This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Supplementary Materials:
Night-Rider: Nocturnal Vision-aided Localization in Streetlight Maps Using Invariant Extended Kalman Filtering

Tianxiao Gao1, Mingle Zhao1, Chengzhong Xu1, and Hui Kong1 1Tianxiao Gao, Mingle Zhao, Chengzhong Xu and Hui Kong are with the State Key Laboratory of Internet of Things for Smart City (SKL-IOTSC), Faculty of Science and Technology, University of Macau, Macau, China. ({ga0.tianxiao, zhao.mingle}@connect.umac.mo, {czxu, huikong}@um.edu.mo)

This document provides supplementary materials for the ICRA 2024 submission “Night-Rider: Nocturnal Vision-aided Localization in Streetlight Maps Using Invariant Extended Kalman Filtering”.

-A Derivation of Error Propagation Model

From the Eq. (8), we need to derive the linearized model of right invariant error 𝜼tr\bm{\eta}_{t}^{r} and bias error 𝜻t\bm{\zeta}_{t}.

For the states fitting into Lie group, the derivative of right invariant error 𝜼tr\bm{\eta}_{t}^{r} associates with the log of invariant error 𝝃t\bm{\xi}_{t} based on 𝜼tr=exp(𝝃t)\bm{\eta}_{t}^{r}=\exp(\bm{\xi}_{t}^{\wedge}).

ddt𝜼trddt(𝐈+𝝃t)=[ddt(𝐈+(𝝃Rt)×)ddt𝝃vt𝝃pt000000]\frac{d}{dt}\bm{\eta}_{t}^{r}\approx\frac{d}{dt}(\mathbf{I}+\bm{\xi}_{t}^{\wedge})=\begin{bmatrix}\frac{d}{dt}(\mathbf{I}+(\bm{\xi}_{R_{t}})_{\times})&\frac{d}{dt}\bm{\xi}_{v_{t}}&\bm{\xi}_{p_{t}}\\ 0&0&0\\ 0&0&0\end{bmatrix} (27)

With Eq. (3), the derivative of 𝝃t\bm{\xi}_{t} is deduced as below.

