This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Supplementary information:
Exact Solution for Elastic Networks on Curved Surfaces

Yinan Dong Department of Physics and Astronomy, University of California Riverside, Riverside, California 92521, United States    Roya Zandi Department of Physics and Astronomy, University of California Riverside, Riverside, California 92521, United States    Alex Travesset Department of Physics and Astronomy, Iowa State University and Ames Lab, Ames, Iowa 50011, United States

I Free energy Normalization

We will consider a dimensionless free energy normalized per particle, that is

fFYA¯=2F3NYaL2,f\equiv\frac{F}{Y\bar{A}}=\frac{2F}{\sqrt{3}NYa^{2}_{L}}\ , (S1)

hence the area in reference space, see Eq. 3. This area is given by

A^=π(1qi6)ρ02.\hat{A}=\pi\left(1-\frac{q_{i}}{6}\right)\rho_{0}^{2}\ . (S2)

Given two systems with the same number of particles, the one with the smallest free energy per particle, Eq. S1 is the stable minimum.

II About units

The free energy, see Eq. 1 is

F=d2𝒙g[elastic+bending]+Fabs+Fline.F=\int d^{2}{\bm{x}}\sqrt{g}\left[{\cal F}^{elastic}+{\cal F}^{bending}\right]+F^{abs}+F^{line}\ . (S3)

Note that the stress tensor, Eq. A6 is given by

σαβ=1gδFδuαβ=Aαβγδuγδ=Y×(Terms that Depend on νp)\sigma^{\alpha\beta}=\frac{1}{\sqrt{g}}\frac{\delta F}{\delta u_{\alpha\beta}}=A^{\alpha\beta\gamma\delta}u_{\gamma\delta}=Y\times\left(\mbox{Terms that Depend on }\nu_{p}\right) (S4)

Note also, that the ratio of the Young modulus and the line tension defines a coefficient lAl_{A} with units of length

τYlA\frac{\tau}{Y}\equiv l_{A} (S5)

Therefore, through the boundary conditions Eq. 8, the quantity

σαβY=h(νp,lA),\frac{\sigma^{\alpha\beta}}{Y}=h(\nu_{p},l_{A})\ , (S6)

does not directly depend on the Young modulus.

Also,

Fabs=NΔF=2ΔF3aL232NaL2=ΠA^ with A^=d2𝒓g¯(𝒙).F^{abs}=-N\Delta F=-\frac{2\Delta F}{\sqrt{3}a^{2}_{L}}\frac{\sqrt{3}}{2}Na^{2}_{L}=-\Pi\hat{A}\mbox{ with }\hat{A}=\int d^{2}{\bm{r}}\sqrt{\bar{g}({\bm{x}})}\ . (S7)

Therefore Π=2ΔF3aL2\Pi=\frac{2\Delta F}{\sqrt{3}a^{2}_{L}}, and A^\hat{A} is the area in reference space.

The line tension term is a function of the perimeter (PP), given by

FlineYL2=τYL2D𝑑sτPYL2.\frac{F^{line}}{YL^{2}}=\frac{\tau}{YL^{2}}\oint_{\partial D}ds\equiv\frac{\tau P}{YL^{2}}\ . (S8)

Finally, the free energy Eq. S3 is

FL2Y=f(νp,lAL)+κYL2d2𝒙g[(1R1H0)2+(1R2H0)2]+ΠYA^L2+τPYL2,\frac{F}{L^{2}Y}=f(\nu_{p},\frac{l_{A}}{L})+\frac{\kappa}{YL^{2}}\int d^{2}{\bm{x}}\sqrt{g}\left[\left(\frac{1}{R_{1}}-H_{0}\right)^{2}+\left(\frac{1}{R_{2}}-H_{0}\right)^{2}\right]+\frac{\Pi}{Y}\frac{\hat{A}}{L^{2}}+\frac{\tau P}{YL^{2}}\ , (S9)

where LL is a characteristic dimension of the system. In general we will choose L2=A^L^{2}=\hat{A}, so

FYA^=f(νp,lAA^)+κYA^d2𝒙g[(1R1H0)2+(1R2H0)2]+ΠY+τPYA^,\frac{F}{Y\hat{A}}=f(\nu_{p},\frac{l_{A}}{\sqrt{\hat{A}}})+\frac{\kappa}{Y\hat{A}}\int d^{2}{\bm{x}}\sqrt{g}\left[\left(\frac{1}{R_{1}}-H_{0}\right)^{2}+\left(\frac{1}{R_{2}}-H_{0}\right)^{2}\right]+\frac{\Pi}{Y}+\frac{\tau P}{Y\hat{A}}\ , (S10)

which defines the effective linear tension τ^=τaLYA^\hat{\tau}=\frac{\tau a_{L}}{Y\hat{A}} and dimensionless area A^/aL2\hat{A}/a_{L}^{2}, so that all lengths are expressed in terms of the lattice constant aLa_{L}.

