This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\newcounter

myctr

\catchline

SUDDEN CHANGE OF INTERFEROMETRIC POWER FOR X SHAPE STATES

Dian Zhu Theoretical Physics Division, Chern Institute of Mathematics, Nankai University, Tianjin 300071, China    Fu-Lin Zhang Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
[email protected]
   Jing-Ling Chen Theoretical Physics Division, Chern Institute of Mathematics, Nankai University, Tianjin 300071, China
[email protected]
Abstract

Quantum interferometric power (IP) is a discordlike measure. We study the dynamics of IP for two-qubit X shape states under different noisy environments. Our study shows that IP exhibits sudden change, and one side quantum channel is enough for the occurrence of a sudden change of IP. In particular, we show that the initial state having no sudden change of quantum discord exhibits a sudden change of IP under the dynamics of amplitude noise, but the converse is not true. Besides, we also investigate the dynamics of IP under two different kinds of composite noises. Our results also confirm that sudden change of IP occurs under such composite noises.

keywords:
Quantum interferometric power; quantum noise; sudden change.

1 Introduction

Quantum correlations characterize the quantum feature of bipartite or multipartite system.[1] For a long time, entanglement was considered to be the only quantum correlation that was useful for quantum information processing. However, it is realized that there exists another quantum correlations weaker than entanglement called quantum discord,[2, 3] which can be found in separable mixed states and may play an important role in quantum information processing. For instance, quantum discord can be found to be present in the deterministic quantum computation with one qubit (DQC1) while there is no entanglement.[4, 5] In the past two decades, a great deal of attentions have been received for quantum discord.[4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]

One interesting and challenging topic in quantum information theory is characterizing and quantifying such nonclassical correlation. Recently, several discordlike quantum correlation measures were proposed and studied from different perspectives, one of which was interferometric power (IP).[28, 29] Based on quantum fisher information, the definition of IP naturally quantified the guaranteed sensitively of the probe states in some interferometric devices.[29] As one of the discordlike measures, IP has some basic properties, such as invariance under local unitary operations, and nonnegativity for states of classical correlation.[30]

We already know that sudden change[12, 23] is a peculiar dynamical behavior of the dynamics of quantum discord for two-qubit systems passing through quantum noise channels. But there are no investigations to show that the sudden change of IP exists for two-qubit systems under the same cases. In this paper, we investigate the dynamics of IP for two-qubit X shape states under several different kinds of quantum noises. Our results show that compared to depolarizing noise, IP exhibits sudden change under amplitude noise and phase noise acting on the first qubit of the two-qubit system. In particular, our findings show that the condition of the sudden change of IP differs from quantum discord under amplitude noise acting on the first qubit of the two-qubit system. Our studies also show that IP exhibits sudden change under the two different kinds of dephasing noise acting on both two-qubit systems.

2 Quantum IP as the discordlike measure of X shape states

The concept of IP of quantum states has been introduced explicitly in Ref. 29. As one of the measure of discordlike quantum correlations, IP provides a computable way of quantum discord quantification. For a bipartite system ρAB\rho_{AB}, the IP is defined as the minimum of the Quantum Fisher Information (QFI)[32] by taking over all the local Hamiltonians HAH_{A} acted only on the subsystem A,

𝒫(ρAB)=14minHA(ρAB,HA),\mathcal{IP}(\rho_{AB})=\dfrac{1}{4}\min_{H_{A}}\mathcal{F}(\rho_{AB},H_{A}), (1)

where

(ρAB,HA)=4ij;qi+qj0(qiqj)2qi+qj|ψ1|HA𝟙B|ψj|2\mathcal{F}(\rho_{AB},H_{A})=4\sum_{i\neq j;q_{i}+q_{j}\neq 0}\dfrac{(q_{i}-q_{j})^{2}}{q_{i}+q_{j}}\left|\langle\psi_{1}|H_{A}\otimes\mathbb{1}_{B}|\psi_{j}\rangle\right|^{2} (2)

with {qi,|ψi}\{q_{i},|\psi_{i}\rangle\} being the eigenvalues and eigenvectors of ρAB\rho_{AB}, respectively. For the case of subsystem A being a qubit, one can take the set of Hamiltonians HA=nσH_{A}=\vec{n}\cdot\vec{\sigma} with n=1\vec{n}=1 and σ=(σx,σy,σz)\vec{\sigma}=(\sigma_{x},\sigma_{y},\sigma_{z}). Then Eq. (1) can be reduced to a closed formula

