This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Superlinear stochastic heat equation on d\mathbb{R}^{d}

Le Chen111Department of Mathematics and Statistics, Auburn University, Auburn, Alabama, USA. Email: [email protected].    Jingyu Huang222School of Mathematics, University of Birmingham, Birmingham, UK. Email: [email protected].
Abstract

In this paper, we study the stochastic heat equation (SHE) on d\mathbb{R}^{d} subject to a centered Gaussian noise that is white in time and colored in space. We establish the existence and uniqueness of the random field solution in the presence of locally Lipschitz drift and diffusion coefficients, which can have certain superlinear growth. This is a nontrivial extension of the recent work by Dalang, Khoshnevisan and Zhang [DKZ19], where the one-dimensional SHE on [0,1][0,1] subject to space-time white noise has been studied.


Keywords. Global solution; Stochastic heat equation; Reaction-diffusion; Dalang’s condition; superlinear growth.

1 Introduction

In this paper, we study the following stochastic heat equation (SHE) on d\mathbb{R}^{d} with a drift term:

{u(t,x)t=12Δu(t,x)+b(u(t,x))+σ(u(t,x))W˙(t,x),t>0,xd,u(0,)=u0(),\begin{cases}\dfrac{\partial u(t,x)}{\partial t}=\dfrac{1}{2}\Delta u(t,x)+b\left(u(t,x)\right)+\sigma\left(u(t,x)\right)\dot{W}(t,x)\,,&t>0,\>x\in\mathbb{R}^{d},\\[10.00002pt] u(0,\cdot)=u_{0}(\cdot),\end{cases} (1.1)

with both bb and σ\sigma being locally Lipschitz continuous. The noise W˙\dot{W} is a centered Gaussian noise which is white in time and colored in space with the following covariance structure

𝔼[W˙(s,y)W˙(t,x)]=δ(ts)f(xy).\mathbb{E}\left[\dot{W}(s,y)\dot{W}(t,x)\right]=\delta(t-s)f(x-y)\,. (1.2)

We assume that the correlation function ff in (1.2) satisfies the improved Dalang’s condition:

Υα:=(2π)ddf^(ξ)dξ(1+|ξ|2)1α<,for some 0<α<1,\displaystyle\Upsilon_{\alpha}:=(2\pi)^{-d}\int_{\mathbb{R}^{d}}\frac{\hat{f}(\xi)\mathrm{d}\xi}{(1+|\xi|^{2})^{1-\alpha}}<\infty\,,\quad\text{for some $0<\alpha<1$,} (1.3)

where f^(ξ)\hat{f}(\xi) is the Fourier transform of ff, namely, f^=f(ξ)=df(x)eixξdx\hat{f}=\mathcal{F}f(\xi)=\int_{\mathbb{R}^{d}}f(x)e^{-ix\cdot\xi}\mathrm{d}x. Recall that condition (1.3) with α=0\alpha=0 refers to Dalang’s condition [Dal99]:

Υ(β):=(2π)ddf^(dξ)β+|ξ|2<+for some and hence for all β>0.\displaystyle\Upsilon(\beta):=(2\pi)^{-d}\int_{\mathbb{R}^{d}}\frac{\hat{f}(\mathrm{d}\xi)}{\beta+|\xi|^{2}}<+\infty\quad\text{for some and hence for all $\beta>0$.} (1.4)

The case when f=δ0f=\delta_{0} refers to the space-time white noise. The solution to (1.1) is understood in the mild formulation:

u(t,x)=(ptu0)(x)\displaystyle u(t,x)=(p_{t}*u_{0})(x) +0tdpts(xy)b(u(s,y))dyds\displaystyle+\int_{0}^{t}\int_{\mathbb{R}^{d}}p_{t-s}(x-y)b(u(s,y))\mathrm{d}y\mathrm{d}s (1.5)
+0tdpts(xy)σ(u(s,y))W(ds,dy),\displaystyle+\int_{0}^{t}\int_{\mathbb{R}^{d}}p_{t-s}(x-y)\sigma(u(s,y))W(\mathrm{d}s,\mathrm{d}y)\,,

where the stochastic integral is the Walsh integral [Wal86, Dal+09], pt(x)=(2πt)d/2exp(|x|2/2t)p_{t}(x)=\left(2\pi t\right)^{-d/2}\exp\left(-|x|^{2}/2t\right) is the heat kernel, and “*” denotes the convolution in the spatial variable.

Motivated by the work of Fernandez Bonder and Groisman [FG09], Dalang, Khoshnevisan and Zhang [DKZ19] established the global solution with superlinear and locally Lipschitz coefficients for the one-dimensional SHE on [0,1][0,1] subject to the space-time white noise. In particular, they assumed that

|b(z)|=O(|z|log|z|)and|σ(z)|=o(|z|(log|z|)1/4).\displaystyle|b(z)|=O\left(|z|\log|z|\right)\quad\text{and}\quad|\sigma(z)|=o\left(|z|\left(\log|z|\right)^{1/4}\right). (1.6)

Foondun and Nualart [FN21] studied SHE with an additive noise, i.e., σ()const.\sigma(\cdot)\equiv\text{const.}, and showed that the solution to (1.1) blows up in finite time if and only if bb satisfies the Osgood condition:

c1b(u)du<for some c>0.\displaystyle\int_{c}^{\infty}\frac{1}{b(u)}\mathrm{d}u<\infty\quad\text{for some $c>0$}. (1.7)

Salins [Sal21] studied this problem for SHE on a compact domain in d\mathbb{R}^{d} under the following Osgood-type conditions, which are weaker than (1.6): There exists a positive and increasing function h:[0,)[0,)h:[0,\infty)\to[0,\infty) that satisfies

c1h(u)du=for all c>0\displaystyle\int_{c}^{\infty}\frac{1}{h(u)}\mathrm{d}u=\infty\quad\text{for all $c>0$}

such that for some γ(0,1/2)\gamma\in(0,1/2) (which depends on the noise),

|b(z)|h(|z|)for all z,and|σ(z)||z|1γ(h(|z|))γfor all z>1.\displaystyle|b(z)|\leq h\left(|z|\right)\quad\text{for all $z\in\mathbb{R}$},\quad\text{and}\quad|\sigma(z)|\leq|z|^{1-\gamma}\left(h\left(|z|\right)\right)^{\gamma}\quad\text{for all $z>1$}. (1.8)

Extending the above results to the SHE on the whole space d\mathbb{R}^{d} with both superlinear drift and diffusion coefficients is a challenging problem due to the non-compactness of the spatial domain. Indeed, for the wave equation on d\mathbb{R}^{d} (d=1,2,3d=1,2,3), the compact support of the corresponding fundamental solution can help circumvent this difficulty; see Millet and Sanz-Solé [MS21]. The aim of this present paper is to carry out such extension by proving the following theorem:

Theorem 1.1.

Assume the improved Dalang’s condition (1.3) is satisfied for some α(0,1)\alpha\in(0,1). Let u(t,x)u(t,x) be the solution to (1.1) starting from u0L(d)Lp(d)u_{0}\in L^{\infty}(\mathbb{R}^{d})\cap L^{p}(\mathbb{R}^{d}) for some p>(d+2)/αp>(d+2)/\alpha. Suppose that bb and σ\sigma are locally Lipschitz functions such that b(0)=σ(0)=0b(0)=\sigma(0)=0.

  1. (a)

    (Global solution) If

    max(|b(z)|log|z|,|σ(z)|(log|z|)α/2)=o(|z|)as |z|,\displaystyle\max\left(\frac{|b(z)|}{\log|z|},\>\frac{\left|\sigma(z)\right|}{\left(\log|z|\right)^{\alpha/2}}\right)=o(|z|)\quad\text{as $|z|\to\infty$,} (1.9)

    then for any T>0T>0, there is a unique solution u(t,x)u(t,x) to (1.1) for all (t,x)(0,T]×d(t,x)\in(0,T]\times\mathbb{R}^{d}.

  2. (b)

    (Local solution) If

    max(|b(z)|log|z|,|σ(z)|(log|z|)α/2)=O(|z|)as |z|,\displaystyle\max\left(\frac{|b(z)|}{\log|z|},\>\frac{\left|\sigma(z)\right|}{\left(\log|z|\right)^{\alpha/2}}\right)=O(|z|)\quad\text{as $|z|\to\infty$,} (1.10)

    then for some deterministic time T>0T>0, there exists a unique solution solution u(t,x)u(t,x) to (1.1) for all (t,x)(0,T]×d(t,x)\in(0,T]\times\mathbb{R}^{d}.

  3. (c)

    In either case (a) or (b), the solution u(t,x)u(t,x) is Hölder continuous: uCα/2,α((0,T]×d)u\in C^{\alpha/2-,\,\alpha-}\left((0,T]\times\mathbb{R}^{d}\right) a.s., where Cα1,α2(D)C^{\alpha_{1}-,\,\alpha_{2}-}\left(D\right) denotes the Hölder continuous function on the space-time domain DD with exponents α1ϵ\alpha_{1}-\epsilon and α2ϵ\alpha_{2}-\epsilon in time and space, respectively, for any small ϵ>0\epsilon>0.

Theorem 1.1 is proved in Section 3.

Remark 1.2 (Critical vs sub-critical cases).

We call the case under conditions in (1.10) the critical case and the one in (1.9) the sub-critical case. Dalang et al [DKZ19] established the global solution for the critical case using the semigroup property of the heat equation. In this paper, we cannot restart our SHE (1.1) to pass the local solution to global solution due to the fact that it is not clear whether at time TT, u(T,)u(T,\cdot) as the initial condition for the next step is again an element in L(d)Lp(d)L^{\infty}(\mathbb{R}^{d})\cap L^{p}(\mathbb{R}^{d}) a.s. This issue does not present for a continuous random field on a compact spatial domain, which is the case in [DKZ19] and [Sal21].

