This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

00footnotetext: ๐Ÿ๐ŸŽ๐Ÿ๐ŸŽโ€‹๐Œ๐š๐ญ๐ก๐ž๐ฆ๐š๐ญ๐ข๐œ๐ฌโ€‹๐’๐ฎ๐›๐ฃ๐ž๐œ๐ญโ€‹๐‚๐ฅ๐š๐ฌ๐ฌ๐ข๐Ÿ๐ข๐œ๐š๐ญ๐ข๐จ๐ง.\bf{2010\ Mathematics\ Subject\ Classification\>}. 53D10, 53D15, 53D25, 53D35.
Key words and phrases: Lorentzian manifolds, perfect fluid spacetime, Gโ€‹Rโ€‹WGRW spacetimes, pseudosymmetric spacetimes

Sufficient conditions for a pseudosymmetric spacetime to be a perfect fluid spacetime

Peibiao Zhao โ€ƒโ€ƒ Uday Chand De โ€ƒโ€ƒ Bรผlent รœnal and Krishnendu De Department of Applied Mathematics, Nanjing University of Science and Technology, Nanjing 210094, P. R. China. [email protected] Department of Pure Mathematics, University of Calcutta 35, Ballygaunge Circular Road Kolkata 700019, West Bengal, India. uc-[email protected] Department of Mathematics, Bilkent University, Bilkent, 06800 Ankara, Turkey [email protected] Department of Mathematics, Kabi Sukanta Mahavidyalaya, The University of Burdwan. Bhadreswar, P.O.-Angus, Hooghly, Pin 712221, West Bengal, India. [email protected]
Abstract

The aim of the present paper is to obtain the condition under which a pseudosymmetric spacetime to be a perfect fluid spacetime. It is proven that a pseudosymmetric generalized Robertson-Walker spacetime is a perfect fluid spacetime. Moreover, we establish that a conformally flat pseudosymmetric spacetime is a generalized Robertson-Walker spacetime. Next, it is shown that a pseudosymmetric dust fluid with constant scalar curvature satisfying Einsteinโ€™s field equations without cosmological constant is vacuum. Finally, we construct a non-trivial example of pseudosymmetric spacetime.

1 Introduction

Let MM be a semi-Riemannian manifold of dimension nโ‰ฅ2n\geq 2 equipped with a semi-Riemannian metric gg of signature (m,p)(m,p), where m+p=nm+p=n. If gg is a Lorentzian metric of signature (1,nโˆ’1)(1,n-1) or (nโˆ’1,1)(n-1,1), then MM endowed with gg is said to be an nn-dimensional Lorentzian manifold [23]. If M=โˆ’Iร—๐”ฃโ„ณM=-I\times_{\mathfrak{f}}\,\mathcal{M}, where II is an open interval of โ„\mathbb{R} (set of real numbers), โ„ณ\mathcal{M} is a Riemannian manifold of dimension nโˆ’1n-1 and ๐”ฃ>0\mathfrak{f}>0 denotes a smooth function, named as warping function or scale factor, then MM is said to be a generalized Robertson-Walker (briefly,Gโ€‹Rโ€‹W)(\text{briefly},GRW) spacetime ([1], [2]). Particularly, if we suppose that โ„ณ\mathcal{M} is a Riemannian manifold of dimension 33 with constant scalar curvature, then the Gโ€‹Rโ€‹WGRW spacetime becomes a Robertson-Walker (Rโ€‹WRW) spacetime. This infers that Gโ€‹Rโ€‹WGRW spacetimes are the natural extension of Rโ€‹WRW spacetimes. It is well-known that the Lorentzian Minkowski spacetime, the Friedmann cosmological models, the static Einstein spacetime, the Einstein-de Sitter spacetime, the de Sitter spacetime are included in the Gโ€‹Rโ€‹WGRW spacetimes [27]. They have also many applications in inhomogeneous spacetimes admitting an isotropic radiation. Several remarkable results on Gโ€‹Rโ€‹WGRW spacetimes are investigated in ([3], [8], [9], [18], [20], [21]) and by others.

A vector field ฮถ\zeta on an nn-dimensional semi-Riemannian manifold MM is said to be concircular if it satisfies โˆ‡Xฮถ=โ„ตโ€‹X\nabla_{X}\zeta=\aleph\,X for some smooth function โ„ต\aleph, where โˆ‡X\nabla_{X} denotes the covariant derivative along the smooth vector field XX of MM. The notion of concircular vector field on Riemannian manifold has been introduced by Failkow [15], and further studied by [10] and others.

Chen [9] has given a local characterization of a Lorentzian manifold admitting a timelike concircular vector field:
Theorem A. [9] A Lorentzian manifold MM of dimension nโ‰ฅ3n\geq 3 is a Gโ€‹Rโ€‹WGRW spacetime if and only if it admits a timelike concircular vector field such that Xi,j=ฯโ€‹giโ€‹jX_{i,j}=\rho g_{ij} for some smooth function ฯ\rho.
The concept of torse-forming vector field is weaker than the concircular one, but with an additional condition, the following local characterization of Gโ€‹Rโ€‹WGRW spacetimes is possible.
Theorem B. [20] A Lorentzian manifold of dimension nโ‰ฅ3n\geq 3 is a Gโ€‹Rโ€‹WGRW spacetime if and only if it admits a unit timelike vector, ui,j=ฯ†โ€‹(giโ€‹j+uiโ€‹uj)u_{i,j}=\varphi(g_{ij}+u_{i}u_{j}), that is also an eigenvector of the Ricci tensor.
An nn-dimensional spacetime MM with a non-vanishing Ricci tensor Riโ€‹jR_{ij} is said to be a perfect fluid spacetime if Riโ€‹jR_{ij} satisfies the relation

Riโ€‹j=ฮฑโ€‹giโ€‹j+ฮฒโ€‹Aiโ€‹AjR_{ij}=\alpha g_{ij}+\beta A_{i}A_{j} (1.1)

for some smooth functions ฮฑ\alpha and ฮฒ\beta on MM. Here gg denotes the Lorentzian metric of MM and AiA_{i} is the velocity vector such that giโ€‹jโ€‹Aiโ€‹Aj=โˆ’1g_{ij}A^{i}A^{j}=-1 and Ai=giโ€‹jโ€‹AjA_{i}=g_{ij}A^{j}. It is noticed that a Rโ€‹WRW spacetime is a perfect fluid spacetime ([23], Theorem 12.11). Every Gโ€‹Rโ€‹WGRW spacetime with n=4n=4 is a perfect fluid spacetime if and only if it is a Rโ€‹WRW spacetime. We cite ([4], [5], [13], [16], [19], [20], [22], [31]) and its references for some deep results of the perfect fluid spacetimes.

