This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Super homologies associated with low dimensional Lie algebras

Kentaro Mikami Akita University    Tadayoshi Mizutani Professor Emeritus, Saitama University

1 Introduction

A Poisson structure π\pi on a manifold MM is a 2-vector field characterized as [π,π]S=0[\pi,\pi]_{\text{\footnotesize S}}=0, where [,]S[\cdot,\cdot]_{\text{\footnotesize S}} is the Schouten bracket. The graded algebra ΛpT(M)\sum\Lambda^{p}\mathrm{T}(M) with the Schouten bracket is a prototype of Lie superalgebra (cf. [2]). The Poisson condition [π,π]S=0[\pi,\pi]_{\text{\footnotesize S}}=0 means that a 2-chain ππ\pi\wedge\pi is a cycle. Thus, studying the second super homology group of Lie superalgebra of tangent bundle of MM is an activity of Poisson geometry (cf. [3]). Given a \mathbb{Z}-graded Lie superalgebra, the 0-graded subspace is a Lie algebra. In this note, using the DGA ΛpT(M)\sum\Lambda^{p}\mathrm{T}(M) with the Schouten bracket as a model, we start from an abstract Lie algebra, construct non-trivial Lie superalgebra by Schouten-like bracket. Then it may be natural to ask how the core Lie algebra control the Lie superalgebra. One trial here is to investigate the Betti numbers of the super homology groups. For abelian Lie algebras, the boundary operator is trivial, and the Betti number is equal to the dimension of chain space for a given weight. So, we study their super homology groups for low dimensional Lie algebras of dimension smaller than 4.

For non-abelian Lie algebras of dimension 2, we have

w>0Cw[w]Cw+1[w]Cw+2[w]SpaceDim121KerDim110Betti000\begin{array}[]{c | *{5}{c}}w>0&C_{w}^{[w]}&C_{w+1}^{[w]}&C_{w+2}^{[w]}\\ \hline\cr\text{SpaceDim}&1&2&1\\ \hline\cr\text{KerDim}&1&1&0\\ \hline\cr\text{Betti}&0&0&0\\ \hline\cr\end{array}

We classify non-abelian Lie algebras 𝔤\mathfrak{g} of dimension 3 into four cases:

(1) dim[𝔤,𝔤]=1\textrm{dim}[\mathfrak{g},\mathfrak{g}]=1 and dim[𝔤,𝔤]Z(𝔤)\textrm{dim}[\mathfrak{g},\mathfrak{g}]\subset Z(\mathfrak{g}),   (2) dim[𝔤,𝔤]=1\textrm{dim}[\mathfrak{g},\mathfrak{g}]=1 and dim[𝔤,𝔤]Z(𝔤)\textrm{dim}[\mathfrak{g},\mathfrak{g}]\not\subset Z(\mathfrak{g}),

(3) dim[𝔤,𝔤]=2\textrm{dim}[\mathfrak{g},\mathfrak{g}]=2,   (4) dim[𝔤,𝔤]=3\textrm{dim}[\mathfrak{g},\mathfrak{g}]=3.

Even though the case (4) has two kinds of Lie algebras when the base field is \mathbb{R}, we made the same treatment and got the same results.

When w=0w=0 the homology groups are the same with usual Lie algebra homology groups, so we show the Betti numbers for super homology groups when w>0w>0.

weight=w>0w1ww+1w+2w+3SpaceDim(w2)3(w2)+(w+22)3(w2)+3(w+22)(w2)+3(w+22)(w+22)(1)’s Betti0w3w+13w+2w+1(2)’s Betti01210(3)’s Betti00κ2κκ(4)’s Betti00000\begin{array}[]{c|*{5}{c}}\text{weight}=w>0&w-1&w&w+1&w+2&w+3\\ \hline\cr\text{SpaceDim}&\binom{w}{2}&3\binom{w}{2}+\binom{w+2}{2}&3\binom{w}{2}+3\binom{w+2}{2}&\binom{w}{2}+3\binom{w+2}{2}&\binom{w+2}{2}\\ \hline\cr\hline\cr\text{(1)'s Betti}&0&w&3w+1&3w+2&w+1\\ \hline\cr\text{(2)'s Betti}&0&1&2&1&0\\ \hline\cr\text{(3)'s Betti}&0&0&\kappa&2\kappa&\kappa\\ \hline\cr\text{(4)'s Betti}&0&0&0&0&0\end{array}

where κ\kappa in (3) is defined by κ={1if α=10if α1\kappa=\begin{cases}1&\text{if\quad}\alpha=-1\\ 0&\text{if\quad}\alpha\neq-1\end{cases}, and α\alpha is a non-zero parameter of the Lie bracket relations [z1,z2]=0[z_{1},z_{2}]=0, [z1,z3]=z1[z_{1},z_{3}]=z_{1}, [z2,z3]=αz2[z_{2},z_{3}]=\alpha z_{2}.

2 Preliminaries, Notations and Basic Facts

Definition 2.1 (Lie superalgebra).

Suppose a real vector space 𝔤\mathfrak{g} is graded by \displaystyle\mathbb{Z} as 𝔤=j𝔤j\displaystyle\mathfrak{g}=\sum_{j\in\mathbb{Z}}\mathfrak{g}_{j} and has a bilinear operation [,][\cdot,\cdot] satisfying

(2.1) [𝔤i,𝔤j]𝔤i+j\displaystyle[\mathfrak{g}_{i},\mathfrak{g}_{j}]\subset\mathfrak{g}_{i+j}
(2.2) [X,Y]+(1)xy[Y,X]=0 where X𝔤x and Y𝔤y\displaystyle[X,Y]+(-1)^{xy}[Y,X]=0\quad\text{ where }X\in\mathfrak{g}_{x}\text{ and }Y\in\mathfrak{g}_{y}
(2.3) (1)xz[[X,Y],Z]+(1)yx[[Y,Z],X]+(1)zy[[Z,X],Y]=0.\displaystyle(-1)^{xz}[[X,Y],Z]+(-1)^{yx}[[Y,Z],X]+(-1)^{zy}[[Z,X],Y]=0\;.

Then we call 𝔤\mathfrak{g} a \mathbb{Z}-graded (or pre) Lie superalgebra.

Remark 2.1.

Super Jacobi identity (2.3) above is equivalent to the one of the following.

(2.4) [[X,Y],Z]\displaystyle[[X,Y],Z] =[X,[Y,Z]]+(1)yz[[X,Z],Y]\displaystyle=[X,[Y,Z]]+(-1)^{yz}[[X,Z],Y]
(2.5) [X,[Y,Z]]\displaystyle[X,[Y,Z]] =[[X,Y],Z]+(1)xy[Y,[X,Z]]\displaystyle=[[X,Y],Z]+(-1)^{xy}[Y,[X,Z]]

As in a usual Lie algebra homology theory, mm-th chain space is the exterior product Λm𝔤\displaystyle\Lambda^{m}\mathfrak{g} of 𝔤\mathfrak{g} and the boundary operator essentially comes from the operation XY[X,Y]\displaystyle X\wedge Y\mapsto[X,Y], in the case of pre Lie superalgebras, ”exterior algebra” is defined as the quotient of the tensor algebra m𝔤\displaystyle\otimes^{m}\mathfrak{g} of 𝔤\mathfrak{g} by the two-sided ideal generated by

(2.6) XY+(1)xyYXwhere X𝔤x,Y𝔤y,\displaystyle X\otimes Y+(-1)^{xy}Y\otimes X\quad\text{where }\quad X\in\mathfrak{g}_{x},Y\in\mathfrak{g}_{y}\;,

and we denote the equivalence class of XY\displaystyle X\otimes Y by XY\displaystyle X\bigtriangleup Y. Since XoddYodd=YoddXodd\displaystyle X_{\text{odd}}\bigtriangleup Y_{\text{odd}}=Y_{\text{odd}}\bigtriangleup X_{\text{odd}} and XevenYany=YanyXeven\displaystyle X_{\text{even}}\bigtriangleup Y_{\text{any}}=-Y_{\text{any}}\bigtriangleup X_{\text{even}} hold, m𝔤k\bigtriangleup^{m}\mathfrak{g}_{k} has a symmetric property for odd kk and has a skew-symmetric property for even kk with respect to \bigtriangleup.

Suppose we have an exterior product Y1Ym\displaystyle Y_{1}\bigtriangleup\cdots\bigtriangleup Y_{m} of Y1,,Ym\displaystyle Y_{1},\dots,Y_{m}. Omitting ii-th element, we have Y1Yi1Yi+1Ym\displaystyle Y_{1}\bigtriangleup\cdots\bigtriangleup Y_{i-1}\bigtriangleup Y_{i+1}\bigtriangleup\cdots\bigtriangleup Y_{m}, which is often denoted as Y1Yi^Ym\displaystyle Y_{1}\bigtriangleup\cdots\widehat{Y_{i}}\cdots\bigtriangleup Y_{m}.

The boundary operator :CmCm1\displaystyle\partial:\text{C}_{m}\to\text{C}_{m-1} is defined by

(2.7) (Y1Ym)\displaystyle\partial(Y_{1}\bigtriangleup\cdots\bigtriangleup Y_{m}) =i<j(1)i1+yii<s<jysY1Yi^[Yi,Yj]jYm\displaystyle=\sum_{i<j}(-1)^{i-1+y_{i}\mathop{\sum}_{i<s<j}y_{s}}Y_{1}\bigtriangleup\cdots\widehat{Y_{i}}\cdots\bigtriangleup\overbrace{[Y_{i},Y_{j}]}^{j}\bigtriangleup\cdots\bigtriangleup Y_{m}

where yi\displaystyle y_{i} is the homogeneous degree of YiY_{i}, i.e., Yi𝔤yi\displaystyle Y_{i}\in\mathfrak{g}_{y_{i}}. =0\displaystyle\partial\circ\partial=0 holds and we have the homology groups

Hm(𝔤,)=ker(:CmCm1)/(Cm+1).\displaystyle\textrm{H}_{m}(\mathfrak{g},\mathbb{R})=\ker(\partial:\text{C}_{m}\rightarrow\text{C}_{m-1})/\partial(\text{C}_{m+1})\;.
If all YiY_{i} are even (i.e., yiy_{i} are even) in (2.7), then
(2.8) (Y1Ym)\displaystyle\partial(Y_{1}\bigtriangleup\cdots\bigtriangleup Y_{m}) =i<j(1)i+j[Yi,Yj]Y1Yi^Yj^Ym.\displaystyle=-\sum_{i<j}(-1)^{i+j}[Y_{i},Y_{j}]\bigtriangleup Y_{1}\bigtriangleup\cdots\widehat{Y_{i}}\cdots\widehat{Y_{j}}\cdots\bigtriangleup Y_{m}\;.
If all YiY_{i} are odd (i.e., yiy_{i} are odd) in (2.7), then
(2.9) (Y1Ym)\displaystyle\partial(Y_{1}\bigtriangleup\cdots\bigtriangleup Y_{m}) =i<j[Yi,Yj]Y1Yi^Yj^Ym.\displaystyle=\sum_{i<j}[Y_{i},Y_{j}]\bigtriangleup Y_{1}\bigtriangleup\cdots\widehat{Y_{i}}\cdots\widehat{Y_{j}}\cdots\bigtriangleup Y_{m}\;.
Define a binary operation [A,B]res[A,B]_{res} by
(2.11) [A,B]res\displaystyle[A,B]_{res} =(AB)(A)B(1)a¯AB\displaystyle=\partial(A\bigtriangleup B)-(\partial A)\bigtriangleup B-(-1)^{\bar{a}}A\bigtriangleup\partial B
If all AiA_{i} are even and all BjB_{j} are odd, then
(2.12) [A,B]res\displaystyle[A,B]_{res} =i,j(1)i+1A1Ai^Aa¯[Ai,Bj]SB1Bj^Bb¯.\displaystyle=\sum_{i,j}(-1)^{i+1}A_{1}\bigtriangleup\cdots\widehat{A_{i}}\cdots A_{\bar{a}}\bigtriangleup[A_{i},B_{j}]_{\text{\footnotesize S}}\bigtriangleup B_{1}\bigtriangleup\cdots\widehat{B_{j}}\cdots\bigtriangleup B_{\bar{b}}\;.

3 Superalgebras associated with Lie algebras

Definition 1 (Schouten-like bracket).

Let 𝔤\mathfrak{g} be a Lie algebra. Then we have a \mathbb{Z}-graded Lie superalgebra 𝔤¯\overline{\mathfrak{g}} given by

𝔤¯=iΛi𝔤, where, the grade of the element in Λi is i1,\overline{\mathfrak{g}}=\sum_{i}\Lambda^{i}\mathfrak{g}\;,\;\text{ where, the grade of the element in }\Lambda^{i}\;\text{ is }\;i-1\;,\;

and the bracket of a=a1aa¯Λa¯𝔤a={a}_{1}\wedge\cdots\wedge{a}_{\bar{a}}\in\Lambda^{\bar{a}}\mathfrak{g} and b=b1bb¯Λa¯𝔤b={b}_{1}\wedge\cdots\wedge{b}_{\bar{b}}\in\Lambda^{\bar{a}}\mathfrak{g} is given by

(3.1) [a,b]S\displaystyle[a,b]_{\text{\footnotesize S}} =i,j(1)i+j[ai,bj]a[i]b[j]\displaystyle=\sum_{i,j}(-1)^{i+j}[a_{i},b_{j}]\wedge a[i]\wedge b[j]
(3.2) a[i]\displaystyle a[i] =a1ai1ai+1aa¯Λa¯1𝔤 for i=1,,a¯\displaystyle={a}_{1}\wedge\cdots\wedge{a}_{i-1}\wedge{a}_{i+1}\wedge\cdots\wedge{a}_{\bar{a}}\in\Lambda^{\bar{a}-1}\mathfrak{g}\;\text{ for }i=1,\ldots,\bar{a}\;
(3.3) b[j]\displaystyle b[j] =b1bj1bj+1bb¯Λb¯1𝔤forj=1,,b¯.\displaystyle={b}_{1}\wedge\cdots\wedge{b}_{j-1}\wedge{b}_{j+1}\wedge\cdots\wedge{b}_{\bar{b}}\in\Lambda^{\bar{b}-1}\mathfrak{g}\;\text{for}j=1,\ldots,\bar{b}\;.

Proposition 3.1.
(3.4) [b,a]S=(1)(b¯1)(a¯1)[a,b]S[b,a]_{\text{\footnotesize S}}=-(-1)^{(\bar{b}-1)(\bar{a}-1)}[a,b]_{\text{\footnotesize S}}
(3.5) [a,bc]S=\displaystyle[a,b\wedge c]_{\text{\footnotesize S}}= [a,b]Sc+(1)(a¯1)b¯b[a,c]S\displaystyle[a,b]_{\text{\footnotesize S}}\wedge c+(-1)^{(\bar{a}-1)\bar{b}}b\wedge[a,c]_{\text{\footnotesize S}}
(3.6) [ab,c]S=\displaystyle[a\wedge b,c]_{\text{\footnotesize S}}= a[b,c]S+(1)b¯(c¯1)[a,c]Sb\displaystyle a\wedge[b,c]_{\text{\footnotesize S}}+(-1)^{\bar{b}(\bar{c}-1)}[a,c]_{\text{\footnotesize S}}\wedge b
(3.7) 𝔖a,b,c(1)(a¯1)(c¯1)[[a,b]S,c]S=0\mathop{\mathfrak{S}}_{a,b,c}(-1)^{(\bar{a}-1)(\bar{c}-1)}[[a,b]_{\text{\footnotesize S}},c]_{\text{\footnotesize S}}=0

4 Homology groups of superalgebras associated with Lie algebras

Let 𝔤\mathfrak{g} be a finite dimensional Lie algebra with the Lie bracket [,][\cdot,\cdot]. Then we have chain complex consisting of Ci=Λi𝔤\text{C}_{i}=\Lambda^{i}\mathfrak{g} and homology groups.

𝔤¯=i=01+dim𝔤𝔤i\displaystyle\overline{\mathfrak{g}}=\mathfrak{\oplus}_{i=0}^{-1+\textrm{dim}\mathfrak{g}}\mathfrak{g}_{i} becomes a \mathbb{Z}-graded Lie superalgebra (where 𝔤i=Ci+1\mathfrak{g}_{i}=\text{C}_{i+1}) with the Schouten bracket [,]S[\cdot,\cdot]_{\text{\footnotesize S}}. From the definition, ww-weighted mm-th chain space Cm[w]C_{m}^{[w]} is defined as follows:

Cm[w]\displaystyle C_{m}^{[w]} =p0𝔤0p1𝔤1p2𝔤2ps𝔤s where s=1+dim𝔤\displaystyle=\sum\bigtriangleup^{p_{0}}\mathfrak{g}_{0}\bigtriangleup^{p_{1}}\mathfrak{g}_{1}\bigtriangleup^{p_{2}}\mathfrak{g}_{2}\bigtriangleup\cdots\bigtriangleup^{p_{s}}\mathfrak{g}_{s}\text{ where }s=-1+\textrm{dim}\mathfrak{g}
m\displaystyle m =p0+p1++ps,w=0p0+1p1++sps,\displaystyle=p_{0}+p_{1}+\cdots+p_{s}\;,\quad w=0p_{0}+1p_{1}+\cdots+sp_{s}\;,
(4.1) p2i\displaystyle p_{2i} (dim𝔤2i+1) , which is the dimensional restriction for 𝔤2i.\displaystyle\leqq\binom{\textrm{dim}\mathfrak{g}}{2i+1}\text{ , which is the dimensional restriction for }\mathfrak{g}_{2i}\;.
(4.2) Cm[0]\displaystyle C_{m}^{[0]} =m𝔤0 for m=0,,dim𝔤.\displaystyle=\bigtriangleup^{m}\mathfrak{g}_{0}\;\text{ for }\;m=0,\ldots,\textrm{dim}\mathfrak{g}\;.

By the same discussion we already developed, we see

w+m=1p0+2p1++(dim𝔤)psw+m=1p_{0}+2p_{1}+\cdots+({\textrm{dim}\mathfrak{g}})p_{s}

and we deal with the Young diagrams of the area w+mw+m with the length mm and pick up those satisfy the dimensional condition (4.1). Since p0p_{0} does not contribute for the weight ww, we assume p0=0p_{0}=0, and for given ww we define the subspace C~m[w]\displaystyle\widetilde{C}_{m}^{[w]} of Cm[w]\displaystyle C_{m}^{[w]} by

C~m[w]=p1𝔤1p2𝔤2ps𝔤s where iipi=w , ipi=m, and satisfy (4.1).\widetilde{C}_{m}^{[w]}=\sum\bigtriangleup^{p_{1}}\mathfrak{g}_{1}\bigtriangleup^{p_{2}}\mathfrak{g}_{2}\bigtriangleup\cdots\bigtriangleup^{p_{s}}\mathfrak{g}_{s}\text{ where }\sum_{i}ip_{i}=w\text{ , }\sum_{i}p_{i}=m\;,\text{ and satisfy \eqref{dim:cond}.}

In order to control C~m[w]\displaystyle\widetilde{C}_{m}^{[w]}, we define the subspace C^m[w]\displaystyle\widehat{C}_{m}^{[w]} of Cm[w]\displaystyle C_{m}^{[w]} by p0=p1=0p_{0}=p_{1}=0. Thus,

C^m[w]=p2𝔤2ps𝔤s where i>1ipi=w , i>1pi=m, and satisfy (4.1).\widehat{C}_{m}^{[w]}=\sum\bigtriangleup^{p_{2}}\mathfrak{g}_{2}\bigtriangleup\cdots\bigtriangleup^{p_{s}}\mathfrak{g}_{s}\text{ where }\sum_{i>1}ip_{i}=w\text{ , }\sum_{i>1}p_{i}=m\;,\text{ and satisfy \eqref{dim:cond}.}

We define subspaces C~[w]=mC~m[w]\displaystyle\widetilde{C}_{\bullet}^{[w]}=\sum_{m}\widetilde{C}_{m}^{[w]} and C^[w]=mC^m[w]\displaystyle\widehat{C}_{\bullet}^{[w]}=\sum_{m}\widehat{C}_{m}^{[w]}. Then we have

(4.3) C[w]\displaystyle C_{\bullet}^{[w]} =C[0]C~[w], precisely Cm[w]=a+b=ma𝔤0C~b[w],\displaystyle=C_{\bullet}^{[0]}\bigtriangleup\widetilde{C}_{\bullet}^{[w]}\;,\quad\text{ precisely }C_{m}^{[w]}=\sum_{a+b=m}\bigtriangleup^{a}\mathfrak{g}_{0}\bigtriangleup\widetilde{C}_{b}^{[w]}\;,
(4.4) C~[w]\displaystyle\widetilde{C}_{\bullet}^{[w]} =C^[w]+𝔤1C~[w1],C^[1]=0,C~[0]=1,C~[1]=𝔤1.\displaystyle=\widehat{C}_{\bullet}^{[w]}+\mathfrak{g}_{1}\bigtriangleup\widetilde{C}_{\bullet}^{[w-1]}\;,\quad\widehat{C}_{\bullet}^{[1]}=0\;,\;\widetilde{C}_{\bullet}^{[0]}=1\;,\;\widetilde{C}_{\bullet}^{[1]}=\mathfrak{g}_{1}\;.

(4.3) implies the next theorem:

Theorem 4.1.

The Euler number of ww-weighted homology groups of superalgebra induced from finite dimensional Lie algebra is 0.

Proof:

The Euler num =m(1)mdimCm[w]=a+b=m(1)a+bdim(a𝔤0)dimC~b[w]\displaystyle=\sum_{m}(-1)^{m}\textrm{dim}C_{m}^{[w]}=\sum_{a+b=m}(-1)^{a+b}\textrm{dim}(\bigtriangleup^{a}\mathfrak{g}_{0})\textrm{dim}\widetilde{C}_{b}^{[w]}
=a(1)adim(a𝔤0)b(1)bdimC~b[w]\displaystyle=\sum_{a}(-1)^{a}\textrm{dim}(\bigtriangleup^{a}\mathfrak{g}_{0})\sum_{b}(-1)^{b}\textrm{dim}\widetilde{C}_{b}^{[w]}
=a(1)a(dim𝔤0a)b(1)bdimC~b[w]=0.\displaystyle=\sum_{a}(-1)^{a}\binom{\textrm{dim}\mathfrak{g}_{0}}{a}\sum_{b}(-1)^{b}\textrm{dim}\widetilde{C}_{b}^{[w]}=0\;.

\blacksquare

The equation (4.4) shows the space C~[w]\widetilde{C}_{\bullet}^{[w]} is determined by C^[w]\widehat{C}_{\bullet}^{[w]} and C~[w1]\widetilde{C}_{\bullet}^{[w-1]}, and suggests discussions by induction on the weight ww.

5 Super homologies of 2-dimensional Lie algebras

Since our discussion is trivial for abelian Lie algebras, we consider a Lie algebra 𝔤\mathfrak{g} generated by z1,z2z_{1},z_{2} with [z1,z2]=z1[z_{1},z_{2}]=z_{1}. We have only 1-dimensional 2-vectors, so we take u=z1z2u=z_{1}\wedge z_{2}. For a given weight ww, the chain complex becomes as follows. Using (z1z2)=z1\partial(z_{1}\bigtriangleup z_{2})=z_{1}, [z1,u]res=0[z_{1},u]_{res}=0 and [z2,u]res=u[z_{2},u]_{res}=-u, we see [z1,uw]res=0[z_{1},u^{w}]_{res}=0 and [z2,uw]res=wuw[z_{2},u^{w}]_{res}=-wu^{w}. We have uw=0\partial u^{w}=0, (z1uw)=[z1,uw]res=0\partial(z_{1}\bigtriangleup u^{w})=[z_{1},u^{w}]_{res}=0, (z2uw)=[z2,uw]res=wuw\partial(z_{2}\bigtriangleup u^{w})=[z_{2},u^{w}]_{res}=-wu^{w}, and (z1z2uw)=(1+w)z1uw\partial(z_{1}\bigtriangleup z_{2}\bigtriangleup u^{w})=(1+w)z_{1}\bigtriangleup u^{w}. Using those, we complete the table below.

C0[0]C1[0]C2[0]generators1ziz1z2SpaceDim121KerDim120Betti110\begin{array}[]{c | *{5}{c}}&C_{0}^{[0]}&C_{1}^{[0]}&C_{2}^{[0]}\\ \hline\cr\hline\cr\text{generators}&1&z_{i}&z_{1}\bigtriangleup z_{2}\\ \hline\cr\text{SpaceDim}&1&2&1\\ \hline\cr\text{KerDim}&1&2&0\\ \hline\cr\text{Betti}&1&1&0\\ \hline\cr\end{array} w>0Cw[w]Cw+1[w]Cw+2[w]generatorsuwziuwz1z2uwSpaceDim121KerDim110Betti000\begin{array}[]{c | *{5}{c}}w>0&C_{w}^{[w]}&C_{w+1}^{[w]}&C_{w+2}^{[w]}\\ \hline\cr\hline\cr\text{generators}&u^{w}&z_{i}\bigtriangleup u^{w}&z_{1}\bigtriangleup z_{2}\bigtriangleup u^{w}\\ \hline\cr\text{SpaceDim}&1&2&1\\ \hline\cr\text{KerDim}&1&1&0\\ \hline\cr\text{Betti}&0&0&0\\ \hline\cr\end{array}

6 Super homologies of 3-dimensional Lie algebras

We know the all Lie algebras of lower dimensional cases (cf. Lie algebras by Jacobson), in this section we try to get super homology tables for 3-dimensional Lie algebras. For that purpose, we prepare notations here. Let z1,z2,z3z_{1},z_{2},z_{3} be a basis of 𝔤\mathfrak{g}, u1,u2,u3u_{1},\;u_{2},\;u_{3} be a basis of Λ2𝔤\Lambda^{2}\mathfrak{g}, and z4=V=z1z2z3z_{4}=V=z_{1}\wedge z_{2}\wedge z_{3} be a basis of Λ3𝔤\Lambda^{3}\mathfrak{g}. Since {ui}\{u_{i}\} have symmetric property, we put Ua,b,c=u1au2bu3cU^{a,b,c}=u_{1}^{a}\bigtriangleup u_{2}^{b}\bigtriangleup u_{3}^{c}.

Denote the 3-vector (a,b,c)(a,b,c) by AA and also 𝔢j\mathfrak{e}_{j} means 3-vector (δjk)k=1..3(\delta^{k}_{j})_{k=1..3}, and A𝔢jA-\mathfrak{e}_{j} means the difference of 3-vectors. To handle even basis at once, we introduce an odd notation:

(6.1) Wϵ1,ϵ2,ϵ3,ϵ4=z1ϵ1z2ϵ2z3ϵ3z4ϵ4W^{\epsilon_{1},\epsilon_{2},\epsilon_{3},\epsilon_{4}}=z_{1}^{\epsilon_{1}}\bigtriangleup z_{2}^{\epsilon_{2}}\bigtriangleup z_{3}^{\epsilon_{3}}\bigtriangleup z_{4}^{\epsilon_{4}}

where ϵ1,ϵ2,ϵ3,ϵ4\epsilon_{1},\epsilon_{2},\epsilon_{3},\epsilon_{4} are 0 or 1, and if ϵ1=1\epsilon_{1}=1 then z1ϵ1=z1z_{1}^{\epsilon_{1}}=z_{1} as expected otherwise we require z1ϵ1z_{1}^{\epsilon_{1}} disappear or becomes nothing/“empty”. For instance, W1,0,1,0=z1z3W^{1,0,1,0}=z_{1}\bigtriangleup z_{3}. A generic chain of the chain complex of superalgebra is

(6.2) Wϵ1,ϵ2,ϵ3,ϵ4Ua,b,cW^{\epsilon_{1},\epsilon_{2},\epsilon_{3},\epsilon_{4}}\bigtriangleup{U}^{a,b,c}_{\ell}

The degree(length) is i=14ϵi+a+b+c\sum_{i=1}^{4}\epsilon_{i}+a+b+c and the weight is 2ϵ4+a+b+c2\epsilon_{4}+a+b+c for the chain (6.2).