Remark 1.3 (Regularity of the initial conditions).

In [DKZ19], the initial condition u0u_{0} is assumed to be a Hölder continuous function on [0,1][0,1]. In contrast, in this paper, we only assume that u0L(d)Lp(d)u_{0}\in L^{\infty}(\mathbb{R}^{d})\cap L^{p}(\mathbb{R}^{d}) for some large pp. This is one example of the smoothing effect of the heat kernel in the stochastic partial differential equation context. This improvement from a Hölder continuous function to a measurable function is due to the factorization representation of the solution (see (2.10) below). Similar arguments using this factorization have also been carried out by Salins [Sal21].

Example 1.4 (Examples of bb and σ\sigma in Theorem 1.1).

(1) The function g(x)=xsin(x)g(x)=x\sin(x) for xx\in\mathbb{R} is locally Lipschitz, but not globally Lipschitz, continuous with linear growth and g(0)=0g(0)=0. Hence Theorem 1.1 holds when either bb or σ\sigma takes the form of gg. (2) For the function ga,b(x):=|x|bloga(1+|x|)g_{a,b}(x):=|x|^{b}\log^{a}(1+|x|) for x,a,bx,a,b\in\mathbb{R}, it is easy to see that the conditions a+b>0a+b>0 and a+b1a+b\geq 1 imply that ga,b(0)=0g_{a,b}(0)=0 and ga,bg_{a,b} is locally Lipschitz continuous, respectively. The growth condition of either (1.9) or (1.10) makes the further restriction on the suitable choices of (a,b)(a,b).

The extension given in Theorem 1.1 from a compact spatial domain to the entire space d\mathbb{R}^{d} critically relies on the sharp moment formulas obtained in Theorem 1.5 below. These moment formulas, as extensions of those in [CD15, CK19, CH19] to allow a Lipschitz drift term, constitute the second and independent contribution of the paper. Indeed, when the drift term is linear, i.e., b(u)=λub(u)=\lambda u, then one can work with the following heat kernel Gd(t,x)=pt(x)eλtG_{d}(t,x)=p_{t}(x)e^{\lambda t}. However, when bb is a Lipschitz nonlinear function, the situation is much more trickier, especially if one wants to allow rough initial conditions [CD15, CK19, CH19], namely, u0u_{0} being a signed Borel measure such that

dea|x|2|u0|(dx)<for all a>0,\displaystyle\int_{\mathbb{R}^{d}}e^{-a|x|^{2}}|u_{0}|(\mathrm{d}x)<\infty\quad\text{for all $a>0$}, (1.11)

where |u0|=u0,++u0,|u_{0}|=u_{0,+}+u_{0,-} and u0=u0,+u0,u_{0}=u_{0,+}-u_{0,-} is the Jordan decomposition of the signed measure u0u_{0}. The existence and uniqueness of the solution uu is proved in [Hua17] (the proof still works for signed Borel measure). We will prove the following theorem:

Theorem 1.5 (Moment formulas with a Lipschitz drift term).

Let u(t,x)u(t,x) be the solution to (1.1) and suppose that bb and σ\sigma are globally Lipschitz continuous functions and the correlation function ff satisfies the improved Dalang’s condition (1.3) for some α(0,1)\alpha\in(0,1). Then we have the following:

  1. (a)

    If u0L(d)u_{0}\in L^{\infty}(\mathbb{R}^{d}), then for all pmax(2, 26Lb2Υα1)p\geq\max\left(2,\>2^{-6}L_{b}^{-2}\Upsilon_{\alpha}^{-1}\right), t>0t>0 and xdx\in\mathbb{R}^{d}, it holds that

    u(t,x)p(τ2+2u0L)exp(Ctmax(p1/αLσ2/α,Lb)),\left|\left|u(t,x)\right|\right|_{p}\leq\left(\frac{\tau}{2}+2\left|\left|u_{0}\right|\right|_{L^{\infty}}\right)\exp\left(Ct\max\left(p^{1/\alpha}\operatorname{\mathit{L}}_{\sigma}^{2/\alpha},\operatorname{\mathit{L}}_{b}\right)\right)\,, (1.12)

    where ||||p\left|\left|\cdot\right|\right|_{p} and ||||L\left|\left|\cdot\right|\right|_{L^{\infty}} denote the Lp(Ω)L^{p}\left(\Omega\right)-norm and L(d)L^{\infty}(\mathbb{R}^{d})-norm, respectively,

    τ:=|b(0)|Lb|σ(0)|Lσ,\displaystyle\tau:=\frac{|b(0)|}{L_{b}}\vee\frac{|\sigma(0)|}{L_{\sigma}}\,, (1.13)

    C=max(4,26/α1Υα1/α)C=\max\left(4,2^{6/\alpha-1}\Upsilon_{\alpha}^{1/\alpha}\right), and

    Lb:=supz|b(z)b(0)||z|andLσ:=supz|σ(z)σ(0)||z|.\displaystyle L_{b}:=\sup_{z\in\mathbb{R}}\frac{|b(z)-b(0)|}{|z|}\quad\text{and}\quad L_{\sigma}:=\sup_{z\in\mathbb{R}}\frac{|\sigma(z)-\sigma(0)|}{|z|}. (1.14)
  2. (b)

    If u0u_{0} is a rough initial condition (see (1.11)), then for all t>0t>0, xdx\in\mathbb{R}^{d} and p2p\geq 2,

    u(t,x)p3[τ+J+(t,x)]exp(Ctmax(p1/αLσ2/α,Lb)),\displaystyle\left|\left|u(t,x)\right|\right|_{p}\leq\sqrt{3}\left[\tau+J_{+}(t,x)\right]\exp\left(Ct\max\left(p^{1/\alpha}\operatorname{\mathit{L}}_{\sigma}^{2/\alpha},\operatorname{\mathit{L}}_{b}\right)\right), (1.15)

    where J+(t,x):=(pt|u0|)(x)J_{+}(t,x):=(p_{t}*|u_{0}|)(x) and the constant CC does not depend on (t,x,p,Lb,Lσ)(t,x,p,L_{b},L_{\sigma}).

  3. (c)

    If u0L(d)Lp(d)u_{0}\in L^{\infty}(\mathbb{R}^{d})\cap L^{p}(\mathbb{R}^{d}) for some p(2+d)/αp\geq(2+d)/\alpha and if σ(0)=b(0)=0\sigma(0)=b(0)=0, then for all t>0t>0,

    sup(s,x)[0,t]×du(s,x)p\displaystyle\left|\left|\sup_{(s,x)\in[0,t]\times\mathbb{R}^{d}}u(s,x)\right|\right|_{p} u0L+Cu0Lp(Lb+Lσ)exp(Ctmax(p1/αLσ2/α,Lb)),\displaystyle\leq\left|\left|u_{0}\right|\right|_{L^{\infty}}+C\left|\left|u_{0}\right|\right|_{L^{p}}\left(L_{b}+L_{\sigma}\right)\exp\left(Ct\max\left(p^{1/\alpha}L_{\sigma}^{2/\alpha},\>L_{b}\right)\right), (1.16)

    where ||||Lp\left|\left|\cdot\right|\right|_{L^{p}} denotes the Lp(d)L^{p}(\mathbb{R}^{d})-norm and the constant CC does not depend on (t,x,p,Lb,Lσ)(t,x,p,L_{b},L_{\sigma}).

Remark 1.6.

Part (a) of Theorem 1.5 can be derived from part (b) by noticing that J+(t,x)u0LJ_{+}(t,x)\leq\left|\left|u_{0}\right|\right|_{L^{\infty}}. However, we still keep part (a) due to the simplicity of its proof.

Using the moment bounds in (1.15), one can extend the Hölder regularity from the SHE without drift (see [SS02] for the bounded initial condition case and [CH19] for the rough initial condition case) to the one with a Lipschitz drift.

Corollary 1.7 (Hölder regularity).

Let u(t,x)u(t,x) be the solution to (1.1) starting from a rough initial condition (see (1.11)) and suppose that bb and σ\sigma are globally Lipschitz continuous functions. If the correlation function ff satisfies the improved Dalang’s condition (1.3) for some α(0,1)\alpha\in(0,1). Then uCα/2,α((0,)×d)u\in C^{\alpha/2-,\,\alpha-}\left((0,\infty)\times\mathbb{R}^{d}\right) a.s.

Parts (a), (b), and (c) of Theorem 1.5 are proved in Sections 2.1, 2.3, and 2.4, respectively. Corollary 1.7 is proved in Section 2.5.

Finally, we list a few open questions for future exploration: (1) Theorem 1.1 cannot handle either the constant one initial condition or the Dirac delta initial condition. It is interesting to investigate if either global or local solution exists for these two special initial conditions. (2) Can one improve Theorem 1.1 by relaxing the growth conditions in (1.9) and (1.10) to the Osgood-type conditions in (1.8) as in [Sal21]?

In the rest of the paper, we prove Theorems 1.5 and 1.1 in Sections 2 and 3, respectively.

2 Moment bounds with a Lipschitz drift term

2.1 The bounded initial data case – Proof of part (a) of Theorem 1.5

Proof of Theorem 1.5 (a):.

