This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Sum Expressions for pp-adic Hecke LL-functions of Totally Real Fields

Luochen Zhao Department of Mathematics, Johns Hopkins University, 404 Krieger Hall, 3400 N.Β Charles Street, Baltimore, MD 21218, USA [email protected]
(Date: Jan 4, 2023)
Abstract.

As a continuation of previous work, we establish sum expressions for pp-adic Hecke LL-functions of totally real fields in the sense of Delbourgo, assuming a totally real analog of Heegner hypothesis. This is done by finding explicit formulas of the periods of the corresponding pp-adic measures. As an application, we extend the Ferrero-Greenberg formula of derivatives of pp-adic LL-functions to this setting.

Key words and phrases:
Infinite sum, totally real pp-adic Hecke LL-functions, Ferrero-Greenberg derivative formula, Brumer-Stark unit, Iwasawa invariants.
2020 Mathematics Subject Classification:
11S40 (primary); 11S80, 11Y35 (secondary).

1. Introduction

Let pp be a rational prime, F/𝐐F/\mathbf{Q} be a totally real field, π’ͺ\mathcal{O} be its ring of integers, Nm:F→𝐐\mathrm{Nm}:F\to\mathbf{Q} be the norm map, and Ο‡\chi be a Hecke character of the narrow ray class group Cl+​(𝒩)\mathrm{Cl}_{+}(\mathcal{N}) for some nonzero integral ideal 𝒩\mathcal{N}. The complex Hecke LL-function attached to Ο‡\chi is given by (when Re​(s)>1\mathrm{Re}(s)>1)

LF​(s,Ο‡)=βˆ‘0β‰ π”žβŠ†π’ͺχ​(π”ž)Nm​(π”ž)s.\displaystyle L_{F}(s,\chi)=\sum_{0\neq\mathfrak{a}\subseteq\mathcal{O}}\frac{\chi(\mathfrak{a})}{\mathrm{Nm}(\mathfrak{a})^{s}}.

By the work of Deligne-Ribet [DR80], Cassou-NoguΓ¨s [CN79b] and Barsky [Bar78], there exists a pp-adic Hecke LL-function LF,p​(s,Ο‡)L_{F,p}(s,\chi) on 𝐙p\mathbf{Z}_{p} that interpolates its complex counterpart for all mβˆˆπ™>0m\in\mathbf{Z}_{>0} (see [Hid93, p.Β 105], [DR80, Theorem 8.2]):

(1.1) LF,p​(1βˆ’m,Ο‡)=βˆπ”­βˆ£p(1βˆ’Ο‡β€‹Ο‰Fβˆ’m​(𝔭)​Nm​(𝔭)mβˆ’1)​LF​(1βˆ’m,χ​ωFβˆ’m),\displaystyle L_{F,p}(1-m,\chi)=\prod_{\mathfrak{p}\mid p}(1-\chi\omega_{F}^{-m}(\mathfrak{p})\mathrm{Nm}(\mathfrak{p})^{m-1})L_{F}(1-m,\chi\omega_{F}^{-m}),

where Ο‰F\omega_{F} is the composition of Nm\mathrm{Nm} and the TeichmΓΌller character Ο‰\omega, and the right hand side is algebraic by Siegel and Klingen. In this article, we will establish a sum expression for LF,p​(s,Ο‡)L_{F,p}(s,\chi) in the sense of Delbourgo, by assuming what we call the Cassou-NoguΓ¨s condition for 𝒩\mathcal{N}, an analogue of Heegner hypothesis in the totally real case. In fact the general case with an auxiliary Euler factor will also follow via a simple adaptation of our proof. We note that such expressions are known to exist for Kubota-Leopoldt pp-adic LL-functions by works of Delbourgo [Del06, Del09a, Del09b], Knospe-Washington [KW21] and the author [Zha22]. For a detailed discussion, we refer the reader to the introduction of [Zha22].

1.1. Review of Shintani’s method

To state our results properly, we recall Shintani’s treatment of Hecke LL-functions, along the way fixing some notation used throughout this article. Let FF and Ο‡\chi be as above, and let k=[F:𝐐]k=[F:\mathbf{Q}]. Fix a numbering of real places of FF, {Οƒ1,β‹―,Οƒk}\{\sigma_{1},\cdots,\sigma_{k}\}, so that we have an embedding Fβ†ͺ𝐑k≃FβŠ—ππ‘F\hookrightarrow\mathbf{R}^{k}\simeq F\otimes_{\mathbf{Q}}\mathbf{R}. Denote by 𝐑+\mathbf{R}_{+} the positive real numbers. For any subset XX of FF, write X+=Xβˆ©π‘+nX_{+}=X\cap\mathbf{R}_{+}^{n}, and denote π’ͺ+Γ—\mathcal{O}^{\times}_{+} particularly by EE. Fix the direction vector ek=(0,0,β‹―,0,1)βˆˆπ‘ne_{k}=(0,0,\cdots,0,1)\in\mathbf{R}^{n}. From the work of Shintani [Shi76], Colmez [Col88] (see also [DyDF12] for a detailed discussion of Colmez’s construction in the cubic case) and Yamamoto [Yam10], there exists a finite collection {V}\{V\}, each V={v1,β‹―,vk}V=\{v_{1},\cdots,v_{k}\} being a 𝐐\mathbf{Q}-basis of FF and a subset of π’ͺ+\mathcal{O}_{+} such that the following cone decomposition holds [Yam10, Proposition 5.6]:

(1.2) (FβŠ—π‘)+=𝐑+n=β¨†Ξ΅βˆˆE⨆VΡ​C¯​(V).\displaystyle(F\otimes\mathbf{R})_{+}=\mathbf{R}_{+}^{n}=\bigsqcup_{\varepsilon\in E}\bigsqcup_{V}\varepsilon\overline{C}(V).

Here C​(V)=βˆ‘1≀i≀k𝐑+​viC(V)=\sum_{1\leq i\leq k}\mathbf{R}_{+}v_{i}, and C¯​(V)\overline{C}(V) is the upper closure of C​(V)C(V) with respect to eke_{k} [Yam10, Definition 5.5]. Let P​(V)P(V) be the fundamental parallelotope of C¯​(V)\overline{C}(V), that is, the subset of C¯​(V)\overline{C}(V) determined by the property that any v∈C¯​(V)v\in\overline{C}(V) can be uniquely written in the form v=v0+βˆ‘1≀i≀kni​viv=v_{0}+\sum_{1\leq i\leq k}n_{i}v_{i} for some v0∈P​(V)v_{0}\in P(V) and (ni)1≀i≀kβˆˆπ™β‰₯0k(n_{i})_{1\leq i\leq k}\in\mathbf{Z}_{\geq 0}^{k}. Take a set of prime-to-𝒩\mathcal{N} integral ideal representatives of the narrow class group Cl+​(1)\mathrm{Cl}_{+}(1), {π”ž1,β‹―,π”žh}\{\mathfrak{a}_{1},\cdots,\mathfrak{a}_{h}\}. Then as observed by Shintani, since (π”žiβˆ’1)+/E(\mathfrak{a}_{i}^{-1})_{+}/E is in set bijection with

⨆Vπ”žiβˆ’1∩C¯​(V)=⨆V⨆x∈P​(V)βˆ©π”žiβˆ’1x+𝐙β‰₯0​v1+β‹―+𝐙β‰₯0​vk,\displaystyle\bigsqcup_{V}\mathfrak{a}_{i}^{-1}\cap\overline{C}(V)=\bigsqcup_{V}\bigsqcup_{x\in P(V)\cap\mathfrak{a}_{i}^{-1}}x+\mathbf{Z}_{\geq 0}v_{1}+\cdots+\mathbf{Z}_{\geq 0}v_{k},

we have

LF​(s,Ο‡)=βˆ‘1≀i≀hχ​(π”ži)Nm​(π”ži)sβ€‹βˆ‘Vβˆ‘x∈P​(V)βˆ©π”žiβˆ’1βˆ‘n1,β‹―,nkβ‰₯0χ​(x+n1​v1+β‹―+nk​vk)Nm​(x+n1​v1+β‹―+nk​vk)s.\displaystyle L_{F}(s,\chi)=\sum_{1\leq i\leq h}\frac{\chi(\mathfrak{a}_{i})}{\mathrm{Nm}(\mathfrak{a}_{i})^{s}}\sum_{V}\sum_{x\in P(V)\cap\mathfrak{a}_{i}^{-1}}\sum_{n_{1},\cdots,n_{k}\geq 0}\frac{\chi(x+n_{1}v_{1}+\cdots+n_{k}v_{k})}{\mathrm{Nm}(x+n_{1}v_{1}+\cdots+n_{k}v_{k})^{s}}.

Throughout this article, we will fix a Shintani cone decomposition.

1.2. Main results

We introduce now the presiding assumptions:

  1. (A1)

    We will always suppose that 𝒩\mathcal{N} satisfies the Cassou-NoguΓ¨s condition

    π’ͺ/𝒩≃𝐙/Nfor ​N=Nm​(𝒩);\displaystyle\mathcal{O}/\mathcal{N}\simeq\mathbf{Z}/N\quad\text{for }N=\mathrm{Nm}(\mathcal{N});

    often we will simply say that 𝒩\mathcal{N} is a Cassou-NoguΓ¨s ideal. Additionally, we always suppose that 𝒩≠π’ͺ\mathcal{N}\neq\mathcal{O}, and is prime to pp.

  2. (A2)

    We choose each fractional ideal π”ži\mathfrak{a}_{i} to be integral and prime to both pp and 𝒩\mathcal{N}.

  3. (A3)

    For all VV in the Shintani cone decomposition and each vi∈Vv_{i}\in V, we require that vi∈π’ͺ+v_{i}\in\mathcal{O}_{+}. Moreover, in order to apply Euler’s method to remove the pole, we assume that viv_{i} is prime to 𝒩\mathcal{N} as in [CN79b, p.Β 38, (6.ii)] and [Kat81, top of p.Β 41].

The following result is the culmination of the computations done in Β§3-Β§4, whose proof forms the trunk of this paper.

Theorem 1.1.

Let the notation and assumptions be as above. Let q>1q>1 be a power of pp that is congruent to 1modN1\bmod N. Furthermore, let ψ\psi be a character on Cl+​(p∞)=lim←n⁑Cl+​(pn)\mathrm{Cl}_{+}(p^{\infty})=\varprojlim_{n}\mathrm{Cl}_{+}(p^{n}). We have

(1βˆ’Οˆβ€‹(𝒩)β€‹βŸ¨N⟩1βˆ’s)​LF,p​(s,ψ)\displaystyle(1-\psi(\mathcal{N})\langle N\rangle^{1-s})L_{F,p}(s,\psi)
=\displaystyle= limnβ†’βˆžβˆ‘1≀i≀hΟˆβ€‹Ο‰Fβˆ’1​(π”ži)⟨Nm​(π”ži)⟩sβ€‹βˆ‘Vβˆ‘x∈P​(V)βˆ©π”žiβˆ’1βˆ‘0≀l1,β‹―,lk<qngcd⁑(p,x+βˆ‘1≀i≀kli​vi)=1aV,𝒩​(x+βˆ‘1≀i≀kli​vi)β€‹Οˆβ€‹Ο‰Fβˆ’1​(x+βˆ‘1≀i≀kli​vi)⟨Nm​(x+βˆ‘1≀i≀kli​vi)⟩s,\displaystyle\lim_{n\to\infty}\sum_{1\leq i\leq h}\frac{\psi\omega_{F}^{-1}(\mathfrak{a}_{i})}{\langle\mathrm{Nm}(\mathfrak{a}_{i})\rangle^{s}}\sum_{V}\sum_{x\in P(V)\cap\mathfrak{a}_{i}^{-1}}\sum_{\begin{subarray}{c}0\leq l_{1},\cdots,l_{k}<q^{n}\\ \gcd(p,x+\sum_{1\leq i\leq k}l_{i}v_{i})=1\end{subarray}}a_{V,\mathcal{N}}(x+\sum_{1\leq i\leq k}l_{i}v_{i})\frac{\psi\omega_{F}^{-1}(x+\sum_{1\leq i\leq k}l_{i}v_{i})}{\langle\mathrm{Nm}(x+\sum_{1\leq i\leq k}l_{i}v_{i})\rangle^{s}},

where the coefficients are given by

aV,𝒩​(y)=(βˆ’1)kβˆ’1Nkβˆ’1β€‹βˆ‘1≀d1,d2,β‹―,dk<Nd1​v1+β‹―+dk​vkβ‰‘βˆ’ymod𝒩d1​d2​⋯​dk.\displaystyle a_{V,\mathcal{N}}(y)=\frac{(-1)^{k-1}}{N^{k-1}}\sum_{\begin{subarray}{c}1\leq d_{1},d_{2},\cdots,d_{k}<N\\ d_{1}v_{1}+\cdots+d_{k}v_{k}\equiv-y\bmod\mathcal{N}\end{subarray}}d_{1}d_{2}\cdots d_{k}.

When Ο‡\chi is a Hecke character on Cl+​(𝒩)\mathrm{Cl}_{+}(\mathcal{N}) with nontrivial narrow modulus, i.e., Ο‡\chi is not from Cl+​(1)\mathrm{Cl}_{+}(1), we have

LF,p​(s,Ο‡β€‹Οˆ)\displaystyle L_{F,p}(s,\chi\psi)
=\displaystyle= limnβ†’βˆžβˆ‘1≀i≀hΟ‡β€‹Οˆβ€‹Ο‰Fβˆ’1​(π”ži)⟨Nm​(π”ži)⟩sβ€‹βˆ‘Vβˆ‘x∈P​(V)βˆ©π”žiβˆ’1βˆ‘0≀l1,β‹―,lk<qngcd⁑(p,x+βˆ‘1≀i≀kli​vi)=1aV,χ​(x+βˆ‘1≀i≀kli​vi)β€‹Οˆβ€‹Ο‰Fβˆ’1​(x+βˆ‘1≀i≀kli​vi)⟨Nm​(x+βˆ‘1≀i≀kli​vi)⟩s,\displaystyle\lim_{n\to\infty}\sum_{1\leq i\leq h}\frac{\chi\psi\omega_{F}^{-1}(\mathfrak{a}_{i})}{\langle\mathrm{Nm}(\mathfrak{a}_{i})\rangle^{s}}\sum_{V}\sum_{x\in P(V)\cap\mathfrak{a}_{i}^{-1}}\sum_{\begin{subarray}{c}0\leq l_{1},\cdots,l_{k}<q^{n}\\ \gcd(p,x+\sum_{1\leq i\leq k}l_{i}v_{i})=1\end{subarray}}a_{V,\chi}(x+\sum_{1\leq i\leq k}l_{i}v_{i})\frac{\psi\omega_{F}^{-1}(x+\sum_{1\leq i\leq k}l_{i}v_{i})}{\langle\mathrm{Nm}(x+\sum_{1\leq i\leq k}l_{i}v_{i})\rangle^{s}},

where

aV,χ​(x+βˆ‘1≀i≀kli​vi)=(βˆ’1)kβ€‹βˆ‘0≀di<li,1≀i≀kχ​(x+βˆ‘1≀i≀kdi​vi).\displaystyle a_{V,\chi}(x+\sum_{1\leq i\leq k}l_{i}v_{i})=(-1)^{k}\sum_{0\leq d_{i}<l_{i},1\leq i\leq k}\chi(x+\sum_{1\leq i\leq k}d_{i}v_{i}).
Remark 1.2.

Actually, following [CN79b], we can establish a sum expression when the conductor of Ο‡\chi is arbitrary, at the expense of multiplying LF,p​(s,Ο‡β€‹Οˆ)L_{F,p}(s,\chi\psi) by an auxiliary Euler factor as in the first part of the theorem; see Remark 3.11. Still, the Cassou-NoguΓ¨s condition seems indispensable if we want to remove the extra Euler factor.

Remark 1.3.

We indicate conceptually how Theorem 1.1 is proved. As discussed in [Zha22, §1.5], the sum expressions can be established from three ingredients: integral representations, computability of periods, and the uniform periodicity of the periods. In our setting, the first ingredient is available thanks to the work of Cassou-Noguès, complemented by a reinterpretation due to Katz [Kat81]. As such, the main novelty of the present proof is the determination of the explicit formulas (Theorem 3.6 and 4.4) of the periods concerned, whereby uniform periodicity automatically follows.

Remark 1.4.

An interesting consequence is that the periods mentioned above are 𝐙​[1/N,im​(Ο‡)]\mathbf{Z}[1/N,\mathrm{im}(\chi)]-valued, which previously are known to be valued in a finite extension of 𝐙p\mathbf{Z}_{p}. As such, this allows us to speak of their 22-divisibilities even when pp is odd. In Appendix B, we shall compute some approximate coefficients of the Iwasawa functions attached to the pp-adic LL-functions of 𝐐​(5)\mathbf{Q}(\sqrt{5}) where pp is odd, and remarkably the Deligne-Ribet 22-divisibility (see, e.g., [Rib79, (4.8)]), a priori only making sense when p=2p=2, propagates in all the numerical examples considered.

Remark 1.5.

It will also follow from our proof that one can use these expressions to compute pp-adic LL-values with a precision of O​(qn)O(q^{n}), by taking the finite sums on the right hand sides of both expressions without limits. Regarding this, it is tempting to compare this method to those of [Rob15] and Lauder-Vonk [LV22].

As a byproduct, following the sum expression-to-derivative philosophy demonstrated in [Zha22, Β§4], we obtain

Corollary 1.6 (Generalized Ferrero-Greenberg formula).

Assume in addition that

  1. (A4)

    The prime pp is inert in FF and χ​(p)=1\chi(p)=1.

  2. (A5)

    For all VV in the cone decomposition, VV is a 𝐙p\mathbf{Z}_{p} basis of π’ͺp=lim←n⁑π’ͺ/pn\mathcal{O}_{p}=\varprojlim_{n}\mathcal{O}/p^{n}.

Then, we have

LF,p′​(0,χ​ωF)=(βˆ’1)kβˆ’1β€‹βˆ‘1≀i≀hχ​(π”ži)β€‹βˆ‘Vβˆ‘x∈P​(V)βˆ©π”žiβˆ’1βˆ‘0≀d1,β‹―,dk<Nχ​(x+βˆ‘1≀i≀kdi​vi)​logp⁑ΓF,p,V​(x+βˆ‘1≀i≀kdi​viN).\displaystyle L_{F,p}^{\prime}(0,\chi\omega_{F})=(-1)^{k-1}\sum_{1\leq i\leq h}\chi(\mathfrak{a}_{i})\sum_{V}\sum_{x\in P(V)\cap\mathfrak{a}_{i}^{-1}}\sum_{0\leq d_{1},\cdots,d_{k}<N}\chi(x+\sum_{1\leq i\leq k}d_{i}v_{i})\log_{p}\Gamma_{F,p,V}\left(\frac{x+\sum_{1\leq i\leq k}d_{i}v_{i}}{N}\right).

Here, the multiple pp-adic Gamma function Ξ“F,p,V\Gamma_{F,p,V} is defined in (5.1).

Remark 1.7.

For a given VV, as long as p∀[π’ͺ:βˆ‘1≀i≀k𝐙vi]p\nmid[\mathcal{O}:\sum_{1\leq i\leq k}\mathbf{Z}v_{i}], π’ͺp=βˆ‘1≀i≀k𝐙p​vi\mathcal{O}_{p}=\sum_{1\leq i\leq k}\mathbf{Z}_{p}v_{i}.

Remark 1.8.

It is worth pointing out that formulas of a similar guise can be found in the work of Cassou-Noguès [CN79a, Théorèm 6] and that of Kashio [Kas05, Theorem 6.2]. However, the above formula appears to be of a distinct nature, as our multivariate pp-adic Gamma function is defined elementarily in the spirit of Morita [Mor75], while the Gamma functions in aforementioned papers are constructed inexplicitly as certain derivatives.

Remark 1.9.

Using the sum expression as sketched in Remark 3.11, we can derive a Ferrero-Greenberg type formula for an arbitrary conductor which involves an auxiliary Cassou-Noguès ideal. The details will be discussed in a separate paper.

The assumption that pp is inert and χ​(p)=1\chi(p)=1 fits the special case of the Gross-Stark conjecture, now a theorem of Dasgupta-Darmon-Pollack [DDP11] and Dasgupta-Kakde-Ventullo [DKV18], when the vanishing order of the LL-function is one. See [Gro81, Β§3] or a summary in [Das08, Β§2.1]. Combining this and the corollary, we get the following Gross-Koblitz type formula (cf.Β [GK79, Theorem 1.7]):

Corollary 1.10.

Keep the assumptions in Corollary 1.6. Let H/FH/F be the narrow ray class field attached to Cl+​(𝒩)/(p)𝐙\mathrm{Cl}_{+}(\mathcal{N})/(p)^{\mathbf{Z}}, Upβˆ’={u∈HΓ—:|u|v=1​ for all place ​v∀p}U_{p}^{-}=\{u\in H^{\times}:|u|_{v}=1\text{ for all place }v\nmid p\}, and assume

  • (A6)

    HH is a CM extension.

Let upβˆˆπβŠ—π™Upβˆ’u_{p}\in\mathbf{Q}\otimes_{\mathbf{Z}}U_{p}^{-} be the rational Brumer-Stark unit (denoted by u=u​(𝔓)u=u(\mathfrak{P}) in [Gro81, Conjecture 3.13], where 𝔓\mathfrak{P} is a fixed prime above pp in HH). For any fractional ideal π”ž\mathfrak{a} prime to 𝒩\mathcal{N}, let Οƒπ”žβˆˆGal​(H/F)\sigma_{\mathfrak{a}}\in\mathrm{Gal}(H/F) be the image of π”ž\mathfrak{a} under Artin reciprocity, and write π”ž=π”ži​(y)\mathfrak{a}=\mathfrak{a}_{i}(y) for some unique 1≀i≀h1\leq i\leq h and y∈C¯​(V)y\in\overline{C}(V), where VV appears in the Shintani cone decomposition and is uniquely determined by π”ž\mathfrak{a}. Denote also by Ξ½\nu the order of (p)(p) in Cl+​(𝒩)\mathrm{Cl}_{+}(\mathcal{N}). Then

(1.3) logp⁑NmFβŠ—ππp/𝐐p​(upΟƒπ”ž)=(βˆ’1)kβ€‹βˆ‘0≀j<Ξ½βˆ‘x∈P​(V)βˆ©π”žiβˆ’1βˆ‘0≀d1,β‹―,dk<Nx+βˆ‘1≀i≀kdi​vi≑pj​y(mod𝒩)logp⁑ΓF,p,V​(x+βˆ‘1≀i≀kdi​viN).\displaystyle\log_{p}\mathrm{Nm}_{F\otimes_{\mathbf{Q}}\mathbf{Q}_{p}/\mathbf{Q}_{p}}(u_{p}^{\sigma_{\mathfrak{a}}})=(-1)^{k}\sum_{0\leq j<\nu}\sum_{x\in P(V)\cap\mathfrak{a}_{i}^{-1}}\sum_{\begin{subarray}{c}0\leq d_{1},\cdots,d_{k}<N\\ x+\sum_{1\leq i\leq k}d_{i}v_{i}\equiv p^{j}y\pmod{\mathcal{N}}\end{subarray}}\log_{p}\Gamma_{F,p,V}\left(\frac{x+\sum_{1\leq i\leq k}d_{i}v_{i}}{N}\right).
Remark 1.11.

The assumption (A6), as is already present in [Gro81], ensures that there are totally odd characters on Gal​(H/F)\mathrm{Gal}(H/F); otherwise all the pp-adic LL-functions LF,p​(s,χ​ωF)L_{F,p}(s,\chi\omega_{F}) attached to characters Ο‡\chi of Gal​(H/F)\mathrm{Gal}(H/F) are identically zero.

For a direct pp-adic analytic formula of upu_{p} via the multiplicative integral, we refer the reader to works of Dasgupta and collaborators, for example [Das08, Proposition 3.3]; for another formula of upu_{p} in terms of the Dedekind-Rademacher cocycle when F/𝐐F/\mathbf{Q} is quadratic, see [DPV21a, DPV21b]. We also draw attention to the recent breakthroughs of Dasgupta-Kakde [DK20, DK21], which establish the integrality of upu_{p} away from 2, as well as the multiplicative integral representation under certain assumptions.

1.3. Outlook

In the spirit of Iwasawa [Iwa58], Ferrero [Fer78] and Ferrero-Washington [FW79], the explicit period formulas (3.4) and (4.2) are expected to play important roles in understanding the analytic μ\mu- and λ\lambda-invariants of abelian extensions of FF; see Appendix B for more detail. If we further assume that p≠2p\neq 2 and the degree of the extension is prime to pp, then results of Wiles [Wil90, Theorem 1.3 and Theorem 1.4] assert that the analytic and algebraic Iwasawa invariants coincide. We hope to investigate this question in the future.

In another direction, it would be very desirable to know if equation (1.3) could shed light on the explicit construction of the Brumer-Stark unit upu_{p}, which, when F=𝐐F=\mathbf{Q}, is known to be essentially a Gauss sum [GK79]. In fact, to the best of the author’s knowledge, it is not clear whether a complex analogue of (1.3) exists, unless F=𝐐F=\mathbf{Q}, in which case it is a result of Deligne [Del82].

1.4. Notation

We will retain the notation introduced above; this includes our assumptions made at the beginning of Β§1.2. In the rest of this paper, Ο‡\chi exclusively denotes a finite Hecke character on Cl+​(𝒩)\mathrm{Cl}_{+}(\mathcal{N}) of nontrivial narrow modulus. For any hβˆˆπ™>1h\in\mathbf{Z}_{>1} and aβˆˆπ™/ha\in\mathbf{Z}/h, we denote by ahβ™­a^{\flat}_{h} and ahβ™―a^{\sharp}_{h} the unique integers in [0,h)[0,h) and (0,h](0,h] respectively, such that a≑ah♭≑ahβ™―modha\equiv a^{\flat}_{h}\equiv a^{\sharp}_{h}\bmod h. Additionally, thanks to the Cassou-NoguΓ¨s condition, we write a𝒩♭a^{\flat}_{\mathcal{N}} for (amod𝒩)Nβ™­(a\bmod\mathcal{N})^{\flat}_{N} if a∈Fa\in F is 𝒩\mathcal{N}-integral, and similarly for a𝒩♯a^{\sharp}_{\mathcal{N}}. Also, denote by π’ͺp\mathcal{O}_{p} the pp-adic ring π’ͺβŠ—π™π™p\mathcal{O}\otimes_{\mathbf{Z}}\mathbf{Z}_{p} and FpF_{p} the algebra FβŠ—ππpF\otimes_{\mathbf{Q}}\mathbf{Q}_{p}. Throughout we will fix embeddings of 𝐐¯\bar{\mathbf{Q}} into 𝐂\mathbf{C} and 𝐂p\mathbf{C}_{p}, so we can regard 𝐐¯\bar{\mathbf{Q}} as a subfield of both. The letter xx is reserved to denote an element of FF that is 𝒩​p\mathcal{N}p-integral, and VV is reserved to denote a 𝐐\mathbf{Q}-basis of FF, its elements being v1,β‹―,vkv_{1},\cdots,v_{k}, all of which are in π’ͺ+\mathcal{O}_{+} and are prime to 𝒩\mathcal{N}. A governing convention is the vectorial notation: frequently we abbreviate a tuple (a1,β‹―,ak)(a_{1},\cdots,a_{k}) as simply aa, so we have a+b=(a1+b1,β‹―,ak+bk)a+b=(a_{1}+b_{1},\cdots,a_{k}+b_{k}) and aβ‹…b=βˆ‘1≀i≀kai​bia\cdot b=\sum_{1\leq i\leq k}a_{i}b_{i}. Moreover, if aa and bb are two tuples, we understand a≀ba\leq b as inequalities for all components, and the same for a<ba<b, etc.; such use will be propagated when aβˆˆπ‘ka\in\mathbf{R}^{k} and bβˆˆπ‘b\in\mathbf{R}, in which case bb is understood as the vector (b,b,β‹―,b)(b,b,\cdots,b). If a generator set V={v1,β‹―,vk}V=\{v_{1},\cdots,v_{k}\} as above is fixed, for any z∈Fpz\in F_{p}, we always suppose zz is of the form βˆ‘1≀i≀kzi​vi\sum_{1\leq i\leq k}z_{i}v_{i} with zi∈𝐐pz_{i}\in\mathbf{Q}_{p}; this is legitimate since VV is also a 𝐐p\mathbf{Q}_{p}-basis of FpF_{p}. Also put π’ͺV=𝐙​v1+β‹―+𝐙​vk\mathcal{O}_{V}=\mathbf{Z}v_{1}+\cdots+\mathbf{Z}v_{k} and π’ͺV,p=𝐙p​v1+β‹―+𝐙p​vk\mathcal{O}_{V,p}=\mathbf{Z}_{p}v_{1}+\cdots+\mathbf{Z}_{p}v_{k}, for which the previous convention applies by regarding both π’ͺV\mathcal{O}_{V} and π’ͺV,p\mathcal{O}_{V,p} as subgroups of FpF_{p}. Finally, we denote by 𝟏A\mathbf{1}_{A} the indicator function that has value 1 if the condition AA is true and otherwise 0, and, given a finite group GG, denote by G∧G^{\wedge} the dual group Hom​(G,𝐐¯×)\mathrm{Hom}(G,\bar{\mathbf{Q}}^{\times}).