ddt(𝐈+(𝝃Rt)×)=ddt(𝝃Rt)×=d𝐑^btwdt𝐑btw+𝐑^btwd𝐑btwdt\displaystyle\frac{d}{dt}(\mathbf{I}+(\bm{\xi}_{R_{t}})_{\times})=\frac{d}{dt}(\bm{\xi}_{R_{t}})_{\times}=\frac{d\hat{\mathbf{R}}_{b_{t}}^{w}}{dt}\mathbf{R}_{b_{t}}^{w^{\top}}+\hat{\mathbf{R}}_{b_{t}}^{w}\frac{d\mathbf{R}_{b_{t}}^{w^{\top}}}{dt}
=𝐑^btw(𝝎~t𝐛^ωt)×𝐑btw𝐑^btw(𝝎t)×𝐑btw\displaystyle=\hat{\mathbf{R}}_{b_{t}}^{w}(\tilde{\bm{\omega}}_{t}-\hat{\mathbf{b}}_{\omega_{t}})_{\times}\mathbf{R}_{b_{t}}^{w^{\top}}-\hat{\mathbf{R}}_{b_{t}}^{w}(\bm{\omega}_{t})_{\times}\mathbf{R}_{b_{t}}^{w^{\top}}
=𝐑^btw(𝝎~t+𝐛ωt+𝐧ωt𝐛^ωt𝝎t)×𝐑btw\displaystyle=\hat{\mathbf{R}}_{b_{t}}^{w}(\tilde{\bm{\omega}}_{t}+\mathbf{b}_{\omega_{t}}+\mathbf{n}_{\omega_{t}}-\hat{\mathbf{b}}_{\omega_{t}}-\bm{\omega}_{t})_{\times}\mathbf{R}_{b_{t}}^{w^{\top}}
=𝐑^btw(𝐧ωt𝜻ωt)×𝐑^btw𝐑^btw𝐑btw\displaystyle=\hat{\mathbf{R}}_{b_{t}}^{w}(\mathbf{n}_{\omega_{t}}-\bm{\zeta}_{\omega_{t}})_{\times}\hat{\mathbf{R}}_{b_{t}}^{w^{\top}}\hat{\mathbf{R}}_{b_{t}}^{w}\mathbf{R}_{b_{t}}^{w^{\top}}
=(𝐑^btw(𝐧ωt𝜻ωt))×𝜼Rt\displaystyle=(\hat{\mathbf{R}}_{b_{t}}^{w}(\mathbf{n}_{\omega_{t}}-\bm{\zeta}_{\omega_{t}}))_{\times}\bm{\eta}_{R_{t}}
(𝐑^btw(𝐧ωt𝜻ωt))×(𝐈+𝝃Rt)(𝐑^btw(𝐧ωt𝜻ωt))×\displaystyle\approx(\hat{\mathbf{R}}_{b_{t}}^{w}(\mathbf{n}_{\omega_{t}}-\bm{\zeta}_{\omega_{t}}))_{\times}(\mathbf{I}+\bm{\xi}_{R_{t}})\approx(\hat{\mathbf{R}}_{b_{t}}^{w}(\mathbf{n}_{\omega_{t}}-\bm{\zeta}_{\omega_{t}}))_{\times} (28)
ddt𝝃vt=ddt𝐯^btwddt(𝐑^btw𝐑btw)𝐯btw𝐑^btw𝐑btwddt𝐯btw\displaystyle\frac{d}{dt}\bm{\xi}_{v_{t}}=\frac{d}{dt}{{}^{w}}\hat{\mathbf{v}}_{b_{t}}-\frac{d}{dt}(\hat{\mathbf{R}}_{b_{t}}^{w}\mathbf{R}_{b_{t}}^{w^{\top}}){{}^{w}}\mathbf{v}_{b_{t}}-\hat{\mathbf{R}}_{b_{t}}^{w}\mathbf{R}_{b_{t}}^{w^{\top}}\frac{d}{dt}{{}^{w}}\mathbf{v}_{b_{t}}
𝐑^btw(𝒂~t𝐛^at)+𝐠(𝐑^btw(𝐧ωt𝜻ωt))×𝐯btw\displaystyle\approx\hat{\mathbf{R}}_{b_{t}}^{w}(\tilde{\bm{a}}_{t}-\hat{\mathbf{b}}_{a_{t}})+\mathbf{g}-(\hat{\mathbf{R}}_{b_{t}}^{w}(\mathbf{n}_{\omega_{t}}-\bm{\zeta}_{\omega_{t}}))_{\times}{{}^{w}}\mathbf{v}_{b_{t}}
𝐑^btw𝐑btw(𝐑btw𝒂t+𝐠)\displaystyle\quad-\hat{\mathbf{R}}_{b_{t}}^{w}\mathbf{R}_{b_{t}}^{w^{\top}}(\mathbf{R}_{b_{t}}^{w}\bm{a}_{t}+\mathbf{g})
=𝐑^btw(𝒂t+𝐛at+𝐧at𝐛^at𝒂t)\displaystyle=\hat{\mathbf{R}}_{b_{t}}^{w}(\bm{a}_{t}+\mathbf{b}_{a_{t}}+\mathbf{n}_{a_{t}}-\hat{\mathbf{b}}_{a_{t}}-\bm{a}_{t})
(𝐑^btw(𝐧ωt𝜻ωt))×𝐯btw+(𝐈𝐑^btw𝐑btw)𝐠\displaystyle\quad-(\hat{\mathbf{R}}_{b_{t}}^{w}(\mathbf{n}_{\omega_{t}}-\bm{\zeta}_{\omega_{t}}))_{\times}{{}^{w}}\mathbf{v}_{b_{t}}+(\mathbf{I}-\hat{\mathbf{R}}_{b_{t}}^{w}\mathbf{R}_{b_{t}}^{w^{\top}})\mathbf{g}
𝐑^btw(𝐧at𝜻at)(𝐑^btw(𝐧ωt𝜻ωt))×𝐯btw(𝝃Rt)×𝐠\displaystyle\approx\hat{\mathbf{R}}_{b_{t}}^{w}(\mathbf{n}_{a_{t}}-\bm{\zeta}_{a_{t}})-(\hat{\mathbf{R}}_{b_{t}}^{w}(\mathbf{n}_{\omega_{t}}-\bm{\zeta}_{\omega_{t}}))_{\times}{{}^{w}}\mathbf{v}_{b_{t}}-(\bm{\xi}_{R_{t}})_{\times}\mathbf{g}
=(𝐠)×𝝃Rt+(𝐯btw)×𝐑^btw(𝐧ωt𝜻ωt)+𝐑^btw(𝐧at𝜻at)\displaystyle=(\mathbf{g})_{\times}\bm{\xi}_{R_{t}}+({{}^{w}}\mathbf{v}_{b_{t}})_{\times}\hat{\mathbf{R}}_{b_{t}}^{w}(\mathbf{n}_{\omega_{t}}-\bm{\zeta}_{\omega_{t}})+\hat{\mathbf{R}}_{b_{t}}^{w}(\mathbf{n}_{a_{t}}-\bm{\zeta}_{a_{t}}) (29)
ddt𝝃pt=ddt𝐩^btwddt(𝐑^btw𝐑btw)𝐩btw𝐑^btw𝐑btwddt𝐩btw\displaystyle\frac{d}{dt}\bm{\xi}_{p_{t}}=\frac{d}{dt}\hat{\mathbf{p}}_{b_{t}}^{w}-\frac{d}{dt}(\hat{\mathbf{R}}_{b_{t}}^{w}\mathbf{R}_{b_{t}}^{w^{\top}})\mathbf{p}_{b_{t}}^{w}-\hat{\mathbf{R}}_{b_{t}}^{w}\mathbf{R}_{b_{t}}^{w^{\top}}\frac{d}{dt}\mathbf{p}_{b_{t}}^{w}
𝐯^btw(𝐑^btw(𝐧ωt𝜻ωt))×𝐩btw𝐑^btw𝐑btw𝐯btw\displaystyle\approx{{}^{w}}\hat{\mathbf{v}}_{b_{t}}-(\hat{\mathbf{R}}_{b_{t}}^{w}(\mathbf{n}_{\omega_{t}}-\bm{\zeta}_{\omega_{t}}))_{\times}\mathbf{p}_{b_{t}}^{w}-\hat{\mathbf{R}}_{b_{t}}^{w}\mathbf{R}_{b_{t}}^{w^{\top}}{{}^{w}}\mathbf{v}_{b_{t}}
=(𝐯^btw𝐑^btw𝐑btw𝐯btw)(𝐑^btw(𝐧ωt𝜻ωt))×𝐩btw\displaystyle=({{}^{w}}\hat{\mathbf{v}}_{b_{t}}-\hat{\mathbf{R}}_{b_{t}}^{w}\mathbf{R}_{b_{t}}^{w^{\top}}{{}^{w}}\mathbf{v}_{b_{t}})-(\hat{\mathbf{R}}_{b_{t}}^{w}(\mathbf{n}_{\omega_{t}}-\bm{\zeta}_{\omega_{t}}))_{\times}\mathbf{p}_{b_{t}}^{w}
=𝝃vt+(𝐩btw)×𝐑^btw(𝐧ωt𝜻ωt)\displaystyle=\bm{\xi}_{v_{t}}+(\mathbf{p}_{b_{t}}^{w})_{\times}\hat{\mathbf{R}}_{b_{t}}^{w}(\mathbf{n}_{\omega_{t}}-\bm{\zeta}_{\omega_{t}}) (30)

On the other hand, the differential of bias errors is calculated as

ddt𝜻t=[ddt𝐛^ωtddt𝐛ωtddt𝐛^atddt𝐛at]=[𝐧bωt𝐧bat]\frac{d}{dt}\bm{\zeta}_{t}=\begin{bmatrix}\frac{d}{dt}\hat{\mathbf{b}}_{\omega_{t}}-\frac{d}{dt}\mathbf{b}_{\omega_{t}}\\ \frac{d}{dt}\hat{\mathbf{b}}_{a_{t}}-\frac{d}{dt}\mathbf{b}_{a_{t}}\end{bmatrix}=\begin{bmatrix}\mathbf{n}_{b\omega_{t}}\\ \mathbf{n}_{ba_{t}}\end{bmatrix} (31)

Therefore, the linearized model can be written as in Eq. (9).