For a given weight ww, the chain complex becomes as follows:

Cw1[w]Cw[w]Cw+1[w]Cw+2[w]Cw+3[w]WUwAnoneϵϵ=0ϵ4=0ϵϵ=1ϵ4=0ϵϵ=2ϵ4=0ϵϵ=3ϵ4=0WUw2Pϵϵ=0ϵ4=1ϵϵ=1ϵ4=1ϵϵ=2ϵ4=1ϵϵ=3ϵ4=1noneWUwAnoneUwAziUwAzizjUwAW1110UwAWUw2Pz4Uw2Pziz4Uw2PWϵi=0Uw2PW1111Uw2PnoneSpaceDim(w2)3(w2)+(w+22)3(w2)+3(w+22)(w2)+3(w+22)(w+22)\begin{array}[]{c | *{5}{c}}&C_{w-1}^{[w]}&C_{w}^{[w]}&C_{w+1}^{[w]}&C_{w+2}^{[w]}&C_{w+3}^{[w]}\\ \hline\cr\hline\cr W^{\mathcal{E}}\bigtriangleup{U}^{A}_{w}&\text{none}&\begin{tabular}[]{c}$\epsilon\epsilon=0$\\ $\epsilon_{4}=0$\end{tabular}&\begin{tabular}[]{c}$\epsilon\epsilon=1$\\ $\epsilon_{4}=0$\end{tabular}&\begin{tabular}[]{c}$\epsilon\epsilon=2$\\ $\epsilon_{4}=0$\end{tabular}&\begin{tabular}[]{c}$\epsilon\epsilon=3$\\ $\epsilon_{4}=0$\end{tabular}\\ \hline\cr W^{\mathcal{E}}\bigtriangleup{U}^{P}_{w-2}&\begin{tabular}[]{c}$\epsilon\epsilon=0$\\ $\epsilon_{4}=1$\end{tabular}&\begin{tabular}[]{c}$\epsilon\epsilon=1$\\ $\epsilon_{4}=1$\end{tabular}&\begin{tabular}[]{c}$\epsilon\epsilon=2$\\ $\epsilon_{4}=1$\end{tabular}&\begin{tabular}[]{c}$\epsilon\epsilon=3$\\ $\epsilon_{4}=1$\end{tabular}&\text{none}\\ \hline\cr\hline\cr W^{\mathcal{E}}\bigtriangleup{U}^{A}_{w}&\text{none}&{U}^{A}_{w}&z_{i}\bigtriangleup{U}^{A}_{w}&z_{i}\bigtriangleup z_{j}\bigtriangleup{U}^{A}_{w}&W^{1110}\bigtriangleup{U}^{A}_{w}\\ \hline\cr W^{\mathcal{E}}\bigtriangleup{U}^{P}_{w-2}&z_{4}\bigtriangleup{U}^{P}_{w-2}&z_{i}\bigtriangleup z_{4}\bigtriangleup{U}^{P}_{w-2}&W^{\epsilon_{i}=0}\bigtriangleup{U}^{P}_{w-2}&W^{1111}\bigtriangleup{U}^{P}_{w-2}&\text{none}\\ \hline\cr\hline\cr\text{SpaceDim}&\binom{w}{2}&3\binom{w}{2}+\binom{w+2}{2}&3\binom{w}{2}+3\binom{w+2}{2}&\binom{w}{2}+3\binom{w+2}{2}&\binom{w+2}{2}\\ \hline\cr\end{array}

where =(ϵ1,ϵ2,ϵ3,ϵ4)\mathcal{E}=(\epsilon_{1},\epsilon_{2},\epsilon_{3},\epsilon_{4}) and ϵϵ=i=13ϵi\epsilon\epsilon=\sum_{i=1}^{3}\epsilon_{i}. In general, the boundary operator works as below:

(6.3) (WUA)\displaystyle\partial(W^{\mathcal{E}}\wedge U^{A}) =(W)UA+(1)||WUA+[W,UA]res\displaystyle=\partial(W^{\mathcal{E}})\wedge U^{A}+(-1)^{|\mathcal{E}|}W^{\mathcal{E}}\wedge\partial U^{A}+[W^{\mathcal{E}},U^{A}]_{res}
(6.4) W\displaystyle\partial W^{\mathcal{E}} =i<jϵ~iϵ~j[zi,zj]SW𝔢i𝔢j, here ϵ~i=ϵi(1)kiϵk\displaystyle=-\sum_{i<j}\tilde{\epsilon}_{i}\tilde{\epsilon}_{j}[z_{i},z_{j}]_{\text{\footnotesize S}}\bigtriangleup W^{\mathcal{E}-\mathfrak{e}_{i}-\mathfrak{e}_{j}}\;,\quad\text{ here }\tilde{\epsilon}_{i}=\epsilon_{i}(-1)^{\sum_{k\leqq i}\epsilon_{k}}
(6.5) [W,UA]res\displaystyle[W^{\mathcal{E}},U^{A}]_{res} =i3ϵ~iWϵi=0[zi,UA]res\displaystyle=-\sum_{i\leqq 3}\tilde{\epsilon}_{i}W^{\epsilon_{i}=0}\bigtriangleup[z_{i},U^{A}]_{res}
(6.6) UA\displaystyle\partial U^{A} =i(ai2)[ui,ui]SUA2𝔢i+i<jaiaj[ui,uj]SUA𝔢i𝔢j\displaystyle=\sum_{i}\binom{a_{i}}{2}[u_{i},u_{i}]_{\text{\footnotesize S}}\bigtriangleup U^{A-2\mathfrak{e}_{i}}+\sum_{i<j}{a_{i}}{a_{j}}[u_{i},u_{j}]_{\text{\footnotesize S}}\bigtriangleup U^{A-\mathfrak{e}_{i}-\mathfrak{e}_{j}}
The boundary operator on Cw1[w]C_{w-1}^{[w]} is trivial:

A general chain is given by M=PμPz4Uw2PM=\sum_{P}{\mu}_{P}z_{4}\bigtriangleup{U}^{P}_{w-2} and M=PμPz4Uw2P+PμP[z4,Uw2P]res=0\partial M=-\sum_{P}{\mu}_{P}z_{4}\bigtriangleup\partial{U}^{P}_{w-2}+\sum_{P}{\mu}_{P}[z_{4},{U}^{P}_{w-2}]_{res}=0 because Uw2P=z4”some”\partial{U}^{P}_{w-2}=z_{4}\bigtriangleup\text{"some"} and [z4,ui]S=0[z_{4},u_{i}]_{\text{\footnotesize S}}=0. Thus, we have

Proposition 6.1.

Even though the boundary operator is really depending on the Schouten bracket, the boundary operator on the lowest chain space is trivial.

The boundary operator on Cw[w]C_{w}^{[w]}:

(λAUwA+μPjziz4Uw2P)\displaystyle\quad\partial(\sum\lambda_{A}{U}^{A}_{w}+\sum{\mu}^{j}_{P}z_{i}\bigtriangleup z_{4}\bigtriangleup{U}^{P}_{w-2})
=λAUwA+μPi([zi,z4]SUw2P+ziz4Uw2P+[ziz4,Uw2P]res)\displaystyle=\sum\lambda_{A}\partial{U}^{A}_{w}+\sum{\mu}^{i}_{P}([z_{i},z_{4}]_{\text{\footnotesize S}}\bigtriangleup{U}^{P}_{w-2}+z_{i}\bigtriangleup z_{4}\bigtriangleup\partial{U}^{P}_{w-2}+[z_{i}\bigtriangleup z_{4},{U}^{P}_{w-2}]_{res})
=λAUwA+μPi[zi,z4]SUw2P+z4μPi[zi,Uw2P]res\displaystyle=\sum\lambda_{A}\partial{U}^{A}_{w}+\sum{\mu}^{i}_{P}[z_{i},z_{4}]_{\text{\footnotesize S}}\bigtriangleup{U}^{P}_{w-2}+z_{4}\bigtriangleup\sum{\mu}^{i}_{P}[z_{i},{U}^{P}_{w-2}]_{res}
The boundary operator on Cw+1[w]C_{w+1}^{[w]}:
(λAiziUwA+μPjWϵj=0Uw2P)\displaystyle\quad\partial(\sum\lambda^{i}_{A}z_{i}\bigtriangleup{U}^{A}_{w}+\sum{\mu}^{j}_{P}W^{\epsilon_{j}=0}\bigtriangleup{U}^{P}_{w-2})
=λAi(ziUwA+[zi,UwA]res)+μPj(Wϵj=0)Uw2P+μPj[Wϵj=0,Uw2P]res\displaystyle=\sum\lambda^{i}_{A}(-z_{i}\bigtriangleup\partial{U}^{A}_{w}+[z_{i},{U}^{A}_{w}]_{res})+\sum{\mu}^{j}_{P}(\partial W^{\epsilon_{j}=0})\bigtriangleup{U}^{P}_{w-2}+\sum{\mu}^{j}_{P}[W^{\epsilon_{j}=0},{U}^{P}_{w-2}]_{res}
The boundary operator on Cw+2[w]C_{w+2}^{[w]}:
(λAiWϵi=ϵ4=0UwA+μPW1111Uw2P)\displaystyle\quad\partial(\sum\lambda^{i}_{A}W^{\epsilon_{i}=\epsilon_{4}=0}\bigtriangleup{U}^{A}_{w}+\sum{\mu}_{P}W^{1111}\bigtriangleup{U}^{P}_{w-2})
=λAi(Wϵi=ϵ4=0)UwA+λAiWϵi=ϵ4=0UwA+λAi[Wϵi=ϵ4=0,UwA]res\displaystyle=\sum\lambda^{i}_{A}(\partial W^{\epsilon_{i}=\epsilon_{4}=0})\bigtriangleup{U}^{A}_{w}+\sum\lambda^{i}_{A}W^{\epsilon_{i}=\epsilon_{4}=0}\bigtriangleup\partial{U}^{A}_{w}+\sum\lambda^{i}_{A}[W^{\epsilon_{i}=\epsilon_{4}=0},{U}^{A}_{w}]_{res}
+μP(W1111)Uw2P+μP[W1111,Uw2P]res\displaystyle\quad+\sum{\mu}_{P}\partial(W^{1111})\bigtriangleup{U}^{P}_{w-2}+\sum{\mu}_{P}[W^{1111},{U}^{P}_{w-2}]_{res}
The boundary operator on Cw+3[w]C_{w+3}^{[w]}:
λAWϵ4=0UwA\displaystyle\quad\partial\sum\lambda_{A}W^{\epsilon_{4}=0}\bigtriangleup{U}^{A}_{w}
=λAi(Wϵ4=0)UwAλAiWϵ4=0UwA+λAi[Wϵ4=0,UwA]res\displaystyle=\sum\lambda^{i}_{A}(\partial W^{\epsilon_{4}=0})\bigtriangleup{U}^{A}_{w}-\sum\lambda^{i}_{A}W^{\epsilon_{4}=0}\bigtriangleup\partial{U}^{A}_{w}+\sum\lambda^{i}_{A}[W^{\epsilon_{4}=0},{U}^{A}_{w}]_{res}
=([z1,z2]Sz3[z1,z3]Sz2+[z2,z3]Sz1)λAiUwAWϵ4=0λAiUwA\displaystyle=([z_{1},z_{2}]_{\text{\footnotesize S}}\bigtriangleup z_{3}-[z_{1},z_{3}]_{\text{\footnotesize S}}\bigtriangleup z_{2}+[z_{2},z_{3}]_{\text{\footnotesize S}}\bigtriangleup z_{1})\bigtriangleup\sum\lambda^{i}_{A}{U}^{A}_{w}-\sum W^{\epsilon_{4}=0}\bigtriangleup\lambda^{i}_{A}\partial{U}^{A}_{w}
+W0110λA[z1,UwA]resW1010λA[z2,UwA]res+W1100λA[z3,UwA]res\displaystyle\quad+W^{0110}\bigtriangleup\lambda_{A}[z_{1},{U}^{A}_{w}]_{res}-W^{1010}\bigtriangleup\lambda_{A}[z_{2},{U}^{A}_{w}]_{res}+W^{1100}\bigtriangleup\lambda_{A}[z_{3},{U}^{A}_{w}]_{res}

6.1 dim𝔤=3\textrm{dim}\mathfrak{g}=3, dim[𝔤,𝔤]=1\textrm{dim}[\mathfrak{g},\mathfrak{g}]=1 and [𝔤,𝔤]Z(𝔤)[\mathfrak{g},\mathfrak{g}]\subset Z(\mathfrak{g})

Consider a Lie algebra 𝔤\mathfrak{g} where [𝔤,𝔤][\mathfrak{g},\mathfrak{g}] is 1-dimensional and is in of the center of 𝔤\mathfrak{g}. Then we find a basis z1,z2,z3z_{1},z_{2},z_{3} of 𝔤\mathfrak{g} so that [z1,z2]=[z2,z1]=z3[z_{1},z_{2}]=-[z_{2},z_{1}]=z_{3} and the other brackets are zero. We take u1=z2z3,u2=z3z1,u3=z1z2u_{1}=z_{2}\wedge z_{3},\;u_{2}=z_{3}\wedge z_{1},\;u_{3}=z_{1}\wedge z_{2} as a basis of Λ2𝔤\Lambda^{2}\mathfrak{g}. It should be noted that this definition does not necessarily follow a natural order. Take V=z4=z1z2z3V=z_{4}=z_{1}\wedge z_{2}\wedge z_{3} as a basis of Λ3𝔤\Lambda^{3}\mathfrak{g}. Now we have the multiplication (by the Schouten bracket) tables:

z1z2z3z4u1u2u3z10z30000u2z2z300000u1z30000000\begin{array}[t]{c|*{3}{c}|c|*{3}{c}|}&z_{1}&z_{2}&z_{3}&z_{4}&u_{1}&u_{2}&u_{3}\\ \hline\cr z_{1}&0&z_{3}&0&0&0&0&-u_{2}\\ z_{2}&-z_{3}&0&0&0&0&0&u_{1}\\ z_{3}&0&0&0&0&0&0&0\end{array} u1u2u3z4u10000u20000u3002z40\begin{array}[t]{c|*{3}{c}|c}&u_{1}&u_{2}&u_{3}&z_{4}\\ \hline\cr u_{1}&0&0&0&0\\ u_{2}&0&0&0&0\\ u_{3}&0&0&2z_{4}&0\\ \end{array}

Then we have

W1111\displaystyle\partial W^{1111} =0,W1110=0,W1101=z3z4,W1011=0,W0111=0,\displaystyle=0\;,\quad\partial W^{1110}=0\;,\quad\partial W^{1101}=z_{3}\bigtriangleup z_{4}\;,\quad\partial W^{1011}=0\;,\quad\partial W^{0111}=0\;,\quad
Ua,b,c\displaystyle\partial U^{a,b,c} =z42(c2)Ua,b,c2.AλAUa,b,c=z4Up,q,r(r+2)(r+1)λp,q,r+2.\displaystyle=z_{4}\bigtriangleup 2\tbinom{c}{2}U^{a,b,c-2}\;.\quad\sum_{A}\lambda_{A}\partial U^{a,b,c}=z_{4}\bigtriangleup\sum U^{p,q,r}(r+2)(r+1)\lambda_{p,q,r+2}\;.
[z1,UA]res\displaystyle[z_{1},U^{A}]_{res} =cUa,b+1,c1,[z2,UA]res=cUa+1,b,c1,[z3,UA]res=0\displaystyle=-cU^{a,b+1,c-1}\;,\quad[z_{2},U^{A}]_{res}=cU^{a+1,b,c-1}\;,\quad[z_{3},U^{A}]_{res}=0
AλAi[z1,UA]res\displaystyle\sum_{A}\lambda^{i}_{A}[z_{1},U^{A}]_{res} =A((c+1)λa,b1,c+1i)UA,AλAi[z2,UA]res=A((c+1)λa1,b,c+1i)UA.\displaystyle=\sum_{A}(-(c+1)\lambda^{i}_{a,b-1,c+1})U^{A}\;,\quad\sum_{A}\lambda^{i}_{A}[z_{2},U^{A}]_{res}=\sum_{A}((c+1)\lambda^{i}_{a-1,b,c+1})U^{A}\;.
Kernel of Cw+3[w]Cw+2[w]\displaystyle C_{w+3}^{[w]}\mathop{\to}^{\partial}C_{w+2}^{[w]}

A basis of Cw+3[w]C_{w+3}^{[w]}, we have W1,1,1,0Ua,b,cW^{1,1,1,0}\bigtriangleup U^{a,b,c} with a+b+c=wa+b+c=w and take a linear combination X=a+b+c=wλa,b,cW1,1,1,0Ua,b,cX=\sum_{a+b+c=w}\lambda_{a,b,c}W^{1,1,1,0}\bigtriangleup U^{a,b,c} by unknown scalars λa,b,c\lambda_{a,b,c}. Then

X=\displaystyle\partial X= a+b+c=wλa,b,c(cW0,1,1,0Ua,b+1,c1+cW1,0,1,0Ua+1,b,c1\displaystyle\sum_{a+b+c=w}\lambda_{a,b,c}\left(cW^{0,1,1,0}\bigtriangleup U^{a,b+1,c-1}+cW^{1,0,1,0}\bigtriangleup U^{a+1,b,c-1}\right.
c(c1)W1,1,1,1Ua,b,c2)\displaystyle\qquad\qquad\qquad\left.-c(c-1)W^{1,1,1,1}\bigtriangleup U^{a,b,c-2}\right)
=\displaystyle= W0,1,1,0a+b+c=wλa,b,ccUa,b+1,c1+W1,0,1,0a+b+c=wλa,b,ccUa+1,b,c1\displaystyle W^{0,1,1,0}\sum_{a+b+c=w}\lambda_{a,b,c}c\bigtriangleup U^{a,b+1,c-1}+W^{1,0,1,0}\sum_{a+b+c=w}\lambda_{a,b,c}c\bigtriangleup U^{a+1,b,c-1}
W1,1,1,1a+b+c=wλa,b,cc(c1)Ua,b,c2\displaystyle\quad-W^{1,1,1,1}\sum_{a+b+c=w}\lambda_{a,b,c}c(c-1)\bigtriangleup U^{a,b,c-2}

X=0\partial X=0 is generated by

(6.7a) λa,b1,c+1(c+1)\displaystyle\lambda_{a,b-1,c+1}(c+1)
(6.7b) λa1,b,c+1(c+1)\displaystyle\lambda_{a-1,b,c+1}(c+1)
(6.7c) λp,q,r+2(r+2)(r+1)\displaystyle\lambda_{p,q,r+2}(r+2)(r+1)

Thus, the rank is (w+22)#{λa,b,0a+b=w}=(w+22)(w+1)\binom{w+2}{2}-\#\{\lambda_{a,b,0}\mid a+b=w\}=\binom{w+2}{2}-(w+1) from (6.7a) \sim (6.7c), and the kernel dimension is w+1w+1.

Kernel of Cw+2[w]Cw+1[w]\displaystyle C_{w+2}^{[w]}\mathop{\to}^{\partial}C_{w+1}^{[w]}

As a basis of Cw+2[w]C_{w+2}^{[w]}, we have Wϵ1,ϵ2,ϵ3,0Uwa,b,cW^{\epsilon_{1},\epsilon_{2},\epsilon_{3},0}\bigtriangleup{U}^{a,b,c}_{w} with ϵ1+ϵ2+ϵ3=2\epsilon_{1}+\epsilon_{2}+\epsilon_{3}=2 and W1,1,1,1Uw2p,q,rW^{1,1,1,1}\bigtriangleup{U}^{p,q,r}_{w-2}.

Take a linear combination

X=a+b+c=wλa,b,ckWϵ1,ϵ2,ϵ3,0Uwa,b,c+p+q+r=w2μp,q,rW1,1,1,1Uw2p,q,rX=\sum_{a+b+c=w}\lambda^{k}_{a,b,c}W^{\epsilon_{1},\epsilon_{2},\epsilon_{3},0}\bigtriangleup{U}^{a,b,c}_{w}+\sum_{p+q+r=w-2}{\mu}_{p,q,r}W^{1,1,1,1}\bigtriangleup{U}^{p,q,r}_{w-2}

by unknown scalars λa,b,ck,μp,q,r\lambda^{k}_{a,b,c},\mu_{p,q,r} with ϵ1+ϵ2+ϵ3=2\epsilon_{1}+\epsilon_{2}+\epsilon_{3}=2 and ϵk=0\epsilon_{k}=0 .

X=\displaystyle\partial X= λa,b,c1(cW0,0,1,0Uwa+1,b,c1+2(c2)W0,1,1,1Uw2a,b,c2)\displaystyle\sum\lambda^{1}_{a,b,c}(cW^{0,0,1,0}{U}^{a+1,b,c-1}_{w}+2\binom{c}{2}W^{0,1,1,1}{U}^{a,b,c-2}_{w-2})
+λa,b,c2(cW0,0,1,0Uwa,b+1,c1+2(c2)W1,0,1,1Uw2a,b,c2)\displaystyle+\sum\lambda^{2}_{a,b,c}(-cW^{0,0,1,0}{U}^{a,b+1,c-1}_{w}+2\binom{c}{2}W^{1,0,1,1}{U}^{a,b,c-2}_{w-2})
+λa,b,c3(W0,0,1,0Uwa,b,ccW0,1,0,0Uwa,b+1,c1cW1,0,0,0Uwa+1,b,c1+2(c2)W1,1,0,1Uw2a,b,c2)\displaystyle+\sum\lambda^{3}_{a,b,c}(W^{0,0,1,0}{U}^{a,b,c}_{w}-cW^{0,1,0,0}{U}^{a,b+1,c-1}_{w}-cW^{1,0,0,0}{U}^{a+1,b,c-1}_{w}+2\binom{c}{2}W^{1,1,0,1}{U}^{a,b,c-2}_{w-2})
μp,q,r(rW0,1,1,1Uw2p,q+1,r1+rW1,0,1,1Uw2p+1,q,r1)\displaystyle-\sum{\mu}_{p,q,r}(rW^{0,1,1,1}{U}^{p,q+1,r-1}_{w-2}+rW^{1,0,1,1}{U}^{p+1,q,r-1}_{w-2})
=\displaystyle= W0,0,1,0(λa,b,c1cUwa+1,b,c1λa,b,c2cUwa,b+1,c1+λa,b,c3Uwa,b,c)\displaystyle W^{0,0,1,0}(\sum\lambda^{1}_{a,b,c}c{U}^{a+1,b,c-1}_{w}-\sum\lambda^{2}_{a,b,c}c{U}^{a,b+1,c-1}_{w}+\sum\lambda^{3}_{a,b,c}{U}^{a,b,c}_{w})
W0,1,0,0λa,b,c3cUwa,b+1,c1W1,0,0,0λa,b,c3cUwa+1,b,c1\displaystyle-W^{0,1,0,0}\sum\lambda^{3}_{a,b,c}c{U}^{a,b+1,c-1}_{w}-W^{1,0,0,0}\sum\lambda^{3}_{a,b,c}c{U}^{a+1,b,c-1}_{w}
+W0,1,1,1(λa,b,c12(c2)Uw2a,b,c2μp,q,rrUw2p,q+1,r1)\displaystyle+W^{0,1,1,1}(\sum\lambda^{1}_{a,b,c}2\binom{c}{2}{U}^{a,b,c-2}_{w-2}-\sum{\mu}_{p,q,r}r{U}^{p,q+1,r-1}_{w-2})
+W1,0,1,1(λa,b,c22(c2)Uw2a,b,c2μp,q,rrUw2p+1,q,r1)+W1,1,0,1λa,b,c32(c2)Uw2a,b,c2\displaystyle+W^{1,0,1,1}(\sum\lambda^{2}_{a,b,c}2\binom{c}{2}{U}^{a,b,c-2}_{w-2}-\sum{\mu}_{p,q,r}r{U}^{p+1,q,r-1}_{w-2})+W^{1,1,0,1}\sum\lambda^{3}_{a,b,c}2\binom{c}{2}{U}^{a,b,c-2}_{w-2}

Thus, X=0\partial X=0 is determined by

(6.8a) λa1,b,c+11(c+1)λa,b1,c+12(c+1)+λa,b,c3\displaystyle\lambda^{1}_{a-1,b,c+1}(c+1)-\lambda^{2}_{a,b-1,c+1}(c+1)+\lambda^{3}_{a,b,c}
(6.8b) λa,b1,c+13(c+1)\displaystyle\lambda^{3}_{a,b-1,c+1}(c+1)
(6.8c) λa1,b,c+13(c+1)\displaystyle\lambda^{3}_{a-1,b,c+1}(c+1)
(6.8d) λp,q,r+212(r+22)μp,q1,r+1(r+1)\displaystyle\lambda^{1}_{p,q,r+2}2\binom{r+2}{2}-{\mu}_{p,q-1,r+1}(r+1)
(6.8e) λp,q,r+222(r+22)μp1,q,r+1(r+1)\displaystyle\lambda^{2}_{p,q,r+2}2\binom{r+2}{2}-{\mu}_{p-1,q,r+1}(r+1)
(6.8f) λp,q,r+232(r+22).\displaystyle\lambda^{3}_{p,q,r+2}2\binom{r+2}{2}\;.

(6.8b), (6.8c), and (6.8f) tell that λa,b,c3\lambda^{3}_{a,b,c} are single generators for c>0c>0. With c=0c=0 for (6.8a), λA3\lambda^{3}_{A} are linear independent generators. When c>0c>0 for (6.8a), then we have

λa1,b,c+11λa,b1,c+12\lambda^{1}_{a-1,b,c+1}-\lambda^{2}_{a,b-1,c+1}

Those are obtained from (6.8d) and (6.8e). Thus, the rank is (w+22)+2(w2)\binom{w+2}{2}+2\binom{w}{2}, the kernel dimension is ((w2)+3(w+22))((w+22)+2(w2))=(w2)+2(w+22)(\binom{w}{2}+3\binom{w+2}{2})-(\binom{w+2}{2}+2\binom{w}{2})=-\binom{w}{2}+2\binom{w+2}{2}.