During the investigation of conformally flat Riemannian manifolds of class one, Sen and Chaki [28] found that the covariant derivative of the curvature tensor RR of type (0,4)(0,4) satisfies

Rhโ€‹iโ€‹jโ€‹k,l=2โ€‹vlโ€‹Rhโ€‹iโ€‹jโ€‹k+vhโ€‹Rlโ€‹iโ€‹jโ€‹k+viโ€‹Rhโ€‹lโ€‹jโ€‹k+vjโ€‹Rhโ€‹iโ€‹lโ€‹k+vkโ€‹Rhโ€‹iโ€‹jโ€‹l,R_{hijk,l}=2v_{l}R_{hijk}+v_{h}R_{lijk}+v_{i}R_{hljk}+v_{j}R_{hilk}+v_{k}R_{hijl}, (1.2)

where โ€, (comma)โ€ denotes the covariant derivative with respect to the metric tensor, Rhโ€‹iโ€‹jโ€‹kR_{hijk} are the components of the curvature tensor and vlv_{l} is a non-zero covector. Later, Chaki [6] named a Riemannian manifold to be pseudosymmetric if the curvature tensor satisfies the condition (1.2). Then Chaki and De [7] examined the Riemannian manifolds with the above condition. If the covector vlv_{l} vanishes, then the manifold becomes a locally symmetric manifold in the sense of Cartan. An nn-dimensional pseudosymmetric manifold is denoted by (Pโ€‹S)n(PS)_{n}. In 19921992, Deszcz [14] introduced the notion of a pseudosymmetric manifold which is different from Chakiโ€™s notion. According to Deszcz, a pseudo-symmetric manifold is said to be pseudosymmetric if Rโ€‹iโ€‹eโ€‹mโ‹…Rโ€‹iโ€‹eโ€‹mRiem\cdot Riem and Qโ€‹(g,Rโ€‹iโ€‹eโ€‹m)Q(g,Riem) are linearly dependent at each point of the manifold, where Rโ€‹iโ€‹eโ€‹mRiem and QQ denote the Riemannian curvature and Ricci operator, respectively. Thus we have Rโ€‹iโ€‹eโ€‹mโ‹…Rโ€‹iโ€‹eโ€‹m=๐”ฅโ€‹Qโ€‹(g,Rโ€‹iโ€‹eโ€‹m)Riem\cdot Riem=\mathfrak{h}Q(g,Riem) for some smooth function ๐”ฅ\mathfrak{h}. This paper deals with Chakiโ€™s notion of pseudosymmetric. Pseudosymmetric manifolds have been studied by several authors such as ([11], [12], [17], [25]) and others.

In [26], Prvanoviฤ‡ called such a manifold as a generalized recurrent manifold and proved that the associated covector vlv_{l} is gradient, that is, irrotational.

On the other hand, a spacetime of general relativity is regarded as a 44-dimensional time-oriented Lorentzian manifold (M,g)(M,g). In general relativity, the matter content of the spacetime is described by the energy momentum tensor. The matter content is assumed to be fluid having density, pressure and possessing dynamical and kinematical quantities like velocity, acceleration, vorticity, shear and expansion. The fluid is called perfect because of the absence of heat conduction terms and stress tensor corresponding to viscosity. For a perfect fluid, the energy momentum tensor Tiโ€‹jT_{ij} is given by

Tiโ€‹j=(ฯƒ+p)โ€‹Aiโ€‹Aj+pโ€‹giโ€‹j,T_{ij}=(\sigma+p)A_{i}A_{j}+pg_{ij}, (1.3)

where pp and ฯƒ\sigma are the isotropic pressure and energy density of the perfect fluid, respectively [23].

The Einsteinโ€™s field equations without cosmological constant is given by

Riโ€‹jโˆ’R2โ€‹giโ€‹j=ฮบโ€‹Tiโ€‹j,R_{ij}-\frac{R}{2}g_{ij}=\kappa T_{ij}, (1.4)

where Riโ€‹j=Riโ€‹jโ€‹hhR_{ij}=R^{h}_{ijh} is the Ricci tensor, R=giโ€‹jโ€‹Riโ€‹jR=g^{ij}R_{ij} denotes the scalar curvature and ฮบ\kappa is the gravitational constant. The Einsteinโ€™s field equations, in fact, connect the distribution of mass (represented by the energy momentum tensor) with the curvature of the spacetime (represented by the Einstein tensor).

In [21], Mantica, Molinari and De proved that a Gโ€‹Rโ€‹WGRW spacetime with divergence free conformal curvature tensor (Cjโ€‹kโ€‹l,mm=0C^{m}_{jkl,m}=0) is a perfect fluid spacetime.
Our aim is to improve the above result of [21]. We will prove the following:

Theorem 1.1.

Every pseudosymmetric Gโ€‹Rโ€‹WGRW spacetime is a perfect fluid spacetime.

The converse of Theorem 1.1 is not true in general. In this series, Mantica, Molinari and De [21] have established the following theorem:
Theorem C. [21] A perfect fluid spacetime together with dโ€‹iโ€‹vโ€‹C=0div\,C=0 is a generalized Robertson-Walker spacetime with Einstein fiber, provided that the velocity vector field of the perfect fluid is irrotational.

Motivated from Theorem C, we are going to prove the following theorem:

Theorem 1.2.

Every conformally flat (Pโ€‹S)n(PS)_{n} spacetime is a Gโ€‹Rโ€‹WGRW spacetime.

2 Pseudosymmetric Gโ€‹Rโ€‹WGRW spacetimes

This section is dedicated to give the condition for which a pseudosymmetric spacetime to be a perfect fluid spacetime.
Proof of Theorem 1.1. Let us suppose that the pseudosymmetric spacetime is a Gโ€‹Rโ€‹WGRW spacetime, then from Theorem B we have

vi,j=ฯ†โ€‹(giโ€‹j+viโ€‹vj),v_{i,j}=\varphi(g_{ij}+v_{i}v_{j}), (2.1)

where ฯ†\varphi is a scalar. Again the covariant derivative of equation (2.1) gives

vi,jโ€‹k=ฯ†kโ€‹(giโ€‹j+viโ€‹vj)+ฯ†โ€‹{ฯ†โ€‹(giโ€‹k+viโ€‹vk)โ€‹vj+ฯ†โ€‹(gjโ€‹k+vjโ€‹vk)โ€‹vi},v_{i,jk}=\varphi_{k}(g_{ij}+v_{i}v_{j})+\varphi\{\varphi(g_{ik}+v_{i}v_{k})v_{j}+\varphi(g_{jk}+v_{j}v_{k})v_{i}\}, (2.2)

where ฯ†k=ฯ†,k\varphi_{k}=\varphi_{,k} (the covariant derivative of the smooth function ฯ†\varphi). Interchanging jj and kk in the above equation and then subtracting the foregoing equation from (2.1) and using Ricci identity, we infer