-B Derivation of 𝚺tproj,ij\mathbf{\Sigma}_{t_{proj,ij}} and σtang,ij2\sigma^{2}_{t_{ang,ij}}

The covariance matrix of reprojection error in Eq. (18) for the streetlight observation BiB_{i} and cluster LjL_{j} is derived as below:

𝚺tproj,ij=𝚺𝐩~ti+𝐜~tjm[𝐑^btw𝐩^btw]𝐏^t(𝐜~tjm[𝐑^btw𝐩^btw])\displaystyle\mathbf{\Sigma}_{t_{proj,ij}}=\mathbf{\Sigma}_{\tilde{\mathbf{p}}_{t_{i}}}+\frac{\partial\tilde{\mathbf{c}}^{m}_{t_{j}}}{\partial\begin{bmatrix}\hat{\mathbf{R}}^{w}_{b_{t}}&\hat{\mathbf{p}}^{w}_{b_{t}}\end{bmatrix}}\hat{\mathbf{P}}_{t}^{-}\left(\frac{\partial\tilde{\mathbf{c}}^{m}_{t_{j}}}{\partial\begin{bmatrix}\hat{\mathbf{R}}^{w}_{b_{t}}&\hat{\mathbf{p}}^{w}_{b_{t}}\end{bmatrix}}\right)^{\top} (32)
𝐜~tjm𝐑^btw=1Z~jc𝐊(𝐑bc𝐑^btw(𝐂~jw𝐩^btw)+𝐭bc)𝐑w^bt\displaystyle\frac{\partial\tilde{\mathbf{c}}^{m}_{t_{j}}}{\partial\hat{\mathbf{R}}^{w}_{b_{t}}}=\frac{\partial\frac{1}{\tilde{Z}_{j}^{c}}\mathbf{K}(\mathbf{R}^{c}_{b}\hat{\mathbf{R}}^{w^{\top}}_{b_{t}}(\tilde{\mathbf{C}}^{w}_{j}-\hat{\mathbf{p}}^{w}_{b_{t}})+\mathbf{t}_{b}^{c})}{\partial\hat{\mathbf{R}^{w}}_{b_{t}}}
=1Z~jc𝐊𝐂~jc𝐑^btw=1Z~jc𝐊𝐂~jc𝐂~jc𝐂~jc𝐑^btw\displaystyle\quad\quad\ =\frac{\partial\frac{1}{\tilde{Z}_{j}^{c}}\mathbf{K}\tilde{\mathbf{C}}^{c}_{j}}{\partial\hat{\mathbf{R}}^{w}_{b_{t}}}=\frac{\partial\frac{1}{\tilde{Z}_{j}^{c}}\mathbf{K}\tilde{\mathbf{C}}^{c}_{j}}{\partial\tilde{\mathbf{C}}^{c}_{j}}\frac{\partial\tilde{\mathbf{C}}^{c}_{j}}{\partial\hat{\mathbf{R}}^{w}_{b_{t}}}
=1Z~jc𝐊𝐂~jc𝐂~jc𝐑bc𝐑^btw(𝐂~jw𝐩^btw)+𝐭bc𝐑^btw\displaystyle\quad\quad\ =\frac{\partial\frac{1}{\tilde{Z}_{j}^{c}}\mathbf{K}\tilde{\mathbf{C}}^{c}_{j}}{\partial\tilde{\mathbf{C}}^{c}_{j}}\frac{\partial\mathbf{R}^{c}_{b}\hat{\mathbf{R}}^{w^{\top}}_{b_{t}}(\tilde{\mathbf{C}}^{w}_{j}-\hat{\mathbf{p}}^{w}_{b_{t}})+\mathbf{t}_{b}^{c}}{\partial\hat{\mathbf{R}}^{w}_{b_{t}}} (33)
=[fxZ~jc0X~jcfxZ~jc20fyZ~jcY~jcfyZ~jc2]𝐑bc(𝐑^btw(𝐂~jw𝐩^btw))×\displaystyle\quad\quad\ =\begin{bmatrix}\frac{f_{x}}{\tilde{Z}^{c}_{j}}&0&-\frac{\tilde{X}^{c}_{j}f_{x}}{\tilde{Z}^{c^{2}}_{j}}\\ 0&\frac{f_{y}}{\tilde{Z}^{c}_{j}}&-\frac{\tilde{Y}^{c}_{j}f_{y}}{\tilde{Z}^{c^{2}}_{j}}\end{bmatrix}\mathbf{R}^{c}_{b}(\hat{\mathbf{R}}^{w^{\top}}_{b_{t}}(\tilde{\mathbf{C}}^{w}_{j}-\hat{\mathbf{p}}^{w}_{b_{t}}))_{\times}
𝐜~tjm𝐩^btw=1Z~jc𝐊(𝐑bc𝐑^btw(𝐂~jw𝐩^btw)+𝐭bc)𝐩^btw\displaystyle\frac{\partial\tilde{\mathbf{c}}^{m}_{t_{j}}}{\partial\hat{\mathbf{p}}^{w}_{b_{t}}}=\frac{\partial\frac{1}{\tilde{Z}_{j}^{c}}\mathbf{K}(\mathbf{R}^{c}_{b}\hat{\mathbf{R}}^{w^{\top}}_{b_{t}}(\tilde{\mathbf{C}}^{w}_{j}-\hat{\mathbf{p}}^{w}_{b_{t}})+\mathbf{t}_{b}^{c})}{\partial\hat{\mathbf{p}}^{w}_{b_{t}}}
=1Z~jc𝐊𝐂~jc𝐩^btw=1Z~jc𝐊𝐂~jc𝐂~jc𝐂~jc𝐩^btw\displaystyle\quad\quad\ =\frac{\partial\frac{1}{\tilde{Z}_{j}^{c}}\mathbf{K}\tilde{\mathbf{C}}^{c}_{j}}{\partial\hat{\mathbf{p}}^{w}_{b_{t}}}=\frac{\partial\frac{1}{\tilde{Z}_{j}^{c}}\mathbf{K}\tilde{\mathbf{C}}^{c}_{j}}{\partial\tilde{\mathbf{C}}^{c}_{j}}\frac{\partial\tilde{\mathbf{C}}^{c}_{j}}{\partial\hat{\mathbf{p}}^{w}_{b_{t}}}
=1Z~jc𝐊𝐂~jc𝐂~jc𝐑bc𝐑^btw(𝐂~jw𝐩^btw)+𝐭bc𝐩^btw\displaystyle\quad\quad\ =\frac{\partial\frac{1}{\tilde{Z}_{j}^{c}}\mathbf{K}\tilde{\mathbf{C}}^{c}_{j}}{\partial\tilde{\mathbf{C}}^{c}_{j}}\frac{\partial\mathbf{R}^{c}_{b}\hat{\mathbf{R}}^{w^{\top}}_{b_{t}}(\tilde{\mathbf{C}}^{w}_{j}-\hat{\mathbf{p}}^{w}_{b_{t}})+\mathbf{t}_{b}^{c}}{\partial\hat{\mathbf{p}}^{w}_{b_{t}}}
=[fxZ~jc0X~jcfxZ~jc20fyZ~jcY~jcfyZ~jc2]𝐑bc𝐑^btw\displaystyle\quad\quad\ =-\begin{bmatrix}\frac{f_{x}}{\tilde{Z}^{c}_{j}}&0&-\frac{\tilde{X}^{c}_{j}f_{x}}{\tilde{Z}^{c^{2}}_{j}}\\ 0&\frac{f_{y}}{\tilde{Z}^{c}_{j}}&-\frac{\tilde{Y}^{c}_{j}f_{y}}{\tilde{Z}^{c^{2}}_{j}}\end{bmatrix}\mathbf{R}^{c}_{b}\hat{\mathbf{R}}^{w^{\top}}_{b_{t}} (34)