Kernel of Cw+1[w]Cw[w]\displaystyle C_{w+1}^{[w]}\mathop{\to}^{\partial}C_{w}^{[w]}

As a basis of Cw+1[w]C_{w+1}^{[w]}, we have ziUwa,b,cz_{i}\bigtriangleup{U}^{a,b,c}_{w} with i=1,2,3i=1,2,3, and Wϵ1,ϵ2,ϵ3,1Uw2p,q,rW^{\epsilon_{1},\epsilon_{2},\epsilon_{3},1}\bigtriangleup{U}^{p,q,r}_{w-2} with ϵ1+ϵ2+ϵ3=2\epsilon_{1}+\epsilon_{2}+\epsilon_{3}=2. Take a linear combination

X=λa,b,ciziUwa,b,c+ϵj=0,ϵ1+ϵ2+ϵ3=2μp,q,rjWϵ1,ϵ2,ϵ3,1Uw2p,q,rX=\sum\lambda^{i}_{a,b,c}z_{i}\bigtriangleup{U}^{a,b,c}_{w}+\sum_{\epsilon_{j}=0,\epsilon_{1}+\epsilon_{2}+\epsilon_{3}=2}{\mu}^{j}_{p,q,r}W^{\epsilon_{1},\epsilon_{2},\epsilon_{3},1}\bigtriangleup{U}^{p,q,r}_{w-2}

for unknown scalars λa,b,ci\lambda^{i}_{a,b,c} and μp,q,rj{\mu}^{j}_{p,q,r}.

X=\displaystyle\partial X= λa,b,c1(cUwa,b+1,c12(c2)z1VUw2a,b,c2)λa,b,c2(cUwa+1,b,c1+2(c2)z2VUw2a,b,c2)\displaystyle\sum\lambda^{1}_{a,b,c}\left(c{U}^{a,b+1,c-1}_{w}-2\binom{c}{2}z_{1}\bigtriangleup V\bigtriangleup{U}^{a,b,c-2}_{w-2}\right)-\sum\lambda^{2}_{a,b,c}\left(c{U}^{a+1,b,c-1}_{w}+2\binom{c}{2}z_{2}\bigtriangleup V\bigtriangleup{U}^{a,b,c-2}_{w-2}\right)
λa,b,c3(2(c2)z3VUw2a,b,c2)μp,q,r1(rz3VUw2p+1,q,r1)\displaystyle-\sum\lambda^{3}_{a,b,c}\left(2\binom{c}{2}z_{3}\bigtriangleup V\bigtriangleup{U}^{a,b,c-2}_{w-2}\right)-\sum{\mu}^{1}_{p,q,r}\left(rz_{3}\bigtriangleup V\bigtriangleup{U}^{p+1,q,r-1}_{w-2}\right)
+μp,q,r2(rz3VUw2p,q+1,r1)+μp,q,r30(remember that μp,q,r3 disappeared.)\displaystyle+\sum{\mu}^{2}_{p,q,r}\left(rz_{3}\bigtriangleup V\bigtriangleup{U}^{p,q+1,r-1}_{w-2}\right)+\sum{\mu}^{3}_{p,q,r}0\quad\text{(remember that ${\mu}^{3}_{p,q,r}$ disappeared.) }
=\displaystyle= λa,b,c1cUwa,b+1,c1λa,b,c2cUwa+1,b,c1z1Vλa,b,c12(c2)Uw2a,b,c2\displaystyle\sum\lambda^{1}_{a,b,c}c{U}^{a,b+1,c-1}_{w}-\sum\lambda^{2}_{a,b,c}c{U}^{a+1,b,c-1}_{w}-z_{1}\bigtriangleup V\bigtriangleup\sum\lambda^{1}_{a,b,c}2\binom{c}{2}{U}^{a,b,c-2}_{w-2}
z2Vλa,b,c22(c2)Uw2a,b,c2\displaystyle-z_{2}\bigtriangleup V\bigtriangleup\sum\lambda^{2}_{a,b,c}2\binom{c}{2}{U}^{a,b,c-2}_{w-2}
z3V(μp,q,r1rUw2p+1,q,r1μp,q2rUw2p,q+1,r1+λa,b,c32(c2)Uw2a,b,c2)\displaystyle-z_{3}\bigtriangleup V\bigtriangleup\left(\sum{\mu}^{1}_{p,q,r}r{U}^{p+1,q,r-1}_{w-2}-\sum{\mu}^{2}_{p,q}r{U}^{p,q+1,r-1}_{w-2}+\sum\lambda^{3}_{a,b,c}2\binom{c}{2}{U}^{a,b,c-2}_{w-2}\right)

Thus, we have linear equations

(F1) λa,b,c1cUwa,b+1,c1λa,b,c2cUwa+1,b,c1=0\displaystyle\sum\lambda^{1}_{a,b,c}c{U}^{a,b+1,c-1}_{w}-\sum\lambda^{2}_{a,b,c}c{U}^{a+1,b,c-1}_{w}=0
(F2) λa,b,c12(c2)Uw2a,b,c2=0\displaystyle\sum\lambda^{1}_{a,b,c}2\binom{c}{2}{U}^{a,b,c-2}_{w-2}=0
(F3) λa,b,c22(c2)Uw2a,b,c2=0\displaystyle\sum\lambda^{2}_{a,b,c}2\binom{c}{2}{U}^{a,b,c-2}_{w-2}=0
(FF) μp,q,r1rUw2p+1,q,r1μp,q,r2rUw2p,q+1,r1+λa,b,c32(c2)Uw2a,b,c2=0\displaystyle\sum{\mu}^{1}_{p,q,r}r{U}^{p+1,q,r-1}_{w-2}-\sum{\mu}^{2}_{p,q,r}r{U}^{p,q+1,r-1}_{w-2}+\sum\lambda^{3}_{a,b,c}2\binom{c}{2}{U}^{a,b,c-2}_{w-2}=0

(F1) \sim (FF) yield the generators

λa,b1,c+11(c+1)λa1,b,c+12(c+1)\displaystyle\lambda^{1}_{a,b-1,c+1}(c+1)-\lambda^{2}_{a-1,b,c+1}(c+1)
λp,q,r+212(r+22)\displaystyle\lambda^{1}_{p,q,r+2}2\tbinom{r+2}{2}
λp,q,r+222(r+22)\displaystyle\lambda^{2}_{p,q,r+2}2\tbinom{r+2}{2}
μp1,q,r+11(r+1)μp,q1,r+12(r+1)+λp,q,r+232(r+22)\displaystyle{\mu}^{1}_{p-1,q,r+1}(r+1)-{\mu}^{2}_{p,q-1,r+1}(r+1)+\lambda^{3}_{p,q,r+2}2\tbinom{r+2}{2}

The last three are linearly independent and the first type give w+1w+1 independent equations. Thus the rank is 3(w2)+(w+1)3\binom{w}{2}+(w+1) and the kernel dimension is 3(w2)+3(w+22)3(w2)(w+1)=(w2)+2(w+22)+w3\binom{w}{2}+3\binom{w+2}{2}-3\binom{w}{2}-(w+1)=\binom{w}{2}+2\binom{w+2}{2}+w.

Kernel of Cw[w]Cw1[w]\displaystyle C_{w}^{[w]}\mathop{\to}^{\partial}C_{w-1}^{[w]}

As a basis of Cw[w]C_{w}^{[w]}, we have Uwa,b,c{U}^{a,b,c}_{w} with a+b+c=wa+b+c=w and zkz4Uw2p,q,rz_{k}\bigtriangleup z_{4}\bigtriangleup{U}^{p,q,r}_{w-2} with k=1,2,3k=1,2,3 and p+q+r=w2p+q+r=w-2, take a linear combination

X=λa,b,cUwa,b,c+k=13μp,q,rkzkz4Uw2p,q,rX=\sum\lambda_{a,b,c}\bigtriangleup{U}^{a,b,c}_{w}+\sum_{k=1}^{3}\sum{\mu}^{k}_{p,q,r}z_{k}\bigtriangleup z_{4}\bigtriangleup{U}^{p,q,r}_{w-2}

by unknown scalars λa,b,c,μp,q,rk\lambda_{a,b,c},{\mu}^{k}_{p,q,r}.

X=\displaystyle\partial X= λa,b,cc(c1)z4Uw2a,b,c2+μp,q,r1(r)z4Uw2p,q+1,r1+μp,q,r2rz4Uw2p+1,q,r1,\displaystyle\sum\lambda_{a,b,c}c(c-1)z_{4}\bigtriangleup{U}^{a,b,c-2}_{w-2}+\sum{\mu}^{1}_{p,q,r}(-r)z_{4}\bigtriangleup{U}^{p,q+1,r-1}_{w-2}+\sum{\mu}^{2}_{p,q,r}rz_{4}\bigtriangleup{U}^{p+1,q,r-1}_{w-2}\;,

X=0\partial X=0 is generated by

λp,q,r+2(r+2)(r+1)μp,q1,r+11(r+1)+μp1,q,r+12(r+1),p+q+r=w2.\lambda_{p,q,r+2}(r+2)(r+1)-{\mu}^{1}_{p,q-1,r+1}(r+1)+{\mu}^{2}_{p-1,q,r+1}(r+1)\;,\quad p+q+r=w-2\;.

Thus the rank is (w2)\binom{w}{2} and the kernel dimension is 3(w2)+(w+22)(w2)=2(w2)+(w+22)3\binom{w}{2}+\binom{w+2}{2}-\binom{w}{2}=2\binom{w}{2}+\binom{w+2}{2}.

Final table of chain complex
Theorem 6.1.

weight=ww1ww+1w+2w+3SpaceDim(w2)3(w2)+(w+22)3(w2)+3(w+22)(w2)+3(w+22)(w+22)kerdim(w2)2(w2)+(w+22)(w2)+2(w+22)+w(w2)+2(w+22)w+1Betti0w3w+13w+2w+1\begin{array}[]{c|*{5}{c}}\text{weight}=w&w-1&w&w+1&w+2&w+3\\ \hline\cr\text{SpaceDim}&\binom{w}{2}&3\binom{w}{2}+\binom{w+2}{2}&3\binom{w}{2}+3\binom{w+2}{2}&\binom{w}{2}+3\binom{w+2}{2}&\binom{w+2}{2}\\ \ker\textrm{dim}&\binom{w}{2}&2\binom{w}{2}+\binom{w+2}{2}&\binom{w}{2}+2\binom{w+2}{2}+w&-\binom{w}{2}+2\binom{w+2}{2}&w+1\\ \hline\cr\text{Betti}&0&w&3w+1&3w+2&w+1\end{array}

6.2 dim𝔤=3\textrm{dim}\mathfrak{g}=3, dim[𝔤,𝔤]=1\textrm{dim}[\mathfrak{g},\mathfrak{g}]=1 and [𝔤,𝔤]Z(𝔤)[\mathfrak{g},\mathfrak{g}]\not\subset Z(\mathfrak{g})

Consider a Lie algebra 𝔤\mathfrak{g} where [𝔤,𝔤][\mathfrak{g},\mathfrak{g}] is 1-dimensional and not in of the center of 𝔤\mathfrak{g}. Then we find a basis z1,z2,z3z_{1},z_{2},z_{3} of 𝔤\mathfrak{g} so that [z1,z2]=[z2,z1]=z2[z_{1},z_{2}]=-[z_{2},z_{1}]=z_{2} and the other brackets are zero. We take u1=z1z2,u2=z2z3,u3=z3z1u_{1}=z_{1}\wedge z_{2},\;u_{2}=z_{2}\wedge z_{3},\;u_{3}=z_{3}\wedge z_{1} as a basis of Λ2𝔤\Lambda^{2}\mathfrak{g}, and V=z4=z1z2z3V=z_{4}=z_{1}\wedge z_{2}\wedge z_{3} as a basis of Λ3𝔤\Lambda^{3}\mathfrak{g}. Now we have the multiplication (by the Schouten bracket) tables:

z1z2z3z4u1u2u3z10z20z4u1u20z2z200000u2z30000000\begin{array}[t]{c|*{3}{c}|c|*{3}{c}|}&z_{1}&z_{2}&z_{3}&z_{4}&u_{1}&u_{2}&u_{3}\\ \hline\cr z_{1}&0&z_{2}&0&z_{4}&u_{1}&u_{2}&0\\ z_{2}&-z_{2}&0&0&0&0&0&u_{2}\\ z_{3}&0&0&0&0&0&0&0\end{array} u1u2u3z4u100z40u20000u3z4000\begin{array}[t]{c|*{3}{c}|c}&u_{1}&u_{2}&u_{3}&z_{4}\\ \hline\cr u_{1}&0&0&z_{4}&0\\ u_{2}&0&0&0&0\\ u_{3}&z_{4}&0&0&0\\ \end{array}

Then we have

W1111\displaystyle\partial W^{1111} =2W0111,W1110=z2z3,\displaystyle=2W^{0111}\;,\quad\partial W^{1110}=z_{2}\bigtriangleup z_{3}\;,\quad
W1101\displaystyle\partial W^{1101} =2z2z4,W1011=z3z4,W0111=0,\displaystyle=2z_{2}\bigtriangleup z_{4}\;,\quad\partial W^{1011}=z_{3}\bigtriangleup z_{4}\;,\quad\partial W^{0111}=0\;,\quad
AλAUa,b,c\displaystyle\sum_{A}\lambda_{A}\partial U^{a,b,c} =z4Up,q,r(p+1)(r+1)λp+1,q,r+1.\displaystyle=z_{4}\bigtriangleup\sum U^{p,q,r}(p+1)(r+1)\lambda_{p+1,q,r+1}\;.
[z1,UA]res\displaystyle[z_{1},U^{A}]_{res} =bUa,b1,c+1βcUa,b+1,c1\displaystyle=bU^{a,b-1,c+1}-\beta cU^{a,b+1,c-1}
[z2,UA]res\displaystyle[z_{2},U^{A}]_{res} =aUa1,b,c+1+αcUa+1,b,c1\displaystyle=-aU^{a-1,b,c+1}+\alpha cU^{a+1,b,c-1}
[z3,UA]res\displaystyle[z_{3},U^{A}]_{res} =βaUa1,b+1,cαbUa+1,b1,c\displaystyle=\beta aU^{a-1,b+1,c}-\alpha bU^{a+1,b-1,c}
AλAi[z1,UA]res\displaystyle\sum_{A}\lambda^{i}_{A}[z_{1},U^{A}]_{res} =A(a+b)λa,b,ciUa,b,c,\displaystyle=\sum_{A}(a+b)\lambda^{i}_{a,b,c}U^{a,b,c}\;,
AλAi[z2,UA]res\displaystyle\sum_{A}\lambda^{i}_{A}[z_{2},U^{A}]_{res} =A(c+1)λa,b1,c+1iUa,b,c,\displaystyle=\sum_{A}(c+1)\lambda^{i}_{a,b-1,c+1}U^{a,b,c}\;,
[z3,UA]res\displaystyle[z_{3},U^{A}]_{res} =0.\displaystyle=0\;.
Kernel of Cw+3[w]Cw+2[w]\displaystyle C_{w+3}^{[w]}\mathop{\to}^{\partial}C_{w+2}^{[w]}

A basis of Cw+3[w]C_{w+3}^{[w]}, we have W1,1,1,0Ua,b,cW^{1,1,1,0}\bigtriangleup U^{a,b,c} with a+b+c=wa+b+c=w. Take a linear combination X=a+b+c=wλa,b,cW1,1,1,0Ua,b,cX=\sum_{a+b+c=w}\lambda_{a,b,c}W^{1,1,1,0}\bigtriangleup U^{a,b,c} by unknown scalars λa,b,c\lambda_{a,b,c}. Then

X=\displaystyle\partial X= a+b+c=wλa,b,c((a+b+1)W0,1,1,0Ua,b,ccW1,0,1,0Ua,b+1,c1\displaystyle\sum_{a+b+c=w}\lambda_{a,b,c}\left((a+b+1)W^{0,1,1,0}\bigtriangleup U^{a,b,c}-cW^{1,0,1,0}\bigtriangleup U^{a,b+1,c-1}\right.
acW1,1,1,1Ua1,b,c1)\displaystyle\qquad\qquad\qquad\left.-acW^{1,1,1,1}\bigtriangleup U^{a-1,b,c-1}\right)
=\displaystyle= W0,1,1,0a+b+c=wλa,b,c(a+b+1)Ua,b,cW1,0,1,0a+b+c=wλa,b,ccUa,b+1,c1\displaystyle W^{0,1,1,0}\sum_{a+b+c=w}\lambda_{a,b,c}(a+b+1)\bigtriangleup U^{a,b,c}-W^{1,0,1,0}\sum_{a+b+c=w}\lambda_{a,b,c}c\bigtriangleup U^{a,b+1,c-1}
W1,1,1,1a+b+c=wλa,b,cacUa1,b,c1\displaystyle\quad-W^{1,1,1,1}\sum_{a+b+c=w}\lambda_{a,b,c}ac\bigtriangleup U^{a-1,b,c-1}

Suppose X=0\partial X=0. Then λa,b,c(a+b+1)=0\lambda_{a,b,c}(a+b+1)=0 for a+b+c=wa+b+c=w and all λa,b,c=0\lambda_{a,b,c}=0. Thus, the kernel space is 0-dimensional. Or, the linear equations is generated by

λp+1,q,r+1(p+1)(r+1),(p+q+r=w2)\displaystyle\lambda_{p+1,q,r+1}(p+1)(r+1)\;,\quad(p+q+r=w-2)
λa,b,c(1+a+b),λa,b1,c+1(c+1),(a+b+c=w),\displaystyle\lambda_{a,b,c}(1+a+b)\;,\quad\lambda_{a,b-1,c+1}(c+1)\;,\quad(a+b+c=w)\;,

and the rank is (w+22)\binom{w+2}{2} and the kernel dimension is 0.

Kernel of Cw+2[w]Cw+1[w]\displaystyle C_{w+2}^{[w]}\mathop{\to}^{\partial}C_{w+1}^{[w]}

As a basis of Cw+2[w]C_{w+2}^{[w]}, we have Wϵ1,ϵ2,ϵ3,0Uwa,b,cW^{\epsilon_{1},\epsilon_{2},\epsilon_{3},0}\bigtriangleup{U}^{a,b,c}_{w} with ϵ1+ϵ2+ϵ3=2\epsilon_{1}+\epsilon_{2}+\epsilon_{3}=2 and W1,1,1,1Uw2p,q,rW^{1,1,1,1}\bigtriangleup{U}^{p,q,r}_{w-2}.

Take a linear combination

X=a+b+c=wλa,b,ckWϵ1,ϵ2,ϵ3,0Uwa,b,c+p+q+r=w2μp,q,rW1,1,1,1Uw2p,q,rX=\sum_{a+b+c=w}\lambda^{k}_{a,b,c}W^{\epsilon_{1},\epsilon_{2},\epsilon_{3},0}\bigtriangleup{U}^{a,b,c}_{w}+\sum_{p+q+r=w-2}\mu_{p,q,r}W^{1,1,1,1}\bigtriangleup{U}^{p,q,r}_{w-2}

by unknown scalars λa,b,ck,μp,q,r\lambda^{k}_{a,b,c},\mu_{p,q,r} with ϵ1+ϵ2+ϵ3=2\epsilon_{1}+\epsilon_{2}+\epsilon_{3}=2 and ϵk=0\epsilon_{k}=0 . Again,

X=\displaystyle\partial X= λa,b,c1(cW0,0,1,0Uwa,b+1,c1+acW0,1,1,1Uw2a1,b,c1)\displaystyle\sum\lambda^{1}_{a,b,c}(cW^{0,0,1,0}{U}^{a,b+1,c-1}_{w}+acW^{0,1,1,1}{U}^{a-1,b,c-1}_{w-2})
+λa,b,c2((a+b)W0,0,1,0Uwa,b,c+acW1,0,1,1Uw2a1,b,c1)\displaystyle+\sum\lambda^{2}_{a,b,c}((a+b)W^{0,0,1,0}{U}^{a,b,c}_{w}+acW^{1,0,1,1}{U}^{a-1,b,c-1}_{w-2})
+λa,b,c3((a+b+1)W0,1,0,0Uwa,b,ccW1,0,0,0Uwa,b+1,c1+acW1,1,0,1Uw2a1,b,c1)\displaystyle+\sum\lambda^{3}_{a,b,c}((a+b+1)W^{0,1,0,0}{U}^{a,b,c}_{w}-cW^{1,0,0,0}{U}^{a,b+1,c-1}_{w}+acW^{1,1,0,1}{U}^{a-1,b,c-1}_{w-2})
+μp,q,r((p+q+2)W0,1,1,1Uw2p,q,rrW1,0,1,1Uw2p,q+1,r1)\displaystyle+\sum\mu_{p,q,r}((p+q+2)W^{0,1,1,1}{U}^{p,q,r}_{w-2}-rW^{1,0,1,1}{U}^{p,q+1,r-1}_{w-2})
=\displaystyle= λa,b,c1cW0,0,1,0Uwa,b+1,c1+λa,b,c2(a+b)W0,0,1,0Uwa,b,c\displaystyle\sum\lambda^{1}_{a,b,c}cW^{0,0,1,0}{U}^{a,b+1,c-1}_{w}+\sum\lambda^{2}_{a,b,c}(a+b)W^{0,0,1,0}{U}^{a,b,c}_{w}
+λa,b,c3(a+b+1)W0,1,0,0Uwa,b,cλa,b,c3(wab)W1,0,0,0Uwa,b+1\displaystyle+\sum\lambda^{3}_{a,b,c}(a+b+1)W^{0,1,0,0}{U}^{a,b,c}_{w}-\sum\lambda^{3}_{a,b,c}(w-a-b)W^{1,0,0,0}{U}^{a,b+1}_{w}
+λa,b,c1a(wab)W0,1,1,1Uw2a1,b,c1+λa,b,c2a(wab)W1,0,1,1Uw2a1,b,c1\displaystyle+\sum\lambda^{1}_{a,b,c}a(w-a-b)W^{0,1,1,1}{U}^{a-1,b,c-1}_{w-2}+\sum\lambda^{2}_{a,b,c}a(w-a-b)W^{1,0,1,1}{U}^{a-1,b,c-1}_{w-2}
+λa,b,c3a(wab)W1,1,0,1Uw2a1,b,c1+μp,q,r(p+q+2)W0,1,1,1Uw2p,q,r\displaystyle+\sum\lambda^{3}_{a,b,c}a(w-a-b)W^{1,1,0,1}{U}^{a-1,b,c-1}_{w-2}+\sum\mu_{p,q,r}(p+q+2)W^{0,1,1,1}{U}^{p,q,r}_{w-2}
μp,q,rrW1,0,1,1Uw2p,q+1,r1\displaystyle-\sum\mu_{p,q,r}rW^{1,0,1,1}{U}^{p,q+1,r-1}_{w-2}
=\displaystyle= W0,0,1,0(λa,b,c1cUwa,b+1,c1+λa,b,c2(a+b)Uwa,b,c)\displaystyle W^{0,0,1,0}(\sum\lambda^{1}_{a,b,c}c{U}^{a,b+1,c-1}_{w}+\sum\lambda^{2}_{a,b,c}(a+b){U}^{a,b,c}_{w})
+W0,1,0,0λa,b,c3(a+b+1)Uwa,b,cW1,0,0,0λa,b,c3cUwa,b+1,c1\displaystyle+W^{0,1,0,0}\sum\lambda^{3}_{a,b,c}(a+b+1){U}^{a,b,c}_{w}-W^{1,0,0,0}\sum\lambda^{3}_{a,b,c}c{U}^{a,b+1,c-1}_{w}
+W0,1,1,1(λa,b,c1acUw2a1,b,c1+μp,q,r(p+q+2)Uw2p,q,r)\displaystyle+W^{0,1,1,1}(\sum\lambda^{1}_{a,b,c}ac{U}^{a-1,b,c-1}_{w-2}+\sum\mu_{p,q,r}(p+q+2){U}^{p,q,r}_{w-2})
+W1,0,1,1(λa,b,c2acUw2a1,b,c1μp,q,rrUw2p,q+1,r1)\displaystyle+W^{1,0,1,1}(\sum\lambda^{2}_{a,b,c}ac{U}^{a-1,b,c-1}_{w-2}-\sum\mu_{p,q,r}r{U}^{p,q+1,r-1}_{w-2})
+W1,1,0,1λa,b,c3acUw2a1,b,c1\displaystyle+W^{1,1,0,1}\sum\lambda^{3}_{a,b,c}ac{U}^{a-1,b,c-1}_{w-2}

Suppose X=0\partial X=0. Then we have

(6.9) λa,b,c1(wab)Uwa,b+1,c1+λa,b,c2(a+b)Uwa,b,c=0\displaystyle\sum\lambda^{1}_{a,b,c}(w-a-b){U}^{a,b+1,c-1}_{w}+\sum\lambda^{2}_{a,b,c}(a+b){U}^{a,b,c}_{w}=0
(6.10) λa,b,c3(a+b+1)Uwa,b,c=0\displaystyle\sum\lambda^{3}_{a,b,c}(a+b+1){U}^{a,b,c}_{w}=0
(6.11) λa,b,c3(wab)Uwa,b+1,c1=0\displaystyle\sum\lambda^{3}_{a,b,c}(w-a-b){U}^{a,b+1,c-1}_{w}=0
(6.12) λa,b,c1a(wab)Uw2a1,b,c1+μa,b,c(a+b+2)Uw2a,b,c=0\displaystyle\sum\lambda^{1}_{a,b,c}a(w-a-b){U}^{a-1,b,c-1}_{w-2}+\sum\mu_{a,b,c}(a+b+2){U}^{a,b,c}_{w-2}=0
(6.13) λa,b,c2a(wab)Uw2a1,b,c1μp,q,rrUw2p,q+1,r1=0\displaystyle\sum\lambda^{2}_{a,b,c}a(w-a-b){U}^{a-1,b,c-1}_{w-2}-\sum\mu_{p,q,r}r{U}^{p,q+1,r-1}_{w-2}=0
(6.14) λa,b,c3acUw2a1,b,c1=0\displaystyle\sum\lambda^{3}_{a,b,c}ac{U}^{a-1,b,c-1}_{w-2}=0
The linear equations are generated by
(6.15a) λa,b1,c+13(c+1)\displaystyle\lambda^{3}_{a,b-1,c+1}(c+1)
(6.15b) λa,b,c3(a+b+1)\displaystyle\lambda^{3}_{a,b,c}(a+b+1)
(6.15c) λa,b1,c+11(c+1)+λa,b,c2(a+b)\displaystyle\lambda^{1}_{a,b-1,c+1}(c+1)+\lambda^{2}_{a,b,c}(a+b)
(6.15d) λp+1,q,r+11(p+1)(r+1)+(2+p+q)μp,q,r\displaystyle\lambda^{1}_{p+1,q,r+1}(p+1)(r+1)+(2+p+q){\mu}_{p,q,r}
(6.15e) λp+1,q,r+12(p+1)μp,q1,r+1\displaystyle\lambda^{2}_{p+1,q,r+1}(p+1)-{\mu}_{p,q-1,r+1}
(6.15f) λp+1,q,r+13(p+1)(r+1)\displaystyle\lambda^{3}_{p+1,q,r+1}(p+1)(r+1)

From (6.15a), (6.15b) and (6.15f), λA3\lambda^{3}_{A} are linearly independent monomials.

We take linearly independent generators (6.15c) with leading term λA2\lambda^{2}_{A} whose number is (w+22)1\binom{w+2}{2}-1, where a+b=0a+b=0 is the exception. Finally, We take linearly independent generators (6.15d) with leading term μP{\mu}_{P} whose number is (w2)\binom{w}{2}. (6.15e) are linearly dependent on (6.15c) and (6.15d). Thus, the rank is 2(w+22)1+(w2)2\binom{w+2}{2}-1+\binom{w}{2} and the kernel dimension is (w+22)+1\binom{w+2}{2}+1.