III Connection with Linear Elasticity Theory

Here we show that the covariant formalism defined by Eq. 1, Eq. 2 reduce to the known formulas from elasticity theory when the displacements are small. Within elasticity theory, the reference metric (without disclinations)

g¯αβ=δαβ{\bar{g}}_{\alpha\beta}=\delta_{\alpha\beta} (S11)

The surface is described in the Monge gauge,

z=h(x,y).z=h(x,y)\ . (S12)

The mapping 𝒙=𝒰(x¯){\bm{x}}={\cal U}({\bar{x}}) is given by

𝒙=𝒙¯+𝒖(𝒙¯),{\bm{x}}=\bar{{\bm{x}}}+{\bm{u}}(\bar{{\bm{x}}})\ , (S13)

where 𝒖{\bm{u}} is the displacement. Then, the actual metric becomes

gαβ(𝒙¯)\displaystyle g_{\alpha\beta}(\bar{\bm{x}}) =\displaystyle= ¯αr(𝒙¯)¯βr(𝒙¯)=δαβ+¯αuβ+¯βuα+¯αuγ¯βuγ+¯ρh¯γh(δαρδγβ+δαρ¯βuγ+¯αuρδβλ+¯αuρ¯βuγ)\displaystyle\bar{\partial}_{\alpha}{\vec{r}}({\bar{\bm{x}}})\bar{\partial}_{\beta}{\vec{r}}({\bar{\bm{x}}})=\delta_{\alpha\beta}+\bar{\partial}_{\alpha}u_{\beta}+\bar{\partial}_{\beta}u_{\alpha}+\bar{\partial}_{\alpha}u_{\gamma}\bar{\partial}_{\beta}u_{\gamma}+{\bar{\partial}}_{\rho}h{\bar{\partial}}_{\gamma}h\left(\delta_{\alpha\rho}\delta_{\gamma\beta}+\delta_{\alpha\rho}\bar{\partial}_{\beta}u_{\gamma}+\bar{\partial}_{\alpha}u_{\rho}\delta_{\beta\lambda}+\bar{\partial}_{\alpha}u_{\rho}\bar{\partial}_{\beta}u_{\gamma}\right) (S14)
\displaystyle\approx δαβ+¯αuβ+¯βuα+¯αh¯βh\displaystyle\delta_{\alpha\beta}+\bar{\partial}_{\alpha}u_{\beta}+\bar{\partial}_{\beta}u_{\alpha}+{\bar{\partial}}_{\alpha}h{\bar{\partial}}_{\beta}h

If only linear terms in 𝒖{\bm{u}} and the leading term in hh are kept the strain tensor Eq. 2 becomes

uαβ=12(¯αuβ+¯βuα+¯αh¯βh).u_{\alpha\beta}=\frac{1}{2}\left(\bar{\partial}_{\alpha}u_{\beta}+\bar{\partial}_{\beta}u_{\alpha}+{\bar{\partial}}_{\alpha}h{\bar{\partial}}_{\beta}h\right)\ . (S15)

The actual metric is

gαβ(𝒙¯)=g¯αβ(𝒙¯)+2uαβ(𝒙¯)g_{\alpha\beta}({\bar{\bm{x}}})=\bar{g}_{\alpha\beta}({\bar{\bm{x}}})+2u_{\alpha\beta}({\bar{\bm{x}}}) (S16)

The leading elastic part of the free energy, consistent with the expansion Eq. S15 becomes

elastic\displaystyle{\cal F}^{elastic} =\displaystyle= 12Y1νp2(νp(uαα2+(1νp)uαβuαβ)\displaystyle\frac{1}{2}\frac{Y}{1-\nu_{p}^{2}}\left(\nu_{p}(u_{\alpha\alpha}^{2}+(1-\nu_{p})u_{\alpha\beta}u_{\alpha\beta}\right) (S17)
=\displaystyle= 12(2μ(uαβ)2+λ(uαα)2)\displaystyle\frac{1}{2}\left(2\mu(u_{\alpha\beta})^{2}+\lambda(u_{\alpha\alpha})^{2}\right)

expressed in terms of the Lame coefficients λ,μ\lambda,\mu instead of the Young modulus Y=4μ(μ+λ)2μ+λY=\frac{4\mu(\mu+\lambda)}{2\mu+\lambda} and Poisson ratio νp=λ2μ+λ\nu_{p}=\frac{\lambda}{2\mu+\lambda}. For fixed geometry, that is for a given ff, this is exactly the same free energy and strains as used in linear elasticity theory, see for example Ref. [1]. The Airy function is the solution to the equation,

1Y0Δ¯2χ(𝒙¯)=s(𝒙¯)K(𝒙¯),\frac{1}{Y_{0}}{\bar{\Delta}}^{2}\chi(\bar{{\bm{x}}})=s({\bar{\bm{x}}})-K({\bar{\bm{x}}})\ , (S18)

see Ref. [1] for a full derivation. The laplacian Δ¯{\bar{\Delta}} refers to a flat metric. Adding an arbitrary disclination density is done by introducing singularities in the reference metric, as discussed for a central disclination in the main text. It is

s(𝒙¯)=π3i=1Nqiδ(𝒙¯𝒙¯i)s({\bar{\bm{x}}})=\frac{\pi}{3}\sum_{i=1}^{N}q_{i}\delta({\bar{\bm{x}}}-{\bar{\bm{x}}}_{i}) (S19)

where x¯i{\bar{x}}_{i} are the positions of the NN disclinations. The Gaussian curvature is obtained by expanding Eq. A3 to leading order, consistent with the expansion in the actual metric Eq. S14. Therefore