vhโ€‹Riโ€‹jโ€‹kh=(ฯ†kโ€‹giโ€‹jโˆ’ฯ†jโ€‹giโ€‹k)+viโ€‹(ฯ†kโ€‹vjโˆ’ฯ†jโ€‹vk)+ฯ†2โ€‹(giโ€‹kโ€‹vjโˆ’giโ€‹jโ€‹vk)\displaystyle v_{h}R^{h}_{ijk}=(\varphi_{k}g_{ij}-\varphi_{j}g_{ik})+v_{i}(\varphi_{k}v_{j}-\varphi_{j}v_{k})+\varphi^{2}(g_{ik}v_{j}-g_{ij}v_{k})
=(ฯ†kโˆ’ฯ†2โ€‹vk)โ€‹giโ€‹jโˆ’(ฯ†jโˆ’ฯ†2โ€‹vj)โ€‹giโ€‹k+viโ€‹ฯ†kโ€‹vjโˆ’ฯ†jโ€‹viโ€‹vk\displaystyle\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=(\varphi_{k}-\varphi^{2}v_{k})g_{ij}-(\varphi_{j}-\varphi^{2}v_{j})g_{ik}+v_{i}\varphi_{k}v_{j}-\varphi_{j}v_{i}v_{k}
=wkโ€‹(giโ€‹j+viโ€‹vj)โˆ’wjโ€‹(giโ€‹k+viโ€‹vk),\displaystyle\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=w_{k}(g_{ij}+v_{i}v_{j})-w_{j}(g_{ik}+v_{i}v_{k}), (2.3)

where wk=ฯ†kโˆ’ฯ†2โ€‹vkw_{k}=\varphi_{k}-\varphi^{2}v_{k}. Multiplying equation (2) with giโ€‹jg^{ij}, we get

vhโ€‹Rkh=(nโˆ’2)โ€‹wkโˆ’wjโ€‹vjโ€‹vk.v_{h}R^{h}_{k}=(n-2)w_{k}-w_{j}v^{j}v_{k}. (2.4)

If vkv_{k} is an eigenvector of the Ricci tensor, then wk=fโ€‹vkw_{k}=fv_{k} for some scalar ff. Hence equation (2.4) turns into

vhโ€‹Rkh=(nโˆ’1)โ€‹fโ€‹vk.v_{h}R^{h}_{k}=(n-1)fv_{k}.

It is noted that the associated vector field viv_{i} is gradient [26]. Using this fact in equation (1.2), we obtain

Rhโ€‹iโ€‹jโ€‹k,lโ€‹mโˆ’Rhโ€‹iโ€‹jโ€‹k,mโ€‹l=Ahโ€‹mโ€‹Rlโ€‹iโ€‹jโ€‹k+Aiโ€‹mโ€‹Rhโ€‹lโ€‹jโ€‹k+Ajโ€‹mโ€‹Rhโ€‹iโ€‹lโ€‹k+Akโ€‹mโ€‹Rhโ€‹iโ€‹jโ€‹l\displaystyle R_{hijk,lm}-R_{hijk,ml}=A_{hm}R_{lijk}+A_{im}R_{hljk}+A_{jm}R_{hilk}+A_{km}R_{hijl}
โˆ’Ahโ€‹lโ€‹Rmโ€‹iโ€‹jโ€‹kโˆ’Aiโ€‹lโ€‹Rhโ€‹mโ€‹jโ€‹kโˆ’Ajโ€‹lโ€‹Rhโ€‹iโ€‹mโ€‹kโˆ’Akโ€‹lโ€‹Rhโ€‹iโ€‹jโ€‹m,\displaystyle\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,-A_{hl}R_{mijk}-A_{il}R_{hmjk}-A_{jl}R_{himk}-A_{kl}R_{hijm},

where Ahโ€‹m=vh,mโˆ’vhโ€‹vmA_{hm}=v_{h,m}-v_{h}v_{m}. The foregoing equation together with equation (2.1) and Ricci identity entail that

Rpโ€‹iโ€‹jโ€‹kโ€‹Rhโ€‹lโ€‹mp+Rhโ€‹pโ€‹jโ€‹kโ€‹Riโ€‹lโ€‹mp+Rhโ€‹iโ€‹pโ€‹kโ€‹Rjโ€‹lโ€‹mp+Rhโ€‹iโ€‹jโ€‹pโ€‹Rkโ€‹lโ€‹mp\displaystyle R_{pijk}R^{p}_{hlm}+R_{hpjk}R^{p}_{ilm}+R_{hipk}R^{p}_{jlm}+R_{hijp}R^{p}_{klm}
=(ฯ†โ€‹ghโ€‹m+(ฯ†โˆ’1)โ€‹vhโ€‹vm)โ€‹Rlโ€‹iโ€‹jโ€‹k+(ฯ†โ€‹giโ€‹m+(ฯ†โˆ’1)โ€‹viโ€‹vm)โ€‹Rhโ€‹lโ€‹jโ€‹k\displaystyle\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=(\varphi g_{hm}+(\varphi-1)v_{h}v_{m})R_{lijk}+(\varphi g_{im}+(\varphi-1)v_{i}v_{m})R_{hljk}
+(ฯ†โ€‹gjโ€‹m+(ฯ†โˆ’1)โ€‹vjโ€‹vm)โ€‹Rhโ€‹iโ€‹lโ€‹k+(ฯ†โ€‹gkโ€‹m+(ฯ†โˆ’1)โ€‹vkโ€‹vm)โ€‹Rhโ€‹iโ€‹jโ€‹l\displaystyle\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+(\varphi g_{jm}+(\varphi-1)v_{j}v_{m})R_{hilk}+(\varphi g_{km}+(\varphi-1)v_{k}v_{m})R_{hijl}
โˆ’(ฯ†โ€‹ghโ€‹l+(ฯ†โˆ’1)โ€‹vhโ€‹vl)โ€‹Rmโ€‹iโ€‹jโ€‹kโˆ’(ฯ†โ€‹giโ€‹l+(ฯ†โˆ’1)โ€‹viโ€‹vl)โ€‹Rhโ€‹mโ€‹jโ€‹k\displaystyle\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,-(\varphi g_{hl}+(\varphi-1)v_{h}v_{l})R_{mijk}-(\varphi g_{il}+(\varphi-1)v_{i}v_{l})R_{hmjk}
โˆ’(ฯ†โ€‹gjโ€‹l+(ฯ†โˆ’1)โ€‹vjโ€‹vl)โ€‹Rhโ€‹iโ€‹mโ€‹kโˆ’(ฯ†โ€‹gkโ€‹l+(ฯ†โˆ’1)โ€‹vkโ€‹vl)โ€‹Rhโ€‹iโ€‹jโ€‹m.\displaystyle\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,-(\varphi g_{jl}+(\varphi-1)v_{j}v_{l})R_{himk}-(\varphi g_{kl}+(\varphi-1)v_{k}v_{l})R_{hijm}. (2.5)