Kernel of Cw+1[w]Cw[w]\displaystyle C_{w+1}^{[w]}\mathop{\to}^{\partial}C_{w}^{[w]}

As a basis of Cw+1[w]C_{w+1}^{[w]}, we have ziUwa,b,cz_{i}\bigtriangleup{U}^{a,b,c}_{w} with i=1,2,3i=1,2,3, and Wϵ1,ϵ2,ϵ3,1Uw2p,q,rW^{\epsilon_{1},\epsilon_{2},\epsilon_{3},1}\bigtriangleup{U}^{p,q,r}_{w-2} with ϵ1+ϵ2+ϵ3=2\epsilon_{1}+\epsilon_{2}+\epsilon_{3}=2. Take a linear combination

X=λa,b,ciziUwa,b,c+ϵj=0,ϵ1+ϵ2+ϵ3=2μp,q,rjWϵ1,ϵ2,ϵ3,1Uw2p,q,rX=\sum\lambda^{i}_{a,b,c}z_{i}\bigtriangleup{U}^{a,b,c}_{w}+\sum_{\epsilon_{j}=0,\epsilon_{1}+\epsilon_{2}+\epsilon_{3}=2}{\mu}^{j}_{p,q,r}W^{\epsilon_{1},\epsilon_{2},\epsilon_{3},1}\bigtriangleup{U}^{p,q,r}_{w-2}

for unknown scalars λa,b,ci\lambda^{i}_{a,b,c} and μp,q,rj{\mu}^{j}_{p,q,r}.

X=\displaystyle\partial X= λa,b,c1((a+b)Uwa,b,cacz1VUw2a1,b,c1)\displaystyle\sum\lambda^{1}_{a,b,c}\left((a+b){U}^{a,b,c}_{w}-acz_{1}\bigtriangleup V\bigtriangleup{U}^{a-1,b,c-1}_{w-2}\right)
+λa,b,c2(cUwa,b+1,c1acz2VUw2a1,b,c1)\displaystyle+\sum\lambda^{2}_{a,b,c}\left(c{U}^{a,b+1,c-1}_{w}-acz_{2}\bigtriangleup V\bigtriangleup{U}^{a-1,b,c-1}_{w-2}\right)
λa,b,c3(acz3VUw2a1,b,c1)\displaystyle-\sum\lambda^{3}_{a,b,c}\left(acz_{3}\bigtriangleup V\bigtriangleup{U}^{a-1,b,c-1}_{w-2}\right)
+μp,q,r1(rz3VUw2p,q+1,r1)\displaystyle+\sum{\mu}^{1}_{p,q,r}\left(rz_{3}\bigtriangleup V\bigtriangleup{U}^{p,q+1,r-1}_{w-2}\right)
+μp,q,r2((p+q1)z3VUw2p,q,r)\displaystyle+\sum{\mu}^{2}_{p,q,r}\left((p+q-1)z_{3}\bigtriangleup V\bigtriangleup{U}^{p,q,r}_{w-2}\right)
+μp,q,r3((p+q)z2VUw2p,q,rrz1VUw2p,q+1,r1)\displaystyle+\sum{\mu}^{3}_{p,q,r}\left((p+q)z_{2}\bigtriangleup V\bigtriangleup{U}^{p,q,r}_{w-2}-rz_{1}\bigtriangleup V\bigtriangleup{U}^{p,q+1,r-1}_{w-2}\right)
=\displaystyle= λa,b,c1(a+b)Uwa,b,cλa,b,c1acz1VUw2a1,b,c1\displaystyle\sum\lambda^{1}_{a,b,c}(a+b){U}^{a,b,c}_{w}-\sum\lambda^{1}_{a,b,c}acz_{1}\bigtriangleup V\bigtriangleup{U}^{a-1,b,c-1}_{w-2}
+λa,b,c2cUwa,b+1,c1λa,b,c2acz2VUw2a1,b,c1\displaystyle+\sum\lambda^{2}_{a,b,c}c{U}^{a,b+1,c-1}_{w}-\sum\lambda^{2}_{a,b,c}acz_{2}\bigtriangleup V\bigtriangleup{U}^{a-1,b,c-1}_{w-2}
λa,b,c3acz3VUw2a1,b,c1\displaystyle-\sum\lambda^{3}_{a,b,c}acz_{3}\bigtriangleup V\bigtriangleup{U}^{a-1,b,c-1}_{w-2}
+μp,q,r1rz3VUw2p,q+1,r1\displaystyle+\sum{\mu}^{1}_{p,q,r}rz_{3}\bigtriangleup V\bigtriangleup{U}^{p,q+1,r-1}_{w-2}
+μp,q,r2(p+q1)z3VUw2p,q,r\displaystyle+\sum{\mu}^{2}_{p,q,r}(p+q-1)z_{3}\bigtriangleup V\bigtriangleup{U}^{p,q,r}_{w-2}
+μp,q,r3(p+q)z2VUw2p,q,rμp,q,r3rz1VUw2p,q+1,r1\displaystyle+\sum{\mu}^{3}_{p,q,r}(p+q)z_{2}\bigtriangleup V\bigtriangleup{U}^{p,q,r}_{w-2}-\sum{\mu}^{3}_{p,q,r}rz_{1}\bigtriangleup V\bigtriangleup{U}^{p,q+1,r-1}_{w-2}
=\displaystyle= λa,b,c1(a+b)Uwa,b,c+λa,b,c2cUwa,b+1,c1\displaystyle\sum\lambda^{1}_{a,b,c}(a+b){U}^{a,b,c}_{w}+\sum\lambda^{2}_{a,b,c}c{U}^{a,b+1,c-1}_{w}
z1V(λa,b,c1acUw2a1,b,c1+μp,q,r3rUw2p,q+1,r1)\displaystyle-z_{1}\bigtriangleup V\bigtriangleup(\sum\lambda^{1}_{a,b,c}ac{U}^{a-1,b,c-1}_{w-2}+\sum{\mu}^{3}_{p,q,r}r{U}^{p,q+1,r-1}_{w-2})
+z2V(μp,q,r3(p+q)Uw2p,q,rλa,b,c2acUw2a1,b,c1)\displaystyle+z_{2}\bigtriangleup V\bigtriangleup(\sum{\mu}^{3}_{p,q,r}(p+q){U}^{p,q,r}_{w-2}-\sum\lambda^{2}_{a,b,c}ac{U}^{a-1,b,c-1}_{w-2})
+z3V(λa,b,c3acUw2a1,b,c1+μp,q,r1r)Uw2p,q+1,r1+μp,q,r2(p+q1)Uw2p,q,r)\displaystyle+z_{3}\bigtriangleup V\bigtriangleup(-\sum\lambda^{3}_{a,b,c}ac{U}^{a-1,b,c-1}_{w-2}+\sum{\mu}^{1}_{p,q,r}r){U}^{p,q+1,r-1}_{w-2}+\sum{\mu}^{2}_{p,q,r}(p+q-1){U}^{p,q,r}_{w-2})

Thus, we have linear equations

(E1) λa,b,c1(a+b)Uwa,b,c+λa,b,c2cUwa,b+1,c1=0\displaystyle\sum\lambda^{1}_{a,b,c}(a+b){U}^{a,b,c}_{w}+\sum\lambda^{2}_{a,b,c}c{U}^{a,b+1,c-1}_{w}=0
(E2) λa,b,c1acUw2a1,b,c1+μp,q,r3rUw2p,q+1,r1=0\displaystyle\sum\lambda^{1}_{a,b,c}ac{U}^{a-1,b,c-1}_{w-2}+\sum{\mu}^{3}_{p,q,r}r{U}^{p,q+1,r-1}_{w-2}=0
(E3) μp,q,r3(p+q)Uw2p,q,rλa,b,c2acUw2a1,b,c1=0\displaystyle\sum{\mu}^{3}_{p,q,r}(p+q){U}^{p,q,r}_{w-2}-\sum\lambda^{2}_{a,b,c}ac{U}^{a-1,b,c-1}_{w-2}=0
(EF) λa,b,c3acUw2a1,b,c1μp,q,r1rUw2p,q+1,r1μp,q,r2(p+q1)Uw2p,q,r=0\displaystyle\sum\lambda^{3}_{a,b,c}ac{U}^{a-1,b,c-1}_{w-2}-\sum{\mu}^{1}_{p,q,r}r{U}^{p,q+1,r-1}_{w-2}-\sum{\mu}^{2}_{p,q,r}(p+q-1){U}^{p,q,r}_{w-2}=0
From (E1) \sim (EF), we have generators
(6.16a) λa,b,c1(a+b)+λa,b1,c+12(c+1)\displaystyle\lambda^{1}_{a,b,c}(a+b)+\lambda^{2}_{a,b-1,c+1}(c+1)
(6.16b) λp+1,q,r+11(p+1)(r+1)+μp,q1,r+13(r+1)\displaystyle\lambda^{1}_{p+1,q,r+1}(p+1)(r+1)+{\mu}^{3}_{p,q-1,r+1}(r+1)
(6.16c) λp+1,q,r+12(p+1)(r+1)μp,q,r3(2+p+q)\displaystyle\lambda^{2}_{p+1,q,r+1}(p+1)(r+1)-{\mu}^{3}_{p,q,r}(2+p+q)
(6.16d) λp+1,q,r+13(p+1)(r+1)μp,q1,r+11(r+1)μp,q,r2(p+q+1)\displaystyle\lambda^{3}_{p+1,q,r+1}(p+1)(r+1)-{\mu}^{1}_{p,q-1,r+1}(r+1)-{\mu}^{2}_{p,q,r}(p+q+1)

We take linearly independent generators (6.16a) with leading term λa,b,c1(a+b)\lambda^{1}_{a,b,c}(a+b), (6.16c) with leading term μp,q,r3{\mu}^{3}_{p,q,r}, and (6.16d) with leading term μp,q,r2{\mu}^{2}_{p,q,r}. Then (6.16b) are linearly dependent on those of 3 types. Thus, the rank is (w+22)1+2(w2)\binom{w+2}{2}-1+2\binom{w}{2} and the kernel dimension is 1+(w2)+2(w+22)1+\binom{w}{2}+2\binom{w+2}{2}.

Kernel of Cw[w]Cw1[w]\displaystyle C_{w}^{[w]}\mathop{\to}^{\partial}C_{w-1}^{[w]}

As a basis of Cw[w]C_{w}^{[w]}, we have Ua,b,cU^{a,b,c} with a+b+c=wa+b+c=w and zkVUp,q,rz_{k}\bigtriangleup V\bigtriangleup U^{p,q,r} with k=1,2,3k=1,2,3 and p+q+r=w2p+q+r=w-2. A basis of Cw[w]C_{w}^{[w]} is Uwa,b,c{U}^{a,b,c}_{w} and zkVUw2p,q,rz_{k}\bigtriangleup V\bigtriangleup{U}^{p,q,r}_{w-2}. Consider a linear combination

X=a+b+c=wλa,b,cUwa,b,c+k=13p+q+r=w2μp,q,rkzkVUw2p,q,rX=\sum_{a+b+c=w}\lambda_{a,b,c}{U}^{a,b,c}_{w}+\sum_{k=1}^{3}\sum_{p+q+r=w-2}{\mu}^{k}_{p,q,r}z_{k}\bigtriangleup V\bigtriangleup{U}^{p,q,r}_{w-2}

by unknown scalars λa,b,c,μp,q,rk\lambda_{a,b,c},{\mu}^{k}_{p,q,r}. Then

X=\displaystyle\partial X= λa,b,cacVUw2a1,b,c1+μp,q,r1(p+q+1)VUw2p,q,r\displaystyle\sum\lambda_{a,b,c}acV\bigtriangleup{U}^{a-1,b,c-1}_{w-2}+\sum{\mu}^{1}_{p,q,r}(p+q+1)V\bigtriangleup{U}^{p,q,r}_{w-2}
+μp,q,r2rVUw2p,q+1,r1.\displaystyle+\sum{\mu}^{2}_{p,q,r}rV\bigtriangleup{U}^{p,q+1,r-1}_{w-2}\;.

Since X=VUw2p,q,r(λp+1,q,r+1(p+1)(r+1)+(1+p+q)μp,q,r1+(1+r)μp,q1,r+12)\partial X=V\bigtriangleup\sum{U}^{p,q,r}_{w-2}(\lambda_{p+1,q,r+1}(p+1)(r+1)+(1+p+q){\mu}^{1}_{p,q,r}+(1+r){\mu}^{2}_{p,q-1,r+1}), the rank is (w2)\binom{w}{2} because the leading terms are μp,q,r1{\mu}^{1}_{p,q,r}, thus the kernel dimension is (3(w2)+(w+22))(w2)=2(w2)+(w+22)(3\binom{w}{2}+\binom{w+2}{2})-\binom{w}{2}=2\binom{w}{2}+\binom{w+2}{2}.

Final table of chain complex
Theorem 6.2.

weight=ww1ww+1w+2w+3SpaceDim(w2)3(w2)+(w+22)3(w2)+3(w+22)(w2)+3(w+22)(w+22)kerdim(w2)2(w2)+(w+22)1+(w2)+2(w+22)1+(w+22)0Betti01210\begin{array}[]{c|*{5}{c}}\text{weight}=w&w-1&w&w+1&w+2&w+3\\ \hline\cr\text{SpaceDim}&\binom{w}{2}&3\binom{w}{2}+\binom{w+2}{2}&3\binom{w}{2}+3\binom{w+2}{2}&\binom{w}{2}+3\binom{w+2}{2}&\binom{w+2}{2}\\ \ker\textrm{dim}&\binom{w}{2}&2\binom{w}{2}+\binom{w+2}{2}&1+\binom{w}{2}+2\binom{w+2}{2}&1+\binom{w+2}{2}&0\\ \hline\cr\text{Betti}&0&1&2&1&0\end{array}

6.3 dim[𝔤,𝔤]=2\textrm{dim}[\mathfrak{g},\mathfrak{g}]=2

Take a 3-dimensional Lie algebra whose derived subalgebra is 2-dimensional. Then we have a basis satisfying

[z1,z2]=0,[z1,z3]=z1,[z2,z3]=αz2(α0).[z_{1},z_{2}]=0,\ [z_{1},z_{3}]=z_{1},\ [z_{2},z_{3}]=\alpha z_{2}\quad(\alpha\neq 0)\;.

Now we have the multiplication (by the Schouten bracket) tables with notations u1=z1z2,u2=z1z3,u3=z2z3,z4=V=z1z2z3u_{1}=z_{1}\wedge z_{2}\;,\;u_{2}=z_{1}\wedge z_{3}\;,\;u_{3}=z_{2}\wedge z_{3}\;,\;z_{4}=V=z_{1}\wedge z_{2}\wedge z_{3}.

z1z2z3z4u1u2u3z100z1000u1z200αz200αu10z3z1αz20(1+α)V(1+α)u1u2αu3\begin{array}[t]{c|*{3}{c}|c|*{3}{c}|}&z_{1}&z_{2}&z_{3}&z_{4}&u_{1}&u_{2}&u_{3}\\ \hline\cr z_{1}&0&0&z_{1}&0&0&0&-u_{1}\\ z_{2}&0&0&\alpha z_{2}&0&0&\alpha u_{1}&0\\ z_{3}&-z_{1}&-\alpha z_{2}&0&-(1+\alpha)V&-(1+\alpha)u_{1}&-u_{2}&-\alpha u_{3}\end{array} u1u2u3z4u10000u200(1α)z40u30(1α)z400\begin{array}[t]{c|*{3}{c}|c}&u_{1}&u_{2}&u_{3}&z_{4}\\ \hline\cr u_{1}&0&0&0&0\\ u_{2}&0&0&(1-\alpha)z_{4}&0\\ u_{3}&0&(1-\alpha)z_{4}&0&0\\ \end{array}

Then we have

W1111\displaystyle\partial W^{1111} =2(1+α)z1z2z4,W1110=(1+α)z1z2,\displaystyle=-2(1+\alpha)z_{1}\bigtriangleup z_{2}\bigtriangleup z_{4}\;,\quad\partial W^{1110}=-(1+\alpha)z_{1}\bigtriangleup z_{2}\;,\quad
W1101\displaystyle\partial W^{1101} =0,W1011=(2+α)z1z4,W0111=(2α+1)z2z4,\displaystyle=0\;,\quad\partial W^{1011}=(2+\alpha)z_{1}\bigtriangleup z_{4}\;,\quad\partial W^{0111}=(2\alpha+1)z_{2}\bigtriangleup z_{4}\;,\quad
Ua,b,c\displaystyle\partial U^{a,b,c} =z4(bcUa,b1,c1),AλAiUa,b,c=z4iUp,q,r((q+1)(r+1)λp,q+1,r+1i).\displaystyle=z_{4}\bigtriangleup(bcU^{a,b-1,c-1})\;,\quad\sum_{A}\lambda^{i}_{A}\partial U^{a,b,c}=z_{4}\bigtriangleup\sum_{i}U^{p,q,r}((q+1)(r+1)\lambda^{i}_{p,q+1,r+1})\;.
[z1,UA]res\displaystyle[z_{1},U^{A}]_{res} =cUa+1,b,c1,AλAi[z1,UA]res=A((c+1)λa1,b,c+1i)UA,\displaystyle=-cU^{a+1,b,c-1}\;,\quad\sum_{A}\lambda^{i}_{A}[z_{1},U^{A}]_{res}=\sum_{A}(-(c+1)\lambda^{i}_{a-1,b,c+1})U^{A}\;,
[z2,UA]res\displaystyle[z_{2},U^{A}]_{res} =αbUa+1,b1,c,AλAi[z2,UA]res=A(α(b+1)λa1,b+1,ci)UA,\displaystyle=\alpha bU^{a+1,b-1,c}\;,\quad\sum_{A}\lambda^{i}_{A}[z_{2},U^{A}]_{res}=\sum_{A}(\alpha(b+1)\lambda^{i}_{a-1,b+1,c})U^{A}\;,
[z3,UA]res\displaystyle[z_{3},U^{A}]_{res} =((1+α)abαc)Ua,b,c.\displaystyle=(-(1+\alpha)a-b-\alpha c)U^{a,b,c}\;.
Remark 6.1.

When the weight is 0, the usual Lie algebra homology groups are obtained as below:

Λ0𝔤Λ1𝔤Λ2𝔤Λ3𝔤SpaceDim1331kerdim131κBetti11κκ\begin{array}[]{c|*{4}{c}}&\Lambda^{0}\mathfrak{g}&\Lambda^{1}\mathfrak{g}&\Lambda^{2}\mathfrak{g}&\Lambda^{3}\mathfrak{g}\\ \hline\cr\text{SpaceDim}&1&3&3&1\\ \ker\textrm{dim}&1&3&1&\kappa\\ \hline\cr\text{Betti}&1&1&\kappa&\kappa\\ \hline\cr\end{array}

Since (z1z2z3)=(1+α)z1z2\partial(z_{1}\wedge z_{2}\wedge z_{3})=-(1+\alpha)z_{1}\wedge z_{2}, we have κ={1if α=10if α1\kappa=\begin{cases}1&\text{if\quad}\alpha=-1\\ 0&\text{if\quad}\alpha\neq-1\end{cases}. Encountering with this phenomena, we are interested in how the super homology groups depend on non-zero α\alpha, which is a parameter of the Lie algebra structures.

The space of cycles in Cw+3[w]C_{w+3}^{[w]}:

We study the space of cycles in Cw+3[w]C_{w+3}^{[w]}. Take W1,1,1,0Ua,b,cW^{1,1,1,0}\bigtriangleup U^{a,b,c} with a+b+c=wa+b+c=w as a basis of the chain space. Consider a general chain a+b+c=wλa,b,cW1,1,1,0Ua,b,c\sum_{a+b+c=w}\lambda_{a,b,c}W^{1,1,1,0}\bigtriangleup U^{a,b,c} with unknown scalars λa,b,c\lambda_{a,b,c}.

(a+b+c=wλa,b,cW1,1,1,0Ua,b,c)\displaystyle\partial(\sum_{a+b+c=w}\lambda_{a,b,c}W^{1,1,1,0}\bigtriangleup U^{a,b,c})
=\displaystyle= W0,1,1,0a+b+c=wλa,b,ccUa+1,b,c1W1,0,1,0a+b+c=wλa,b,cαbUa+1,b1,c\displaystyle W^{0,1,1,0}\bigtriangleup\sum_{a+b+c=w}\lambda_{a,b,c}cU^{a+1,b,c-1}-W^{1,0,1,0}\bigtriangleup\sum_{a+b+c=w}\lambda_{a,b,c}\alpha bU^{a+1,b-1,c}
W1,1,0,0a+b+c=wλa,b,c((1+α)(a+1)+b+αc)Ua,b,c\displaystyle-W^{1,1,0,0}\bigtriangleup\sum_{a+b+c=w}\lambda_{a,b,c}((1+\alpha)(a+1)+b+\alpha c)U^{a,b,c}
W1,1,1,1a+b+c=wλa,b,cbc(1α)Ua,b1,c1\displaystyle-W^{1,1,1,1}\bigtriangleup\sum_{a+b+c=w}\lambda_{a,b,c}bc(1-\alpha)U^{a,b-1,c-1}

Now assume that the above is zero. Then we have

(6.17a) a+b+c=wλa,b,ccUa+1,b,c1=0\displaystyle\sum_{a+b+c=w}\lambda_{a,b,c}cU^{a+1,b,c-1}=0
(6.17b) a+b+c=wλa,b,cbUa+1,b1,c=0\displaystyle\sum_{a+b+c=w}\lambda_{a,b,c}bU^{a+1,b-1,c}=0
(6.17c) a+b+c=wλa,b,c((1+α)(1+a)+b+αc)Ua,b,c=0\displaystyle\sum_{a+b+c=w}\lambda_{a,b,c}((1+\alpha)(1+a)+b+\alpha c)U^{a,b,c}=0
(6.17d) a+b+c=wλa,b,cbc(1α)Ua,b1,c1=0\displaystyle\sum_{a+b+c=w}\lambda_{a,b,c}bc(1-\alpha)U^{a,b-1,c-1}=0
(6.17a) \sim (6.17d) yield generators of linear equation system as follows:
(6.17e) λa1,b,c+1(c+1)\displaystyle\lambda_{a-1,b,c+1}(c+1)
(6.17f) λa1,b+1,c(b+1)\displaystyle\lambda_{a-1,b+1,c}(b+1)
(6.17g) λa,b,c((1+α)(1+a)+b+αc)\displaystyle\lambda_{a,b,c}((1+\alpha)(1+a)+b+\alpha c)
(6.17h) λa,b+1,c+1(b+1)(c+1)(1α)\displaystyle\lambda_{a,b+1,c+1}(b+1)(c+1)(1-\alpha)
If α=1\alpha=1, then we see directly λA\lambda_{A} are the linearly independent generators by (6.17g), and so the rank is (w+22)\binom{w+2}{2}.

If α1\alpha\neq 1, (6.17h) provide λa,b,c\lambda_{a,b,c} with bc>0bc>0, (6.17e) provide λa,0,c\lambda_{a,0,c} with c>0c>0, (6.17f) provide λa,b,0\lambda_{a,b,0} with b>0b>0, and (6.17g) provide λa,0,0(1+α)(1+a)\lambda_{a,0,0}(1+\alpha)(1+a). Thus, the rank is (w+22)1\binom{w+2}{2}-1 if α+1=0\alpha+1=0 or the rank is (w+22)\binom{w+2}{2} if α+10\alpha+1\neq 0.

The space of cycles in Cw+2[w]C_{w+2}^{[w]}:

We study the space of cycles in Cw+2[w]C_{w+2}^{[w]}. Take W[ϵi=0,ϵ4=0]Uwa,b,cW[\epsilon_{i}=0,\epsilon_{4}=0]\bigtriangleup{U}^{a,b,c}_{w} for i=1,2,3i=1,2,3 and W1,1,1,1Uw2p,q,rW^{1,1,1,1}\bigtriangleup{U}^{p,q,r}_{w-2} as a basis of the chain space, and consider a general chain λa,b,ciW[ϵi=0,ϵ4=0]Uwa,b,c+μp,q,rW1,1,1,1Uw2p,q,r\sum\lambda^{i}_{a,b,c}W[{\epsilon_{i}=0,\epsilon_{4}=0}]\bigtriangleup{U}^{a,b,c}_{w}+\sum{\mu}_{p,q,r}W^{1,1,1,1}\bigtriangleup{U}^{p,q,r}_{w-2} with unknown scalars λa,b,ci,μp,q,r\lambda^{i}_{a,b,c},{\mu}_{p,q,r}.

(λa,b,ciW[ϵi=0,ϵ4=0]Uwa,b,c+μp,q,rW1,1,1,1Uw2p,q,r)\displaystyle\ \partial(\sum\lambda^{i}_{a,b,c}W[{\epsilon_{i}=0,\epsilon_{4}=0}]\bigtriangleup{U}^{a,b,c}_{w}+\sum{\mu}_{p,q,r}W^{1,1,1,1}\bigtriangleup{U}^{p,q,r}_{w-2})
=\displaystyle= +W1,0,0,0(λa,b,c2((1+α)a+b+αc+1)Uwa,b,cλa,b,c3αbUwa+1,b1,c)\displaystyle\ +W^{1,0,0,0}\bigtriangleup\sum(\lambda^{2}_{a,b,c}((1+\alpha)a+b+\alpha c+1){U}^{a,b,c}_{w}-\lambda^{3}_{a,b,c}\alpha b{U}^{a+1,b-1,c}_{w})
+W0,1,0,0(λa,b,c1((1+α)a+b+αc+α)Uwa,b,cλa,b,c3cUwa+1,b,c1)\displaystyle+W^{0,1,0,0}\bigtriangleup\sum(\lambda^{1}_{a,b,c}((1+\alpha)a+b+\alpha c+\alpha){U}^{a,b,c}_{w}-\lambda^{3}_{a,b,c}c{U}^{a+1,b,c-1}_{w})
+W0,0,1,0(αλa,b,c1bUwa+1,b1,cλa,b,c2cUwa+1,b,c1)\displaystyle+W^{0,0,1,0}\bigtriangleup\sum(\alpha\lambda^{1}_{a,b,c}b{U}^{a+1,b-1,c}_{w}-\lambda^{2}_{a,b,c}c{U}^{a+1,b,c-1}_{w})
+W0,1,1,1(μp,q,rrUw2p+1,q,r1+λa,b,c1(1α)bcUw2a,b1,c1)\displaystyle+W^{0,1,1,1}\bigtriangleup\left(-\sum{\mu}_{p,q,r}r{U}^{p+1,q,r-1}_{w-2}+\sum\lambda^{1}_{a,b,c}(1-\alpha)bc{U}^{a,b-1,c-1}_{w-2}\right)
+W1,0,1,1(μp,q,r(αq)Uw2p+1,q1,r+λa,b,c2(1α)bcUw2a,b1,c1)\displaystyle+W^{1,0,1,1}\bigtriangleup\left(\sum{\mu}_{p,q,r}(-\alpha q){U}^{p+1,q-1,r}_{w-2}+\sum\lambda^{2}_{a,b,c}(1-\alpha)bc{U}^{a,b-1,c-1}_{w-2}\right)
+W1,1,0,1(μp,q,r((1+α)(p+2)+q+αr)Uw2p,q,r+λa,b,c3(1α)bcUw2a,b1,c1)\displaystyle+W^{1,1,0,1}\bigtriangleup\left(\sum{\mu}_{p,q,r}(-(1+\alpha)(p+2)+q+\alpha r){U}^{p,q,r}_{w-2}+\sum\lambda^{3}_{a,b,c}(1-\alpha)bc{U}^{a,b-1,c-1}_{w-2}\right)

We pick up the coefficient of WUa,b,cW^{\mathcal{E}}\bigtriangleup U^{a,b,c}:

(6.18a) W1,0,0,0\displaystyle W^{1,0,0,0} :λa,b,c2((1+α)a+b+αc+1)αλa1,b+1,c3(b+1)\displaystyle:\quad\lambda^{2}_{a,b,c}((1+\alpha)a+b+\alpha c+1)-\alpha\lambda^{3}_{a-1,b+1,c}(b+1)
(6.18b) W0,1,0,0\displaystyle W^{0,1,0,0} :λa,b,c1((1+α)a+b+αc+α)λa1,b,c+13(c+1)\displaystyle:\quad\lambda^{1}_{a,b,c}((1+\alpha)a+b+\alpha c+\alpha)-\lambda^{3}_{a-1,b,c+1}(c+1)
(6.18c) W0,0,1,0\displaystyle W^{0,0,1,0} :αλa1,b+1,c1(b+1)λa1,b,c+12(c+1)\displaystyle:\quad\alpha\lambda^{1}_{a-1,b+1,c}(b+1)-\lambda^{2}_{a-1,b,c+1}(c+1)
(6.18d) W0,1,1,1\displaystyle W^{0,1,1,1} :μp1,q,r+1(r+1)+(1α)λp,q+1,r+11(q+1)(r+1)\displaystyle:\quad-{\mu}_{p-1,q,r+1}(r+1)+(1-\alpha)\lambda^{1}_{p,q+1,r+1}(q+1)(r+1)
(6.18e) W1,0,1,1\displaystyle W^{1,0,1,1} :αμp1,q+1,r(q+1)+(1α)λp,q+1,r+12(q+1)(r+1)\displaystyle:\quad-\alpha{\mu}_{p-1,q+1,r}(q+1)+(1-\alpha)\lambda^{2}_{p,q+1,r+1}(q+1)(r+1)
(6.18f) W1,1,0,1\displaystyle W^{1,1,0,1} :μp,q,r((1+α)(p+2)+q+αr)+(1α)λp,q+1,r+13(q+1)(r+1)\displaystyle:\quad-{\mu}_{p,q,r}((1+\alpha)(p+2)+q+\alpha r)+(1-\alpha)\lambda^{3}_{p,q+1,r+1}(q+1)(r+1)

If α=1\alpha=1, then (6.18d) \sim (6.18f) yield independent generators μp,q,r{\mu}_{p,q,r} with p+q+r=w2p+q+r=w-2. (6.18a) and (6.18b) are independent generators which express (6.18c). Thus, the rank is (w2)+2(w+22)\binom{w}{2}+2\binom{w+2}{2}.