1.5. Acknowledgement

The author is greatly indebted to Antonio Lei, for suggesting this line of works to us, for having many insightful discussions, and for reading the many drafts that eventually led to this paper. He is also grateful to Jan Vonk for helpful comments. Finally he thanks the referee for valuable feedback that enhances the presentation of this article.

2. Preliminaries on pp-adic measures

We give here a quick recapitulation of some background material; more detailed accounts can be found in [Hid93, Β§3.6-Β§3.9] and [Kat81]. Recall Cl+​(p∞)\mathrm{Cl}_{+}(p^{\infty}) denotes the completion lim←n⁑Cl+​(pn)\varprojlim_{n}\mathrm{Cl}_{+}(p^{n}). Following Cassou-NoguΓ¨s, there exists a pp-adic measure ΞΌF,𝒩\mu_{F,\mathcal{N}} on Cl+​(p∞)\mathrm{Cl}_{+}(p^{\infty}) such that for any Hecke character ψ\psi on Cl+​(p∞)\mathrm{Cl}_{+}(p^{\infty}),

(2.1) βˆ’(1βˆ’Οˆβ€‹(𝒩)β€‹βŸ¨N⟩1βˆ’s)​LF,p​(s,ψ)=∫Cl+​(p∞)Οˆβ€‹Ο‰Fβˆ’1​(Ξ±)β€‹βŸ¨Nmβ€‹Ξ±βŸ©βˆ’s​μF,𝒩​(Ξ±).\displaystyle-(1-\psi(\mathcal{N})\langle N\rangle^{1-s})L_{F,p}(s,\psi)=\int_{\mathrm{Cl}_{+}(p^{\infty})}\psi\omega_{F}^{-1}(\alpha)\langle\mathrm{Nm}\alpha\rangle^{-s}\mu_{F,\mathcal{N}}(\alpha).

When the Hecke character Ο‡\chi is present, there is a measure ΞΌF,Ο‡\mu_{F,\chi} on Cl+​(p∞)\mathrm{Cl}_{+}(p^{\infty}) such that for all ψ\psi,

(2.2) LF,p​(s,Ο‡β€‹Οˆ)=∫Cl+​(p∞)Οˆβ€‹Ο‰Fβˆ’1​(Ξ±)β€‹βŸ¨Nmβ€‹Ξ±βŸ©βˆ’s​μF,χ​(Ξ±);\displaystyle L_{F,p}(s,\chi\psi)=\int_{\mathrm{Cl}_{+}(p^{\infty})}\psi\omega_{F}^{-1}(\alpha)\langle\mathrm{Nm}\alpha\rangle^{-s}\mu_{F,\chi}(\alpha);

the removal of the auxiliary Euler factor reflects the regularity of LF,p​(s,Ο‡β€‹Οˆ)L_{F,p}(s,\chi\psi) at s=1s=1. Essentially, the construction of these pp-adic measures can be summarized in two steps:

  • (i)

    Given a tuple (V,x)(V,x) where VV is a generator set and x∈Fx\in F is 𝒩​p\mathcal{N}p-integral, let tβˆˆπ™β‰₯0t\in\mathbf{Z}_{\geq 0} be such that x∈pβˆ’t​π’ͺV,pβŠ‚Fpx\in p^{-t}\mathcal{O}_{V,p}\subset F_{p} and denote by V†=pβˆ’t​V={v1β€²=pβˆ’t​v1,β‹―,vkβ€²=pβˆ’t​vk}V^{\dagger}=p^{-t}V=\{v_{1}^{\prime}=p^{-t}v_{1},\cdots,v_{k}^{\prime}=p^{-t}v_{k}\} and π’ͺV†,p=pβˆ’t​π’ͺV,p\mathcal{O}_{V^{\dagger},p}=p^{-t}\mathcal{O}_{V,p}. Then one may construct certain pp-adic measures ΞΌV,x,𝒩\mu_{V,x,\mathcal{N}} and ΞΌV,x,Ο‡\mu_{V,x,\chi} on π’ͺV†,p\mathcal{O}_{V^{\dagger},p} that are supported on x+π’ͺV,pβŠ†π’ͺpx+\mathcal{O}_{V,p}\subseteq\mathcal{O}_{p}.

  • (ii)

    Let i∞:π’ͺpΓ—β†’Cl+​(p∞)i_{\infty}:\mathcal{O}_{p}^{\times}\to\mathrm{Cl}_{+}(p^{\infty}) be the canonical map (see [Hid93, p.Β 103, (1b)]), and let gi,V:π’ͺV†,p∩π’ͺpΓ—β†ͺπ’ͺpΓ—β†’i∞Cl+​(p∞)β†’π”žβ†¦π”žiβ€‹π”žCl+​(p∞)g_{i,V}:\mathcal{O}_{V^{\dagger},p}\cap\mathcal{O}_{p}^{\times}\hookrightarrow\mathcal{O}_{p}^{\times}\xrightarrow{i_{\infty}}\mathrm{Cl}_{+}(p^{\infty})\xrightarrow{\mathfrak{a}\mapsto\mathfrak{a}_{i}\mathfrak{a}}\mathrm{Cl}_{+}(p^{\infty}) be the composition and (gi,V)βˆ—(g_{i,V})_{*} the induced pushforward on measures. The constructions in (i) are assembled to form:

    (2.3) ΞΌF,𝒩=βˆ‘1≀i≀hβˆ‘Vβˆ‘x∈P​(V)βˆ©π”žiβˆ’1(gi,V)βˆ—β€‹(ΞΌV,x,𝒩|π’ͺV†,p∩π’ͺpΓ—),\displaystyle\mu_{F,\mathcal{N}}=\sum_{1\leq i\leq h}\sum_{V}\sum_{x\in P(V)\cap\mathfrak{a}_{i}^{-1}}(g_{i,V})_{*}(\mu_{V,x,\mathcal{N}}|_{\mathcal{O}_{V^{\dagger},p}\cap\mathcal{O}_{p}^{\times}}),
    (2.4) ΞΌF,Ο‡=βˆ‘1≀i≀hβˆ‘Vβˆ‘x∈P​(V)βˆ©π”žiβˆ’1χ​(π”ži)​(gi,V)βˆ—β€‹(ΞΌV,x,Ο‡|π’ͺV†,p∩π’ͺpΓ—).\displaystyle\mu_{F,\chi}=\sum_{1\leq i\leq h}\sum_{V}\sum_{x\in P(V)\cap\mathfrak{a}_{i}^{-1}}\chi(\mathfrak{a}_{i})(g_{i,V})_{*}(\mu_{V,x,\chi}|_{\mathcal{O}_{V^{\dagger},p}\cap\mathcal{O}_{p}^{\times}}).

We elaborate slightly on the first step. Let (V,x)(V,x) be given and let RR be a finite flat extension of 𝐙p\mathbf{Z}_{p}. By restricting the Amice transform, essentially Cartier duality Γ  la Katz [Kat81, Theorem 1], RR-valued measures on π’ͺV†,p\mathcal{O}_{V^{\dagger},p} are in bijection with elements in the formal algebra

π’œV†≃lim←n⁑R​[t1,β‹―,tk]/(t1pnβˆ’1,β‹―,tkpnβˆ’1)=R​[[t1βˆ’1,β‹―,tkβˆ’1]].\displaystyle\mathcal{A}_{V^{\dagger}}\simeq\varprojlim_{n}R[t_{1},\cdots,t_{k}]/(t_{1}^{p^{n}}-1,\cdots,t_{k}^{p^{n}}-1)=R[[t_{1}-1,\cdots,t_{k}-1]].

Formally we denote the isomorphism by π’œ:Mes​(π’ͺV†,p,R)β†’βˆΌπ’œV†\mathscr{A}:{\rm Mes}(\mathcal{O}_{V^{\dagger},p},R)\xrightarrow{\sim}\mathcal{A}_{V^{\dagger}}, where Mes​(π’ͺV†,p,R){\rm Mes}(\mathcal{O}_{V^{\dagger},p},R) stands for the set of measures on π’ͺV†,p\mathcal{O}_{V^{\dagger},p} valued in RR. In turn, the constructions of ΞΌV,x,𝒩\mu_{V,x,\mathcal{N}} and ΞΌV,x,Ο‡\mu_{V,x,\chi} can be achieved by manufacturing certain power series fV,x,𝒩f_{V,x,\mathcal{N}} and fV,x,Ο‡f_{V,x,\chi}, respectively. We postpone the minutiae of these power series, in fact rational functions, to individual sections below. For now, we are content to record a general formula to be used for period computations. For ease of notation, given Ξ±=Ξ±1′​v1β€²+β‹―+Ξ±k′​vkβ€²βˆˆπ’ͺV†,p\alpha=\alpha^{\prime}_{1}v^{\prime}_{1}+\cdots+\alpha^{\prime}_{k}v^{\prime}_{k}\in\mathcal{O}_{V^{\dagger},p}, denote by tΞ±t^{\alpha} the monomial t1Ξ±1′​t2Ξ±2′​⋯​tkΞ±kβ€²βˆˆπ’œV†t_{1}^{\alpha^{\prime}_{1}}t_{2}^{\alpha^{\prime}_{2}}\cdots t_{k}^{\alpha^{\prime}_{k}}\in\mathcal{A}_{V^{\dagger}}. For any Ο†βˆˆ(π’ͺV†,p/pn)∧\varphi\in(\mathcal{O}_{V^{\dagger},p}/p^{n})^{\wedge}, we define the evaluation β‹…|Ο†\cdot|_{\varphi} on π’œV†\mathcal{A}_{V^{\dagger}} by dictating tΞ±|Ο†=φ​(Ξ±)t^{\alpha}|_{\varphi}=\varphi(\alpha) for all α∈π’ͺV†,p\alpha\in\mathcal{O}_{V^{\dagger},p}.

Proposition 2.1.

Let μ∈Mes​(π’ͺV†,p,R)\mu\in{\rm Mes}(\mathcal{O}_{V^{\dagger},p},R). For all a∈π’ͺV†,pa\in\mathcal{O}_{V^{\dagger},p} and nβˆˆπ™β‰₯0n\in\mathbf{Z}_{\geq 0}, we have

μ​(a+pn​π’ͺV,p)=1p(n+t)​kβ€‹βˆ‘Ο†βˆˆ(π’ͺV†,p/pn+t)βˆ§Ο†βˆ’1​(a)β€‹π’œΞΌ|Ο†.\displaystyle\mu(a+p^{n}\mathcal{O}_{V,p})=\frac{1}{p^{(n+t)k}}\sum_{\varphi\in(\mathcal{O}_{V^{\dagger},p}/p^{n+t})^{\wedge}}\varphi^{-1}(a)\mathscr{A}_{\mu}|_{\varphi}.
Proof.

The pp-adic module π’ͺV†,p\mathcal{O}_{V^{\dagger},p} comes equipped with a basis π’ͺV†,pβ‰ƒβŠ•1≀i≀k𝐙pβ‹…viβ€²\mathcal{O}_{V^{\dagger},p}\simeq\oplus_{1\leq i\leq k}\mathbf{Z}_{p}\cdot v_{i}^{\prime}, and the Amice transform for the formal torus of π’œV†\mathcal{A}_{V^{\dagger}} respects this splitting [Hid93, proof of Theorem 3.7.1], i.e., the isomorphism loc.Β cit.Β is given by taking the completion of the tensor of the one-dimensional isomorphisms R​[[tiβˆ’1]]≃Mes​(𝐙pβ‹…viβ€²,R)R[[t_{i}-1]]\simeq\mathrm{Mes}(\mathbf{Z}_{p}\cdot v_{i}^{\prime},R). The formula then follows from that in the one-dimensional case, which can be found in p.Β 84, ibid. (Note here that pn​π’ͺV,p=pn+t​π’ͺV†,pp^{n}\mathcal{O}_{V,p}=p^{n+t}\mathcal{O}_{V^{\dagger},p}.) ∎

Remark 2.2.

As pointed out by Remark 1.7, the passage from VV to V†V^{\dagger} is unnecessary for all but finitely many primes pp.

3. Explicit period formula: the zeta case

Given x∈Fx\in F that is 𝒩​p\mathcal{N}p-integral and V={v1,β‹―,vk}V=\{v_{1},\cdots,v_{k}\}, the power series that corresponds to ΞΌV,x,𝒩\mu_{V,x,\mathcal{N}} is given by [Hid93, Β§3.8]

fV,x,𝒩​(t)=βˆ‘ΞΎβ‰ 1∈(π’ͺ/𝒩)βˆ§ΞΎβ€‹(x)​tx∏1≀i≀k(1βˆ’ΞΎβ€‹(vi)​tvi)βˆˆπ’œV†,\displaystyle f_{V,x,\mathcal{N}}(t)=\sum_{\xi\neq 1\in(\mathcal{O}/\mathcal{N})^{\wedge}}\frac{\xi(x)t^{x}}{\prod_{1\leq i\leq k}(1-\xi(v_{i})t^{v_{i}})}\in\mathcal{A}_{V^{\dagger}},

and we are interested in computing

(3.1) ΞΌV,x,𝒩​(a+pn​π’ͺV,p)=1p(n+t)​kβ€‹βˆ‘Ο†βˆˆ(π’ͺV†,p/pn+t)βˆ§Ο†βˆ’1​(a)​fV,x,𝒩|Ο†.\displaystyle\mu_{V,x,\mathcal{N}}(a+p^{n}\mathcal{O}_{V,p})=\frac{1}{p^{(n+t)k}}\sum_{\varphi\in(\mathcal{O}_{V^{\dagger},p}/p^{n+t})^{\wedge}}\varphi^{-1}(a)f_{V,x,\mathcal{N}}|_{\varphi}.

For this purpose, we break fV,x,𝒩f_{V,x,\mathcal{N}} up as the sum βˆ‘ΞΎβ‰ 1∈(π’ͺ/𝒩)∧fV,x,𝒩,ΞΎ\sum_{\xi\neq 1\in(\mathcal{O}/\mathcal{N})^{\wedge}}f_{V,x,\mathcal{N},\xi}, where fV,x,𝒩,ΞΎ=ξ​(x)​tx∏1≀i≀k(1βˆ’ΞΎβ€‹(vi)​tvi)f_{V,x,\mathcal{N},\xi}=\frac{\xi(x)t^{x}}{\prod_{1\leq i\leq k}(1-\xi(v_{i})t^{v_{i}})}, and we compute periods of corresponding measures ΞΌV,x,𝒩,ΞΎ\mu_{V,x,\mathcal{N},\xi} individually.

3.1. First step

Set

RV,x​(a,pn)={y=x+βˆ‘1≀i≀kli​vi∈F:liβˆˆπ™,0≀li<pn,yβˆ’a∈pn​π’ͺV,p}.\displaystyle R_{V,x}(a,p^{n})=\left\{y=x+\sum_{1\leq i\leq k}l_{i}v_{i}\in F:l_{i}\in\mathbf{Z},0\leq l_{i}<p^{n},y-a\in p^{n}\mathcal{O}_{V,p}\right\}.

We prove

Lemma 3.1.

Suppose ξ∈(π’ͺ/𝒩)∧\xi\in(\mathcal{O}/\mathcal{N})^{\wedge} is nontrivial. Then

(3.2) ΞΌV,x,𝒩,ξ​(a+pn​π’ͺV,p)=βˆ‘y∈RV,x​(a,pn)ξ​(y)∏1≀i≀k(1βˆ’ΞΎβ€‹(pn​vi)).\displaystyle\mu_{V,x,\mathcal{N},\xi}(a+p^{n}\mathcal{O}_{V,p})=\sum_{y\in R_{V,x}(a,p^{n})}\frac{\xi(y)}{\prod_{1\leq i\leq k}(1-\xi(p^{n}v_{i}))}.
Proof.

Using Proposition 2.1 it suffices to prove the equality in 𝐐¯\bar{\mathbf{Q}}, thus in 𝐂\mathbf{C}. Introduce an auxiliary real parameter 0<u<10<u<1, and for y∈Fy\in F, write uy=uΟƒ1​(y)u^{y}=u^{\sigma_{1}(y)} with Οƒ1\sigma_{1} from Β§1.1. Then we have

1p(n+t)​kβ€‹βˆ‘Ο†βˆˆ(π’ͺV†,p/pn+t)βˆ§Ο†βˆ’1​(a)​fV,x,𝒩,ΞΎ|Ο†=limuβ†’1βˆ’1p(n+t)​kβ€‹βˆ‘Ο†βˆˆ(π’ͺV†,p/pn+t)∧ux​ξ​(x)​φ​(xβˆ’a)∏1≀i≀k(1βˆ’uvi​ξ​(vi)​φ​(vi)).\displaystyle\frac{1}{p^{(n+t)k}}\sum_{\varphi\in(\mathcal{O}_{V^{\dagger},p}/p^{n+t})^{\wedge}}\varphi^{-1}(a)f_{V,x,\mathcal{N},\xi}|_{\varphi}=\lim_{u\to 1^{-}}\frac{1}{p^{(n+t)k}}\sum_{\varphi\in(\mathcal{O}_{V^{\dagger},p}/p^{n+t})^{\wedge}}\frac{u^{x}\xi(x)\varphi(x-a)}{\prod_{1\leq i\leq k}(1-u^{v_{i}}\xi(v_{i})\varphi(v_{i}))}.

Next, identify (𝐙/pn+t)k(\mathbf{Z}/p^{n+t})^{k} with Hom​(π’ͺV†,p/pn+t,𝐙/pn+t)\mathrm{Hom}(\mathcal{O}_{V^{\dagger},p}/p^{n+t},\mathbf{Z}/p^{n+t}) by the pairing ⟨z,w⟩=βˆ‘1≀i≀kzi′​wi\langle z,w\rangle=\sum_{1\leq i\leq k}z^{\prime}_{i}w_{i}, where z=βˆ‘1≀i≀kzi′​viβ€²βˆˆπ’ͺV†,p/pn+tz=\sum_{1\leq i\leq k}z^{\prime}_{i}v^{\prime}_{i}\in\mathcal{O}_{V^{\dagger},p}/p^{n+t} and w∈(𝐙/pn+t)kw\in(\mathbf{Z}/p^{n+t})^{k}. Choose a primitive pn+tp^{n+t}-th root of unity ΞΆ\zeta and further identity (𝐙/pn+t)k(\mathbf{Z}/p^{n+t})^{k} with Hom​(π’ͺV†,p/pn+t,ΞΌpn+t)\mathrm{Hom}(\mathcal{O}_{V^{\dagger},p}/p^{n+t},\mu_{p^{n+t}}), so w​(z)=΢⟨w,z⟩w(z)=\zeta^{\langle w,z\rangle} for w,zw,z as before. We then find

1p(n+t)​kβ€‹βˆ‘Ο†βˆˆ(π’ͺV†,p/pn+t)∧ux​ξ​(x)​φ​(xβˆ’a)∏1≀i≀k(1βˆ’uvi​ξ​(vi)​φ​(vi))\displaystyle\frac{1}{p^{(n+t)k}}\sum_{\varphi\in(\mathcal{O}_{V^{\dagger},p}/p^{n+t})^{\wedge}}\frac{u^{x}\xi(x)\varphi(x-a)}{\prod_{1\leq i\leq k}(1-u^{v_{i}}\xi(v_{i})\varphi(v_{i}))} =1p(n+t)​kβ€‹βˆ‘0≀w1,β‹―,wk<pn+tux​ξ​(x)β€‹ΞΆβŸ¨xβˆ’a,w⟩∏1≀i≀k(1βˆ’uvi​ξ​(vi)β€‹ΞΆβŸ¨vi,w⟩)\displaystyle=\frac{1}{p^{(n+t)k}}\sum_{0\leq w_{1},\cdots,w_{k}<p^{n+t}}\frac{u^{x}\xi(x)\zeta^{\langle x-a,w\rangle}}{\prod_{1\leq i\leq k}(1-u^{v_{i}}\xi(v_{i})\zeta^{\langle v_{i},w\rangle})}
=1p(n+t)​kβ€‹βˆ‘0≀w1,β‹―,wk<pn+tβˆ‘l1,β‹―,lkβ‰₯0ux+lβ‹…v​ξ​(x+lβ‹…v)β€‹ΞΆβŸ¨xβˆ’a+lβ‹…v,w⟩\displaystyle=\frac{1}{p^{(n+t)k}}\sum_{0\leq w_{1},\cdots,w_{k}<p^{n+t}}\sum_{l_{1},\cdots,l_{k}\geq 0}u^{x+l\cdot v}\xi(x+l\cdot v)\zeta^{\langle x-a+l\cdot v,w\rangle}
=βˆ‘l1,β‹―,lkβ‰₯0x+lβ‹…vβˆ’a∈pn+t​π’ͺV†,pux+lβ‹…v​ξ​(x+lβ‹…v)\displaystyle=\sum_{\begin{subarray}{c}l_{1},\cdots,l_{k}\geq 0\\ x+l\cdot v-a\in p^{n+t}\mathcal{O}_{V^{\dagger},p}\end{subarray}}u^{x+l\cdot v}\xi(x+l\cdot v)
=βˆ‘y∈RV,x​(a,pn)uy​ξ​(y)∏1≀i≀k(1βˆ’upn​vi​ξ​(pn​vi))\displaystyle=\sum_{y\in R_{V,x}(a,p^{n})}\frac{u^{y}\xi(y)}{\prod_{1\leq i\leq k}(1-u^{p^{n}v_{i}}\xi(p^{n}v_{i}))}
β†’βˆ‘y∈RV,x​(a,pn)ξ​(y)∏1≀i≀k(1βˆ’ΞΎβ€‹(pn​vi))(uβ†’1βˆ’).\displaystyle\to\sum_{y\in R_{V,x}(a,p^{n})}\frac{\xi(y)}{\prod_{1\leq i\leq k}(1-\xi(p^{n}v_{i}))}\qquad(u\to 1^{-}).

Here in the third equality we used the fact that for z∈π’ͺV†,p/pn+t​π’ͺV†,pz\in\mathcal{O}_{V^{\dagger},p}/p^{n+t}\mathcal{O}_{V^{\dagger},p}, βˆ‘0≀w<pn+t΢⟨z,w⟩=pn+tβ€‹πŸz=0\sum_{0\leq w<p^{n+t}}\zeta^{\langle z,w\rangle}=p^{n+t}\mathbf{1}_{z=0}. ∎

Remark 3.2.

The set RV,x​(a,pn)R_{V,x}(a,p^{n}) is nonempty if and only if a+pn​π’ͺV,p=x+lβ‹…v+pn​π’ͺV,pa+p^{n}\mathcal{O}_{V,p}=x+l\cdot v+p^{n}\mathcal{O}_{V,p} for some 0≀l<pn0\leq l<p^{n}, i.e., a+pn​π’ͺV,pβŠ†x+π’ͺV,pa+p^{n}\mathcal{O}_{V,p}\subseteq x+\mathcal{O}_{V,p}. Suppose this is the case. Then, as VV is also a 𝐐p\mathbf{Q}_{p}-basis of FpF_{p}, RV,x​(a,pn)R_{V,x}(a,p^{n}) is the singleton {x+lβ‹…v}\{x+l\cdot v\}.

3.2. Second step

To state the result below, we need some notation. For any y∈Fy\in F that is 𝒩\mathcal{N}-integral, set

R​(y,𝒩)=RV​(y,𝒩)={z=βˆ‘1≀i≀kzi​vi∈F:ziβˆˆπ™,0≀zi<N,zβˆ’yβˆˆπ’©}.\displaystyle R(y,\mathcal{N})=R_{V}(y,\mathcal{N})=\left\{z=\sum_{1\leq i\leq k}z_{i}v_{i}\in F:z_{i}\in\mathbf{Z},0\leq z_{i}<N,z-y\in\mathcal{N}\right\}.

Also, we define the coefficients {bi}0≀i≀kβŠ‚π™p\{b_{i}\}_{0\leq i\leq k}\subset\mathbf{Z}_{p} by the expansion:

Nk​(1βˆ’u1βˆ’uN)k=b0+b1​(uβˆ’1)+β‹―+bk​(uβˆ’1)k+O​(uβˆ’1)k+1;\displaystyle N^{k}\left(\frac{1-u}{1-u^{N}}\right)^{k}=b_{0}+b_{1}(u-1)+\cdots+b_{k}(u-1)^{k}+O(u-1)^{k+1};

note that b0=1b_{0}=1. Finally, for z=βˆ‘1≀i≀kzi​vi∈Fz=\sum_{1\leq i\leq k}z_{i}v_{i}\in F, write z~=βˆ‘1≀i≀kzi\tilde{z}=\sum_{1\leq i\leq k}z_{i}.

Lemma 3.3.

We have

ΞΌV,x,𝒩​(a+pn​π’ͺV,p)=(βˆ’1)kNkβˆ’1β€‹βˆ‘y∈RV,x​(a,pn)βˆ‘z∈R​(βˆ’y/pn,𝒩)[bk+bkβˆ’1​(z~1)+β‹―+b0​(z~k)].\displaystyle\mu_{V,x,\mathcal{N}}(a+p^{n}\mathcal{O}_{V,p})=\frac{(-1)^{k}}{N^{k-1}}\sum_{y\in R_{V,x}(a,p^{n})}\sum_{z\in R(-y/p^{n},\mathcal{N})}\left[b_{k}+b_{k-1}\binom{\tilde{z}}{1}+\cdots+b_{0}\binom{\tilde{z}}{k}\right].
Proof.

Again it suffices to prove the identity over 𝐐¯\bar{\mathbf{Q}}, thus over 𝐂\mathbf{C}, by summing (3.2) over all nontrivial ξ∈(π’ͺ/𝒩)∧\xi\in(\mathcal{O}/\mathcal{N})^{\wedge}. Let u∈(0,1)u\in(0,1) be a real parameter. Then

ΞΌV,x,𝒩​(a+pn​π’ͺV,p)=limuβ†’1βˆ’βˆ‘ΞΎβ‰ 1βˆ‘y∈RV,x​(a,pn)ξ​(y)∏1≀i≀k(1βˆ’u​ξ​(pn​vi)).\displaystyle\mu_{V,x,\mathcal{N}}(a+p^{n}\mathcal{O}_{V,p})=\lim_{u\to 1^{-}}\sum_{\xi\neq 1}\sum_{y\in R_{V,x}(a,p^{n})}\frac{\xi(y)}{\prod_{1\leq i\leq k}(1-u\xi(p^{n}v_{i}))}.

Before taking the limit, we have

βˆ‘ΞΎβ‰ 1βˆ‘y∈RV,x​(a,pn)ξ​(y)∏1≀i≀k(1βˆ’u​ξ​(pn​vi))\displaystyle\sum_{\xi\neq 1}\sum_{y\in R_{V,x}(a,p^{n})}\frac{\xi(y)}{\prod_{1\leq i\leq k}(1-u\xi(p^{n}v_{i}))} =βˆ‘ΞΎβ‰ 1βˆ‘y∈RV,x​(a,pn)βˆ‘l1,β‹―,lkβ‰₯0ul1+β‹―+lk​ξ​(y+pn​lβ‹…v)\displaystyle=\sum_{\xi\neq 1}\sum_{y\in R_{V,x}(a,p^{n})}\sum_{l_{1},\cdots,l_{k}\geq 0}u^{l_{1}+\cdots+l_{k}}\xi(y+p^{n}l\cdot v)
=βˆ‘y∈RV,x​(a,pn)[βˆ‘l1,β‹―,lkβ‰₯0y+pn​lβ‹…vβˆˆπ’©N​ul1+β‹―+lkβˆ’1(1βˆ’u)k]\displaystyle=\sum_{y\in R_{V,x}(a,p^{n})}\left[\sum_{\begin{subarray}{c}l_{1},\cdots,l_{k}\geq 0\\ y+p^{n}l\cdot v\in\mathcal{N}\end{subarray}}Nu^{l_{1}+\cdots+l_{k}}-\frac{1}{(1-u)^{k}}\right]
=βˆ‘y∈RV,x​(a,pn)[βˆ’1(1βˆ’u)k+Nβ€‹βˆ‘z∈R​(βˆ’y/pn,𝒩)uz~(1βˆ’uN)k].\displaystyle=\sum_{y\in R_{V,x}(a,p^{n})}\left[-\frac{1}{(1-u)^{k}}+N\sum_{z\in R(-y/p^{n},\mathcal{N})}\frac{u^{\tilde{z}}}{(1-u^{N})^{k}}\right].

Since the above rational function is regular at u=1u=1, after we take the limit uβ†’1βˆ’u\to 1^{-}, only the constant term survives. Therefore it boils down to computing the degree zero term of

N​uz~(1βˆ’uN)k\displaystyle N\frac{u^{\tilde{z}}}{(1-u^{N})^{k}} =1Nkβˆ’1​(1βˆ’u)kβ‹…uz~​Nk​(1βˆ’u1βˆ’uN)k\displaystyle=\frac{1}{N^{k-1}(1-u)^{k}}\cdot u^{\tilde{z}}N^{k}\left(\frac{1-u}{1-u^{N}}\right)^{k}
=1Nkβˆ’1​(1βˆ’u)kβ€‹βˆ‘0≀i≀k(z~i)​(uβˆ’1)iβ€‹βˆ‘0≀j≀kbj​(uβˆ’1)j+O​(uβˆ’1),\displaystyle=\frac{1}{N^{k-1}(1-u)^{k}}\sum_{0\leq i\leq k}\binom{\tilde{z}}{i}(u-1)^{i}\sum_{0\leq j\leq k}b_{j}(u-1)^{j}+O(u-1),

which is clearly (βˆ’1)kNkβˆ’1β€‹βˆ‘0≀i≀kbi​(z~kβˆ’i)\frac{(-1)^{k}}{N^{k-1}}\sum_{0\leq i\leq k}b_{i}\binom{\tilde{z}}{k-i}. ∎

3.3. Final step

Lemma 3.4.