K(𝒙¯)=12εαβεγρ¯β¯ρ(¯αh¯γh).K({\bar{\bm{x}}})=-\frac{1}{2}\varepsilon_{\alpha\beta}\varepsilon_{\gamma\rho}\bar{\partial}_{\beta}\bar{\partial}_{\rho}\left(\bar{\partial}_{\alpha}h\bar{\partial}_{\gamma}h\right)\ . (S20)

We remark that Eq. S18 is written in terms of a flat metric, and the only contribution from the curved surface is through the approximated Gaussian curvature Eq. S20. Eq. S18 has the physical interpretation of the Gaussian curvature screening the disclination density.

The explicit form of the stress tensor is obtained from the Airy function as

σρρ(ρ)\displaystyle\sigma^{\rho\rho}(\rho) =\displaystyle= 1ρdχ(ρ)dρ\displaystyle\frac{1}{\rho}\frac{d\chi(\rho)}{d\rho}
=\displaystyle= Y2ρ2(qi6ρ2log(ρρ0)+0ρ𝑑vvvρ0duu(dfdu)2ρ2ρ020ρ0𝑑vvvρ0duu(dfdu)2)\displaystyle\frac{Y}{2\rho^{2}}\left(\frac{q_{i}}{6}\rho^{2}\log\left(\frac{\rho}{\rho_{0}}\right)+\int^{\rho}_{0}dvv\int_{v}^{\rho_{0}}\frac{du}{u}\left(\frac{df}{du}\right)^{2}-\frac{\rho^{2}}{\rho_{0}^{2}}\int^{\rho_{0}}_{0}dvv\int_{v}^{\rho_{0}}\frac{du}{u}\left(\frac{df}{du}\right)^{2}\right)
σθθ(ρ)\displaystyle\sigma^{\theta\theta}(\rho) =\displaystyle= 1ρ2d2χ(ρ)dρ2=1ρ2d(ρσρρ(ρ))dρ\displaystyle\frac{1}{\rho^{2}}\frac{d^{2}\chi(\rho)}{d\rho^{2}}=\frac{1}{\rho^{2}}\frac{d(\rho\sigma^{\rho\rho}(\rho))}{d\rho}
=\displaystyle= Y2ρ2(qi6log(eρρ0)+ρρ0duu(dfdu)21ρ20ρ𝑑vvvρ0duu(dfdu)21ρ020ρ0𝑑vvvρ0duu(dfdu)2).\displaystyle\frac{Y}{2\rho^{2}}\left(\frac{q_{i}}{6}\log\left(e\frac{\rho}{\rho_{0}}\right)+\int_{\rho}^{\rho_{0}}\frac{du}{u}\left(\frac{df}{du}\right)^{2}-\frac{1}{\rho^{2}}\int^{\rho}_{0}dvv\int_{v}^{\rho_{0}}\frac{du}{u}\left(\frac{df}{du}\right)^{2}-\frac{1}{\rho_{0}^{2}}\int^{\rho_{0}}_{0}dvv\int_{v}^{\rho_{0}}\frac{du}{u}\left(\frac{df}{du}\right)^{2}\right)\ .

The strain tensor is

uρρ\displaystyle u_{\rho\rho} =\displaystyle= 1Y(σρρνpρ2σθθ)=1Y(1ρddρνpd2d2ρ)χ\displaystyle\frac{1}{Y}\left(\sigma^{\rho\rho}-\nu_{p}\rho^{2}\sigma^{\theta\theta}\right)=\frac{1}{Y}\left(\frac{1}{\rho}\frac{d}{d\rho}-\nu_{p}\frac{d^{2}}{d^{2}\rho}\right)\chi
uθθ\displaystyle u_{\theta\theta} =\displaystyle= ρ2Y(ρ2σθθνpσρρ)=ρ2Y(d2d2ρνpρddρ)χ.\displaystyle\frac{\rho^{2}}{Y}\left(\rho^{2}\sigma^{\theta\theta}-\nu_{p}\sigma^{\rho\rho}\right)=\frac{\rho^{2}}{Y}\left(\frac{d^{2}}{d^{2}\rho}-\frac{\nu_{p}}{\rho}\frac{d}{d\rho}\right)\chi\ . (S22)

