This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Supplemantary for
Fair Streaming Principal Component Analysis: Statistical and Algorithmic Viewpoint

Junghyun Lee  Hanseul Cho   Se-Young Yun    Chulhee Yun
Kim Jaechul Graduate School of AI, KAIST
Dataset = COMPAS [feature dim=11=11, #(train data)=4,316]
kk Method %Var(\uparrow) MMD2(\downarrow) %Acc(\uparrow) ΔDP\Delta_{\rm DP}(\downarrow) %Acc(\uparrow) ΔDP\Delta_{\rm DP}(\downarrow) %Acc(\uparrow) ΔDP\Delta_{\rm DP}(\downarrow)
kernel SVM linear SVM MLP
2 PCA 2.09(0.11) 0.057(0.006) 64.84(0.78) 0.28(0.03) 58.91(0.52) 0.2(0.03) 64.16(1.01) 0.3(0.03)
Olfat & Aswani, 2019 (0.1) Memory Out
Olfat & Aswani, 2019 (0.0) Memory Out
Lee et al., 2022 (1e-3) 1.78(0.11) 0.003(0.002) 62.65(1.54) 0.03(0.03) 57.56(2.06) 0.04(0.03) 60.79(1.59) 0.03(0.01)
Lee et al., 2022 (1e-6) 1.78(0.11) 0.003(0.002) 62.65(1.54) 0.03(0.03) 57.56(2.06) 0.04(0.03) 61.09(1.53) 0.03(0.01)
Kleindessner et al., 2023 (mean) 1.97(0.1) 0.008(0.003) 61.94(0.59) 0.07(0.02) 56.03(1.09) 0.05(0.04) 60.79(0.8) 0.07(0.04)
Kleindessner et al., 2023 (0.85) 1.78(0.13) 0.005(0.002) 60.64(1.08) 0.08(0.05) 56.16(1.21) 0.01(0.02) 58.8(1.74) 0.07(0.04)
Kleindessner et al., 2023 (0.5) 1.62(0.09) 0.004(0.001) 59.67(0.89) 0.1(0.03) 54.81(1.04) 0.0(0.0) 57.11(1.35) 0.08(0.05)
Kleindessner et al., 2023 (kernel) N/A N/A 57.8(1.82) 0.08(0.06) 54.74(1.21) 0.02(0.04) 55.91(1.27) 0.02(0.03)
Ravfogel et al., 2020 0.62(0.18) 0.0(0.0) 56.35(0.71) 0.01(0.01) 54.81(1.04) 0.0(0.0) 55.38(0.66) 0.01(0.01)
Ravfogel et al., 2022 0.49(0.03) 0.002(0.002) 57.54(0.74) 0.03(0.03) 54.81(1.04) 0.0(0.0) 56.42(1.29) 0.03(0.03)
Samadi et al., 2018 N/A N/A 64.19(1.07) 0.15(0.03) 59.15(0.59) 0.13(0.03) 64.4(1.32) 0.15(0.03)
Ours (offline, mean) 1.97(0.1) 0.008(0.003) 61.94(0.59) 0.07(0.02) 56.03(1.09) 0.05(0.04) 60.61(1.5) 0.06(0.05)
Ours (FNPM, mean) 1.97(0.1) 0.008(0.003) 61.94(0.59) 0.07(0.02) 56.03(1.09) 0.05(0.04) 60.5(1.48) 0.07(0.05)
Ours (offline, mm=2) 1.92(0.11) 0.006(0.002) 61.22(0.85) 0.11(0.04) 55.43(0.9) 0.04(0.04) 59.53(1.35) 0.12(0.06)
Ours (FNPM, mm=2) 1.92(0.11) 0.006(0.002) 61.08(0.9) 0.09(0.04) 55.51(1.16) 0.03(0.04) 59.56(1.48) 0.12(0.07)
Ours (offline, mm=5) 1.89(0.1) 0.006(0.002) 61.71(0.78) 0.1(0.04) 55.49(0.79) 0.03(0.04) 59.74(2.0) 0.14(0.06)