For all 0≀i≀k0\leq i\leq k, there exist polynomials Pi​(X)βˆˆπβ€‹[X]P_{i}(X)\in\mathbf{Q}[X], such that for any Cassou-NoguΓ¨s ideal 𝒩\mathcal{N} and any y∈π’ͺ/𝒩y\in\mathcal{O}/\mathcal{N},

  1. a)

    if 0≀i<k0\leq i<k, then

    βˆ‘z∈R​(y,𝒩)(z~i)=Pi​(N);\displaystyle\sum_{z\in R(y,\mathcal{N})}\binom{\tilde{z}}{i}=P_{i}(N);
  2. b)

    if i=ki=k, then

    βˆ‘z∈R​(y,𝒩)(z~k)=βˆ‘1≀d1,d2,β‹―,dk<Nd1​v1+β‹―+dk​vk≑ymod𝒩d1​d2​⋯​dk+Pk​(N).\displaystyle\sum_{z\in R(y,\mathcal{N})}\binom{\tilde{z}}{k}=\sum_{\begin{subarray}{c}1\leq d_{1},d_{2},\cdots,d_{k}<N\\ d_{1}v_{1}+\cdots+d_{k}v_{k}\equiv y\bmod\mathcal{N}\end{subarray}}d_{1}d_{2}\cdots d_{k}+P_{k}(N).
Proof.

Write z=z1​v1+β‹―+zk​vkz=z_{1}v_{1}+\cdots+z_{k}v_{k}, so z~=z1+β‹―+zk\tilde{z}=z_{1}+\cdots+z_{k}. We have

(z1+β‹―+zki)=βˆ‘i1+β‹―+ik=i(z1i1)​(z2i2)​⋯​(zkik),\displaystyle\binom{z_{1}+\cdots+z_{k}}{i}=\sum_{i_{1}+\cdots+i_{k}=i}\binom{z_{1}}{i_{1}}\binom{z_{2}}{i_{2}}\cdots\binom{z_{k}}{i_{k}},

where the sum is over all nonnegative tuples (i1,β‹―,ik)(i_{1},\cdots,i_{k}) with i1+β‹―+ik=ii_{1}+\cdots+i_{k}=i. Thus the study of the sum βˆ‘z∈R​(y,𝒩)(z~i)\sum_{z\in R(y,\mathcal{N})}\binom{\tilde{z}}{i} boils down to that of βˆ‘z∈R​(y,𝒩)(z1i1)​⋯​(zkik)\sum_{z\in R(y,\mathcal{N})}\binom{z_{1}}{i_{1}}\cdots\binom{z_{k}}{i_{k}} for each tuple (i1,β‹―,ik)(i_{1},\cdots,i_{k}).

Assume first some ir=0i_{r}=0; without loss of generality say r=kr=k. Note that this assumption is automatic if i<ki<k. In this case, consider the following parametrization of R​(y,𝒩)R(y,\mathcal{N}):

{d1​v1+d2​v2+β‹―+dkβˆ’1​vkβˆ’1+(yβˆ’d1​v1βˆ’β‹―βˆ’dkβˆ’1​vkβˆ’1vk)𝒩♭​vk∈F:0≀d1,d2,β‹―,dkβˆ’1<N}.\displaystyle\left\{d_{1}v_{1}+d_{2}v_{2}+\cdots+d_{k-1}v_{k-1}+\left(\frac{y-d_{1}v_{1}-\cdots-d_{k-1}v_{k-1}}{v_{k}}\right)^{\flat}_{\mathcal{N}}v_{k}\in F:0\leq d_{1},d_{2},\cdots,d_{k-1}<N\right\}.

Using this, we find

βˆ‘z∈R​(y,𝒩)(z1i1)​⋯​(zkik)\displaystyle\sum_{z\in R(y,\mathcal{N})}\binom{z_{1}}{i_{1}}\cdots\binom{z_{k}}{i_{k}} =βˆ‘z∈R​(y,𝒩)(z1i1)​⋯​(zkβˆ’1ikβˆ’1)\displaystyle=\sum_{z\in R(y,\mathcal{N})}\binom{z_{1}}{i_{1}}\cdots\binom{z_{k-1}}{i_{k-1}}
=βˆ‘0≀d1,β‹―,dkβˆ’1<N(d1i1)​⋯​(dkβˆ’1ikβˆ’1)\displaystyle=\sum_{0\leq d_{1},\cdots,d_{k-1}<N}\binom{d_{1}}{i_{1}}\cdots\binom{d_{k-1}}{i_{k-1}}
=(Ni1+1)​⋯​(Nikβˆ’1+1).\displaystyle=\binom{N}{i_{1}+1}\cdots\binom{N}{i_{k-1}+1}.

As such, for 0≀i<k0\leq i<k, we conclude that

Pi​(X)=1Xβ€‹βˆ‘i1+β‹―+ik=i(Xi1+1)​⋯​(Xik+1).\displaystyle P_{i}(X)=\frac{1}{X}\sum_{i_{1}+\cdots+i_{k}=i}\binom{X}{i_{1}+1}\cdots\binom{X}{i_{k}+1}.

As for the remaining case that none of iri_{r} is 0, we must have i=ki=k and i1=i2​⋯=ik=1i_{1}=i_{2}\cdots=i_{k}=1. In turn,

βˆ‘z∈R​(y,𝒩)(z11)​⋯​(zk1)=βˆ‘1≀d1,d2,β‹―,dk<Nd1​v1+β‹―+dk​vk≑ymod𝒩d1​d2​⋯​dk.\displaystyle\sum_{z\in R(y,\mathcal{N})}\binom{z_{1}}{1}\cdots\binom{z_{k}}{1}=\sum_{\begin{subarray}{c}1\leq d_{1},d_{2},\cdots,d_{k}<N\\ d_{1}v_{1}+\cdots+d_{k}v_{k}\equiv y\bmod\mathcal{N}\end{subarray}}d_{1}d_{2}\cdots d_{k}.

It also follows that

Pk​(X)=1Xβ€‹βˆ‘i1+β‹―+ik=ki1​i2​⋯​ik=0(Xi1+1)​⋯​(Xik+1).\displaystyle P_{k}(X)=\frac{1}{X}\sum_{\begin{subarray}{c}i_{1}+\cdots+i_{k}=k\\ i_{1}i_{2}\cdots i_{k}=0\end{subarray}}\binom{X}{i_{1}+1}\cdots\binom{X}{i_{k}+1}.

∎

Combining Lemmas 3.3 and 3.4, we conclude that

ΞΌV,x,𝒩​(a+pn​π’ͺV,p)=(βˆ’1)kNkβˆ’1β€‹βˆ‘y∈RV,x​(a,pn)[βˆ‘1≀d1,d2,β‹―,dk<Nd1​v1+β‹―+dk​vkβ‰‘βˆ’y/pnmod𝒩d1​d2​⋯​dk+P​(N)],\displaystyle\mu_{V,x,\mathcal{N}}(a+p^{n}\mathcal{O}_{V,p})=\frac{(-1)^{k}}{N^{k-1}}\sum_{y\in R_{V,x}(a,p^{n})}\left[\sum_{\begin{subarray}{c}1\leq d_{1},d_{2},\cdots,d_{k}<N\\ d_{1}v_{1}+\cdots+d_{k}v_{k}\equiv-y/p^{n}\bmod\mathcal{N}\end{subarray}}d_{1}d_{2}\cdots d_{k}+P(N)\right],

for some polynomial P​(X)P(X) independent of a,n,ya,n,y. To ease notation, denote by

(3.3) HV​(y)=βˆ‘1≀d1,d2,β‹―,dk<Nd1​v1+β‹―+dk​vkβ‰‘βˆ’ymod𝒩d1​d2​⋯​dk.\displaystyle H_{V}(y)=\sum_{\begin{subarray}{c}1\leq d_{1},d_{2},\cdots,d_{k}<N\\ d_{1}v_{1}+\cdots+d_{k}v_{k}\equiv-y\bmod\mathcal{N}\end{subarray}}d_{1}d_{2}\cdots d_{k}.
Lemma 3.5.

For the polynomial P​(X)P(X) as above, we have

P​(N)=βˆ’Nkβˆ’1​(Nβˆ’12)k.\displaystyle P(N)=-N^{k-1}\left(\frac{N-1}{2}\right)^{k}.
Proof.

Recall q>1q>1 denotes a power of pp with q≑1mod𝒩q\equiv 1\bmod\mathcal{N}. Using the additivity of ΞΌV,x,𝒩\mu_{V,x,\mathcal{N}} as a measure, we have

ΞΌV,x,𝒩​(x+π’ͺV,p)=βˆ‘0≀l1,β‹―,lk<qΞΌV,x,𝒩​(x+lβ‹…v+q​π’ͺV,p).\displaystyle\mu_{V,x,\mathcal{N}}(x+\mathcal{O}_{V,p})=\sum_{0\leq l_{1},\cdots,l_{k}<q}\mu_{V,x,\mathcal{N}}(x+l\cdot v+q\mathcal{O}_{V,p}).

Bearing Remark 3.2 in mind, we have

ΞΌV,x,𝒩​(x+lβ‹…v+qϡ​π’ͺV,p)=(βˆ’1)kNkβˆ’1​[HV​(x+lβ‹…v)+P​(N)],\displaystyle\mu_{V,x,\mathcal{N}}(x+l\cdot v+q^{\epsilon}\mathcal{O}_{V,p})=\frac{(-1)^{k}}{N^{k-1}}[H_{V}(x+l\cdot v)+P(N)],

for ϡ∈{0,1}\epsilon\in\{0,1\} and 0≀l1,β‹―,lk<qΟ΅0\leq l_{1},\cdots,l_{k}<q^{\epsilon}. Therefore

HV​(x)=βˆ‘0≀l1,β‹―,lk<qHV​(x+lβ‹…v)+(qkβˆ’1)​P​(N).\displaystyle H_{V}(x)=\sum_{0\leq l_{1},\cdots,l_{k}<q}H_{V}(x+l\cdot v)+(q^{k}-1)P(N).

A small computation shows

βˆ‘0≀l1,β‹―,lk<qHV​(x+lβ‹…v)\displaystyle\sum_{0\leq l_{1},\cdots,l_{k}<q}H_{V}(x+l\cdot v) =βˆ‘0≀l1,β‹―,lk<qβˆ‘0≀d1,β‹―,dkβˆ’1<Nd1​⋯​dkβˆ’1​(βˆ’xβˆ’lβ‹…vβˆ’d1​v1βˆ’β‹―βˆ’dkβˆ’1​vkβˆ’1vk)𝒩♭\displaystyle=\sum_{0\leq l_{1},\cdots,l_{k}<q}\sum_{0\leq d_{1},\cdots,d_{k-1}<N}d_{1}\cdots d_{k-1}\left(\frac{-x-l\cdot v-d_{1}v_{1}-\cdots-d_{k-1}v_{k-1}}{v_{k}}\right)^{\flat}_{\mathcal{N}}
=HV​(x)+βˆ‘0≀d1,β‹―,dkβˆ’1<Nd1​d2​⋯​dkβˆ’1​qβˆ’1N​N​(Nβˆ’1)2​(qkβˆ’1+qkβˆ’2+β‹―+1)\displaystyle=H_{V}(x)+\sum_{0\leq d_{1},\cdots,d_{k-1}<N}d_{1}d_{2}\cdots d_{k-1}\frac{q-1}{N}\frac{N(N-1)}{2}(q^{k-1}+q^{k-2}+\cdots+1)
=HV​(x)+Nkβˆ’1​(Nβˆ’12)k​(qkβˆ’1).\displaystyle=H_{V}(x)+N^{k-1}\left(\frac{N-1}{2}\right)^{k}(q^{k}-1).

Combine the equations and we find P​(N)=βˆ’Nkβˆ’1​(Nβˆ’12)kP(N)=-N^{k-1}(\frac{N-1}{2})^{k}. ∎

In summary, we have established the first period formula below.

Theorem 3.6.

Let F/𝐐F/\mathbf{Q} be a totally real number field of degree kk, pp be a rational prime and 𝒩≠π’ͺ\mathcal{N}\neq\mathcal{O} be a Cassou-NoguΓ¨s ideal prime to pp. Let x∈Fx\in F be 𝒩​p\mathcal{N}p-integral and V={v1,β‹―,vk}βŠ‚π’ͺ+V=\{v_{1},\cdots,v_{k}\}\subset\mathcal{O}_{+} be a 𝐐\mathbf{Q}-basis of FF, all of whose elements are prime to 𝒩\mathcal{N}. Then the attached pp-adic measure ΞΌV,x,𝒩\mu_{V,x,\mathcal{N}} on π’ͺV†,p\mathcal{O}_{V^{\dagger},p} is valued in 𝐙​[1/N]\mathbf{Z}[1/N], and we have

(3.4) ΞΌV,x,𝒩​(x+lβ‹…v+pn​π’ͺV,p)=(βˆ’1)k​[1Nkβˆ’1​HV​(x+lβ‹…vpn)βˆ’(Nβˆ’12)k],\displaystyle\mu_{V,x,\mathcal{N}}(x+l\cdot v+p^{n}\mathcal{O}_{V,p})=(-1)^{k}\left[\frac{1}{N^{k-1}}H_{V}\left(\frac{x+l\cdot v}{p^{n}}\right)-\left(\frac{N-1}{2}\right)^{k}\right],

for all nβˆˆπ™β‰₯0n\in\mathbf{Z}_{\geq 0} and l=(l1,β‹―,lk)l=(l_{1},\cdots,l_{k}) with 0≀l1,β‹―,lk<pn0\leq l_{1},\cdots,l_{k}<p^{n}.

Remark 3.7.

When F=𝐐F=\mathbf{Q} and x=0x=0, this specializes to the period formula of the regularized Bernoulli measure (see, e.g., [KW21, Theorem 3.1]):

ΞΌ1,Nβˆ’1​(a+pn​𝐙p)=βˆ’(βˆ’a/pn)Nβ™­+Nβˆ’12.\displaystyle\mu_{1,N^{-1}}(a+p^{n}\mathbf{Z}_{p})=-(-a/p^{n})^{\flat}_{N}+\frac{N-1}{2}.
Corollary 3.8.

Let the assumptions be as in Theorem 3.6. Let further ψ\psi be a finite character of Cl+​(p∞)\mathrm{Cl}_{+}(p^{\infty}). Then

(3.5) (1βˆ’Οˆβ€‹(𝒩)β€‹βŸ¨N⟩1βˆ’s)​LF,p​(s,Οˆβ€‹Ο‰F)=(βˆ’1)kβˆ’1​limnβ†’βˆžβˆ‘1≀i≀hΟˆβ€‹(π”ži)⟨Nm​(π”ži)⟩sβ€‹βˆ‘Vβˆ‘x∈P​(V)βˆ©π”žiβˆ’1βˆ‘0≀l1,β‹―,lk<qngcd⁑(p,x+lβ‹…v)=1HV​(x+lβ‹…v)Nkβˆ’1β€‹Οˆβ€‹(x+lβ‹…v)⟨Nm​(x+lβ‹…v)⟩s.\displaystyle\begin{split}&(1-\psi(\mathcal{N})\langle N\rangle^{1-s})L_{F,p}(s,\psi\omega_{F})\\ =&(-1)^{k-1}\lim_{n\to\infty}\sum_{1\leq i\leq h}\frac{\psi(\mathfrak{a}_{i})}{\langle\mathrm{Nm}(\mathfrak{a}_{i})\rangle^{s}}\sum_{V}\sum_{x\in P(V)\cap\mathfrak{a}_{i}^{-1}}\sum_{\begin{subarray}{c}0\leq l_{1},\cdots,l_{k}<q^{n}\\ \gcd(p,x+l\cdot v)=1\end{subarray}}\frac{H_{V}(x+l\cdot v)}{N^{k-1}}\frac{\psi(x+l\cdot v)}{\langle\mathrm{Nm}(x+l\cdot v)\rangle^{s}}.\end{split}
Proof.

This follows from the integral representation (2.1), the pushforward formula (2.3), and the vanishing of limnβ†’βˆžβˆ‘0≀l1,β‹―,lk<qngcd⁑(p,x+lβ‹…v)=1Οˆβ€‹(x+lβ‹…v)β€‹βŸ¨Nm​(x+lβ‹…v)βŸ©βˆ’s\lim_{n\to\infty}\sum_{\begin{subarray}{c}0\leq l_{1},\cdots,l_{k}<q^{n}\\ \gcd(p,x+l\cdot v)=1\end{subarray}}\psi(x+l\cdot v)\langle\mathrm{Nm}(x+l\cdot v)\rangle^{-s} (cf.Β the proof of Lemma 4.6). ∎

Remark 3.9.

When F≠𝐐F\neq\mathbf{Q}, s=0s=0 and ψ\psi is the trivial character, through the interpolation property (1.1) and the vanishing of ΞΆF​(0)\zeta_{F}(0), we derive the following curious identity

βˆ‘1≀i≀hβˆ‘Vβˆ‘x∈P​(V)βˆ©π”žiβˆ’1[1Nkβˆ’1​HV​(x)βˆ’(Nβˆ’12)k]=0.\displaystyle\sum_{1\leq i\leq h}\sum_{V}\sum_{x\in P(V)\cap\mathfrak{a}_{i}^{-1}}\left[\frac{1}{N^{k-1}}H_{V}(x)-\left(\frac{N-1}{2}\right)^{k}\right]=0.

For a simple example take F=𝐐​(5)F=\mathbf{Q}(\sqrt{5}), for which we have h=|Cl+​(1)|=1h=|\mathrm{Cl}_{+}(1)|=1. As such, take {π”ži}1≀i≀h={π’ͺ}\{\mathfrak{a}_{i}\}_{1\leq i\leq h}=\{\mathcal{O}\} and V={1,Ξ΅=3+52}V=\{1,\varepsilon=\frac{3+\sqrt{5}}{2}\}. The set P​(V)∩π’ͺP(V)\cap\mathcal{O} is then the singleton {1}\{1\}. We have thus proved the following

Proposition 3.10.

Suppose N>1N>1 is such that X2βˆ’3​X+1X^{2}-3X+1 has a solution Ξ΅\varepsilon modulo NN. Then

1Nβ€‹βˆ‘1≀d<Nd​(βˆ’1βˆ’d​Ρ)Nβ™­=(Nβˆ’1)24.\displaystyle\frac{1}{N}\sum_{1\leq d<N}d(-1-d\varepsilon)^{\flat}_{N}=\frac{(N-1)^{2}}{4}.

It would be interesting to give this an elementary proof.

Remark 3.11.

For the duration of this remark let Ο‡\chi be a Hecke character of an arbitrary conductor π”£βŠ†π’ͺ\mathfrak{f}\subseteq\mathcal{O}. Below we briefly sketch how to establish a sum expression of LF,p​(s,χ​ωF)L_{F,p}(s,\chi\omega_{F}) using the period formula (3.4), at the price of working with an auxiliary Cassou-NoguΓ¨s ideal 𝒩\mathcal{N}. We will loosely follow the original strategy of [CN79b]. First, we need to upgrade the assumptions (A1) and (A3) in Β§1.2 to

  1. (A1+)

    The ideal 𝒩\mathcal{N} is Cassou-NoguΓ¨s, not equal to π’ͺ\mathcal{O} and prime to p​𝔣p\mathfrak{f}.

  2. (A3+)

    For all VV in the Shintani decomposition and each vi∈Vv_{i}\in V, viv_{i} is prime to 𝒩\mathcal{N} and viβˆˆπ”£+v_{i}\in\mathfrak{f}_{+}.

As before, we also assume

  1. (A2)

    All representatives π”ži\mathfrak{a}_{i} of Cl+​(1)\mathrm{Cl}_{+}(1) are integral and prime to p​𝒩p\mathcal{N}.

Note that if (A3) is satisfied, we can achieve (A3+) by rescaling all of VV’s simultaneously by an element in 𝔣+βˆ–π’©\mathfrak{f}_{+}\setminus\mathcal{N} if needed, so that the decomposition (1.2) still holds.

Under these assumptions, for ξ∈μN\xi\in\mu_{N} and π”ž\mathfrak{a} a fractional ideal, consider the complex functions

LV,x,ξ​(s)=βˆ‘lβ‰₯0ΞΎx+lβ‹…vNm​(x+lβ‹…v)s\displaystyle L_{V,x,\xi}(s)=\sum_{l\geq 0}\frac{\xi^{x+l\cdot v}}{\mathrm{Nm}(x+l\cdot v)^{s}}

and

L​(π”ž,s,Ο‡)=βˆ‘0β‰ π”ŸβŠ†π’ͺ[π”Ÿ]=[π”ž]∈Cl+​(1)χ​(π”Ÿ)Nm​(π”Ÿ)s,\displaystyle L(\mathfrak{a},s,\chi)=\sum_{\begin{subarray}{c}0\neq\mathfrak{b}\subseteq\mathcal{O}\\ [\mathfrak{b}]=[\mathfrak{a}]\in\mathrm{Cl}_{+}(1)\end{subarray}}\frac{\chi(\mathfrak{b})}{\mathrm{Nm}(\mathfrak{b})^{s}},

where if 𝔠\mathfrak{c} is a fractional ideal, [𝔠][\mathfrak{c}] denotes its class in Cl+​(1)\mathrm{Cl}_{+}(1). Then, if π”ž=π”ži\mathfrak{a}=\mathfrak{a}_{i} for some ii, we have (cf.Β [CN79b, ThΓ©orΓ¨me 4]):

N1βˆ’s​χ​(𝒩)​L​(π”žβ€‹π’©βˆ’1,s,Ο‡)βˆ’L​(π”ž,s,Ο‡)=Nm​(π”ž)βˆ’sβ€‹βˆ‘Vβˆ‘x∈P​(V)βˆ©π”žβˆ’1χ​(π”žβ€‹x)β€‹βˆ‘ΞΎβ‰ 1,ΞΎN=1LV,x,ξ​(s).\displaystyle N^{1-s}\chi(\mathcal{N})L(\mathfrak{a}\mathcal{N}^{-1},s,\chi)-L(\mathfrak{a},s,\chi)=\mathrm{Nm}(\mathfrak{a})^{-s}\sum_{V}\sum_{x\in P(V)\cap\mathfrak{a}^{-1}}\chi(\mathfrak{a}x)\sum_{\xi\neq 1,\xi^{N}=1}L_{V,x,\xi}(s).

Therefore,

βˆ’(1βˆ’Ο‡β€‹(𝒩)​N1βˆ’s)​LF​(s,Ο‡)=βˆ‘1≀i≀hNm​(π”ži)βˆ’sβ€‹βˆ‘Vβˆ‘x∈P​(V)βˆ©π”žiβˆ’1χ​(π”ži​x)β€‹βˆ‘ΞΎβ‰ 1,ΞΎN=1LV,x,ξ​(s).\displaystyle-(1-\chi(\mathcal{N})N^{1-s})L_{F}(s,\chi)=\sum_{1\leq i\leq h}\mathrm{Nm}(\mathfrak{a}_{i})^{-s}\sum_{V}\sum_{x\in P(V)\cap\mathfrak{a}_{i}^{-1}}\chi(\mathfrak{a}_{i}x)\sum_{\xi\neq 1,\xi^{N}=1}L_{V,x,\xi}(s).

Building on this, and removing the summands of LV,x,ΞΎL_{V,x,\xi} such that gcd⁑(x+lβ‹…v,p)β‰ 1\gcd(x+l\cdot v,p)\neq 1 if necessary, we can run the interpolation argument in [CN79b, Β§IV] to obtain

βˆ’(1βˆ’Ο‡β€‹Ο‰F​(𝒩)β€‹βŸ¨N⟩1βˆ’s)​LF,p​(s,χ​ωF)=βˆ‘1≀i≀h⟨Nm​(π”ži)βŸ©βˆ’sβ€‹βˆ‘Vβˆ‘x∈P​(V)βˆ©π”žiβˆ’1χ​(π”ži​x)​Lp,V,x,𝒩​(s,Ο‰F),\displaystyle-(1-\chi\omega_{F}(\mathcal{N})\langle N\rangle^{1-s})L_{F,p}(s,\chi\omega_{F})=\sum_{1\leq i\leq h}\langle\mathrm{Nm}(\mathfrak{a}_{i})\rangle^{-s}\sum_{V}\sum_{x\in P(V)\cap\mathfrak{a}_{i}^{-1}}\chi(\mathfrak{a}_{i}x)L_{p,V,x,\mathcal{N}}(s,\omega_{F}),

where Lp,V,x,𝒩​(s,Ο‰F)=∫π’ͺpΓ—βŸ¨Nmβ€‹Ξ±βŸ©βˆ’s​μV,x,𝒩​(Ξ±)L_{p,V,x,\mathcal{N}}(s,\omega_{F})=\int_{\mathcal{O}_{p}^{\times}}\langle\mathrm{Nm}\alpha\rangle^{-s}\mu_{V,x,\mathcal{N}}(\alpha). Thus the sum expression of βˆ’(1βˆ’Ο‡β€‹Ο‰F​(𝒩)β€‹βŸ¨N⟩1βˆ’s)​LF,p​(s,χ​ωF)-(1-\chi\omega_{F}(\mathcal{N})\langle N\rangle^{1-s})L_{F,p}(s,\chi\omega_{F}) would follow from Theorem 3.6.

4. Explicit period formula: the Dirichlet case

Retain the setting of the last section. Let further Ο‡\chi be a finite Hecke character on Cl+​(𝒩)\mathrm{Cl}_{+}(\mathcal{N}) of nontrivial narrow modulus; that is to say, Ο‡\chi is nontrivial on the image of (π’ͺ/𝒩)Γ—(\mathcal{O}/\mathcal{N})^{\times} from the canonical exact sequence

Eβ†’(π’ͺ/𝒩)Γ—β†’Cl+​(𝒩)β†’Cl+​(1)β†’1.\displaystyle E\to(\mathcal{O}/\mathcal{N})^{\times}\to\mathrm{Cl}_{+}(\mathcal{N})\to\mathrm{Cl}_{+}(1)\to 1.

In this case, the rational function is given by

fV,x,χ​(t)=βˆ‘0≀d1,β‹―,dk<Nχ​(x+dβ‹…v)​tx+dβ‹…v∏1≀i≀k(1βˆ’tN​vi),\displaystyle f_{V,x,\chi}(t)=\sum_{0\leq d_{1},\cdots,d_{k}<N}\chi(x+d\cdot v)\frac{t^{x+d\cdot v}}{\prod_{1\leq i\leq k}(1-t^{Nv_{i}})},

which a priori lives in the fraction field of π’œV†\mathcal{A}_{V^{\dagger}}. As a preliminary, we prove

Lemma 4.1.

For all 1≀i≀k1\leq i\leq k and any ΞΆ\zeta a ptp^{t}-th root of unity, the function fV,x,χ​(t)f_{V,x,\chi}(t) is regular at ti=ΞΆt_{i}=\zeta. Thus fV,x,Ο‡f_{V,x,\chi} belongs to π’œV†\mathcal{A}_{V^{\dagger}}.

Proof.

Since 1βˆ’tN​vi=1βˆ’tiN​pt1-t^{Nv_{i}}=1-t_{i}^{Np^{t}}, the vanishing order of the denominator of fV,x,Ο‡f_{V,x,\chi} at ti=ΞΆt_{i}=\zeta is exactly 1. Thus it suffices to show the numerator also has vanishing order β‰₯1\geq 1 at ti=ΞΆt_{i}=\zeta. Without loss of generality suppose i=ki=k. We have

βˆ‘0≀d1,β‹―,dk<Nχ​(x+dβ‹…v)​tx+dβ‹…v\displaystyle\sum_{0\leq d_{1},\cdots,d_{k}<N}\chi(x+d\cdot v)t^{x+d\cdot v} =βˆ‘0≀d1,β‹―,dkβˆ’1<Ntx+βˆ‘1≀i≀kβˆ’1di​viβ€‹βˆ‘0≀dk<Nχ​(x+dβ‹…v)​tkpt​dk\displaystyle=\sum_{0\leq d_{1},\cdots,d_{k-1}<N}t^{x+\sum_{1\leq i\leq k-1}d_{i}v_{i}}\sum_{0\leq d_{k}<N}\chi(x+d\cdot v)t_{k}^{p^{t}d_{k}}
=βˆ‘0≀d1,β‹―,dkβˆ’1<Ntx+βˆ‘1≀i≀kβˆ’1di​viβ€‹βˆ‘0≀dk<Nχ​(x+dβ‹…v)+(tkβˆ’ΞΆ)​g​(t)\displaystyle=\sum_{0\leq d_{1},\cdots,d_{k-1}<N}t^{x+\sum_{1\leq i\leq k-1}d_{i}v_{i}}\sum_{0\leq d_{k}<N}\chi(x+d\cdot v)+(t_{k}-\zeta)g(t)
=(tkβˆ’ΞΆ)​g​(t),\displaystyle=(t_{k}-\zeta)g(t),

for some g​(t)βˆˆπ’œV†g(t)\in\mathcal{A}_{V^{\dagger}}.