where 𝚺𝐩~ti=α𝐈2×2\mathbf{\Sigma}_{\tilde{\mathbf{p}}_{t_{i}}}=\alpha\mathbf{I}_{2\times 2} and α\alpha is a preset parameter.

Similar to 𝚺tproj,ij\mathbf{\Sigma}_{t_{proj,ij}}, the variance of angle error in Eq. (19) also originates from the covariance of detected streetlight observation and current pose.

σtang,ij2=cosθij𝐩~ti𝚺𝐩~¯ti(cosθij𝐩~ti)\displaystyle\sigma^{2}_{t_{ang,ij}}=\frac{\partial\cos\theta_{ij}}{\partial\tilde{\mathbf{p}}_{t_{i}}}\mathbf{\Sigma}_{\bar{\tilde{\mathbf{p}}}_{t_{i}}}\left(\frac{\partial\cos\theta_{ij}}{\partial\tilde{\mathbf{p}}_{t_{i}}}\right)^{\top}
+cosθij[𝐑btw𝐩btw]𝐏^t(cosθij[𝐑btw𝐩btw])\displaystyle\qquad+\frac{\partial\cos\theta_{ij}}{\partial\begin{bmatrix}\mathbf{R}^{w}_{b_{t}}&\mathbf{p}^{w}_{b_{t}}\end{bmatrix}}\hat{\mathbf{P}}_{t}^{-}\left(\frac{\partial\cos\theta_{ij}}{\partial\begin{bmatrix}\mathbf{R}^{w}_{b_{t}}&\mathbf{p}^{w}_{b_{t}}\end{bmatrix}}\right)^{\top} (35)
cosθij𝐩~ti=(𝐊1𝐩~¯ti)(𝐑bc𝐑^btw(𝐂~jw𝐩^btw)+𝐭bc)𝐊1𝐩~¯ti2𝐑bc𝐑^btw(𝐂~jw𝐩^btw)+𝐭bc2𝐩~ti\displaystyle\frac{\partial\cos\theta_{ij}}{\partial\tilde{\mathbf{p}}_{t_{i}}}=\frac{\partial\frac{(\mathbf{K}^{-1}\bar{\tilde{\mathbf{p}}}_{t_{i}})^{\top}(\mathbf{R}^{c}_{b}\hat{\mathbf{R}}^{w^{\top}}_{b_{t}}(\tilde{\mathbf{C}}^{w}_{j}-\hat{\mathbf{p}}^{w}_{b_{t}})+\mathbf{t}_{b}^{c})}{\lVert\mathbf{K}^{-1}\bar{\tilde{\mathbf{p}}}_{t_{i}}\rVert_{2}\cdot\lVert\mathbf{R}^{c}_{b}\hat{\mathbf{R}}^{w^{\top}}_{b_{t}}(\tilde{\mathbf{C}}^{w}_{j}-\hat{\mathbf{p}}^{w}_{b_{t}})+\mathbf{t}_{b}^{c}\rVert_{2}}}{\partial\tilde{\mathbf{p}}_{t_{i}}}
=𝐂~jc𝐂~jc2𝐏~ti𝐏~ti2𝐏~ti𝐏~ti𝐩~ti\displaystyle=\frac{\tilde{\mathbf{C}}_{j}^{c^{\top}}}{\lVert\tilde{\mathbf{C}}_{j}^{c}\rVert_{2}}\frac{\partial\frac{\tilde{\mathbf{P}}_{t_{i}}}{\lVert\tilde{\mathbf{P}}_{t_{i}}\rVert_{2}}}{\partial\tilde{\mathbf{P}}_{t_{i}}}\frac{\partial\tilde{\mathbf{P}}_{t_{i}}}{\partial\tilde{\mathbf{p}}_{t_{i}}}
=𝐂~jc𝐂~jc2(𝐈𝐏~ti2𝐏~ti𝐏~ti𝐏~ti23)𝐊1\displaystyle=\frac{\tilde{\mathbf{C}}_{j}^{c^{\top}}}{\lVert\tilde{\mathbf{C}}_{j}^{c}\rVert_{2}}\left(\frac{\mathbf{I}}{\lVert\tilde{\mathbf{P}}_{t_{i}}\rVert_{2}}-\frac{\tilde{\mathbf{P}}_{t_{i}}\tilde{\mathbf{P}}_{t_{i}}^{\top}}{\lVert\tilde{\mathbf{P}}_{t_{i}}\rVert_{2}^{3}}\right)\mathbf{K}^{-1} (36)
cosθij𝐑^btw=(𝐊1𝐩~¯ti)(𝐑bc𝐑^btw(𝐂~jw𝐩^btw)+𝐭bc)𝐊1𝐩~¯ti2𝐑bc𝐑^btw(𝐂~jw𝐩^btw)+𝐭bc2𝐑^btw\displaystyle\frac{\partial\cos\theta_{ij}}{\partial\hat{\mathbf{R}}^{w}_{b_{t}}}=\frac{\partial\frac{(\mathbf{K}^{-1}\bar{\tilde{\mathbf{p}}}_{t_{i}})^{\top}(\mathbf{R}^{c}_{b}\hat{\mathbf{R}}^{w^{\top}}_{b_{t}}(\tilde{\mathbf{C}}^{w}_{j}-\hat{\mathbf{p}}^{w}_{b_{t}})+\mathbf{t}_{b}^{c})}{\lVert\mathbf{K}^{-1}\bar{\tilde{\mathbf{p}}}_{t_{i}}\rVert_{2}\cdot\lVert\mathbf{R}^{c}_{b}\hat{\mathbf{R}}^{w^{\top}}_{b_{t}}(\tilde{\mathbf{C}}^{w}_{j}-\hat{\mathbf{p}}^{w}_{b_{t}})+\mathbf{t}_{b}^{c}\rVert_{2}}}{\partial\hat{\mathbf{R}}^{w}_{b_{t}}}