Note that these equations are also equivalent to Eq. S15

uρρ\displaystyle u_{\rho\rho} =\displaystyle= duρdρ+12ρhρh\displaystyle\frac{du_{\rho}}{d\rho}+\frac{1}{2}\partial_{\rho}h\partial_{\rho}h (S23)
uθθρ2\displaystyle\frac{u_{\theta\theta}}{\rho^{2}} =\displaystyle= Γθθρuρ=uρρ\displaystyle-{\Gamma}^{\rho}_{\theta\theta}u_{\rho}=\frac{u_{\rho}}{\rho}

with r(ρ)=ρ+uρ(ρ)r(\rho)=\rho+u_{\rho}(\rho). The free energy is

F=π0ρ0𝑑ρρ(σρρuρρ+σθθuθθ).F=\pi\int_{0}^{\rho_{0}}d\rho\rho\left(\sigma^{\rho\rho}u_{\rho\rho}+\sigma^{\theta\theta}u_{\theta\theta}\right)\ . (S24)

Finally, the mapping r(ρ)r(\rho) (or ρ(r))\rho(r)) can be obtained from solving either equation

2uρρ(ρ)\displaystyle 2u_{\rho\rho}(\rho) =\displaystyle= (1+f(r)2)(drdρ)21\displaystyle(1+f^{\prime}(r)^{2})\left(\frac{dr}{d\rho}\right)^{2}-1 (S25)
2uθθ(ρ)\displaystyle 2u_{\theta\theta}(\rho) =\displaystyle= r2(ρ)α2ρ2.\displaystyle r^{2}(\rho)-\alpha^{2}\rho^{2}\ .

The explicit solution of the previous equation, consistent at linear order is

r(ρ)=ρ(1α)ρ+uθθ(ρ)ρ=ρ(1qi6+1Y[d2dρ2νpρddρ]χ),r(\rho)=\rho-(1-\alpha)\rho+\frac{u_{\theta\theta}(\rho)}{\rho}=\rho\left(1-\frac{q_{i}}{6}+\frac{1}{Y}\left[\frac{d^{2}}{d\rho^{2}}-\frac{\nu_{p}}{\rho}\frac{d}{d\rho}\right]\chi\right)\ , (S26)

Note that had we used the first equation, the solution

0r𝑑r1+f(r)2𝑑r\displaystyle\int_{0}^{r}dr\sqrt{1+f^{\prime}(r)^{2}}dr =\displaystyle= 0ρ𝑑ρ1+2uρρ\displaystyle\int_{0}^{\rho}d\rho\sqrt{1+2u_{\rho\rho}}
r+120rf(r)2\displaystyle r+\frac{1}{2}\int_{0}^{r}f^{\prime}(r)^{2} =\displaystyle= ρ+0ρ𝑑ρuρρ\displaystyle\rho+\int_{0}^{\rho}d\rho u_{\rho\rho}
r\displaystyle r =\displaystyle= ρ+0ρ𝑑ρduρdρ=ρ+uρ,\displaystyle\rho+\int_{0}^{\rho}d\rho\frac{du_{\rho}}{d\rho}=\rho+u_{\rho}\ , (S27)

where Eq. S23 has been used.

Addition of a line tension just adds the boundary condition

σρρ=τρ0\sigma^{\rho\rho}=-\frac{\tau}{\rho_{0}} (S28)

to the stress tensor, and the additional free energy contribution

Fline=2πτr(ρ0)2πτr0.F^{line}=2\pi\tau r(\rho_{0})\equiv 2\pi\tau r_{0}\ . (S29)

Analytical formulas for the Airy function, stress tensor, strain tensor, and free energy for two different surfaces, the spheroid and sombrero are given below.

III.0.1 Spheroid surface

It is given by (with R0R_{0} the spheroid radius, not to be confused with r0=ρ(r0)r_{0}=\rho(r_{0}) the coordinate parameterizing the boundary) the equation

f(r)=βR02r2.f(r)=\beta\sqrt{R_{0}^{2}-r^{2}}\ . (S30)

The Airy function is

χ\displaystyle\chi =\displaystyle= Yβ216ρ02(R02log(R02)(ρ22ρ02log(ρ))+ρ02(ρ2(R02ρ2+R02log(ρ2R02))log(R02ρ2))+\displaystyle Y\frac{\beta^{2}}{16\rho_{0}^{2}}\bigg{(}-R_{0}^{2}\log\big{(}R_{0}^{2}\big{)}\bigg{(}\rho^{2}-2\rho_{0}^{2}\log\big{(}\rho\big{)}\bigg{)}+\rho_{0}^{2}\left(-\rho^{2}-\left(R_{0}^{2}-\rho^{2}+R_{0}^{2}\log\bigg{(}\frac{\rho^{2}}{R_{0}^{2}}\bigg{)}\right)\log\big{(}R_{0}^{2}-\rho^{2}\big{)}\right)+ (S31)
+\displaystyle+ ρ2(R02ρ02)log(R02ρ02)R02ρ02Li2(1ρ2R02))τρ22rA.\displaystyle\rho^{2}\big{(}R_{0}^{2}-\rho_{0}^{2}\big{)}\log\big{(}R_{0}^{2}-\rho_{0}^{2}\big{)}-R_{0}^{2}\rho_{0}^{2}Li_{2}\left(1-\frac{\rho^{2}}{R_{0}^{2}}\right)\bigg{)}-\frac{\tau\rho^{2}}{2r_{A}}\ .