Ours (FNPM, mm=5) 1.89(0.1) 0.006(0.002) 61.67(0.76) 0.11(0.05) 55.55(0.9) 0.03(0.04) 59.63(1.84) 0.13(0.07)
Dataset = German Credit [feature dim=59=59, #(train data)=700]
kk Method %Var(\uparrow) MMD2(\downarrow) %Acc(\uparrow) ΔDP\Delta_{\rm DP}(\downarrow) %Acc(\uparrow) ΔDP\Delta_{\rm DP}(\downarrow) %Acc(\uparrow) ΔDP\Delta_{\rm DP}(\downarrow)
kernel SVM linear SVM MLP
2 PCA 11.13(0.32) 0.293(0.054) 75.47(0.67) 0.15(0.09) 70.3(1.59) 0.03(0.08) 71.43(0.98) 0.15(0.09)
Olfat & Aswani, 2019 (0.1) 7.43(0.56) 0.017(0.009) 72.17(1.04) 0.03(0.02) 69.8(1.21) 0.0(0.0) 0.0(0.0) 0.0(0.0)
Olfat & Aswani, 2019 (0.0) 7.33(0.54) 0.015(0.01) 71.77(1.52) 0.03(0.02) 69.8(1.21) 0.0(0.0) 0.0(0.0) 0.0(0.0)
Lee et al., 2022 (1e-3) 8.89(0.5) 0.027(0.015) 73.23(2.27) 0.03(0.03) 69.97(1.93) 0.0(0.0) 71.6(1.58) 0.05(0.04)
Lee et al., 2022 (1e-6) 8.89(0.5) 0.027(0.015) 73.23(2.27) 0.03(0.03) 69.97(1.93) 0.0(0.0) 70.73(1.98) 0.03(0.04)
Kleindessner et al., 2023 (mean) 10.39(0.62) 0.031(0.018) 76.77(1.47) 0.04(0.03) 69.97(1.93) 0.0(0.0) 72.13(1.69) 0.05(0.03)
Kleindessner et al., 2023 (0.85) 6.97(0.41) 0.021(0.008) 73.17(2.03) 0.03(0.03) 69.97(1.93) 0.0(0.0) 70.7(2.65) 0.02(0.02)
Kleindessner et al., 2023 (0.5) 4.66(0.22) 0.017(0.013) 71.6(2.84) 0.02(0.02) 69.97(1.93) 0.0(0.0) 71.17(2.95) 0.01(0.01)
Kleindessner et al., 2023 (kernel) N/A N/A 69.8(1.21) 0.0(0.0) 69.8(1.21) 0.0(0.0) 69.97(1.93) 0.0(0.0)
Ravfogel et al., 2020 3.25(0.38) 0.007(0.004) 71.33(2.32) 0.02(0.02) 69.97(1.93) 0.0(0.0) 70.13(2.03) 0.01(0.01)
Ravfogel et al., 2022 3.19(0.36) 0.04(0.024) 71.37(2.5) 0.03(0.04) 69.97(1.93) 0.0(0.0) 70.47(2.06) 0.02(0.03)
Samadi et al., 2018 N/A N/A 74.2(2.15) 0.06(0.04) 69.93(1.99) 0.0(0.01) 76.57(2.6) 0.08(0.06)
Ours (offline, mean) 10.39(0.62) 0.031(0.018) 76.77(1.47) 0.04(0.03) 69.97(1.93) 0.0(0.0) 71.8(1.59) 0.06(0.05)
Ours (FNPM, mean) 10.39(0.62) 0.031(0.018) 76.7(1.43) 0.04(0.03) 69.97(1.93) 0.0(0.0) 72.63(1.78) 0.08(0.05)
Ours (offline, mm=10) 6.36(0.51) 0.017(0.008) 72.6(2.37) 0.03(0.02) 69.97(1.93) 0.0(0.0) 71.2(2.14) 0.02(0.03)
Ours (FNPM, mm=10) 6.55(0.44) 0.019(0.01) 73.0(2.36) 0.02(0.02) 69.97(1.93) 0.0(0.0) 70.83(2.25) 0.02(0.02)
Ours (offline, mm=25) 4.89(0.24) 0.032(0.018) 72.77(2.57) 0.04(0.04) 69.97(1.93) 0.0(0.0) 71.27(2.72) 0.03(0.04)
Ours (FNPM, mm=25) 4.91(0.29) 0.028(0.018) 72.53(2.37) 0.03(0.02) 69.97(1.93) 0.0(0.0) 70.9(2.33) 0.02(0.02)