We now show that this implies that fV,x,χ​(t)βˆˆπ’œV†f_{V,x,\chi}(t)\in\mathcal{A}_{V^{\dagger}}. Note first that

fV,x,χ​(t1/N)=βˆ‘0≀d<Nχ​(x+dβ‹…v)​tx+dβ‹…vN∏1≀i≀k(1βˆ’tipt).\displaystyle f_{V,x,\chi}(t^{1/N})=\sum_{0\leq d<N}\chi(x+d\cdot v)\frac{t^{\frac{x+d\cdot v}{N}}}{\prod_{1\leq i\leq k}(1-t_{i}^{p^{t}})}.

Since gcd⁑(N,p)=1\gcd(N,p)=1, we see that for all 1≀i≀k1\leq i\leq k, ti1/Nβˆˆπ’œV†t_{i}^{1/N}\in\mathcal{A}_{V^{\dagger}}, so fV,x,χ​(t1/N)f_{V,x,\chi}(t^{1/N}) belongs to Frac​(π’œV†)\mathrm{Frac}(\mathcal{A}_{V^{\dagger}}). Let [N][N] be the multiplication-by-NN endomorphism of Frac​(π’œV†)\mathrm{Frac}(\mathcal{A}_{V^{\dagger}}) induced from that of the formal torus of π’œV†\mathcal{A}_{V^{\dagger}}. Then, since p∀Np\nmid N, [N][N] is an isomorphism and preserves π’œV†\mathcal{A}_{V^{\dagger}}. As such, noticing the image of fV,x,χ​(t1/N)f_{V,x,\chi}(t^{1/N}) under [N][N] is fV,x,χ​(t)f_{V,x,\chi}(t), we see that the only possible poles of fV,x,χ​(t)f_{V,x,\chi}(t) are the NN-multiples of those of fV,x,χ​(t1/N)f_{V,x,\chi}(t^{1/N}). Since the latter is contained in ΞΌpt\mu_{p^{t}}, we conclude that fV,x,Ο‡f_{V,x,\chi} is regular by the first part. ∎

Since ΞΌV,x,Ο‡\mu_{V,x,\chi} is the measure corresponding to fV,x,Ο‡f_{V,x,\chi}, we may apply Proposition 2.1 to compute the period

(4.1) ΞΌV,x,χ​(a+pn​π’ͺV,p)=1p(n+t)​kβ€‹βˆ‘Ο†βˆˆ(π’ͺV†,p/pn+t)βˆ§Ο†βˆ’1​(a)​fV,x,Ο‡|Ο†.\displaystyle\mu_{V,x,\chi}(a+p^{n}\mathcal{O}_{V,p})=\frac{1}{p^{(n+t)k}}\sum_{\varphi\in(\mathcal{O}_{V^{\dagger},p}/p^{n+t})^{\wedge}}\varphi^{-1}(a)f_{V,x,\chi}|_{\varphi}.

Below we shall establish the explicit formula of ΞΌV,x,Ο‡\mu_{V,x,\chi} in several steps. Towards this, we introduce a stratification of (π’ͺV†,p/pn+t)∧(\mathcal{O}_{V^{\dagger},p}/p^{n+t})^{\wedge}. As in the proof of Lemma 3.1, we identify Hom​(π’ͺV†,p/pn+t,𝐙/pn+t)\mathrm{Hom}(\mathcal{O}_{V^{\dagger},p}/p^{n+t},\mathbf{Z}/p^{n+t}) with (𝐙/pn+t)k(\mathbf{Z}/p^{n+t})^{k}. For any subset SβŠ†{1,2,β‹―,k}S\subseteq\{1,2,\cdots,k\}, we define

𝒫S={w∈(𝐙/pn+t)k:pt​wi=0​ for all ​i∈S,pt​wiβ‰ 0​ otherwise}.\displaystyle\mathcal{P}_{S}=\{w\in(\mathbf{Z}/p^{n+t})^{k}:p^{t}w_{i}=0\text{ for all }i\in S,p^{t}w_{i}\neq 0\text{ otherwise}\}.

Clearly (𝐙/pn+t)k=⨆S𝒫S(\mathbf{Z}/p^{n+t})^{k}=\bigsqcup_{S}\mathcal{P}_{S}. As a consequence, we can dismantle formula (4.1) into

ΞΌV,x,χ​(a+pn​π’ͺV,p)=1p(n+t)​kβ€‹βˆ‘SβŠ†{1,β‹―,k}βˆ‘Ο†βˆˆπ’«SΟ†βˆ’1​(a)​fV,x,Ο‡|Ο†,\displaystyle\mu_{V,x,\chi}(a+p^{n}\mathcal{O}_{V,p})=\frac{1}{p^{(n+t)k}}\sum_{S\subseteq\{1,\cdots,k\}}\sum_{\varphi\in\mathcal{P}_{S}}\varphi^{-1}(a)f_{V,x,\chi}|_{\varphi},

and we denote the SS-piece 1p(n+t)​kβ€‹βˆ‘Ο†βˆˆπ’«SΟ†βˆ’1​(a)​fV,x,Ο‡|Ο†\frac{1}{p^{(n+t)k}}\sum_{\varphi\in\mathcal{P}_{S}}\varphi^{-1}(a)f_{V,x,\chi}|_{\varphi} by Ξ©S​(a,n)\Omega_{S}(a,n).

4.1. The initial case

We start with S=βˆ…S=\varnothing, so 𝒫S=π’«βˆ…={w∈(𝐙/pn+t)k:pt​wiβ‰ 0​ for all ​1≀i≀k}\mathcal{P}_{S}=\mathcal{P}_{\varnothing}=\{w\in(\mathbf{Z}/p^{n+t})^{k}:p^{t}w_{i}\neq 0\text{ for all }1\leq i\leq k\}. Recall for nβˆˆπ™>0n\in\mathbf{Z}_{>0} and aβˆˆπ™pa\in\mathbf{Z}_{p}, we denote by apnβ™­a^{\flat}_{p^{n}} the unique integer in [0,pn)[0,p^{n}) such that apn♭≑amodpna^{\flat}_{p^{n}}\equiv a\bmod p^{n}; we extend it further to a∈𝐐pa\in\mathbf{Q}_{p} by putting apnβ™­=0a^{\flat}_{p^{n}}=0 if aβˆ‰π™pa\notin\mathbf{Z}_{p}. Our computation in the S=βˆ…S=\varnothing case will be based on the following elementary lemma (the notation introduced only exists therein):

Lemma 4.2.

Let pp be a prime and Nβˆˆπ™>1N\in\mathbf{Z}_{>1} be prime to pp. Let kβˆˆπ™>0k\in\mathbf{Z}_{>0}, v∈((𝐙/N)Γ—)kv\in((\mathbf{Z}/N)^{\times})^{k}, z∈(𝐙/N)kz\in(\mathbf{Z}/N)^{k} and yβˆˆπ™pky\in\mathbf{Z}_{p}^{k}. Let further Ο‡\chi be a nontrivial Dirichlet character on (𝐙/N)Γ—(\mathbf{Z}/N)^{\times}, and ΞΆ\zeta be a pp-power root of unity with order pn+tp^{n+t} for some n,tβˆˆπ™β‰₯0n,t\in\mathbf{Z}_{\geq 0}. Then

1p(n+t)​kβ€‹βˆ‘wβˆˆπ’«βˆ…βˆ‘0≀d1,β‹―,dk<Nχ​(z+dβ‹…v)​΢(y+d​pt)β‹…w∏1≀i≀k(1βˆ’ΞΆwi​N​pt)=(βˆ’1)kpn​kβ€‹βˆ‘0≀d1,β‹―,dk<Nχ​(z+dβ‹…v)β€‹βˆ1≀i≀k(βˆ’yi+di​ptN​pt)pnβ™­.\displaystyle\frac{1}{p^{(n+t)k}}\sum_{w\in\mathcal{P}_{\varnothing}}\sum_{0\leq d_{1},\cdots,d_{k}<N}\chi(z+d\cdot v)\frac{\zeta^{(y+dp^{t})\cdot w}}{\prod_{1\leq i\leq k}(1-\zeta^{w_{i}Np^{t}})}=\frac{(-1)^{k}}{p^{nk}}\sum_{0\leq d_{1},\cdots,d_{k}<N}\chi(z+d\cdot v)\prod_{1\leq i\leq k}\left(-\frac{y_{i}+d_{i}p^{t}}{Np^{t}}\right)^{\flat}_{p^{n}}.
Proof.

It suffices to prove the equality in 𝐂\mathbf{C}. For this let u∈(0,1)u\in(0,1) be an auxiliary real parameter. Then

1p(n+t)​kβ€‹βˆ‘wβˆˆπ’«βˆ…βˆ‘0≀d1,β‹―,dk<Nχ​(z+dβ‹…v)​΢(y+d​pt)β‹…w∏1≀i≀k(1βˆ’u​΢wi​N​pt)\displaystyle\frac{1}{p^{(n+t)k}}\sum_{w\in\mathcal{P}_{\varnothing}}\sum_{0\leq d_{1},\cdots,d_{k}<N}\chi(z+d\cdot v)\frac{\zeta^{(y+dp^{t})\cdot w}}{\prod_{1\leq i\leq k}(1-u\zeta^{w_{i}Np^{t}})}
=\displaystyle= 1p(n+t)​kβ€‹βˆ‘0≀d<Nχ​(z+dβ‹…v)β€‹βˆ‘wβˆˆπ’«βˆ…βˆ‘l1,β‹―,lkβ‰₯0ul1+β‹―+lk​΢(y+d​pt+N​pt​l)β‹…w\displaystyle\frac{1}{p^{(n+t)k}}\sum_{0\leq d<N}\chi(z+d\cdot v)\sum_{w\in\mathcal{P}_{\varnothing}}\sum_{l_{1},\cdots,l_{k}\geq 0}u^{l_{1}+\cdots+l_{k}}\zeta^{(y+dp^{t}+Np^{t}l)\cdot w}
=\displaystyle= 1p(n+t)​kβ€‹βˆ‘0≀d<Nχ​(z+dβ‹…v)β€‹βˆ‘w∈(𝐙/pn+t)kβˆ‘lβ‰₯0ul1+β‹―+lk​΢(y+d​pt+N​pt​l)β‹…w.\displaystyle\frac{1}{p^{(n+t)k}}\sum_{0\leq d<N}\chi(z+d\cdot v)\sum_{w\in(\mathbf{Z}/p^{n+t})^{k}}\sum_{l\geq 0}u^{l_{1}+\cdots+l_{k}}\zeta^{(y+dp^{t}+Np^{t}l)\cdot w}.

Here the last equality follows from the orthogonality of Ο‡\chi: If w∈(𝐙/pn+t)kβˆ–π’«βˆ…w\in(\mathbf{Z}/p^{n+t})^{k}\setminus\mathcal{P}_{\varnothing} then without loss of generality we may assume pt​wk=0p^{t}w_{k}=0. As such, for all 0≀d1,β‹―,dkβˆ’1<N0\leq d_{1},\cdots,d_{k-1}<N,

βˆ‘0≀dk<Nχ​(z+dβ‹…v)​΢(y+d​pt+N​pt​l)β‹…w=ΞΆ(y+N​pt​l)β‹…w​΢ptβ€‹βˆ‘1≀i≀kβˆ’1di​wiβ€‹βˆ‘0≀dk<Nχ​(z+dβ‹…v)=0.\displaystyle\sum_{0\leq d_{k}<N}\chi(z+d\cdot v)\zeta^{(y+dp^{t}+Np^{t}l)\cdot w}=\zeta^{(y+Np^{t}l)\cdot w}\zeta^{p^{t}\sum_{1\leq i\leq k-1}d_{i}w_{i}}\sum_{0\leq d_{k}<N}\chi(z+d\cdot v)=0.

Continuing with our computation, we have

1p(n+t)​kβ€‹βˆ‘0≀d<Nχ​(z+dβ‹…v)β€‹βˆ‘lβ‰₯0ul1+β‹―+lkβ€‹βˆ‘w∈(𝐙/pn+t)kΞΆ(y+d​pt+N​pt​l)β‹…w\displaystyle\frac{1}{p^{(n+t)k}}\sum_{0\leq d<N}\chi(z+d\cdot v)\sum_{l\geq 0}u^{l_{1}+\cdots+l_{k}}\sum_{w\in(\mathbf{Z}/p^{n+t})^{k}}\zeta^{(y+dp^{t}+Np^{t}l)\cdot w}
=\displaystyle= βˆ‘0≀d<Nχ​(z+dβ‹…v)β€‹βˆ‘lβ‰₯0y+d​pt+N​pt​l≑0modpn+tul1+β‹―+lk\displaystyle\sum_{0\leq d<N}\chi(z+d\cdot v)\sum_{\begin{subarray}{c}l\geq 0\\ y+dp^{t}+Np^{t}l\equiv 0\bmod p^{n+t}\end{subarray}}u^{l_{1}+\cdots+l_{k}}
=\displaystyle= βˆ‘0≀d<Nχ​(z+dβ‹…v)β€‹βˆ1≀i≀ku(βˆ’yi+di​ptN​pt)pnβ™­1βˆ’upn\displaystyle\sum_{0\leq d<N}\chi(z+d\cdot v)\prod_{1\leq i\leq k}\frac{u^{(-\frac{y_{i}+d_{i}p^{t}}{Np^{t}})^{\flat}_{p^{n}}}}{1-u^{p^{n}}}
=\displaystyle= βˆ‘0≀d<Nχ​(z+dβ‹…v)β€‹βˆ1≀i≀k(βˆ’yi+di​ptN​pt)pn♭​(uβˆ’1)+O​(uβˆ’1)2(1βˆ’u)​pn+O​(uβˆ’1)2,\displaystyle\sum_{0\leq d<N}\chi(z+d\cdot v)\prod_{1\leq i\leq k}\frac{(-\frac{y_{i}+d_{i}p^{t}}{Np^{t}})^{\flat}_{p^{n}}(u-1)+O(u-1)^{2}}{(1-u)p^{n}+O(u-1)^{2}},

where in the last equality we used the regularity of the rational function at u=1u=1. The result then follows by letting uβ†’1βˆ’u\to 1^{-}. ∎

We may now compute the S=βˆ…S=\varnothing-piece using the lemma. Below denote by ΞΆ\zeta a primitive pn+tp^{n+t}-th root of unity, and for a∈π’ͺV†,pa\in\mathcal{O}_{V^{\dagger},p}, write a=βˆ‘1≀i≀kai​via=\sum_{1\leq i\leq k}a_{i}v_{i} for some ai∈pβˆ’t​𝐙pa_{i}\in p^{-t}\mathbf{Z}_{p}. Then

Ξ©βˆ…β€‹(a,n)\displaystyle\Omega_{\varnothing}(a,n) =1p(n+t)​kβ€‹βˆ‘wβˆˆπ’«βˆ…ΞΆβˆ’βŸ¨a,wβŸ©β€‹βˆ‘0≀d1,β‹―,dk<Nχ​(x+dβ‹…v)β€‹ΞΆβŸ¨x+dβ‹…v,w⟩∏1≀i≀k(1βˆ’ΞΆN​pt​wi)\displaystyle=\frac{1}{p^{(n+t)k}}\sum_{w\in\mathcal{P}_{\varnothing}}\zeta^{-\langle a,w\rangle}\sum_{0\leq d_{1},\cdots,d_{k}<N}\chi(x+d\cdot v)\frac{\zeta^{\langle x+d\cdot v,w\rangle}}{\prod_{1\leq i\leq k}(1-\zeta^{Np^{t}w_{i}})}
=(βˆ’1)kpn​kβ€‹βˆ‘0≀d1,β‹―,dk<Nχ​(x+dβ‹…v)β€‹βˆ1≀i≀k(aiβˆ’xiβˆ’diN)pnβ™­.\displaystyle=\frac{(-1)^{k}}{p^{nk}}\sum_{0\leq d_{1},\cdots,d_{k}<N}\chi(x+d\cdot v)\prod_{1\leq i\leq k}\left(\frac{a_{i}-x_{i}-d_{i}}{N}\right)^{\flat}_{p^{n}}.

4.2. General cases via reduction

Now we consider SβŠ†{1,2,β‹―,k}S\subseteq\{1,2,\cdots,k\} that is nonempty. Write V†,S={vjβ€²}jβˆ‰SV^{\dagger,S}=\{v^{\prime}_{j}\}_{j\notin S}, and π’ͺV†,pS=βŠ•jβˆ‰S𝐙p​vjβ€²\mathcal{O}^{S}_{V^{\dagger},p}=\oplus_{j\notin S}\mathbf{Z}_{p}v^{\prime}_{j}. Also, for any Ο†βˆˆ(π’ͺV†,p)βˆ§β‰ƒlimβ†’n⁑(𝐙/pn)k\varphi\in(\mathcal{O}_{V^{\dagger},p})^{\wedge}\simeq\varinjlim_{n}(\mathbf{Z}/p^{n})^{k}, write Ο†S=Ο†|π’ͺV†,pS\varphi^{S}=\varphi|_{\mathcal{O}^{S}_{V^{\dagger},p}}, which is also defined on π’ͺV†,p\mathcal{O}_{V^{\dagger},p} via the canonical projection π’ͺV†,pβ†’π’ͺV†,pS\mathcal{O}_{V^{\dagger},p}\to\mathcal{O}^{S}_{V^{\dagger},p}. For any TβŠ†{1,2,β‹―,k}βˆ–ST\subseteq\{1,2,\cdots,k\}\setminus S, denote by 𝒫TS\mathcal{P}_{T}^{S} the substratum of ∏jβˆ‰S(𝐙/pn+t)\prod_{j\notin S}(\mathbf{Z}/p^{n+t}):

𝒫TS={(wj)jβˆ‰S∈∏jβˆ‰S(𝐙/pn+t):pt​wi=0​ for all ​i∈T,pt​wiβ‰ 0​ otherwise}.\displaystyle\textstyle\mathcal{P}_{T}^{S}=\{(w_{j})_{j\not\in S}\in\prod_{j\notin S}(\mathbf{Z}/p^{n+t}):p^{t}w_{i}=0\text{ for all }i\in T,p^{t}w_{i}\neq 0\text{ otherwise}\}.

Thus if Ο†βˆˆπ’«S\varphi\in\mathcal{P}_{S} then Ο†Sβˆˆπ’«βˆ…S\varphi^{S}\in\mathcal{P}^{S}_{\varnothing}. For any gβˆˆπ’œV†,S=R​[[tjβˆ’1]]jβˆ‰SβŠ‚π’œV†g\in\mathcal{A}_{V^{\dagger,S}}=R[[t_{j}-1]]_{j\notin S}\subset\mathcal{A}_{V^{\dagger}} and for any Ο†βˆˆ(π’ͺV†,p)∧\varphi\in(\mathcal{O}_{V^{\dagger},p})^{\wedge}, we have compatible evaluations g|Ο†=g|Ο†Sg|_{\varphi}=g|_{\varphi^{S}}. Finally for notational convenience we set β„›={x+dβ‹…v:0≀d1,β‹―,dk<N}\mathcal{R}=\{x+d\cdot v:0\leq d_{1},\cdots,d_{k}<N\} and β„›S={yS=βˆ‘jβˆ‰Syj​vj:y=βˆ‘0≀i≀kyi​viβˆˆβ„›}\mathcal{R}^{S}=\{y^{S}=\sum_{j\notin S}y_{j}v_{j}:y=\sum_{0\leq i\leq k}y_{i}v_{i}\in\mathcal{R}\}. So β„›={yS+βˆ‘i∈S(xi+di)​vi:ySβˆˆβ„›S,0≀di<N​ for all ​i∈S}\mathcal{R}=\{y^{S}+\sum_{i\in S}(x_{i}+d_{i})v_{i}:y^{S}\in\mathcal{R}^{S},0\leq d_{i}<N\text{ for all }i\in S\}.

Now let Ο†βˆˆπ’«S\varphi\in\mathcal{P}_{S}. Note that

fV,x,Ο‡|Ο†\displaystyle f_{V,x,\chi}|_{\varphi} =(βˆ‘yβˆˆβ„›Ο‡β€‹(y)​ty∏1≀i≀k(1βˆ’tiN​pt))|Ο†\displaystyle=\left.\left(\sum_{y\in\mathcal{R}}\chi(y)\frac{t^{y}}{\prod_{1\leq i\leq k}(1-t_{i}^{Np^{t}})}\right)\right|_{\varphi}
=βˆ‘ySβˆˆβ„›StyS∏jβˆ‰S(1βˆ’tjN​pt)|Ο†S​(βˆ‘0≀di<Ni∈Sχ​(y)β€‹βˆi∈Stipt​(xi+di)1βˆ’tiN​pt)|ti=ΞΆi,i∈S,\displaystyle=\sum_{y^{S}\in\mathcal{R}^{S}}\left.\frac{t^{y^{S}}}{\prod_{j\notin S}(1-t_{j}^{Np^{t}})}\right|_{\varphi^{S}}\left.\left(\sum_{\begin{subarray}{c}0\leq d_{i}<N\\ i\in S\end{subarray}}\chi(y)\prod_{i\in S}\frac{t_{i}^{p^{t}(x_{i}+d_{i})}}{1-t_{i}^{Np^{t}}}\right)\right|_{t_{i}=\zeta_{i},i\in S},

where y=yS+βˆ‘i∈S(xi+di)​viy=y^{S}+\sum_{i\in S}(x_{i}+d_{i})v_{i} and ΞΆi=φ​(viβ€²)\zeta_{i}=\varphi(v^{\prime}_{i}) is some ptp^{t}-th root of unity for i∈Si\in S. Using the regularity at ti=ΞΆit_{i}=\zeta_{i} for all i∈Si\in S, we have

βˆ‘0≀di<Ni∈Sχ​(y)β€‹βˆi∈Stipt​(xi+di)∏i∈S(1βˆ’tiN​pt)=[βˆ‘0≀di<Ni∈Sχ​(y)β€‹βˆi∈Spt​(xi+di)​΢ipt​xiβˆ’1]β€‹βˆi∈S(tiβˆ’ΞΆi)+G1​(t)β€‹βˆi∈S(tiβˆ’ΞΆi)∏i∈SN​pt​΢iβˆ’1β€‹βˆi∈S(ΞΆiβˆ’ti)+G2​(t)β€‹βˆi∈S(tiβˆ’ΞΆi),\displaystyle\frac{\sum_{\begin{subarray}{c}0\leq d_{i}<N\\ i\in S\end{subarray}}\chi(y)\prod_{i\in S}t_{i}^{p^{t}(x_{i}+d_{i})}}{\prod_{i\in S}(1-t_{i}^{Np^{t}})}=\frac{\left[\sum_{\begin{subarray}{c}0\leq d_{i}<N\\ i\in S\end{subarray}}\chi(y)\prod_{i\in S}p^{t}(x_{i}+d_{i})\zeta_{i}^{p^{t}x_{i}-1}\right]\prod_{i\in S}(t_{i}-\zeta_{i})+G_{1}(t)\prod_{i\in S}(t_{i}-\zeta_{i})}{\prod_{i\in S}Np^{t}\zeta_{i}^{-1}\prod_{i\in S}(\zeta_{i}-t_{i})+G_{2}(t)\prod_{i\in S}(t_{i}-\zeta_{i})},

where Gi​(t)|ti=ΞΆi,i∈S=0G_{i}(t)|_{t_{i}=\zeta_{i},i\in S}=0 for i=1,2i=1,2. This shows

fV,x,Ο‡|Ο†=(βˆ’1)|S|N|S|β€‹βˆ‘0≀di<Ni∈S∏i∈S(xi+di)​΢ipt​xiβ€‹βˆ‘ySβˆˆβ„›Sχ​(y)​tyS∏jβˆ‰S(1βˆ’tjN​pt)|Ο†S.\displaystyle f_{V,x,\chi}|_{\varphi}=\frac{(-1)^{|S|}}{N^{|S|}}\sum_{\begin{subarray}{c}0\leq d_{i}<N\\ i\in S\end{subarray}}\prod_{i\in S}(x_{i}+d_{i})\zeta_{i}^{p^{t}x_{i}}\sum_{y^{S}\in\mathcal{R}^{S}}\chi(y)\left.\frac{t^{y^{S}}}{\prod_{j\notin S}(1-t_{j}^{Np^{t}})}\right|_{\varphi^{S}}.

In turn, taking a primitive pn+tp^{n+t}-th root of unity ΞΆ\zeta, we have

Ξ©S​(a,n)\displaystyle\Omega_{S}(a,n)
=\displaystyle= 1p(n+t)​kβ€‹βˆ‘Ο†βˆˆπ’«SΟ†βˆ’1​(a)​fV,x,Ο‡|Ο†\displaystyle\frac{1}{p^{(n+t)k}}\sum_{\varphi\in\mathcal{P}_{S}}\varphi^{-1}(a)f_{V,x,\chi}|_{\varphi}
=\displaystyle= 1p(n+t)​kβ€‹βˆ‘wi∈pn​𝐙/pn+ti∈Sβˆ‘Ο†Sβˆˆπ’«βˆ…SΞΆβˆ’ptβ€‹βˆ‘i∈Sai​wi​(Ο†S)βˆ’1​(a)​(βˆ’1)|S|N|S|β€‹βˆ‘0≀di<Ni∈S∏i∈S(xi+di)​΢pt​xi​wiβ€‹βˆ‘ySβˆˆβ„›Sχ​(y)​tyS∏jβˆ‰S(1βˆ’tjN​pt)|Ο†S\displaystyle\frac{1}{p^{(n+t)k}}\sum_{\begin{subarray}{c}w_{i}\in p^{n}\mathbf{Z}/p^{n+t}\\ i\in S\end{subarray}}\sum_{\varphi^{S}\in\mathcal{P}^{S}_{\varnothing}}\zeta^{-p^{t}\sum_{i\in S}a_{i}w_{i}}(\varphi^{S})^{-1}(a)\frac{(-1)^{|S|}}{N^{|S|}}\sum_{\begin{subarray}{c}0\leq d_{i}<N\\ i\in S\end{subarray}}\prod_{i\in S}(x_{i}+d_{i})\zeta^{p^{t}x_{i}w_{i}}\sum_{y^{S}\in\mathcal{R}^{S}}\chi(y)\left.\frac{t^{y^{S}}}{\prod_{j\notin S}(1-t_{j}^{Np^{t}})}\right|_{\varphi^{S}}
=\displaystyle= (βˆ’1)|S|N|S|​p|S|​nβ€‹πŸxiβˆ’aiβˆˆπ™p,i∈Sβ€‹βˆ‘0≀di<Ni∈S∏i∈S(xi+di)​1p(kβˆ’|S|)​(n+t)β€‹βˆ‘Ο†Sβˆˆπ’«βˆ…S(Ο†S)βˆ’1​(a)β€‹βˆ‘ySβˆˆβ„›Sχ​(y)​tyS∏jβˆ‰S(1βˆ’tjN​pt)|Ο†S\displaystyle\frac{(-1)^{|S|}}{N^{|S|}p^{|S|n}}\mathbf{1}_{x_{i}-a_{i}\in\mathbf{Z}_{p},i\in S}\sum_{\begin{subarray}{c}0\leq d_{i}<N\\ i\in S\end{subarray}}\prod_{i\in S}(x_{i}+d_{i})\frac{1}{p^{(k-|S|)(n+t)}}\sum_{\varphi^{S}\in\mathcal{P}^{S}_{\varnothing}}(\varphi^{S})^{-1}(a)\sum_{y^{S}\in\mathcal{R}^{S}}\chi(y)\left.\frac{t^{y^{S}}}{\prod_{j\notin S}(1-t_{j}^{Np^{t}})}\right|_{\varphi^{S}}
=\displaystyle= (βˆ’1)|S|N|S|​p|S|​nβ€‹πŸxiβˆ’aiβˆˆπ™p,i∈Sβ€‹βˆ‘0≀di<Ni∈S∏i∈S(xi+di)​(βˆ’1)kβˆ’|S|p(kβˆ’|S|)​nβ€‹βˆ‘0≀dj<Njβˆ‰Sχ​(x+dβ‹…v)β€‹βˆjβˆ‰S(ajβˆ’xjβˆ’djN)pnβ™­\displaystyle\frac{(-1)^{|S|}}{N^{|S|}p^{|S|n}}\mathbf{1}_{x_{i}-a_{i}\in\mathbf{Z}_{p},i\in S}\sum_{\begin{subarray}{c}0\leq d_{i}<N\\ i\in S\end{subarray}}\prod_{i\in S}(x_{i}+d_{i})\frac{(-1)^{k-|S|}}{p^{(k-|S|)n}}\sum_{\begin{subarray}{c}0\leq d_{j}<N\\ j\notin S\end{subarray}}\chi(x+d\cdot v)\prod_{j\notin S}\left(\frac{a_{j}-x_{j}-d_{j}}{N}\right)^{\flat}_{p^{n}}
=\displaystyle= (βˆ’1)kpn​kβ€‹πŸxiβˆ’aiβˆˆπ™p,i∈Sβ€‹βˆ‘0≀d1,β‹―,dk<Nχ​(x+dβ‹…v)β€‹βˆi∈Sxi+diNβ€‹βˆjβˆ‰S(ajβˆ’xjβˆ’djN)pnβ™­.\displaystyle\frac{(-1)^{k}}{p^{nk}}\mathbf{1}_{x_{i}-a_{i}\in\mathbf{Z}_{p},i\in S}\sum_{0\leq d_{1},\cdots,d_{k}<N}\chi(x+d\cdot v)\prod_{i\in S}\frac{x_{i}+d_{i}}{N}\prod_{j\notin S}\left(\frac{a_{j}-x_{j}-d_{j}}{N}\right)^{\flat}_{p^{n}}.
Remark 4.3.