If α1\alpha\neq 1, (6.18d) \sim (6.18f) yield independent generators. Be careful that (6.18f) with q=r=0q=r=0 is μp,0,0(1+α)(p+2)+(1α)λp,1,13-{\mu}_{p,0,0}(1+\alpha)(p+2)+(1-\alpha)\lambda^{3}_{p,1,1}. We need more generators from (6.18a) \sim (6.18c) with the condition bc=0bc=0. (6.18a) with b=0,c=1b=0,c=1 is λw1,0,12(1+α)wαλw2,1,13-\lambda^{2}_{w-1,0,1}(1+\alpha)w-\alpha\lambda^{3}_{w-2,1,1}. (6.18b) with b=1,c=0b=1,c=0 is λw1,1,01(1+α)wλw2,1,13\lambda^{1}_{w-1,1,0}(1+\alpha)w-\lambda^{3}_{w-2,1,1}.

If α+10\alpha+1\neq 0, then (6.18c) are expressed by (6.18a) and (6.18b), the rank is 3(w2)+2(2w+1)=(w2)+2(w+22)3\binom{w}{2}+2(2w+1)=\binom{w}{2}+2\binom{w+2}{2}.

If α+1=0\alpha+1=0, as described above, we have 3 cases which mean the same generator λw2,1,13\lambda^{3}_{w-2,1,1}. Depending to those cases, we need relation αλw1,1,01λw1,0,12\alpha\lambda^{1}_{w-1,1,0}-\lambda^{2}_{w-1,0,1} from (6.18c). Thus, the rank is 3(w2)+2(w+1)2+1=(w2)+2(w+22)13\binom{w}{2}+2(w+1)-2+1=\binom{w}{2}+2\binom{w+2}{2}-1.

The space of cycles in Cw+1[w]C_{w+1}^{[w]}:

When w=0w=0, then Cw+1[w]=C1[0]=𝔤C_{w+1}^{[w]}=C_{1}^{[0]}=\mathfrak{g} and the boundary operator is trivial, and so the kernel dimension is dim𝔤\textrm{dim}\mathfrak{g}. Thus, we study the space of cycles in Cw+1[w]C_{w+1}^{[w]} for w>0w>0. Take ziUwa,b,cz_{i}\bigtriangleup{U}^{a,b,c}_{w} and zizjz4Uw2a,b,cz_{i}\bigtriangleup z_{j}\bigtriangleup z_{4}\bigtriangleup{U}^{a,b,c}_{w-2} (1i<j31\leqq i<j\leqq 3) as a basis of the chain space, and consider a general chain L+ML+M where L=λa,b,ciziUwa,b,cL=\sum\lambda^{i}_{a,b,c}z_{i}\bigtriangleup{U}^{a,b,c}_{w} and M=μp,q,riW[ϵi=0,ϵ4=1]Uw2p,q,rM=\sum{\mu}^{i}_{p,q,r}W[\epsilon_{i}=0,\epsilon_{4}=1]\bigtriangleup{U}^{p,q,r}_{w-2} with unknown scalars λa,b,ci,μp,q,ri\lambda^{i}_{a,b,c},{\mu}^{i}_{p,q,r}.

L=\displaystyle\partial L= z1λa,b,c1Uwa,b,cλa,b,c1cUwa+1,b,c1\displaystyle-z_{1}\bigtriangleup\sum\lambda^{1}_{a,b,c}\partial{U}^{a,b,c}_{w}-\sum\lambda^{1}_{a,b,c}c{U}^{a+1,b,c-1}_{w}
z2λa,b,c2Uwa,b,c+λa,b,c2αbUwa+1,b1,c\displaystyle-z_{2}\bigtriangleup\sum\lambda^{2}_{a,b,c}\partial{U}^{a,b,c}_{w}+\sum\lambda^{2}_{a,b,c}\alpha b{U}^{a+1,b-1,c}_{w}
z3λa,b,c3Uwa,b,cλa,b,c3((1+α)a+b+αc)Uwa,b,c\displaystyle-z_{3}\bigtriangleup\sum\lambda^{3}_{a,b,c}\partial{U}^{a,b,c}_{w}-\sum\lambda^{3}_{a,b,c}((1+\alpha)a+b+\alpha c){U}^{a,b,c}_{w}

Using the fact [zizjz4,Ua,b,c]res=zjz4[zi,Ua,b,c]resziz4[zj,Ua,b,c]res[z_{i}\bigtriangleup z_{j}\bigtriangleup z_{4},U^{a,b,c}]_{res}=z_{j}\bigtriangleup z_{4}\bigtriangleup[z_{i},U^{a,b,c}]_{res}-z_{i}\bigtriangleup z_{4}\bigtriangleup[z_{j},U^{a,b,c}]_{res} we have

M=\displaystyle\partial M= +W0,1,0,1μP1(1+2α+(1+α)p+q+αr)UP+W0,0,1,1μP1αqUp+1,q1,r\displaystyle+W^{0,1,0,1}\bigtriangleup\sum{\mu}^{1}_{P}(1+2\alpha+(1+\alpha)p+q+\alpha r)U^{P}+W^{0,0,1,1}\bigtriangleup\sum{\mu}^{1}_{P}\alpha qU^{p+1,q-1,r}
+W1,0,0,1μP2(2+α+(1+α)p+q+αr)UP+W0,0,1,1μP2(r)Up+1,q,r1\displaystyle+W^{1,0,0,1}\bigtriangleup\sum{\mu}^{2}_{P}(2+\alpha+(1+\alpha)p+q+\alpha r)U^{P}+W^{0,0,1,1}\bigtriangleup\sum{\mu}^{2}_{P}(-r)U^{p+1,q,r-1}
+W1,0,0,1μP3(αrUp,q+1,r1)+W0,1,0,1μP3(r)Up+1,q,r1\displaystyle+W^{1,0,0,1}\bigtriangleup\sum{\mu}^{3}_{P}(-\alpha rU^{p,q+1,r-1})+W^{0,1,0,1}\bigtriangleup\sum{\mu}^{3}_{P}(-r)U^{p+1,q,r-1}

Assume that (L+M)=0\partial(L+M)=0. Knowing Ua,b,c=z4(1α)bcUa,b1,c1\partial U^{a,b,c}=z_{4}\bigtriangleup(1-\alpha)bcU^{a,b-1,c-1},

0\displaystyle 0 =λa,b,c1(1α)bcUwa,b1,c1μP2(2+α+(1+α)p+q+αr)UP\displaystyle=\sum\lambda^{1}_{a,b,c}(1-\alpha)bc{U}^{a,b-1,c-1}_{w}-\sum{\mu}^{2}_{P}(2+\alpha+(1+\alpha)p+q+\alpha r)U^{P}
+μP3(αr)Up,q+1,r1\displaystyle\qquad+\sum{\mu}^{3}_{P}(\alpha r)U^{p,q+1,r-1}
0\displaystyle 0 =λa,b,c2(1α)bcUwa,b1,c1μP1(1+2α+(1+α)p+q+αr)UP\displaystyle=\sum\lambda^{2}_{a,b,c}(1-\alpha)bc{U}^{a,b-1,c-1}_{w}-\sum{\mu}^{1}_{P}(1+2\alpha+(1+\alpha)p+q+\alpha r)U^{P}
μP3(r)Up+1,q,r1\displaystyle\qquad-\sum{\mu}^{3}_{P}(-r)U^{p+1,q,r-1}
0\displaystyle 0 =λa,b,c3(1α)bcUwa,b1,c1μP1αqUp+1,q1,rμP2(r)Up+1,q,r1\displaystyle=\sum\lambda^{3}_{a,b,c}(1-\alpha)bc{U}^{a,b-1,c-1}_{w}-\sum{\mu}^{1}_{P}\alpha qU^{p+1,q-1,r}-\sum{\mu}^{2}_{P}(-r)U^{p+1,q,r-1}
0\displaystyle 0 =λa,b,c1cUwa+1,b,c1+λa,b,c2αbUwa+1,b1,c\displaystyle=-\sum\lambda^{1}_{a,b,c}c{U}^{a+1,b,c-1}_{w}+\sum\lambda^{2}_{a,b,c}\alpha b{U}^{a+1,b-1,c}_{w}
λa,b,c3((1+α)a+b+αc)Uwa,b,c\displaystyle\qquad-\sum\lambda^{3}_{a,b,c}((1+\alpha)a+b+\alpha c){U}^{a,b,c}_{w}
Taking coefficient of Ua,b,c{U}^{a,b,c}, we have
(6.19a) (1α)λp,q+1,r+11(q+1)(r+1)μp,q,r2(2+α+(1+α)p+q+αr)\displaystyle(1-\alpha)\lambda^{1}_{p,q+1,r+1}(q+1)(r+1)-{\mu}^{2}_{p,q,r}(2+\alpha+(1+\alpha)p+q+\alpha r)
+αμp,q1,r+13(r+1)\displaystyle\qquad+\alpha{\mu}^{3}_{p,q-1,r+1}(r+1)
(6.19b) (1α)λp,q+1,r+12(q+1)(r+1)μp,q,r1(1+2α+(1+α)p+q+αr)\displaystyle(1-\alpha)\lambda^{2}_{p,q+1,r+1}(q+1)(r+1)-{\mu}^{1}_{p,q,r}(1+2\alpha+(1+\alpha)p+q+\alpha r)
+μp1,q,r+13(r+1)\displaystyle\qquad+{\mu}^{3}_{p-1,q,r+1}(r+1)
(6.19c) (1α)λp,q+1,r+13(q+1)(r+1)αμp1,q+1,r1(q+1)+μp1,q,r+12(r+1)\displaystyle(1-\alpha)\lambda^{3}_{p,q+1,r+1}(q+1)(r+1)-\alpha{\mu}^{1}_{p-1,q+1,r}(q+1)+{\mu}^{2}_{p-1,q,r+1}(r+1)
(6.19d) λa1,b,c+11(c+1)+αλa1,b+1,c2(b+1)λa,b,c3((1+α)a+b+αc)\displaystyle-\lambda^{1}_{a-1,b,c+1}(c+1)+\alpha\lambda^{2}_{a-1,b+1,c}(b+1)-\lambda^{3}_{a,b,c}((1+\alpha)a+b+\alpha c)

Assume 1α=01-\alpha=0.

We have
(6.20a) μp,q,r2(1+w+p)+μp,q1,r+13(r+1)\displaystyle-{\mu}^{2}_{p,q,r}(1+w+p)+{\mu}^{3}_{p,q-1,r+1}(r+1)
(6.20b) μp,q,r1(1+w+p)+μp1,q,r+13(r+1)\displaystyle-{\mu}^{1}_{p,q,r}(1+w+p)+{\mu}^{3}_{p-1,q,r+1}(r+1)
(6.20c) μp1,q+1,r1(q+1)+μp1,q,r+12(r+1)\displaystyle-{\mu}^{1}_{p-1,q+1,r}(q+1)+{\mu}^{2}_{p-1,q,r+1}(r+1)
(6.20d) λa1,b,c+11(c+1)+λa1,b+1,c2(b+1)λa,b,c3(w+a)\displaystyle-\lambda^{1}_{a-1,b,c+1}(c+1)+\lambda^{2}_{a-1,b+1,c}(b+1)-\lambda^{3}_{a,b,c}(w+a)

When α=1\alpha=1, from (6.19a) and (6.19b), we have 2(w2)2\binom{w}{2} generators and (6.19c) are controlled by (6.19a) and (6.19b). (6.19d) yield (w+22)\binom{w+2}{2} generators. Thus, the rank is 2(w2)+(w+22)2\binom{w}{2}+\binom{w+2}{2}.

If α1\alpha\neq 1, from (6.19a) \sim (6.19c), we have 3((w+22)(2w+1))3(\binom{w+2}{2}-(2w+1)) generators, and (6.19d) yield generators depending on (a,b,c)(a,b,c) with bc=0bc=0. Thus, the rank is 3((w+22)(2w+1))+(2w+1)=3(w+22)2(2w+1)=(w+22)+2(w2)3(\binom{w+2}{2}-(2w+1))+(2w+1)=3\binom{w+2}{2}-2(2w+1)=\binom{w+2}{2}+2\binom{w}{2}.

The space of cycles in Cw[w]C_{w}^{[w]}:

When w=0w=0, then Cw[w]=Λ0𝔤C_{w}^{[w]}=\Lambda^{0}\mathfrak{g} and the boundary operator is trivial, and so the kernel dimension is 1. Thus, we study the space of cycles in Cw[w]C_{w}^{[w]}) when w>0w>0. Take Uwa,b,c{U}^{a,b,c}_{w} and ziz4Uw2p,q,rz_{i}\bigtriangleup z_{4}\bigtriangleup{U}^{p,q,r}_{w-2} (i=1,2,3i=1,2,3) as a basis of the chain space, and consider a general chain L+ML+M where L=λa,b,cUwa,b,cL=\sum\lambda_{a,b,c}{U}^{a,b,c}_{w} and M=μp,q,riziz4Uw2p,q,rM=\sum{\mu}^{i}_{p,q,r}z_{i}\bigtriangleup z_{4}\bigtriangleup{U}^{p,q,r}_{w-2} with unknown scalars λa,b,c,μp,q,ri\lambda_{a,b,c},{\mu}^{i}_{p,q,r}.

L=\displaystyle\partial L= (1α)z4λa,b,cbcUw2a,b1,c1=(1α)z4λa,b+1,c+1(b+1)(c+1)Uw2a,b,c\displaystyle(1-\alpha)z_{4}\bigtriangleup\sum\lambda_{a,b,c}bc{U}^{a,b-1,c-1}_{w-2}=(1-\alpha)z_{4}\bigtriangleup\sum\lambda_{a,b+1,c+1}(b+1)(c+1){U}^{a,b,c}_{w-2}

Using the facts z4UA=0z_{4}\bigtriangleup\partial U^{A}=0 and [ziz4,UA]res=z4[zi,UA]res[z_{i}\bigtriangleup z_{4},U^{A}]_{res}=z_{4}\bigtriangleup[z_{i},U^{A}]_{res}, we have

M=\displaystyle\partial M= z4μp,q,r1cUw2p+1,q,r1+z4μp,q,r2αqUw2p+1,q1,r\displaystyle-z_{4}\bigtriangleup\sum{\mu}^{1}_{p,q,r}c{U}^{p+1,q,r-1}_{w-2}+z_{4}\bigtriangleup\sum{\mu}^{2}_{p,q,r}\alpha q{U}^{p+1,q-1,r}_{w-2}
z4μp,q,r3(1+α)Uw2p,q,rz4μp,q,r3((1+α)p+q+αr)Uw2p,q,r\displaystyle-z_{4}\bigtriangleup\sum{\mu}^{3}_{p,q,r}(1+\alpha){U}^{p,q,r}_{w-2}-z_{4}\bigtriangleup\sum{\mu}^{3}_{p,q,r}((1+\alpha)p+q+\alpha r){U}^{p,q,r}_{w-2}
=\displaystyle= z4Uw2p,q,r(μp1,q,r+11(r+1)+μp1,q+1,r2α(q+1)μp,q,r3((1+α)(p+1)+q+αr))\displaystyle z_{4}\bigtriangleup\sum{U}^{p,q,r}_{w-2}(-{\mu}^{1}_{p-1,q,r+1}(r+1)+{\mu}^{2}_{p-1,q+1,r}\alpha(q+1)-{\mu}^{3}_{p,q,r}((1+\alpha)(p+1)+q+\alpha r))

The linear equation (L+M)=0\partial(L+M)=0 is generated by

(6.21) (α1)λp,q+1,r+1(q+1)(r+1)\displaystyle\quad(\alpha-1)\lambda_{p,q+1,r+1}(q+1)(r+1)
+μp1,q,r+11(r+1)μp1,q+1,r2α(q+1)+μp,q,r3((1+α)(p+1)+q+αr)\displaystyle+{\mu}^{1}_{p-1,q,r+1}(r+1)-{\mu}^{2}_{p-1,q+1,r}\alpha(q+1)+{\mu}^{3}_{p,q,r}((1+\alpha)(p+1)+q+\alpha r)

If w<2w<2, then generators are (α1)λp,q+1,r+1(q+1)(r+1)(\alpha-1)\lambda_{p,q+1,r+1}(q+1)(r+1), and we get none. Thus, the rank is 0.

Assume that w2w\geqq 2. If α1\alpha\neq 1, then we have (w2)\binom{w}{2} linearly independent generators with leading term λp,q+1,r+1\lambda_{p,q+1,r+1}, and the rank is (w2)\binom{w}{2}. If α=1\alpha=1, then generators are μp1,q,r+11(r+1)μp1,q+1,r2α(q+1)+μp,q,r3(p+w){\mu}^{1}_{p-1,q,r+1}(r+1)-{\mu}^{2}_{p-1,q+1,r}\alpha(q+1)+{\mu}^{3}_{p,q,r}(p+w) with leading term μp,q,r3{\mu}^{3}_{p,q,r}, and the rank is (w2)\binom{w}{2} and the kernel dimension is 2(w2)+(w+22)2\binom{w}{2}+\binom{w+2}{2} for two cases.

The space of cycles in Cw1[w]C_{w-1}^{[w]}:

Generators of this chain space are z4Uw2Az_{4}\bigtriangleup{U}^{A}_{w-2}.

Since (z4Uw2A)=z4(Uw2A)+[z4,Uw2A]res=z4z4(1α)bcUw2a,b1,c1+0=0\partial(z_{4}\bigtriangleup{U}^{A}_{w-2})=-z_{4}\bigtriangleup\partial({U}^{A}_{w-2})+[z_{4},{U}^{A}_{w-2}]_{res}=-z_{4}\bigtriangleup z_{4}\wedge(1-\alpha)bc{U}^{a,b-1,c-1}_{w-2}+0=0, the boundary operator is trivial and the kernel dimension is (w2)\binom{w}{2}.

Final table of chain complex
Theorem 6.3.

weight=w>0w1ww+1w+2w+3SpaceDim(w2)3(w2)+(w+22)3(w2)+3(w+22)(w2)+3(w+22)(w+22)kerdim(w2)2(w2)+(w+22)(w2)+2(w+22)(w+22)+κκBetti00κ2κκ\begin{array}[]{c|*{5}{c}}\text{weight}=w>0&w-1&w&w+1&w+2&w+3\\ \hline\cr\text{SpaceDim}&\binom{w}{2}&3\binom{w}{2}+\binom{w+2}{2}&3\binom{w}{2}+3\binom{w+2}{2}&\binom{w}{2}+3\binom{w+2}{2}&\binom{w+2}{2}\\ \ker\textrm{dim}&\binom{w}{2}&2\binom{w}{2}+\binom{w+2}{2}&\binom{w}{2}+2\binom{w+2}{2}&\binom{w+2}{2}+\kappa&\kappa\\ \hline\cr\text{Betti}&0&0&\kappa&2\kappa&\kappa\end{array}

where κ={1if α=10if α1\kappa=\begin{cases}1&\text{if\quad}\alpha=-1\\ 0&\text{if\quad}\alpha\neq-1\end{cases}.

6.4 dim[𝔤,𝔤]=3\textrm{dim}[\mathfrak{g},\mathfrak{g}]=3

3-dimensional Lie algebras with [𝔤,𝔤]=𝔤[\mathfrak{g},\mathfrak{g}]=\mathfrak{g} are completely classified in [1]. By an equivalence, called multiplicativity cogredience, the bracket relations are given by [z1,z2]=z3,[z1,z3]=βz2,[z2,z3]=αz1[z_{1},z_{2}]=z_{3},[z_{1},z_{3}]=-\beta z_{2},[z_{2},z_{3}]=\alpha z_{1}. [1] says that if the base field of 𝔤\mathfrak{g} is \mathbb{R}, then we may choose α=β=1\alpha=\beta=1 or α=β=1-\alpha=\beta=1. Those include A1A_{1} type by Dynkin diagram. Here, we care about two parameters α,β\alpha,\beta are just non-zero.

We choose a basis of 2-vectors by

u1=1αz2z3,u2=1βz1z3,u3=z1z2u_{1}=\frac{1}{\alpha}z_{2}\wedge z_{3}\;,\;u_{2}=\frac{-1}{\beta}z_{1}\wedge z_{3}\;,\;u_{3}=z_{1}\wedge z_{2}

and 3-vector by z4=V=z1z2z3z_{4}=V=z_{1}\wedge z_{2}\wedge z_{3}. The multiplication (by the Schouten bracket) tables are the followings:

z1z2z3z4u1u2u3z10z3βz200u3βu2z2z30αz10u30αu1z3βz2αz100βu2αu10\begin{array}[t]{c|*{3}{c}|c|*{3}{c} }&z_{1}&z_{2}&z_{3}&z_{4}&u_{1}&u_{2}&u_{3}\\ \hline\cr z_{1}&0&z_{3}&-\beta z_{2}&0&0&u_{3}&-\beta u_{2}\\ z_{2}&-z_{3}&0&\alpha z_{1}&0&-u_{3}&0&\alpha u_{1}\\ z_{3}&\beta z_{2}&-\alpha z_{1}&0&0&\beta u_{2}&-\alpha u_{1}&0\end{array} u1u2u3z4u12αz4000u202βz400u3002z40\begin{array}[t]{c|*{3}{c}|c}&u_{1}&u_{2}&u_{3}&z_{4}\\ \hline\cr u_{1}&\frac{2}{\alpha}z_{4}&0&0&0\\ u_{2}&0&\frac{2}{\beta}z_{4}&0&0\\ u_{3}&0&0&2z_{4}&0\\ \end{array}

From the tables, we have

W1111\displaystyle\partial W^{1111} =0,W1110=0,\displaystyle=0\;,\quad\partial W^{1110}=0\;,\quad
W1101\displaystyle\partial W^{1101} =z3z4,W1011=βz2z4,W0111=αz1z4,\displaystyle=z_{3}\bigtriangleup z_{4}\;,\quad\partial W^{1011}=-\beta z_{2}\bigtriangleup z_{4}\;,\quad\partial W^{0111}=\alpha z_{1}\bigtriangleup z_{4}\;,\quad
Ua,b,c\displaystyle\partial U^{a,b,c} =z4(2α(a2)Ua2,b,c+2β(b2)Ua,b2,c+2(c2)Ua,b,c2).\displaystyle=z_{4}\bigtriangleup(\frac{2}{\alpha}\tbinom{a}{2}U^{a-2,b,c}+\frac{2}{\beta}\tbinom{b}{2}U^{a,b-2,c}+2\tbinom{c}{2}U^{a,b,c-2})\;.
AλAUa,b,c\displaystyle\sum_{A}\lambda_{A}\partial U^{a,b,c} =z4Up,q,r(2α(p+22)λp+2,q,r+2β(q+22)λp,q+2,r+2(r+22)λp,q,r+2).\displaystyle=z_{4}\bigtriangleup\sum U^{p,q,r}(\frac{2}{\alpha}\tbinom{p+2}{2}\lambda_{p+2,q,r}+\frac{2}{\beta}\tbinom{q+2}{2}\lambda_{p,q+2,r}+2\tbinom{r+2}{2}\lambda_{p,q,r+2})\;.
[z1,UA]res\displaystyle[z_{1},U^{A}]_{res} =bUa,b1,c+1βcUa,b+1,c1\displaystyle=bU^{a,b-1,c+1}-\beta cU^{a,b+1,c-1}
[z2,UA]res\displaystyle[z_{2},U^{A}]_{res} =aUa1,b,c+1+αcUa+1,b,c1\displaystyle=-aU^{a-1,b,c+1}+\alpha cU^{a+1,b,c-1}
[z3,UA]res\displaystyle[z_{3},U^{A}]_{res} =βaUa1,b+1,cαbUa+1,b1,c\displaystyle=\beta aU^{a-1,b+1,c}-\alpha bU^{a+1,b-1,c}
AλAi[z1,UA]res\displaystyle\sum_{A}\lambda^{i}_{A}[z_{1},U^{A}]_{res} =A((b+1)λa,b+1,c1iβ(c+1)λa,b1,c+1i)UA,\displaystyle=\sum_{A}((b+1)\lambda^{i}_{a,b+1,c-1}-\beta(c+1)\lambda^{i}_{a,b-1,c+1})U^{A}\;,
AλAi[z2,UA]res\displaystyle\sum_{A}\lambda^{i}_{A}[z_{2},U^{A}]_{res} =A((a+1)λa+1,b,c1i+α(c+1)λa1,b,c+1i)UA,\displaystyle=\sum_{A}(-(a+1)\lambda^{i}_{a+1,b,c-1}+\alpha(c+1)\lambda^{i}_{a-1,b,c+1})U^{A}\;,
AλAi[z3,UA]res\displaystyle\sum_{A}\lambda^{i}_{A}[z_{3},U^{A}]_{res} =A(β(a+1)λa+1,b1,ciα(b+1)λa1,b+1,ci)UA.\displaystyle=\sum_{A}(\beta(a+1)\lambda^{i}_{a+1,b-1,c}-\alpha(b+1)\lambda^{i}_{a-1,b+1,c})U^{A}\;.
The space of cycles in Cw+3[w]C_{w+3}^{[w]}:

Take a general chain L=a+b+c=wλa,b,cW1,1,1,0Ua,b,cL=\sum_{a+b+c=w}\lambda_{a,b,c}W^{1,1,1,0}\bigtriangleup U^{a,b,c} with unknown scalars λa,b,c\lambda_{a,b,c}.

