\right)-M_{kl,lm}\left(-\tau\right)e^{i\omega_{ln}\tau}\sigma_{nk}\left(t-\tau\right)\right.
+Mnk,lm(τ)eiωlnτσkl(tτ)+Mnk,lm(τ)eiωmkτσkl(tτ)],\displaystyle\left.+M_{nk,lm}\left(\tau\right)e^{i\omega_{ln}\tau}\sigma_{kl}\left(t-\tau\right)+M_{nk,lm}\left(-\tau\right)e^{i\omega_{mk}\tau}\sigma_{kl}\left(t-\tau\right)\right], (S16)

where

if nm and kl:\displaystyle\text{if }n\neq m\text{ and }k\neq l:\leavevmode\nobreak\ Mnm,kl(τ)=12[Wnm(τ)Wkl(0)BWnmBWklB],\displaystyle M_{nm,kl}\left(\tau\right)=\frac{1}{\hbar^{2}}\left[\left\langle W_{nm}\left(\tau\right)W_{kl}(0)\right\rangle_{{\rm B}}-\left\langle W_{nm}\right\rangle_{{\rm B}}\left\langle W_{kl}\right\rangle_{{\rm B}}\right], (S17)
else: Mnm,kl(τ)=0.\displaystyle M_{nm,kl}\left(\tau\right)=0. (S18)

Employing a time local approximation, with eiωnm(tτ)σnm(tτ)eiωnmtσnm(t)e^{i\omega_{nm}(t-\tau)}\sigma_{nm}\left(t-\tau\right)\approx e^{i\omega_{nm}t}\sigma_{nm}\left(t\right),[nitzan2006chemical] we arrive at:

σnmt\displaystyle\frac{\partial\sigma_{nm}}{\partial t} =iωnmσnmi[lnWnlBσlmlmσnlWlmB]\displaystyle=-i\omega_{nm}\sigma_{nm}-\frac{i}{\hbar}\left[\sum_{l\neq n}\left\langle W_{nl}\right\rangle_{{\rm B}}\sigma_{lm}-\sum_{l\neq m}\sigma_{nl}\left\langle W_{lm}\right\rangle_{{\rm B}}\right]
+kl0tdτ[Mnk,kl(τ)eiωlkτσlm(t)Mkl,lm(τ)eiωlkτσnk(t)\displaystyle+\sum_{kl}\int_{0}^{t}d\tau\left[-M_{nk,kl}\left(\tau\right)e^{i\omega_{lk}\tau}\sigma_{lm}\left(t\right)-M_{kl,lm}\left(-\tau\right)e^{i\omega_{lk}\tau}\sigma_{nk}\left(t\right)\right.
+Mnk,lm(τ)eiωknτσkl(t)+Mnk,lm(τ)eiωmlτσkl(t)].\displaystyle\left.+M_{nk,lm}\left(\tau\right)e^{i\omega_{kn}\tau}\sigma_{kl}\left(t\right)+M_{nk,lm}\left(-\tau\right)e^{i\omega_{ml}\tau}\sigma_{kl}\left(t\right)\right]. (S19)

Here we could see that, the so-called Redfield tensor: Rnm,kl(ω,t)=0t𝑑τMnm,kl(τ)eiωτR_{nm,kl}\left(\omega,t\right)=\int_{0}^{t}d\tau M_{nm,kl}\left(\tau\right)e^{i\omega\tau} depends on time.

IV Calculating Wnm(t)Wkl(0)B\left\langle W_{nm}\left(t\right)W_{kl}\left(0\right)\right\rangle_{\text{B}}

We represent the bath position (qαq_{\alpha}) and momentum (pαp_{\alpha}) operators using raising and lowering operators (bαb_{\alpha}^{\dagger} and bαb_{\alpha}, respectively):

qα\displaystyle q_{\alpha} =2ωα(bα+bα),\displaystyle=\sqrt{\frac{\hbar}{2\omega_{\alpha}}}\left(b_{\alpha}^{\dagger}+b_{\alpha}\right), (S20)
pα\displaystyle p_{\alpha} =iωα2(bαbα).\displaystyle=i\sqrt{\frac{\hbar\omega_{\alpha}}{2}}\left(b_{\alpha}^{\dagger}-b_{\alpha}\right). (S21)