Multiplying equation (2) with vhv^{h} and using (2), we conclude that

L.H.S.\displaystyle L.H.S. =\displaystyle= Riโ€‹jโ€‹kpโ€‹Rpโ€‹hโ€‹lโ€‹mโ€‹vh+vhโ€‹Rhโ€‹pโ€‹jโ€‹kโ€‹Riโ€‹lโ€‹mp+vhโ€‹Rhโ€‹iโ€‹pโ€‹kโ€‹Rjโ€‹lโ€‹mp+vhโ€‹Rhโ€‹iโ€‹jโ€‹pโ€‹Rkโ€‹lโ€‹mp\displaystyle R^{p}_{ijk}R_{phlm}v^{h}+v^{h}R_{hpjk}R^{p}_{ilm}+v^{h}R_{hipk}R^{p}_{jlm}+v^{h}R_{hijp}R^{p}_{klm}
=\displaystyle= โˆ’Rlโ€‹iโ€‹jโ€‹kโ€‹wmโˆ’vpโ€‹Riโ€‹jโ€‹kpโ€‹vlโ€‹wm+wlโ€‹Rmโ€‹iโ€‹jโ€‹k+wlโ€‹vpโ€‹Riโ€‹jโ€‹kpโ€‹vm+wkโ€‹vjโ€‹vpโ€‹Riโ€‹lโ€‹mp\displaystyle-R_{lijk}w_{m}-v_{p}R^{p}_{ijk}v_{l}w_{m}+w_{l}R_{mijk}+w_{l}v_{p}R^{p}_{ijk}v_{m}+w_{k}v_{j}v_{p}R^{p}_{ilm}
โˆ’wjโ€‹vpโ€‹vkโ€‹Riโ€‹lโ€‹mp+wkโ€‹viโ€‹vpโ€‹Rjโ€‹lโ€‹mpโˆ’wpโ€‹Rjโ€‹lโ€‹mpโ€‹giโ€‹kโˆ’wpโ€‹viโ€‹vkโ€‹Rjโ€‹lโ€‹mp\displaystyle-w_{j}v_{p}v_{k}R^{p}_{ilm}+w_{k}v_{i}v_{p}R^{p}_{jlm}-w_{p}R^{p}_{jlm}g_{ik}-w_{p}v_{i}v_{k}R^{p}_{jlm}
+wpโ€‹Rkโ€‹lโ€‹mpโ€‹giโ€‹j+wpโ€‹viโ€‹vjโ€‹Rkโ€‹lโ€‹mpโˆ’wjโ€‹viโ€‹vpโ€‹Rkโ€‹lโ€‹mp.\displaystyle+w_{p}R^{p}_{klm}g_{ij}+w_{p}v_{i}v_{j}R^{p}_{klm}-w_{j}v_{i}v_{p}R^{p}_{klm}.

Again, using equations (2) and wk=fโ€‹vkw_{k}=fv_{k} for some scalar ff in the foregoing equation we have

L.H.S.=โˆ’fvmRlโ€‹iโ€‹jโ€‹k+fvlRmโ€‹iโ€‹jโ€‹kโˆ’f2vivk(vmgjโ€‹lโˆ’vlgjโ€‹m)+f2(vmgkโ€‹lโˆ’vlgkโ€‹m)giโ€‹j.L.H.S.=-fv_{m}R_{lijk}+fv_{l}R_{mijk}-f^{2}v_{i}v_{k}(v_{m}g_{jl}-v_{l}g_{jm})+f^{2}(v_{m}g_{kl}-v_{l}g_{km})g_{ij}.

Following the above process, the right-hand side of equation (2) assumes the form

R.H.S.=vmRlโ€‹iโ€‹jโ€‹kโˆ’vlRmโ€‹iโ€‹jโ€‹k+f(ฯ†โˆ’1)vivm{vkglโ€‹jโˆ’vjglโ€‹k}\displaystyle R.H.S.=v_{m}R_{lijk}-v_{l}R_{mijk}+f(\varphi-1)v_{i}v_{m}\{v_{k}g_{lj}-v_{j}g_{lk}\}
โˆ’fโ€‹ฯ†โ€‹gjโ€‹mโ€‹vlโ€‹giโ€‹k+fโ€‹(ฯ†โˆ’1)โ€‹vjโ€‹vmโ€‹{vkโ€‹giโ€‹lโˆ’vlโ€‹giโ€‹k}\displaystyle\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,-f\varphi g_{jm}v_{l}g_{ik}+f(\varphi-1)v_{j}v_{m}\{v_{k}g_{il}-v_{l}g_{ik}\}
+fโ€‹(ฯ†โ€‹gkโ€‹m+(ฯ†โˆ’1)โ€‹vkโ€‹vm)โ€‹(vlโ€‹giโ€‹jโˆ’vjโ€‹giโ€‹l)+fโ€‹ฯ†โ€‹vjโ€‹giโ€‹lโ€‹gmโ€‹k\displaystyle\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+f(\varphi g_{km}+(\varphi-1)v_{k}v_{m})(v_{l}g_{ij}-v_{j}g_{il})+f\varphi v_{j}g_{il}g_{mk}
โˆ’fโ€‹(ฯ†โˆ’1)โ€‹viโ€‹vlโ€‹(vkโ€‹gmโ€‹jโˆ’vjโ€‹gmโ€‹k)+fโ€‹ฯ†โ€‹gjโ€‹lโ€‹vmโ€‹giโ€‹k\displaystyle\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,-f(\varphi-1)v_{i}v_{l}(v_{k}g_{mj}-v_{j}g_{mk})+f\varphi g_{jl}v_{m}g_{ik}
โˆ’fโ€‹(ฯ†โˆ’1)โ€‹vjโ€‹vlโ€‹{vkโ€‹giโ€‹mโˆ’vmโ€‹giโ€‹k}โˆ’fโ€‹ฯ†โ€‹gkโ€‹lโ€‹vmโ€‹giโ€‹j\displaystyle\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,-f(\varphi-1)v_{j}v_{l}\{v_{k}g_{im}-v_{m}g_{ik}\}-f\varphi g_{kl}v_{m}g_{ij}
โˆ’fโ€‹(ฯ†โˆ’1)โ€‹vkโ€‹vlโ€‹{vmโ€‹giโ€‹jโˆ’vjโ€‹giโ€‹m}.\displaystyle\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,-f(\varphi-1)v_{k}v_{l}\{v_{m}g_{ij}-v_{j}g_{im}\}.