where Li2Li_{2} is the polylogarithm function Li2(x)=n=1xnn2Li_{2}(x)=\sum_{n=1}^{\infty}\frac{x^{n}}{n^{2}}.
The stress tensors is

σρρ\displaystyle\sigma^{\rho\rho} =\displaystyle= Y124ρ2ρ02(3R02β2(ρ02ρ2)logR02+3β2(ρ2R02)ρ02log(R02ρ2)+\displaystyle Y\frac{1}{24\rho^{2}\rho_{0}^{2}}(3R_{0}^{2}\beta^{2}(\rho_{0}^{2}-\rho^{2})\log R_{0}^{2}+3\beta^{2}(\rho^{2}-R_{0}^{2})\rho_{0}^{2}\log(R_{0}^{2}-\rho^{2})+
+\displaystyle+ ρ2(2qiρ02log(ρρ0)+3β2(R02ρ02)log(R02ρ02)))τrA\displaystyle\rho^{2}(2q_{i}\rho_{0}^{2}\log\left(\frac{\rho}{\rho_{0}}\right)+3\beta^{2}(R_{0}^{2}-\rho_{0}^{2})\log(R_{0}^{2}-\rho_{0}^{2})))-\frac{\tau}{r_{A}}
σθθ\displaystyle\sigma^{\theta\theta} =\displaystyle= Y124ρ4ρ2(3R02β2(ρ2+ρ02)logR02+3β2(R02+ρ2)ρ02log(R02ρ2)\displaystyle Y\frac{1}{24\rho^{4}\rho^{2}}(-3R_{0}^{2}\beta^{2}(\rho^{2}+\rho_{0}^{2})\log R_{0}^{2}+3\beta^{2}(R_{0}^{2}+\rho^{2})\rho_{0}^{2}\log(R_{0}^{2}-\rho^{2}) (S32)
+\displaystyle+ ρ2(2ρ02(qi+3β2+qilog(ρρ0))+3β2(R02ρ02)log(R02ρ02)))τrA1ρ2.\displaystyle\rho^{2}(2\rho_{0}^{2}(q_{i}+3\beta^{2}+q_{i}\log\left(\frac{\rho}{\rho_{0}}\right))+3\beta^{2}(R_{0}^{2}-\rho_{0}^{2})\log(R_{0}^{2}-\rho_{0}^{2})))-\frac{\tau}{r_{A}}\frac{1}{\rho^{2}}\ .

The strain tensors is

uρρ\displaystyle u_{\rho\rho} =\displaystyle= 124ρ2ρ02(3R02β2((1+νp)ρ2)log(R02)3β2(R02(1+νp)+\displaystyle\frac{1}{24\rho^{2}\rho_{0}^{2}}(3R_{0}^{2}\beta^{2}((-1+\nu_{p})\rho^{2})\log(R_{0}^{2})-3\beta^{2}(R_{0}^{2}(1+\nu_{p})+
+\displaystyle+ (1+νp)ρ2)ρ02log(R02ρ2)+ρ2(2ρ02(3νpβ2qilog(ρρ0)+qiνplog(eρρ0))+\displaystyle(-1+\nu_{p})\rho^{2})\rho_{0}^{2}\log(R_{0}^{2}-\rho^{2})+\rho^{2}(-2\rho_{0}^{2}(3\nu_{p}\beta^{2}-q_{i}\log\left(\frac{\rho}{\rho_{0}}\right)+q_{i}\nu_{p}\log\left(\frac{e\rho}{\rho_{0}}\right))+
+\displaystyle+ 3(1+νp)β2(ρ02R02)log(R02ρ02)))+(νp1)τYrA\displaystyle 3(-1+\nu_{p})\beta^{2}(\rho_{0}^{2}-R_{0}^{2})\log(R_{0}^{2}-\rho_{0}^{2})))+(\nu_{p}-1)\frac{\tau}{Yr_{A}}
uθθ\displaystyle u_{\theta\theta} =\displaystyle= 124ρ02(3R02β2((1+νp)ρ2(1+νp)ρ02)log(R02)+3β2(R02(1+νp)\displaystyle\frac{1}{24\rho_{0}^{2}}(3R_{0}^{2}\beta^{2}((-1+\nu_{p})\rho^{2}-(1+\nu_{p})\rho_{0}^{2})\log(R_{0}^{2})+3\beta^{2}(R_{0}^{2}(1+\nu_{p})- (S33)
\displaystyle- (1+νp)ρ2)ρ02log(R02ρ2)+ρ2(2ρ02(qi+3β2qi(1+νp)log(ρρ0)+\displaystyle(-1+\nu_{p})\rho^{2})\rho_{0}^{2}\log(R_{0}^{2}-\rho^{2})+\rho^{2}(2\rho_{0}^{2}(q_{i}+3\beta^{2}-q_{i}(-1+\nu_{p})\log\left(\frac{\rho}{\rho_{0}}\right)+
+\displaystyle+ 3(1+νp)β2(ρ02R02)log(R02ρ02)))+ρ2(νp1)τYrA.\displaystyle 3(-1+\nu_{p})\beta^{2}(\rho_{0}^{2}-R_{0}^{2})\log(R_{0}^{2}-\rho_{0}^{2})))+\rho^{2}(\nu_{p}-1)\frac{\tau}{Yr_{A}}\ .