Recall the dressed phonon coupling element, WnmW_{nm},

Wnm=exp(iγpγV~nnγωγ2)[αV~nmαqα]exp(+iξpξV~mmξωξ2).W_{nm}=\exp\left(-\frac{i}{\hbar}\sum_{\gamma}\frac{p_{\gamma}\tilde{V}_{nn}^{\gamma}}{\omega_{\gamma}^{2}}\right)\left[\sum_{\alpha}\tilde{V}_{nm}^{\alpha}q_{\alpha}\right]\exp\left(+\frac{i}{\hbar}\sum_{\xi}\frac{p_{\xi}\tilde{V}_{mm}^{\xi}}{\omega_{\xi}^{2}}\right). (S22)

In the above equation, V~nmα\tilde{V}_{nm}^{\alpha}, the coupling matrix element between two polaritonic states |φn\left|\varphi_{n}\right\rangle and |φm\left|\varphi_{m}\right\rangle and phonon mode α\alpha. V~nmα\tilde{V}_{nm}^{\alpha} was obtained by applying the unitary transformation UU that diagonalizes HSH_{{\rm S}} to V~α=UVαU\tilde{V}^{\alpha}=U^{\dagger}V^{\alpha}U, for each mode α\alpha (see main text). The corresponding correlation function, Wnm(t)Wkl(0)B\left\langle W_{nm}\left(t\right)W_{kl}\left(0\right)\right\rangle_{\text{B}} (Eq. (9)) can then be expressed as :

Wnm(t)Wkl(0)B\displaystyle\left\langle W_{nm}\left(t\right)W_{kl}\left(0\right)\right\rangle_{\text{B}} ={exp(αiV~nnαpα(t)ωα2)[αV~nmαqα(t)]exp(αiV~mmαpα(t)ωα2)}\displaystyle=\left\langle\left\{\exp\left(-\sum_{\alpha}\frac{i\tilde{V}_{nn}^{\alpha}p_{\alpha}\left(t\right)}{\hbar\omega_{\alpha}^{2}}\right)\left[\sum_{\alpha}\tilde{V}_{nm}^{\alpha}q_{\alpha}\left(t\right)\right]\exp\left(\sum_{\alpha}\frac{i\tilde{V}_{mm}^{\alpha}p_{\alpha}\left(t\right)}{\hbar\omega_{\alpha}^{2}}\right)\right\}\right.
{exp(αiV~kkαpαωα2)[αV~klαqα]exp(αiV~llαpαωα2)}B\displaystyle\left.\left\{\exp\left(-\sum_{\alpha}\frac{i\tilde{V}_{kk}^{\alpha}p_{\alpha}}{\hbar\omega_{\alpha}^{2}}\right)\left[\sum_{\alpha}\tilde{V}_{kl}^{\alpha}q_{\alpha}\right]\exp\left(\sum_{\alpha}\frac{i\tilde{V}_{ll}^{\alpha}p_{\alpha}}{\hbar\omega_{\alpha}^{2}}\right)\right\}\right\rangle_{\text{B}}
=eΩn(t)L(nm)(t)eΩm(t)eΩkL(kl)eΩlB,\displaystyle=\left\langle e^{\Omega_{n}\left(t\right)}L^{\left(nm\right)}\left(t\right)e^{-\Omega_{m}\left(t\right)}e^{\Omega_{k}}L^{\left(kl\right)}e^{-\Omega_{l}}\right\rangle_{\text{B}}, (S23)

where

qα(t)\displaystyle q_{\alpha}\left(t\right) =2ωα(bαeiωαt+bαeiωαt),\displaystyle=\sqrt{\frac{\hbar}{2\omega_{\alpha}}}\left(b_{\alpha}^{\dagger}e^{i\omega_{\alpha}t}+b_{\alpha}e^{-i\omega_{\alpha}t}\right), (S24)
pα(t)\displaystyle p_{\alpha}\left(t\right) =iωα2(bαeiωαtbαeiωαt),\displaystyle=i\sqrt{\frac{\hbar\omega_{\alpha}}{2}}\left(b_{\alpha}^{\dagger}e^{i\omega_{\alpha}t}-b_{\alpha}e^{-i\omega_{\alpha}t}\right), (S25)