The above equations infer that

โˆ’fโ€‹vmโ€‹Rlโ€‹iโ€‹jโ€‹k+fโ€‹vlโ€‹Rmโ€‹iโ€‹jโ€‹kโˆ’f2โ€‹viโ€‹vkโ€‹(vmโ€‹giโ€‹lโˆ’vlโ€‹gjโ€‹m)+f2โ€‹(vmโ€‹gkโ€‹lโˆ’vlโ€‹gkโ€‹m)โ€‹giโ€‹j\displaystyle-fv_{m}R_{lijk}+fv_{l}R_{mijk}-f^{2}v_{i}v_{k}(v_{m}g_{il}-v_{l}g_{jm})+f^{2}(v_{m}g_{kl}-v_{l}g_{km})g_{ij}
=vmโ€‹Rlโ€‹iโ€‹jโ€‹kโˆ’vlโ€‹Rmโ€‹iโ€‹jโ€‹k+fโ€‹(ฯ†โˆ’1)โ€‹viโ€‹vmโ€‹{vkโ€‹glโ€‹jโˆ’vjโ€‹glโ€‹k}\displaystyle\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=v_{m}R_{lijk}-v_{l}R_{mijk}+f(\varphi-1)v_{i}v_{m}\{v_{k}g_{lj}-v_{j}g_{lk}\}
โˆ’fโ€‹ฯ†โ€‹gjโ€‹mโ€‹vlโ€‹giโ€‹k+fโ€‹(ฯ†โˆ’1)โ€‹vjโ€‹vmโ€‹{vkโ€‹giโ€‹lโˆ’vlโ€‹giโ€‹k}\displaystyle\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,-f\varphi g_{jm}v_{l}g_{ik}+f(\varphi-1)v_{j}v_{m}\{v_{k}g_{il}-v_{l}g_{ik}\}
+fโ€‹(ฯ†โ€‹gkโ€‹m+(ฯ†โˆ’1)โ€‹vkโ€‹vm)โ€‹(vlโ€‹giโ€‹jโˆ’vjโ€‹giโ€‹l)+fโ€‹ฯ†โ€‹vjโ€‹giโ€‹lโ€‹gmโ€‹k\displaystyle\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,+f(\varphi g_{km}+(\varphi-1)v_{k}v_{m})(v_{l}g_{ij}-v_{j}g_{il})+f\varphi v_{j}g_{il}g_{mk}
โˆ’fโ€‹(ฯ†โˆ’1)โ€‹viโ€‹vlโ€‹(vkโ€‹gmโ€‹jโˆ’vjโ€‹gmโ€‹k)+fโ€‹ฯ†โ€‹gjโ€‹lโ€‹vmโ€‹giโ€‹k\displaystyle\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,-f(\varphi-1)v_{i}v_{l}(v_{k}g_{mj}-v_{j}g_{mk})+f\varphi g_{jl}v_{m}g_{ik}
โˆ’fโ€‹(ฯ†โˆ’1)โ€‹vjโ€‹vlโ€‹{vkโ€‹giโ€‹mโˆ’vmโ€‹giโ€‹k}โˆ’fโ€‹ฯ†โ€‹gkโ€‹lโ€‹vmโ€‹giโ€‹j\displaystyle\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,-f(\varphi-1)v_{j}v_{l}\{v_{k}g_{im}-v_{m}g_{ik}\}-f\varphi g_{kl}v_{m}g_{ij}
โˆ’fโ€‹(ฯ†โˆ’1)โ€‹vkโ€‹vlโ€‹{vmโ€‹giโ€‹jโˆ’vjโ€‹giโ€‹m}.\displaystyle\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,-f(\varphi-1)v_{k}v_{l}\{v_{m}g_{ij}-v_{j}g_{im}\}. (2.6)

Multiplying equation (2) with vlv^{l}, and making use of equations (2) and wk=fโ€‹vkw_{k}=fv_{k} we obtain

โˆ’f2โ€‹vmโ€‹(vkโ€‹giโ€‹jโˆ’vjโ€‹giโ€‹k)โˆ’Rmโ€‹iโ€‹jโ€‹kโˆ’f2โ€‹viโ€‹vkโ€‹(vmโ€‹vj+gjโ€‹m)+f2โ€‹(vmโ€‹vk+gmโ€‹k)โ€‹giโ€‹j\displaystyle-f^{2}v_{m}(v_{k}g_{ij}-v_{j}g_{ik})-R_{mijk}-f^{2}v_{i}v_{k}(v_{m}v_{j}+g_{jm})+f^{2}(v_{m}v_{k}+g_{mk})g_{ij}
=f2โ€‹vmโ€‹{vkโ€‹giโ€‹jโˆ’vjโ€‹giโ€‹k}+Rmโ€‹iโ€‹jโ€‹k+fโ€‹(ฯ†โˆ’1)โ€‹vjโ€‹vmโ€‹{vkโ€‹vi+giโ€‹k}+fโ€‹ฯ†โ€‹gjโ€‹mโ€‹giโ€‹k\displaystyle=f^{2}v_{m}\{v_{k}g_{ij}-v_{j}g_{ik}\}+R_{mijk}+f(\varphi-1)v_{j}v_{m}\{v_{k}v_{i}+g_{ik}\}+f\varphi g_{jm}g_{ik}
+fโ€‹{ฯ†โ€‹gjโ€‹m+(ฯ†โˆ’1)โ€‹vjโ€‹vm}โ€‹(vkโ€‹vi+gkโ€‹i)+fโ€‹(ฯ†โˆ’1)โ€‹viโ€‹(vkโ€‹gmโ€‹jโˆ’vjโ€‹gmโ€‹k)\displaystyle\,\,\,\,+f\{\varphi g_{jm}+(\varphi-1)v_{j}v_{m}\}(v_{k}v_{i}+g_{ki})+f(\varphi-1)v_{i}(v_{k}g_{mj}-v_{j}g_{mk})
+fโ€‹ฯ†โ€‹vjโ€‹viโ€‹gmโ€‹k+fโ€‹ฯ†โ€‹vjโ€‹vmโ€‹giโ€‹k+(ฯ†โˆ’1)โ€‹vjโ€‹{vkโ€‹giโ€‹mโˆ’vmโ€‹giโ€‹k}\displaystyle\,\,\,\,+f\varphi v_{j}v_{i}g_{mk}+f\varphi v_{j}v_{m}g_{ik}+(\varphi-1)v_{j}\{v_{k}g_{im}-v_{m}g_{ik}\}
โˆ’fโ€‹ฯ†โ€‹vkโ€‹vmโ€‹giโ€‹j+fโ€‹(ฯ†โˆ’1)โ€‹vkโ€‹{vmโ€‹giโ€‹jโˆ’vjโ€‹giโ€‹m}.\displaystyle\,\,\,\,-f\varphi v_{k}v_{m}g_{ij}+f(\varphi-1)v_{k}\{v_{m}g_{ij}-v_{j}g_{im}\}.

Again multiplying the above equation with giโ€‹jg^{ij}, we find

Rkโ€‹m=ฮฑโ€‹gkโ€‹m+ฮฒโ€‹vkโ€‹vm,R_{km}=\alpha g_{km}+\beta v_{k}v_{m}, (2.7)

where ฮฒ=12โ€‹[โˆ’f2+fโ€‹{(2โ€‹ฯ†โˆ’1)+nโ€‹(ฯ†โˆ’1)}]\beta=\frac{1}{2}[-f^{2}+f\{(2\varphi-1)+n(\varphi-1)\}] and ฮฑ=12โ€‹[โˆ’nโ€‹f2+fโ€‹(ฯ†โˆ’1)]\alpha=\frac{1}{2}[-nf^{2}+f(\varphi-1)]. The last equation together with (1.1) show that the pseudosymmetric Gโ€‹Rโ€‹WGRW spacetime is a perfect fluid spacetime. This finishes the proof of the Theorem.

Remark.