If we expand f(r)f(r) in powers of the spheroid radius R0R_{0},

f(r)=βR0(1r22R02).f(r)=\beta R_{0}(1-\frac{r^{2}}{2R_{0}^{2}})\ . (S34)

The Airy function is

χ=Yβ2(ρ42ρ2ρ02)64R02+Yqi24ρ2(ln(ρρ0)12)τρ22rA.\displaystyle\chi=-\frac{Y\beta^{2}(\rho^{4}-2\rho^{2}\rho_{0}^{2})}{64R_{0}^{2}}+\frac{Yq_{i}}{24}\rho^{2}\left(\ln\left(\frac{\rho}{\rho_{0}}\right)-\frac{1}{2}\right)-\frac{\tau\rho^{2}}{2r_{A}}\ . (S35)

The stress tensors is

σρρ=Yβ216R02(ρ02ρ2)+Y2ρ2(qi6ρ2log(ρρ0))τrA\displaystyle\sigma^{\rho\rho}=\frac{Y\beta^{2}}{16R_{0}^{2}}(\rho_{0}^{2}-\rho^{2})+\frac{Y}{2\rho^{2}}\left(\frac{q_{i}}{6}\rho^{2}\log\left(\frac{\rho}{\rho_{0}}\right)\right)-\frac{\tau}{r_{A}} (S36)
σθθ=Yβ216R02ρ2(ρ023ρ2)+Y2ρ2(qi6log(eρρ0))τrA1ρ2.\displaystyle\sigma^{\theta\theta}=\frac{Y\beta^{2}}{16R_{0}^{2}\rho^{2}}(\rho_{0}^{2}-3\rho^{2})+\frac{Y}{2\rho^{2}}\left(\frac{q_{i}}{6}\log\left(e\frac{\rho}{\rho_{0}}\right)\right)-\frac{\tau}{r_{A}}\frac{1}{\rho^{2}}\ . (S37)

The strain tensors is

uρρ\displaystyle u_{\rho\rho} =\displaystyle= β216R02((3νp1)ρ2(νp1)ρ02)+112qilog(ρρ0)112qiνplog(eρρ0)+(νp1)τYrA\displaystyle\frac{\beta^{2}}{16R_{0}^{2}}\left((3\nu_{p}-1)\rho^{2}-(\nu_{p}-1)\rho_{0}^{2}\right)+\frac{1}{12}q_{i}\log\left(\frac{\rho}{\rho_{0}}\right)-\frac{1}{12}q_{i}\nu_{p}\log\left(\frac{e\rho}{\rho_{0}}\right)+(\nu_{p}-1)\frac{\tau}{Yr_{A}} (S38)
uθθ\displaystyle u_{\theta\theta} =\displaystyle= β2ρ216R02((νp3)ρ2(νp1)ρ02)+ρ212(νpqilog(ρρ0)+qilog(eρρ0))+ρ2(νp1)τYrA.\displaystyle\frac{\beta^{2}\rho^{2}}{16R_{0}^{2}}\left((\nu_{p}-3)\rho^{2}-(\nu_{p}-1)\rho_{0}^{2}\right)+\frac{\rho^{2}}{12}\left(-\nu_{p}q_{i}\log\left(\frac{\rho}{\rho 0}\right)+q_{i}\log\left(\frac{e\rho}{\rho_{0}}\right)\right)+\rho^{2}(\nu_{p}-1)\frac{\tau}{Yr_{A}}\ .

The free energy is

F=π(Y(qi2ρ02288qi2β2ρ04192R02+β4ρ06384R04)+(1νp)ρ02τ2YrA2).\displaystyle F=\pi\left(Y\left(\frac{q_{i}^{2}\rho_{0}^{2}}{288}-\frac{q_{i}^{2}\beta^{2}\rho_{0}^{4}}{192R_{0}^{2}}+\frac{\beta^{4}\rho_{0}^{6}}{384R_{0}^{4}}\right)+\frac{(1-\nu_{p})\rho_{0}^{2}\tau^{2}}{Yr_{A}^{2}}\right)\ . (S39)