Recall that for y∈𝐐pβˆ–π™py\in\mathbf{Q}_{p}\setminus\mathbf{Z}_{p}, we declared ypnβ™­y^{\flat}_{p^{n}} to be 0. Hence from the explicit formulas of Ξ©S​(a,n)\Omega_{S}(a,n) for various SS, it is clear that for ΞΌV,x,χ​(a+pn​π’ͺV,p)β‰ 0\mu_{V,x,\chi}(a+p^{n}\mathcal{O}_{V,p})\neq 0, a∈x+π’ͺV,pa\in x+\mathcal{O}_{V,p}.

4.3. Ultimate formula

We can now prove

Theorem 4.4.

Let the notation and assumptions be as in Theorem 3.6. Let further Ο‡:Cl+​(𝒩)→𝐐¯×\chi:\mathrm{Cl}_{+}(\mathcal{N})\to\bar{\mathbf{Q}}^{\times} be a character of nontrivial narrow modulus. Then the attached pp-adic measure ΞΌV,x,Ο‡\mu_{V,x,\chi} on π’ͺV†,p\mathcal{O}_{V^{\dagger},p} is valued in 𝐙​[1/N,im​(Ο‡)]\mathbf{Z}[1/N,\mathrm{im}(\chi)], and we have

(4.2) ΞΌV,x,χ​(x+lβ‹…v+pn​π’ͺV,p)=(βˆ’1)kNkβ€‹βˆ‘0≀d1,β‹―,dk<Nχ​(x+(l+pn​d)β‹…v)β€‹βˆ1≀i≀kdi\displaystyle\mu_{V,x,\chi}(x+l\cdot v+p^{n}\mathcal{O}_{V,p})=\frac{(-1)^{k}}{N^{k}}\sum_{0\leq d_{1},\cdots,d_{k}<N}\chi(x+(l+p^{n}d)\cdot v)\prod_{1\leq i\leq k}d_{i}

for all nβˆˆπ™β‰₯0n\in\mathbf{Z}_{\geq 0} and l=(l1,β‹―,lk)l=(l_{1},\cdots,l_{k}) with 0≀l1,β‹―,lk<pn0\leq l_{1},\cdots,l_{k}<p^{n}. Moreover, when pn≑1mod𝒩p^{n}\equiv 1\bmod\mathcal{N}, we have

(4.3) ΞΌV,x,χ​(x+lβ‹…v+pn​π’ͺV,p)=(βˆ’1)kβ€‹βˆ‘SβŠ†{1,β‹―,k}Nβˆ’|S|β€‹βˆ‘0≀di<Ni∈Sβˆ‘0≀dj<ljjβˆ‰Sχ​(x+dβ‹…v)β€‹βˆi∈Sdi.\displaystyle\mu_{V,x,\chi}(x+l\cdot v+p^{n}\mathcal{O}_{V,p})=(-1)^{k}\sum_{S\subseteq\{1,\cdots,k\}}N^{-|S|}\sum_{\begin{subarray}{c}0\leq d_{i}<N\\ i\in S\end{subarray}}\sum_{\begin{subarray}{c}0\leq d_{j}<l_{j}\\ j\notin S\end{subarray}}\chi(x+d\cdot v)\prod_{i\in S}d_{i}.
Proof.

We have seen that ΞΌV,x,χ​(a+pn​π’ͺV,p)=βˆ‘SβŠ†{1,β‹―,k}Ξ©S​(a,n)\mu_{V,x,\chi}(a+p^{n}\mathcal{O}_{V,p})=\sum_{S\subseteq\{1,\cdots,k\}}\Omega_{S}(a,n). In the following let h​(ljβˆ’dj)h(l_{j}-d_{j}) be the unique integer such that (ljβˆ’djN)pnβ™­=ljβˆ’dj+pn​h​(ljβˆ’dj)N(\frac{l_{j}-d_{j}}{N})^{\flat}_{p^{n}}=\frac{l_{j}-d_{j}+p^{n}h(l_{j}-d_{j})}{N}. By the computations done in Β§4.1 and Β§4.2, we find

ΞΌV,x,χ​(x+lβ‹…v+pn​π’ͺV,p)\displaystyle\mu_{V,x,\chi}(x+l\cdot v+p^{n}\mathcal{O}_{V,p}) =(βˆ’1)kpn​kβ€‹βˆ‘SβŠ†{1,β‹―,k}βˆ‘0≀d1,β‹―,dk<Nχ​(x+dβ‹…v)β€‹βˆi∈Sxi+diNβ€‹βˆjβˆ‰Sljβˆ’dj+pn​h​(ljβˆ’dj)N\displaystyle=\frac{(-1)^{k}}{p^{nk}}\sum_{S\subseteq\{1,\cdots,k\}}\sum_{0\leq d_{1},\cdots,d_{k}<N}\chi(x+d\cdot v)\prod_{i\in S}\frac{x_{i}+d_{i}}{N}\prod_{j\notin S}\frac{l_{j}-d_{j}+p^{n}h(l_{j}-d_{j})}{N}
=(βˆ’1)kpn​k​Nkβ€‹βˆ‘SβŠ†{1,β‹―,k}βˆ‘0≀d1,β‹―,dk<Nχ​(x+dβ‹…v)β€‹βˆi∈Sdiβ€‹βˆjβˆ‰S[βˆ’dj+pn​h​(ljβˆ’dj)]\displaystyle=\frac{(-1)^{k}}{p^{nk}N^{k}}\sum_{S\subseteq\{1,\cdots,k\}}\sum_{0\leq d_{1},\cdots,d_{k}<N}\chi(x+d\cdot v)\prod_{i\in S}d_{i}\prod_{j\notin S}[-d_{j}+p^{n}h(l_{j}-d_{j})]
=(βˆ’1)kpn​k​Nkβ€‹βˆ‘0≀d1,β‹―,dk<Nχ​(x+dβ‹…v)β€‹βˆ‘SβŠ†{1,β‹―,k}∏i∈Sdiβ€‹βˆjβˆ‰S[βˆ’dj+pn​h​(ljβˆ’dj)].\displaystyle=\frac{(-1)^{k}}{p^{nk}N^{k}}\sum_{0\leq d_{1},\cdots,d_{k}<N}\chi(x+d\cdot v)\sum_{S\subseteq\{1,\cdots,k\}}\prod_{i\in S}d_{i}\prod_{j\notin S}[-d_{j}+p^{n}h(l_{j}-d_{j})].

where in the second equality we used the nontriviality of Ο‡\chi on (π’ͺ/𝒩)Γ—(\mathcal{O}/\mathcal{N})^{\times}. The last term can be vastly simplified by the identity

βˆ‘SβŠ†{1,β‹―,k}∏i∈Sdiβ€‹βˆjβˆ‰S[βˆ’dj+pn​h​(ljβˆ’dj)]\displaystyle\sum_{S\subseteq\{1,\cdots,k\}}\prod_{i\in S}d_{i}\prod_{j\notin S}[-d_{j}+p^{n}h(l_{j}-d_{j})] =βˆ‘SβŠ†{1,β‹―,k}βˆ‘Sβ€²βŠ‡S(βˆ’1)|Sβ€²|βˆ’|S|​pn​(kβˆ’|Sβ€²|)β€‹βˆi∈Sβ€²diβ€‹βˆjβˆ‰Sβ€²h​(ljβˆ’dj)\displaystyle=\sum_{S\subseteq\{1,\cdots,k\}}\sum_{S^{\prime}\supseteq S}(-1)^{|S^{\prime}|-|S|}p^{n(k-|S^{\prime}|)}\prod_{i\in S^{\prime}}d_{i}\prod_{j\notin S^{\prime}}h(l_{j}-d_{j})
=βˆ‘Sβ€²βŠ†{1,β‹―,k}(βˆ’1)|Sβ€²|​pn​(kβˆ’|Sβ€²|)β€‹βˆi∈Sβ€²diβ€‹βˆjβˆ‰Sβ€²h​(ljβˆ’dj)β€‹βˆ‘SβŠ†Sβ€²(βˆ’1)|S|.\displaystyle=\sum_{S^{\prime}\subseteq\{1,\cdots,k\}}(-1)^{|S^{\prime}|}p^{n(k-|S^{\prime}|)}\prod_{i\in S^{\prime}}d_{i}\prod_{j\notin S^{\prime}}h(l_{j}-d_{j})\sum_{S\subseteq S^{\prime}}(-1)^{|S|}.

Since βˆ‘SβŠ†Sβ€²(βˆ’1)|S|\sum_{S\subseteq S^{\prime}}(-1)^{|S|} vanishes unless Sβ€²=βˆ…S^{\prime}=\varnothing, we have

βˆ‘SβŠ†{1,β‹―,k}∏i∈Sdiβ€‹βˆjβˆ‰S[βˆ’dj+pn​h​(ljβˆ’dj)]=pn​kβ€‹βˆ1≀i≀kh​(liβˆ’di);\displaystyle\sum_{S\subseteq\{1,\cdots,k\}}\prod_{i\in S}d_{i}\prod_{j\notin S}[-d_{j}+p^{n}h(l_{j}-d_{j})]=p^{nk}\prod_{1\leq i\leq k}h(l_{i}-d_{i});

thereby

(4.4) ΞΌV,x,χ​(x+lβ‹…v+pn​π’ͺV,p)=(βˆ’1)kNkβ€‹βˆ‘0≀d1,β‹―,dk<Nχ​(x+dβ‹…v)β€‹βˆ1≀i≀kh​(liβˆ’di).\displaystyle\mu_{V,x,\chi}(x+l\cdot v+p^{n}\mathcal{O}_{V,p})=\frac{(-1)^{k}}{N^{k}}\sum_{0\leq d_{1},\cdots,d_{k}<N}\chi(x+d\cdot v)\prod_{1\leq i\leq k}h(l_{i}-d_{i}).

Now, as 0≀li<pn0\leq l_{i}<p^{n}, 0≀di<N0\leq d_{i}<N, it can be shown that (see, e.g., [Zha22, Proposition 3.2.])

h​(liβˆ’di)=(diβˆ’lipn)Nβ™­.\displaystyle h(l_{i}-d_{i})=\left(\frac{d_{i}-l_{i}}{p^{n}}\right)^{\flat}_{N}.

Consequently,

ΞΌV,x,χ​(x+lβ‹…v+pn​π’ͺV,p)\displaystyle\mu_{V,x,\chi}(x+l\cdot v+p^{n}\mathcal{O}_{V,p}) =(βˆ’1)kNkβ€‹βˆ‘0≀d1,β‹―,dk<Nχ​(x+(l+d)β‹…v)β€‹βˆ1≀i≀k(dipn)Nβ™­\displaystyle=\frac{(-1)^{k}}{N^{k}}\sum_{0\leq d_{1},\cdots,d_{k}<N}\chi(x+(l+d)\cdot v)\prod_{1\leq i\leq k}\left(\frac{d_{i}}{p^{n}}\right)^{\flat}_{N}
=(βˆ’1)kNkβ€‹βˆ‘0≀d1,β‹―,dk<Nχ​(x+(l+pn​d)β‹…v)β€‹βˆ1≀i≀kdi.\displaystyle=\frac{(-1)^{k}}{N^{k}}\sum_{0\leq d_{1},\cdots,d_{k}<N}\chi(x+(l+p^{n}d)\cdot v)\prod_{1\leq i\leq k}d_{i}.

To prove the second formula (4.3), it suffices to prove it when 0≀li<N0\leq l_{i}<N for all 1≀i≀k1\leq i\leq k, since both sides are periodic in each of lil_{i} with period NN, as long as 0≀li<pn0\leq l_{i}<p^{n}. Under this restriction, h​(liβˆ’di)=(diβˆ’lipn)Nβ™­=(diβˆ’li)Nβ™­=diβˆ’li+Nβ€‹πŸli>dih(l_{i}-d_{i})=(\frac{d_{i}-l_{i}}{p^{n}})^{\flat}_{N}=(d_{i}-l_{i})^{\flat}_{N}=d_{i}-l_{i}+N\mathbf{1}_{l_{i}>d_{i}}. By (4.4), we have

ΞΌV,x,χ​(x+lβ‹…v+pn​π’ͺV,p)\displaystyle\mu_{V,x,\chi}(x+l\cdot v+p^{n}\mathcal{O}_{V,p}) =(βˆ’1)kNkβ€‹βˆ‘0≀d1,β‹―,dk<Nχ​(x+dβ‹…v)β€‹βˆ1≀i≀k(diβˆ’li+Nβ€‹πŸli>di)\displaystyle=\frac{(-1)^{k}}{N^{k}}\sum_{0\leq d_{1},\cdots,d_{k}<N}\chi(x+d\cdot v)\prod_{1\leq i\leq k}(d_{i}-l_{i}+N\mathbf{1}_{l_{i}>d_{i}})
=(βˆ’1)kNkβ€‹βˆ‘0≀d1,β‹―,dk<Nχ​(x+dβ‹…v)β€‹βˆ1≀i≀k(di+Nβ€‹πŸli>di)\displaystyle=\frac{(-1)^{k}}{N^{k}}\sum_{0\leq d_{1},\cdots,d_{k}<N}\chi(x+d\cdot v)\prod_{1\leq i\leq k}(d_{i}+N\mathbf{1}_{l_{i}>d_{i}})
=(βˆ’1)kβ€‹βˆ‘SβŠ†{1,β‹―,k}Nβˆ’|S|β€‹βˆ‘0≀di<Ni∈Sβˆ‘0≀dj<ljjβˆ‰Sχ​(x+dβ‹…v)β€‹βˆi∈Sdi.\displaystyle=(-1)^{k}\sum_{S\subseteq\{1,\cdots,k\}}N^{-|S|}\sum_{\begin{subarray}{c}0\leq d_{i}<N\\ i\in S\end{subarray}}\sum_{\begin{subarray}{c}0\leq d_{j}<l_{j}\\ j\notin S\end{subarray}}\chi(x+d\cdot v)\prod_{i\in S}d_{i}.

∎

4.4. The sum expression

We now prove the second part of Theorem 1.1.

Corollary 4.5.

Let the notation and assumptions be as in Theorem 4.4. Let further ψ\psi be a finite character of Cl+​(p∞)\mathrm{Cl}_{+}(p^{\infty}). Then

(4.5) LF,p​(s,Ο‡β€‹Οˆβ€‹Ο‰F)=(βˆ’1)k​limnβ†’βˆžβˆ‘1≀i≀hΟ‡β€‹Οˆβ€‹(π”ži)⟨Nm​(π”ži)⟩sβ€‹βˆ‘Vβˆ‘x∈P​(V)βˆ©π”žiβˆ’1βˆ‘0≀l1,β‹―,lk<qngcd⁑(p,x+lβ‹…v)=1βˆ‘0≀d<lN♭χ​(x+dβ‹…v)β€‹Οˆβ€‹(x+lβ‹…v)⟨Nm​(x+lβ‹…v)⟩s.\displaystyle L_{F,p}(s,\chi\psi\omega_{F})=(-1)^{k}\lim_{n\to\infty}\sum_{1\leq i\leq h}\frac{\chi\psi(\mathfrak{a}_{i})}{\langle\mathrm{Nm}(\mathfrak{a}_{i})\rangle^{s}}\sum_{V}\sum_{x\in P(V)\cap\mathfrak{a}_{i}^{-1}}\sum_{\begin{subarray}{c}0\leq l_{1},\cdots,l_{k}<q^{n}\\ \gcd(p,x+l\cdot v)=1\end{subarray}}\sum_{0\leq d<l^{\flat}_{N}}\chi(x+d\cdot v)\frac{\psi(x+l\cdot v)}{\langle\mathrm{Nm}(x+l\cdot v)\rangle^{s}}.
Proof.

From the integral representation (2.2), the pushforward formula (2.4) and the period formula (4.3), we see that LF,p​(s,Ο‡β€‹Οˆβ€‹Ο‰F)L_{F,p}(s,\chi\psi\omega_{F}) is approximated by

(4.6) βˆ‘1≀i≀hΟ‡β€‹Οˆβ€‹(π”ži)⟨Nm​(π”ži)⟩sβ€‹βˆ‘Vβˆ‘x∈P​(V)βˆ©π”žiβˆ’1βˆ‘0≀l1,β‹―,lk<qngcd⁑(p,x+lβ‹…v)=1Οˆβ€‹(x+lβ‹…v)⟨Nm​(x+lβ‹…v)⟩s​(βˆ’1)kβ€‹βˆ‘SβŠ†{1,β‹―,k}Nβˆ’|S|β€‹βˆ‘0≀di<Ni∈Sβˆ‘0≀dj<ljjβˆ‰Sχ​(x+dβ‹…v)β€‹βˆi∈Sdi.\displaystyle\sum_{1\leq i\leq h}\frac{\chi\psi(\mathfrak{a}_{i})}{\langle\mathrm{Nm}(\mathfrak{a}_{i})\rangle^{s}}\sum_{V}\sum_{x\in P(V)\cap\mathfrak{a}_{i}^{-1}}\sum_{\begin{subarray}{c}0\leq l_{1},\cdots,l_{k}<q^{n}\\ \gcd(p,x+l\cdot v)=1\end{subarray}}\frac{\psi(x+l\cdot v)}{\langle\mathrm{Nm}(x+l\cdot v)\rangle^{s}}(-1)^{k}\sum_{S\subseteq\{1,\cdots,k\}}N^{-|S|}\sum_{\begin{subarray}{c}0\leq d_{i}<N\\ i\in S\end{subarray}}\sum_{\begin{subarray}{c}0\leq d_{j}<l_{j}\\ j\notin S\end{subarray}}\chi(x+d\cdot v)\prod_{i\in S}d_{i}.

Suppose Sβ‰ βˆ…S\neq\varnothing; without loss of generality say k∈Sk\in S. Then

βˆ‘0≀l1,β‹―,lk<qngcd⁑(p,x+lβ‹…v)=1Οˆβ€‹(x+lβ‹…v)⟨Nm​(x+lβ‹…v)⟩sβ€‹βˆ‘0≀di<Ni∈Sβˆ‘0≀dj<ljjβˆ‰Sχ​(x+dβ‹…v)β€‹βˆi∈Sdi\displaystyle\sum_{\begin{subarray}{c}0\leq l_{1},\cdots,l_{k}<q^{n}\\ \gcd(p,x+l\cdot v)=1\end{subarray}}\frac{\psi(x+l\cdot v)}{\langle\mathrm{Nm}(x+l\cdot v)\rangle^{s}}\sum_{\begin{subarray}{c}0\leq d_{i}<N\\ i\in S\end{subarray}}\sum_{\begin{subarray}{c}0\leq d_{j}<l_{j}\\ j\notin S\end{subarray}}\chi(x+d\cdot v)\prod_{i\in S}d_{i}
=\displaystyle= βˆ‘0≀d1,β‹―,dk<Nχ​(x+dβ‹…v)β€‹βˆi∈Sdiβ€‹βˆ‘0≀l1,β‹―,lkβˆ’1<qnlj>dj,jβˆ‰Sβˆ‘0≀lk<qngcd⁑(p,x+lβ‹…v)=1Οˆβ€‹(x+lβ‹…v)⟨Nm​(x+lβ‹…v)⟩s\displaystyle\sum_{0\leq d_{1},\cdots,d_{k}<N}\chi(x+d\cdot v)\prod_{i\in S}d_{i}\sum_{\begin{subarray}{c}0\leq l_{1},\cdots,l_{k-1}<q^{n}\\ l_{j}>d_{j},j\notin S\end{subarray}}\sum_{\begin{subarray}{c}0\leq l_{k}<q^{n}\\ \gcd(p,x+l\cdot v)=1\end{subarray}}\frac{\psi(x+l\cdot v)}{\langle\mathrm{Nm}(x+l\cdot v)\rangle^{s}}
≑\displaystyle\equiv 0(modqnβˆ’c),\displaystyle\ 0\pmod{q^{n-c}},

where in the last equality, cc is some constant that only depends on ψ\psi and whose existence is ensured by the lemma below. We thus conclude that, when taking the limit of (4.6), all the SS-components die except for S=βˆ…S=\varnothing, whereby the desired formula follows. ∎

Lemma 4.6.

Let f​(x)=Οˆβ€‹(x)β€‹βŸ¨Nm​(x)βŸ©βˆ’sf(x)=\psi(x)\langle\mathrm{Nm}(x)\rangle^{-s} with sβˆˆπ™ps\in\mathbf{Z}_{p}, and suppose ψ\psi factors through Cl+​(pr)\mathrm{Cl}_{+}(p^{r}) for some rβˆˆπ™>0r\in\mathbf{Z}_{>0}. Then for all a,b∈π’ͺpa,b\in\mathcal{O}_{p} with a≑bmodpna\equiv b\bmod p^{n} for some nβ‰₯rn\geq r, we have f​(a)≑f​(b)modpnf(a)\equiv f(b)\bmod p^{n}. Consequently for all nβ‰₯rn\geq r and all a∈π’ͺpa\in\mathcal{O}_{p}, we have

βˆ‘0≀m<pngcd⁑(p,a+m​vk)=1Οˆβ€‹(a+m​vk)β€‹βŸ¨Nm​(a+m​vk)βŸ©βˆ’s≑0(modpnβˆ’r).\displaystyle\sum_{\begin{subarray}{c}0\leq m<p^{n}\\ \gcd(p,a+mv_{k})=1\end{subarray}}\psi(a+mv_{k})\langle\mathrm{Nm}(a+mv_{k})\rangle^{-s}\equiv 0\pmod{p^{n-r}}.
Proof.

To prove the first congruence, first take some eβˆˆπ™>0e\in\mathbf{Z}_{>0} very large, so that both a+pea+p^{e} and b+peb+p^{e} are totally positive. Then Οˆβ€‹(a)=Οˆβ€‹((a+pe))=Οˆβ€‹((b+pe))=Οˆβ€‹(b)\psi(a)=\psi((a+p^{e}))=\psi((b+p^{e}))=\psi(b), since (a+pe)/(b+pe)(a+p^{e})/(b+p^{e}) is totally positive and is ≑1modpr\equiv 1\bmod p^{r}. As Nm​(a)≑Nm​(b)modpn\mathrm{Nm}(a)\equiv\mathrm{Nm}(b)\bmod p^{n}, it follows that f​(a)≑f​(b)modpnf(a)\equiv f(b)\bmod p^{n}. To prove the second congruence, first note that for Ta={x∈π’ͺ/p:xβ‰‘βˆ’amod𝔭​ for some primeΒ β€‹π”­βˆ£p}T_{a}=\{x\in\mathcal{O}/p:x\equiv-a\bmod\mathfrak{p}\text{ for some prime }\mathfrak{p}\mid p\}, we have

βˆ‘0≀m<pngcd⁑(p,a+m​vk)=1f​(a+m​vk)=βˆ‘0≀m<pnmβˆ‰Ta/vkmodpf​(a+m​vk).\displaystyle\sum_{\begin{subarray}{c}0\leq m<p^{n}\\ \gcd(p,a+mv_{k})=1\end{subarray}}f(a+mv_{k})=\sum_{\begin{subarray}{c}0\leq m<p^{n}\\ m\notin T_{a/v_{k}}\bmod p\end{subarray}}f(a+mv_{k}).

Hence if n>rn>r, then

βˆ‘0≀m<pnmβˆ‰Ta/vkmodpf​(a+m​vk)\displaystyle\sum_{\begin{subarray}{c}0\leq m<p^{n}\\ m\notin T_{a/v_{k}}\bmod p\end{subarray}}f(a+mv_{k}) =βˆ‘0≀i<pβˆ‘0≀m<pnβˆ’1mβˆ‰Ta/vkmodpf​(a+(m+i​pnβˆ’1)​vk)\displaystyle=\sum_{0\leq i<p}\sum_{\begin{subarray}{c}0\leq m<p^{n-1}\\ m\notin T_{a/v_{k}}\bmod p\end{subarray}}f(a+(m+ip^{n-1})v_{k})
β‰‘βˆ‘0≀i<pβˆ‘0≀m<pnβˆ’1mβˆ‰Ta/vkmodpf​(a+m​vk)(modpnβˆ’1)\displaystyle\equiv\sum_{0\leq i<p}\sum_{\begin{subarray}{c}0\leq m<p^{n-1}\\ m\notin T_{a/v_{k}}\bmod p\end{subarray}}f(a+mv_{k})\pmod{p^{n-1}}
=pβ€‹βˆ‘0≀m<pnβˆ’1mβˆ‰Ta/vkmodpf​(a+m​vk)(modpnβˆ’1).\displaystyle=p\sum_{\begin{subarray}{c}0\leq m<p^{n-1}\\ m\notin T_{a/v_{k}}\bmod p\end{subarray}}f(a+mv_{k})\pmod{p^{n-1}}.

Iterate this process until n=rn=r, and we obtain the congruence

βˆ‘0≀m<pnmβˆ‰Ta/vkmodpf​(a+m​vk)≑pnβˆ’rβ€‹βˆ‘0≀m<prmβˆ‰Ta/vkmodpf​(a+m​vk)(modpnβˆ’1).\displaystyle\sum_{\begin{subarray}{c}0\leq m<p^{n}\\ m\notin T_{a/v_{k}}\bmod p\end{subarray}}f(a+mv_{k})\equiv p^{n-r}\sum_{\begin{subarray}{c}0\leq m<p^{r}\\ m\notin T_{a/v_{k}}\bmod p\end{subarray}}f(a+mv_{k})\pmod{p^{n-1}}.

Since ff is valued in 𝐙¯p\bar{\mathbf{Z}}_{p}, the second congruence follows. ∎

Remark 4.7.

As a sanity check, in the simplest case when pp is inert, ψ\psi is trivial and s=0s=0, under assumption (A5) we can evaluate the right hand side of (4.5) to (1βˆ’Ο‡β€‹(p))​LF​(0,Ο‡)(1-\chi(p))L_{F}(0,\chi), as predicted by the interpolation property (1.1). See Appendix A.

5. Ferrero-Greenberg type formulas

In this section, using the sum expression (4.5), we prove a generalization of the classical formula of Ferrero-Greenberg [FG79]. In the rest of this article, we assume in addition

(A5) π’ͺp=π’ͺV,p​ for all ​V​ appearing in the cone decomposition.\displaystyle\mathcal{O}_{p}=\mathcal{O}_{V,p}\text{ for all }V\text{ appearing in the cone decomposition.}

To state the formula, we first define the pp-adic Hecke-Shintani LL-function

Lp,V,x​(s,Ο‡β€‹Οˆ)=∫π’ͺpΓ—Οˆβ€‹Ο‰Fβˆ’1​(Ξ±)β€‹βŸ¨Nmβ€‹Ξ±βŸ©βˆ’s​μV,x,χ​(Ξ±);\displaystyle L_{p,V,x}(s,\chi\psi)=\int_{\mathcal{O}_{p}^{\times}}\psi\omega_{F}^{-1}(\alpha)\langle\mathrm{Nm}\alpha\rangle^{-s}\mu_{V,x,\chi}(\alpha);

the proof of Corollary 4.5 provides the following sum expression

Lp,V,x​(s,χ​ωF)=(βˆ’1)k​limnβ†’βˆžβˆ‘0≀l1,β‹―,lk<qngcd⁑(p,x+lβ‹…v)=1⟨Nm​(x+lβ‹…v)βŸ©βˆ’sβ€‹βˆ‘0≀d<lχ​(x+dβ‹…v).\displaystyle L_{p,V,x}(s,\chi\omega_{F})=(-1)^{k}\lim_{n\to\infty}\sum_{\begin{subarray}{c}0\leq l_{1},\cdots,l_{k}<q^{n}\\ \gcd(p,x+l\cdot v)=1\end{subarray}}\langle\mathrm{Nm}(x+l\cdot v)\rangle^{-s}\sum_{0\leq d<l}\chi(x+d\cdot v).

Next define the multiple pp-adic Gamma function on π’ͺV,pβ‰ˆπ™pk\mathcal{O}_{V,p}\approx\mathbf{Z}_{p}^{k} to be

(5.1) Ξ“F,p,V​(y1​v1+β‹―+yk​vk)=Ξ“F,p,V​(y1,β‹―,yk)=limn>0,nβ†’y∏1≀li<ni,1≀i≀kgcd⁑(p,lβ‹…v)=1⟨Nm​(lβ‹…v)⟩.\displaystyle\Gamma_{F,p,V}(y_{1}v_{1}+\cdots+y_{k}v_{k})=\Gamma_{F,p,V}(y_{1},\cdots,y_{k})=\lim_{n>0,n\to y}\prod_{\begin{subarray}{c}1\leq l_{i}<n_{i},1\leq i\leq k\\ \gcd(p,l\cdot v)=1\end{subarray}}\langle\mathrm{Nm}(l\cdot v)\rangle.
Remark 5.1.