By Minkowski’s inequality,

u(t,x)p\displaystyle\left|\left|u(t,x)\right|\right|_{p}\leq (ptu0)(x)+0tdpts(xy)(|b(0)|+Lbu(s,y)p)dyds\displaystyle(p_{t}*u_{0})(x)+\int_{0}^{t}\int_{\mathbb{R}^{d}}p_{t-s}(x-y)\left(|b(0)|+L_{b}\left|\left|u(s,y)\right|\right|_{p}\right)\mathrm{d}y\mathrm{d}s
+zp(0tddpts(xy)pts(xy)(|σ(0)|+Lσ||u(s,y)||p)\displaystyle+z_{p}\bigg{(}\int_{0}^{t}\int_{\mathbb{R}^{d}}\int_{\mathbb{R}^{d}}p_{t-s}(x-y)p_{t-s}(x-y^{\prime})\left(|\sigma(0)|+L_{\sigma}\left|\left|u(s,y)\right|\right|_{p}\right)
×(|σ(0)|+Lσ||u(s,y)||p)f(yy)dydyds)1/2,\displaystyle\qquad\times\left(|\sigma(0)|+L_{\sigma}\left|\left|u(s,y^{\prime})\right|\right|_{p}\right)f(y-y^{\prime})\mathrm{d}y\mathrm{d}y^{\prime}\mathrm{d}s\bigg{)}^{1/2}\,,

where zpz_{p} is the constant coming from the Burkholder-Davis-Gundy inequality and zp2pz_{p}\sim 2\sqrt{p} as pp\to\infty; see [CK12, Theorem 1.4] and references therein. For β>0\beta>0, consider the following norm

𝒩β(u):=sup(t,x)(0,)×deβtu(t,x)p.\displaystyle\mathcal{N}_{\beta}(u):=\sup_{(t,x)\in(0,\infty)\times\mathbb{R}^{d}}e^{-\beta t}\left|\left|u(t,x)\right|\right|_{p}\,.

Then we see that

eβtu(t,x)p\displaystyle e^{-\beta t}\left|\left|u(t,x)\right|\right|_{p}
\displaystyle\leq u0L+0tdeβ(ts)pts(xy)(|b(0)|+Lb(sup(s,y)(0,)×deβsu(s,y)p))dyds\displaystyle\|u_{0}\|_{L^{\infty}}+\int_{0}^{t}\int_{\mathbb{R}^{d}}e^{-\beta(t-s)}p_{t-s}(x-y)\left(|b(0)|+L_{b}\left(\sup_{(s,y)\in(0,\infty)\times\mathbb{R}^{d}}e^{-\beta s}\|u(s,y)\|_{p}\right)\right)\mathrm{d}y\mathrm{d}s
+zp(0tdde2β(ts)pts(xy)pts(xy)\displaystyle+z_{p}\bigg{(}\int_{0}^{t}\int_{\mathbb{R}^{d}}\int_{\mathbb{R}^{d}}e^{-2\beta(t-s)}p_{t-s}(x-y)p_{t-s}(x-y^{\prime})
×(|σ(0)|+Lσsup(s,y)(0,)×deβs||u(s,y)||p)2f(yy)dydyds)1/2.\displaystyle\qquad\times\left(|\sigma(0)|+L_{\sigma}\sup_{(s,y)\in(0,\infty)\times\mathbb{R}^{d}}e^{-\beta s}\left|\left|u(s,y)\right|\right|_{p}\right)^{2}f(y-y^{\prime})\mathrm{d}y\mathrm{d}y^{\prime}\mathrm{d}s\bigg{)}^{1/2}\,.

Hence,

𝒩β(u)\displaystyle\mathcal{N}_{\beta}(u)\leq u0L+1β(|b(0)|+Lb𝒩β(u))\displaystyle\left|\left|u_{0}\right|\right|_{L^{\infty}}+\frac{1}{\beta}\left(|b(0)|+L_{b}\>\mathcal{N}_{\beta}(u)\right)
+zp((2π)d0de2βses|ξ|2f^(ξ)dξds)1/2(|σ(0)|+Lσ𝒩β(u)).\displaystyle+z_{p}\left(\left(2\pi\right)^{-d}\int_{0}^{\infty}\int_{\mathbb{R}^{d}}e^{-2\beta s}e^{-s|\xi|^{2}}\hat{f}(\xi)\mathrm{d}\xi\mathrm{d}s\right)^{1/2}\bigg{(}|\sigma(0)|+L_{\sigma}\>\mathcal{N}_{\beta}(u)\bigg{)}.

By the improved Dalang’s condition (1.3) and by assuming that β>1/2\beta>1/2, we see that

(2π)d0de2βses|ξ|2f^(ξ)dξds\displaystyle\left(2\pi\right)^{-d}\int_{0}^{\infty}\int_{\mathbb{R}^{d}}e^{-2\beta s}e^{-s|\xi|^{2}}\hat{f}(\xi)\mathrm{d}\xi\mathrm{d}s =(2π)ddf^(dξ)(2β+|ξ|2)1α(2β+|ξ|2)α(2β)αΥα.\displaystyle=\left(2\pi\right)^{-d}\int_{\mathbb{R}^{d}}\frac{\widehat{f}\left(\mathrm{d}\xi\right)}{\left(2\beta+|\xi|^{2}\right)^{1-\alpha}\left(2\beta+|\xi|^{2}\right)^{\alpha}}\leq(2\beta)^{-\alpha}\Upsilon_{\alpha}.

Therefore,

𝒩β(u)\displaystyle\mathcal{N}_{\beta}(u)\leq u0L+Lbβ(|b(0)|Lb+𝒩β(u))+zp(2β)α/2Υα1/2Lσ(|σ(0)|Lσ+𝒩β(u)).\displaystyle\left|\left|u_{0}\right|\right|_{L^{\infty}}+\frac{L_{b}}{\beta}\left(\frac{|b(0)|}{L_{b}}+\mathcal{N}_{\beta}(u)\right)+z_{p}\left(2\beta\right)^{-\alpha/2}\Upsilon_{\alpha}^{1/2}L_{\sigma}\left(\frac{|\sigma(0)|}{L_{\sigma}}+\mathcal{N}_{\beta}(u)\right)\,.

Now by choosing β\beta large enough, namely,

β>12,Lbβ14,zp(2β)α/2Υα1/2Lσ14β>max(4Lb,12,12(16zp2Lσ2Υα)1/α),\displaystyle\beta>\frac{1}{2},\quad\frac{L_{b}}{\beta}\leq\frac{1}{4},\quad z_{p}\left(2\beta\right)^{-\alpha/2}\Upsilon_{\alpha}^{1/2}L_{\sigma}\leq\frac{1}{4}\,\quad\Longleftrightarrow\quad\beta>\max\left(4L_{b},\>\frac{1}{2},\>\frac{1}{2}\left(16z_{p}^{2}L_{\sigma}^{2}\Upsilon_{\alpha}\right)^{1/\alpha}\right),

we form a contraction map, which can be easily solved:

𝒩β(u)2u0L+|b0|2Lb|σ(0)|2Lσ.\displaystyle\mathcal{N}_{\beta}(u)\leq 2\left|\left|u_{0}\right|\right|_{L^{\infty}}+\frac{|b_{0}|}{2L_{b}}\vee\frac{|\sigma(0)|}{2L_{\sigma}}\,.

Notice that zp2pz_{p}\leq 2\sqrt{p}, we have that

12<12(16zp2Lσ2Υα)1/α1/p<64Lb2Υα.\displaystyle\frac{1}{2}<\frac{1}{2}\left(16z_{p}^{2}L_{\sigma}^{2}\Upsilon_{\alpha}\right)^{1/\alpha}\quad\Longleftrightarrow\quad 1/p<64L_{b}^{2}\Upsilon_{\alpha}.

Therefore, for all t>0t>0, when 1/p<min(64Lb2Υα,1/2)1/p<\min\left(64L_{b}^{2}\Upsilon_{\alpha},1/2\right), we can take

max(4Lb,12(16(2p)2Lσ2Υα)1/α)max(4,26/α1Υα1/α)max(Lb,p1/αLσ2/α)=:β\displaystyle\max\left(4L_{b},\>\frac{1}{2}\left(16(2\sqrt{p})^{2}L_{\sigma}^{2}\Upsilon_{\alpha}\right)^{1/\alpha}\right)\leq\max\left(4,2^{6/\alpha-1}\Upsilon_{\alpha}^{1/\alpha}\right)\max\left(L_{b},\>p^{1/\alpha}L_{\sigma}^{2/\alpha}\right)=:\beta

to have that

u(t,x)p(2u0L+|b0|2Lb|σ(0)|2Lσ)exp(βt),for all t>0.\displaystyle\left|\left|u(t,x)\right|\right|_{p}\leq\left(2\left|\left|u_{0}\right|\right|_{L^{\infty}}+\frac{|b_{0}|}{2L_{b}}\vee\frac{|\sigma(0)|}{2L_{\sigma}}\right)\exp\left(\beta t\right),\quad\text{for all $t>0$}.

This proves part (a) of Theorem 1.5. ∎

2.2 A Gronwall-type lemma

Let us introduce some functions. For a,b0a,b\geq 0, denote

ka,b(t):=d(af(z)+bt)G(t,z)dz=ak1,0(t)+bt.\displaystyle k_{a,b}(t):=\int_{\mathbb{R}^{d}}\left(af(z)+bt\right)G(t,z)\mathrm{d}z=ak_{1,0}(t)+bt. (2.1)

By the Fourier transform, this function can be written in the following form

k1,0(t):=(2π)ddf^(dξ)exp(t|ξ|22).\displaystyle k_{1,0}(t):=(2\pi)^{-d}\int_{\mathbb{R}^{d}}\hat{f}(\mathrm{d}\xi)\exp\left(-\frac{t|\xi|^{2}}{2}\right). (2.2)

Define h0a,b(t):=1h_{0}^{a,b}(t):=1 and for n1n\geq 1,

hna,b(t)=0tdshn1a,b(s)ka,b(ts).\displaystyle h_{n}^{a,b}(t)=\int_{0}^{t}\mathrm{d}s\>h_{n-1}^{a,b}(s)k_{a,b}(t-s). (2.3)

Let

Ha,b(t;γ):=n=0γnhna,b(t),for all γ0.\displaystyle H_{a,b}(t;\gamma):=\sum_{n=0}^{\infty}\gamma^{n}h_{n}^{a,b}(t),\qquad\text{for all $\gamma\geq 0$.} (2.4)

When we have a=1a=1 and b=0b=0, we will use k(t)k(t), hn(t)h_{n}(t) and H(t;γ)H(t;\gamma) to denote k1,0(t)k_{1,0}(t), hn1,0(t)h_{n}^{1,0}(t) and H1,0(t;γ)H_{1,0}(t;\gamma), respectively. Note that this convention makes our notation in case of a=1a=1 and b=0b=0 consistent with those in [CH19], [CK19] or [BC18]. The following lemma generalizes Lemma 2.5 in [CK19] or Lemma 3.8 in [BC18] from the case a=1a=1 and b=0b=0 to the case with general parameters aa and bb.