L=\displaystyle\partial L= (AλAW1110UA)\displaystyle\partial(\sum_{A}\lambda_{A}W^{1110}\bigtriangleup U^{A})
=\displaystyle= λa,b,c(W1,1,1,0)UAW1110λAUA+i=13(1)i+1Wϵi=ϵ4=0λA[zi,UA]res\displaystyle\sum\lambda_{a,b,c}(\partial W^{1,1,1,0})\bigtriangleup U^{A}-W^{1110}\sum\lambda_{A}\bigtriangleup\partial U^{A}+\sum_{i=1}^{3}(-1)^{i+1}W^{\epsilon_{i}=\epsilon_{4}=0}\sum\lambda_{A}[z_{i},U^{A}]_{res}
=\displaystyle= W1111λA(2α(a2)Ua2,b,c+2β(b2)Ua,b2,c+2(c2)Ua,b,c2)\displaystyle-W^{1111}\bigtriangleup\sum\lambda_{A}(\frac{2}{\alpha}\tbinom{a}{2}U^{a-2,b,c}+\frac{2}{\beta}\tbinom{b}{2}U^{a,b-2,c}+2\tbinom{c}{2}U^{a,b,c-2})
+z2z3λA(bUa,b1,c+1βcUa,b+1,c1)\displaystyle+z_{2}\bigtriangleup z_{3}\bigtriangleup\sum\lambda_{A}(bU^{a,b-1,c+1}-\beta cU^{a,b+1,c-1})
z1z3λA(aUa1,b,c+1+αcUa+1,b,c1)\displaystyle-z_{1}\bigtriangleup z_{3}\bigtriangleup\sum\lambda_{A}(-aU^{a-1,b,c+1}+\alpha cU^{a+1,b,c-1})
+z1z2λA(βaUa1,b+1,cαbUa+1,b1,c)\displaystyle+z_{1}\bigtriangleup z_{2}\bigtriangleup\sum\lambda_{A}(\beta aU^{a-1,b+1,c}-\alpha bU^{a+1,b-1,c})

The linear equation L=0\partial L=0 is generated by the followings:

(6.22a) (p+2)(p+1)αλp+2,q,r+(q+2)(q+1)βλp,q+2,r+(r+2)(r+1)λp,q,r+2\displaystyle\frac{(p+2)(p+1)}{\alpha}\lambda_{p+2,q,r}+\frac{(q+2)(q+1)}{\beta}\lambda_{p,q+2,r}+(r+2)(r+1)\lambda_{p,q,r+2}
(6.22b) (b+1)λa,b+1,c1β(c+1)λa,b1,c+1\displaystyle(b+1)\lambda_{a,b+1,c-1}-\beta(c+1)\lambda_{a,b-1,c+1}
(6.22c) (a+1)λa+1,b,c1α(c+1)λa1,b,c+1\displaystyle(a+1)\lambda_{a+1,b,c-1}-\alpha(c+1)\lambda_{a-1,b,c+1}
(6.22d) β(a+1)λa+1,b1,cα(b+1)λa1,b+1,c\displaystyle\beta(a+1)\lambda_{a+1,b-1,c}-\alpha(b+1)\lambda_{a-1,b+1,c}

When w=0w=0, then the unknown parameter is only one λ0,0,0\lambda_{0,0,0} and the above equations give no information. This means λ0,0,0\lambda_{0,0,0} is free, and so the kernel dimension is 1. In fact, (z1z2z3)=0\partial(z_{1}\bigtriangleup z_{2}\bigtriangleup z_{3})=0.

When w=1w=1, the unknown parameters are λa,b,c\lambda_{a,b,c} with a+b+c=1a+b+c=1. (6.22a) gives no information, but (6.22d) tells λ1,0,0=0\lambda_{1,0,0}=0 , λ0,1,0=0\lambda_{0,1,0}=0. λ0,0,1=0\lambda_{0,0,1}=0 comes from (6.22b) by (a,b,c)=(1,0,0)(a,b,c)=(1,0,0). Thus, the kernel dimension is 0.

Here we assume w2w\geqq 2. From (6.22a) \sim (6.22c), we have generators of the linear equations. Here we denote them by

(6.23) G0(p,q,r)\displaystyle G_{0}(p,q,r) =2α(p+22)λp+2,q,r+2β(q+22)λp,q+2,r+(r+2)(r+1)λp,q,r+2,\displaystyle=\frac{2}{\alpha}\tbinom{p+2}{2}\lambda_{p+2,q,r}+\frac{2}{\beta}\tbinom{q+2}{2}\lambda_{p,q+2,r}+(r+2)(r+1)\lambda_{p,q,r+2}\;,
(6.24) G1(a,b,c)\displaystyle G_{1}(a,b,c) =(b+1)λa,b+1,c1β(c+1)λa,b1,c+1,\displaystyle=(b+1)\lambda_{a,b+1,c-1}-\beta(c+1)\lambda_{a,b-1,c+1}\;,
(6.25) G2(a,b,c)\displaystyle G_{2}(a,b,c) =(a+1)λa+1,b,c1α(c+1)λa1,b,c+1,\displaystyle=(a+1)\lambda_{a+1,b,c-1}-\alpha(c+1)\lambda_{a-1,b,c+1}\;,
(6.26) G3(a,b,c)\displaystyle G_{3}(a,b,c) =β(a+1)λa+1,b1,cα(b+1)λa1,b+1,c.\displaystyle=\beta(a+1)\lambda_{a+1,b-1,c}-\alpha(b+1)\lambda_{a-1,b+1,c}\;.
\Box\bullet(b+1)λa,b+1,c1(b+1)\lambda_{a,b+1,c-1}\bulletβ(c+1)λa,b1,c+1-\beta(c+1)\lambda_{a,b-1,c+1}\Box\bulletα(c+1)λa1,b,c+1-\alpha(c+1)\lambda_{a-1,b,c+1}\bullet(a+1)λa+1,b,c1(a+1)\lambda_{a+1,b,c-1}\Box\bulletα(b+1)λa1,b+1,c-\alpha(b+1)\lambda_{a-1,b+1,c}\bulletβ(a+1)λa+1,b1,c\beta(a+1)\lambda_{a+1,b-1,c}

The above pictures suggest properties of G1,G2,G3G_{1},G_{2},G_{3} are vertical, horizontal, or slant relationship, where \Box means the barycenter. We call them twins and call G0G_{0} triple stars. When \Box move around the area T={(a,b,c)a+b+c=w}T=\{(a,b,c)\mid a+b+c=w\}, some Gi(a,b,c)G_{i}(a,b,c) becomes single star near the border of TT. For instance, G1(a,0,c)=λa,1,c1G_{1}(a,0,c)=\lambda_{a,1,c-1}. By this single star and vertical relations, we see that λa,2b+1,c\lambda_{a,2b+1,c} are single star. By the same idea, we see λ2a+1,b,c\lambda_{2a+1,b,c} and λa,b,2c+1\lambda_{a,b,2c+1} are single star. Take the particular λ0,w1,1\lambda_{0,w-1,1} which is single star. If ww is odd, then w1w-1 which is the 2nd entry of the single star, and by applying vertical relation, λ0,2b,c\lambda_{0,2b,c} are single star. Now applying horizontal relation, we conclude λa,b,c\lambda_{a,b,c} are all single star when ww is odd. So the rank is (w+22)\binom{w+2}{2}.

Now assume w=2kw=2k. Since λa,b,c\lambda_{a,b,c} is single star if one of a,b,ca,b,c is odd, we care about λa,b,c\lambda_{a,b,c} of even entries a,b,ca,b,c. Take

(6.27) H0=\displaystyle H_{0}= G0(2p,2q,2r)=(2p+2)(2p+1)λ2p+2,2q,2r+(2q+2)(2q+1)βλ2p,2q+2,2r\displaystyle G_{0}(2p,2q,2r)=(2p+2)(2p+1)\lambda_{2p+2,2q,2r}+(2q+2)(2q+1)\beta\lambda_{2p,2q+2,2r}
+(2r+2)(2r+1)αλ2p,2q,2r+2\displaystyle+(2r+2)(2r+1)\alpha\lambda_{2p,2q,2r+2}
(6.28) H1=\displaystyle H_{1}= G1(2p,1+2q,1+2r)=(2+2q)λ2p,2q+2,2rβ(2+2r)λ2p,2q,2r+2\displaystyle G_{1}(2p,1+2q,1+2r)=(2+2q)\lambda_{2p,2q+2,2r}-\beta(2+2r)\lambda_{2p,2q,2r+2}
(6.29) H2=\displaystyle H_{2}= G2(1+2p,2q,1+2r)=(2+2p)λ2p+2,2q,2rα(2+2r)λ2p,2q,2r+2\displaystyle G_{2}(1+2p,2q,1+2r)=(2+2p)\lambda_{2p+2,2q,2r}-\alpha(2+2r)\lambda_{2p,2q,2r+2}
(6.30) H3=\displaystyle H_{3}= G3(1+2p,1+2q,2r)=β(2+2p)λ2p+2,2q,2rα(2+2q)λ2p,2q,2r+2\displaystyle G_{3}(1+2p,1+2q,2r)=\beta(2+2p)\lambda_{2p+2,2q,2r}-\alpha(2+2q)\lambda_{2p,2q,2r+2}

We see that αH1βH2+H3=0\alpha H_{1}-\beta H_{2}+H_{3}=0 and

(6.31) H0=\displaystyle H_{0}= 2p+1α(H2+α(2+2r)λ2p,2q,2r+2)+2q+1β(H1+β(2+2r)λ2p,2q,2r+2)\displaystyle\frac{2p+1}{\alpha}\left(H_{2}+\alpha(2+2r)\lambda_{2p,2q,2r+2}\right)+\frac{2q+1}{\beta}\left(H_{1}+\beta(2+2r)\lambda_{2p,2q,2r+2}\right)
(6.32) +(2r+2)(2r+1)αλ2p,2q,2r+2\displaystyle+(2r+2)(2r+1)\alpha\lambda_{2p,2q,2r+2}
(6.33) =\displaystyle= 2p+1αH2+2q+1βH1+α(2w1)(2r+2)λ2p,2q,2r+2\displaystyle\frac{2p+1}{\alpha}H_{2}+\frac{2q+1}{\beta}H_{1}+\alpha(2w-1)(2r+2)\lambda_{2p,2q,2r+2}

This shows λ2p,2q,2r+2\lambda_{2p,2q,2r+2} is a single star. We also see that λ2p+2,2q,2r\lambda_{2p+2,2q,2r} is a single star by (6.29) and λ2p,2q+2,2r\lambda_{2p,2q+2,2r} is a single star by (6.30). Thus, every λa,b,c\lambda_{a,b,c} is single star and the rank is (w+22)\binom{w+2}{2}.


The space of cycles in Cw+2[w]C_{w+2}^{[w]}:

We study the space of cycles in Cw+2[w]C_{w+2}^{[w]}. If w=0w=0, zizjz_{i}\bigtriangleup z_{j} (i<j3i<j\leqq 3) are a basis and since (z1z2)=z3\partial(z_{1}\bigtriangleup z_{2})=z_{3}, (z1z3)=βz2\partial(z_{1}\bigtriangleup z_{3})=-\beta z_{2}, and (z2z3)=αz1\partial(z_{2}\bigtriangleup z_{3})=\alpha z_{1}, the rank is 3 and the kernel dimension is 0. If w=1w=1, W[ϵi=ϵ4=0]ujW[\epsilon_{i}=\epsilon_{4}=0]\bigtriangleup u_{j} are a basis of the chain space. Take a general chain X=i,jλjiW[ϵi=ϵ4=0]ujX=\sum_{i,j}\lambda^{i}_{j}W[\epsilon_{i}=\epsilon_{4}=0]\bigtriangleup u_{j}.

X=\displaystyle\partial X= jλj1(αz1uj+z3[z2,uj]z2[z3,uj])\displaystyle\sum_{j}\lambda^{1}_{j}(\alpha z_{1}\bigtriangleup u_{j}+z_{3}\bigtriangleup[z_{2},u_{j}]-z_{2}\bigtriangleup[z_{3},u_{j}])
+jλj2(βz2uj+z3[z1,uj]z1[z3,uj])\displaystyle+\sum_{j}\lambda^{2}_{j}(-\beta z_{2}\bigtriangleup u_{j}+z_{3}\bigtriangleup[z_{1},u_{j}]-z_{1}\bigtriangleup[z_{3},u_{j}])
+jλj3(z3uj+z2[z1,uj]z1[z2,uj])\displaystyle+\sum_{j}\lambda^{3}_{j}(z_{3}\bigtriangleup u_{j}+z_{2}\bigtriangleup[z_{1},u_{j}]-z_{1}\bigtriangleup[z_{2},u_{j}])
=\displaystyle= +λ11(αz1u1+z3(u3)z2(βu2)\displaystyle+\lambda^{1}_{1}(\alpha z_{1}\bigtriangleup u_{1}+z_{3}\bigtriangleup(-{u_{3}})-z_{2}\bigtriangleup(\beta{u_{2}})
+λ21(αz1u2+z30z2(αu1)+λ31(αz1u3+z3αu1z20)\displaystyle+\lambda^{1}_{2}(\alpha z_{1}\bigtriangleup u_{2}+z_{3}\bigtriangleup 0-z_{2}\bigtriangleup(-\alpha{u_{1}})+\lambda^{1}_{3}(\alpha z_{1}\bigtriangleup u_{3}+z_{3}\bigtriangleup\alpha{u_{1}}-z_{2}\bigtriangleup 0)
+λ12(βz2u1+z30z1βu2)\displaystyle+\lambda^{2}_{1}(-\beta z_{2}\bigtriangleup u_{1}+z_{3}\bigtriangleup 0-z_{1}\bigtriangleup\beta{u_{2}})
+λ22(βz2u2+z3u3z1(αu1))+λ32(βz2u3+z3(βu2)z10)\displaystyle+\lambda^{2}_{2}(-\beta z_{2}\bigtriangleup u_{2}+z_{3}\bigtriangleup{u_{3}}-z_{1}\bigtriangleup(-\alpha{u_{1}}))+\lambda^{2}_{3}(-\beta z_{2}\bigtriangleup u_{3}+z_{3}\bigtriangleup(-\beta{u_{2}})-z_{1}\bigtriangleup 0)
+λ13(z3u1+z20z1(u3))\displaystyle+\lambda^{3}_{1}(z_{3}\bigtriangleup u_{1}+z_{2}\bigtriangleup 0-z_{1}\bigtriangleup(-{u_{3}}))
+λ23(z3u2+z2u3z10)+λ33(z3u3+z2(βu2)z1αu1)\displaystyle+\lambda^{3}_{2}(z_{3}\bigtriangleup u_{2}+z_{2}\bigtriangleup{u_{3}}-z_{1}\bigtriangleup 0)+\lambda^{3}_{3}(z_{3}\bigtriangleup u_{3}+z_{2}\bigtriangleup(-\beta{u_{2}})-z_{1}\bigtriangleup\alpha{u_{1}})

X=0\partial X=0 is defined by 6 linearly independent polynomials λ11+λ22λ33\lambda^{1}_{1}+\lambda^{2}_{2}-\lambda^{3}_{3}, λ11+λ22+λ33\lambda^{1}_{1}+\lambda^{2}_{2}+\lambda^{3}_{3}, λ11+λ22+λ33-\lambda^{1}_{1}+\lambda^{2}_{2}+\lambda^{3}_{3}, αλ21βλ12\alpha\lambda^{1}_{2}-\beta\lambda^{2}_{1}, αλ31+λ13\alpha\lambda^{1}_{3}+\lambda^{3}_{1}, βλ32+λ23-\beta\lambda^{2}_{3}+\lambda^{3}_{2}. Thus the rank is 6 and the kernel dimension -s 3.

When w>1w>1, take a general chain L+ML+M with L=λa,b,ciW[ϵi=ϵ4=0]Uwa,b,cL=\sum\lambda^{i}_{a,b,c}W[{\epsilon_{i}=\epsilon_{4}=0}]\bigtriangleup{U}^{a,b,c}_{w} and M=μp,q,rW1111Uw2p,q,rM=\sum{\mu}_{p,q,r}W^{1111}\bigtriangleup{U}^{p,q,r}_{w-2} with unknown scalars λa,b,ci,μp,q,r\lambda^{i}_{a,b,c},{\mu}_{p,q,r}.

Then

(L+M)\displaystyle\partial(L+M)
=\displaystyle= λAi((W[ϵi=ϵ4=0])UA+W[ϵi=ϵ4=0]UA)+[W[ϵi=ϵ4=0],UA]res\displaystyle\sum\lambda^{i}_{A}(\partial(W[{\epsilon_{i}=\epsilon_{4}=0}])\bigtriangleup U^{A}+W[{\epsilon_{i}=\epsilon_{4}=0}]\bigtriangleup\partial U^{A})+[W[{\epsilon_{i}=\epsilon_{4}=0}],U^{A}]_{res}
+0+0+μP[W1111,UP]res\displaystyle+0+0+\sum{\mu}_{P}[W^{1111},U^{P}]_{res}
=\displaystyle= αz1λA1UAβz2λA2UA+z3λA3UA\displaystyle\alpha z_{1}\bigtriangleup\sum\lambda^{1}_{A}U^{A}-\beta z_{2}\bigtriangleup\sum\lambda^{2}_{A}U^{A}+z_{3}\bigtriangleup\sum\lambda^{3}_{A}U^{A}
+W0111λA1(2α(a2)Ua2,b,c+2β(b2)Ua,b2,c+2(c2)Ua,b,c2)\displaystyle+W^{0111}\bigtriangleup\sum\lambda^{1}_{A}(\frac{2}{\alpha}\tbinom{a}{2}U^{a-2,b,c}+\frac{2}{\beta}\tbinom{b}{2}U^{a,b-2,c}+2\tbinom{c}{2}U^{a,b,c-2})
+W1011λA2(2α(a2)Ua2,b,c+2β(b2)Ua,b2,c+2(c2)Ua,b,c2)\displaystyle+W^{1011}\bigtriangleup\sum\lambda^{2}_{A}(\frac{2}{\alpha}\tbinom{a}{2}U^{a-2,b,c}+\frac{2}{\beta}\tbinom{b}{2}U^{a,b-2,c}+2\tbinom{c}{2}U^{a,b,c-2})
+W1101λA3(2α(a2)Ua2,b,c+2β(b2)Ua,b2,c+2(c2)Ua,b,c2)\displaystyle+W^{1101}\bigtriangleup\sum\lambda^{3}_{A}(\frac{2}{\alpha}\tbinom{a}{2}U^{a-2,b,c}+\frac{2}{\beta}\tbinom{b}{2}U^{a,b-2,c}+2\tbinom{c}{2}U^{a,b,c-2})
+λA1(z2[z3,UA]res+z3[z2,UA]res)+λA2(z1[z3,UA]res+z3[z1,UA]res)\displaystyle+\sum\lambda^{1}_{A}(-z_{2}[z_{3},U^{A}]_{res}+z_{3}[z_{2},U^{A}]_{res})+\sum\lambda^{2}_{A}(-z_{1}[z_{3},U^{A}]_{res}+z_{3}[z_{1},U^{A}]_{res})
+λA3(z1[z2,UA]res+z2[z1,UA]res)\displaystyle+\sum\lambda^{3}_{A}(-z_{1}[z_{2},U^{A}]_{res}+z_{2}[z_{1},U^{A}]_{res})
+W0111μP[z1,UP]resW1011μP[z2,UP]res+W1101μP[z3,UP]res\displaystyle+W^{0111}\bigtriangleup{\mu}_{P}[z_{1},U^{P}]_{res}-W^{1011}\bigtriangleup{\mu}_{P}[z_{2},U^{P}]_{res}+W^{1101}\bigtriangleup{\mu}_{P}[z_{3},U^{P}]_{res}
=\displaystyle= +z1(αλA1UAλA2[z3,UA]resλA3[z2,UA]res)\displaystyle+z_{1}\bigtriangleup\sum(\alpha\lambda^{1}_{A}U^{A}-\lambda^{2}_{A}[z_{3},U^{A}]_{res}-\lambda^{3}_{A}[z_{2},U^{A}]_{res})
+z2(βλA2UAλA1[z3,UA]res+λA3[z1,UA]res)\displaystyle+z_{2}\bigtriangleup\sum(-\beta\lambda^{2}_{A}U^{A}-\lambda^{1}_{A}[z_{3},U^{A}]_{res}+\lambda^{3}_{A}[z_{1},U^{A}]_{res})
+z3(λA3UA+λA1[z2,UA]res+λA2[z1,UA]res)\displaystyle+z_{3}\bigtriangleup\sum(\lambda^{3}_{A}U^{A}+\lambda^{1}_{A}[z_{2},U^{A}]_{res}+\lambda^{2}_{A}[z_{1},U^{A}]_{res})
+W0111(μP[z1,UP]res+L1p,q,rUp,q,r)\displaystyle+W^{0111}\bigtriangleup(\sum{\mu}_{P}[z_{1},U^{P}]_{res}+\sum\operatorname{L}_{1}{p,q,r}U^{p,q,r})
+W1011(μP[z2,UP]res+L2p,q,rUp,q,r)\displaystyle+W^{1011}\bigtriangleup\sum(-{\mu}_{P}[z_{2},U^{P}]_{res}+\sum\operatorname{L}_{2}{p,q,r}U^{p,q,r})
+W1101(μP[z3,UP]res+L3p,q,rUp,q,r)\displaystyle+W^{1101}\bigtriangleup\sum({\mu}_{P}[z_{3},U^{P}]_{res}+\sum\operatorname{L}_{3}{p,q,r}U^{p,q,r})
where
Lip,q,r\displaystyle\operatorname{L}_{i}{p,q,r} =(p+2)(p+1)αλp+2,q,ri+(q+2)(q+1)βλp,q+2,ri+(r+2)(r+1)λp,q,r+2i.\displaystyle=\frac{(p+2)(p+1)}{\alpha}\lambda^{i}_{p+2,q,r}+\frac{(q+2)(q+1)}{\beta}\lambda^{i}_{p,q+2,r}+(r+2)(r+1)\lambda^{i}_{p,q,r+2}\;.

Then (L+M)=0\partial(L+M)=0 is defined by the following polynomials of unknown λAi\lambda^{i}_{A} and μP{\mu}_{P}:

(6.34) Ea,b,c1=\displaystyle E^{1}_{a,b,c}= αλa,b,c1β(a+1)λa+1,b1,c2+α(b+1)λa1,b+1,c2\displaystyle\alpha\lambda^{1}_{a,b,c}-\beta(a+1)\lambda^{2}_{a+1,b-1,c}+\alpha(b+1)\lambda^{2}_{a-1,b+1,c}
+(a+1)λa+1,b,c13α(c+1)λa1,b,c+13\displaystyle\quad+(a+1)\lambda^{3}_{a+1,b,c-1}-\alpha(c+1)\lambda^{3}_{a-1,b,c+1}
(6.35) Ea,b,c2=\displaystyle E^{2}_{a,b,c}= βλa,b,c2β(a+1)λa+1,b1,c1+α(b+1)λa1,b+1,c1\displaystyle-\beta\lambda^{2}_{a,b,c}-\beta(a+1)\lambda^{1}_{a+1,b-1,c}+\alpha(b+1)\lambda^{1}_{a-1,b+1,c}
+(b+1)λa,b+1,c13β(c+1)λa,b1,c+13\displaystyle\quad+(b+1)\lambda^{3}_{a,b+1,c-1}-\beta(c+1)\lambda^{3}_{a,b-1,c+1}
(6.36) Ea,b,c3=\displaystyle E^{3}_{a,b,c}= λa,b,c3(a+1)λa+1,b,c11+α(c+1)λa1,b,c+11\displaystyle\lambda^{3}_{a,b,c}-(a+1)\lambda^{1}_{a+1,b,c-1}+\alpha(c+1)\lambda^{1}_{a-1,b,c+1}
+(b+1)λa,b+1,c12β(c+1)λa,b1,c+12\displaystyle\quad+(b+1)\lambda^{2}_{a,b+1,c-1}-\beta(c+1)\lambda^{2}_{a,b-1,c+1}
(6.37) Ep,q,r4=\displaystyle E^{4}_{p,q,r}= (q+1)μp,q+1,r1β(r+1)μp,q1,r+1+L1p,q,r\displaystyle(q+1){\mu}_{p,q+1,r-1}-\beta(r+1){\mu}_{p,q-1,r+1}+\operatorname{L}_{1}{p,q,r}
(6.38) Ep,q,r5=\displaystyle E^{5}_{p,q,r}= (p+1)μp+1,q,r1α(r+1)μp1,q,r+1+L2p,q,r\displaystyle(p+1){\mu}_{p+1,q,r-1}-\alpha(r+1){\mu}_{p-1,q,r+1}+\operatorname{L}_{2}{p,q,r}
(6.39) Ep,q,r6=\displaystyle E^{6}_{p,q,r}= β(p+1)μp+1,q1,rα(q+1)μp1,q+1,r+L3p,q,r\displaystyle\beta(p+1){\mu}_{p+1,q-1,r}-\alpha(q+1){\mu}_{p-1,q+1,r}+\operatorname{L}_{3}{p,q,r}

6.4.1 Rank of μp,q,r{\mu}_{p,q,r}

We see that Ep,q,r6βEp,q1,r+15+αEp1,q,r+14E^{6}_{p,q,r}-\beta E^{5}_{p,q-1,r+1}+\alpha E^{4}_{p-1,q,r+1} does not have μP{\mu}_{P} as follows:

(6.40) +p(p+1)λp+1,q,r+11+α(r+3)(r+2)λp1,q,r+31+α(q+2)(q+1)/βλp1,q+2,r+11\displaystyle+p(p+1)\lambda^{1}_{p+1,q,r+1}+\alpha(r+3)(r+2)\lambda^{1}_{p-1,q,r+3}+\alpha(q+2)(q+1)/\beta\lambda^{1}_{p-1,q+2,r+1}
q(q+1)λp,q+1,r+12β(r+3)(r+2)λp,q1,r+32β(p+2)(p+1)/αλp+2,q1,r+12\displaystyle-q(q+1)\lambda^{2}_{p,q+1,r+1}-\beta(r+3)(r+2)\lambda^{2}_{p,q-1,r+3}-\beta(p+2)(p+1)/\alpha\lambda^{2}_{p+2,q-1,r+1}
+(r+2)(r+1)λp,q,r+23+(p+2)(p+1)/αλp+2,q,r3+(q+2)(q+1)/βλp,q+2,r3.\displaystyle+(r+2)(r+1)\lambda^{3}_{p,q,r+2}+(p+2)(p+1)/\alpha\lambda^{3}_{p+2,q,r}+(q+2)(q+1)/\beta\lambda^{3}_{p,q+2,r}\;.