In [21], Mantica, Molinari and first author proved that a perfect fluid spacetime in dimension nโ‰ฅ4n\geq 4, with differentiable equation of state p=pโ€‹(ฯƒ)p=p(\sigma), p+ฯƒโ‰ 0p+\sigma\neq 0, and with null divergence of the Weyl conformal curvature tensor (Cjโ€‹kโ€‹l,mm=0)(C^{m}_{jkl,m}=0), is a Gโ€‹Rโ€‹WGRW spacetime. In Theorem 1.1, we gave an affirmative answer of the question โ€Under which condition a Gโ€‹Rโ€‹WGRW spacetime to be a perfect fluid spacetime?โ€

In consequence of equations (1.3), (1.4) and (2.7), we notice that

(ฮฑโˆ’R2โˆ’ฮบโ€‹p)โ€‹giโ€‹j+(ฮฒโˆ’ฮบโ€‹(p+ฯƒ))โ€‹viโ€‹vj=0,\left(\alpha-\frac{R}{2}-\kappa p\right)g_{ij}+(\beta-\kappa(p+\sigma))v_{i}v_{j}=0,

which gives

ฮบโ€‹ฯƒ=(nโˆ’1)โ€‹ฮฑโ€‹andโ€‹(nโˆ’1)โ€‹pโ€‹ฮบ=(nโˆ’1)โ€‹ฮฑโˆ’(nโˆ’2)โ€‹(nโ€‹ฮฑโˆ’ฮฒ)2.\kappa\sigma=(n-1)\alpha\,\,\,\,\,\text{and}\,\,\,\,(n-1)p\kappa=(n-1)\alpha-\frac{(n-2)(n\alpha-\beta)}{2}.

These reflect that the equation of state assumes the form

pฯƒ=1nโˆ’1โˆ’(nโˆ’2)โ€‹(nโ€‹ฮฑโˆ’ฮฒ)2โ€‹ฮฑโ€‹(nโˆ’1)2.\frac{p}{\sigma}=\frac{1}{n-1}-\frac{(n-2)(n\alpha-\beta)}{2\alpha(n-1)^{2}}. (2.8)

For n=4n=4, the above equation with (2.7) take the form

pฯƒ=13+15โ€‹f+2โ€‹ฯ†โˆ’1ฯ†โˆ’4โ€‹fโˆ’1.\frac{p}{\sigma}=\frac{1}{3}+\frac{15f+2\varphi-1}{\varphi-4f-1}.

If 2โ€‹ฯ†=1โˆ’15โ€‹f2\varphi=1-15f, then the above equation becomes 3โ€‹p=ฯƒ3p=\sigma, that is, the equation of state represents the radiation era in the evolution of the universe [30]. Now, we state our finding as:

Corollary 2.1.

Let a pseudosymmetric Gโ€‹Rโ€‹WGRW spacetime satisfy the Einsteinโ€™s field equations without cosmological constant, then the equation of state is given by (2.8). Also, if n=4n=4 and 2โ€‹ฯ†=1โˆ’15โ€‹f2\varphi=1-15f, the matter of the spacetime represents the radiation era.

3 Conformally flat (Pโ€‹S)n(PS)_{n} spacetimes

This section deals with the study of pseudosymmetric conformally flat spacetimes.
Proof of Theorem 1.2. It is well-known that in a conformally flat (Pโ€‹S)n(PS)_{n} spacetime, the Ricci tensor Riโ€‹jR_{ij} is of the form

Riโ€‹j=Rโˆ’tnโˆ’1โ€‹giโ€‹j+nโ€‹tโˆ’R(nโˆ’1)โ€‹vpโ€‹vpโ€‹viโ€‹vj,R_{ij}=\frac{R-t}{n-1}g_{ij}+\frac{nt-R}{(n-1)v_{p}v^{p}}v_{i}v_{j},

where RR denotes the scalar curvature and tt is a scalar [29]. The above equation can be rewritten as

Riโ€‹j=ฮฑโ€‹giโ€‹j+ฮฒโ€‹ฮปiโ€‹ฮปj,R_{ij}=\alpha g_{ij}+\beta\lambda_{i}\lambda_{j}, (3.1)

where ฮฑ=Rโˆ’tnโˆ’1\alpha=\frac{R-t}{n-1} and ฮฒ=nโ€‹tโˆ’R(nโˆ’1)โ€‹vpโ€‹vp\beta=\frac{nt-R}{(n-1)v_{p}v^{p}} are two scalars and ฮปi=viโˆ’vjโ€‹vj\lambda_{i}=\frac{v_{i}}{\sqrt{-v_{j}v^{j}}} is a unit timelike vector. Equation (3.1) reflects that the conformally flat (Pโ€‹S)n(PS)_{n} spacetimes are the perfect fluid spacetimes.

According to our hypothesis, the conformal curvature tensor CC of our ambient space vanishes and therefore dโ€‹iโ€‹vโ€‹C=0div\,C=0, where dโ€‹iโ€‹vdiv denotes the divergence. In [21], Mantica, Molinari and De proved that a perfect fluid spacetime with dโ€‹iโ€‹vโ€‹C=0div\,C=0 is a Gโ€‹Rโ€‹WGRW spacetime. Thus, by considering equation (3.1) and the above discussions, we obtain the required result.

4 Viscous fluid

We consider the pseudosymmetric spacetimes with constant scalar curvature. From equation (1.2) we get

Riโ€‹j,l=2โ€‹vlโ€‹Riโ€‹j+viโ€‹Rlโ€‹j+vjโ€‹Riโ€‹l+vkโ€‹Rlโ€‹iโ€‹jโ€‹k+vkโ€‹Rkโ€‹iโ€‹jโ€‹l.R_{ij,l}=2v_{l}R_{ij}+v_{i}R_{lj}+v_{j}R_{il}+v^{k}R_{lijk}+v^{k}R_{kijl}.

Considering an orthonormal frame field and contracting the above equation entails that R,l=2โ€‹vlโ€‹R+4โ€‹Rlโ€‹hโ€‹vhR_{,l}=2v_{l}R+4R_{lh}v^{h}. Since the scalar curvature RR is constant, therefore we get Rlโ€‹hโ€‹vh=โˆ’R2โ€‹vlR_{lh}v^{h}=-\frac{R}{2}v_{l}, which implies that โˆ’R2-\frac{R}{2} is an eigenvalue of the Ricci tensor Rlโ€‹hR_{lh} corresponding to the eigenvector vlv_{l}.

In viscous fluid, the energy momentum tensor [24] is given by

Tiโ€‹j=(p+ฯƒ)โ€‹viโ€‹vj+pโ€‹giโ€‹j+Diโ€‹j,T_{ij}=(p+\sigma)v_{i}v_{j}+pg_{ij}+D_{ij}, (4.1)

where Diโ€‹jD_{ij} is a (0,2)(0,2)-type symmetric tensor, named as the anisotropic pressure of the fluid. Also Diโ€‹jD_{ij} satisfies Diโ€‹jโ€‹vj=0D_{ij}v^{j}=0 and trace of D=0D=0. Suppose the spacetime under consideration obeys Einsteinโ€™s field equation without cosmological constant, that is equation (1.4) is satisfied. Then we have

Riโ€‹jโˆ’R2โ€‹giโ€‹j=ฮบโ€‹[(p+ฯƒ)โ€‹viโ€‹vj+pโ€‹giโ€‹j+Diโ€‹j].R_{ij}-\frac{R}{2}g_{ij}=\kappa[(p+\sigma)v_{i}v_{j}+pg_{ij}+D_{ij}]. (4.2)