Lemma 2.1.

Suppose that the correlation function ff satisfies Dalang’s condition (1.4). Then for all a0a\geq 0, b0b\geq 0, and γ0\gamma\geq 0, it holds that

lim supt1tlogHa,b(t;γ)inf{β>0:aΥ(2β)+b2β2<12γ},\displaystyle\limsup_{t\rightarrow\infty}\frac{1}{t}\log H_{a,b}(t;\gamma)\leq\inf\left\{\beta>0:\>a\Upsilon\left(2\beta\right)+\frac{b}{2\beta^{2}}<\frac{1}{2\gamma}\right\}, (2.5)

where Υ(β)\Upsilon(\beta) is defined in (1.4).

Proof.

Here we follow the arguments in the proof of Lemma 3.8 of [BC18]. In particular,

lim supt1tlogHa,b(t;γ)inf{β>0;0eβtHa,b(t;γ)𝑑t<}.\displaystyle\limsup_{t\to\infty}\frac{1}{t}\log H_{a,b}(t;\gamma)\leq\inf\left\{\beta>0;\int_{0}^{\infty}e^{-\beta t}H_{a,b}(t;\gamma)dt<\infty\right\}.

Notice that

0eβtHa,b(t;γ)dt=\displaystyle\int_{0}^{\infty}e^{-\beta t}H_{a,b}(t;\gamma)\mathrm{d}t= n0γn0eβthna,b(t)dt\displaystyle\sum_{n\geq 0}\gamma^{n}\int_{0}^{\infty}e^{-\beta t}h_{n}^{a,b}(t)\mathrm{d}t
=\displaystyle= n0γn[0eβtka,b(t)dt]n[0eβth0a,b(t)dt]\displaystyle\sum_{n\geq 0}\gamma^{n}\left[\int_{0}^{\infty}e^{-\beta t}k_{a,b}(t)\mathrm{d}t\right]^{n}\left[\int_{0}^{\infty}e^{-\beta t}h_{0}^{a,b}(t)\mathrm{d}t\right]
=\displaystyle= 1βn0γn[a0eβtk(t)dt+bβ2]n\displaystyle\frac{1}{\beta}\sum_{n\geq 0}\gamma^{n}\left[a\int_{0}^{\infty}e^{-\beta t}k(t)\mathrm{d}t+\frac{b}{\beta^{2}}\right]^{n}
=\displaystyle= 1βn0γn[a(2π)ddf^(dξ)β+|ξ|22+bβ2]n\displaystyle\frac{1}{\beta}\sum_{n\geq 0}\gamma^{n}\left[a\left(2\pi\right)^{-d}\int_{\mathbb{R}^{d}}\frac{\widehat{f}(\mathrm{d}\xi)}{\beta+\frac{|\xi|^{2}}{2}}+\frac{b}{\beta^{2}}\right]^{n}
=\displaystyle= 1βn0γn[2aΥ(2β)+bβ2]n,\displaystyle\frac{1}{\beta}\sum_{n\geq 0}\gamma^{n}\left[2a\Upsilon(2\beta)+\frac{b}{\beta^{2}}\right]^{n},

where in the fourth equality we have used (2.2). The lemma is proved by noticing that

0eβtHa,b(t;γ)dt<2aΥ(2β)+bβ2<1γ.\displaystyle\int_{0}^{\infty}e^{-\beta t}H_{a,b}(t;\gamma)\mathrm{d}t<\infty\quad\Longleftrightarrow\quad 2a\Upsilon(2\beta)+\frac{b}{\beta^{2}}<\frac{1}{\gamma}.

One may check the proof of Lemma 3.8 of [BC18] for more details. This proves the lemma. ∎

Corollary 2.2.

Suppose that the correlation function ff satisfies the improved Dalang’s condition (1.3) for some α(0,1)\alpha\in(0,1). Then for all a0a\geq 0 and b0b\geq 0, when γ>0\gamma>0 is large enough, it holds that

lim supt1tlogHa,b(t;γ)max(23/α(aCγ)1/α,2bγ),\displaystyle\limsup_{t\rightarrow\infty}\frac{1}{t}\log H_{a,b}(t;\gamma)\leq\max\left(2^{3/\alpha}\left(aC\gamma\right)^{1/\alpha},\sqrt{2b\gamma}\right), (2.6)

where the constant CC can be chosen to be

C=(2π)d2αmax(|ξ|1f^(dξ),|ξ|>1f^(dξ)|ξ|2(1α)).\displaystyle C=\left(2\pi\right)^{-d}2^{-\alpha}\max\left(\int_{|\xi|\leq 1}\widehat{f}(\mathrm{d}\xi),\int_{|\xi|>1}\frac{\widehat{f}(\mathrm{d}\xi)}{|\xi|^{2(1-\alpha)}}\right). (2.7)
Proof.

Notice that for β>0\beta>0,

Υ(2β)\displaystyle\Upsilon(2\beta) =(2π)dd1(2β+|ξ|2)αf^(dξ)(2β+|ξ|2)1α\displaystyle=(2\pi)^{-d}\int_{\mathbb{R}^{d}}\frac{1}{\left(2\beta+|\xi|^{2}\right)^{\alpha}}\frac{\hat{f}(\mathrm{d}\xi)}{\left(2\beta+|\xi|^{2}\right)^{1-\alpha}}
(2π)d(2β)α(|ξ|1f^(dξ)(2β)1α+|ξ|>1f^(dξ)|ξ|2(1α))C(1β+1βα),\displaystyle\leq\frac{(2\pi)^{-d}}{(2\beta)^{\alpha}}\left(\int_{|\xi|\leq 1}\frac{\hat{f}(\mathrm{d}\xi)}{(2\beta)^{1-\alpha}}+\int_{|\xi|>1}\frac{\hat{f}(\mathrm{d}\xi)}{|\xi|^{2(1-\alpha)}}\right)\leq C\left(\frac{1}{\beta}+\frac{1}{\beta^{\alpha}}\right),

where the constant CC can be chosen as in (2.7). When γ\gamma is large enough, we may assume that β>1\beta>1. Hence, in light of (2.6),

aΥ(2β)+b2β22aCβα+b2β2.\displaystyle a\Upsilon\left(2\beta\right)+\frac{b}{2\beta^{2}}\leq\frac{2aC}{\beta^{\alpha}}+\frac{b}{2\beta^{2}}.

Therefore,

aΥ(2β)+b2β2<12γ\displaystyle a\Upsilon\left(2\beta\right)+\frac{b}{2\beta^{2}}<\frac{1}{2\gamma}\quad 2aCβα+b2β2<12γ\displaystyle\Longleftarrow\quad\frac{2aC}{\beta^{\alpha}}+\frac{b}{2\beta^{2}}<\frac{1}{2\gamma}
2aCβα<14γandb2β2<14γ\displaystyle\Longleftarrow\quad\frac{2aC}{\beta^{\alpha}}<\frac{1}{4\gamma}\quad\text{and}\quad\frac{b}{2\beta^{2}}<\frac{1}{4\gamma}
β>23/α(aCγ)1/αandβ>2bγ.\displaystyle\Longleftrightarrow\quad\beta>2^{3/\alpha}\left(aC\gamma\right)^{1/\alpha}\quad\text{and}\quad\beta>\sqrt{2b\gamma}.

This proves the corollary. ∎

2.3 Moment bounds for rough initial data – Proof of part (b) of Theorem 1.5

In this part, we extend the moment bounds obtained in [CH19] to allow a Lipschitz drift term.

Proof of Theorem 1.5 (b).

Taking the pp-th norm on both sides of the mild form (1.5) with p2p\geq 2 and applying the Minkowski inequality, we see that

u(t,x)pJ+(t,x)+Lb0tdsdpts(xy)(|b(0)|Lb+u(s,y)p)dy+I(t,x)p.\displaystyle\left|\left|u(t,x)\right|\right|_{p}\leq J_{+}(t,x)+\operatorname{\mathit{L}}_{b}\int_{0}^{t}\mathrm{d}s\int_{\mathbb{R}^{d}}p_{t-s}(x-y)\left(\frac{|b(0)|}{L_{b}}+\left|\left|u(s,y)\right|\right|_{p}\right)\mathrm{d}y+\left|\left|I(t,x)\right|\right|_{p}. (2.8)

By the Burkholder-Davis-Gundy inequality (see also a similar argument in the step 1 of the proof of Theorem 1.7 of [CH19] on p. 1000), we see that

I(s,y)p2\displaystyle\left|\left|I(s,y)\right|\right|_{p}^{2}\leq 4pLσ20s2dpsr(yz1)psr(yz2)f(z1z2)\displaystyle 4p\operatorname{\mathit{L}}_{\sigma}^{2}\int_{0}^{s}\iint_{\mathbb{R}^{2d}}p_{s-r}(y-z_{1})p_{s-r}(y-z_{2})f(z_{1}-z_{2})
×2(σ(0)2Lσ2+u(r,z1)p2)2(σ(0)2Lσ2+u(r,z2)p2)drdz1dz2.\displaystyle\times\sqrt{2\left(\frac{\sigma(0)^{2}}{L_{\sigma}^{2}}+\left|\left|u(r,z_{1})\right|\right|_{p}^{2}\right)}\sqrt{2\left(\frac{\sigma(0)^{2}}{L_{\sigma}^{2}}+\left|\left|u(r,z_{2})\right|\right|_{p}^{2}\right)}\>\mathrm{d}r\mathrm{d}z_{1}\mathrm{d}z_{2}.