In order to know the rank concerning to μp,q,r{\mu}_{p,q,r}, we handle one of three, F6=E6modλAi\operatorname{F}^{6}=E^{6}\negmedspace\mod\lambda^{i}_{A}, i.e., Fp,q,r6=β(p+1)μp+1,q1,rα(q+1)μp1,q+1,r\operatorname{F}^{6}_{p,q,r}=\beta(p+1){\mu}_{p+1,q-1,r}-\alpha(q+1){\mu}_{p-1,q+1,r} . Among Fp,q,r6\operatorname{F}^{6}_{p,q,r} with p+q+r=w2p+q+r=w-2, first fix rr and put H=w2rH=w-2-r and study of linearly independence of 𝔖r[w2]={Fp,q,r6p+q=H=w2r}\mathfrak{S}^{[w-2]}_{r}=\{\operatorname{F}^{6}_{p,q,r}\mid p+q=H=w-2-r\} as polynomials of μP{\mu}_{P}. Basically, Fp,q,r6\operatorname{F}^{6}_{p,q,r} looks like slant double stars with distance 2, we define

OD2i+1[r]\displaystyle OD^{[r]}_{2i+1} =F1,H1,r6F3,H3,r6F2i+1,H12i,r6,𝚠𝚑𝚎𝚛𝚎2i+1H,\displaystyle=\operatorname{F}^{6}_{1,H-1,r}\wedge\operatorname{F}^{6}_{3,H-3,r}\wedge\cdots\wedge\operatorname{F}^{6}_{2i+1,H-1-2i,r}\quad\mathtt{,where}\quad 2i+1\leqq H\;,
=i=02i+1H(α(H2i)μ2i,H2i,r+β(2+2i)μ2i+2,H2i2,r)\displaystyle=\mathop{\wedge}_{i=0}^{2i+1\leqq H}(-\alpha(H-2i){\mu}_{2i,H-2i,r}+\beta(2+2i){\mu}_{2i+2,H-2i-2,r})
and
EV2i[r]\displaystyle EV^{[r]}_{2i} =F0,H,r6F2,H2,r6F2i,H2i,r6𝚠𝚑𝚎𝚛𝚎2iH.\displaystyle=\operatorname{F}^{6}_{0,H,r}\wedge\operatorname{F}^{6}_{2,H-2,r}\wedge\cdots\wedge\operatorname{F}^{6}_{2i,H-2i,r}\quad\mathtt{where}\quad 2i\leqq H\;.
For instance,
EV0[r]\displaystyle EV^{[r]}_{0} =F0,H,r6=βμ1,H1,rα(H+1)μ1,H+1,r=βμ1,H1,r,\displaystyle=\operatorname{F}^{6}_{0,H,r}=\beta{\mu}_{1,H-1,r}-\alpha(H+1){\mu}_{-1,H+1,r}=\beta{\mu}_{1,H-1,r}\;,
EV2[r]\displaystyle EV^{[r]}_{2} =EV0[r]F2,H2,r6=βμ1,H1,r(β3μ3,H3,rα(q+1)μ1,H1,r)\displaystyle=EV^{[r]}_{0}\wedge\operatorname{F}^{6}_{2,H-2,r}=\beta{\mu}_{1,H-1,r}\wedge(\beta 3{\mu}_{3,H-3,r}-\alpha(q+1){\mu}_{1,H-1,r})
=3β2μ1,H1,rμ3,H3,r\displaystyle=3\beta^{2}{\mu}_{1,H-1,r}\wedge{\mu}_{3,H-3,r}
\displaystyle\vdots
EV2k[r]\displaystyle EV^{[r]}_{2k} =(2k+1)!!βk+1μ1,H1,rμ3,H3,rμ2k+1,H2k1,r\displaystyle=(2k+1)!!\beta^{k+1}{\mu}_{1,H-1,r}\wedge{\mu}_{3,H-3,r}\wedge\cdots\wedge{\mu}_{2k+1,H-2k-1,r}
If H=2hH=2h even, then
EV2h[r]\displaystyle EV^{[r]}_{2h} =EV2h2[r]F2h,0,r6\displaystyle=EV^{[r]}_{2h-2}\wedge\operatorname{F}^{6}_{2h,0,r}
=(2h1)!!βhμ1,H1,rμ2h1,1,r(0αμ2h1,1,r)\displaystyle=(2h-1)!!\beta^{h}{\mu}_{1,H-1,r}\wedge\wedge\cdots\wedge{\mu}_{2h-1,1,r}\wedge(0-\alpha{\mu}_{2h-1,1,r})
=0.\displaystyle=0\;.

Thus, we have the next lemma.

Lemma 6.1.

If H=w2r=H=w-2-r= odd, then the set {Fp,q,r6p+q=H=w2r}\{\operatorname{F}^{6}_{p,q,r}\mid p+q=H=w-2-r\} consists of linearly independent polynomials.

If H=w2r=H=w-2-r= even, then the set {Fp,q,r6p+q=H=w2r}\{\operatorname{F}^{6}_{p,q,r}\mid p+q=H=w-2-r\} is not linearly independent, but the set {Fp,q,r6p+q=H=w2r}{FH,0,r6}\{\operatorname{F}^{6}_{p,q,r}\mid p+q=H=w-2-r\}\setminus\{\operatorname{F}^{6}_{H,0,r}\} consists of linearly independent polynomials.

As a direct corollary, we see that

Corollary 6.2.

The dimension of the space spanned by E4,E5,E6E^{4},E^{5},E^{6} with leading term μP{\mu}_{P} is (w2)\binom{w}{2} if ww is odd, and is (w2)1\binom{w}{2}-1 when ww is even.

6.4.2 Rank of λa,b,ci\lambda^{i}_{a,b,c}

We define E^a,b,c1\widehat{E}^{1}_{a,b,c} symbolically by Ea,b,c1/EA3E^{1}_{a,b,c}/E^{3}_{A} and E^a,b,c2\widehat{E}^{2}_{a,b,c} by Ea,b,c2/EA3E^{2}_{a,b,c}/E^{3}_{A} because all λa,b,c3\lambda^{3}_{a^{\prime},b^{\prime},c^{\prime}} are completely determined by λA1,λA2\lambda^{1}_{A},\lambda^{2}_{A} in (6.36). E^1,E^2\widehat{E}^{1},\widehat{E}^{2} are linear polynomials of only λA1,λA2\lambda^{1}_{A},\lambda^{2}_{A} as follows:

(6.41) E^a,b,c1\displaystyle\widehat{E}^{1}_{a,b,c} =+α2(c+2)(c+1)λa2,b,c+21α(2ac+a+c1)λa,b,c1+(a+2)(a+1)λa+2,b,c21\displaystyle=+\alpha^{2}(c+2)(c+1)\lambda^{1}_{a-2,b,c+2}-\alpha(2ac+a+c-1)\lambda^{1}_{a,b,c}+(a+2)(a+1)\lambda^{1}_{a+2,b,c-2}
+α(c+2)(b+1)λa1,b+1,c2(b+1)(a+1)λa+1,b+1,c22\displaystyle+\alpha(c+2)(b+1)\lambda^{2}_{a-1,b+1,c}-(b+1)(a+1)\lambda^{2}_{a+1,b+1,c-2}
αβ(c+2)(c+1)λa1,b1,c+22+β(c1)(a+1)λa+1,b1,c2\displaystyle-\alpha\beta(c+2)(c+1)\lambda^{2}_{a-1,b-1,c+2}+\beta(c-1)(a+1)\lambda^{2}_{a+1,b-1,c}
(6.42) E^a,b,c2\displaystyle\widehat{E}^{2}_{a,b,c} =α(c1)(b+1)λa1,b+1,c1+(a+1)(b+1)λa+1,b+1,c21\displaystyle=-\alpha(c-1)(b+1)\lambda^{1}_{a-1,b+1,c}+(a+1)(b+1)\lambda^{1}_{a+1,b+1,c-2}
+αβ(c+2)(c+1)λa1,b1,c+21β(a+1)(c+2)λa+1,b1,c1\displaystyle+\alpha\beta(c+2)(c+1)\lambda^{1}_{a-1,b-1,c+2}-\beta(a+1)(c+2)\lambda^{1}_{a+1,b-1,c}
(b+2)(b+1)λa,b+2,c22+β(2bc+b+c1)λa,b,c2β2(c+2)(c+1)λa,b2,c+22\displaystyle-(b+2)(b+1)\lambda^{2}_{a,b+2,c-2}+\beta(2bc+b+c-1)\lambda^{2}_{a,b,c}-\beta^{2}(c+2)(c+1)\lambda^{2}_{a,b-2,c+2}

In (6.41) or (6.42), almost all coefficients of each term are non-zero, but we see c1c-1 , 2ac+a+c12ac+a+c-1 or 2bc+b+c12bc+b+c-1. We get special cases as below:

(6.43) 1αE^a,b,11\displaystyle\frac{1}{\alpha}\widehat{E}^{1}_{a,b,1} =1βE^a1,b+1,12,\displaystyle=\frac{1}{\beta}\widehat{E}^{2}_{a-1,b+1,1}\;,
(6.44) E^0,w1,11\displaystyle\widehat{E}^{1}_{0,w-1,1} =0,E^w1,0,12=0.\displaystyle=0\;,\quad\widehat{E}^{2}_{w-1,0,1}=0\;.

We saw Ep,q,r6βEp,q1,r+15+αEp1,q,r+14E^{6}_{p,q,r}-\beta E^{5}_{p,q-1,r+1}+\alpha E^{4}_{p-1,q,r+1}, (say GG) does not have μP{\mu}_{P} in (6.40). We define G~=G/EA3\widetilde{G}=G/E^{3}_{A}. Then we have

G~=\displaystyle\widetilde{G}= +(p+3)(p+2)(p+1)/αλp+3,q,r11+(q+2)(q+1)(p+1)/βλp+1,q+2,r11\displaystyle+(p+3)(p+2)(p+1)/\alpha\lambda^{1}_{p+3,q,r-1}+(q+2)(q+1)(p+1)/\beta\lambda^{1}_{p+1,q+2,r-1}
r(p+1)(pr1)λp+1,q,r+11αr(r+3)(r+2)λp1,q,r+31\displaystyle-r(p+1)(p-r-1)\lambda^{1}_{p+1,q,r+1}-\alpha r(r+3)(r+2)\lambda^{1}_{p-1,q,r+3}
αr(q+2)(q+1)/βλp1,q+2,r+11+r(q+1)(qr1)λp,q+1,r+12\displaystyle-\alpha r(q+2)(q+1)/\beta\lambda^{1}_{p-1,q+2,r+1}+r(q+1)(q-r-1)\lambda^{2}_{p,q+1,r+1}
+βr(r+3)(r+2)λp,q1,r+32+βr(p+2)(p+1)/αλp+2,q1,r+12\displaystyle+\beta r(r+3)(r+2)\lambda^{2}_{p,q-1,r+3}+\beta r(p+2)(p+1)/\alpha\lambda^{2}_{p+2,q-1,r+1}
(p+2)(p+1)(q+1)/αλp+2,q+1,r12(q+3)(q+2)(q+1)/βλp,q+3,r12\displaystyle-(p+2)(p+1)(q+1)/\alpha\lambda^{2}_{p+2,q+1,r-1}-(q+3)(q+2)(q+1)/\beta\lambda^{2}_{p,q+3,r-1}

Now we define Fa,b,c1\operatorname{F}^{1}_{a,b,c} symbolically by E^a,b,c1/λA2\widehat{E}^{1}_{a,b,c}/\lambda^{2}_{A}. Since Fa,b,c1\operatorname{F}^{1}_{a,b,c} looks like horizontal 3 stars with 2 step distance in its shape, we study of linear independence of the subset {Fa,b,c1a+c=wb}\{\operatorname{F}^{1}_{a,b,c}\mid a+c=w-b\} and {E^a,b,c1a+c=wb}\{\widehat{E}^{1}_{a,b,c}\mid a+c=w-b\} for each bb ( 0bw0\leqq b\leqq w ) by the same discussion in the previous subsection, there are slant double stars with 2 step distance in its shape.

When a+b+c=wa+b+c=w, we fix bb and abbreviate wbw-b as HH, cc is determined by c=Hac=H-a, we use the following notations

Fa,b,c1=Fa,b,c1,w=Fa1,w,b=Fa1,w=Fa1,λa,b,c1=La,b,cw=Law,b=Law=La\operatorname{F}^{1}_{a,b,c}=\operatorname{F}^{1,w}_{a,b,c}=\operatorname{F}^{1,w,b}_{a}=\operatorname{F}^{1,w}_{a}=\operatorname{F}^{1}_{a}\;,\;\lambda^{1}_{a,b,c}={L}^{w}_{a,b,c}={L}^{w,b}_{a}={L}^{w}_{a}={L}_{a}

unless there is confusion. The following are matrices of F1\operatorname{F}^{1} with respect λ1\lambda^{1} in which the coefficients of simultaneous linear equations are arranged. Since the size is large, we write them separately with an even number of subscripts. They are tri-diagonal matrices.

Case of H=wb=1+2h=H=w-b=1+2h=odd :

L0w,bL2w,bL4w,bL2h4w,bL2h2w,bL2hw,bF01,w,bα(H1)20F21,w,bα2H(H1)34Fa1,w,bα2(1+c)(2+c)(1+a)(2+a)F2h21,w,b20α2(H1)(H2)F2h1,w,b06α23α(H1)\begin{array}[]{c | *{14}{c} }\hline\cr&{L}^{w,b}_{0}&{L}^{w,b}_{2}&{L}^{w,b}_{4}&&&&&{L}^{w,b}_{2h-4}&{L}^{w,b}_{2h-2}&{L}^{w,b}_{2h}\\ \hline\cr\operatorname{F}^{1,w,b}_{0}&-\alpha(H-1)&2&0\\ \operatorname{F}^{1,w,b}_{2}&\alpha^{2}H(H-1)&*&3\cdot 4\\ \\ \operatorname{F}^{1,w,b}_{a}&&&&\alpha^{2}(1+c)(2+c)&*&(1+a)(2+a)\\ \\ \operatorname{F}^{1,w,b}_{2h-2}&&&&&&&&20\alpha^{2}&*&(H-1)(H-2)\\ \operatorname{F}^{1,w,b}_{2h}&&&&&&&&0&6\alpha^{2}&-3\alpha(H-1)\\ \hline\cr\end{array}


L1w,bL3w,bL5w,bL2h3w,bL2h1w,bL2h+1w,bF11,w,b3α(H1)230F31,w,bα2(H1)(H2)45Fa1,w,bα2(1+c)(2+c)(1+a)(2+a)F2h11,w,b12α2H(H1)F2h+11,w,b02α2α(H1)\begin{array}[]{c | *{14}{c} }\hline\cr&{L}^{w,b}_{1}&{L}^{w,b}_{3}&{L}^{w,b}_{5}&&&&&{L}^{w,b}_{2h-3}&{L}^{w,b}_{2h-1}&{L}^{w,b}_{2h+1}\\ \hline\cr\operatorname{F}^{1,w,b}_{1}&-3\alpha(H-1)&2\cdot 3&0\\ \operatorname{F}^{1,w,b}_{3}&\alpha^{2}(H-1)(H-2)&*&4\cdot 5\\ \\ \operatorname{F}^{1,w,b}_{a}&&&&\alpha^{2}(1+c)(2+c)&*&(1+a)(2+a)\\ \\ \operatorname{F}^{1,w,b}_{2h-1}&&&&&&&&12\alpha^{2}&*&H(H-1)\\ \operatorname{F}^{1,w,b}_{2h+1}&&&&&&&&0&2\alpha^{2}&-\alpha(H-1)\\ \hline\cr\end{array}

where =α(1(a+c+2ac))*=\alpha\left(1-(a+c+2ac)\right).

From the shape of matrices, their rank is hh or h+1h+1, and we want to show the last line is not linearly independent.


Method of deforming triple stars to twins: This discussion works for any parity HH. Assume that we have triple stars F~a1,w,b=KaLaw,b+(a+1)(a+2)La+2w,b\widetilde{\text{F}}^{1,w,b}_{a}=K_{a}{L}^{w,b}_{a}+(a+1)(a+2){L}^{w,b}_{a+2} with Ka0K_{a}\neq 0 (from twins Fa1,w,b\operatorname{F}^{1,w,b}_{a}). We already have F~01,w,b=F01,w,b\widetilde{\text{F}}^{1,w,b}_{0}=\operatorname{F}^{1,w,b}_{0} and F~11,w,b=F11,w,b\widetilde{\text{F}}^{1,w,b}_{1}=\operatorname{F}^{1,w,b}_{1} with K0=α(H1)K_{0}=-\alpha(H-1), K1=3α(H1)K_{1}=-3\alpha(H-1).

Define a twins by

(6.45) F~a+21,w,b\displaystyle\widetilde{\text{F}}^{1,w,b}_{a+2} =Fa+21,w,bα2(Ha)(H1a)KaF~a1,w,b\displaystyle=\operatorname{F}^{1,w,b}_{a+2}-\frac{\alpha^{2}(H-a)(H-1-a)}{K_{a}}\widetilde{\text{F}}^{1,w,b}_{a}
(6.46) =Ka+2La+2w,b+(a+3)(a+4)La+4w,b\displaystyle=K_{a+2}{L}^{w,b}_{a+2}+(a+3)(a+4){L}^{w,b}_{a+4}
(6.47) Ka+2\displaystyle K_{a+2} =α(2Ha+5H2a28a9)α2(Ha)(H1a)Ka(a+1)(a+2)\displaystyle=-\alpha(2Ha+5H-2a^{2}-8a-9)-\frac{\alpha^{2}(H-a)(H-1-a)}{K_{a}}(a+1)(a+2)
Inductively, starting from 0 by step 2, we have
(6.48) K2a\displaystyle K_{2a} =α(2a+1)(H12a)\displaystyle=-\alpha(2a+1)(H-1-2a)
starting from 1 by step2 similarly, we have
(6.49) K2a+1\displaystyle K_{2a+1} =α(2+(2a+1))(H(2a+1))\displaystyle=-\alpha(2+(2a+1))(H-(2a+1))

L0w,bL2w,bL4w,bL2h4w,bL2h2w,bL2hw,bF~01,w,bα(H1)20F~21,w,b0K234F~a1,w,b0Ka(1+a)(2+a)F~2h21,w,b0K2h2(H1)(H2)F~2h1,w,b06α23α(H1)\begin{array}[]{c | *{14}{c} }\hline\cr&{L}^{w,b}_{0}&{L}^{w,b}_{2}&{L}^{w,b}_{4}&&&&&{L}^{w,b}_{2h-4}&{L}^{w,b}_{2h-2}&{L}^{w,b}_{2h}\\ \hline\cr\widetilde{\text{F}}^{1,w,b}_{0}&-\alpha(H-1)&2&0\\ \widetilde{\text{F}}^{1,w,b}_{2}&0&K_{2}&3\cdot 4\\ \\ \widetilde{\text{F}}^{1,w,b}_{a}&&&&0&K_{a}&(1+a)(2+a)\\ \\ \widetilde{\text{F}}^{1,w,b}_{2h-2}&&&&&&&&0&K_{2h-2}&(H-1)(H-2)\\ \widetilde{\text{F}}^{1,w,b}_{2h}&&&&&&&&0&6\alpha^{2}&-3\alpha(H-1)\\ \hline\cr\end{array}

L1w,bL3w,bL5w,bL2h3w,bL2h1w,bL2h+1w,bF~11,w,b3α(H1)230F~31,w,b0K345F~a1,w,b0Ka(1+a)(2+a)F~2h11,w,b0K2h1H(H1)F~2h+11,w,b02α2α(H1)\begin{array}[]{c | *{14}{c} }\hline\cr&{L}^{w,b}_{1}&{L}^{w,b}_{3}&{L}^{w,b}_{5}&&&&&{L}^{w,b}_{2h-3}&{L}^{w,b}_{2h-1}&{L}^{w,b}_{2h+1}\\ \hline\cr\widetilde{\text{F}}^{1,w,b}_{1}&-3\alpha(H-1)&2\cdot 3&0\\ \widetilde{\text{F}}^{1,w,b}_{3}&0&K_{3}&4\cdot 5\\ \\ \widetilde{\text{F}}^{1,w,b}_{a}&&&&0&K_{a}&(1+a)(2+a)\\ \\ \widetilde{\text{F}}^{1,w,b}_{2h-1}&&&&&&&&0&K_{2h-1}&H(H-1)\\ \widetilde{\text{F}}^{1,w,b}_{2h+1}&&&&&&&&0&2\alpha^{2}&-\alpha(H-1)\\ \hline\cr\end{array}


H=wb=2h+1H=w-b=2h+1

K2h2=2(2h1)α,K2h1=2(2h+1)α,|K2h2(H1)(H2)6α23α(H1)|=|2(2h1)α2h(2h1)6α23α2h|=0K_{2h-2}=-2(2h-1)\alpha\;,\quad K_{2h-1}=-2(2h+1)\alpha\;,\quad\begin{vmatrix}K_{2h-2}&(H-1)(H-2)\\ 6\alpha^{2}&-3\alpha(H-1)\end{vmatrix}=\begin{vmatrix}-2(2h-1)\alpha&2h(2h-1)\\ 6\alpha^{2}&-3\alpha 2h\end{vmatrix}=0
|K2h1H(H1)2α2α(H1)|=|2(2h+1)α2h(2h+1)2α2α2h|=0\begin{vmatrix}K_{2h-1}&H(H-1)\\ 2\alpha^{2}&-\alpha(H-1)\end{vmatrix}=\begin{vmatrix}-2(2h+1)\alpha&2h(2h+1)\\ 2\alpha^{2}&-\alpha 2h\end{vmatrix}=0

Thus,

{F~2a,b,H2a102aH3}are linearly independent, and\displaystyle\{\widetilde{\text{F}}^{1}_{2a,b,H-2a}\mid 0\leqq 2a\leqq H-3\}\quad\text{are linearly independent, and }
{F~2a,b,H2a102aH1}are not linearly independent.\displaystyle\{\widetilde{\text{F}}^{1}_{2a,b,H-2a}\mid 0\leqq 2a\leqq H-1\}\quad\text{are not linearly independent. }
{F~2a+1,b,H12a112a+1H2}are linearly independent, and\displaystyle\{\widetilde{\text{F}}^{1}_{2a+1,b,H-1-2a}\mid 1\leqq 2a+1\leqq H-2\}\quad\text{are linearly independent, and }
{F~2a+1,b,H12a112a+1H}are not linearly independent.\displaystyle\{\widetilde{\text{F}}^{1}_{2a+1,b,H-1-2a}\mid 1\leqq 2a+1\leqq H\}\quad\text{are not linearly independent. }

Case of H=wb=2h=H=w-b=2h=even : #{F2a1,w,b}=#{L2aw,b}=h+1h=#{F2a+11,w,b}=#{L2a+1w,b}\#\{\operatorname{F}^{1,w,b}_{2a}\}=\#\{{L}^{w,b}_{2a}\}=h+1\neq h=\#\{\operatorname{F}^{1,w,b}_{2a+1}\}=\#\{{L}^{w,b}_{2a+1}\}. This is different from the case of H=H= odd.

L0w,bL2w,bL4w,bL2h4w,bL2h2w,bL2hw,bF01,w,bα(H1)20F21,w,bα2H(H1)12Fa1,w,bα2(1+c)(2+c)(1+a)(2+a)F2h21,w,b12α2H(H1)F2h1,w,b02α2α(H1)\begin{array}[]{c | *{14}{c} }\hline\cr&{L}^{w,b}_{0}&{L}^{w,b}_{2}&{L}^{w,b}_{4}&&&&&{L}^{w,b}_{2h-4}&{L}^{w,b}_{2h-2}&{L}^{w,b}_{2h}\\ \hline\cr\operatorname{F}^{1,w,b}_{0}&-\alpha(H-1)&2&0\\ \operatorname{F}^{1,w,b}_{2}&\alpha^{2}H(H-1)&*&12\\ \\ \operatorname{F}^{1,w,b}_{a}&&&&\alpha^{2}(1+c)(2+c)&*&(1+a)(2+a)\\ \\ \operatorname{F}^{1,w,b}_{2h-2}&&&&&&&&12\alpha^{2}&*&H(H-1)\\ \operatorname{F}^{1,w,b}_{2h}&&&&&&&&0&2\alpha^{2}&-\alpha(H-1)\\ \hline\cr\end{array}


L1w,bL3w,bL5w,bL2h5w,bL2h3w,bL2h1w,bF11,w,b3α(H1)60F31,w,bα2(H1)(H2)20Fa1,w,bα2(1+c)(2+c)(1+a)(2+a)F2h31,w,b20α2(H1)(H2)F2h11,w,b06α23α(H1)\begin{array}[]{c | *{9}{c} }\hline\cr&{L}^{w,b}_{1}&{L}^{w,b}_{3}&{L}^{w,b}_{5}&&&&{L}^{w,b}_{2h-5}&{L}^{w,b}_{2h-3}&{L}^{w,b}_{2h-1}\\ \hline\cr\operatorname{F}^{1,w,b}_{1}&-3\alpha(H-1)&6&0\\ \operatorname{F}^{1,w,b}_{3}&\alpha^{2}(H-1)(H-2)&*&20\\ \\ \operatorname{F}^{1,w,b}_{a}&&&&\alpha^{2}(1+c)(2+c)&*&(1+a)(2+a)\\ \\ \operatorname{F}^{1,w,b}_{2h-3}&&&&&&&20\alpha^{2}&*&(H-1)(H-2)\\ \operatorname{F}^{1,w,b}_{2h-1}&&&&&&&0&6\alpha^{2}&-3\alpha(H-1)\\ \hline\cr\end{array}


L0w,bL2w,bL4w,bL2h4w,bL2h2w,bL2hw,bF~01,w,bα(H1)20F~21,w,b0K212F~a1,w,b0Ka(1+a)(2+a)F~2h21,w,b0K2h2H(H1)F~2h1,w,b02α2α(H1)\begin{array}[]{c | *{14}{c} }\hline\cr&{L}^{w,b}_{0}&{L}^{w,b}_{2}&{L}^{w,b}_{4}&&&&&{L}^{w,b}_{2h-4}&{L}^{w,b}_{2h-2}&{L}^{w,b}_{2h}\\ \hline\cr\widetilde{\text{F}}^{1,w,b}_{0}&-\alpha(H-1)&2&0\\ \widetilde{\text{F}}^{1,w,b}_{2}&0&K_{2}&12\\ \\ \widetilde{\text{F}}^{1,w,b}_{a}&&&&0&K_{a}&(1+a)(2+a)\\ \\ \widetilde{\text{F}}^{1,w,b}_{2h-2}&&&&&&&&0&K_{2h-2}&H(H-1)\\ \widetilde{\text{F}}^{1,w,b}_{2h}&&&&&&&&0&2\alpha^{2}&-\alpha(H-1)\\ \hline\cr\end{array}


L1w,bL3w,bL5w,bL2h5w,bL2h3w,bL2h1w,bF~11,w,b3α(H1)60F~31,w,b0K320F~a1,w,b0Ka(1+a)(2+a)F~2h31,w,b0K2h3(H1)(H2)F~2h11,w,b06α23α(H1)\begin{array}[]{c | *{9}{c} }\hline\cr&{L}^{w,b}_{1}&{L}^{w,b}_{3}&{L}^{w,b}_{5}&&&&{L}^{w,b}_{2h-5}&{L}^{w,b}_{2h-3}&{L}^{w,b}_{2h-1}\\ \hline\cr\widetilde{\text{F}}^{1,w,b}_{1}&-3\alpha(H-1)&6&0\\ \widetilde{\text{F}}^{1,w,b}_{3}&0&K_{3}&20\\ \\ \widetilde{\text{F}}^{1,w,b}_{a}&&&&0&K_{a}&(1+a)(2+a)\\ \\ \widetilde{\text{F}}^{1,w,b}_{2h-3}&&&&&&&0&K_{2h-3}&(H-1)(H-2)\\ \widetilde{\text{F}}^{1,w,b}_{2h-1}&&&&&&&0&6\alpha^{2}&-3\alpha(H-1)\\ \hline\cr\end{array}

H=wb=2hH=w-b=2h

K2h2=(2h1)α,K2h3=3(2h1)αK_{2h-2}=-(2h-1)\alpha\;,\quad K_{2h-3}=-3(2h-1)\alpha
|K2h2H(H1)2α2α(H1)|=|2(2h1)α2h(2h1)2α2α(2h1)|=α2(2h1)(2h+1)\begin{vmatrix}K_{2h-2}&H(H-1)\\ 2\alpha^{2}&-\alpha(H-1)\end{vmatrix}=\begin{vmatrix}-2(2h-1)\alpha&2h(2h-1)\\ 2\alpha^{2}&-\alpha(2h-1)\end{vmatrix}=-\alpha^{2}(2h-1)(2h+1)
|K2h3(H1)(H2)6α23α(H1)|=|3(2h1)α(2h1)(2h2)6α23α(2h1)|=3α2(2h1)(2h+1)\begin{vmatrix}K_{2h-3}&(H-1)(H-2)\\ 6\alpha^{2}&-3\alpha(H-1)\end{vmatrix}=\begin{vmatrix}-3(2h-1)\alpha&(2h-1)(2h-2)\\ 6\alpha^{2}&-3\alpha(2h-1)\end{vmatrix}=3\alpha^{2}(2h-1)(2h+1)

Thus,

{F~2a,b,H2a102aH}are linearly independent, and\displaystyle\{\widetilde{\text{F}}^{1}_{2a,b,H-2a}\mid 0\leqq 2a\leqq H\}\quad\text{are linearly independent, and }
{F~2a+1,b,H12a112a+1H}are linearly independent, and so\displaystyle\{\widetilde{\text{F}}^{1}_{2a+1,b,H-1-2a}\mid 1\leqq 2a+1\leqq H\}\quad\text{are linearly independent, and so }
{F~a,b,2ha10a2h}are linearly independent.\displaystyle\{\widetilde{\text{F}}^{1}_{a,b,2h-a}\mid 0\leqq a\leqq 2h\}\quad\text{are linearly independent. }
{E^a,b,2ha10a2h}are linearly independent.\displaystyle\{\widehat{E}^{1}_{a,b,2h-a}\mid 0\leqq a\leqq 2h\}\quad\text{are linearly independent. }

By the above discussions, we have a result about dim{E^a,b,c1a+c=wb}\textrm{dim}\{\widehat{E}^{1}_{a,b,c}\mid a+c=w-b\}, which is similar to Lemma 6.1. We denote 𝔖b[w]={E^a,b,c1a+c=wb}\mathfrak{S}^{[w]}_{b}=\{\widehat{E}^{1}_{a,b,c}\mid a+c=w-b\}.