Multiplying equation (4.2) with giโ€‹jg^{ij} we find

2โˆ’n2โ€‹ฮบโ€‹R=(nโˆ’1)โ€‹pโˆ’ฯƒ,\frac{2-n}{2\kappa}R=(n-1)p-\sigma, (4.3)

since trace of D=0.D=0. Now, multiplying equation (4.2) with vjv^{j} we infer

โˆ’Rโ€‹vi=โˆ’ฮบโ€‹ฯƒโ€‹viโŸนฮบโ€‹ฯƒ=R,-Rv_{i}=-\kappa\sigma v_{i}\implies\kappa\sigma=R, (4.4)

since Diโ€‹jโ€‹vj=0D_{ij}v^{j}=0 and Riโ€‹jโ€‹vj=โˆ’R2โ€‹viR_{ij}v^{j}=-\frac{R}{2}v_{i}. Equations (4.3) and (4.4) entail that

p=4โˆ’n2โ€‹(nโˆ’1)โ€‹ฯƒ,p=\frac{4-n}{2(n-1)}\sigma, (4.5)

which means that the fluid is isentropic [18]. Thus, we can write our result as:

Theorem 4.1.

Let the pseudosymmetric spacetime with the constant scalar curvature satisfy the Einsteinโ€™s field equations. If the spacetime is filled with viscous fluid, then the fluid is isentropic and the equation of state is given by (4.5).

Remark.

For n=4n=4, equation (4.5) reflects that p=0p=0, that is the isotropic pressure of the viscous fluid is zero and the spacetime is filled with dust matter.

In case of dust or pressure-less fluid, the energy momentum tensor assumes the form

Tiโ€‹j=ฯƒโ€‹viโ€‹vj.T_{ij}=\sigma v_{i}v_{j}. (4.6)

In consequence of equation (1.4), equation (4.6) takes the form

Riโ€‹jโˆ’R2โ€‹giโ€‹j=ฮบโ€‹ฯƒโ€‹viโ€‹vj.R_{ij}-\frac{R}{2}g_{ij}=\kappa\sigma v_{i}v_{j}. (4.7)

Let us consider an orthonormal frame field and contracting the above equation for ii and jj, we get

2โˆ’n2โ€‹R=โˆ’ฮบโ€‹ฯƒ.\frac{2-n}{2}R=-\kappa\sigma. (4.8)

Again, multiplying equation (4.7) with vjv^{j} we lead to

โˆ’Rโ€‹vi=โˆ’ฮบโ€‹ฯƒโ€‹viโŸนฮบโ€‹ฯƒ=R,-Rv_{i}=-\kappa\sigma v_{i}\implies\kappa\sigma=R, (4.9)

since Riโ€‹jโ€‹vj=โˆ’R2โ€‹viR_{ij}v^{j}=-\frac{R}{2}v_{i}. From equations (4.8) and (4.9) we infer that ฯƒ=0\sigma=0 and hence equation (4.6) reduces to Tiโ€‹j=0T_{ij}=0, which implies that the spacetime is vacuum.

Theorem 4.2.

Let a pseudosymmetric spacetime with the constant scalar curvature satisfy the Einsteinโ€™s field equation without a cosmological constant. If the spacetime is filled with dust fluid, then it is vacuum.

5 An Example of Pseudosymmetric spacetime

In this section, we construct a non-trivial example to prove the existence of a pseudosymmetric spacetime whose associated vector is irrotational.

Let us consider a Lorentzian metric gg on โ„4\mathbb{R}^{4} by

dโ€‹s2=giโ€‹jโ€‹dโ€‹xiโ€‹dโ€‹xj=(dโ€‹x1)2+(x1)2โ€‹(dโ€‹x2)2+(x2)2โ€‹(dโ€‹x3)2โˆ’(dโ€‹x4)2,ds^{2}=g_{ij}dx^{i}dx^{j}=(dx^{1})^{2}+(x^{1})^{2}(dx^{2})^{2}+(x^{2})^{2}(dx^{3})^{2}-(dx^{4})^{2},

where (x1,x2,x3,x4)(x^{1},x^{2},x^{3},x^{4}) are the standard coordinate of โ„4\mathbb{R}^{4} and i,j=1,2,3,4i,j=1,2,3,4. The only non-vanishing components of the Christoffel symbols and curvature tensor are

ฮ“221=โˆ’x1,ฮ“332=โˆ’x2(x1)2,ฮ“122=1x1,ฮ“233=1x2โ€‹andโ€‹R1332=โˆ’x2x1.\Gamma^{1}_{22}=-x^{1},\,\,\,\Gamma^{2}_{33}=-\frac{x^{2}}{(x^{1})^{2}},\,\,\,\Gamma^{2}_{12}=\frac{1}{x^{1}},\,\,\,\Gamma^{3}_{23}=\frac{1}{x^{2}}\,\,\text{and}\,\,R_{1332}=-\frac{x^{2}}{x^{1}}.

From equation Rhโ€‹iโ€‹jโ€‹k,l=2โ€‹vlโ€‹Rhโ€‹iโ€‹jโ€‹k+vhโ€‹Rlโ€‹iโ€‹jโ€‹k+viโ€‹Rhโ€‹lโ€‹jโ€‹k+vjโ€‹Rhโ€‹iโ€‹lโ€‹k+vkโ€‹Rhโ€‹iโ€‹jโ€‹lR_{hijk,l}=2v_{l}R_{hijk}+v_{h}R_{lijk}+v_{i}R_{hljk}+v_{j}R_{hilk}+v_{k}R_{hijl} we have

R1332,1=2โ€‹v1โ€‹R1332+v1โ€‹R1332+v3โ€‹R1132+v3โ€‹R1312+v2โ€‹R1331,R_{1332,1}=2v_{1}R_{1332}+v_{1}R_{1332}+v_{3}R_{1132}+v_{3}R_{1312}+v_{2}R_{1331}, (5.1)
R1332,2=2โ€‹v2โ€‹R1332+v1โ€‹R2332+v3โ€‹R1232+v3โ€‹R1322+v2โ€‹R1332,R_{1332,2}=2v_{2}R_{1332}+v_{1}R_{2332}+v_{3}R_{1232}+v_{3}R_{1322}+v_{2}R_{1332}, (5.2)
R1332,3=2โ€‹v3โ€‹R1332+v1โ€‹R3332+v3โ€‹R1332+v3โ€‹R1332+v2โ€‹R1333,R_{1332,3}=2v_{3}R_{1332}+v_{1}R_{3332}+v_{3}R_{1332}+v_{3}R_{1332}+v_{2}R_{1333}, (5.3)
R1332,4=2โ€‹v4โ€‹R1332+v1โ€‹R4332+v3โ€‹R1432+v3โ€‹R1342+v2โ€‹R1334.R_{1332,4}=2v_{4}R_{1332}+v_{1}R_{4332}+v_{3}R_{1432}+v_{3}R_{1342}+v_{2}R_{1334}. (5.4)

We choose the covariant vector viv_{i} as follows:

vi={โˆ’23โ€‹x1,fori=1โˆ’13โ€‹x2,fori=20,fori=3,4.v_{i}=\left\{\begin{array}[]{rcl}-\frac{2}{3x^{1}},&\mbox{for}&i=1\\ \\ -\frac{1}{3x^{2}},&\mbox{for}&i=2\\ \\ 0,&\mbox{for}&i=3,4.\end{array}\right.