Then by the sub-additivity of square root,

I(t,x)p28pLσ20tds2ddy1dy2pts(xy1)pts(xy2)f(y1y2)×(|σ(0)|Lσ+u(s,y1)p)(|σ(0)|Lσ+u(s,y2)p).\displaystyle\begin{aligned} \left|\left|I(t,x)\right|\right|_{p}^{2}\leq&8p\operatorname{\mathit{L}}_{\sigma}^{2}\int_{0}^{t}\>\mathrm{d}s\iint_{\mathbb{R}^{2d}}\mathrm{d}y_{1}\mathrm{d}y_{2}\>p_{t-s}(x-y_{1})p_{t-s}(x-y_{2})f(y_{1}-y_{2})\\ &\times\left(\frac{|\sigma(0)|}{L_{\sigma}}+\left|\left|u(s,y_{1})\right|\right|_{p}\right)\left(\frac{|\sigma(0)|}{L_{\sigma}}+\left|\left|u(s,y_{2})\right|\right|_{p}\right).\end{aligned} (2.9)

By the Cauchy-Schwartz inequality applied to the dt\mathrm{d}t integral, the square of second term on the right-hand side of (2.8) is bounded by

Lb2t0tds(dpts(xy)(|b(0)|Lb+u(s,y)p)dy)2.\displaystyle L_{b}^{2}\>t\int_{0}^{t}\mathrm{d}s\left(\int_{\mathbb{R}^{d}}p_{t-s}(x-y)\left(\frac{|b(0)|}{L_{b}}+\left|\left|u(s,y)\right|\right|_{p}\right)\mathrm{d}y\right)^{2}.

Hence, by raising both sides of (2.8) by a power two and recalling that the constant τ\tau is defined in (1.13), we obtain that

u(t,x)p2\displaystyle\left|\left|u(t,x)\right|\right|_{p}^{2} 3J+2(t,x)+3Lb2t0tds(dpts(xy)(|b(0)|Lb+u(s,y)p)dy)2\displaystyle\leq 3J_{+}^{2}(t,x)+3\operatorname{\mathit{L}}_{b}^{2}t\int_{0}^{t}\mathrm{d}s\left(\int_{\mathbb{R}^{d}}p_{t-s}(x-y)\left(\frac{|b(0)|}{L_{b}}+\left|\left|u(s,y)\right|\right|_{p}\right)\mathrm{d}y\right)^{2}
+24pLσ20tds2ddy1dy2pts(xy1)pts(xy2)f(y1y2)\displaystyle\quad+24p\operatorname{\mathit{L}}_{\sigma}^{2}\int_{0}^{t}\mathrm{d}s\iint_{\mathbb{R}^{2d}}\mathrm{d}y_{1}\mathrm{d}y_{2}\>p_{t-s}(x-y_{1})p_{t-s}(x-y_{2})f(y_{1}-y_{2})
×(|σ(0)|Lσ+u(s,y1)p)(|σ(0)|Lσ+u(s,y2)p)\displaystyle\quad\times\left(\frac{|\sigma(0)|}{L_{\sigma}}+\left|\left|u(s,y_{1})\right|\right|_{p}\right)\left(\frac{|\sigma(0)|}{L_{\sigma}}+\left|\left|u(s,y_{2})\right|\right|_{p}\right)
3J+2(t,x)+30tds2ddy1dy2pts(xy1)pts(xy2)\displaystyle\leq 3J_{+}^{2}(t,x)+3\int_{0}^{t}\mathrm{d}s\iint_{\mathbb{R}^{2d}}\mathrm{d}y_{1}\mathrm{d}y_{2}\>p_{t-s}(x-y_{1})p_{t-s}(x-y_{2})
×(8pLσ2f(y1y2)+Lb2t)(τ+u(s,y1)p)(τ+u(s,y2)p).\displaystyle\quad\times\left(8p\operatorname{\mathit{L}}_{\sigma}^{2}f(y_{1}-y_{2})+\operatorname{\mathit{L}}_{b}^{2}t\right)\left(\tau+\left|\left|u(s,y_{1})\right|\right|_{p}\right)\left(\tau+\left|\left|u(s,y_{2})\right|\right|_{p}\right).

Now apply the same arguments as those in the proof of Theorem 1.7 of [CH19] with k(t)k(t) replaced by k8pLσ2,Lb2(t)k_{8p\operatorname{\mathit{L}}_{\sigma}^{2},\operatorname{\mathit{L}}_{b}^{2}}(t) to see that

u(t,x)p[τ+3J+(t,x)]H8pLσ2,Lb2(t;1)1/2.\displaystyle\left|\left|u(t,x)\right|\right|_{p}\leq\left[\tau+\sqrt{3}\>J_{+}(t,x)\right]H_{8p\operatorname{\mathit{L}}_{\sigma}^{2},\operatorname{\mathit{L}}_{b}^{2}}\left(t;1\right)^{1/2}.

In particular, if ff satisfies the improved Dalang’s condition (1.3) for some α(0,1)\alpha\in(0,1), then by Corollary 2.2, for all t>0t>0 and xdx\in\mathbb{R}^{d},

u(t,x)p3[|b(0)|Lb|σ(0)|Lσ+J+(t,x)]exp(Ctmax(p1/αLσ2/α,Lb)).\displaystyle\left|\left|u(t,x)\right|\right|_{p}\leq\sqrt{3}\left[\frac{|b(0)|}{L_{b}}\vee\frac{|\sigma(0)|}{L_{\sigma}}+J_{+}(t,x)\right]\exp\left(Ct\max\left(p^{1/\alpha}\operatorname{\mathit{L}}_{\sigma}^{2/\alpha},\operatorname{\mathit{L}}_{b}\right)\right).

This proves part (b) of Theorem 1.5. ∎

2.4 Uniform moment bounds – Proof of part (c) of Theorem 1.5

Proof of Theorem 1.5 (c).

Fix arbitrary T>0T>0 and recall that α(0,1)\alpha\in(0,1) as in (1.3). The proof relies on the factorization lemma (see, e.g., Section 5.3.1 of [DZ14]), which says that

u(t,x)=(ptu0)(x)+Ψ(t,x)+Φ(t,x),\displaystyle u(t,x)=(p_{t}*u_{0})(x)+\Psi(t,x)+\Phi(t,x), (2.10)

where

Φ(t,x)=\displaystyle\Phi(t,x)= sin(πα/2)π0td(tr)1+α/2ptr(xz)Y(r,z)dzdrwith\displaystyle\frac{\sin(\pi\alpha/2)}{\pi}\int_{0}^{t}\int_{\mathbb{R}^{d}}(t-r)^{-1+\alpha/2}p_{t-r}(x-z)Y(r,z)\mathrm{d}z\mathrm{d}r\quad\text{with}
Y(r,z)=\displaystyle Y(r,z)= 0rd(rs)α/2prs(zy)σ(u(s,y))W(ds,dy)\displaystyle\int_{0}^{r}\int_{\mathbb{R}^{d}}(r-s)^{-\alpha/2}p_{r-s}(z-y)\sigma(u(s,y))W(\mathrm{d}s,\mathrm{d}y)

and

Ψ(t,x)=\displaystyle\Psi(t,x)= sin(πα/2)π0td(tr)1+α/2ptr(xz)B(r,z)dzdrwith\displaystyle\frac{\sin(\pi\alpha/2)}{\pi}\int_{0}^{t}\int_{\mathbb{R}^{d}}(t-r)^{-1+\alpha/2}p_{t-r}(x-z)B(r,z)\mathrm{d}z\mathrm{d}r\quad\text{with}
B(t,x)=\displaystyle B(t,x)= 0td(rs)α/2prs(zy)b(u(s,y))dsdy.\displaystyle\int_{0}^{t}\int_{\mathbb{R}^{d}}(r-s)^{-\alpha/2}p_{r-s}(z-y)b\left(u(s,y)\right)\mathrm{d}s\mathrm{d}y.

It is clear that

sup(t,x)[0,T]×d|(ptu0)(x)|pu0L(d)p.\displaystyle\sup_{(t,x)\in[0,T]\times\mathbb{R}^{d}}|(p_{t}*u_{0})(x)|^{p}\leq\left|\left|u_{0}\right|\right|_{L^{\infty}(\mathbb{R}^{d})}^{p}.