When F=𝐐F=\mathbf{Q} and V={1}V=\{1\} we recover Morita’s pp-adic Gamma function up to a root of unity. At the price of indulging this difference, the convergence of the product defining Ξ“F,p,V\Gamma_{F,p,V} is straightforward, for the existence of limn>0,nβ†’yβˆ‘1≀li<ni,1≀i≀kgcd⁑(p,lβ‹…v)=1logp⁑Nm​(lβ‹…v)\lim_{n>0,n\to y}\sum_{\begin{subarray}{c}1\leq l_{i}<n_{i},1\leq i\leq k\\ \gcd(p,l\cdot v)=1\end{subarray}}\log_{p}\mathrm{Nm}(l\cdot v) is.

Proposition 5.2.

Let the notation and assumptions be as in Theorem 4.4; additionally assume (A5). Let Lp,V,x​(s,χ​ωF)L_{p,V,x}(s,\chi\omega_{F}) be the pp-adic Hecke-Shintani LL-function. Then

Lp,V,x′​(0,χ​ωF)=(βˆ’1)kβˆ’1β€‹βˆ‘0≀d1,β‹―,dk<Nχ​(x+dβ‹…v)​logp⁑Γp,F​(x+dβ‹…vN)βˆ’k​logp⁑(N)​Lp,V,x​(0,χ​ωF).\displaystyle L_{p,V,x}^{\prime}(0,\chi\omega_{F})=(-1)^{k-1}\sum_{0\leq d_{1},\cdots,d_{k}<N}\chi(x+d\cdot v)\log_{p}\Gamma_{p,F}\left(\frac{x+d\cdot v}{N}\right)-k\log_{p}(N)L_{p,V,x}(0,\chi\omega_{F}).

The proof is based on some elementary results gathered below. In what follows, assume q≑1modN​hq\equiv 1\bmod Nh.

Lemma 5.3.

Suppose xx is 𝒩​p\mathcal{N}p-integral and is of the form x=βˆ‘1≀i≀k(ci/h)​vix=\sum_{1\leq i\leq k}(c_{i}/h)v_{i} with h,c1,β‹―,ckβˆˆπ™h,c_{1},\cdots,c_{k}\in\mathbf{Z} and gcd⁑(h,c1,β‹―,ck)=1\gcd(h,c_{1},\cdots,c_{k})=1. Then

limnβ†’βˆžβˆ‘0≀l1,β‹―,lk<qngcd⁑(p,x+lβ‹…v)=1⟨Nm​(x+lβ‹…v)βŸ©βˆ’sβ€‹βˆ‘0≀d<lχ​(x+dβ‹…v)\displaystyle\lim_{n\to\infty}\sum_{\begin{subarray}{c}0\leq l_{1},\cdots,l_{k}<q^{n}\\ \gcd(p,x+l\cdot v)=1\end{subarray}}\langle\mathrm{Nm}(x+l\cdot v)\rangle^{-s}\sum_{0\leq d<l}\chi(x+d\cdot v)
=\displaystyle= limnβ†’βˆžβˆ‘1≀d1,β‹―,dk≀Nχ​(x+(dβˆ’1)β‹…v)β€‹βˆ‘c+qn​(hβˆ’c)h≀l<qn+c+qn​(hβˆ’c)hgcd⁑(p,lβ‹…v)=1,lNβ™―>d⟨Nm​(lβ‹…v)βŸ©βˆ’s.\displaystyle\lim_{n\to\infty}\sum_{1\leq d_{1},\cdots,d_{k}\leq N}\chi(x+(d-1)\cdot v)\sum_{\begin{subarray}{c}\frac{c+q^{n}(h-c)}{h}\leq l<q^{n}+\frac{c+q^{n}(h-c)}{h}\\ \gcd(p,l\cdot v)=1,l^{\sharp}_{N}>d\end{subarray}}\langle\mathrm{Nm}(l\cdot v)\rangle^{-s}.
Proof.

First note that since xx is pp-integral and VV is a basis of π’ͺp\mathcal{O}_{p}, hh is prime to pp. Using the congruences

xβ‰‘βˆ‘1≀i≀kci+qn​(hβˆ’ci)h​vi(modqn)\displaystyle x\equiv\sum_{1\leq i\leq k}\frac{c_{i}+q^{n}(h-c_{i})}{h}v_{i}\pmod{q^{n}}

and

c+qn​(hβˆ’c)h≑c+(hβˆ’c)h=1(modN),\displaystyle\frac{c+q^{n}(h-c)}{h}\equiv\frac{c+(h-c)}{h}=1\pmod{N},

we have

βˆ‘0≀l1,β‹―,lk<qngcd⁑(p,x+lβ‹…v)=1⟨Nm​(x+lβ‹…v)βŸ©βˆ’sβ€‹βˆ‘0≀d<lχ​(x+dβ‹…v)\displaystyle\sum_{\begin{subarray}{c}0\leq l_{1},\cdots,l_{k}<q^{n}\\ \gcd(p,x+l\cdot v)=1\end{subarray}}\langle\mathrm{Nm}(x+l\cdot v)\rangle^{-s}\sum_{0\leq d<l}\chi(x+d\cdot v)
≑\displaystyle\equiv βˆ‘c+qn​(hβˆ’c)h≀l<qn+c+qn​(hβˆ’c)hgcd⁑(p,lβ‹…v)=1⟨Nm​(lβ‹…v)βŸ©βˆ’sβ€‹βˆ‘0≀d<lβˆ’c+qn​(hβˆ’c)hχ​(x+dβ‹…v)(modqn)\displaystyle\sum_{\begin{subarray}{c}\frac{c+q^{n}(h-c)}{h}\leq l<q^{n}+\frac{c+q^{n}(h-c)}{h}\\ \gcd(p,l\cdot v)=1\end{subarray}}\langle\mathrm{Nm}(l\cdot v)\rangle^{-s}\sum_{0\leq d<l-\frac{c+q^{n}(h-c)}{h}}\chi(x+d\cdot v)\pmod{q^{n}}
=\displaystyle= βˆ‘1≀d≀Nχ​(x+(dβˆ’1)β‹…v)β€‹βˆ‘c+qn​(hβˆ’c)h≀l<qn+c+qn​(hβˆ’c)hgcd⁑(p,lβ‹…v)=1,lNβ™―>d⟨Nm​(lβ‹…v)βŸ©βˆ’s.\displaystyle\sum_{1\leq d\leq N}\chi(x+(d-1)\cdot v)\sum_{\begin{subarray}{c}\frac{c+q^{n}(h-c)}{h}\leq l<q^{n}+\frac{c+q^{n}(h-c)}{h}\\ \gcd(p,l\cdot v)=1,l^{\sharp}_{N}>d\end{subarray}}\langle\mathrm{Nm}(l\cdot v)\rangle^{-s}.

∎

Lemma 5.4.

Given nβˆˆπ™>0n\in\mathbf{Z}_{>0}, tβˆˆπ™βˆ©[1,N]t\in\mathbf{Z}\cap[1,N] and sβˆˆπ™s\in\mathbf{Z}, write

Ξ¦s/hn​(t)={mβˆˆπ™:hβˆ’s+qn​sh≀m<qn+hβˆ’s+qn​sh,mNβ™―>t}\displaystyle\Phi^{n}_{s/h}(t)=\{m\in\mathbf{Z}:\frac{h-s+q^{n}s}{h}\leq m<q^{n}+\frac{h-s+q^{n}s}{h},m^{\sharp}_{N}>t\}

and

Ξ¨s/hn​(t)={mβˆˆπ™:1+s​(qnβˆ’1)N​h≀m<1+s​(qnβˆ’1)N​h+(Nβˆ’t)​qnβˆ’1N}.\displaystyle\Psi^{n}_{s/h}(t)=\{m\in\mathbf{Z}:1+\frac{s(q^{n}-1)}{Nh}\leq m<1+\frac{s(q^{n}-1)}{Nh}+(N-t)\frac{q^{n}-1}{N}\}.

The Ferrero-Greenberg map ΞΉ:m=mβ™―+k​N↦(k+1)+(Nβˆ’mβ™―)​qnβˆ’1N\iota:m=m^{\sharp}+kN\mapsto(k+1)+(N-m^{\sharp})\frac{q^{n}-1}{N} gives a bijection Ξ¦s/hn​(t)β†’βˆΌΞ¨s/hn​(t)\Phi^{n}_{s/h}(t)\xrightarrow{\sim}\Psi^{n}_{s/h}(t). Moreover, for m∈Φs/hn​(t)m\in\Phi^{n}_{s/h}(t) we have m≑N​ι​(m)modqnm\equiv N\iota(m)\bmod q^{n}, so in particular p∣mp\mid m if and only if pβˆ£ΞΉβ€‹(m)p\mid\iota(m).

Proof.

Let m=mβ™―+k​N∈Ψs/hn​(t)m=m^{\sharp}+kN\in\Psi^{n}_{s/h}(t). It is straightforward to show that kβ‰₯s​(qnβˆ’1)N​hk\geq\frac{s(q^{n}-1)}{Nh} and k≀(1+s/h)​qnβˆ’1Nk\leq(1+s/h)\frac{q^{n}-1}{N}; the upper bound is unattainable because 1+(1+s/h)​qnβˆ’1Nβ‹…N=qn+βˆ’s+qn​sh≑1modN1+(1+s/h)\frac{q^{n}-1}{N}\cdot N=q^{n}+\frac{-s+q^{n}s}{h}\equiv 1\bmod N, thus not belonging to Ξ¦s/hn​(t)\Phi^{n}_{s/h}(t) with tβ‰₯1t\geq 1. Conversely, any tuple (r,k)(r,k) with t<r≀Nt<r\leq N and s​(qnβˆ’1)N​h≀k<(h+s)​(qnβˆ’1)N​h\frac{s(q^{n}-1)}{Nh}\leq k<\frac{(h+s)(q^{n}-1)}{Nh} gives an element of Ξ¦s/hn​(t)\Phi^{n}_{s/h}(t). As such, that ΞΉ\iota is a bijection between Ξ¦s/hn​(t)\Phi^{n}_{s/h}(t) and Ξ¨s/hn​(t)\Psi^{n}_{s/h}(t) follows from Euclidean division. Finally the congruence m≑N​ι​(m)modqnm\equiv N\iota(m)\bmod q^{n} follows from a simple computation in [FG79, proof of Lemma 1]. ∎

Corollary 5.5.

Let cc and hh be as in Lemma 5.3. Given any d=(d1,β‹―,dk)d=(d_{1},\cdots,d_{k}) with 1≀d1,β‹―,dk≀N1\leq d_{1},\cdots,d_{k}\leq N, the Ferrero-Greenberg map induces a bijection from

{lβˆˆπ™k:c+qn​(hβˆ’c)h≀l<qn+c+qn​(hβˆ’c)h,gcd⁑(p,lβ‹…v)=1,lNβ™―>d}\displaystyle\left\{l\in\mathbf{Z}^{k}:\frac{c+q^{n}(h-c)}{h}\leq l<q^{n}+\frac{c+q^{n}(h-c)}{h},\gcd(p,l\cdot v)=1,l^{\sharp}_{N}>d\right\}

to

{lβˆˆπ™k:1+(hβˆ’c)​(qnβˆ’1)N​h≀l<1+(hβˆ’c)​(qnβˆ’1)N​h+(Nβˆ’d)​qnβˆ’1N,gcd⁑(p,lβ‹…v)=1}.\displaystyle\left\{l\in\mathbf{Z}^{k}:1+\frac{(h-c)(q^{n}-1)}{Nh}\leq l<1+\frac{(h-c)(q^{n}-1)}{Nh}+(N-d)\frac{q^{n}-1}{N},\gcd(p,l\cdot v)=1\right\}.
Proof.

The result follows directly from Lemma 5.4, by applying it to the product Ξ¦(hβˆ’c1)/hn​(d1)Γ—β‹―Γ—Ξ¦(hβˆ’ck)/hn​(dk)\Phi^{n}_{(h-c_{1})/h}(d_{1})\times\cdots\times\Phi^{n}_{(h-c_{k})/h}(d_{k}). ∎

Proof of Proposition 5.2.

By the above results, we can carry out the following manipulations

(βˆ’1)kβˆ’1​Lp,V,x′​(0,χ​ωF)\displaystyle(-1)^{k-1}L_{p,V,x}^{\prime}(0,\chi\omega_{F})
=\displaystyle= limnβ†’βˆžβˆ‘0≀l1,β‹―,lk<qngcd⁑(p,x+lβ‹…v)=1βˆ‘0≀d<lN♭χ​(x+dβ‹…v)​logp⁑Nm​(x+lβ‹…v)\displaystyle\lim_{n\to\infty}\sum_{\begin{subarray}{c}0\leq l_{1},\cdots,l_{k}<q^{n}\\ \gcd(p,x+l\cdot v)=1\end{subarray}}\sum_{0\leq d<l^{\flat}_{N}}\chi(x+d\cdot v)\log_{p}\mathrm{Nm}(x+l\cdot v)
=\displaystyle= k​logp⁑N​limnβ†’βˆžβˆ‘0≀l1,β‹―,lk<qngcd⁑(p,x+lβ‹…v)=1βˆ‘0≀d<lN♭χ​(x+dβ‹…v)+limnβ†’βˆžβˆ‘1≀d≀Nχ​(x+(dβˆ’1)β‹…v)β€‹βˆ‘c+qn​(hβˆ’c)h≀l<qn+c+qn​(hβˆ’c)hgcd⁑(p,lβ‹…v)=1,lNβ™―>dlogp⁑(Nm​(ι​(l)β‹…v))\displaystyle k\log_{p}N\lim_{n\to\infty}\sum_{\begin{subarray}{c}0\leq l_{1},\cdots,l_{k}<q^{n}\\ \gcd(p,x+l\cdot v)=1\end{subarray}}\sum_{0\leq d<l^{\flat}_{N}}\chi(x+d\cdot v)+\lim_{n\to\infty}\sum_{1\leq d\leq N}\chi(x+(d-1)\cdot v)\sum_{\begin{subarray}{c}\frac{c+q^{n}(h-c)}{h}\leq l<q^{n}+\frac{c+q^{n}(h-c)}{h}\\ \gcd(p,l\cdot v)=1,l^{\sharp}_{N}>d\end{subarray}}\log_{p}(\mathrm{Nm}(\iota(l)\cdot v))
=\displaystyle= (βˆ’1)k​k​logp⁑Nβ‹…Lp,V,x​(0,χ​ωF)+limnβ†’βˆžβˆ‘1≀d≀Nχ​(x+(dβˆ’1)β‹…v)β€‹βˆ‘1+(hβˆ’c)​(qnβˆ’1)N​h≀l<1+(hβˆ’c)​(qnβˆ’1)N​h+(Nβˆ’d)​qnβˆ’1Ngcd⁑(p,lβ‹…v)=1logp⁑Nm​(lβ‹…v)\displaystyle(-1)^{k}k\log_{p}N\cdot L_{p,V,x}(0,\chi\omega_{F})+\lim_{n\to\infty}\sum_{1\leq d\leq N}\chi(x+(d-1)\cdot v)\sum_{\begin{subarray}{c}1+\frac{(h-c)(q^{n}-1)}{Nh}\leq l<1+\frac{(h-c)(q^{n}-1)}{Nh}+(N-d)\frac{q^{n}-1}{N}\\ \gcd(p,l\cdot v)=1\end{subarray}}\log_{p}\mathrm{Nm}(l\cdot v)
=\displaystyle= (βˆ’1)k​k​logp⁑Nβ‹…Lp,V,x​(0,χ​ωF)\displaystyle(-1)^{k}k\log_{p}N\cdot L_{p,V,x}(0,\chi\omega_{F})
+limnβ†’βˆžβˆ‘1≀d≀Nχ​(x+(dβˆ’1)β‹…v)β€‹βˆ‘SβŠ†{1,β‹―,k}(βˆ’1)|S|​logp⁑ΓF,p,V​(βˆ‘i∈Sciβˆ’h+N​hN​h​vi+βˆ‘jβˆ‰Scjβˆ’h+dj​hN​h​vj)\displaystyle+\lim_{n\to\infty}\sum_{1\leq d\leq N}\chi(x+(d-1)\cdot v)\sum_{S\subseteq\{1,\cdots,k\}}(-1)^{|S|}\log_{p}\Gamma_{F,p,V}\left(\sum_{i\in S}\frac{c_{i}-h+Nh}{Nh}v_{i}+\sum_{j\notin S}\frac{c_{j}-h+d_{j}h}{Nh}v_{j}\right)
=\displaystyle= (βˆ’1)k​k​logp⁑Nβ‹…Lp,V,x​(0,χ​ωF)+βˆ‘0≀d<Nχ​(x+dβ‹…v)​logp⁑ΓF,p,V​(cβ‹…vN​h+dβ‹…vN).\displaystyle(-1)^{k}k\log_{p}N\cdot L_{p,V,x}(0,\chi\omega_{F})+\sum_{0\leq d<N}\chi(x+d\cdot v)\log_{p}\Gamma_{F,p,V}\left(\frac{c\cdot v}{Nh}+\frac{d\cdot v}{N}\right).

Here in the second equality we used the congruence N​ι​(m)≑mmodqnN\iota(m)\equiv m\bmod q^{n}, in the penultimate equality the inclusion-exclusion principle, and in the last equality the nontriviality of Ο‡\chi. ∎

Proof of Corollary 1.6.

Using Proposition 5.2, we find

LF,p′​(0,χ​ωF)=\displaystyle L^{\prime}_{F,p}(0,\chi\omega_{F})= βˆ‘1≀i≀hβˆ‘Vβˆ‘x∈P​(V)βˆ©π”žiβˆ’1χ​(π”ži)​Lp,V,x′​(0,χ​ωF)βˆ’βˆ‘1≀i≀hβˆ‘Vβˆ‘x∈P​(V)βˆ©π”žiβˆ’1χ​(π”ži)​logp⁑Nm​(π”ži)​Lp,V,x​(0,χ​ωF)\displaystyle\sum_{1\leq i\leq h}\sum_{V}\sum_{x\in P(V)\cap\mathfrak{a}_{i}^{-1}}\chi(\mathfrak{a}_{i})L^{\prime}_{p,V,x}(0,\chi\omega_{F})-\sum_{1\leq i\leq h}\sum_{V}\sum_{x\in P(V)\cap\mathfrak{a}_{i}^{-1}}\chi(\mathfrak{a}_{i})\log_{p}\mathrm{Nm}(\mathfrak{a}_{i})L_{p,V,x}(0,\chi\omega_{F})
=\displaystyle= (βˆ’1)kβˆ’1β€‹βˆ‘1≀i≀hβˆ‘Vβˆ‘x∈P​(V)βˆ©π”žiβˆ’1χ​(π”ži​(x+dβ‹…v))​logp⁑ΓF,p,V​(x+dβ‹…vN)\displaystyle(-1)^{k-1}\sum_{1\leq i\leq h}\sum_{V}\sum_{x\in P(V)\cap\mathfrak{a}_{i}^{-1}}\chi(\mathfrak{a}_{i}(x+d\cdot v))\log_{p}\Gamma_{F,p,V}\left(\frac{x+d\cdot v}{N}\right)
βˆ’βˆ‘1≀i≀hβˆ‘Vβˆ‘x∈P​(V)βˆ©π”žiβˆ’1χ​(π”ži)​(logp⁑Nm​(π”ži)+k​logp⁑N)​Lp,V,x​(0,χ​ωF).\displaystyle-\sum_{1\leq i\leq h}\sum_{V}\sum_{x\in P(V)\cap\mathfrak{a}_{i}^{-1}}\chi(\mathfrak{a}_{i})\left(\log_{p}\mathrm{Nm}(\mathfrak{a}_{i})+k\log_{p}N\right)L_{p,V,x}(0,\chi\omega_{F}).

As pp is inert and χ​(p)=1\chi(p)=1, a counting argument shows βˆ‘x∈P​(V)βˆ©π”žiβˆ’1Lp,V,x​(0,χ​ωF)=0\sum_{x\in P(V)\cap\mathfrak{a}_{i}^{-1}}L_{p,V,x}(0,\chi\omega_{F})=0 (see Appendix A.2, especially identity (A.3)). The proof is thus concluded. ∎

Appendix A Values at s=0s=0

Keeping the notation and assumptions from Β§5, in this appendix we provide explicit formulas for the special values LV,x​(0,Ο‡)L_{V,x}(0,\chi) and Lp,V,x​(0,χ​ωF)L_{p,V,x}(0,\chi\omega_{F}), where pp is assumed to be inert in FF and π’ͺV,p=π’ͺp\mathcal{O}_{V,p}=\mathcal{O}_{p}. The former is essentially due to Shintani [Shi76].

A.1. The complex formula

Given a triple (V,x,Ο‡)(V,x,\chi), define the complex Hecke-Shintani function

LV,x​(s,Ο‡)=βˆ‘lβ‰₯0χ​(x+lβ‹…v)Nm​(x+lβ‹…v)s.\displaystyle L_{V,x}(s,\chi)=\sum_{l\geq 0}\frac{\chi(x+l\cdot v)}{\mathrm{Nm}(x+l\cdot v)^{s}}.

For y∈Fy\in F write y(i)y^{(i)} the image of yy under the ii-th embedding Οƒi:F→𝐑\sigma_{i}:F\to\mathbf{R}. Consider the function on 𝐑+k\mathbf{R}_{+}^{k}:

GV,x,χ​(u1,β‹―,uk)=βˆ‘0≀d1,β‹―,dk<Nχ​(x+dβ‹…v)β€‹βˆ1≀i≀keβˆ’(xi+di)β€‹βˆ‘1≀j≀kvi(j)​uj1βˆ’eβˆ’Nβ€‹βˆ‘1≀j≀kvi(j)​uj=βˆ‘l1,β‹―,lkβ‰₯0Bl1+1,β‹―,lk+1​(Ο‡)∏1≀i≀k(li+1)!​ul.\displaystyle G_{V,x,\chi}(u_{1},\cdots,u_{k})=\sum_{0\leq d_{1},\cdots,d_{k}<N}\chi(x+d\cdot v)\prod_{1\leq i\leq k}\frac{e^{-(x_{i}+d_{i})\sum_{1\leq j\leq k}v_{i}^{(j)}u_{j}}}{1-e^{-N\sum_{1\leq j\leq k}v_{i}^{(j)}u_{j}}}=\sum_{l_{1},\cdots,l_{k}\geq 0}\frac{B_{l_{1}+1,\cdots,l_{k}+1}(\chi)}{\prod_{1\leq i\leq k}(l_{i}+1)!}u^{l}.

Using Euler’s method, one can show that (cf.Β [Hid93, Β§2.4]):

LV,x​(0,Ο‡)=B1,β‹―,1​(Ο‡).\displaystyle L_{V,x}(0,\chi)=B_{1,\cdots,1}(\chi).

To compute the constant term of GV,x,χ​(u)G_{V,x,\chi}(u), we use the orthogonality of Ο‡\chi in the same manner as Β§4:

GV,x,χ​(u)\displaystyle G_{V,x,\chi}(u) =βˆ‘0≀d<Nχ​(x+dβ‹…v)β€‹βˆ1≀i≀keβˆ’(xi+di)β€‹βˆ‘1≀j≀kvi(j)​ujβˆ’11βˆ’eβˆ’Nβ€‹βˆ‘1≀j≀kvi(j)​uj=(βˆ’1)kβ€‹βˆ‘0≀d<Nχ​(x+dβ‹…v)β€‹βˆ1≀i≀kxi+diN+O​(u).\displaystyle=\sum_{0\leq d<N}\chi(x+d\cdot v)\prod_{1\leq i\leq k}\frac{e^{-(x_{i}+d_{i})\sum_{1\leq j\leq k}v_{i}^{(j)}u_{j}}-1}{1-e^{-N\sum_{1\leq j\leq k}v_{i}^{(j)}u_{j}}}=(-1)^{k}\sum_{0\leq d<N}\chi(x+d\cdot v)\prod_{1\leq i\leq k}\frac{x_{i}+d_{i}}{N}+O(u).

Hence we recover the formula

(A.1) LV,x​(0,Ο‡)=(βˆ’1)kNkβ€‹βˆ‘0≀d<Nχ​(x+dβ‹…v)β€‹βˆ1≀i≀kdi.\displaystyle L_{V,x}(0,\chi)=\frac{(-1)^{k}}{N^{k}}\sum_{0\leq d<N}\chi(x+d\cdot v)\prod_{1\leq i\leq k}d_{i}.

A.2. The pp-adic formula

Let VV be a generator set in the Shintani decomposition and x∈P​(V)βˆ©π”žiβˆ’1x\in P(V)\cap\mathfrak{a}_{i}^{-1} for some ii. By our assumptions on π”ži\mathfrak{a}_{i} and VV, we have

(π”žiβˆ’1/βˆ‘1≀i≀k𝐙​vi)βŠ—π™p=π’ͺp/βˆ‘1≀i≀k𝐙p​vi=0.\displaystyle\textstyle(\mathfrak{a}_{i}^{-1}/\sum_{1\leq i\leq k}\mathbf{Z}v_{i})\otimes\mathbf{Z}_{p}=\mathcal{O}_{p}/\sum_{1\leq i\leq k}\mathbf{Z}_{p}v_{i}=0.

So the finite group (π”žiβˆ’1/βˆ‘1≀i≀k𝐙​vi)(\mathfrak{a}_{i}^{-1}/\sum_{1\leq i\leq k}\mathbf{Z}v_{i}) is pp-divisible. As P​(V)βˆ©π”žiβˆ’1P(V)\cap\mathfrak{a}_{i}^{-1} is in set bijection with π”žiβˆ’1/βˆ‘1≀i≀k𝐙​vi\mathfrak{a}_{i}^{-1}/\sum_{1\leq i\leq k}\mathbf{Z}v_{i}, we define Ο„p\tau_{p} to be the automorphism of P​(V)βˆ©π”žiβˆ’1P(V)\cap\mathfrak{a}_{i}^{-1} corresponding to the pp-multiplication of π”žiβˆ’1/βˆ‘1≀i≀k𝐙​vi\mathfrak{a}_{i}^{-1}/\sum_{1\leq i\leq k}\mathbf{Z}v_{i}. Below we prove the interpolation formula

(A.2) Lp,V,x​(0,χ​ωF)=LV,x​(0,Ο‡)βˆ’Ο‡β€‹(p)​LV,Ο„pβˆ’1​x​(0,Ο‡).\displaystyle L_{p,V,x}(0,\chi\omega_{F})=L_{V,x}(0,\chi)-\chi(p)L_{V,\tau_{p}^{-1}x}(0,\chi).

Granting (A.2), it follows that

(A.3) βˆ‘x∈P​(V)βˆ©π”žiβˆ’1Lp,V,x​(0,χ​ωF)=(1βˆ’Ο‡β€‹(p))β€‹βˆ‘x∈P​(V)βˆ©π”žiβˆ’1LV,x​(0,Ο‡)\displaystyle\sum_{x\in P(V)\cap\mathfrak{a}_{i}^{-1}}L_{p,V,x}(0,\chi\omega_{F})=(1-\chi(p))\sum_{x\in P(V)\cap\mathfrak{a}_{i}^{-1}}L_{V,x}(0,\chi)

for any representative π”ži\mathfrak{a}_{i} of Cl+​(1)\mathrm{Cl}_{+}(1), whereby Lp,F​(0,χ​ωF)=(1βˆ’Ο‡β€‹(p))​LF​(0,Ο‡)L_{p,F}(0,\chi\omega_{F})=(1-\chi(p))L_{F}(0,\chi).

To begin our proof, applying Lemma 5.3 and Corollary 5.5 to the sum expression of Lp,V,x​(s,χ​ωF)L_{p,V,x}(s,\chi\omega_{F}) for x=cβ‹…vhx=\frac{c\cdot v}{h}, we find

Lp,V,x​(0,χ​ωF)=(βˆ’1)kβ€‹βˆ‘1≀d1,β‹―,dk≀Nχ​(x+(dβˆ’1)β‹…v)​limnβ†’βˆžβˆ‘1+(hβˆ’c)​(qnβˆ’1)N​h≀l<1+(hβˆ’c)​(qnβˆ’1)N​h+(Nβˆ’d)​qnβˆ’1Ngcd⁑(p,lβ‹…v)=11.\displaystyle L_{p,V,x}(0,\chi\omega_{F})=(-1)^{k}\sum_{1\leq d_{1},\cdots,d_{k}\leq N}\chi(x+(d-1)\cdot v)\lim_{n\to\infty}\sum_{\begin{subarray}{c}1+\frac{(h-c)(q^{n}-1)}{Nh}\leq l<1+\frac{(h-c)(q^{n}-1)}{Nh}+(N-d)\frac{q^{n}-1}{N}\\ \gcd(p,l\cdot v)=1\end{subarray}}1.