=𝐏~ti𝐏~ti2𝐂~jc𝐂~jc2𝐂~jc𝐂~jc𝐑^btw\displaystyle=\frac{\tilde{\mathbf{P}}_{t_{i}}^{\top}}{\lVert\tilde{\mathbf{P}}_{t_{i}}\rVert_{2}}\frac{\partial\frac{\tilde{\mathbf{C}}_{j}^{c}}{\lVert\tilde{\mathbf{C}}_{j}^{c}\rVert_{2}}}{\partial\tilde{\mathbf{C}}_{j}^{c}}\frac{\partial\tilde{\mathbf{C}}_{j}^{c}}{\partial\hat{\mathbf{R}}^{w}_{b_{t}}}
=𝐏~ti𝐏~ti2(𝐈𝐂~jc2𝐂~jc𝐂~jc𝐂~jc23)𝐂~jc𝐑^btw\displaystyle=\frac{\tilde{\mathbf{P}}_{t_{i}}^{\top}}{\lVert\tilde{\mathbf{P}}_{t_{i}}\rVert_{2}}\left(\frac{\mathbf{I}}{\lVert\tilde{\mathbf{C}}_{j}^{c}\rVert_{2}}-\frac{\tilde{\mathbf{C}}_{j}^{c}\tilde{\mathbf{C}}_{j}^{c^{\top}}}{\lVert\tilde{\mathbf{C}}_{j}^{c}\rVert_{2}^{3}}\right)\frac{\partial\tilde{\mathbf{C}}_{j}^{c}}{\partial\hat{\mathbf{R}}^{w}_{b_{t}}}
=𝐏~ti𝐏~ti2(𝐈𝐂~jc2𝐂~jc𝐂~jc𝐂~jc23)𝐑bc(𝐑^btw(𝐂~jw𝐩^btw))×\displaystyle=\frac{\tilde{\mathbf{P}}_{t_{i}}^{\top}}{\lVert\tilde{\mathbf{P}}_{t_{i}}\rVert_{2}}\left(\frac{\mathbf{I}}{\lVert\tilde{\mathbf{C}}_{j}^{c}\rVert_{2}}-\frac{\tilde{\mathbf{C}}_{j}^{c}\tilde{\mathbf{C}}_{j}^{c^{\top}}}{\lVert\tilde{\mathbf{C}}_{j}^{c}\rVert_{2}^{3}}\right)\mathbf{R}^{c}_{b}(\hat{\mathbf{R}}^{w^{\top}}_{b_{t}}(\tilde{\mathbf{C}}^{w}_{j}-\hat{\mathbf{p}}^{w}_{b_{t}}))_{\times} (37)
cosθij𝐩^btw=(𝐊1𝐩~¯ti)(𝐑bc𝐑^btw(𝐂~jw𝐩^btw)+𝐭bc)𝐊1𝐩~¯ti2𝐑bc𝐑^btw(𝐂~jw𝐩^btw)+𝐭bc2𝐩^btw\displaystyle\frac{\partial\cos\theta_{ij}}{\partial\hat{\mathbf{p}}^{w}_{b_{t}}}=\frac{\partial\frac{(\mathbf{K}^{-1}\bar{\tilde{\mathbf{p}}}_{t_{i}})^{\top}(\mathbf{R}^{c}_{b}\hat{\mathbf{R}}^{w^{\top}}_{b_{t}}(\tilde{\mathbf{C}}^{w}_{j}-\hat{\mathbf{p}}^{w}_{b_{t}})+\mathbf{t}_{b}^{c})}{\lVert\mathbf{K}^{-1}\bar{\tilde{\mathbf{p}}}_{t_{i}}\rVert_{2}\cdot\lVert\mathbf{R}^{c}_{b}\hat{\mathbf{R}}^{w^{\top}}_{b_{t}}(\tilde{\mathbf{C}}^{w}_{j}-\hat{\mathbf{p}}^{w}_{b_{t}})+\mathbf{t}_{b}^{c}\rVert_{2}}}{\partial\hat{\mathbf{p}}^{w}_{b_{t}}}
=𝐏~ti𝐏~ti2𝐂~jc𝐂~jc2𝐂~jc𝐂~jc𝐩^btw\displaystyle=\frac{\tilde{\mathbf{P}}_{t_{i}}^{\top}}{\lVert\tilde{\mathbf{P}}_{t_{i}}\rVert_{2}}\frac{\partial\frac{\tilde{\mathbf{C}}_{j}^{c}}{\lVert\tilde{\mathbf{C}}_{j}^{c}\rVert_{2}}}{\partial\tilde{\mathbf{C}}_{j}^{c}}\frac{\partial\tilde{\mathbf{C}}_{j}^{c}}{\partial\hat{\mathbf{p}}^{w}_{b_{t}}}
=𝐏~ti𝐏~ti2(𝐈𝐂~jc2𝐂~jc𝐂~jc𝐂~jc23)𝐂~jc𝐩^btw\displaystyle=\frac{\tilde{\mathbf{P}}_{t_{i}}^{\top}}{\lVert\tilde{\mathbf{P}}_{t_{i}}\rVert_{2}}\left(\frac{\mathbf{I}}{\lVert\tilde{\mathbf{C}}_{j}^{c}\rVert_{2}}-\frac{\tilde{\mathbf{C}}_{j}^{c}\tilde{\mathbf{C}}_{j}^{c^{\top}}}{\lVert\tilde{\mathbf{C}}_{j}^{c}\rVert_{2}^{3}}\right)\frac{\partial\tilde{\mathbf{C}}_{j}^{c}}{\partial\hat{\mathbf{p}}^{w}_{b_{t}}}
=𝐏~ti𝐏~ti2(𝐈𝐂~jc2𝐂~jc𝐂~jc𝐂~jc23)𝐑bc𝐑^btw\displaystyle=-\frac{\tilde{\mathbf{P}}_{t_{i}}^{\top}}{\lVert\tilde{\mathbf{P}}_{t_{i}}\rVert_{2}}\left(\frac{\mathbf{I}}{\lVert\tilde{\mathbf{C}}_{j}^{c}\rVert_{2}}-\frac{\tilde{\mathbf{C}}_{j}^{c}\tilde{\mathbf{C}}_{j}^{c^{\top}}}{\lVert\tilde{\mathbf{C}}_{j}^{c}\rVert_{2}^{3}}\right)\mathbf{R}^{c}_{b}\hat{\mathbf{R}}^{w^{\top}}_{b_{t}} (38)