Step 1.  In this step, we will show that

𝔼(sup(t,x)[0,T]×d|Φ(t,x)|p)\displaystyle\mathbb{E}\left(\sup_{(t,x)\in[0,T]\times\mathbb{R}^{d}}|\Phi(t,x)|^{p}\right) Cu0Lp(d)pLσpexp(CTpmax(Lb,p1/αLσ2/α)).\displaystyle\leq C\left|\left|u_{0}\right|\right|_{L^{p}(\mathbb{R}^{d})}^{p}L_{\sigma}^{p}\exp\left(CTp\max\left(L_{b},\>p^{1/\alpha}L_{\sigma}^{2/\alpha}\right)\right). (2.11)

Let pp and qq be a conjugate pair on positive numbers, i.e., 1/p+1/q=11/p+1/q=1, whose values will be determined below. By Hölder’s inequality, we see that

|Φ(t,x)|\displaystyle|\Phi(t,x)| sin(πα/2)π0t(tr)1+α/2||ptr(x)||Lq(d)||Y(r,)||Lp(d)dr\displaystyle\leq\frac{\sin(\pi\alpha/2)}{\pi}\int_{0}^{t}(t-r)^{-1+\alpha/2}\left|\left|p_{t-r}(x-\cdot)\right|\right|_{L^{q}(\mathbb{R}^{d})}\left|\left|Y(r,\cdot)\right|\right|_{L^{p}(\mathbb{R}^{d})}\>\mathrm{d}r
C0t(tr)1+α/2(11/q)d/2Y(r,)Lρp(d)dr\displaystyle\leq C\int_{0}^{t}(t-r)^{-1+\alpha/2-(1-1/q)d/2}\left|\left|Y(r,\cdot)\right|\right|_{L^{p}_{\rho}(\mathbb{R}^{d})}\>\mathrm{d}r
C(0t(tr)(1+α/2)q(q1)d/2dr)1/q(0tY(r,)Lp(d)pdr)1/p,\displaystyle\leq C\left(\int_{0}^{t}(t-r)^{(-1+\alpha/2)q-(q-1)d/2}\mathrm{d}r\right)^{1/q}\left(\int_{0}^{t}\left|\left|Y(r,\cdot)\right|\right|_{L^{p}(\mathbb{R}^{d})}^{p}\>\mathrm{d}r\right)^{1/p},

where we have used the fact that ||ptr(x)||Lq(d)qC(tr)d(q1)/2\left|\left|p_{t-r}(x-\cdot)\right|\right|_{L^{q}(\mathbb{R}^{d})}^{q}\leq C(t-r)^{-d(q-1)/2} in the second inequality. Hence, since

(1+α/2)q(q1)d/2>1p>(2+d)/α,\displaystyle\left(-1+\alpha/2\right)q-\left(q-1\right)d/2>-1\quad\Longleftrightarrow\quad p>(2+d)/\alpha,

we have

𝔼(sup(t,x)[0,T]×d|Φ(t,x)|p)\displaystyle\mathbb{E}\left(\sup_{(t,x)\in[0,T]\times\mathbb{R}^{d}}|\Phi(t,x)|^{p}\right) CT0t𝔼(Y(r,)Lp(d)p)dr\displaystyle\leq C_{T}\int_{0}^{t}\mathbb{E}\left(\left|\left|Y(r,\cdot)\right|\right|_{L^{p}(\mathbb{R}^{d})}^{p}\right)\>\mathrm{d}r
=CT0tdrddz𝔼(|Y(r,z)|p).\displaystyle=C_{T}\int_{0}^{t}\mathrm{d}r\int_{\mathbb{R}^{d}}\mathrm{d}z\>\mathbb{E}\left(\left|Y(r,z)\right|^{p}\right).

Notice that

Y(r,z)p2Lσ20rds2ddydy(rs)αf(yy)prs(zy)u(s,y)p\displaystyle\left|\left|Y(r,z)\right|\right|_{p}^{2}\leq L_{\sigma}^{2}\int_{0}^{r}\mathrm{d}s\iint_{\mathbb{R}^{2d}}\mathrm{d}y\mathrm{d}y^{\prime}\>(r-s)^{-\alpha}f(y-y^{\prime})p_{r-s}(z-y)\left|\left|u(s,y)\right|\right|_{p}
×prs(zy)u(s,y)p.\displaystyle\times p_{r-s}(z-y^{\prime})\left|\left|u(s,y^{\prime})\right|\right|_{p}.

Since b(0)=σ(0)=0b(0)=\sigma(0)=0, by (1.15),

u(s,y)pCexp(CTmax(Lb,p1/αLσ2/α))J+(s,y).\displaystyle\left|\left|u(s,y)\right|\right|_{p}\leq C\exp\left(CT\max\left(L_{b},\>p^{1/\alpha}L_{\sigma}^{2/\alpha}\right)\right)J_{+}(s,y).

Combining the above three bounds shows that

𝔼(sup(t,x)[0,T]×d|Φ(t,x)|p)Cexp(CTpmax(Lb,p1/αLσ2/α))0tdrddzIp/2(r,z)\displaystyle\mathbb{E}\left(\sup_{(t,x)\in[0,T]\times\mathbb{R}^{d}}|\Phi(t,x)|^{p}\right)\leq C\exp\left(CTp\max\left(L_{b},\>p^{1/\alpha}L_{\sigma}^{2/\alpha}\right)\right)\int_{0}^{t}\mathrm{d}r\int_{\mathbb{R}^{d}}\mathrm{d}z\>I^{p/2}(r,z)

with

I(r,z):=0rds2ddydy(rs)αprs(zy)J+(s,y)f(yy)prs(zy)J+(s,y).\displaystyle I(r,z):=\int_{0}^{r}\mathrm{d}s\iint_{\mathbb{R}^{2d}}\mathrm{d}y\mathrm{d}y^{\prime}\>(r-s)^{-\alpha}p_{r-s}(z-y)J_{+}(s,y)f(y-y^{\prime})p_{r-s}(z-y^{\prime})J_{+}(s,y^{\prime}).

By the same arguments as the proof of Theorem 1.8 of [CH19] (see, in particular, the bound for I1,1(t,x,x)I_{1,1}(t,x,x^{\prime}) on p. 1006 ibid.), we see that

I(r,z)\displaystyle I(r,z) J+2(r,z)0rde(rs)s|ξ|2r(rs)αf^(ξ)dξdsCJ+2(r,z)df^(ξ)dξ(1+|ξ|2)1α.\displaystyle\leq J_{+}^{2}(r,z)\int_{0}^{r}\int_{\mathbb{R}^{d}}e^{-\frac{(r-s)s|\xi|^{2}}{r}}(r-s)^{-\alpha}\hat{f}(\xi)\mathrm{d}\xi\mathrm{d}s\leq CJ_{+}^{2}(r,z)\int_{\mathbb{R}^{d}}\frac{\hat{f}(\xi)\mathrm{d}\xi}{(1+|\xi|^{2})^{1-\alpha}}.

By Hölder’s inequality, we see that

0TdrddzJ+p(r,z)0Tdrddxp2r(xz)ddz|u0(z)|p=Tu0Lp(d)p.\displaystyle\int_{0}^{T}\mathrm{d}r\int_{\mathbb{R}^{d}}\mathrm{d}z\>J_{+}^{p}(r,z)\leq\int_{0}^{T}\mathrm{d}r\int_{\mathbb{R}^{d}}\mathrm{d}x\>p_{2r}(x-z)\int_{\mathbb{R}^{d}}\mathrm{d}z|u_{0}(z)|^{p}=T\left|\left|u_{0}\right|\right|_{L^{p}(\mathbb{R}^{d})}^{p}.

Therefore,

𝔼(sup(t,x)[0,T]×d|Φ(t,x)|p)\displaystyle\mathbb{E}\left(\sup_{(t,x)\in[0,T]\times\mathbb{R}^{d}}|\Phi(t,x)|^{p}\right) CLσpeCTpmax(Lb,p1/αLσ2/α)0TdrddzJ+p(r,z).\displaystyle\leq CL_{\sigma}^{p}e^{CTp\max\left(L_{b},\>p^{1/\alpha}L_{\sigma}^{2/\alpha}\right)}\int_{0}^{T}\mathrm{d}r\int_{\mathbb{R}^{d}}\mathrm{d}z\>J_{+}^{p}(r,z).

Combining the last two inequalities proves (2.11).

Step 2.  In this step, we will show that

𝔼(sup(t,x)[0,T]×d|Ψ(t,x)|p)\displaystyle\mathbb{E}\left(\sup_{(t,x)\in[0,T]\times\mathbb{R}^{d}}|\Psi(t,x)|^{p}\right) Cu0Lp(d)pLbpexp(CTpmax(Lb,p1/αLσ2/α)).\displaystyle\leq C\left|\left|u_{0}\right|\right|_{L^{p}(\mathbb{R}^{d})}^{p}L_{b}^{p}\exp\left(CTp\max\left(L_{b},\>p^{1/\alpha}L_{\sigma}^{2/\alpha}\right)\right). (2.12)

By the same arguments as in Step 1, we see that

𝔼(sup(t,x)[0,T]×d|Φ(t,x)|p)\displaystyle\mathbb{E}\left(\sup_{(t,x)\in[0,T]\times\mathbb{R}^{d}}|\Phi(t,x)|^{p}\right) =CT0tdrddz𝔼(|B(r,z)|p).\displaystyle=C_{T}\int_{0}^{t}\mathrm{d}r\int_{\mathbb{R}^{d}}\mathrm{d}z\>\mathbb{E}\left(\left|B(r,z)\right|^{p}\right).