𝒫(ρAB)=ζmin[M],\mathcal{IP}(\rho_{AB})=\zeta_{min}[M], (3)

where ζmin[M]\zeta_{min}[M] is the smallest eigenvalues of the matrix MM with elements[29]

Mm,n=12i,l;qi+ql0(qiql)2qi+qlψi|σm𝟙|ψlψl|σn𝟙|ψi.M_{m,n}=\dfrac{1}{2}\sum_{i,l;q_{i}+q_{l}\neq 0}\dfrac{(q_{i}-q_{l})^{2}}{q_{i}+q_{l}}\langle\psi_{i}|\sigma_{m}\otimes\mathbb{1}|\psi_{l}\rangle\langle\psi_{l}|\sigma_{n}\otimes\mathbb{1}|\psi_{i}\rangle. (4)

One can note that IP has the following properties: (i) 𝒫(ρAB)\mathcal{IP}(\rho_{AB}) equals to zero if ρAB\rho_{AB} is a classical state (with respect to AA); (ii) 𝒫(ρAB)\mathcal{IP}(\rho_{AB}) is invariant under local unitary operation; (iii) 𝒫(ρAB)\mathcal{IP}(\rho_{AB}) is monotonically decreasing under local completely positive and trace preserving maps on subsystem BB; (iv) 𝒫(ρAB)\mathcal{IP}(\rho_{AB}) reduces to a measure of entanglement if ρAB\rho_{AB} is a pure state.[29] These properties imply that 𝒫(ρAB)\mathcal{IP}(\rho_{AB}) is a proper measure of discord-type correlation.

Let us consider the following X shape states of two-qubit system,[17]

ρAB=14(𝟙𝟙+rσ𝟙+𝟙sσ+j=13cjσjσj),\rho_{AB}=\frac{1}{4}(\mathbb{1}\otimes\mathbb{1}+\vec{r}\cdot\vec{\sigma}\otimes\mathbb{1}+\mathbb{1}\otimes\vec{s}\cdot\vec{\sigma}+\sum_{j=1}^{3}c_{j}\sigma_{j}\otimes\sigma_{j}), (5)

where 𝟙\mathbb{1} is the 2×22\times 2 identity matrix, r=(0,0,r)\vec{r}=(0,0,r), s=(0,0,s)\vec{s}=(0,0,s), cjc_{j}\in\mathbb{R}, and σj(j=1,2,3)\sigma_{j}(j=1,2,3) are the Pauli matrices. It is easy to see that Eq. (5) reduces to Bell-diagonal states when r=s=0r=s=0.

The form of IP of ρAB\rho_{AB} can be given by Eq. (4), that is

𝒫(ρAB)=min{M11,M22,M33},\mathcal{IP}(\rho_{AB})=\min\{M_{11},M_{22},M_{33}\}, (6)