Dataset = Adult Income [feature dim=102=102, #(train data)=31,655]
kk Method %Var(\uparrow) MMD2(\downarrow) %Acc(\uparrow) ΔDP\Delta_{\rm DP}(\downarrow) %Acc(\uparrow) ΔDP\Delta_{\rm DP}(\downarrow) %Acc(\uparrow) ΔDP\Delta_{\rm DP}(\downarrow)
kernel SVM linear SVM MLP
10 PCA 20.82(0.38) 0.195(0.002) 88.58(0.21) 0.18(0.01) 83.14(0.21) 0.19(0.0) 83.88(0.23) 0.2(0.01)
Olfat & Aswani, 2019 (0.1) Memory Out
Olfat & Aswani, 2019 (0.0) Memory Out
Lee et al., 2022 (1e-3) Takes too long time
Lee et al., 2022 (1e-6) Takes too long time
Kleindessner et al., 2023 (mean) 18.84(0.35) 0.01(0.0) 88.43(0.18) 0.18(0.01) 81.71(0.29) 0.03(0.01) 83.83(0.32) 0.17(0.01)
Kleindessner et al., 2023 (0.85) 14.54(0.23) 0.002(0.0) 86.99(0.32) 0.16(0.0) 75.33(0.19) 0.0(0.0) 81.92(0.56) 0.14(0.01)
Kleindessner et al., 2023 (0.5) 11.34(0.2) 0.0(0.0) 83.01(0.28) 0.12(0.01) 75.33(0.19) 0.0(0.0) 79.13(0.77) 0.08(0.02)
Kleindessner et al., 2023 (kernel) Takes too long time
Ravfogel et al., 2020 9.36(0.26) 0.001(0.0) 85.71(0.78) 0.14(0.02) 75.33(0.19) 0.0(0.0) 80.18(0.68) 0.1(0.02)
Ravfogel et al., 2022 9.6(0.25) 0.001(0.0) 87.61(0.57) 0.16(0.01) 75.37(0.22) 0.0(0.0) 80.72(0.9) 0.11(0.02)
Samadi et al., 2018 N/A N/A 85.69(0.24) 0.18(0.01) 83.25(0.18) 0.17(0.01) 84.52(0.29) 0.19(0.01)
Ours (offline, mean) 18.84(0.35) 0.01(0.0) 88.43(0.18) 0.18(0.01) 81.71(0.29) 0.03(0.01) 83.7(0.24) 0.17(0.01)
Ours (FNPM, mean) 18.83(0.35) 0.009(0.0) 88.53(0.22) 0.18(0.01) 81.7(0.29) 0.03(0.01) 83.85(0.28) 0.18(0.01)
Ours (offline, mm=15) 14.48(0.22) 0.002(0.0) 86.86(0.3) 0.16(0.0) 75.33(0.19) 0.0(0.0) 81.84(0.54) 0.13(0.01)
Ours (FNPM, mm=15) 14.38(0.2) 0.001(0.0) 86.64(0.29) 0.16(0.0) 75.33(0.19) 0.0(0.0) 80.96(0.56) 0.12(0.02)
Ours (offline, mm=50) 11.34(0.2) 0.0(0.0) 83.0(0.25) 0.12(0.01) 75.33(0.19) 0.0(0.0) 78.94(0.7) 0.07(0.02)
Ours (FNPM, mm=50) 11.34(0.2) 0.0(0.0) 82.85(0.22) 0.11(0.01) 75.33(0.19) 0.0(0.0) 78.59(0.63) 0.06(0.02)

1 Synthetic Experiments: Verifying FNPM is PAFO-Learnble

Refer to caption
Figure 1: (ϵ1\epsilon_{1},ϵ2\epsilon_{2},δ\delta)-PAFO learnability. The slope 0.5\approx-0.5 of the log-log plot indicates the sample complexity (measured by block size) is about 𝒪(ϵ12+ϵ22){\mathcal{O}}({\epsilon}_{1}^{-2}+{\epsilon}_{2}^{-2}) (with probability 1δ=0.91-\delta=0.9).