Notice that

B(r,z)p\displaystyle\left|\left|B(r,z)\right|\right|_{p} Lb0rd(rs)α/2prs(zy)u(s,y)pdsdy\displaystyle\leq L_{b}\int_{0}^{r}\int_{\mathbb{R}^{d}}(r-s)^{-\alpha/2}p_{r-s}(z-y)\left|\left|u(s,y)\right|\right|_{p}\mathrm{d}s\mathrm{d}y
CLbexp(CTmax(Lb,p1/αLσ2/α))0rd(rs)α/2prs(zy)J+(s,y)dsdy\displaystyle\leq CL_{b}\exp\left(CT\max\left(L_{b},\>p^{1/\alpha}L_{\sigma}^{2/\alpha}\right)\right)\int_{0}^{r}\int_{\mathbb{R}^{d}}(r-s)^{-\alpha/2}p_{r-s}(z-y)J_{+}(s,y)\mathrm{d}s\mathrm{d}y
CLbexp(CTmax(Lb,p1/αLσ2/α))J+(r,z)0r(rs)α/2ds,\displaystyle\leq CL_{b}\exp\left(CT\max\left(L_{b},\>p^{1/\alpha}L_{\sigma}^{2/\alpha}\right)\right)J_{+}\left(r,z\right)\int_{0}^{r}(r-s)^{-\alpha/2}\mathrm{d}s,

from which we deduce (2.12). This proves part (c) of Theorem 1.5. ∎

2.5 Hölder regularity – Proof of Corollary 1.7

Proof of Corollary 1.7.

Denote the last two parts of right-hand side of (1.5) by B(t,x)B(t,x) and I(t,x)I(t,x). One can use the same arguments as those in the proof of Theorem 1.8 of [CH19], but with the slightly different moment formula (1.15), to show that ICα/2,α((0,)×d)I\in C^{\alpha/2-,\,\alpha-}\left((0,\infty)\times\mathbb{R}^{d}\right). It remains to show that BCα/2,α((0,)×d)B\in C^{\alpha/2-,\,\alpha-}\left((0,\infty)\times\mathbb{R}^{d}\right). Now choose and fix arbitrary n>1n>1 and p>2p>2. For any (t,x)(t,x), (t,x)[1/n,n]×d(t^{\prime},x^{\prime})\in[\nicefrac{{1}}{{n}},n]\times\mathbb{R}^{d} with t>tt^{\prime}>t, an application of the Minkowski inequality shows that

B(t,x)B(t,x)pCLb(I1(t,x,x)+I2(t,t,x)+I3(t,t,x)),with\displaystyle\left|\left|B(t,x)-B(t^{\prime},x^{\prime})\right|\right|_{p}\leq CL_{b}\left(I_{1}(t,x,x^{\prime})+I_{2}(t,t^{\prime},x^{\prime})+I_{3}(t,t^{\prime},x^{\prime})\right),\quad\text{with}
I1(t,x,x)=0td|pts(xy)pts(xy)|u(s,y)pdsdy,\displaystyle\qquad I_{1}(t,x,x^{\prime})=\int_{0}^{t}\int_{\mathbb{R}^{d}}\left|p_{t-s}(x-y)-p_{t-s}(x^{\prime}-y)\right|\left|\left|u(s,y)\right|\right|_{p}\mathrm{d}s\mathrm{d}y,
I2(t,t,x)=0td|pts(xy)pts(xy)|u(s,y)pdsdy,\displaystyle\qquad I_{2}(t,t^{\prime},x^{\prime})=\int_{0}^{t}\int_{\mathbb{R}^{d}}\left|p_{t-s}(x^{\prime}-y)-p_{t^{\prime}-s}(x^{\prime}-y)\right|\left|\left|u(s,y)\right|\right|_{p}\mathrm{d}s\mathrm{d}y,
I3(t,t,x)=ttdpts(xy)u(s,y)pdsdy.\displaystyle\qquad I_{3}(t,t^{\prime},x^{\prime})=\int_{t}^{t^{\prime}}\int_{\mathbb{R}^{d}}p_{t^{\prime}-s}(x^{\prime}-y)\left|\left|u(s,y)\right|\right|_{p}\mathrm{d}s\mathrm{d}y.

By the moment formula (1.15) and by setting μ(dz):=|u0|(dz)+τdz\mu(\mathrm{d}z):=|u_{0}|(\mathrm{d}z)+\tau\mathrm{d}z, we see that

I1(t,x,x)\displaystyle I_{1}(t,x,x^{\prime}) C0tdsddydμ(dz)|pts(xy)pts(xy)|ps(yz),\displaystyle\leq C\int_{0}^{t}\mathrm{d}s\int_{\mathbb{R}^{d}}\mathrm{d}y\int_{\mathbb{R}^{d}}\mu(\mathrm{d}z)\>\left|p_{t-s}(x-y)-p_{t-s}(x^{\prime}-y)\right|p_{s}(y-z),
I2(t,t,x)\displaystyle I_{2}(t,t^{\prime},x^{\prime}) C0tdsddydμ(dz)|pts(xy)pts(xy)|ps(yz),\displaystyle\leq C\int_{0}^{t}\mathrm{d}s\int_{\mathbb{R}^{d}}\mathrm{d}y\int_{\mathbb{R}^{d}}\mu(\mathrm{d}z)\>\left|p_{t-s}(x^{\prime}-y)-p_{t^{\prime}-s}(x^{\prime}-y)\right|p_{s}(y-z),
I3(t,t,x)\displaystyle I_{3}(t,t^{\prime},x^{\prime}) Cttdsddydμ(dz)pts(xy)ps(yz).\displaystyle\leq C\int_{t}^{t^{\prime}}\mathrm{d}s\int_{\mathbb{R}^{d}}\mathrm{d}y\int_{\mathbb{R}^{d}}\mu(\mathrm{d}z)\>p_{t^{\prime}-s}(x^{\prime}-y)p_{s}(y-z).

It is clear that μ\mu is a rough initial condition, i.e., condition (1.11) is satisfied for μ\mu. Denote J0(t,x)=(ptμ)(x)J_{0}(t,x)=(p_{t}*\mu)(x). It is straightforward to see that I3(t,t,x)C(tt)J0(t,x)I_{3}(t,t^{\prime},x^{\prime})\leq C(t^{\prime}-t)J_{0}\left(t^{\prime},x^{\prime}\right). As for I1I_{1} and I2I_{2}, for any α(0,1)\alpha\in(0,1), by Lemma 3.1 of [CH19], we have that

I1(t,x,x)\displaystyle I_{1}(t,x,x^{\prime}) C|xx|α0tds(ts)α/2ddydμ(dz)[p2(ts)(xy)+p2(ts)(xy)]p2s(yz),\displaystyle\leq C|x-x^{\prime}|^{\alpha}\int_{0}^{t}\frac{\mathrm{d}s}{(t-s)^{\alpha/2}}\int_{\mathbb{R}^{d}}\mathrm{d}y\int_{\mathbb{R}^{d}}\mu(\mathrm{d}z)\>\left[p_{2(t-s)}(x-y)+p_{2(t-s)}(x^{\prime}-y)\right]p_{2s}(y-z),
=C|xx|αt1α/2(J0(2t,x)+J0(2t,x)),\displaystyle=C|x-x^{\prime}|^{\alpha}t^{1-\alpha/2}\left(J_{0}(2t,x)+J_{0}(2t,x^{\prime})\right),

and similarly,

I2(t,t,x)\displaystyle I_{2}(t,t^{\prime},x^{\prime}) C(tt)α/20tds(ts)α/2ddydμ(dz)p4(ts)(xy)p4s(yz),\displaystyle\leq C(t^{\prime}-t)^{\alpha/2}\int_{0}^{t}\frac{\mathrm{d}s}{(t^{\prime}-s)^{\alpha/2}}\int_{\mathbb{R}^{d}}\mathrm{d}y\int_{\mathbb{R}^{d}}\mu(\mathrm{d}z)\>p_{4(t^{\prime}-s)}(x^{\prime}-y)p_{4s}(y-z),
C(tt)α/2J0(4t,x).\displaystyle\leq C(t^{\prime}-t)^{\alpha/2}J_{0}\left(4t,x^{\prime}\right).

Combining the above bounds proves Corollary 1.7. ∎

3 Proof of Theorem 1.1

Proof of Theorem 1.1.

For N1N\geq 1, let us consider the truncated stochastic heat equation:

uN(t,x)=(ptu0)(x)+0tdpts(xy)bN(uN(s,y))dyds\displaystyle u_{N}(t,x)=\left(p_{t}*u_{0}\right)(x)+\int_{0}^{t}\int_{\mathbb{R}^{d}}p_{t-s}(x-y)b_{N}(u_{N}(s,y))\mathrm{d}y\mathrm{d}s (3.1)
+0tdpts(xy)σN(uN(s,y))W(ds,dy),\displaystyle+\int_{0}^{t}\int_{\mathbb{R}^{d}}p_{t-s}(x-y)\sigma_{N}(u_{N}(s,y))W(\mathrm{d}s,\mathrm{d}y)\,,

where

σN(x)=σ((1N|x|)x)andbN(x)=b((1N|x|)x).\displaystyle\sigma_{N}(x)=\sigma\left(\left(1\wedge\frac{N}{|x|}\right)x\right)\quad\text{and}\quad b_{N}(x)=b\left(\left(1\wedge\frac{N}{|x|}\right)x\right). (3.2)

Recall that LbNL_{b_{N}} and LσNL_{\sigma_{N}} denote the growth rate; see (1.14). According to Theorem 1.1 of [Hua17], there exists a unique solution {uN(t,x):t>0,xd}\{u_{N}(t,x):t>0,x\in\mathbb{R}^{d}\} to (3.1). In the following, we will use CC to denote a generic constant that may change its value at each appearance, does not depend on (N,t,x,ϵ)(N,t,x,\epsilon), but may depend on (p,α)(p,\alpha).

Step 1.  In this step, we will prove (a). For any T>0T>0 fixed, consider the following stopping time

τN:=inf{t>0:supxd|uN(t,x)|N}T.\displaystyle\tau_{N}:=\inf\left\{t>0:\sup_{x\in\mathbb{R}^{d}}|u_{N}(t,x)|\geq N\right\}\wedge T\,.