Next, note that

#{1+(hβˆ’c)​(qnβˆ’1)N​h≀l<1+(hβˆ’c)​(qnβˆ’1)N​h+(Nβˆ’d)qnβˆ’1N,gcd(p,lβ‹…v)=1}\displaystyle\#\left\{1+\frac{(h-c)(q^{n}-1)}{Nh}\leq l<1+\frac{(h-c)(q^{n}-1)}{Nh}+(N-d)\frac{q^{n}-1}{N},\gcd(p,l\cdot v)=1\right\}
=\displaystyle= #​{1+(hβˆ’c)​(qnβˆ’1)N​h≀l<1+(hβˆ’c)​(qnβˆ’1)N​h+(Nβˆ’d)​qnβˆ’1N}\displaystyle\#\left\{1+\frac{(h-c)(q^{n}-1)}{Nh}\leq l<1+\frac{(h-c)(q^{n}-1)}{Nh}+(N-d)\frac{q^{n}-1}{N}\right\}
βˆ’#​{(hβˆ’c)​qn/pN​h<l<(hβˆ’c)​qn/pN​h+(Nβˆ’d)​qn/pN}\displaystyle-\#\left\{\frac{(h-c)q^{n}/p}{Nh}<l<\frac{(h-c)q^{n}/p}{Nh}+\frac{(N-d)q^{n}/p}{N}\right\}
=\displaystyle= ∏1≀i≀k(Nβˆ’di)​(qnβˆ’1)Nβˆ’βˆ1≀i≀k[(Nβˆ’di)​qn/pN+(di​hβˆ’h+cip)N​hβˆ—βˆ’(ciβˆ’hp)N​hβ™―N​h]\displaystyle\prod_{1\leq i\leq k}\frac{(N-d_{i})(q^{n}-1)}{N}-\prod_{1\leq i\leq k}\left[\frac{(N-d_{i})q^{n}/p}{N}+\frac{(\frac{d_{i}h-h+c_{i}}{p})^{*}_{Nh}-(\frac{c_{i}-h}{p})^{\sharp}_{Nh}}{Nh}\right]
β†’\displaystyle\to ∏1≀i≀kdiβˆ’NNβˆ’βˆ1≀i≀k(di​hβˆ’h+cip)N​hβˆ—βˆ’(ciβˆ’hp)N​hβ™―N​h(nβ†’βˆž),\displaystyle\prod_{1\leq i\leq k}\frac{d_{i}-N}{N}-\prod_{1\leq i\leq k}\frac{(\frac{d_{i}h-h+c_{i}}{p})^{*}_{Nh}-(\frac{c_{i}-h}{p})^{\sharp}_{Nh}}{Nh}\quad(n\to\infty),

where βˆ—* is β™­\flat if ci<hc_{i}<h, and βˆ—* is β™―\sharp if ci=hc_{i}=h. Hence,

Lp,V,x​(0,χ​ωF)\displaystyle L_{p,V,x}(0,\chi\omega_{F}) =(βˆ’1)kNkβ€‹βˆ‘1≀d≀Nχ​(x+(dβˆ’1)β‹…v)​[∏1≀i≀kdiβˆ’1hkβ€‹βˆ1≀i≀k(di​hβˆ’h+cip)N​hβˆ—]\displaystyle=\frac{(-1)^{k}}{N^{k}}\sum_{1\leq d\leq N}\chi(x+(d-1)\cdot v)\left[\prod_{1\leq i\leq k}d_{i}-\frac{1}{h^{k}}\prod_{1\leq i\leq k}\left(\frac{d_{i}h-h+c_{i}}{p}\right)^{*}_{Nh}\right]
=(βˆ’1)kNkβ€‹βˆ‘0≀d<Nχ​(x+dβ‹…v)​[∏1≀i≀kdiβˆ’1hkβ€‹βˆ1≀i≀k(di​h+cip)N​hβˆ—].\displaystyle=\frac{(-1)^{k}}{N^{k}}\sum_{0\leq d<N}\chi(x+d\cdot v)\left[\prod_{1\leq i\leq k}d_{i}-\frac{1}{h^{k}}\prod_{1\leq i\leq k}\left(\frac{d_{i}h+c_{i}}{p}\right)^{*}_{Nh}\right].

The latter sum can be further deformed:

βˆ’(βˆ’1)k(N​h)kβ€‹βˆ‘0≀d<Nχ​(x+dβ‹…v)β€‹βˆ1≀i≀k(di​h+cip)N​hβˆ—\displaystyle-\frac{(-1)^{k}}{(Nh)^{k}}\sum_{0\leq d<N}\chi(x+d\cdot v)\prod_{1\leq i\leq k}\left(\frac{d_{i}h+c_{i}}{p}\right)^{*}_{Nh} =βˆ’(βˆ’1)k(N​h)kβ€‹βˆ‘0≀d<Nχ​(x+p​dβ‹…v)β€‹βˆ1≀i≀k(di​h+cip)N​hβˆ—.\displaystyle=-\frac{(-1)^{k}}{(Nh)^{k}}\sum_{0\leq d<N}\chi(x+pd\cdot v)\prod_{1\leq i\leq k}\left(d_{i}h+\frac{c_{i}}{p}\right)^{*}_{Nh}.

Via an elementary argument, it can be shown that

(di​h+cip)N​hβˆ—={di​h+(cip)N​hβ™­βˆ’N​hβ€‹πŸdi+1h​(cip)N​hβ™­β‰₯NifΒ βˆ—=β™­,Β i.e.,Β ci<h;di​h+(cip)N​hβ™­βˆ’N​hβ€‹πŸdi+1h​(cip)N​hβ™­>NifΒ βˆ—=β™―,Β i.e.,Β ci=h.\displaystyle\left(d_{i}h+\frac{c_{i}}{p}\right)^{*}_{Nh}=\begin{cases}d_{i}h+\left(\frac{c_{i}}{p}\right)^{\flat}_{Nh}-Nh\mathbf{1}_{d_{i}+\frac{1}{h}\left(\frac{c_{i}}{p}\right)^{\flat}_{Nh}\geq N}&\text{if }*=\flat,\text{ i.e., }c_{i}<h;\\ d_{i}h+\left(\frac{c_{i}}{p}\right)^{\flat}_{Nh}-Nh\mathbf{1}_{d_{i}+\frac{1}{h}\left(\frac{c_{i}}{p}\right)^{\flat}_{Nh}>N}&\text{if }*=\sharp,\text{ i.e., }c_{i}=h.\end{cases}

In the former case, we can rewrite it as

di​h+(cip)N​hβ™­βˆ’N​hβ€‹πŸdi+1h​[(cip)N​hβ™­βˆ’(cip)hβ™­]β‰₯N\displaystyle d_{i}h+\left(\frac{c_{i}}{p}\right)^{\flat}_{Nh}-Nh\mathbf{1}_{d_{i}+\frac{1}{h}\left[\left(\frac{c_{i}}{p}\right)^{\flat}_{Nh}-\left(\frac{c_{i}}{p}\right)^{\flat}_{h}\right]\geq N} =h​(di+1h​(cip)N​hβ™­βˆ’1h​(cip)hβ™­)Nβ™­+(cip)hβ™­\displaystyle=h\left(d_{i}+\frac{1}{h}\left(\frac{c_{i}}{p}\right)^{\flat}_{Nh}-\frac{1}{h}\left(\frac{c_{i}}{p}\right)^{\flat}_{h}\right)^{\flat}_{N}+\left(\frac{c_{i}}{p}\right)^{\flat}_{h}
=h​(di+1h​[cipβˆ’(cip)hβ™­])Nβ™­+(cip)hβ™­.\displaystyle=h\left(d_{i}+\frac{1}{h}\left[\frac{c_{i}}{p}-\left(\frac{c_{i}}{p}\right)^{\flat}_{h}\right]\right)^{\flat}_{N}+\left(\frac{c_{i}}{p}\right)^{\flat}_{h}.

In the latter case we have a similar recast:

di​h+(cip)N​hβ™­βˆ’N​hβ€‹πŸdi+1h​[(cip)N​hβ™­βˆ’(cip)hβ™―]β‰₯N=h​(di+1h​[cipβˆ’(cip)hβ™―])Nβ™­+(cip)hβ™―.\displaystyle d_{i}h+\left(\frac{c_{i}}{p}\right)^{\flat}_{Nh}-Nh\mathbf{1}_{d_{i}+\frac{1}{h}\left[\left(\frac{c_{i}}{p}\right)^{\flat}_{Nh}-\left(\frac{c_{i}}{p}\right)^{\sharp}_{h}\right]\geq N}=h\left(d_{i}+\frac{1}{h}\left[\frac{c_{i}}{p}-\left(\frac{c_{i}}{p}\right)^{\sharp}_{h}\right]\right)^{\flat}_{N}+\left(\frac{c_{i}}{p}\right)^{\sharp}_{h}.

Therefore,

βˆ’(βˆ’1)k(N​h)kβ€‹βˆ‘0≀d<Nχ​(x+dβ‹…v)β€‹βˆ1≀i≀k(di​h+cip)N​hβ™­\displaystyle-\frac{(-1)^{k}}{(Nh)^{k}}\sum_{0\leq d<N}\chi(x+d\cdot v)\prod_{1\leq i\leq k}\left(\frac{d_{i}h+c_{i}}{p}\right)^{\flat}_{Nh}
=\displaystyle= βˆ’(βˆ’1)kNkβ€‹βˆ‘0≀d<Nχ​(x+p​dβ‹…v)β€‹βˆ1≀i≀k(di+1h​[cipβˆ’(cip)hβˆ—])Nβ™­\displaystyle-\frac{(-1)^{k}}{N^{k}}\sum_{0\leq d<N}\chi(x+pd\cdot v)\prod_{1\leq i\leq k}\left(d_{i}+\frac{1}{h}\left[\frac{c_{i}}{p}-\left(\frac{c_{i}}{p}\right)^{*}_{h}\right]\right)^{\flat}_{N}
=\displaystyle= βˆ’(βˆ’1)kNkβ€‹βˆ‘0≀d<Nχ​(chβ‹…v+pβ€‹βˆ‘1≀i≀k(diβˆ’1h​[cipβˆ’(cip)hβˆ—])​vi)β€‹βˆ1≀i≀kdi\displaystyle-\frac{(-1)^{k}}{N^{k}}\sum_{0\leq d<N}\chi\left(\frac{c}{h}\cdot v+p\sum_{1\leq i\leq k}\left(d_{i}-\frac{1}{h}\left[\frac{c_{i}}{p}-\left(\frac{c_{i}}{p}\right)^{*}_{h}\right]\right)v_{i}\right)\prod_{1\leq i\leq k}d_{i}
=\displaystyle= βˆ’(βˆ’1)k​χ​(p)Nkβ€‹βˆ‘0≀d<Nχ​(βˆ‘1≀i≀k(ci/p)hβˆ—β€‹vih+dβ‹…v)β€‹βˆ1≀i≀kdi\displaystyle-\frac{(-1)^{k}\chi(p)}{N^{k}}\sum_{0\leq d<N}\chi\left(\frac{\sum_{1\leq i\leq k}(c_{i}/p)^{*}_{h}v_{i}}{h}+d\cdot v\right)\prod_{1\leq i\leq k}d_{i}

The last formula is no other than βˆ’Ο‡β€‹(p)​LV,Ο„pβˆ’1​x​(0,Ο‡)-\chi(p)L_{V,\tau_{p}^{-1}x}(0,\chi), and our proof of (A.2) is thus complete.

Appendix B Numerical computation of Iwasawa invariants over 𝐐​(5)\mathbf{Q}(\sqrt{5})

This appendix is dedicated to explaining how one may use the results from the main article to compute analytic Iwasawa Ξ»\lambda- and ΞΌ\mu-invariants of an abelian extension of a given totally real field FF whose conductor divides a Cassou-NoguΓ¨s ideal; or more exactly that of the subfields cut out by characters of the corresponding Galois group. For simplicity we will only treat the case when F=𝐐​(5)F=\mathbf{Q}(\sqrt{5}), the Cassou-NoguΓ¨s ideal is a prime and the character is quadratic.

B.1. Setup

Throughout we let F=𝐐​(5)F=\mathbf{Q}(\sqrt{5}), π’ͺ=𝐙​[1+52]\mathcal{O}=\mathbf{Z}[\frac{1+\sqrt{5}}{2}] be the ring of integers in FF, pp be a rational prime and β„’\mathcal{L} a Cassou-NoguΓ¨s prime of FF, namely π’ͺ/β„’=𝐙/β„“\mathcal{O}/\mathcal{L}=\mathbf{Z}/\ell, with β„“=Nm​(β„’)\ell=\mathrm{Nm}(\mathcal{L}). We have an identification Cl+​(β„’)=(𝐙/β„“)Γ—/⟨Ρ⟩\mathrm{Cl}_{+}(\mathcal{L})=(\mathbf{Z}/\ell)^{\times}/\langle\varepsilon\rangle with Ξ΅=3+52\varepsilon=\frac{3+\sqrt{5}}{2}, since the narrow class group of FF is trivial. Therefore, a character on Cl+​(β„’)\mathrm{Cl}_{+}(\mathcal{L}) can be identified as a Dirichlet character on (𝐙/β„“)Γ—(\mathbf{Z}/\ell)^{\times}. By the functional equations of the complex LL-functions, the attached pp-adic LL-function Lp​(s,χ​ω)L_{p}(s,\chi\omega) is nonzero if and only if Ο‡\chi is totally odd. In simple terms, this requires that the character is such that

χ​(βˆ’1)=1andχ​(1+52)=βˆ’1.\displaystyle\chi(-1)=1\quad\text{and}\quad\chi\left(\frac{1+\sqrt{5}}{2}\right)=-1.

Eventually we will only consider the case when Ο‡\chi is quadratic. Under this condition, for β„“<1000\ell<1000, β„“\ell could only be one of the primes below:

41,61,109,149,241,269,281,389,409,421,449,569,601,641,661,701,821,829,881,929.\displaystyle 41,61,109,149,241,269,281,389,409,421,449,569,601,641,661,701,821,829,881,929.

The major computational tool we will use is the period formula from Theorem 4.4 of the main article. Namely, for 0≀l1,l2<pn0\leq l_{1},l_{2}<p^{n},

(B.1) μ​(1+l1+l2​Ρ+pn​π’ͺp)=1β„“2β€‹βˆ‘1≀d1,d2<ℓχ​(1+l1+pn​d1+(l2+pn​d2)​Ρ)​d1​d2,\displaystyle\mu(1+l_{1}+l_{2}\varepsilon+p^{n}\mathcal{O}_{p})=\frac{1}{\ell^{2}}\sum_{1\leq d_{1},d_{2}<\ell}\chi(1+l_{1}+p^{n}d_{1}+(l_{2}+p^{n}d_{2})\varepsilon)d_{1}d_{2},

where ΞΌ\mu is the attached pp-adic measure of Lp​(s,χ​ω)L_{p}(s,\chi\omega). Recall also we have the integral representation

(B.2) Lp​(s,χ​ω)=∫π’ͺpΓ—βŸ¨Nmβ€‹Ξ±βŸ©βˆ’s​μ​(Ξ±);\displaystyle L_{p}(s,\chi\omega)=\int_{\mathcal{O}_{p}^{\times}}\langle\mathrm{Nm}\alpha\rangle^{-s}\mu(\alpha);

or if we let s=βˆ’ks=-k where kβˆˆπ™>0k\in\mathbf{Z}_{>0},

L​(βˆ’k,χ​ωk)=∫π’ͺpNm​αk​μ​(Ξ±),\displaystyle L(-k,\chi\omega^{k})=\int_{\mathcal{O}_{p}}\mathrm{Nm}\alpha^{k}\mu(\alpha),

with L​(s,χ​ωk)L(s,\chi\omega^{k}) being the complex Hecke LL-function.

As an exercise, one can compute μ​(1+π’ͺp)\mu(1+\mathcal{O}_{p}) for the Cassou-NoguΓ¨s primes β„“=11,19,29,31,41\ell=11,19,29,31,41 and the attached quadratic character. Among them only when β„“=41\ell=41 the value is nonzero (=2=2), and this echoes with our note that the smallest interesting β„“\ell is 4141.

B.2. Approximate Iwasawa functions

In the following assume pβ‰ 2p\neq 2. Fix now a topological generator Ξ³\gamma of 1+p​𝐙p1+p\mathbf{Z}_{p}. With the same setting as in Β§B.1, the Iwasawa function Gχ​ω​(T)∈π’ͺχ​[[T]]G_{\chi\omega}(T)\in\mathcal{O}_{\chi}[[T]] is defined by (cf.Β [Wil90, p.Β 494, (1.3)])

Gχ​ω​(Ξ³1βˆ’sβˆ’1)=Lp​(s,χ​ω);\displaystyle G_{\chi\omega}(\gamma^{1-s}-1)=L_{p}(s,\chi\omega);

here π’ͺΟ‡\mathcal{O}_{\chi} is π’ͺ\mathcal{O} adjoining values of Ο‡\chi. Using (B.2) and the fact that a power series in π’ͺχ​[[T]]\mathcal{O}_{\chi}[[T]] has finitely many zeroes, we deduce that

Gχ​ω​(γ​(1+T)βˆ’1)=∫π’ͺpΓ—(1+T)logγ⁑(Nm​α)​μ​(Ξ±),\displaystyle G_{\chi\omega}(\gamma(1+T)-1)=\int_{\mathcal{O}_{p}^{\times}}(1+T)^{\log_{\gamma}(\mathrm{Nm}\alpha)}\mu(\alpha),

where logγ⁑x=logp⁑x/logp⁑γ\log_{\gamma}x=\log_{p}x/\log_{p}\gamma, with logp\log_{p} being the pp-adic logarithm. From this one further obtains the congruence

(B.3) Gχ​ω​(γ​(1+T)βˆ’1)β‰‘βˆ‘0≀m<pn(1+T)mβ€‹βˆ‘0≀l1,l2<pn+1gcd⁑(p,1+l1+l2​Ρ)=1⟨Nm​(1+l1+l2​Ρ)βŸ©β‰‘Ξ³mmodpn+1μ​(1+l1+l2​Ρ+pn+1​π’ͺp)(mod(1+T)pnβˆ’1).\displaystyle\begin{split}&G_{\chi\omega}(\gamma(1+T)-1)\\ \equiv&\sum_{0\leq m<p^{n}}(1+T)^{m}\sum_{\begin{subarray}{c}0\leq l_{1},l_{2}<p^{n+1}\\ \gcd(p,1+l_{1}+l_{2}\varepsilon)=1\\ \langle\mathrm{Nm}(1+l_{1}+l_{2}\varepsilon)\rangle\equiv\gamma^{m}\bmod p^{n+1}\end{subarray}}\mu(1+l_{1}+l_{2}\varepsilon+p^{n+1}\mathcal{O}_{p})\pmod{(1+T)^{p^{n}}-1}.\end{split}

It can be shown that the ΞΌ\mu- and Ξ»\lambda-invariants of Gχ​ω​(γ​(1+T)βˆ’1)G_{\chi\omega}(\gamma(1+T)-1) coincide with those of Gχ​ω​(T)G_{\chi\omega}(T), so we do not distinguish them. Assuming μ​(Gχ​ω)=0\mu(G_{\chi\omega})=0, we see that the λ​(Gχ​ω)\lambda(G_{\chi\omega}) can be pinned down by looking at the smallest rβ‰₯0r\geq 0 such that the coefficient of TrT^{r} on the right is a pp-unit, if such coefficients exist.

We describe the steps to execute the computations, given (p,n,β„’)(p,n,\mathcal{L}):

  1. (1)

    Choose a set of representatives {a0=1,a1,β‹―,apnβˆ’1}\{a_{0}=1,a_{1},\cdots,a_{p^{n}-1}\} of (1+p​𝐙p)/(1+pn+1​𝐙p)(1+p\mathbf{Z}_{p})/(1+p^{n+1}\mathbf{Z}_{p}), such that a1j≑ajmodpn+1a_{1}^{j}\equiv a_{j}\bmod p^{n+1} for 0≀j<pn0\leq j<p^{n}.

  2. (2)

    Compute the table of Nm​(1+l1+l2​ϡ)=(1+l1)2+3​(1+l1)​l2+l22modpn+1\mathrm{Nm}(1+l_{1}+l_{2}\epsilon)=(1+l_{1})^{2}+3(1+l_{1})l_{2}+l_{2}^{2}\bmod p^{n+1} for 0≀l1,l2<pn+10\leq l_{1},l_{2}<p^{n+1}; dispose of these entries with p∣(1+l1)2+3​(1+l1)​l2+l22p\mid(1+l_{1})^{2}+3(1+l_{1})l_{2}+l_{2}^{2}.

  3. (3)

    Partition the remaining pairs (l1,l2)(l_{1},l_{2}) in pnp^{n} groups {Si}0≀i<pn\{S_{i}\}_{0\leq i<p^{n}}, according to ⟨Nm​(1+l1+l2​ϡ)βŸ©β‰‘aimodpn+1\langle\mathrm{Nm}(1+l_{1}+l_{2}\epsilon)\rangle\equiv a_{i}\bmod p^{n+1}.

  4. (4)

    Compute the table of values μ​(1+l1+l2​ϡ+pn+1​π’ͺp)\mu(1+l_{1}+l_{2}\epsilon+p^{n+1}\mathcal{O}_{p}) for 0≀l1,l2<pn+10\leq l_{1},l_{2}<p^{n+1}; note that in practice this only takes O​(β„“4)O(\ell^{4}) time, since μ​(1+l1+l2​ϡ+pn+1​π’ͺp)\mu(1+l_{1}+l_{2}\epsilon+p^{n+1}\mathcal{O}_{p}) is β„“\ell-periodic in l1,l2l_{1},l_{2}.

  5. (5)

    For each group SiS_{i}, compute the sum Ai=βˆ‘(l1,l2)∈Siμ​(1+l1+l2​ϡ+pn+1​π’ͺp)A_{i}=\sum_{(l_{1},l_{2})\in S_{i}}\mu(1+l_{1}+l_{2}\epsilon+p^{n+1}\mathcal{O}_{p}). Note that (B.3) implies that

    (B.4) Gχ​ω​(γ​(1+T)βˆ’1)β‰‘βˆ‘0≀i<pnAi​(1+T)i(mod(1+T)pnβˆ’1).\displaystyle G_{\chi\omega}(\gamma(1+T)-1)\equiv\sum_{0\leq i<p^{n}}A_{i}(1+T)^{i}\pmod{(1+T)^{p^{n}}-1}.

B.3. Numerical examples

First let p=3p=3 and n=1n=1. We can first carry out steps 1,2,3 above, since they do not require the knowledge of β„’\mathcal{L}. We have (𝐙/9)×≃{Β±1}Γ—{1+3=4,1+3Γ—2=7,1}(\mathbf{Z}/9)^{\times}\simeq\{\pm 1\}\times\{1+3=4,1+3\times 2=7,1\}, so we take a1=4,a2=7a_{1}=4,a_{2}=7. In the following table, we record the partition of pairs (l1,l2)(l_{1},l_{2}) for 0≀l1,l2<90\leq l_{1},l_{2}<9 into groups S0,S1,S2S_{0},S_{1},S_{2} (an empty cell means the corresponding (l1,l2)(l_{1},l_{2}) is disposed of):

l2=012345678l1=001202100011221011102012210322020221142112202025012210610111012270000120218012210\displaystyle\begin{array}[]{| c | c | c | c | c | c | c | c | c | c |}\hline\cr&l_{2}=0&1&2&3&4&5&6&7&8\\ \hline\cr l_{1}=0&0&1&2&0&2&1&0&0&0\\ \hline\cr 1&1&2&2&1&0&1&1&1&0\\ \hline\cr 2&&0&1&&2&2&&1&0\\ \hline\cr 3&2&2&0&2&0&2&2&1&1\\ \hline\cr 4&2&1&1&2&2&0&2&0&2\\ \hline\cr 5&&0&1&&2&2&&1&0\\ \hline\cr 6&1&0&1&1&1&0&1&2&2\\ \hline\cr 7&0&0&0&0&1&2&0&2&1\\ \hline\cr 8&&0&1&&2&2&&1&0\\ \hline\cr\end{array}

As such, one can compute A0,A1,A2A_{0},A_{1},A_{2} for varying Cassou-NoguΓ¨s primes β„’\mathcal{L}. Below, given a split rational prime β„“\ell, we always pick the prime β„’\mathcal{L} above β„“\ell to be the one such that Ξ΅β„’β™­<Ξ΅β„’Οƒβ™­\varepsilon^{\flat}_{\mathcal{L}}<\varepsilon^{\flat}_{\mathcal{L}^{\sigma}}, where ΟƒβˆˆGal​(𝐐​(5)/𝐐)\sigma\in\mathrm{Gal}(\mathbf{Q}(\sqrt{5})/\mathbf{Q}) is the nontrivial element. (Recall for a∈π’ͺ/β„’=𝐙/β„“a\in\mathcal{O}/\mathcal{L}=\mathbf{Z}/\ell, aβ„’β™­a^{\flat}_{\mathcal{L}} denotes the integer in [0,β„“)[0,\ell) with a≑aβ„’β™­modβ„’a\equiv a^{\flat}_{\mathcal{L}}\bmod\mathcal{L}.) For example, with β„“=41\ell=41, β„’=(2+3​5)\mathcal{L}=(2+3\sqrt{5}) since Ξ΅(2+3​5)β™­=8<Ξ΅(2βˆ’3​5)β™­=36\varepsilon^{\flat}_{(2+3\sqrt{5})}=8<\varepsilon^{\flat}_{(2-3\sqrt{5})}=36. As expected, all of the three coefficients vanish for β„“<41\ell<41. For interesting β„“\ell’s we find the following table:

β„“A0A1A2Gχ​ω​(T)mod(1+T)3βˆ’1Ξ»341βˆ’4804+8​T0614βˆ’1284​T+8​T2110988βˆ’16βˆ’24​Tβˆ’16​T22149βˆ’208164+40​T+16​T20241βˆ’4βˆ’121620​T+16​T212692012βˆ’284βˆ’44​Tβˆ’28​T202810βˆ’82012+32​T+20​T2138916βˆ’32204+8​T+20​T20409βˆ’2420428​T+4​T2142112βˆ’28164​T+16​T214492012βˆ’2012βˆ’28​Tβˆ’20​T215698βˆ’242812+32​T+28​T21601βˆ’4βˆ’202428​T+24​T216418βˆ’162820+40​T+28​T20661βˆ’3236βˆ’428​Tβˆ’4​T217013612βˆ’3612βˆ’60​Tβˆ’36​T2?82116βˆ’322812+24​T+28​T22829832βˆ’40βˆ’48​Tβˆ’40​T2288144βˆ’4βˆ’2020βˆ’44​Tβˆ’20​T209298βˆ’323612+40​T+36​T21\displaystyle\begin{array}[]{| c | c | c | c | c | c |}\hline\cr\ell&A_{0}&A_{1}&A_{2}&G_{\chi\omega}(T)\bmod(1+T)^{3}-1&\lambda_{3}\\ \hline\cr 41&-4&8&0&4+8T&0\\ \hline\cr 61&4&-12&8&4T+8T^{2}&1\\ \hline\cr 109&8&8&-16&-24T-16T^{2}&2\\ \hline\cr 149&-20&8&16&4+40T+16T^{2}&0\\ \hline\cr 241&-4&-12&16&20T+16T^{2}&1\\ \hline\cr 269&20&12&-28&4-44T-28T^{2}&0\\ \hline\cr 281&0&-8&20&12+32T+20T^{2}&1\\ \hline\cr 389&16&-32&20&4+8T+20T^{2}&0\\ \hline\cr 409&-24&20&4&28T+4T^{2}&1\\ \hline\cr 421&12&-28&16&4T+16T^{2}&1\\ \hline\cr 449&20&12&-20&12-28T-20T^{2}&1\\ \hline\cr 569&8&-24&28&12+32T+28T^{2}&1\\ \hline\cr 601&-4&-20&24&28T+24T^{2}&1\\ \hline\cr 641&8&-16&28&20+40T+28T^{2}&0\\ \hline\cr 661&-32&36&-4&28T-4T^{2}&1\\ \hline\cr 701&36&12&-36&12-60T-36T^{2}&?\\ \hline\cr 821&16&-32&28&12+24T+28T^{2}&2\\ \hline\cr 829&8&32&-40&-48T-40T^{2}&2\\ \hline\cr 881&44&-4&-20&20-44T-20T^{2}&0\\ \hline\cr 929&8&-32&36&12+40T+36T^{2}&1\\ \hline\cr\end{array}

In particular, we have numerically verified ΞΌ3=0\mu_{3}=0 in these cases except for β„“=701\ell=701. Similarly we do this for n=2n=2, and obtain a table