III.0.2 Sombrero surface

It is given by the equation

f(r)=βR03(1(rR0)2+(rR0)4)3/2f(r)=\frac{\beta R_{0}}{3}\left(1-\left(\frac{r}{R_{0}}\right)^{2}+\left(\frac{r}{R_{0}}\right)^{4}\right)^{3/2}\ (S40)

where rr is the radius of the sombrero surface. The Airy function is

χ\displaystyle\chi =\displaystyle= Yβ2ρ257600R010(900R08(ρ22ρ02)1000R06(ρ43ρ04)+675R04(ρ64ρ06)\displaystyle-\frac{Y\beta^{2}\rho^{2}}{57600{R_{0}}^{10}}\bigg{(}900{R_{0}}^{8}(\rho^{2}-2{\rho_{0}}^{2})-1000{R_{0}}^{6}(\rho^{4}-3{\rho_{0}}^{4})+675{R_{0}}^{4}(\rho^{6}-4{\rho_{0}}^{6})- (S41)
\displaystyle- 288R02(ρ85ρ08)+80(ρ106ρ010))τρ22rA\displaystyle 288{R_{0}}^{2}(\rho^{8}-5{\rho_{0}}^{8})+80(\rho^{10}-6{\rho_{0}}^{10})\bigg{)}-\frac{\tau\rho^{2}}{2r_{A}}\

The stress tensor is

σρρ\displaystyle\sigma^{\rho\rho} =\displaystyle= Yβ2480(30(ρ2+ρ02)R02+50(ρ4ρ04)R04+45(ρ6+ρ06)R06+24(ρ8ρ08)R08+\displaystyle\frac{Y\beta^{2}}{480}\bigg{(}\frac{30(-\rho^{2}+\rho_{0}^{2})}{R_{0}^{2}}+\frac{50(\rho^{4}-\rho_{0}^{4})}{R_{0}^{4}}+\frac{45(-\rho^{6}+\rho_{0}^{6})}{R_{0}^{6}}+\frac{24(\rho^{8}-\rho_{0}^{8})}{R_{0}^{8}}+ (S42)
+\displaystyle+ 8(ρ10+ρ010)R010)+Yqi12log(ρρ0)τrA\displaystyle\frac{8(-\rho^{10}+\rho_{0}^{10})}{R_{0}^{10}}\bigg{)}+\frac{Yq_{i}}{12}\log\bigg{(}\frac{\rho}{\rho_{0}}\bigg{)}-\frac{\tau}{r_{A}}
σθθ\displaystyle\sigma^{\theta\theta} =\displaystyle= Yβ2480ρ2(30(3ρ2+ρ02)R02+50(5ρ4ρ04)R0445(7ρ6ρ06)R06+24(9ρ8ρ08)R08+\displaystyle\frac{Y\beta^{2}}{480\rho^{2}}\bigg{(}\frac{30(-3\rho^{2}+\rho_{0}^{2})}{R_{0}^{2}}+\frac{50(5\rho^{4}-\rho_{0}^{4})}{R_{0}^{4}}-\frac{45(7\rho^{6}-\rho_{0}^{6})}{R_{0}^{6}}+\frac{24(9\rho^{8}-\rho_{0}^{8})}{R_{0}^{8}}+ (S43)
+\displaystyle+ 8(11ρ10+ρ010)R010)+Yqi12ρ2log(eρρ0)τrAρ2\displaystyle\frac{8(-11\rho^{10}+\rho_{0}^{10})}{R_{0}^{10}}\bigg{)}+\frac{Yq_{i}}{12\rho^{2}}\log\bigg{(}\frac{e\rho}{\rho_{0}}\bigg{)}-\frac{\tau}{r_{A}\rho^{2}}

The strain tensor is

uρρ\displaystyle u_{\rho\rho} =\displaystyle= β2480(30((1+3νp)ρ2(1+νp)ρ02)R0250(1+5νp)ρ4(1+νp)ρ04R04+\displaystyle\frac{\beta^{2}}{480}\bigg{(}\frac{30((-1+3\nu_{p})\rho^{2}-(-1+\nu_{p})\rho_{0}^{2})}{R_{0}^{2}}-50\frac{(-1+5\nu_{p})\rho^{4}-(-1+\nu_{p})\rho_{0}^{4}}{R_{0}^{4}}+ (S44)
+\displaystyle+ 45(1+7νp)ρ6(1+νp)ρ06R0624(1+9νp)ρ8(1+νpρ08)R08+\displaystyle\frac{45(-1+7\nu_{p})\rho^{6}-(-1+\nu_{p})\rho_{0}^{6}}{R_{0}^{6}}-\frac{24(-1+9\nu_{p})\rho^{8}-(-1+\nu_{p}\rho_{0}^{8})}{R_{0}^{8}}+
+\displaystyle+ 8((1+11νp)ρ10(1+νp)ρ010)R010)+qi12(log(ρρ0)νplog(eρρ0))+(1+νp)τYrA\displaystyle\frac{8((-1+11\nu_{p})\rho^{10}-(-1+\nu_{p})\rho_{0}^{10})}{R_{0}^{10}}\bigg{)}+\frac{q_{i}}{12}\bigg{(}\log\bigg{(}\frac{\rho}{\rho_{0}}\bigg{)}-\nu_{p}\log\bigg{(}\frac{e\rho}{\rho_{0}}\bigg{)}\bigg{)}+\frac{(-1+\nu_{p})\tau}{Yr_{A}}
uθθ\displaystyle u_{\theta\theta} =\displaystyle= ρ2β2480(30((3+νp)ρ2(1+νp)ρ02)R0250((5+νp)ρ4(1+νp)ρ04)R04+\displaystyle\frac{\rho^{2}\beta^{2}}{480}\bigg{(}\frac{30((-3+\nu_{p})\rho^{2}-(-1+\nu_{p})\rho_{0}^{2})}{R_{0}^{2}}-\frac{50((-5+\nu_{p})\rho^{4}-(-1+\nu_{p})\rho_{0}^{4})}{R_{0}^{4}}+ (S45)
+\displaystyle+ 45((7+νp)ρ6(1+νp)ρ06)R0624((9+νp)ρ8(1+νp)ρ08)R08+\displaystyle\frac{45((-7+\nu_{p})\rho^{6}-(-1+\nu_{p})\rho_{0}^{6})}{R_{0}^{6}}-\frac{24((-9+\nu_{p})\rho^{8}-(-1+\nu_{p})\rho_{0}^{8})}{R_{0}^{8}}+
+\displaystyle+ 8((11+νp)ρ10)(1+νp))ρ010R010)+qi12(log(eρρ0)νplog(ρρ0)))+(1+νp)τρ2YrA\displaystyle\frac{8((-11+\nu_{p})\rho^{10})-(-1+\nu_{p}))\rho_{0}^{10}}{R_{0}^{10}}\bigg{)}+\frac{q_{i}}{12}\bigg{(}\log\bigg{(}\frac{e\rho}{\rho_{0}}\bigg{)}-\nu_{p}log\bigg{(}\frac{\rho}{\rho_{0}}\bigg{)}\bigg{)}\bigg{)}+\frac{(-1+\nu_{p})\tau\rho^{2}}{Yr_{A}}