where

M11=(λ1λ3)2λ1+λ3(x1+y1)2(1+x12)(1+y12)+(λ1λ4)2λ1+λ4(x1+y2)2(1+x12)(1+y22)+(λ2λ3)2λ2+λ3(x2+y1)2(1+x22)(1+y12)+(λ2λ4)2λ2+λ4(x2+y2)2(1+x22)(1+y22),M22=(λ1λ3)2λ1+λ3(x1y1)2(1+x12)(1+y12)+(λ1λ4)2λ1+λ4(x1y2)2(1+x12)(1+y22)+(λ2λ3)2λ2+λ3(x2y1)2(1+x22)(1+y12)+(λ2λ4)2λ2+λ4(x2y2)2(1+x22)(1+y22),M33=(λ1λ2)2λ1+λ2(x1x21)2(1+x12)(1+x22)+(λ3λ4)2λ3+λ4(y1y21)2(1+y12)(1+y22).\begin{split}M_{11}&=\frac{(\lambda_{1}-\lambda_{3})^{2}}{\lambda_{1}+\lambda_{3}}\cdot\frac{(x_{1}+y_{1})^{2}}{(1+x_{1}^{2})(1+y_{1}^{2})}+\frac{(\lambda_{1}-\lambda_{4})^{2}}{\lambda_{1}+\lambda_{4}}\cdot\frac{(x_{1}+y_{2})^{2}}{(1+x_{1}^{2})(1+y_{2}^{2})}\\ &+\frac{(\lambda_{2}-\lambda_{3})^{2}}{\lambda_{2}+\lambda_{3}}\cdot\frac{(x_{2}+y_{1})^{2}}{(1+x_{2}^{2})(1+y_{1}^{2})}+\frac{(\lambda_{2}-\lambda_{4})^{2}}{\lambda_{2}+\lambda_{4}}\cdot\frac{(x_{2}+y_{2})^{2}}{(1+x_{2}^{2})(1+y_{2}^{2})},\\ M_{22}&=\frac{(\lambda_{1}-\lambda_{3})^{2}}{\lambda_{1}+\lambda_{3}}\cdot\frac{(x_{1}-y_{1})^{2}}{(1+x_{1}^{2})(1+y_{1}^{2})}+\frac{(\lambda_{1}-\lambda_{4})^{2}}{\lambda_{1}+\lambda_{4}}\cdot\frac{(x_{1}-y_{2})^{2}}{(1+x_{1}^{2})(1+y_{2}^{2})}\\ &+\frac{(\lambda_{2}-\lambda_{3})^{2}}{\lambda_{2}+\lambda_{3}}\cdot\frac{(x_{2}-y_{1})^{2}}{(1+x_{2}^{2})(1+y_{1}^{2})}+\frac{(\lambda_{2}-\lambda_{4})^{2}}{\lambda_{2}+\lambda_{4}}\cdot\frac{(x_{2}-y_{2})^{2}}{(1+x_{2}^{2})(1+y_{2}^{2})},\\ M_{33}&=\frac{(\lambda_{1}-\lambda_{2})^{2}}{\lambda_{1}+\lambda_{2}}\cdot\frac{(x_{1}x_{2}-1)^{2}}{(1+x_{1}^{2})(1+x_{2}^{2})}+\frac{(\lambda_{3}-\lambda_{4})^{2}}{\lambda_{3}+\lambda_{4}}\cdot\frac{(y_{1}y_{2}-1)^{2}}{(1+y_{1}^{2})(1+y_{2}^{2})}.\end{split} (7)

Here λi0\lambda_{i}\geq 0 are the eigenvalues of ρAB\rho_{AB}, x1=rs2(λ2λ1)c1+c2x_{1}=\frac{r-s-2(\lambda_{2}-\lambda_{1})}{c_{1}+c_{2}}, x2=rs+2(λ2λ1)c1+c2x_{2}=\frac{r-s+2(\lambda_{2}-\lambda_{1})}{c_{1}+c_{2}}, y1=r+s2(λ4λ3)c1c2y_{1}=\frac{r+s-2(\lambda_{4}-\lambda_{3})}{c_{1}-c_{2}} and y2=r+s+2(λ4λ3)c1c2y_{2}=\frac{r+s+2(\lambda_{4}-\lambda_{3})}{c_{1}-c_{2}}. From the above expressions, one can find that M11M22M_{11}\geq M_{22} (or M11<M22M_{11}<M_{22}) if |c1||c2||c_{1}|\leq|c_{2}| (or |c1|>|c2||c_{1}|>|c_{2}|). Hence, the IP of ρAB\rho_{AB} can be rewritten as

𝒫(ρAB)={min{M22,M33},if|c1|<|c2|,min{M11,M33},if|c1|>|c2|.\mathcal{IP}(\rho_{AB})=\left\{\begin{array}[]{cc}\min\{M_{22},M_{33}\},&\text{if}|c_{1}|<|c_{2}|,\\ \min\{M_{11},M_{33}\},&\text{if}|c_{1}|>|c_{2}|.\end{array}\right. (8)

3 Sudden change of IP under one side quantum channel

In this section, based on the analytical formula of IP which has been given above, we can study the dynamics of IP for two-qubit system over three kinds of quantum noises acted on the first qubit: amplitude noise, phase noise and depolarizing noise. For simplicity, we consider the Bell-diagonal states as the initial states of two-qubit system,[9]

ρ=14(𝟙𝟙+i=13ciσiσi).\rho=\frac{1}{4}(\mathbb{1}\otimes\mathbb{1}+\sum_{i=1}^{3}c_{i}\sigma_{i}\otimes\sigma_{i}). (9)

3.1 Amplitude noise

Amplitude damping, or amplitude noise, which is used to characterize spontaneous emission, describes the energy dissipation from a quantum system. One can consider a two-qubit system where the first qubit is through this quantum channel. Then the Kraus operators for the whole system are given by[33]