where ()¯\bar{(\cdot)} denotes the homogeneous coordinates. 𝚺𝐩~¯ti=diagblock(𝐈2×2,0)\mathbf{\Sigma}_{\bar{\tilde{\mathbf{p}}}_{t_{i}}}=diag_{b}lock(\mathbf{I}_{2\times 2},0).

-C Derivation of the Jacobian Matrix of the Camera-based Observation Model

For the derivation of the Jacobian matrix 𝐇cti\mathbf{H}_{c_{t_{i}}} in Eq. (24), we transform the observation function in Eq. (23) as:

𝐳cti=𝐲tihi(𝚿^ti)=hi(𝚿ti)hi(𝚿^ti)+𝐧cti\displaystyle\mathbf{z}_{c_{t_{i}}}=\mathbf{y}_{t_{i}}-h_{i}(\hat{\mathbf{\Psi}}_{t_{i}})=h_{i}(\mathbf{\Psi}_{t_{i}})-h_{i}(\hat{\mathbf{\Psi}}_{t_{i}})+\mathbf{n}_{c_{t_{i}}}
hi(𝚿^ti)+𝐇i(𝚿^𝐭𝐢)(𝚿ti𝚿^ti)hi(𝚿^ti)+𝐧cti\displaystyle\approx h_{i}(\hat{\mathbf{\Psi}}_{t_{i}})+\mathbf{H}_{i}(\mathbf{\hat{\mathbf{\Psi}}_{t_{i}}})(\mathbf{\Psi}_{t_{i}}-\hat{\mathbf{\Psi}}_{t_{i}})-h_{i}(\hat{\mathbf{\Psi}}_{t_{i}})+\mathbf{n}_{c_{t_{i}}}
=𝐇i(𝚿^𝐭𝐢)(𝚿ti𝚿^ti)+𝐧cti\displaystyle=\mathbf{H}_{i}(\mathbf{\hat{\mathbf{\Psi}}_{t_{i}}})(\mathbf{\Psi}_{t_{i}}-\hat{\mathbf{\Psi}}_{t_{i}})+\mathbf{n}_{c_{t_{i}}}
=𝐇i(𝚿^𝐭𝐢)[𝐑btw(𝐂~tjw𝐭btw)𝐑^btw(𝐂~tjw𝐭^btw)]+𝐧cti\displaystyle=\mathbf{H}_{i}(\mathbf{\hat{\mathbf{\Psi}}_{t_{i}}})\left[\mathbf{R}_{b_{t}}^{w^{\top}}(\tilde{\mathbf{C}}_{t_{j}}^{w}-\mathbf{t}^{w}_{b_{t}})-\hat{\mathbf{R}}_{b_{t}}^{w^{\top}}(\tilde{\mathbf{C}}_{t_{j}}^{w}-\hat{\mathbf{t}}^{w}_{b_{t}})\right]+\mathbf{n}_{c_{t_{i}}}
=𝐇i(𝚿^𝐭𝐢)[𝐑^btw(𝐑^btw𝐑btw𝐈)𝐂~tjw\displaystyle=\mathbf{H}_{i}(\mathbf{\hat{\mathbf{\Psi}}_{t_{i}}})\left[\hat{\mathbf{R}}_{b_{t}}^{w^{\top}}(\hat{\mathbf{R}}_{b_{t}}^{w}\mathbf{R}_{b_{t}}^{w^{\top}}-\mathbf{I})\tilde{\mathbf{C}}_{t_{j}}^{w}\right.
+𝐑^btw(𝐭^btw𝐑^btw𝐑btw𝐭btw)]+𝐧cti\displaystyle\qquad\qquad\qquad\qquad\qquad\left.+\hat{\mathbf{R}}_{b_{t}}^{w^{\top}}(\hat{\mathbf{t}}^{w}_{b_{t}}-\hat{\mathbf{R}}_{b_{t}}^{w}\mathbf{R}_{b_{t}}^{w^{\top}}\mathbf{t}^{w}_{b_{t}})\right]+\mathbf{n}_{c_{t_{i}}}
𝐇i(𝚿^𝐭𝐢)[𝐑^btw(𝐂~tjw)×𝝃Rt𝐑^btw𝝃pt]+𝐧cti\displaystyle\approx-\mathbf{H}_{i}(\mathbf{\hat{\mathbf{\Psi}}_{t_{i}}})\left[\hat{\mathbf{R}}_{b_{t}}^{w^{\top}}(\tilde{\mathbf{C}}_{t_{j}}^{w})_{\times}\bm{\xi}_{R_{t}}-\hat{\mathbf{R}}_{b_{t}}^{w^{\top}}\bm{\xi}_{p_{t}}\right]+\mathbf{n}_{c_{t_{i}}} (39)