so

Ωn(t)\displaystyle\Omega_{n}\left(t\right) =αd~α(n)(aαeiωαtaαeiωαt),\displaystyle=\sum_{\alpha}\tilde{d}_{\alpha}^{\left(n\right)}\left(a_{\alpha}^{\dagger}e^{i\omega_{\alpha}t}-a_{\alpha}e^{-i\omega_{\alpha}t}\right), (S26)
L(nm)(t)\displaystyle L^{\left(nm\right)}\left(t\right) =αc~α(nm)(aαeiωαt+aαeiωαt),\displaystyle=\sum_{\alpha}\tilde{c}_{\alpha}^{\left(nm\right)}\left(a_{\alpha}^{\dagger}e^{i\omega_{\alpha}t}+a_{\alpha}e^{-i\omega_{\alpha}t}\right), (S27)

where

d~α(n)\displaystyle\tilde{d}_{\alpha}^{\left(n\right)} =V~nnαωα2ωα2,\displaystyle=\frac{\tilde{V}_{nn}^{\alpha}}{\hbar\omega_{\alpha}^{2}}\sqrt{\frac{\hbar\omega_{\alpha}}{2}}, (S28)
c~α(nm)\displaystyle\tilde{c}_{\alpha}^{\left(nm\right)} =V~nmα2ωα.\displaystyle=\tilde{V}_{nm}^{\alpha}\sqrt{\frac{\hbar}{2\omega_{\alpha}}}. (S29)

Using the commutation relationship:

[(αaj+βaj),e(γaj+δaj)]=[(αaj+βaj),(γaj+δaj)]e(γaj+δaj),\left[\left(\alpha a_{j}^{\dagger}+\beta a_{j}\right),e^{\left(\gamma a_{j}^{\dagger}+\delta a_{j}\right)}\right]=\left[\left(\alpha a_{j}^{\dagger}+\beta a_{j}\right),\left(\gamma a_{j}^{\dagger}+\delta a_{j}\right)\right]e^{\left(\gamma a_{j}^{\dagger}+\delta a_{j}\right)}, (S30)

the correlation function can be expressed as

Wnm(t)Wkl(0)B=[h(t)+g(t)]f(t),\left\langle W_{nm}\left(t\right)W_{kl}\left(0\right)\right\rangle_{\text{B}}=\left[h\left(t\right)+g\left(t\right)\right]f\left(t\right), (S31)