K1a=(η001)(1001),K2a=(001η21)(1001),\begin{split}K_{1a}&=\left(\begin{array}[]{cc}\eta&0\\ 0&1\end{array}\right)\otimes\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right),\\ K_{2a}&=\left(\begin{array}[]{cc}0&0\\ \sqrt{1-\eta^{2}}&1\end{array}\right)\otimes\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right),\\ \end{split} (10)

where η=eτt2\eta=e^{-\frac{\tau t}{2}}, τ\tau is the amplitude decay rate, tt is time. The evolution of the initial states Eq. (9) under this quantum channel can be described by

a(ρ)=K1aρK1a+K2aρK2a=14(η2(1+c3)00η(c1c2)0η2(1c3)η(c1+c2)00η(c1+c2)2η2η2c30η(c1c2)002η2+η2c3)=14(𝟙𝟙+r(t)σ3𝟙+s(t)𝟙σ3+j=13cj(t)σjσj),\begin{split}\mathcal{E}_{a}(\rho)&=K_{1a}\rho K_{1a}^{\dagger}+K_{2a}\rho K_{2a}^{\dagger}\\ &=\frac{1}{4}\left(\begin{array}[]{cccc}\eta^{2}(1+c_{3})&0&0&\eta(c_{1}-c_{2})\\ 0&\eta^{2}(1-c_{3})&\eta(c_{1}+c_{2})&0\\ 0&\eta(c_{1}+c_{2})&2-\eta^{2}-\eta^{2}c_{3}&0\\ \eta(c_{1}-c_{2})&0&0&2-\eta^{2}+\eta^{2}c_{3}\end{array}\right)\\ &=\frac{1}{4}(\mathbb{1}\otimes\mathbb{1}+r(t)\sigma_{3}\otimes\mathbb{1}+s(t)\mathbb{1}\otimes\sigma_{3}+\sum_{j=1}^{3}c_{j}(t)\sigma_{j}\otimes\sigma_{j}),\end{split} (11)

where r(t)=η21r(t)=\eta^{2}-1, s(t)=0s(t)=0, c1(t)=ηc1c_{1}(t)=\eta c_{1}, c2(t)=ηc2c_{2}(t)=\eta c_{2} and c3(t)=η2c3c_{3}(t)=\eta^{2}c_{3}. By Eq. (8), the IP of a(rho)\mathcal{E}_{a}(rho) is

𝒫(a(ρ))={min{M22(t),M33(t)},if|c1(t)|<|c2(t)|,min{M11(t),M33(t)},if|c1(t)|>|c2(t)|.\mathcal{IP}(\mathcal{E}_{a}(\rho))=\left\{\begin{array}[]{cc}\min\{M_{22}(t),M_{33}(t)\},&\text{if}|c_{1}(t)|<|c_{2}(t)|,\\ \min\{M_{11}(t),M_{33}(t)\},&\text{if}|c_{1}(t)|>|c_{2}(t)|.\end{array}\right. (12)

In particular, Eq. (7) can reduce to the following simple form when t=0t=0:

M11(t)=c22+c33+2c1c2c31c12,M22(t)=c12+c33+2c1c2c31c22,M33(t)=c22+c23+2c1c2c31c32.\begin{split}M_{11}(t)&=\frac{c_{2}^{2}+c_{3}^{3}+2c_{1}c_{2}c_{3}}{1-c_{1}^{2}},\\ M_{22}(t)&=\frac{c_{1}^{2}+c_{3}^{3}+2c_{1}c_{2}c_{3}}{1-c_{2}^{2}},\\ M_{33}(t)&=\frac{c_{2}^{2}+c_{2}^{3}+2c_{1}c_{2}c_{3}}{1-c_{3}^{2}}.\end{split} (13)

It is easy to find that M11(0)>M22(0)M_{11}(0)>M_{22}(0) (or M11(t)<M22(0)M_{11}(t)<M_{22}(0)) if |c1|<|c2||c_{1}|<|c_{2}| (or |c1|>|c2||c_{1}|>|c_{2}|), and when tt\rightarrow\infty, M11()=M22()>M33()M_{11}(\infty)=M_{22}(\infty)>M_{33}(\infty). Hence, a sudden change of IP occurs when |c3|<max{|c1|,|c2|}|c_{3}|<\max\{|c_{1}|,|c_{2}|\} in the initial Bell-diagonal state ρ\rho with this kind of amplitude noisy channel. However, a sudden change of quantum discord occurs when |c3|>max{|c1|,|c2|}|c_{3}|>\max\{|c_{1}|,|c_{2}|\} in the initial state ρ\rho with the same noise environment. We find that the initial state satisfying the condition of a sudden change of quantum discord also exhibits a sudden change of IP, which means that the conditions of the sudden change of IP and quantum discord are not complementary. These results have been shown in Fig. 1.