The Jacobian matrix 𝐇i(𝚿^𝐭𝐢)\mathbf{H}_{i}(\mathbf{\hat{\mathbf{\Psi}}_{t_{i}}}) is formulated as:

𝐇i(𝚿^ti)=h(𝚿ti)𝚿ti|𝚿ti=𝚿^ti\displaystyle\mathbf{H}_{i}(\hat{\mathbf{\Psi}}_{t_{i}})=\frac{\partial h(\mathbf{\Psi}_{t_{i}})}{\partial\mathbf{\Psi}_{t_{i}}}\Big{|}_{\mathbf{\Psi}_{t_{i}}=\hat{\mathbf{\Psi}}_{t_{i}}}
=1Z^tjc2(𝐑bc𝚿^ti+𝐭bc)Z^tjc𝚿ti|𝚿ti=𝚿^ti+1Z^tjc𝐑bc\displaystyle=-\frac{1}{\hat{Z}_{t_{j}}^{c^{2}}}(\mathbf{R}_{b}^{c}\hat{\mathbf{\Psi}}_{t_{i}}+\mathbf{t}_{b}^{c})\frac{\partial\hat{Z}_{t_{j}}^{c}}{\partial\mathbf{\Psi}_{t_{i}}}\Big{|}_{\mathbf{\Psi}_{t_{i}}=\hat{\mathbf{\Psi}}_{t_{i}}}+\frac{1}{\hat{Z}_{t_{j}}^{c}}\mathbf{R}_{b}^{c}
Z^tjc𝚿ti|𝚿ti=𝚿^ti=𝐑b,3c𝚿ti+tb,3c𝚿ti|𝚿ti=𝚿^ti=𝐑b,3c\displaystyle\frac{\partial\hat{Z}_{t_{j}}^{c}}{\partial\mathbf{\Psi}_{t_{i}}}\Big{|}_{\mathbf{\Psi}_{t_{i}}=\hat{\mathbf{\Psi}}_{t_{i}}}=\frac{\partial\mathbf{R}_{b,3}^{c}\mathbf{\Psi}_{t_{i}}+t_{b,3}^{c}}{\partial\mathbf{\Psi}_{t_{i}}}\Big{|}_{\mathbf{\Psi}_{t_{i}}=\hat{\mathbf{\Psi}}_{t_{i}}}=\mathbf{R}_{b,3}^{c} (40)

where 𝐑b,3c\mathbf{R}_{b,3}^{c} denotes the third row of 𝐑bc\mathbf{R}_{b}^{c} and tb,3ct_{b,3}^{c} is the third element of 𝐭bc\mathbf{t}_{b}^{c}. By substituting Eq. (-C) into Eq. (-C), the Jacobian matrix 𝐇cti\mathbf{H}_{c_{t_{i}}} of the camera-based observation model can be derived.