Lemma 6.3.

If wb= evenw-b=\text{ even}, dim𝔖b[w]=𝔖b[w]#=wb+1\textrm{dim}\mathfrak{S}^{[w]}_{b}={}^{\#}\mathfrak{S}^{[w]}_{b}=w-b+1, (i.e., full rank).

If wb= oddw-b=\text{ odd}, then dim𝔖b[w]=𝔖b[w]#1=wb\textrm{dim}\mathfrak{S}^{[w]}_{b}={}^{\#}\mathfrak{S}^{[w]}_{b}-1=w-b and {E^a,b,c1𝔖b[w]c1}\{\widehat{E}^{1}_{a,b,c}\in\mathfrak{S}^{[w]}_{b}\mid c\neq 1\} are a base, by which E^wb1,b,11\widehat{E}^{1}_{w-b-1,b,1} are expressed.

As a direct result, we have

Corollary 6.4.

dim{E^a,b,c1a+b+c=w}=(w+22)w+1ϵ2\displaystyle\textrm{dim}\{\widehat{E}^{1}_{a,b,c}\mid a+b+c=w\}=\binom{w+2}{2}-\frac{w+1-\epsilon}{2}, where ϵ=1\epsilon=1 if ww is even, ϵ=0\epsilon=0 otherwise.

Proof: From corollary above,

dim{E^a,b,c1a+b+c=w}\displaystyle\textrm{dim}\{\widehat{E}^{1}_{a,b,c}\mid a+b+c=w\} =b=0w𝔖b[w]=b=0w(wb)+#{wb= even 0bw}\displaystyle=\sum_{b=0}^{w}\mathfrak{S}^{[w]}_{b}=\sum_{b=0}^{w}(w-b)+\#\{w-b=\text{ even }\mid 0\leqq b\leqq w\}
=w(w+1)w(w+1)2+#{2b0bw}\displaystyle=w(w+1)-\frac{w(w+1)}{2}+\#\{2b\mid 0\leqq b\leqq w\}
=w(w+1)2+w+1+ϵ2=(w+2)(w+1)2w+1ϵ2.\displaystyle=\frac{w(w+1)}{2}+\frac{w+1+\epsilon}{2}=\frac{(w+2)(w+1)}{2}-\frac{w+1-\epsilon}{2}\;.

The parity of ww still has some effect. ϵ=2[w/2]w+1\epsilon=2[w/2]-w+1 holds if we use the Gauss symbol. \blacksquare

So far, we got (w2)ϵ,(w+22)\binom{w}{2}-\epsilon,\binom{w+2}{2} by μP{\mu}_{P} or λA3\lambda^{3}_{A}, and (w+22)w+1ϵ2\binom{w+2}{2}-\frac{w+1-\epsilon}{2} by Lemma 6.4 generators.

The last thing to do is to find which E^a,b,c2\widehat{E}^{2}_{a,b,c} contributes to enlarging the linearly independent system. By bare hands, or by an experiment of symbol calculus, we know that {E^2a,w2a,022aw}\{\widehat{E}^{2}_{2a,w-2a,0}\mid 2a\leqq w\} contribute as linear independent members, where

E^2a,w2a,02=\displaystyle\widehat{E}^{2}_{2a,w-2a,0}= 2αβλ2a1,w2a1,21α(2aw1)λ2a1,w2a+1,012β(2a+1)λ2a+1,w2a1,01\displaystyle 2\alpha\beta\lambda^{1}_{2a-1,w-2a-1,2}-\alpha(2a-w-1)\lambda^{1}_{2a-1,w-2a+1,0}-2\beta(2a+1)\lambda^{1}_{2a+1,w-2a-1,0}
2β2λ2a,w2a2,22β(2aw+1)λ2a,w2a,02.\displaystyle-2\beta^{2}\lambda^{2}_{2a,w-2a-2,2}-\beta(2a-w+1)\lambda^{2}_{2a,w-2a,0}\;.

The cardinality is w+1+ϵ2\frac{w+1+\epsilon}{2}. This means the rank Rk[w+2]\text{Rk}_{[w+2]} should be

Rk[w+2]\displaystyle\text{Rk}_{[w+2]} ((w2)ϵ)+(w+22)+((w+22)w+1ϵ2)+w+1+ϵ2\displaystyle\geqq(\binom{w}{2}-\epsilon)+\binom{w+2}{2}+(\binom{w+2}{2}-\frac{w+1-\epsilon}{2})+\frac{w+1+\epsilon}{2}
=(w2)+2(w+22)\displaystyle=\binom{w}{2}+2\binom{w+2}{2}

Since the Betti number is given by Bet[w+2]=dimCw+2[w]Rk[w+2]Rk[w+3]\text{Bet}_{[w+2]}=\textrm{dim}C_{w+2}^{[w]}-\text{Rk}_{[w+2]}-\text{Rk}_{[w+3]} and it is non-negative, Rk[w+2]dimCw+2[w]Rk[w+3]=(w2)+2(w+22)\text{Rk}_{[w+2]}\leqq\textrm{dim}C_{w+2}^{[w]}-\text{Rk}_{[w+3]}=\binom{w}{2}+2\binom{w+2}{2} holds in our case. Thus, we conclude the rank is Rk[w+2]=(w2)+2(w+22)\text{Rk}_{[w+2]}=\binom{w}{2}+2\binom{w+2}{2} and so the kernel dimension of Cw+3[w]C_{w+3}^{[w]} is (w+22)\binom{w+2}{2}.

The space of cycles in Cw+1[w]C_{w+1}^{[w]}:

When w=0w=0, then Cw+1[w]=C1[0]=𝔤C_{w+1}^{[w]}=C_{1}^{[0]}=\mathfrak{g} and the boundary operator is trivial, and so the kernel dimension is dim𝔤\textrm{dim}\mathfrak{g}. We then study the space of cycles for w>0w>0.

Take a general chain L+ML+M where L=λa,b,ciziUwa,b,cL=\sum\lambda^{i}_{a,b,c}z_{i}\bigtriangleup{U}^{a,b,c}_{w} and M=μp,q,riW[ϵi=0]Uw2p,q,rM=\sum{\mu}^{i}_{p,q,r}W[\epsilon_{i}=0]\bigtriangleup{U}^{p,q,r}_{w-2} with unknown scalars λa,b,ci,μp,q,ri\lambda^{i}_{a,b,c},{\mu}^{i}_{p,q,r}.

(L+M)=\displaystyle\partial(L+M)= λAi(ziUwA+[zi,UwA]res)\displaystyle\sum\lambda^{i}_{A}(-z_{i}\bigtriangleup\partial{U}^{A}_{w}+[z_{i},{U}^{A}_{w}]_{res})
+μPj((W[ϵj=0])Uw2P+[W[ϵj=0],Uw2P]res)\displaystyle+\sum{\mu}^{j}_{P}((\partial W[\epsilon_{j}=0])\bigtriangleup{U}^{P}_{w-2}+[W[\epsilon_{j}=0],{U}^{P}_{w-2}]_{res})
=\displaystyle= ziz4Up,q,r(2α(p+22)λp+2,q,ri+2β(q+22)λp,q+2,ri+2(r+22)λp,q,r+2i)+λAi[zi,UA]res\displaystyle-\sum z_{i}\bigtriangleup z_{4}\bigtriangleup U^{p,q,r}(\frac{2}{\alpha}\tbinom{p+2}{2}\lambda^{i}_{p+2,q,r}+\frac{2}{\beta}\tbinom{q+2}{2}\lambda^{i}_{p,q+2,r}+2\tbinom{r+2}{2}\lambda^{i}_{p,q,r+2})+\sum\lambda^{i}_{A}[z_{i},U^{A}]_{res}
+z1z4αμP1UP+z2z4(β)μP2UP+z3z4μP3UP\displaystyle+z_{1}\bigtriangleup z_{4}\bigtriangleup\sum\alpha{\mu}^{1}_{P}U^{P}+z_{2}\bigtriangleup z_{4}\bigtriangleup\sum(-\beta){\mu}^{2}_{P}U^{P}+z_{3}\bigtriangleup z_{4}\bigtriangleup\sum{\mu}^{3}_{P}U^{P}
+μP1(z3z4[z2,UP]resz2z4[z3,UP]res)\displaystyle+\sum{\mu}^{1}_{P}(z_{3}\bigtriangleup z_{4}\bigtriangleup[z_{2},U^{P}]_{res}-z_{2}\bigtriangleup z_{4}\bigtriangleup[z_{3},U^{P}]_{res})
+μP2(z3z4[z1,UP]resz1z4[z3,UP]res)\displaystyle+\sum{\mu}^{2}_{P}(z_{3}\bigtriangleup z_{4}\bigtriangleup[z_{1},U^{P}]_{res}-z_{1}\bigtriangleup z_{4}\bigtriangleup[z_{3},U^{P}]_{res})
+μP3(z2z4[z1,UP]resz1z4[z2,UP]res)\displaystyle+\sum{\mu}^{3}_{P}(z_{2}\bigtriangleup z_{4}\bigtriangleup[z_{1},U^{P}]_{res}-z_{1}\bigtriangleup z_{4}\bigtriangleup[z_{2},U^{P}]_{res})
=\displaystyle= +λAi[zi,UA]res\displaystyle+\sum\lambda^{i}_{A}[z_{i},U^{A}]_{res}
+z1z4(αμP1UPλA1(UA)/z4μP2[z3,UP]resμP3[z2,UP]res)\displaystyle+z_{1}\bigtriangleup z_{4}\bigtriangleup(\sum\alpha{\mu}^{1}_{P}U^{P}-\sum\lambda^{1}_{A}(\partial U^{A})/z_{4}-\sum{\mu}^{2}_{P}[z_{3},U^{P}]_{res}-\sum{\mu}^{3}_{P}[z_{2},U^{P}]_{res})
+z2z4(βμP2UPλA2(UA)/z4μP1[z3,UP]res+μP3[z1,UP]res)\displaystyle+z_{2}\bigtriangleup z_{4}\bigtriangleup(\sum-\beta{\mu}^{2}_{P}U^{P}-\sum\lambda^{2}_{A}(\partial U^{A})/z_{4}-\sum{\mu}^{1}_{P}[z_{3},U^{P}]_{res}+\sum{\mu}^{3}_{P}[z_{1},U^{P}]_{res})
+z3z4(μP3UPλA3(UA)/z4+μP1[z2,UP]res+μP2[z1,UP]res)\displaystyle+z_{3}\bigtriangleup z_{4}\bigtriangleup(\sum{\mu}^{3}_{P}U^{P}-\sum\lambda^{3}_{A}(\partial U^{A})/z_{4}+\sum{\mu}^{1}_{P}[z_{2},U^{P}]_{res}+\sum{\mu}^{2}_{P}[z_{1},U^{P}]_{res})

Thus, the linear equation (L+M)=0\partial(L+M)=0 is defined by

(6.50a) G0=\displaystyle G_{0}= (b+1)λa,b+1,c11β(c+1)λa,b1,c+11(a+1)λa+1,b,c12+α(c+1)λa1,b,c+12\displaystyle(b+1)\lambda^{1}_{a,b+1,c-1}-\beta(c+1)\lambda^{1}_{a,b-1,c+1}-(a+1)\lambda^{2}_{a+1,b,c-1}+\alpha(c+1)\lambda^{2}_{a-1,b,c+1}
+β(a+1)λa+1,b1,c3α(b+1)λa1,b+1,c3\displaystyle\quad+\beta(a+1)\lambda^{3}_{a+1,b-1,c}-\alpha(b+1)\lambda^{3}_{a-1,b+1,c}
(6.50b) G1=\displaystyle G_{1}= αμp,q,r11α2(p+22)λp+2,q,r11β2(q+22)λp,q+2,r12(r+22)λp,q,r+21\displaystyle\alpha{\mu}^{1}_{p,q,r}-\frac{1}{\alpha}2\tbinom{p+2}{2}\lambda^{1}_{p+2,q,r}-\frac{1}{\beta}2\tbinom{q+2}{2}\lambda^{1}_{p,q+2,r}-2\tbinom{r+2}{2}\lambda^{1}_{p,q,r+2}
β(p+1)μp+1,q1,r2+α(q+1)μp1,q+1,r2\displaystyle-\beta(p+1){\mu}^{2}_{p+1,q-1,r}+\alpha(q+1){\mu}^{2}_{p-1,q+1,r}
+(p+1)μp+1,q,r13α(r+1)μp1,q,r+13\displaystyle+(p+1){\mu}^{3}_{p+1,q,r-1}-\alpha(r+1){\mu}^{3}_{p-1,q,r+1}
(6.50c) G2=\displaystyle G_{2}= βμp,q,r21α2(p+22)λp+2,q,r21β2(q+22)λp,q+2,r22(r+22)λp,q,r+22\displaystyle-\beta{\mu}^{2}_{p,q,r}-\frac{1}{\alpha}2\tbinom{p+2}{2}\lambda^{2}_{p+2,q,r}-\frac{1}{\beta}2\tbinom{q+2}{2}\lambda^{2}_{p,q+2,r}-2\tbinom{r+2}{2}\lambda^{2}_{p,q,r+2}
β(p+1)μp+1,q1,r1+α(q+1)μp1,q+1,r1\displaystyle-\beta(p+1){\mu}^{1}_{p+1,q-1,r}+\alpha(q+1){\mu}^{1}_{p-1,q+1,r}
+(q+1)μp,q+1,r13β(r+1)μp,q1,r+13\displaystyle+(q+1){\mu}^{3}_{p,q+1,r-1}-\beta(r+1){\mu}^{3}_{p,q-1,r+1}
(6.50d) G3=\displaystyle G_{3}= μp,q,r31α2(p+22)λp+2,q,r31β2(q+22)λp,q+2,r32(r+22)λp,q,r+23\displaystyle{\mu}^{3}_{p,q,r}-\frac{1}{\alpha}2\tbinom{p+2}{2}\lambda^{3}_{p+2,q,r}-\frac{1}{\beta}2\tbinom{q+2}{2}\lambda^{3}_{p,q+2,r}-2\tbinom{r+2}{2}\lambda^{3}_{p,q,r+2}
(p+1)μp+1,q,r11+α(r+1)μp1,q,r+11\displaystyle-(p+1){\mu}^{1}_{p+1,q,r-1}+\alpha(r+1){\mu}^{1}_{p-1,q,r+1}
+(q+1)μp,q+1,r12β(r+1)μp,q1,r+12\displaystyle+(q+1){\mu}^{2}_{p,q+1,r-1}-\beta(r+1){\mu}^{2}_{p,q-1,r+1}

If we focus on μp,q,r3{\mu}^{3}_{p,q,r} in (6.50d) and substitute them to (6.50b) and (6.50c), then we have next equations without μP1{\mu}^{1}_{P} and μP3{\mu}^{3}_{P}:

(6.51) H1(p,q,r)\displaystyle H_{1}(p,q,r) =(r+2)(r+1)λp,q,r+21(p+2)(p+1)1αλp+2,q,r1(q+2)(q+1)1βλp,q+2,r1\displaystyle=-(r+2)(r+1)\lambda^{1}_{p,q,r+2}-(p+2)(p+1)\frac{1}{\alpha}\lambda^{1}_{p+2,q,r}-(q+2)(q+1)\frac{1}{\beta}\lambda^{1}_{p,q+2,r}
+(p+3)(p+2)(p+1)1αλp+3,q,r13+(q+2)(q+1)(p+1)1βλp+1,q+2,r13\displaystyle+(p+3)(p+2)(p+1)\frac{1}{\alpha}\lambda^{3}_{p+3,q,r-1}+(q+2)(q+1)(p+1)\frac{1}{\beta}\lambda^{3}_{p+1,q+2,r-1}
(r+1)(p+1)(pr)λp+1,q,r+13α(r+3)(r+2)(r+1)λp1,q,r+33\displaystyle-(r+1)(p+1)(p-r)\lambda^{3}_{p+1,q,r+1}-\alpha(r+3)(r+2)(r+1)\lambda^{3}_{p-1,q,r+3}
α(q+2)(q+1)(r+1)1βλp1,q+2,r+13+α(r+2)(q+1)μp1,q+1,r2\displaystyle-\alpha(q+2)(q+1)(r+1)\frac{1}{\beta}\lambda^{3}_{p-1,q+2,r+1}+\alpha(r+2)(q+1){\mu}^{2}_{p-1,q+1,r}
+β(r1)(p+1)μp+1,q1,r2(q+1)(p+1)μp+1,q+1,r22\displaystyle+\beta(r-1)(p+1){\mu}^{2}_{p+1,q-1,r}-(q+1)(p+1){\mu}^{2}_{p+1,q+1,r-2}
βα(r+2)(r+1)μp1,q1,r+22,\displaystyle-\beta\alpha(r+2)(r+1){\mu}^{2}_{p-1,q-1,r+2}\;,
(6.52) H2(p,q,r)\displaystyle H_{2}(p,q,r) =(r+2)(r+1)λp,q,r+22(p+2)(p+1)1αλp+2,q,r2(q+2)(q+1)1βλp,q+2,r2\displaystyle=-(r+2)(r+1)\lambda^{2}_{p,q,r+2}-(p+2)(p+1)\frac{1}{\alpha}\lambda^{2}_{p+2,q,r}-(q+2)(q+1)\frac{1}{\beta}\lambda^{2}_{p,q+2,r}
+(p+2)(p+1)(q+1)1αλp+2,q+1,r13+(q+3)(q+2)(q+1)1βλp,q+3,r13\displaystyle+(p+2)(p+1)(q+1)\frac{1}{\alpha}\lambda^{3}_{p+2,q+1,r-1}+(q+3)(q+2)(q+1)\frac{1}{\beta}\lambda^{3}_{p,q+3,r-1}
(r+1)(q+1)(qr)λp,q+1,r+13β(r+3)(r+2)(r+1)λp,q1,r+33\displaystyle-(r+1)(q+1)(q-r)\lambda^{3}_{p,q+1,r+1}-\beta(r+3)(r+2)(r+1)\lambda^{3}_{p,q-1,r+3}
β(p+2)(p+1)(r+1)1αλp+2,q1,r+13+β(2qr+q+r1)μp,q,r2\displaystyle-\beta(p+2)(p+1)(r+1)\frac{1}{\alpha}\lambda^{3}_{p+2,q-1,r+1}+\beta(2qr+q+r-1){\mu}^{2}_{p,q,r}
(q+2)(q+1)μp,q+2,r22β2(r+2)(r+1)μp,q2,r+22.\displaystyle-(q+2)(q+1){\mu}^{2}_{p,q+2,r-2}-\beta^{2}(r+2)(r+1){\mu}^{2}_{p,q-2,r+2}\;.

Now we look for the dimension of the space generated by G0G_{0}, H1H_{1} and H0H_{0}, and we get (w+22)+(w2)\binom{w+2}{2}+\binom{w}{2}. Thus, the rank is 2(w2)+(w+22)2\binom{w}{2}+\binom{w+2}{2} and the kernel dimension is (w2)+2(w+22)\binom{w}{2}+2\binom{w+2}{2}.

The space of cycles in Cw[w]C_{w}^{[w]}:

When w=0w=0, then Cw[w]=Λ0𝔤C_{w}^{[w]}=\Lambda^{0}\mathfrak{g} and the boundary operator is trivial, and so the kernel dimension is 1. We study the space of cycles in Cw[w]C_{w}^{[w]} for w>0w>0. Take a general chain L+ML+M where L=λAUwAL=\sum\lambda_{A}{U}^{A}_{w} and M=μPiziz4Uw2PM=\sum{\mu}^{i}_{P}z_{i}\bigtriangleup z_{4}\bigtriangleup{U}^{P}_{w-2} with unknown scalars λA,μPi\lambda_{A},{\mu}^{i}_{P}. Since

(L+M)=\displaystyle\partial(L+M)= λAUA+0+0+μPjz4[zj,UP]res\displaystyle\sum\lambda_{A}\partial U^{A}+0+0+\sum{\mu}^{j}_{P}z_{4}\bigtriangleup[z_{j},U^{P}]_{res}

the linear equations (L+M)=0\partial(L+M)=0 is defined by

(6.53) (p+2)(p+1)αλp+2,q,r+(q+2)(q+1)βλp,q+2,r+(r+2)(r+1)λp,q,r+2\displaystyle\frac{(p+2)(p+1)}{\alpha}\lambda_{p+2,q,r}+\frac{(q+2)(q+1)}{\beta}\lambda_{p,q+2,r}+(r+2)(r+1)\lambda_{p,q,r+2}
+(q+1)μp,q+1,r11β(r+1)μp,q1,r+11(p+1)μp+1,q,r12+α(r+1)μp1,q,r+12\displaystyle+(q+1){\mu}^{1}_{p,q+1,r-1}-\beta(r+1){\mu}^{1}_{p,q-1,r+1}-(p+1){\mu}^{2}_{p+1,q,r-1}+\alpha(r+1){\mu}^{2}_{p-1,q,r+1}
+β(p+1)μp+1,q1,r3α(q+1)μp1,q+1,r3\displaystyle+\beta(p+1){\mu}^{3}_{p+1,q-1,r}-\alpha(q+1){\mu}^{3}_{p-1,q+1,r}

Thus, the rank is (w2)\binom{w}{2}, and the kernel dimension is 2(w2)+(w+22)2\binom{w}{2}+\binom{w+2}{2}.

Final table of chain complex
Theorem 6.4.

weight=w>0w1ww+1w+2w+3SpaceDim(w2)3(w2)+(w+22)3(w2)+3(w+22)(w2)+3(w+22)(w+22)kerdim(w2)2(w2)+(w+22)(w2)+2(w+22)(w+22)0Betti00000\begin{array}[]{c|*{5}{c}}\text{weight}=w>0&w-1&w&w+1&w+2&w+3\\ \hline\cr\text{SpaceDim}&\binom{w}{2}&3\binom{w}{2}+\binom{w+2}{2}&3\binom{w}{2}+3\binom{w+2}{2}&\binom{w}{2}+3\binom{w+2}{2}&\binom{w+2}{2}\\ \ker\textrm{dim}&\binom{w}{2}&2\binom{w}{2}+\binom{w+2}{2}&\binom{w}{2}+2\binom{w+2}{2}&\binom{w+2}{2}&0\\ \hline\cr\text{Betti}&0&0&0&0&0\end{array}

7 Further questions

So far, we discussed super homology groups associated with Lie algebras of dimension 2 or 3. We observed that if 𝔤=[𝔤,𝔤]\mathfrak{g}=[\mathfrak{g},\mathfrak{g}] then the Betti numbers are all zero, and it may be interesting question if this is true when the dimension is larger than 3.

As an example of 4-dimensional Lie algebra, we take 𝔤𝔩(2,)\mathfrak{gl}(2,\mathbb{R}) of 2×22\times 2 matrices, which is an extension of 𝔰𝔩(2,)\mathfrak{sl}(2,\mathbb{R}). By experiments for lower weights, we have the following information about Betti numbers (we do not note dimension or rank for each chain space here).

m-th chain0123456789w=011011w=100000w=2022022w=30110110w=40022022w=501211210\begin{array}[]{ c | *{10}{r|} }m\text{-th chain}&0&1&2&3&4&5&6&7&8&9\\ \hline\cr w=0&1&1&0&1&1\\ \hline\cr w=1&&0&0&0&0&0\\ \hline\cr w=2&&0&2&2&0&2&2\\ \hline\cr w=3&&0&1&1&0&1&1&0\\ \hline\cr w=4&&&0&0&2&2&0&2&2\\ \hline\cr w=5&&&0&1&2&1&1&2&1&0\\ \hline\cr\end{array}

Looking at this table, we expect some “rule”’ and expect the rule comes from that the Lie algebra is an extension of 𝔰𝔩(2,)\mathfrak{sl}(2,\mathbb{R}).

References

  • [1] Nathan Jacobson. Lie algebras. Dover Publications, Inc., New York, 1979. Republication of the 1962 original.
  • [2] Kentaro Mikami and Tadayoshi Mizutani. Euler number and Betti numbers of homology groups of pre Lie superalgebra. arXiv:1809.08028v2, December 2018.
  • [3] Kentaro Mikami and Tadayoshi Mizutani. The second Betti number of doubly weighted homology groups of some pre Lie superalgebra. arXiv:1902.09137, February 2019.