Noticing that for all MNM\geq N, we have that τNτM\tau_{N}\leq\tau_{M} and

uN(t,x)=uM(t,x)a.s. on (t,x)[0,τN)×d,\displaystyle u_{N}(t,x)=u_{M}(t,x)\quad\text{a.s. on $(t,x)\in\left[0,\tau_{N}\right)\times\mathbb{R}^{d}$},

we can construct the solution u(t,x)u(t,x) via

u(t,x)=uN(t,x),for all N1 and (t,x)[0,τN)×d.\displaystyle u(t,x)=u_{N}(t,x)\,,\quad\text{for all $N\geq 1$ and $(t,x)\in\left[0,\tau_{N}\right)\times\mathbb{R}^{d}$}. (3.3)

From the definition, it is clear that on 0tτN0\leq t\leq\tau_{N},

bN(uN(t,x))=b(uN(t,x))=b(u(t,x))andσN(uN(t,x))=σ(uN(t,x))=σ(u(t,x)).\displaystyle b_{N}(u_{N}(t,x))=b(u_{N}(t,x))=b(u(t,x))\quad\text{and}\quad\sigma_{N}(u_{N}(t,x))=\sigma(u_{N}(t,x))=\sigma(u(t,x)).

By the Chebyshev inequality and the moment formula (1.16),

(0τN<T)=(sup(t,x)[0,T]×d|uN(t,x)|N)1Np𝔼(sup(t,x)[0,T]×d|uN(t,x)|p)\displaystyle\mathbb{P}\left(0\leq\tau_{N}<T\right)=\mathbb{P}\left(\sup_{(t,x)\in\left[0,T\right]\times\mathbb{R}^{d}}|u_{N}(t,x)|\geq N\right)\leq\frac{1}{N^{p}}\mathbb{E}\left(\sup_{(t,x)\in\left[0,T\right]\times\mathbb{R}^{d}}|u_{N}(t,x)|^{p}\right)
CNp(u0Lp+Cu0Lpp(LbN+LσN)pexp(CpTmax(LbN,p1/αLσN2/α))).\displaystyle\leq\frac{C}{N^{p}}\left(\left|\left|u_{0}\right|\right|_{L^{\infty}}^{p}+C\left|\left|u_{0}\right|\right|_{L^{p}}^{p}\left(L_{b_{N}}+L_{\sigma_{N}}\right)^{p}\exp\left(CpT\max\left(L_{b_{N}},\>p^{1/\alpha}L_{\sigma_{N}}^{2/\alpha}\right)\right)\right). (3.4)

The sub-critical conditions in (1.9) implies that

LbN=o(logN)andLσN=o((logN)α/2),L_{b_{N}}=o\left(\log N\right)\quad\text{and}\quad L_{\sigma_{N}}=o\left(\left(\log N\right)^{\alpha/2}\right),

which ensure that above probability in (3.4) goes to zero as NN\to\infty. Therefore, by sending NN\to\infty, we see that u(t,x)u(t,x) is well defined on (0,T]×d\left(0,T\right]\times\mathbb{R}^{d}. The uniqueness is inherited from the uniqueness of uN(t,x)u_{N}(t,x) in (3.1).

Step 2.  Now we prove part (b), the proof of which is similar to that of part (a). Fix an arbitrary T0>0T_{0}>0. Denote

τN:=inf{t>0:supxd|uN(t,x)|N}T0.\displaystyle\tau_{N}:=\inf\left\{t>0:\sup_{x\in\mathbb{R}^{d}}|u_{N}(t,x)|\geq N\right\}\wedge T_{0}\,.

We claim that

limN(0τN<T)=0,for some non-random constant T>0.\displaystyle\lim_{N\to\infty}\mathbb{P}\left(0\leq\tau_{N}<T\right)=0\,,\quad\text{for some non-random constant $T>0$.} (3.5)

Indeed, for all ϵ>0\epsilon>0, by replacing TT by ϵ\epsilon in (3.4), we see that

(0τN<ϵ)\displaystyle\mathbb{P}\left(0\leq\tau_{N}<\epsilon\right)\leq CNp(u0Lp+Cu0Lpp(LbN+LσN)pexp(Cpϵmax(LbN,p1/αLσN2/α))).\displaystyle\frac{C}{N^{p}}\left(\left|\left|u_{0}\right|\right|_{L^{\infty}}^{p}+C\left|\left|u_{0}\right|\right|_{L^{p}}^{p}\left(L_{b_{N}}+L_{\sigma_{N}}\right)^{p}\exp\left(Cp\epsilon\max\left(L_{b_{N}},\>p^{1/\alpha}L_{\sigma_{N}}^{2/\alpha}\right)\right)\right). (3.6)

By the critical conditions in (1.10), for some C>0C>0,

LbNClogNandLσNC(logN)α/2.\displaystyle L_{b_{N}}\leq C\log N\quad\text{and}\quad L_{\sigma_{N}}\leq C(\log N)^{\alpha/2}.

Hence, when ϵ\epsilon is small enough, by plugging the above constants into (3.6), we see that the probability in (3.6) goes to zero as NN\to\infty. Therefore, by choosing any positive constant T(0,ϵ)T\in\left(0,\epsilon\right), we prove the claim (3.5). The uniqueness is proved in the same way as the proof of part (a).

Step 3.  Finally, the Hölder continuity of the solution of uu inherits that of uNu_{N} thanks to their relation given in (3.3), where the Hölder regularity of uNu_{N} with given exponents is proved in Corollary 1.7. This completes the proof of Theorem 1.1. ∎

Acknowledgement

J. Huang thanks Mohammud Foondun for pointing out the reference [Sal21] when J. H. presented this paper at a conference.

References

  • [BC18] Raluca M. Balan and Le Chen “Parabolic Anderson model with space-time homogeneous Gaussian noise and rough initial condition” In J. Theoret. Probab. 31.4, 2018, pp. 2216–2265 DOI: 10.1007/s10959-017-0772-2
  • [CD15] Le Chen and Robert C. Dalang “Moments and growth indices for the nonlinear stochastic heat equation with rough initial conditions” In Ann. Probab. 43.6, 2015, pp. 3006–3051 DOI: 10.1214/14-AOP954
  • [CH19] Le Chen and Jingyu Huang “Comparison principle for stochastic heat equation on d\mathbb{R}^{d} In Ann. Probab. 47.2, 2019, pp. 989–1035 DOI: 10.1214/18-AOP1277
  • [CK19] Le Chen and Kunwoo Kim “Nonlinear stochastic heat equation driven by spatially colored noise: moments and intermittency” In Acta Math. Sci. Ser. B (Engl. Ed.) 39.3, 2019, pp. 645–668 DOI: 10.1007/s10473-019-0303-6
  • [CK12] Daniel Conus and Davar Khoshnevisan “On the existence and position of the farthest peaks of a family of stochastic heat and wave equations” In Probab. Theory Related Fields 152.3-4, 2012, pp. 681–701 DOI: 10.1007/s00440-010-0333-4
  • [DZ14] Giuseppe Da Prato and Jerzy Zabczyk “Stochastic equations in infinite dimensions” 152, Encyclopedia of Mathematics and its Applications Cambridge University Press, Cambridge, 2014, pp. xviii+493 DOI: 10.1017/CBO9781107295513
  • [Dal99] Robert C. Dalang “Extending the martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e.’s” In Electron. J. Probab. 4, 1999, pp. no. 6\bibrangessep29 DOI: 10.1214/EJP.v4-43
  • [DKZ19] Robert C. Dalang, Davar Khoshnevisan and Tusheng Zhang “Global solutions to stochastic reaction-diffusion equations with super-linear drift and multiplicative noise” In Ann. Probab. 47.1, 2019, pp. 519–559 DOI: 10.1214/18-AOP1270
  • [Dal+09] Robert Dalang, Davar Khoshnevisan, Carl Mueller, David Nualart and Yimin Xiao “A minicourse on stochastic partial differential equations” Held at the University of Utah, Salt Lake City, UT, May 8–19, 2006, Edited by Khoshnevisan and Firas Rassoul-Agha 1962, Lecture Notes in Mathematics Springer-Verlag, Berlin, 2009, pp. xii+216
  • [FG09] Julian Fernández Bonder and Pablo Groisman “Time-space white noise eliminates global solutions in reaction-diffusion equations” In Phys. D 238.2, 2009, pp. 209–215 DOI: 10.1016/j.physd.2008.09.005
  • [FN21] Mohammud Foondun and Eulalia Nualart “The Osgood condition for stochastic partial differential equations” In Bernoulli 27.1, 2021, pp. 295–311 DOI: 10.3150/20-BEJ1240
  • [Hua17] Jingyu Huang “On stochastic heat equation with measure initial data” In Electron. Commun. Probab. 22, 2017, pp. Paper No. 40\bibrangessep6 DOI: 10.1214/17-ECP71
  • [MS21] Annie Millet and Marta Sanz-Solé “Global solutions to stochastic wave equations with superlinear coefficients” In Stochastic Process. Appl. 139, 2021, pp. 175–211 DOI: 10.1016/j.spa.2021.05.002
  • [Sal21] Michael Salins “Global solutions to the stochastic heat equation with superlinear accretive reaction term and superlinear multiplicative noise term on a bounded spatial domain” In preprint arXiv:2110.10130, 2021
  • [SS02] M. Sanz-Solé and M. Sarrà “Hölder continuity for the stochastic heat equation with spatially correlated noise” In Seminar on Stochastic Analysis, Random Fields and Applications, III (Ascona, 1999) 52, Progr. Probab. Birkhäuser, Basel, 2002, pp. 259–268
  • [Wal86] John B. Walsh “An introduction to stochastic partial differential equations” In École d’été de probabilités de Saint-Flour, XIV—1984 1180, Lecture Notes in Math. Springer, Berlin, 1986, pp. 265–439 DOI: 10.1007/BFb0074920