where

h(t)\displaystyle h\left(t\right) =α{(d~α(k)d~α(l))c~α(nm)eiωαtnα+(d~α(k)d~α(l))c~α(nm)eiωαt(nα+1)c~α(nm)(d~α(n)+d~α(m))}×\displaystyle=\sum_{\alpha}\left\{-\left(\tilde{d}_{\alpha}^{(k)}-\tilde{d}_{\alpha}^{(l)}\right)\tilde{c}_{\alpha}^{(nm)}e^{i\omega_{\alpha}t}n_{\alpha}+\left(\tilde{d}_{\alpha}^{(k)}-\tilde{d}_{\alpha}^{(l)}\right)\tilde{c}_{\alpha}^{(nm)}e^{-i\omega_{\alpha}t}\left(n_{\alpha}+1\right)-\tilde{c}_{\alpha}^{(nm)}\left(\tilde{d}_{\alpha}^{(n)}+\tilde{d}_{\alpha}^{(m)}\right)\right\}\times
×α{c~α(kl)(d~α(n)d~α(m))eiωαtnαc~α(kl)(d~α(n)d~α(m))eiωαt(nα+1)c~α(kl)(d~α(k)+d~α(l))},\displaystyle\times\sum_{\alpha}\left\{\tilde{c}_{\alpha}^{(kl)}\left(\tilde{d}_{\alpha}^{(n)}-\tilde{d}_{\alpha}^{(m)}\right)e^{i\omega_{\alpha}t}n_{\alpha}-\tilde{c}_{\alpha}^{(kl)}\left(\tilde{d}_{\alpha}^{(n)}-\tilde{d}_{\alpha}^{(m)}\right)e^{-i\omega_{\alpha}t}\left(n_{\alpha}+1\right)-\tilde{c}_{\alpha}^{(kl)}\left(\tilde{d}_{\alpha}^{(k)}+\tilde{d}_{\alpha}^{(l)}\right)\right\}, (S32)
g(t)=αc~α(nm)c~α(kl)[(nα+1)eiωαt+nαeiωαt],g\left(t\right)=\sum_{\alpha}\tilde{c}_{\alpha}^{(nm)}\tilde{c}_{\alpha}^{(kl)}\left[\left(n_{\alpha}+1\right)e^{-i\omega_{\alpha}t}+n_{\alpha}e^{i\omega_{\alpha}t}\right], (S33)
f(t)\displaystyle f\left(t\right) =αexp{[(d~α(n)d~α(m))2+(d~α(k)d~α(l))2+2(d~α(n)d~α(m))(d~α(k)d~α(l))cos(ωαt)](n+1/2)\displaystyle=\prod_{\alpha}\exp\left\{-\left[\left(\tilde{d}_{\alpha}^{(n)}-\tilde{d}_{\alpha}^{(m)}\right)^{2}+\left(\tilde{d}_{\alpha}^{(k)}-\tilde{d}_{\alpha}^{(l)}\right)^{2}+2\left(\tilde{d}_{\alpha}^{(n)}-\tilde{d}_{\alpha}^{(m)}\right)\left(\tilde{d}_{\alpha}^{(k)}-\tilde{d}_{\alpha}^{(l)}\right)\cos(\omega_{\alpha}t)\right]\left(n+1/2\right)\right.
+i(d~α(n)d~α(m))(d~α(k)d~α(l))sin(ωαt)},\displaystyle+\left.i\left(\tilde{d}_{\alpha}^{(n)}-\tilde{d}_{\alpha}^{(m)}\right)\left(\tilde{d}_{\alpha}^{(k)}-\tilde{d}_{\alpha}^{(l)}\right)\sin\left(\omega_{\alpha}t\right)\right\}, (S34)

and n=aa=(eβω1)1n=\left\langle a^{\dagger}a\right\rangle=\left(e^{\beta\hbar\omega}-1\right)^{-1}.

Similarly, the average WnmB\left\langle W_{nm}\right\rangle_{\text{B}} is given by:

WnmB=eΩnL(nm)eΩmB=α(c~α(nm)d~α(n)c~α(nm)d~α(m))αexp{(d~α(n)d~α(m))2(nα+12)}.\left\langle W_{nm}\right\rangle_{\text{B}}=\left\langle e^{\Omega_{n}}L^{(nm)}e^{-\Omega_{m}}\right\rangle_{\text{B}}=\sum_{\alpha}\left(-\tilde{c}_{\alpha}^{(nm)}\tilde{d}_{\alpha}^{(n)}-\tilde{c}_{\alpha}^{(nm)}\tilde{d}_{\alpha}^{(m)}\right)\prod_{\alpha}\exp\left\{-\left(\tilde{d}_{\alpha}^{(n)}-\tilde{d}_{\alpha}^{(m)}\right)^{2}\left(n_{\alpha}+\frac{1}{2}\right)\right\}. (S35)

V Effective Coupling

V.1 Three level system

We consider a three level system representing a donor, acceptor coupled directly and both are coupled to a bridge state (cavity). The system Hamiltonian is written as:

H=(EBgggEDJgJEA),H=\left(\begin{array}[]{ccc}E_{B}&g&g\\ g&E_{D}&J\\ g&J&E_{A}\end{array}\right), (S36)

where the donor and acceptor states with the energies EDE_{D} and EAE_{A} are directly coupled by JJ. The bridge state couples to the donor and acceptor with coupling strength gg. The goal is to rewrite the eigenvalue problem

[(EBgggEDJgJEA)𝑰λ](dBdDdA)=0.\left[\left(\begin{array}[]{ccc}E_{B}&g&g\\ g&E_{D}&J\\ g&J&E_{A}\end{array}\right)-\boldsymbol{I}\lambda\right]\left(\begin{array}[]{c}d_{B}\\ d_{D}\\ d_{A}\end{array}\right)=0. (S37)

in the donor-acceptor subspace. The three eigenvalues (we assume for clarity that ED=EA=EE_{D}=E_{A}=E) are given by:

λ1\displaystyle\lambda_{1} =EJ,\displaystyle=E-J, (S38)
λ2\displaystyle\lambda_{2} =12(EB+E+J8g2+(EBEJ)2),\displaystyle=\frac{1}{2}\left(E_{B}+E+J-\sqrt{8g^{2}+\left(E_{B}-E-J\right)^{2}}\right), (S39)
λ3\displaystyle\lambda_{3} =12(EB+E+J+8g2+(EBEJ)2).\displaystyle=\frac{1}{2}\left(E_{B}+E+J+\sqrt{8g^{2}+\left(E_{B}-E-J\right)^{2}}\right). (S40)

The corresponding eigenvectors can be obtained from:

(EBλ)dB+gdD+gdA\displaystyle\left(E_{B}-\lambda\right)d_{B}+gd_{D}+gd_{A} =0,\displaystyle=0, (S41)
gdB+(Eλ)dD+JdA\displaystyle gd_{B}+\left(E-\lambda\right)d_{D}+Jd_{A} =0,\displaystyle=0, (S42)
gdB+JdD+(Eλ)dA\displaystyle gd_{B}+Jd_{D}+\left(E-\lambda\right)d_{A} =0.\displaystyle=0. (S43)

Replacing dBd_{B} in the last two equations by the solution of the first one, dB=gdD+gdA(λEB)d_{B}=\frac{gd_{D}+gd_{A}}{\left(\lambda-E_{B}\right)}, we find:

[g2(λEB)+Eλ]dD+[g2(λEB)+J]dA\displaystyle\left[\frac{g^{2}}{\left(\lambda-E_{B}\right)}+E-\lambda\right]d_{D}+\left[\frac{g^{2}}{\left(\lambda-E_{B}\right)}+J\right]d_{A} =0,\displaystyle=0, (S44)
[g2(λEB)+J]dD+[g2(λEB)+Eλ]dA\displaystyle\left[\frac{g^{2}}{\left(\lambda-E_{B}\right)}+J\right]d_{D}+\left[\frac{g^{2}}{\left(\lambda-E_{B}\right)}+E-\lambda\right]d_{A} =0.\displaystyle=0. (S45)

which can be rewritten in a similar form to an eigenvalue problem in the Hilbert space of the donor and acceptor:

(EDeffλJeffJeffEAeffλ)(dDdA)=0,\left(\begin{array}[]{cc}E_{D}^{\text{eff}}-\lambda&J_{\text{eff}}\\ J_{\text{eff}}&E_{A}^{\text{eff}}-\lambda\end{array}\right)\left(\begin{array}[]{c}d_{D}\\ d_{A}\end{array}\right)=0, (S46)

where

EDeff\displaystyle E_{D}^{\text{eff}} =EAeff=g2(λEB)+E,\displaystyle=E_{A}^{\text{eff}}=\frac{g^{2}}{\left(\lambda-E_{B}\right)}+E, (S47)

and the effective coupling

Jeff=g2(λEB)+JJ_{\text{eff}}=\frac{g^{2}}{\left(\lambda-E_{B}\right)}+J (S48)

depend on λ.\lambda. For the two eigenvalues λ2\lambda_{2} and λ3\lambda_{3}we find:

Jeff(2,3)\displaystyle J_{\text{eff}}^{(2,3)} =J+2g2(E+JEB)(11+2(2gE+JEB)2).\displaystyle=J+\frac{2g^{2}}{\left(E+J-E_{B}\right)\left(1\mp\sqrt{1+2\left(\frac{2g}{E+J-E_{B}}\right)^{2}}\right)}. (S49)

For small values gJg\ll J, Jeff(2,3)JJ_{\text{eff}}^{(2,3)}\rightarrow J and for large values of gJg\gg J, Jeff(2,3)g(2)J_{\text{eff}}^{(2,3)}\rightarrow\mp\frac{g}{\left(\sqrt{2}\right)}. This implies that for large coupling of the donor and acceptor to the bridge results in an effective direct coupling between the donor and acceptor that scales with gg.