Refer to caption
(a) c1=0.4,c2=0.2,c3=0.3c_{1}=0.4,c_{2}=0.2,c_{3}=0.3
Refer to caption
(b) c1=0.4,c2=0.2,c3=0.3c_{1}=0.4,c_{2}=0.2,c_{3}=0.3
Refer to caption
(c) c1=0.3,c2=0.2,c3=0.301c_{1}=0.3,c_{2}=0.2,c_{3}=0.301
Refer to caption
(d) c1=0.3,c2=0.2,c3=0.301c_{1}=0.3,c_{2}=0.2,c_{3}=0.301
Figure 1: The evolution of IP ((a) and (c)) versus the evolution of quantum discord ((b) and (d)) under amplitude noise acting on the first qubit of the bipartite system. Considering the initial state not satisfying the condition of a sudden change of quantum discord (c1=0.4,c2=0.2,c3=0.3c_{1}=0.4,c_{2}=0.2,c_{3}=0.3), we can see that IP exhibits a sudden change with the same situation. On the other hand, if we consider the initial state satisfying the condition of a sudden change of quantum discord (c1=0.3,c2=0.2,c3=0.301c_{1}=0.3,c_{2}=0.2,c_{3}=0.301), one can see that a sudden change of IP still occurs with the same situation.

3.2 Phase noise

Next we investigate the dynamics of IP over phase noise channel. Phase noise describes the loss of quantum information without loss of energy. The Kraus operators of phase noise for the whole system can be read as[1, 34]

K1p=α(1001)(1001),K2p=1α(1001)(1001),\begin{split}K_{1p}&=\sqrt{\alpha}\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right)\otimes\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right),\\ K_{2p}&=\sqrt{1-\alpha}\left(\begin{array}[]{cc}1&0\\ 0&-1\end{array}\right)\otimes\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right),\\ \end{split} (14)

where α=12(1+1γ)\alpha=\frac{1}{2}(1+\sqrt{1-\gamma}), γ=eτt2\gamma=e^{-\frac{\tau t}{2}} and τ\tau denotes transversal decay rate. The output states from this quantum channel is

p(ρ)=K1pρK1p+K2pρK2p=14(1+c300γ(c1c2)01c3γ(c1+c2)00γ(c1+c2)1c30γ(c1c2)001+c3)=14(𝟙𝟙+i=13ci(t)σiσi),\begin{split}\mathcal{E}_{p}(\rho)&=K_{1p}\rho K_{1p}^{\dagger}+K_{2p}\rho K_{2p}^{\dagger}\\ &=\frac{1}{4}\left(\begin{array}[]{cccc}1+c_{3}&0&0&\gamma(c_{1}-c_{2})\\ 0&1-c_{3}&\gamma(c_{1}+c_{2})&0\\ 0&\gamma(c_{1}+c_{2})&1-c_{3}&0\\ \gamma(c_{1}-c_{2})&0&0&1+c_{3}\end{array}\right)\\ &=\frac{1}{4}(\mathbb{1}\otimes\mathbb{1}+\sum_{i=1}^{3}c_{i}(t)\sigma_{i}\otimes\sigma_{i}),\end{split} (15)

where c1(t)=γc1c_{1}(t)=\gamma c_{1}, c2(t)=γc2c_{2}(t)=\gamma c_{2} and c3(t)=c3c_{3}(t)=c_{3}. By Eq. (8), the expression of IP of p(ρ)\mathcal{E}_{p}(\rho) can be obtained, that is