The free energy is

F\displaystyle F =\displaystyle= π(Y(qi2ρ02288qiβ2ρ04(900R082000R06ρ02+2025R04ρ041152R02ρ06+400R08)172800R010+\displaystyle\pi\bigg{(}Y\bigg{(}\frac{q_{i}^{2}\rho_{0}^{2}}{288}-\frac{q_{i}\beta^{2}\rho_{0}^{4}(900R_{0}^{8}-2000R_{0}^{6}\rho_{0}^{2}+2025R_{0}^{4}\rho_{0}^{4}-1152R_{0}^{2}\rho_{0}^{6}+400R_{0}^{8})}{172800R_{0}^{10}}+ (S46)
+\displaystyle+ β4ρ068870400R020(23100R016115500R014ρ014ρ02+278740R012ρ04420420R010ρ06+438075R08ρ08\displaystyle\frac{\beta^{4}\rho_{0}^{6}}{8870400R_{0}^{20}}(23100R_{0}^{16}-115500R_{0}{14}\rho_{0}^{14}\rho_{0}^{2}+278740R_{0}^{12}\rho_{0}^{4}-420420R_{0}^{10}\rho_{0}^{6}+438075R_{0}^{8}\rho_{0}^{8}-
\displaystyle- 326480R06ρ010+171248R04ρ01259136R02ρ014+11200ρ016))(1+νp)ρ02τ2YrA2)\displaystyle 326480R_{0}^{6}\rho_{0}{10}+171248R_{0}^{4}\rho_{0}^{12}-59136R_{0}^{2}\rho_{0}^{14}+11200\rho_{0}^{16})\bigg{)}-\frac{(-1+\nu_{p})\rho_{0}^{2}\tau^{2}}{Yr_{A}^{2}}\bigg{)}

IV Theory of Defects, inverse Laplacian square

We finally note that Eq. S18 can be promoted to an equation

Δ2χ(𝒙)=s(𝒙)K(𝒙)\Delta^{2}\chi({\bm{x}})=s({\bm{x}})-K({\bm{x}}) (S47)

in terms of the actual metric. In this case, the values used for the Gaussian curvature and the disclination density are covariant and exact. This is the starting point of the effective theory of defects. For rotational symmetric cases, it is possible to solve the equation exactly, at least by numerical integration.

V Additional Plots

Refer to caption
Refer to caption
Figure S1: Free energy Eq. 1 for a spheroid and sombrero at τ^=0.01\hat{\tau}=0.01. The solid lines correspond to the exact results, while the dashed lines denote analytical results within linear elasticity.
Refer to caption
Refer to caption
Figure S2: Free energy Eq. 1 for the spheroid at different Poisson ratios νp=0.3and0.8\nu_{p}=0.3and0.8. The solid lines correspond to the exact results while the dashed lines denote analytical results within linear elasticity.
Refer to caption
Refer to caption
Figure S3: Solution Eq. B4 and Eq. S26 for the spheroid and sombrero relatively small ρ0\rho_{0} compared with FIG. S4. The solid lines correspond to the exact result while the dashed lines denote analytical results within linear elasticity.
Refer to caption
Refer to caption
Figure S4: Solution Eq. B4 and Eq. S26 for the spheroid and sombrero with relatively large ρ0\rho_{0} compared with FIG. S3. The solid lines correspond to the exact results while the dashed lines denote analytical results within linear elasticity.

References