It can be easily shown that

v1,4=v4,1=0,v1,2=v2,1=13โ€‹x1โ€‹x2,v1,3=v3,1=0,\displaystyle v_{1,4}=v_{4,1}=0,\,\,v_{1,2}=v_{2,1}=\frac{1}{3x^{1}x^{2}},\,\,v_{1,3}=v_{3,1}=0,
v2,4=v4,2=0,v2,3=v3,2=0,v3,4=v4,3=0.\displaystyle\,\,\,\,\,v_{2,4}=v_{4,2}=0,\,\,v_{2,3}=v_{3,2}=0,\,\,v_{3,4}=v_{4,3}=0.

From the above discussions, we can conclude that the equations (5.1)-(5.4) are true. Thus, the manifold under consideration is a pseudosymmetric spacetime. Moreover, equation (2.2) shows that the covector (11-form) vv is irrotational (closed).

References

  • [1] L. Alias, A. Romero and M. Sรกnchez, Uniqueness of complete spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes, Gen. Relativ. Gravit. 27 (1995), 71-84.
  • [2] L. Alias, A. Romero and M. Sรกnchez, Compact spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes, in Geometry and Topology of Submanifolds VII, River Edge NJ, USA, World Scientific Publ., 1995, 67-70.
  • [3] K. Arslan, R. Deszcz, R. EzentaลŸ, M. Hotloล› and C. Murathan, On generalized Robertson-Walker spacetimes satisfying some curvature condition, Turk. J. Math. 38 (2) (2014), 353-373.
  • [4] A. M. Blaga, Solitons and geometrical structures in a perfect fluid spacetime, Rocky Mountain J. Math. 50(1) (2020), 41-53.
  • [5] A. M. Blaga, On harmonicity and Miao-Tam critical metrics in a perfect fluid spacetime, Bol. Soc. Mat. Mex. (3) 26(3) (2020), 1289-1299.
  • [6] M. C. Chaki, On pseudo symmetric manifolds, An. ลžtiinลฃ. Univ. Al. I. Cuza IaลŸi. Mat. (N.S.) 33 (1987), 53-58.
  • [7] M. C. Chaki and U. C. De, On pseudo symmetric spaces, Acta Math. Hungarica 54 (3-4) (1989), 185-190.
  • [8] S. K. Chaubey, Y. J. Suh and U. C. De, Characterizations of the Lorentzian manifolds admitting a type of semi-symmetric metric connection, Anal. Math. Phys. 10(4) (2020), Paper No. 61, 15 pp.
  • [9] B. Y. Chen, A simple characterization of generalized Robertson-Walker spacetimes, Gen. Relativ. Gravit. 46 (2014), 1833 (5 pages).
  • [10] B. Y. Chen, Concircular vector fields and pseudo-Kaehler manifolds, Kragujevac J. Math. 40 (1) (2016), 7-14.
  • [11] U. C. De, Y. J. Suh, S. K. Chaubey and S. Shenawy, On pseudo HH-symmetric Lorentzian manifolds with applications to relativity, Filomat 34 (10) (2020), 3287-3297.
  • [12] U. C. De and A. K. Gazi, On almost pseudo conformally symmetric manifolds, Demonstr. Math. 42(4) (2009), 507-520.
  • [13] U. C. De, S. K. Chaubey and S. Shenawy, Perfect fluid spacetimes and Yamabe solitons, J. Math. Phys. 62, 032501 (2021); doi: 10.1063/5.0033967.
  • [14] R. Deszcz, On pseudosymmetric spaces, Bull. Belg. Math. Soc., Series A 44 (1992), 1-34.
  • [15] A. Fialkow, Conformal geodesics, Trans. Amer. Math. Soc. 45(3) (1939), 443-473.
  • [16] S. Mallick, U. C. De and Y. J. Suh, Spacetimes with different forms of energy-momentum tensor, J. Geom. Phys. 151 (2020), 103622 (8 pp).
  • [17] C. A. Mantica and Y. J. Suh, Pseudo ZZ-symmetric Riemannian manifolds with harmonic curvature tensors, Int. J. Geom. Meth. Mod. Phys. 9 (2012), 1250004 (21 pages).
  • [18] C. A. Mantica, Y. J. Suh and U. C. De, A note on generalized Robertson-Walker space-times, Int. J. Geom. Meth. Mod. Phys. 13 (6) (2016), 1650079 (9 pages).
  • [19] C. A. Mantica, U. C. De, Y. J. Suh and L. G. Molinari, Perfect fluid spacetimes with harmonic generalized curvature tensor, Osaka J. Math. 56 (2019), 173-182.
  • [20] C. A. Mantica and L. G. Molinari, Generalized Robertson-Walker spacetimes-A survey, Int. J. Geom. Meth. Mod. Phys. 14 (3) (2017), 1730001 (27 pages).
  • [21] C. A. Mantica, L. G. Molinari and U. C. De, A condition for a perfect-fluid space-time to be a generalized Robertson-Walker space-time, J. Math. Phys. 57 (2) (2016), 022508.
  • [22] C. A. Mantica, L. G. Molinari, Y. J. Suh and S. Shenawy, Perfect-fluid, generalized Robertson-Walker space-times, and Grays decomposition, J. Math. Phys. 60 (2019), 052506.
  • [23] B. ONeill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
  • [24] M. Novello and M. J. Reboucas, The stability of a rotating universe, The Astrophysics Journal, 225 (1978), 719-724.
  • [25] F. Ozen and S. Altay, Weakly and pseudo-symmetric Riemannian spaces, Indian J. Pure Appl. Math. 33 (2002), 1477-1488.
  • [26] M. Prvanoviฤ‡, Generalized recurrent Riemannian manifolds, Ann. St. Univ. โ€AL.I.Cuzaโ€ Iasi 38 (1992), 423-434.
  • [27] M. Sรกnchez, On the geometry of generalized Robertson-Walker spacetimes: geodesics, Gen. Relativ. Gravit. 30 (1998), 915-932.
  • [28] R. N. Sen and M. C. Chaki, On curvature restrictions of a certain kind of conformally flat Riemannian space of class one, Proc. Nat. Inst. Sci. India Part A 33 (1967), 100-102.
  • [29] M. Tarafdar, On conformally flat pseudosymmetric manifolds, An. ลžtiinลฃ. Univ. Al. I. Cuza IaลŸi. Mat. (N.S.) 41 (1995), 237-241.
  • [30] S. Weinberg, Gravitation and cosmology: Principles and applications of the general theory of gravitation (Wiley, New York, 1972).
  • [31] F.O. Zengin and A.Y. TaลŸci, Spacetimes admitting the ZZ-symmetric tensor, Quaestiones Mathematicae 2020: 1-11. https://doi.org/10.2989/16073606.2020.1816587.