2 Numerical Experiments: Fair PCA on UCI datasets

Table 1: Dataset = Adult Income [feature dim=102, #(train data)=31,655]
kk Method %Var(\uparrow) MMD2(\downarrow) %Acc(\uparrow) ΔDP\Delta_{\rm DP}(\downarrow) %Acc(\uparrow) ΔDP\Delta_{\rm DP}(\downarrow) %Acc(\uparrow) ΔDP\Delta_{\rm DP}(\downarrow)
kernel SVM linear SVM MLP
2 PCA 6.88(0.14) 0.374(0.006) 82.4(0.2) 0.19(0.01) 81.23(0.16) 0.2(0.0) 82.31(0.18) 0.19(0.01)
Olfat & Aswani, 2019 (0.1) Memory Out
Olfat & Aswani, 2019 (0.0) Memory Out
Lee et al., 2022 (1e-3) 5.68(0.11) 0.0(0.0) 80.34(0.24) 0.05(0.01) 78.09(0.36) 0.01(0.0) 80.31(0.26) 0.06(0.01)
Lee et al., 2022 (1e-6) 5.42(0.11) 0.0(0.0) 79.41(0.23) 0.02(0.01) 77.52(0.69) 0.01(0.0) 79.48(0.29) 0.02(0.01)
Kleindessner et al., 2023 (mean) 5.74(0.11) 0.002(0.0) 80.6(0.2) 0.07(0.01) 78.57(0.26) 0.01(0.0) 80.42(0.17) 0.07(0.01)
Kleindessner et al., 2023 (0.85) 4.09(0.17) 0.001(0.001) 75.52(0.21) 0.0(0.0) 75.33(0.19) 0.0(0.0) 75.37(0.23) 0.0(0.0)
Kleindessner et al., 2023 (0.5) 2.63(0.07) 0.0(0.0) 75.38(0.18) 0.0(0.0) 75.33(0.19) 0.0(0.0) 75.33(0.19) 0.0(0.0)
Kleindessner et al., 2023 (kernel) Takes too long time
Ravfogel et al., 2020 1.91(0.08) 0.001(0.001) 75.67(0.31) 0.0(0.0) 75.33(0.19) 0.0(0.0) 75.54(0.39) 0.0(0.01)
Ravfogel et al., 2022 1.91(0.09) 0.006(0.011) 75.59(0.34) 0.0(0.0) 75.33(0.19) 0.0(0.0) 75.48(0.35) 0.0(0.0)
Samadi et al., 2018 N/A N/A 82.63(0.18) 0.15(0.01) 82.21(0.2) 0.17(0.0) 77.62(3.46) 0.06(0.09)
Ours (offline, mean) 5.74(0.11) 0.002(0.0) 80.6(0.2) 0.07(0.01) 78.57(0.26) 0.01(0.0) 80.31(0.22) 0.07(0.01)
Ours (FNPM, mean) 5.74(0.11) 0.002(0.0) 80.6(0.2) 0.07(0.01) 78.57(0.26) 0.01(0.0) 80.33(0.25) 0.07(0.01)
Ours (offline, mm=15) 4.04(0.14) 0.001(0.001) 75.51(0.23) 0.0(0.0) 75.33(0.19) 0.0(0.0) 75.39(0.24) 0.0(0.0)
Ours (FNPM, mm=15) 4.07(0.13) 0.001(0.0) 75.54(0.25) 0.0(0.0) 75.33(0.19) 0.0(0.0) 75.58(0.26) 0.01(0.01)
Ours (offline, mm=50) 2.63(0.07) 0.0(0.0) 75.38(0.18) 0.0(0.0) 75.33(0.19) 0.0(0.0) 75.39(0.25) 0.0(0.01)
Ours (FNPM, mm=50) 2.64(0.06) 0.0(0.0) 75.44(0.21) 0.0(0.0) 75.33(0.19) 0.0(0.0) 75.37(0.2) 0.0(0.0)
10 PCA 20.82(0.38) 0.195(0.002) 88.58(0.21) 0.18(0.01) 83.14(0.21) 0.19(0.0) 83.88(0.23) 0.2(0.01)
Olfat & Aswani, 2019 (0.1) Memory Out
Olfat & Aswani, 2019 (0.0) Memory Out
Lee et al., 2022 (1e-3) Takes too long time
Lee et al., 2022 (1e-6) Takes too long time