𝒫(p(ρ))={min{M22(t),M33(t)},if|c1(t)|<|c2(t)|,min{M11(t),M33(t)},if|c1(t)|>|c2(t)|.\mathcal{IP}(\mathcal{E}_{p}(\rho))=\left\{\begin{array}[]{cc}\min\{M_{22}(t),M_{33}(t)\},&\text{if}|c_{1}(t)|<|c_{2}(t)|,\\ \min\{M_{11}(t),M_{33}(t)\},&\text{if}|c_{1}(t)|>|c_{2}(t)|.\end{array}\right. (16)
Refer to caption
Figure 2: IP of the initial Bell-diagonal states under phase noise acting on the first qubit of the quantum system. (1) c1=0.4,c2=0.1,c3=0.3c_{1}=0.4,c_{2}=0.1,c_{3}=0.3 (solid line). (2) c1=0.1,c2=0.3,c3=0.4c_{1}=0.1,c_{2}=0.3,c_{3}=0.4 (dashed line). (3) c1=0.4,c2=0.3,c3=0c_{1}=0.4,c_{2}=0.3,c_{3}=0 (dotted line). The sudden change only happens at situation (1).

where

M11(t)=γ2c22+c32+2γ2c1c2c31γ2c12,M22(t)=γ2c12+c32+2γ2c1c2c31γ2c22,M33(t)=γ2c12+γ2c22+2γ2c1c2c31c32.\begin{split}M_{11}(t)&=\dfrac{\gamma^{2}c_{2}^{2}+c_{3}^{2}+2\gamma^{2}c_{1}c_{2}c_{3}}{1-\gamma^{2}c_{1}^{2}},\\ M_{22}(t)&=\dfrac{\gamma^{2}c_{1}^{2}+c_{3}^{2}+2\gamma^{2}c_{1}c_{2}c_{3}}{1-\gamma^{2}c_{2}^{2}},\\ M_{33}(t)&=\dfrac{\gamma^{2}c_{1}^{2}+\gamma^{2}c_{2}^{2}+2\gamma^{2}c_{1}c_{2}c_{3}}{1-c_{3}^{2}}.\end{split} (17)

One can find that the IP of p(ρ)\mathcal{E}_{p}(\rho) can be rewritten as the following form:

𝒫(p(ρ))=C(t)2C(t)2+2detC(t)1C(t)2,\mathcal{IP}(\mathcal{E}_{p}(\rho))=\dfrac{\|C(t)\|^{2}-\|C(t)\|_{\infty}^{2}+2\det C(t)}{1-\|C(t)\|_{\infty}^{2}}, (18)

where C(t)2=𝖳𝗋[CTC]=c12(t)+c22(t)+c32(t)\|C(t)\|^{2}=\mathsf{Tr}[C^{T}C]=c_{1}^{2}(t)+c_{2}^{2}(t)+c_{3}^{2}(t) the square Hilbert-Schmidt of C(t)C(t) and C(t)2=max{c12(t),c22(t),c32(t)}\|C(t)\|_{\infty}^{2}=\max\{c_{1}^{2}(t),c_{2}^{2}(t),c_{3}^{2}(t)\} the operator norm of C(t)C(t).[29] If |c3|max{|c1|,|c2|}|c_{3}|\geq\max\{|c_{1}|,|c_{2}|\}, C(t)2\|C(t)\|_{\infty}^{2} will reduce to c32(t)c_{3}^{2}(t) since the decay rate of max{|c1(t)|,|c2(t)|}\max\{|c_{1}(t)|,|c_{2}(t)|\} and |c3(t)||c_{3}(t)| is different, then the IP 𝒫(p(ρ))\mathcal{IP}(\mathcal{E}_{p}(\rho)) decays monotonically. If |c3|<max{|c1|,|c2|}|c_{3}|<\max\{|c_{1}|,|c_{2}|\} and c30c_{3}\neq 0, the decay rate of IP 𝒫(p(ρ))\mathcal{IP}(\mathcal{E}_{p}(\rho)) sudden changes at t0=2τln|c3max{|c1|,|c2|}|t_{0}=-\frac{2}{\tau}\ln\left|\frac{c_{3}}{\max\{|c_{1}|,|c_{2}|\}}\right|. In Fig. 2, we choose three different {ci}\{c_{i}\} to represent the dynamics of IP of ρ\rho under single qubit phase noise. As a result, a sudden change of IP may occur under this kind of noise environment.

3.3 Depolarizing noise

Refer to caption
Figure 3: IP of the initial Bell-diagonal states under depolarizing noise acting on the first qubit of the quantum system. (1) c1=0.4,c2=0.3,c3=0.2c_{1}=0.4,c_{2}=0.3,c_{3}=0.2 (solid line). (2) c1=0.1,c2=0.3,c3=0.4c_{1}=0.1,c_{2}=0.3,c_{3}=0.4 (dashed line). (3) c1=0.1,c2=0.4,c3=0.2c_{1}=0.1,c_{2}=0.4,c_{3}=0.2 (dotted line).