ddt[𝝃Rt𝝃vt𝝃pt𝜻ωt𝜻at]=[𝟎𝟎𝟎𝐑^btw𝟎(𝐠w)×𝟎𝟎(𝐯^btw)×𝐑^btw𝐑^btw𝟎𝐈𝟎(𝐩^btw)×𝐑^btw𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎][𝝃Rt𝝃vt𝝃pt𝜻ωt𝜻at]+\displaystyle\frac{d}{dt}\!\begin{bmatrix}\bm{\xi}_{R_{t}}\\ \bm{\xi}_{v_{t}}\\ \bm{\xi}_{p_{t}}\\ \bm{\zeta}_{\omega_{t}}\\ \bm{\zeta}_{a_{t}}\end{bmatrix}\!=\!\begin{bmatrix}\mathbf{0}&\mathbf{0}&\mathbf{0}&-\hat{\mathbf{R}}_{b_{t}}^{w}&\mathbf{0}\\ (\mathbf{g}^{w})_{\times}&\mathbf{0}&\mathbf{0}&-({{}^{w}}\hat{\mathbf{v}}_{b_{t}})_{\times}\hat{\mathbf{R}}_{b_{t}}^{w}&-\hat{\mathbf{R}}_{b_{t}}^{w}\\ \mathbf{0}&\mathbf{I}&\mathbf{0}&-(\hat{\mathbf{p}}_{b_{t}}^{w})_{\times}\hat{\mathbf{R}}_{b_{t}}^{w}&\mathbf{0}\\ \mathbf{0}&\mathbf{0}&\mathbf{0}&\mathbf{0}&\mathbf{0}\\ \mathbf{0}&\mathbf{0}&\mathbf{0}&\mathbf{0}&\mathbf{0}\end{bmatrix}\begin{bmatrix}\bm{\xi}_{R_{t}}\\ \bm{\xi}_{v_{t}}\\ \bm{\xi}_{p_{t}}\\ \bm{\zeta}_{\omega_{t}}\\ \bm{\zeta}_{a_{t}}\end{bmatrix}+ [𝐑^btw𝟎𝟎𝟎𝟎(𝐯^btw)×𝐑^btw𝐑^btw𝟎𝟎𝟎(𝐩^btw)×𝐑^btw𝟎𝐑^btw𝟎𝟎𝟎𝟎𝟎𝐈𝟎𝟎𝟎𝟎𝟎𝐈][𝐧ωt𝐧at𝟎3×1𝐧bωt𝐧bat]𝐀t[𝝃t𝜻t]+𝐀𝐝𝐗^t,𝐛^t𝐧t\displaystyle\!\begin{bmatrix}\hat{\mathbf{R}}_{b_{t}}^{w}&\mathbf{0}&\mathbf{0}&\mathbf{0}&\mathbf{0}\\ ({{}^{w}}\hat{\mathbf{v}}_{b_{t}})_{\times}\hat{\mathbf{R}}_{b_{t}}^{w}&\hat{\mathbf{R}}_{b_{t}}^{w}&\mathbf{0}&\mathbf{0}&\mathbf{0}\\ (\hat{\mathbf{p}}_{b_{t}}^{w})_{\times}\hat{\mathbf{R}}_{b_{t}}^{w}&\mathbf{0}&\hat{\mathbf{R}}_{b_{t}}^{w}&\mathbf{0}&\mathbf{0}\\ \mathbf{0}&\mathbf{0}&\mathbf{0}&\mathbf{I}&\mathbf{0}\\ \mathbf{0}&\mathbf{0}&\mathbf{0}&\mathbf{0}&\mathbf{I}\end{bmatrix}\!\begin{bmatrix}\mathbf{n}_{\omega_{t}}\\ \mathbf{n}_{a_{t}}\\ \mathbf{0}_{3\times 1}\\ \mathbf{n}_{b\omega_{t}}\\ \mathbf{n}_{ba_{t}}\end{bmatrix}\!\triangleq\!\mathbf{A}_{t}\!\begin{bmatrix}\bm{\xi}_{t}\\ \bm{\zeta}_{t}\end{bmatrix}\!+\!\mathbf{Ad}_{\hat{\mathbf{X}}_{t},\hat{\mathbf{b}}_{t}}\mathbf{n}_{t}
𝐛t=[𝐛ωt𝐛at]\mathbf{b}_{t}=\begin{bmatrix}\mathbf{b}_{\omega_{t}}\\ \mathbf{b}_{a_{t}}\end{bmatrix} (41)
𝐳ot=[𝟎𝐈𝟎𝟎𝟎][𝝃t𝜻t]+𝐑^btw𝐧ot𝐇ot[𝝃t𝜻t]+𝐑^btw𝐧ot\displaystyle\mathbf{z}_{o_{t}}=\begin{bmatrix}\mathbf{0}&\mathbf{I}&\mathbf{0}&\mathbf{0}&\mathbf{0}\end{bmatrix}\begin{bmatrix}\bm{\xi}_{t}\\ \bm{\zeta}_{t}\end{bmatrix}+\hat{\mathbf{R}}_{b_{t}}^{w}\mathbf{n}_{o_{t}}\triangleq-\mathbf{H}_{o_{t}}\begin{bmatrix}\bm{\xi}_{t}\\ \bm{\zeta}_{t}\end{bmatrix}+\hat{\mathbf{R}}_{b_{t}}^{w}\mathbf{n}_{o_{t}} (42)
𝐳cti=𝐇i(𝚿^ti)𝐑^btw[(𝐂~tjw)×𝟎𝐈𝟎𝟎][𝝃t𝜻t]+𝐧c𝐇cti[𝝃t𝜻t]+𝐧c\displaystyle\mathbf{z}_{c_{t_{i}}}=-\mathbf{H}_{i}(\hat{\mathbf{\Psi}}_{t_{i}})\hat{\mathbf{R}}_{b_{t}}^{w^{\top}}\begin{bmatrix}(\tilde{\mathbf{C}}_{t_{j}}^{w})_{\times}&\mathbf{0}&-\mathbf{I}&\mathbf{0}&\mathbf{0}\end{bmatrix}\begin{bmatrix}\bm{\xi}_{t}\\ \bm{\zeta}_{t}\end{bmatrix}+\mathbf{n}_{c}\triangleq-\mathbf{H}_{c_{t_{i}}}\begin{bmatrix}\bm{\xi}_{t}\\ \bm{\zeta}_{t}\end{bmatrix}+\mathbf{n}_{c} (43)
sre=1nrei=1nreΔpibre++γ1Δtbrebre++γ2Δθbrebre++γ3i=1nreneg(i)\displaystyle s_{re}=\frac{1}{n_{re}}\sum_{i=1}^{n_{re}}\Delta p^{b_{re}+}_{i}+\gamma_{1}\Delta t_{b_{re}}^{b_{re}+}+\gamma_{2}\Delta\theta_{b_{re}}^{b_{re}+}+\gamma_{3}\sum_{i=1}^{n_{re}}\!neg(i)
Δpibre+=πc(𝐑bc𝐑^brew+(𝐂~rejw𝐩^brew+)+𝐭bc)𝐩~rei2\displaystyle\Delta p^{b_{re}+}_{i}=\lVert\pi_{c}(\mathbf{R}_{b}^{c}\hat{\mathbf{R}}_{b_{re}}^{{w+}^{\top}}(\tilde{\mathbf{C}}_{re_{j}}^{w}-\hat{\mathbf{p}}^{w+}_{b_{re}})+\mathbf{t}_{b}^{c})-\tilde{\mathbf{p}}_{re_{i}}\rVert_{2}
Δtbrebre+=𝐩^bre,1,2w𝐩^bre,1,2w+2\displaystyle\Delta t_{b_{re}}^{b_{re}+}=\lVert\hat{\mathbf{p}}_{b_{re},1,2}^{w-}-\hat{\mathbf{p}}_{b_{re},1,2}^{w+}\rVert_{2}
Δθbrebre+=yaw(𝐑^brew𝐑^brew+)\displaystyle\Delta\theta_{b_{re}}^{b_{re}+}=yaw(\hat{\mathbf{R}}_{b_{re}}^{{w-}^{\top}}\hat{\mathbf{R}}_{b_{re}}^{w+})