Kleindessner et al., 2023 (mean) 18.84(0.35) 0.01(0.0) 88.43(0.18) 0.18(0.01) 81.71(0.29) 0.03(0.01) 83.83(0.32) 0.17(0.01)
Kleindessner et al., 2023 (0.85) 14.54(0.23) 0.002(0.0) 86.99(0.32) 0.16(0.0) 75.33(0.19) 0.0(0.0) 81.92(0.56) 0.14(0.01)
Kleindessner et al., 2023 (0.5) 11.34(0.2) 0.0(0.0) 83.01(0.28) 0.12(0.01) 75.33(0.19) 0.0(0.0) 79.13(0.77) 0.08(0.02)
Kleindessner et al., 2023 (kernel) Takes too long time
Ravfogel et al., 2020 9.36(0.26) 0.001(0.0) 85.71(0.78) 0.14(0.02) 75.33(0.19) 0.0(0.0) 80.18(0.68) 0.1(0.02)
Ravfogel et al., 2022 9.6(0.25) 0.001(0.0) 87.61(0.57) 0.16(0.01) 75.37(0.22) 0.0(0.0) 80.72(0.9) 0.11(0.02)
Samadi et al., 2018 N/A N/A 85.69(0.24) 0.18(0.01) 83.25(0.18) 0.17(0.01) 84.52(0.29) 0.19(0.01)
Ours (offline, mean) 18.84(0.35) 0.01(0.0) 88.43(0.18) 0.18(0.01) 81.71(0.29) 0.03(0.01) 83.7(0.24) 0.17(0.01)
Ours (FNPM, mean) 18.83(0.35) 0.009(0.0) 88.53(0.22) 0.18(0.01) 81.7(0.29) 0.03(0.01) 83.85(0.28) 0.18(0.01)
Ours (offline, mm=15) 14.48(0.22) 0.002(0.0) 86.86(0.3) 0.16(0.0) 75.33(0.19) 0.0(0.0) 81.84(0.54) 0.13(0.01)
Ours (FNPM, mm=15) 14.38(0.2) 0.001(0.0) 86.64(0.29) 0.16(0.0) 75.33(0.19) 0.0(0.0) 80.96(0.56) 0.12(0.02)
Ours (offline, mm=50) 11.34(0.2) 0.0(0.0) 83.0(0.25) 0.12(0.01) 75.33(0.19) 0.0(0.0) 78.94(0.7) 0.07(0.02)
Ours (FNPM, mm=50) 11.34(0.2) 0.0(0.0) 82.85(0.22) 0.11(0.01) 75.33(0.19) 0.0(0.0) 78.59(0.63) 0.06(0.02)
Table 2: Dataset = COMPAS [feature dim=11=11, #(train data)=4,316]
kk Method %Var(\uparrow) MMD2(\downarrow) %Acc(\uparrow) ΔDP\Delta_{\rm DP}(\downarrow) %Acc(\uparrow) ΔDP\Delta_{\rm DP}(\downarrow) %Acc(\uparrow) ΔDP\Delta_{\rm DP}(\downarrow)
kernel SVM linear SVM MLP
2 PCA 2.09(0.11) 0.057(0.006) 64.84(0.78) 0.28(0.03) 58.91(0.52) 0.2(0.03) 64.16(1.01) 0.3(0.03)
Olfat & Aswani, 2019 (0.1) Memory Out
Olfat & Aswani, 2019 (0.0) Memory Out
Lee et al., 2022 (1e-3) 1.8(0.1) 0.003(0.002) 62.41(1.09) 0.03(0.02) 57.57(1.18) 0.04(0.03) 60.79(1.59) 0.03(0.01)
Lee et al., 2022 (1e-6) 1.78(0.11) 0.003(0.002) 62.65(1.54) 0.03(0.03) 57.56(2.06) 0.04(0.03) 61.09(1.53) 0.03(0.01)
Kleindessner et al., 2023 (mean) 1.97(0.1) 0.008(0.003) 61.94(0.59) 0.07(0.02) 56.03(1.09) 0.05(0.04) 60.79(0.8) 0.07(0.04)
Kleindessner et al., 2023 (0.85) 1.78(0.13) 0.005(0.002) 60.64(1.08) 0.08(0.05) 56.16(1.21) 0.01(0.02) 58.8(1.74) 0.07(0.04)
Kleindessner et al., 2023 (0.5) 1.62(0.09) 0.004(0.001) 59.67(0.89) 0.1(0.03) 54.81(1.04) 0.0(0.0) 57.11(1.35) 0.08(0.05)
