This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Supplementary material

conference: MM ’22: ; 10 – 14 Oct 2022; Lisbon, Portugalbooktitle: Multimedia 2022 Online, hosted by Lisbon, Portugalprice: 15.00isbn: 978-1-4503-XXXX-X/18/06

1. PROOF OF PROPOSITION 1

Proposition 0.

Suppose that the Markov chain (y,r,s)𝒙𝒉(y,r,s)\rightarrow\boldsymbol{x}\rightarrow\boldsymbol{h} holds. Then the upper bound of infoFiltra\mathcal{L}_{infoFiltra} is as follows

(1) infoFiltra\displaystyle\mathcal{L}_{infoFiltra} \displaystyle\leq λ1I(𝒉,𝒙)λ2I(𝒉,y)λ3I(𝒉,z)\displaystyle-\lambda_{1}I(\boldsymbol{h},\boldsymbol{x})-\lambda_{2}I(\boldsymbol{h},y)-\lambda_{3}I(\boldsymbol{h},z)
=\displaystyle= ¯infoFiltra\displaystyle\overline{\mathcal{L}}_{infoFiltra}

where λ1=α(1β)\lambda_{1}=\alpha(1-\beta), λ2=αβ\lambda_{2}=\alpha\beta, λ3=α(βγ)\lambda_{3}=\alpha(\beta-\gamma), βγ\beta\geq\gamma, and zz represent the sensitive attribute.

Proof.

Note that, our original loss function is given by

(2) infoFiltra=\displaystyle\mathcal{L}_{infoFiltra}= α(I(𝒉,𝒙)+βI(𝒉,r)+γI(𝒉,s)),\displaystyle\alpha(-I(\boldsymbol{h},\boldsymbol{x})+\beta I(\boldsymbol{h},r^{*})+\gamma I(\boldsymbol{h},s^{*})),
s.t.r=\displaystyle\mathrm{s.t.}r^{*}= argmaxr,I(r,𝒙)>0,I(r,y)=0I(𝒉,r),\displaystyle argmax_{r,I(r,\boldsymbol{x})>0,I(r,y)=0}I(\boldsymbol{h},r),
s=\displaystyle s^{*}= argmaxs,I(s,𝒙)>0,I(s,y)=0I(𝒉,s).\displaystyle argmax_{s,I(s,\boldsymbol{x})>0,I(s,y)=0}I(\boldsymbol{h},s).

where α,β,γ0\alpha,\beta,\gamma\geq 0. Since the Markov chain (y,r,s)𝒙𝒉(y,r,s)\rightarrow\boldsymbol{x}\rightarrow\boldsymbol{h}, we have the following inequality

(3) I(𝒉,(y,r,s))I(𝒉,𝒙)I(\boldsymbol{h},(y,r^{*},s^{*}))\leq I(\boldsymbol{h},\boldsymbol{x})

Given that

I(𝒉,(y,r,s))\displaystyle\quad I(\boldsymbol{h},(y,r^{*},s^{*}))
=H(𝒉)H(𝒉|y,r,s)\displaystyle=H(\boldsymbol{h})-H(\boldsymbol{h}|y,r^{*},s^{*})
=H(𝒉)H(𝒉|r)+H(𝒉|r)H(𝒉|y,r,s)\displaystyle=H(\boldsymbol{h})-H(\boldsymbol{h}|r^{*})+H(\boldsymbol{h}|r^{*})-H(\boldsymbol{h}|y,r^{*},s^{*})
(4) =I(𝒉,r)+I(𝒉,(y,s)|r)\displaystyle=I(\boldsymbol{h},r^{*})+I(\boldsymbol{h},(y,s^{*})|r^{*})

Where H()H(\cdot) represents information entropy and mutual information has the property that I(a,b)=H(a)H(a|b)I(a,b)=H(a)-H(a|b). Considering that y,ry,r^{*} and ss^{*} are independent of each other, and the property of mutual information where I(a,b)=I(b,a)I(a,b)=I(b,a), then