As one of the important types of quantum noise, the depolarizing noise describes a process that takes a state into completely mixed state 𝟙/2\mathbb{1}/2 with probability pp and the state being left untouched with probability 1p1-p. The operation elements for depolarizing noise are shown as {13p/4𝟙,pσx/2,pσy/2,pσz/2}\{\sqrt{1-3p/4}\mathbb{1},\sqrt{p}\sigma_{x}/2,\sqrt{p}\sigma_{y}/2,\sqrt{p}\sigma_{z}/2\} and the Kraus operators for the whole system are given by[1]

K1d=13p4(1001)(1001),K2d=p2(0110)(1001),K3d=p2(0ii0)(1001),K4d=p2(1001)(1001),\begin{split}K_{1d}&=\sqrt{1-\frac{3p}{4}}\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right)\otimes\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right),\ \ K_{2d}=\frac{\sqrt{p}}{2}\left(\begin{array}[]{cc}0&1\\ 1&0\end{array}\right)\otimes\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right),\\ K_{3d}&=\frac{\sqrt{p}}{2}\left(\begin{array}[]{cc}0&-i\\ i&0\end{array}\right)\otimes\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right),\ \ K_{4d}=\frac{\sqrt{p}}{2}\left(\begin{array}[]{cc}1&0\\ 0&-1\end{array}\right)\otimes\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right),\end{split} (19)

where p=1eτtp=1-e^{-\tau t}. The Bell-diagonal states after this noise is

d(ρ)=j=14KjdρKjd=14(1+(1p)c300(1p)(c1c2)01(1p)c3(1p)(c1+c2)00(1p)(c1+c2)1(1p)c30(1p)(c1c2)001+(1p)c3)=14(𝟙𝟙+i=13ci(t)σiσi),\begin{split}\mathcal{E}_{d}(\rho)&=\!\sum_{j=1}^{4}\!K_{jd}\rho K_{jd}^{\dagger}\\ &=\!\frac{1}{4}\!\left(\!\begin{array}[]{cccc}1\!+\!(1\!-\!p)c_{3}&0&0&(1\!-\!p)(c_{1}\!-\!c_{2})\\ 0&1\!-\!(1\!-\!p)c_{3}&(1\!-\!p)(c_{1}\!+\!c_{2})&0\\ 0&(1\!-\!p)(c_{1}\!+\!c_{2})&1\!-\!(1\!-\!p)c_{3}&0\\ (1\!-\!p)(c_{1}\!-\!c_{2})&0&0&1\!+\!(1\!-\!p)c_{3}\end{array}\!\right)\\ &=\frac{1}{4}(\mathbb{1}\otimes\mathbb{1}+\sum_{i=1}^{3}c_{i}(t)\sigma_{i}\otimes\sigma_{i}),\end{split} (20)

where ci(t)=(1p)cic_{i}(t)=(1-p)c_{i}, i=1,2,3i=1,2,3. Similarly, the form of the IP of d(ρ)\mathcal{E}_{d}(\rho) is Eq. (18) but ci(t)=(1p)cic_{i}(t)=(1-p)c_{i}, i=1,2,3i=1,2,3. Since the identical decay rate of |c1(t)||c_{1}(t)|, |c2(t)||c_{2}(t)| and |c3(t)||c_{3}(t)|, C(t)2\|C(t)\|_{\infty}^{2} will be determined once {ci}\{c_{i}\} has been chosen. Therefore, there is no sudden change of IP of ρ\rho under depolarizing noise, see Fig. 3.

4 Sudden change of IP under two-qubit dephasing model

In this section, we investigate the dynamics of IP of Bell-diagonal states which are independently interacting with identical colored dephasing environment or are interacting with a common dephasing bath.

4.1 Identical colored dephasing noise

The study of the dynamics quantum open system based on the Markov approximation contains the majority of physical situation but lacking the case of system-environment interactions with memory. In Ref. 35, a model describing system-environment interactions with memory without using Born-Markov approximation has been presented, and the conditions for system evolution to satisfy the complete positive trace-preserving map have been given.