Kleindessner et al., 2023 (kernel) N/A N/A 57.8(1.82) 0.08(0.06) 54.74(1.21) 0.02(0.04) 55.91(1.27) 0.02(0.03)
Ravfogel et al., 2020 0.62(0.18) 0.0(0.0) 56.35(0.71) 0.01(0.01) 54.81(1.04) 0.0(0.0) 55.38(0.66) 0.01(0.01)
Ravfogel et al., 2022 0.49(0.03) 0.002(0.002) 57.54(0.74) 0.03(0.03) 54.81(1.04) 0.0(0.0) 56.42(1.29) 0.03(0.03)
Samadi et al., 2018 N/A N/A 64.19(1.07) 0.15(0.03) 59.15(0.59) 0.13(0.03) 64.4(1.32) 0.15(0.03)
Ours (offline, mean) 1.97(0.1) 0.008(0.003) 61.94(0.59) 0.07(0.02) 56.03(1.09) 0.05(0.04) 60.61(1.5) 0.06(0.05)
Ours (FNPM, mean) 1.97(0.1) 0.008(0.003) 61.94(0.59) 0.07(0.02) 56.03(1.09) 0.05(0.04) 60.5(1.48) 0.07(0.05)
Ours (offline, mm=2) 1.92(0.11) 0.006(0.002) 61.22(0.85) 0.11(0.04) 55.43(0.9) 0.04(0.04) 59.53(1.35) 0.12(0.06)
Ours (FNPM, mm=2) 1.92(0.11) 0.006(0.002) 61.08(0.9) 0.09(0.04) 55.51(1.16) 0.03(0.04) 59.56(1.48) 0.12(0.07)
Ours (offline, mm=5) 1.89(0.1) 0.006(0.002) 61.71(0.78) 0.1(0.04) 55.49(0.79) 0.03(0.04) 59.74(2.0) 0.14(0.06)
Ours (FNPM, mm=5) 1.89(0.1) 0.006(0.002) 61.67(0.76) 0.11(0.05) 55.55(0.9) 0.03(0.04) 59.63(1.84) 0.13(0.07)
10 PCA 5.85(0.36) 0.089(0.002) 82.78(0.43) 0.15(0.04) 65.39(1.15) 0.16(0.05) 70.01(0.93) 0.2(0.04)
Olfat & Aswani, 2019 (0.1) Memory Out
Olfat & Aswani, 2019 (0.0) Memory Out
Lee et al., 2022 (1e-3) 5.36(0.31) 0.002(0.001) 80.76(0.46) 0.1(0.03) 63.89(1.15) 0.04(0.03) 68.97(1.46) 0.03(0.02)
Lee et al., 2022 (1e-6) 4.83(0.45) 0.002(0.001) 78.93(0.84) 0.09(0.03) 61.68(1.54) 0.04(0.03) 67.23(1.66) 0.04(0.02)
Kleindessner et al., 2023 (mean) 5.67(0.37) 0.004(0.001) 80.87(0.54) 0.09(0.03) 64.76(1.04) 0.02(0.02) 69.83(0.83) 0.04(0.03)
Kleindessner et al., 2023 (0.85) 5.41(0.33) 0.004(0.001) 80.64(0.82) 0.09(0.04) 63.63(1.19) 0.02(0.01) 68.69(1.28) 0.05(0.04)
Kleindessner et al., 2023 (0.5) 5.29(0.31) 0.003(0.001) 79.22(0.44) 0.1(0.03) 61.62(0.63) 0.02(0.02) 68.63(0.92) 0.07(0.04)
Kleindessner et al., 2023 (kernel) N/A N/A 65.96(1.12) 0.26(0.07) 64.35(0.8) 0.05(0.04) 64.93(1.49) 0.04(0.03)
Ravfogel et al., 2020 2.64(0.47) 0.001(0.0) 64.17(1.46) 0.04(0.02) 54.85(1.03) 0.0(0.0) 62.56(1.79) 0.04(0.03)
Ravfogel et al., 2022 2.45(0.06) 0.001(0.0) 71.75(0.69) 0.07(0.04) 55.26(1.25) 0.0(0.0) 66.66(1.08) 0.06(0.03)
Samadi et al., 2018 N/A N/A 69.75(1.0) 0.17(0.02) 65.54(0.72) 0.14(0.03) 69.97(0.81) 0.16(0.03)
Ours (offline, mean) 5.67(0.37) 0.004(0.001) 80.87(0.54) 0.09(0.03) 64.78(1.04) 0.02(0.02) 69.16(0.5) 0.04(0.01)