β„“A0A1A2A3A4A5A6A7A84148βˆ’48βˆ’16βˆ’8βˆ’16161261416βˆ’4βˆ’12βˆ’4βˆ’812βˆ’2420109241616βˆ’16βˆ’240016βˆ’32149βˆ’128βˆ’1224βˆ’16βˆ’8βˆ’321636241βˆ’36βˆ’12βˆ’412βˆ’24482024βˆ’28269βˆ’12βˆ’20βˆ’522852βˆ’124βˆ’2036281βˆ’820βˆ’40βˆ’24βˆ’364432816389βˆ’2436βˆ’24βˆ’16βˆ’68365608409βˆ’36524012βˆ’44βˆ’520121642152βˆ’7268βˆ’448βˆ’16βˆ’36βˆ’4βˆ’3644912βˆ’2012βˆ’52βˆ’28βˆ’246060βˆ’856964βˆ’160βˆ’1628βˆ’44βˆ’40βˆ’36726013648βˆ’44βˆ’52βˆ’28βˆ’812βˆ’4076641βˆ’24βˆ’526456836βˆ’2428βˆ’72661βˆ’24βˆ’1232βˆ’76601268βˆ’12βˆ’48701βˆ’44βˆ’4βˆ’762060βˆ’2060βˆ’4460821βˆ’4068βˆ’6416βˆ’1086040832829βˆ’32βˆ’72βˆ’4βˆ’2464βˆ’7664404088128βˆ’444βˆ’44βˆ’52βˆ’7260528929βˆ’844βˆ’56βˆ’72βˆ’6010888βˆ’16βˆ’16\displaystyle\begin{array}[]{| c | c | c | c | c | c | c | c | c | c |}\hline\cr\ell&A_{0}&A_{1}&A_{2}&A_{3}&A_{4}&A_{5}&A_{6}&A_{7}&A_{8}\\ \hline\cr 41&4&8&-4&8&-16&-8&-16&16&12\\ \hline\cr 61&4&16&-4&-12&-4&-8&12&-24&20\\ \hline\cr 109&24&16&16&-16&-24&0&0&16&-32\\ \hline\cr 149&-12&8&-12&24&-16&-8&-32&16&36\\ \hline\cr 241&-36&-12&-4&12&-24&48&20&24&-28\\ \hline\cr 269&-12&-20&-52&28&52&-12&4&-20&36\\ \hline\cr 281&-8&20&-40&-24&-36&44&32&8&16\\ \hline\cr 389&-24&36&-24&-16&-68&36&56&0&8\\ \hline\cr 409&-36&52&40&12&-44&-52&0&12&16\\ \hline\cr 421&52&-72&68&-4&48&-16&-36&-4&-36\\ \hline\cr 449&12&-20&12&-52&-28&-24&60&60&-8\\ \hline\cr 569&64&-16&0&-16&28&-44&-40&-36&72\\ \hline\cr 601&36&48&-44&-52&-28&-8&12&-40&76\\ \hline\cr 641&-24&-52&64&56&8&36&-24&28&-72\\ \hline\cr 661&-24&-12&32&-76&60&12&68&-12&-48\\ \hline\cr 701&-44&-4&-76&20&60&-20&60&-44&60\\ \hline\cr 821&-40&68&-64&16&-108&60&40&8&32\\ \hline\cr 829&-32&-72&-4&-24&64&-76&64&40&40\\ \hline\cr 881&28&-4&44&-44&-52&-72&60&52&8\\ \hline\cr 929&-8&44&-56&-72&-60&108&88&-16&-16\\ \hline\cr\end{array}

We record the approximate Iwasawa functions modulo (1+T)9βˆ’1(1+T)^{9}-1 separately:

β„“=414+32​T+276​T2+776​T3+1104​T4+904​T5+432​T6+112​T7+12​T861βˆ’20​T+92​T2+412​T3+696​T4+680​T5+404​T6+136​T7+20​T8109βˆ’240T+βˆ’736T2βˆ’1344T3βˆ’1704T4βˆ’1456T5βˆ’784T6βˆ’240T7βˆ’32T81494+160​T+748​T2+1816​T3+2544​T4+2152​T5+1088​T6+304​T7+36​T8241224​T+388​T2+68​T3βˆ’604​T4βˆ’896​T5βˆ’596​T6βˆ’200​T7βˆ’28​T82694+280​T+872​T2+1512​T3+1872​T4+1608​T5+872​T6+268​T7+36​T828112+320​T+1208​T2+2088​T3+2064​T4+1300​T5+536​T6+136​T7+16​T83894+248​T+944​T2+1640​T3+1512​T4+820​T5+280​T6+64​T7+8​T8409βˆ’56​Tβˆ’8​T2+632​T3+1236​T4+1096​T5+532​T6+140​T7+16​T8421βˆ’368​Tβˆ’1448​T2βˆ’2848​T3βˆ’3232​T4βˆ’2332​T5βˆ’1072​T6βˆ’292​T7βˆ’36​T844912+332​T+1384​T2+2448​T3+2292​T4+1148​T5+256​T6βˆ’4​T7βˆ’8​T856912βˆ’88​T+340​T2+1628​T3+2988​T4+2992​T5+1724​T6+540​T7+72​T860152​T+1020​T2+2852​T3+4032​T4+3480​T5+1860​T6+568​T7+76​T864120βˆ’68​Tβˆ’1148​T2βˆ’3084​T3βˆ’4232​T4βˆ’3552​T5βˆ’1844​T6βˆ’548​T7βˆ’72​T866164​Tβˆ’292​T2βˆ’1464​T3βˆ’2640​T4βˆ’2520​T5βˆ’1360​T6βˆ’396​T7βˆ’48​T870112+576​T+1800​T2+3080​T3+3520​T4+2776​T5+1432​T6+436​T7+60​T882112+408​T+1600​T2+3056​T3+3312​T4+2260​T5+992​T6+264​T7+32​T8829708​T+2468​T2+4392​T3+4844​T4+3388​T5+1464​T6+360​T7+40​T888120+172​T+1096​T2+2496​T3+2868​T4+1828​T5+648​T6+116​T7+8​T892912+304​T+984​T2+1072​T3+120​T4βˆ’596​T5βˆ’472​T6βˆ’144​T7βˆ’16​T8\displaystyle\begin{array}[]{|c|c|}\hline\cr\ell=41&4+32T+276T^{2}+776T^{3}+1104T^{4}+904T^{5}+432T^{6}+112T^{7}+12T^{8}\\ \hline\cr 61&-20T+92T^{2}+412T^{3}+696T^{4}+680T^{5}+404T^{6}+136T^{7}+20T^{8}\\ \hline\cr 109&-240T+-736T^{2}-1344T^{3}-1704T^{4}-1456T^{5}-784T^{6}-240T^{7}-32T^{8}\\ \hline\cr 149&4+160T+748T^{2}+1816T^{3}+2544T^{4}+2152T^{5}+1088T^{6}+304T^{7}+36T^{8}\\ \hline\cr 241&224T+388T^{2}+68T^{3}-604T^{4}-896T^{5}-596T^{6}-200T^{7}-28T^{8}\\ \hline\cr 269&4+280T+872T^{2}+1512T^{3}+1872T^{4}+1608T^{5}+872T^{6}+268T^{7}+36T^{8}\\ \hline\cr 281&12+320T+1208T^{2}+2088T^{3}+2064T^{4}+1300T^{5}+536T^{6}+136T^{7}+16T^{8}\\ \hline\cr 389&4+248T+944T^{2}+1640T^{3}+1512T^{4}+820T^{5}+280T^{6}+64T^{7}+8T^{8}\\ \hline\cr 409&-56T-8T^{2}+632T^{3}+1236T^{4}+1096T^{5}+532T^{6}+140T^{7}+16T^{8}\\ \hline\cr 421&-368T-1448T^{2}-2848T^{3}-3232T^{4}-2332T^{5}-1072T^{6}-292T^{7}-36T^{8}\\ \hline\cr 449&12+332T+1384T^{2}+2448T^{3}+2292T^{4}+1148T^{5}+256T^{6}-4T^{7}-8T^{8}\\ \hline\cr 569&12-88T+340T^{2}+1628T^{3}+2988T^{4}+2992T^{5}+1724T^{6}+540T^{7}+72T^{8}\\ \hline\cr 601&52T+1020T^{2}+2852T^{3}+4032T^{4}+3480T^{5}+1860T^{6}+568T^{7}+76T^{8}\\ \hline\cr 641&20-68T-1148T^{2}-3084T^{3}-4232T^{4}-3552T^{5}-1844T^{6}-548T^{7}-72T^{8}\\ \hline\cr 661&64T-292T^{2}-1464T^{3}-2640T^{4}-2520T^{5}-1360T^{6}-396T^{7}-48T^{8}\\ \hline\cr 701&12+576T+1800T^{2}+3080T^{3}+3520T^{4}+2776T^{5}+1432T^{6}+436T^{7}+60T^{8}\\ \hline\cr 821&12+408T+1600T^{2}+3056T^{3}+3312T^{4}+2260T^{5}+992T^{6}+264T^{7}+32T^{8}\\ \hline\cr 829&708T+2468T^{2}+4392T^{3}+4844T^{4}+3388T^{5}+1464T^{6}+360T^{7}+40T^{8}\\ \hline\cr 881&20+172T+1096T^{2}+2496T^{3}+2868T^{4}+1828T^{5}+648T^{6}+116T^{7}+8T^{8}\\ \hline\cr 929&12+304T+984T^{2}+1072T^{3}+120T^{4}-596T^{5}-472T^{6}-144T^{7}-16T^{8}\\ \hline\cr\end{array}

This shows that ΞΌ3\mu_{3} is also zero for β„“=701\ell=701, in which case Ξ»3=3\lambda_{3}=3.

For p=5p=5 and n=1n=1, we record the values of AiA_{i}’s:

β„“A0A1A2A3A4Gχ​ω​(T)mod(1+T)5βˆ’1Ξ»541βˆ’4βˆ’4012βˆ’416​T+12​T2βˆ’4​T3βˆ’4​T4161βˆ’4412βˆ’120βˆ’8​Tβˆ’24​T2βˆ’12​T3110908βˆ’4βˆ’16164+16​T+44​T2+48​T3+16​T40149βˆ’202044βˆ’44+24​Tβˆ’8​T2βˆ’12​T3βˆ’4​T40241βˆ’4βˆ’12028βˆ’1224​T+12​T2βˆ’20​T3βˆ’12​T41269βˆ’8βˆ’28244124+80​T+108​T2+52​T3+12​T40281432βˆ’12βˆ’16βˆ’8βˆ’72​Tβˆ’108​T2βˆ’48​T3βˆ’8​T4138916βˆ’8βˆ’403244+24​T+80​T2+48​T3+4​T404098164βˆ’321612βˆ’8​T+4​T2+32​T3+16​T40421βˆ’324βˆ’8036132​T+208​T2+144​T3+36​T41449βˆ’3620204412+88​T+56​T2+20​T3+4​T405690βˆ’4416202012+128​T+196​T2+100​T3+20​T4060140βˆ’16βˆ’8βˆ’160βˆ’80T+βˆ’56T2βˆ’16T32641βˆ’20βˆ’4044βˆ’2048​T+12​T2βˆ’36​T3βˆ’20​T41661βˆ’282036βˆ’36816​Tβˆ’24​T2βˆ’4​T3+8​T4170148βˆ’480βˆ’88βˆ’40​T+24​T2+24​T3+8​T42821βˆ’40βˆ’12βˆ’8060212​T+352​T2+240​T3+60​T4182952βˆ’8124βˆ’4812βˆ’164​Tβˆ’264​T2βˆ’188​T3βˆ’48​T408811256βˆ’20βˆ’24βˆ’24βˆ’152​Tβˆ’236​T2βˆ’120​T3βˆ’24​T419291224284βˆ’5612βˆ’132​Tβˆ’296​T2βˆ’220​T3βˆ’56​T40\displaystyle\begin{array}[]{| c | c | c | c | c | c | c | c |}\hline\cr\ell&A_{0}&A_{1}&A_{2}&A_{3}&A_{4}&G_{\chi\omega}(T)\bmod(1+T)^{5}-1&\lambda_{5}\\ \hline\cr 41&-4&-4&0&12&-4&16T+12T^{2}-4T^{3}-4T^{4}&1\\ \hline\cr 61&-4&4&12&-12&0&-8T-24T^{2}-12T^{3}&1\\ \hline\cr 109&0&8&-4&-16&16&4+16T+44T^{2}+48T^{3}+16T^{4}&0\\ \hline\cr 149&-20&20&4&4&-4&4+24T-8T^{2}-12T^{3}-4T^{4}&0\\ \hline\cr 241&-4&-12&0&28&-12&24T+12T^{2}-20T^{3}-12T^{4}&1\\ \hline\cr 269&-8&-28&24&4&12&4+80T+108T^{2}+52T^{3}+12T^{4}&0\\ \hline\cr 281&4&32&-12&-16&-8&-72T-108T^{2}-48T^{3}-8T^{4}&1\\ \hline\cr 389&16&-8&-40&32&4&4+24T+80T^{2}+48T^{3}+4T^{4}&0\\ \hline\cr 409&8&16&4&-32&16&12-8T+4T^{2}+32T^{3}+16T^{4}&0\\ \hline\cr 421&-32&4&-8&0&36&132T+208T^{2}+144T^{3}+36T^{4}&1\\ \hline\cr 449&-36&20&20&4&4&12+88T+56T^{2}+20T^{3}+4T^{4}&0\\ \hline\cr 569&0&-44&16&20&20&12+128T+196T^{2}+100T^{3}+20T^{4}&0\\ \hline\cr 601&40&-16&-8&-16&0&-80T+-56T^{2}-16T^{3}&2\\ \hline\cr 641&-20&-4&0&44&-20&48T+12T^{2}-36T^{3}-20T^{4}&1\\ \hline\cr 661&-28&20&36&-36&8&16T-24T^{2}-4T^{3}+8T^{4}&1\\ \hline\cr 701&48&-48&0&-8&8&-40T+24T^{2}+24T^{3}+8T^{4}&2\\ \hline\cr 821&-40&-12&-8&0&60&212T+352T^{2}+240T^{3}+60T^{4}&1\\ \hline\cr 829&52&-8&12&4&-48&12-164T-264T^{2}-188T^{3}-48T^{4}&0\\ \hline\cr 881&12&56&-20&-24&-24&-152T-236T^{2}-120T^{3}-24T^{4}&1\\ \hline\cr 929&12&24&28&4&-56&12-132T-296T^{2}-220T^{3}-56T^{4}&0\\ \hline\cr\end{array}

For p=5p=5 and n=2n=2, we have the following table

β„“Ai, 0≀i<25410,12,0,βˆ’16,βˆ’24,βˆ’16,0,4,0,8,βˆ’20,8,20,0,20,28,βˆ’4,βˆ’20,32,βˆ’16,4,βˆ’20,βˆ’4,βˆ’4,86116,24,βˆ’12,20,28,4,βˆ’32,32,βˆ’12,βˆ’8,βˆ’48,βˆ’8,8,βˆ’8,4,16,16,βˆ’12,βˆ’24,βˆ’20,8,4,βˆ’4,12,βˆ’410928,βˆ’4,0,0,βˆ’20,4,βˆ’16,βˆ’40,16,βˆ’28,βˆ’28,0,40,βˆ’40,20,12,56,12,βˆ’12,12,βˆ’16,βˆ’28,βˆ’16,20,32149βˆ’12,12,βˆ’12,βˆ’24,βˆ’28,32,40,28,0,8,8,βˆ’28,20,βˆ’32,βˆ’36,0,βˆ’28,βˆ’40,βˆ’8,52,βˆ’48,24,8,68,0241βˆ’32,4,52,βˆ’16,48,68,βˆ’8,βˆ’60,88,βˆ’36,βˆ’4,βˆ’52,βˆ’16,βˆ’12,16,0,24,βˆ’8,βˆ’36,βˆ’52,βˆ’36,20,32,4,122694,βˆ’24,8,βˆ’24,βˆ’20,βˆ’36,44,68,44,βˆ’8,βˆ’12,βˆ’4,βˆ’44,24,βˆ’32,βˆ’48,8,βˆ’44,βˆ’40,βˆ’12,84,βˆ’52,36,0,8428168,βˆ’8,40,64,βˆ’20,βˆ’60,92,βˆ’36,8,βˆ’52,βˆ’12,βˆ’16,20,12,36,0,βˆ’44,βˆ’64,βˆ’40,16,8,8,28,βˆ’60,12389βˆ’36,βˆ’40,40,88,60,0,βˆ’12,βˆ’12,βˆ’60,28,βˆ’48,βˆ’56,8,βˆ’48,βˆ’44,0,88,βˆ’52,56,0,100,12,βˆ’24,βˆ’4,βˆ’40409βˆ’80,4,72,βˆ’112,48,βˆ’4,76,20,12,βˆ’24,βˆ’8,βˆ’36,12,52,64,52,βˆ’24,βˆ’32,βˆ’4,βˆ’16,48,βˆ’4,βˆ’68,20,βˆ’5642164,88,βˆ’4,βˆ’80,96,βˆ’36,βˆ’52,βˆ’100,βˆ’24,16,βˆ’32,24,56,36,βˆ’32,βˆ’56,βˆ’48,βˆ’4,4,βˆ’12,28,βˆ’8,44,64,βˆ’324494,βˆ’32,68,βˆ’32,βˆ’80,16,βˆ’64,βˆ’96,16,56,βˆ’128,56,βˆ’4,52,32,20,βˆ’16,4,βˆ’36,0,52,76,48,4,βˆ’4569βˆ’16,βˆ’8,βˆ’36,80,βˆ’20,βˆ’80,12,βˆ’76,βˆ’96,16,84,βˆ’124,56,βˆ’8,68,12,20,βˆ’24,βˆ’12,βˆ’32,0,56,96,56,βˆ’12601βˆ’24,40,8,52,βˆ’8,βˆ’60,βˆ’76,βˆ’56,28,44,12,16,βˆ’56,20,80,βˆ’28,64,100,βˆ’20,βˆ’80,140,βˆ’60,βˆ’4,βˆ’96,βˆ’36641βˆ’56,βˆ’8,4,4,40,βˆ’80,28,100,βˆ’28,72,120,βˆ’20,βˆ’84,156,βˆ’64,0,βˆ’44,βˆ’24,βˆ’24,24,βˆ’4,40,4,βˆ’64,βˆ’9266120,βˆ’112,88,βˆ’48,βˆ’16,βˆ’156,βˆ’28,16,βˆ’4,40,52,56,βˆ’44,βˆ’100,βˆ’68,28,36,16,48,βˆ’20,28,68,βˆ’40,68,72701βˆ’60,βˆ’108,βˆ’56,0,4,βˆ’16,60,βˆ’40,56,76,βˆ’8,72,100,32,βˆ’120,104,βˆ’44,βˆ’24,βˆ’132,βˆ’4,28,βˆ’28,20,36,5282188,βˆ’36,72,104,βˆ’20,80,72,βˆ’4,βˆ’124,88,βˆ’80,βˆ’24,βˆ’132,βˆ’28,44,βˆ’20,56,64,56,βˆ’56,βˆ’108,βˆ’80,βˆ’8,βˆ’8,4829βˆ’84,βˆ’116,0,100,βˆ’132,56,40,144,60,βˆ’20,52,βˆ’20,βˆ’68,βˆ’56,36,68,68,βˆ’8,0,16,βˆ’40,20,βˆ’56,βˆ’100,52881βˆ’116,148,βˆ’60,36,βˆ’132,8,βˆ’44,52,0,48,βˆ’4,βˆ’84,βˆ’120,βˆ’60,32,36,16,40,βˆ’112,36,88,20,68,112,βˆ’8929βˆ’52,112,βˆ’28,βˆ’92,βˆ’8,βˆ’84,βˆ’100,40,120,βˆ’132,84,βˆ’36,120,24,24,βˆ’56,βˆ’28,βˆ’68,4,100,120,76,βˆ’36,βˆ’52,βˆ’40\displaystyle\begin{array}[]{|c|c|}\hline\cr\ell&A_{i},\ 0\leq i<25\\ \hline\cr 41&0,12,0,-16,-24,-16,0,4,0,8,-20,8,20,0,20,28,-4,-20,32,-16,4,-20,-4,-4,8\\ \hline\cr 61&16,24,-12,20,28,4,-32,32,-12,-8,-48,-8,8,-8,4,16,16,-12,-24,-20,8,4,-4,12,-4\\ \hline\cr 109&28,-4,0,0,-20,4,-16,-40,16,-28,-28,0,40,-40,20,12,56,12,-12,12,-16,-28,-16,20,32\\ \hline\cr 149&-12,12,-12,-24,-28,32,40,28,0,8,8,-28,20,-32,-36,0,-28,-40,-8,52,-48,24,8,68,0\\ \hline\cr 241&-32,4,52,-16,48,68,-8,-60,88,-36,-4,-52,-16,-12,16,0,24,-8,-36,-52,-36,20,32,4,12\\ \hline\cr 269&4,-24,8,-24,-20,-36,44,68,44,-8,-12,-4,-44,24,-32,-48,8,-44,-40,-12,84,-52,36,0,84\\ \hline\cr 281&68,-8,40,64,-20,-60,92,-36,8,-52,-12,-16,20,12,36,0,-44,-64,-40,16,8,8,28,-60,12\\ \hline\cr 389&-36,-40,40,88,60,0,-12,-12,-60,28,-48,-56,8,-48,-44,0,88,-52,56,0,100,12,-24,-4,-40\\ \hline\cr 409&-80,4,72,-112,48,-4,76,20,12,-24,-8,-36,12,52,64,52,-24,-32,-4,-16,48,-4,-68,20,-56\\ \hline\cr 421&64,88,-4,-80,96,-36,-52,-100,-24,16,-32,24,56,36,-32,-56,-48,-4,4,-12,28,-8,44,64,-32\\ \hline\cr 449&4,-32,68,-32,-80,16,-64,-96,16,56,-128,56,-4,52,32,20,-16,4,-36,0,52,76,48,4,-4\\ \hline\cr 569&-16,-8,-36,80,-20,-80,12,-76,-96,16,84,-124,56,-8,68,12,20,-24,-12,-32,0,56,96,56,-12\\ \hline\cr 601&-24,40,8,52,-8,-60,-76,-56,28,44,12,16,-56,20,80,-28,64,100,-20,-80,140,-60,-4,-96,-36\\ \hline\cr 641&-56,-8,4,4,40,-80,28,100,-28,72,120,-20,-84,156,-64,0,-44,-24,-24,24,-4,40,4,-64,-92\\ \hline\cr 661&20,-112,88,-48,-16,-156,-28,16,-4,40,52,56,-44,-100,-68,28,36,16,48,-20,28,68,-40,68,72\\ \hline\cr 701&-60,-108,-56,0,4,-16,60,-40,56,76,-8,72,100,32,-120,104,-44,-24,-132,-4,28,-28,20,36,52\\ \hline\cr 821&88,-36,72,104,-20,80,72,-4,-124,88,-80,-24,-132,-28,44,-20,56,64,56,-56,-108,-80,-8,-8,4\\ \hline\cr 829&-84,-116,0,100,-132,56,40,144,60,-20,52,-20,-68,-56,36,68,68,-8,0,16,-40,20,-56,-100,52\\ \hline\cr 881&-116,148,-60,36,-132,8,-44,52,0,48,-4,-84,-120,-60,32,36,16,40,-112,36,88,20,68,112,-8\\ \hline\cr 929&-52,112,-28,-92,-8,-84,-100,40,120,-132,84,-36,120,24,24,-56,-28,-68,4,100,120,76,-36,-52,-40\\ \hline\cr\end{array}

Again, we can see that ΞΌ5=0\mu_{5}=0 in these cases. An extra feature is that all the coefficients AiA_{i} computed above are divisible by 44; this is strongly reminiscent of the Deligne-Ribet 22-divisibility [DR80, Theorem 8.11] with 𝐐​(5)\mathbf{Q}(\sqrt{5}) being non-exceptional.

References

  • [Bar78] Daniel Barsky. Fonctions zeta pp-adiques d’une classe de rayon des corps de nombres totalement rΓ©els. In Groupe d’Etude d’Analyse UltramΓ©trique (5e annΓ©e: 1977/78), pages Exp. No. 16, 23. SecrΓ©tariat Math., Paris, 1978.
  • [CN79a] Pierrette Cassou-NoguΓ¨s. Analogues pp-adiques des fonctions Ξ“\Gamma-multiples. In JournΓ©es ArithmΓ©tiques de Luminy (Colloq. Internat. CNRS, Centre Univ. Luminy, Luminy, 1978), volumeΒ 61 of AstΓ©risque, pages 43–55. Soc. Math. France, Paris, 1979.
  • [CN79b] Pierrette Cassou-NoguΓ¨s. Valeurs aux entiers nΓ©gatifs des fonctions zΓͺta et fonctions zΓͺta pp-adiques. Invent. Math., 51(1):29–59, 1979.
  • [Col88] Pierre Colmez. RΓ©sidu en s=1s=1 des fonctions zΓͺta pp-adiques. Invent. Math., 91(2):371–389, 1988.
  • [Das08] Samit Dasgupta. Shintani zeta functions and Gross-Stark units for totally real fields. Duke Math. J., 143(2):225–279, 2008.
  • [DDP11] Samit Dasgupta, Henri Darmon, and Robert Pollack. Hilbert modular forms and the Gross-Stark conjecture. Ann. of Math. (2), 174(1):439–484, 2011.
  • [Del82] Pierre Deligne. Hodge cycles on abelian varieties. In Hodge cycles, motives, and Shimura varieties, pages 9–100. Lecture Notes in Mathematics, Vol. 900, 1982. Notes by J.Β Milne.
  • [Del06] Daniel Delbourgo. A Dirichlet series expansion for the pp-adic zeta-function. J. Aust. Math. Soc., 81(2):215–224, 2006.
  • [Del09a] Daniel Delbourgo. The convergence of Euler products over pp-adic number fields. Proc. Edinb. Math. Soc. (2), 52(3):583–606, 2009.
  • [Del09b] Daniel Delbourgo. Zeta-functions through the 2-adic looking glass. Austral. Math. Soc. Gaz., 36(4):266–272, 2009.
  • [DK20] Samit Dasgupta and Mahesh Kakde. On the Brumer-Stark Conjecture, 2020. Annals of Mathematics, to appear, arxiv:2010.00657.
  • [DK21] Samit Dasgupta and Mahesh Kakde. Brumer-Stark Units and Hilbert’s 12th Problem, 2021. Preprint, arxiv:2103.02516.
  • [DKV18] Samit Dasgupta, Mahesh Kakde, and Kevin Ventullo. On the Gross-Stark conjecture. Ann. of Math. (2), 188(3):833–870, 2018.
  • [DPV21a] Henri Darmon, Alice Pozzi, and Jan Vonk. Diagonal restrictions of pp-adic Eisenstein families. Math. Ann., 379(1-2):503–548, 2021.
  • [DPV21b] Henri Darmon, Alice Pozzi, and Jan Vonk. The values of the Dedekind-Rademacher cocycle at real multiplication points, 2021. Journal of the European Mathematical Society, to appear, arxiv:2103.02490.
  • [DR80] Pierre Deligne and KennethΒ A. Ribet. Values of abelian LL-functions at negative integers over totally real fields. Invent. Math., 59(3):227–286, 1980.
  • [DyDF12] Francisco DiazΒ y Diaz and Eduardo Friedman. Colmez cones for fundamental units of totally real cubic fields. J. Number Theory, 132(8):1653–1663, 2012.
  • [Fer78] Bruce Ferrero. Iwasawa invariants of Abelian number fields. Math. Ann., 234(1):9–24, 1978.
  • [FG79] Bruce Ferrero and Ralph Greenberg. On the behavior of pp-adic LL-functions at s=0s=0. Invent. Math., 50(1):91–102, 1978/79.
  • [FW79] Bruce Ferrero and LawrenceΒ C. Washington. The Iwasawa invariant ΞΌp\mu_{p} vanishes for abelian number fields. Ann. of Math. (2), 109(2):377–395, 1979.
  • [GK79] BenedictΒ H. Gross and Neal Koblitz. Gauss sums and the pp-adic Ξ“\Gamma-function. Ann. of Math. (2), 109(3):569–581, 1979.
  • [Gro81] BenedictΒ H. Gross. pp-adic LL-series at s=0s=0. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28(3):979–994 (1982), 1981.
  • [Hid93] Haruzo Hida. Elementary theory of LL-functions and Eisenstein series, volumeΒ 26 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1993.
  • [Iwa58] Kenkichi Iwasawa. On some invariants of cyclotomic fields. Amer. J. Math. 80 (1958), 773-783; erratum, 81:280, 1958.
  • [Kas05] Tomokazu Kashio. On a pp-adic analogue of Shintani’s formula. J. Math. Kyoto Univ., 45(1):99–128, 2005.
  • [Kat81] NicholasΒ M. Katz. Another look at pp-adic LL-functions for totally real fields. Math. Ann., 255(1):33–43, 1981.
  • [KW21] Heiko Knospe and LawrenceΒ C. Washington. Dirichlet series expansions of pp-adic LL-functions. Abh. Math. Semin. Univ. Hambg., 91(2):325–334, 2021.
  • [LV22] Alan Lauder and Jan Vonk. Computing pp-adic L-functions of totally real fields. Math. Comp., 91(334):921–942, 2022.
  • [Mor75] Yasuo Morita. A pp-adic analogue of the Ξ“\Gamma-function. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 22(2):255–266, 1975.
  • [Rib79] KennethΒ A. Ribet. Report on pp-adic LL-functions over totally real fields. In JournΓ©es ArithmΓ©tiques de Luminy (Colloq. Internat. CNRS, Centre Univ. Luminy, Luminy, 1978), volumeΒ 61 of AstΓ©risque, pages 177–192. Soc. Math. France, Paris, 1979.
  • [Rob15] Xavier-FranΓ§ois Roblot. Computing pp-adic LL-functions of totally real number fields. Math. Comp., 84(292):831–874, 2015.
  • [Shi76] Takuro Shintani. On evaluation of zeta functions of totally real algebraic number fields at non-positive integers. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 23(2):393–417, 1976.
  • [Wil90] A.Β Wiles. The Iwasawa conjecture for totally real fields. Ann. of Math. (2), 131(3):493–540, 1990.
  • [Yam10] Shuji Yamamoto. On Shintani’s ray class invariant for totally real number fields. Math. Ann., 346(2):449–476, 2010.
  • [Zha22] Luochen Zhao. Sum expressions for pp-adic Kubota-Leopoldt LL-functions. Proc. Edinb. Math. Soc. (2), 65(2):460–479, 2022.