I(𝒉,(y,s)|r)\displaystyle\quad I(\boldsymbol{h},(y,s^{*})|r^{*})
=H((y,s)|r)H((y,s)|𝒉,r)\displaystyle=H((y,s^{*})|r^{*})-H((y,s^{*})|\boldsymbol{h},r^{*})
H(y,s)H(y,s|𝒉)]\displaystyle\geq H(y,s^{*})-H(y,s^{*}|\boldsymbol{h})]
=I((y,s),𝒉)\displaystyle=I((y,s^{*}),\boldsymbol{h})
=H(𝒉)H(𝒉|y,s)\displaystyle=H(\boldsymbol{h})-H(\boldsymbol{h}|y,s^{*})
=H(𝒉)H(𝒉|s)+H(𝒉|s)H(𝒉|y,s)\displaystyle=H(\boldsymbol{h})-H(\boldsymbol{h}|s^{*})+H(\boldsymbol{h}|s^{*})-H(\boldsymbol{h}|y,s^{*})
=I(𝒉,s)+I(𝒉,y|s)\displaystyle=I(\boldsymbol{h},s^{*})+I(\boldsymbol{h},y|s^{*})
=I(𝒉,s)+H(y|s)H(y|𝒉,s)\displaystyle=I(\boldsymbol{h},s^{*})+H(y|s^{*})-H(y|\boldsymbol{h},s^{*})
I(𝒉,s)+H(y)H(y|𝒉)\displaystyle\geq I(\boldsymbol{h},s^{*})+H(y)-H(y|\boldsymbol{h})
(5) =I(𝒉,s)+I(𝒉,y)\displaystyle=I(\boldsymbol{h},s^{*})+I(\boldsymbol{h},y)

Combining the equation 1 and the inequality 3, 1, we can get the following inequality

(6) I(𝒉,s)+I(𝒉,r)I(𝒉,𝒙)I(𝒉,y)I(\boldsymbol{h},s^{*})+I(\boldsymbol{h},r^{*})\leq I(\boldsymbol{h},\boldsymbol{x})-I(\boldsymbol{h},y)

So we can eliminate I(𝒉,r)I(\boldsymbol{h},r^{*}) in the original loss function that are hard to calculate.

infoFiltra\displaystyle\quad\mathcal{L}_{infoFiltra}
=α(I(𝒉,𝒙)+β(I(𝒉,r)+I(𝒉,s))+p)\displaystyle=\alpha(-I(\boldsymbol{h},\boldsymbol{x})+\beta(I(\boldsymbol{h},r^{*})+I(\boldsymbol{h},s^{*}))+p)
(7) α(I(𝒉,𝒙)+β(I(𝒉,𝒙)I(𝒉,y))+p)\displaystyle\leq\alpha(-I(\boldsymbol{h},\boldsymbol{x})+\beta(I(\boldsymbol{h},\boldsymbol{x})-I(\boldsymbol{h},y))+p)

Where p=(γβ)I(𝒉,s)p=(\gamma-\beta)I(\boldsymbol{h},s^{*}). Then our target is to find the bound for pp. We can deduce sensitive information from sensitive attributes. There is another Markov chain zsz\rightarrow s. Then I(𝒉,z)I(𝒉,s)I(\boldsymbol{h},z)\leq I(\boldsymbol{h},s^{*}). Combining the assumption βγ\beta\geq\gamma, the upper bound of pp is p(γβ)I(𝒉,z)p\leq(\gamma-\beta)I(\boldsymbol{h},z). We have already discussed the necessity of βγ\beta\geq\gamma in the text. So we can prove that

infoFiltra\displaystyle\mathcal{L}_{infoFiltra} α(I(𝒉,𝒙)+β(I(𝒉,𝒙)I(𝒉,y))\displaystyle\leq\alpha(-I(\boldsymbol{h},\boldsymbol{x})+\beta(I(\boldsymbol{h},\boldsymbol{x})-I(\boldsymbol{h},y))
+(γβ)I(𝒉,z))\displaystyle\quad+(\gamma-\beta)I(\boldsymbol{h},z))
(8) =λ1I(𝒉,𝒙)λ2I(𝒉,y)λ3I(𝒉,z)\displaystyle=-\lambda_{1}I(\boldsymbol{h},\boldsymbol{x})-\lambda_{2}I(\boldsymbol{h},y)-\lambda_{3}I(\boldsymbol{h},z)

where λ1=α(1β)\lambda_{1}=\alpha(1-\beta), λ2=αβ\lambda_{2}=\alpha\beta, λ3=α(βγ)\lambda_{3}=\alpha(\beta-\gamma). ∎

2. PROOF OF PROPOSITION 2

Proposition 0.