Ours (FNPM, mean) 5.68(0.37) 0.004(0.001) 80.87(0.49) 0.09(0.03) 64.84(1.01) 0.02(0.02) 68.86(0.82) 0.04(0.03)
Ours (offline, mm=2) 5.57(0.35) 0.004(0.001) 80.93(0.63) 0.09(0.03) 64.72(0.93) 0.02(0.02) 69.25(1.27) 0.04(0.04)
Ours (FNPM, mm=2) 5.58(0.35) 0.004(0.001) 80.82(0.48) 0.09(0.03) 64.65(1.1) 0.02(0.02) 68.97(1.31) 0.04(0.02)
Ours (offline, mm=5) 5.55(0.35) 0.004(0.001) 81.03(0.61) 0.09(0.03) 64.47(1.01) 0.02(0.02) 68.92(1.05) 0.03(0.02)
Ours (FNPM, mm=5) 5.55(0.34) 0.004(0.001) 80.9(0.49) 0.09(0.03) 64.54(1.23) 0.02(0.02) 69.05(1.09) 0.04(0.03)
Table 3: Dataset = German Credit [feature dim=59, #(train data)=700]
kk Method %Var(\uparrow) MMD2(\downarrow) %Acc(\uparrow) ΔDP\Delta_{\rm DP}(\downarrow) %Acc(\uparrow) ΔDP\Delta_{\rm DP}(\downarrow) %Acc(\uparrow) ΔDP\Delta_{\rm DP}(\downarrow)
kernel SVM linear SVM MLP
2 PCA 11.13(0.32) 0.293(0.054) 75.47(0.67) 0.15(0.09) 70.3(1.59) 0.03(0.08) 71.43(0.98) 0.15(0.09)
Olfat & Aswani, 2019 (0.1) 7.25(0.65) 0.024(0.01) 71.53(1.85) 0.02(0.02) 69.97(1.93) 0.0(0.0) 0.0(0.0) 0.0(0.0)
Olfat & Aswani, 2019 (0.0) 7.28(0.52) 0.022(0.009) 72.03(1.99) 0.02(0.02) 69.97(1.93) 0.0(0.0) 0.0(0.0) 0.0(0.0)
Lee et al., 2022 (1e-3) 9.82(0.45) 0.027(0.018) 74.87(1.76) 0.05(0.04) 69.97(1.93) 0.0(0.0) 71.6(1.58) 0.05(0.04)
Lee et al., 2022 (1e-6) 8.89(0.5) 0.027(0.015) 73.23(2.27) 0.03(0.03) 69.97(1.93) 0.0(0.0) 70.73(1.98) 0.03(0.04)
Kleindessner et al., 2023 (mean) 10.39(0.62) 0.031(0.018) 76.77(1.47) 0.04(0.03) 69.97(1.93) 0.0(0.0) 72.13(1.69) 0.05(0.03)
Kleindessner et al., 2023 (0.85) 6.97(0.41) 0.021(0.008) 73.17(2.03) 0.03(0.03) 69.97(1.93) 0.0(0.0) 70.7(2.65) 0.02(0.02)
Kleindessner et al., 2023 (0.5) 4.66(0.22) 0.017(0.013) 71.6(2.84) 0.02(0.02) 69.97(1.93) 0.0(0.0) 71.17(2.95) 0.01(0.01)
Kleindessner et al., 2023 (kernel) N/A N/A 69.8(1.21) 0.0(0.0) 69.8(1.21) 0.0(0.0) 69.97(1.93) 0.0(0.0)
Ravfogel et al., 2020 3.25(0.38) 0.007(0.004) 71.33(2.32) 0.02(0.02) 69.97(1.93) 0.0(0.0) 70.13(2.03) 0.01(0.01)
Ravfogel et al., 2022 3.19(0.36) 0.04(0.024) 71.37(2.5) 0.03(0.04) 69.97(1.93) 0.0(0.0) 70.47(2.06) 0.02(0.03)
Samadi et al., 2018 N/A N/A 74.2(2.15) 0.06(0.04) 69.93(1.99) 0.0(0.01) 76.57(2.6) 0.08(0.06)
Ours (offline, mean) 10.39(0.62) 0.031(0.018) 76.77(1.47) 0.04(0.03) 69.97(1.93) 0.0(0.0) 71.8(1.59) 0.06(0.05)
Ours (FNPM, mean) 10.39(0.62) 0.031(0.018) 76.7(1.43) 0.04(0.03) 69.97(1.93) 0.0(0.0) 72.63(1.78) 0.08(0.05)