Assume that there exists a deterministic function map xx to yy, the gap ϵ=¯infoFiltrainfoFiltra\epsilon=\overline{\mathcal{L}}_{infoFiltra}-\mathcal{L}_{infoFiltra} can be bounded by

(9) ϵαβ(I(𝒙,y)I(𝒉,y)I(𝒉,z))\epsilon\leq\alpha\beta(I(\boldsymbol{x},y)-I(\boldsymbol{h},y)-I(\boldsymbol{h},z))
Proof.

The gap ϵ\epsilon is given by

(10) ϵ\displaystyle\epsilon =\displaystyle= α(β(I(𝒉,𝒙)I(𝒉,y)I(𝒉,r)Q1)+\displaystyle\alpha(\beta(\underbrace{I(\boldsymbol{h},\boldsymbol{x})-I(\boldsymbol{h},y)-I(\boldsymbol{h},r^{*})}_{Q_{1}})+
γ(I(𝒉,z)I(𝒉,s)Q2)βI(𝒉,z))\displaystyle\gamma(\underbrace{I(\boldsymbol{h},z)-I(\boldsymbol{h},s^{*})}_{Q_{2}})-\beta I(\boldsymbol{h},z))

Suppose there is a function ff make that 𝒙=f(y,r,s)\boldsymbol{x}=f(y,r,s). Let r~\widetilde{r} and s~\widetilde{s} be the random variable in the function ff. We have

(11) I(𝒉,𝒙)\displaystyle I(\boldsymbol{h},\boldsymbol{x}) =\displaystyle= I(𝒉,(y,r~,s~))\displaystyle I(\boldsymbol{h},(y,\widetilde{r},\widetilde{s}))
=\displaystyle= I(𝒉,r~)+I(𝒉,(y,s~)|r~)\displaystyle I(\boldsymbol{h},\widetilde{r})+I(\boldsymbol{h},(y,\widetilde{s})|\widetilde{r})

Obviously, I(𝒉,r~)I(𝒉,r)I(\boldsymbol{h},\widetilde{r})\leq I(\boldsymbol{h},r^{*}). We obtain

(12) Q1\displaystyle Q_{1} \displaystyle\leq I(𝒉,𝒙)I(𝒉,y)I(𝒉,r~)\displaystyle I(\boldsymbol{h},\boldsymbol{x})-I(\boldsymbol{h},y)-I(\boldsymbol{h},\widetilde{r})
=\displaystyle= I(𝒉,r~)+I(𝒉,(y,s~)|r~)I(𝒉,y)I(𝒉,r~)\displaystyle I(\boldsymbol{h},\widetilde{r})+I(\boldsymbol{h},(y,\widetilde{s})|\widetilde{r})-I(\boldsymbol{h},y)-I(\boldsymbol{h},\widetilde{r})
=\displaystyle= I(𝒉,(y,s~)|r~)I(𝒉,y)\displaystyle I(\boldsymbol{h},(y,\widetilde{s})|\widetilde{r})-I(\boldsymbol{h},y)
=\displaystyle= I(𝒉,(y,s~)|r~)I(𝒙,y)+I(𝒙,y)I(𝒉,y)\displaystyle I(\boldsymbol{h},(y,\widetilde{s})|\widetilde{r})-I(\boldsymbol{x},y)+I(\boldsymbol{x},y)-I(\boldsymbol{h},y)
=\displaystyle= H((y,s~)|r~)H((y,s~)|𝒉,r~)H(y)+H(y|𝒙)\displaystyle H((y,\widetilde{s})|\widetilde{r})-H((y,\widetilde{s})|\boldsymbol{h},\widetilde{r})-H(y)+H(y|\boldsymbol{x})
+I(𝒙,y)I(𝒉,y)\displaystyle+I(\boldsymbol{x},y)-I(\boldsymbol{h},y)

Given that y,s~y,\widetilde{s} and r~\widetilde{r} are independent of each other, we have H((y,s~)|r~)=H(y,s~)H((y,\widetilde{s})|\widetilde{r})=H(y,\widetilde{s}), and yy can be derived from xx so that H(y|𝒙)=0H(y|\boldsymbol{x})=0. We get

(13) Q1I(𝒙,y)I(𝒉,y)Q_{1}\leq I(\boldsymbol{x},y)-I(\boldsymbol{h},y)

Due to Q20Q_{2}\leq 0, we can prove that

(14) ϵαβ(I(𝒙,y)I(𝒉,y)I(𝒉,z))\epsilon\leq\alpha\beta(I(\boldsymbol{x},y)-I(\boldsymbol{h},y)-I(\boldsymbol{h},z))