Ours (offline, mm=10) 6.36(0.51) 0.017(0.008) 72.6(2.37) 0.03(0.02) 69.97(1.93) 0.0(0.0) 71.2(2.14) 0.02(0.03)
Ours (FNPM, mm=10) 6.55(0.44) 0.019(0.01) 73.0(2.36) 0.02(0.02) 69.97(1.93) 0.0(0.0) 70.83(2.25) 0.02(0.02)
Ours (offline, mm=25) 4.89(0.24) 0.032(0.018) 72.77(2.57) 0.04(0.04) 69.97(1.93) 0.0(0.0) 71.27(2.72) 0.03(0.04)
Ours (FNPM, mm=25) 4.91(0.29) 0.028(0.018) 72.53(2.37) 0.03(0.02) 69.97(1.93) 0.0(0.0) 70.9(2.33) 0.02(0.02)
10 PCA 38.19(0.85) 0.137(0.012) 99.93(0.13) 0.09(0.06) 74.43(0.68) 0.14(0.14) 95.7(1.93) 0.11(0.07)
Olfat & Aswani, 2019 (0.1) 29.1(0.98) 0.022(0.006) 99.97(0.1) 0.1(0.06) 71.43(2.47) 0.03(0.04) 0.0(0.0) 0.0(0.0)
Olfat & Aswani, 2019 (0.0) 29.0(0.98) 0.021(0.005) 99.97(0.1) 0.1(0.06) 71.3(2.44) 0.02(0.04) 0.0(0.0) 0.0(0.0)
Lee et al., 2022 (1e-3) 33.04(1.11) 0.022(0.006) 100.0(0.0) 0.1(0.06) 74.3(1.66) 0.09(0.02) 95.9(1.67) 0.09(0.07)
Lee et al., 2022 (1e-6) 16.6(1.08) 0.014(0.003) 94.43(1.55) 0.07(0.06) 69.97(1.93) 0.0(0.0) 83.1(2.93) 0.06(0.06)
Kleindessner et al., 2023 (mean) 35.72(0.83) 0.024(0.004) 99.97(0.1) 0.1(0.06) 74.1(2.09) 0.09(0.05) 96.77(2.16) 0.09(0.06)
Kleindessner et al., 2023 (0.85) 27.69(0.82) 0.02(0.004) 100.0(0.0) 0.1(0.06) 72.97(3.06) 0.05(0.05) 97.8(1.29) 0.09(0.06)
Kleindessner et al., 2023 (0.5) 19.87(0.61) 0.016(0.004) 99.9(0.15) 0.1(0.06) 70.83(2.87) 0.01(0.02) 94.67(2.11) 0.08(0.05)
Kleindessner et al., 2023 (kernel) N/A N/A 70.1(1.18) 0.0(0.01) 69.8(1.21) 0.0(0.0) 81.7(5.49) 0.08(0.05)
Ravfogel et al., 2020 15.0(0.88) 0.01(0.002) 99.1(0.47) 0.1(0.06) 70.7(2.39) 0.01(0.02) 93.27(2.32) 0.07(0.06)
Ravfogel et al., 2022 16.41(1.1) 0.022(0.011) 99.9(0.15) 0.1(0.06) 71.8(3.08) 0.03(0.04) 95.9(2.3) 0.09(0.04)
Samadi et al., 2018 N/A N/A 99.07(0.57) 0.1(0.06) 75.87(0.92) 0.11(0.1) 98.8(0.62) 0.09(0.06)
Ours (offline, mean) 35.72(0.83) 0.024(0.004) 99.97(0.1) 0.1(0.06) 74.1(2.09) 0.09(0.05) 97.5(0.85) 0.1(0.07)
Ours (FNPM, mean) 35.73(0.84) 0.024(0.004) 99.97(0.1) 0.1(0.06) 74.07(2.12) 0.09(0.05) 95.53(1.46) 0.1(0.07)
Ours (offline, mm=10) 26.24(0.94) 0.018(0.004) 99.9(0.21) 0.1(0.06) 72.83(3.07) 0.04(0.04) 96.73(1.21) 0.1(0.07)
Ours (FNPM, mm=10) 26.23(0.81) 0.018(0.004) 99.9(0.21) 0.1(0.06) 71.37(3.41) 0.02(0.04) 96.4(1.33) 0.08(0.06)
Ours (offline, mm=25) 21.1(0.48) 0.027(0.005) 99.87(0.22) 0.1(0.06) 71.77(3.56) 0.02(0.03) 93.5(3.54) 0.08(0.04)
Ours (FNPM, mm=25) 21.06(0.52) 0.026(0.005) 99.9(0.15) 0.1(0.06) 71.77(3.41) 0.03(0.04) 94.97(2.55) 0.08(0.05)