The Kraus operators describing the above dynamics are given as follows:[36]

M1=β(1001),M2=1β(1001),M_{1}=\sqrt{\beta}\left(\begin{array}[]{cc}1&0\\ 0&1\end{array}\right),\ \ M_{2}=\sqrt{1-\beta}\left(\begin{array}[]{cc}1&0\\ 0&-1\end{array}\right), (21)

where the operators satisfy k2MkMk=𝟙\sum_{k}^{2}M_{k}^{\dagger}M_{k}=\mathbb{1}, β=1+Λ(ν)2\beta=\frac{1+\Lambda(\nu)}{2} and Λ(ν)=eν[cos(μν)+sin(μν)/μ]\Lambda(\nu)=e^{-\nu}[\cos(\mu\nu)+\sin(\mu\nu)/\mu], μ=(4aτ)21\mu=\sqrt{(4a\tau)^{2}-1}, and aa is a coin-flip random variable, ν=t2τ\nu=\frac{t}{2\tau} is the dimensionless time. After the evolution of Bell-diagonal states under the independent interaction with identical colored dephasing environment, the output density matrix can be obtained as

ic(ρ)=i,j(MiMj)ρ(MiMj),\mathcal{E}_{ic}(\rho)=\sum_{i,j}(M_{i}\otimes M_{j})\rho(M_{i}\otimes M_{j})^{\dagger}, (22)

where the operators MiM_{i} and MjM_{j} act on the first and second qubits, respectively. Actually, this is a completely positive trace-preserving map.

Refer to caption
Figure 4: The dynamics of the IP of the initial Bell-diagonal state ρ\rho, described by parameters c1=0.3,c2=0.4,c3=0.2c_{1}=0.3,c_{2}=0.4,c_{3}=0.2, independently interacting with identical colored dephasing noise having a=1sa=1s, τ=0.5s\tau=0.5s. The decay rate of IP sudden changes at ν=0.455\nu=0.455.

After the straightforward calculation, one can obtain that

ic(ρ)=14(1+c300Λ2(ν)(c1c2)01c3Λ2(ν)(c1+c2)00Λ2(ν)(c1+c2)1c30Λ2(ν)(c1c2)001+c3)=14(𝟙𝟙+i=13ci(t)σiσi),\begin{split}\mathcal{E}_{ic}(\rho)&=\frac{1}{4}\left(\begin{array}[]{cccc}1+c_{3}&0&0&\Lambda^{2}(\nu)(c_{1}-c_{2})\\ 0&1-c_{3}&\Lambda^{2}(\nu)(c_{1}+c_{2})&0\\ 0&\Lambda^{2}(\nu)(c_{1}+c_{2})&1-c_{3}&0\\ \Lambda^{2}(\nu)(c_{1}-c_{2})&0&0&1+c_{3}\end{array}\right)\\ &=\frac{1}{4}(\mathbb{1}\otimes\mathbb{1}+\sum_{i=1}^{3}c_{i}(t)\sigma_{i}\otimes\sigma_{i}),\end{split} (23)

where c1(t)=Λ2(ν)c1c_{1}(t)=\Lambda^{2}(\nu)c_{1}, c2(t)=Λ2(ν)c2c_{2}(t)=\Lambda^{2}(\nu)c_{2} and c3(t)=c3c_{3}(t)=c_{3}. By Eq. (18), we get the form of the IP of ic(ρ)\mathcal{E}_{ic}(\rho). Since Λ2(ν)\Lambda^{2}(\nu) is monotonically decreasing as similar as γ\gamma, the sudden change of IP for ic(ρ)\mathcal{E}_{ic}(\rho) can occur with the proper {ci}\{c_{i}\}, see Fig. 4.

4.2 Two qubits coupling to common bath

Considering the two-qubit system coupling to a same bosonic environment, the total Hamiltonian can be written as[37]

Hc=12j=1,2σzj+kωkbkbk+j=1,2kσzj(gkbk+𝐇.𝐜.).H_{c}=\frac{1}{2}\sum_{j=1,2}\sigma_{z}^{j}+\sum_{k}\omega_{k}b_{k}^{\dagger}b_{k}+\sum_{j=1,2}\sum_{k}\sigma_{z}^{j}(g_{k}b_{k}^{\dagger}+\mathbf{H.c.}). (24)
Refer to caption
Figure 5: IP of the initial Bell-diagonal states under the two-qubit dephasing model with colored noise with (1) c1=0.4,c2=0.1,c3=0.16c_{1}=0.4,c_{2}=-0.1,c_{3}=0.16 (solid line) and (2) c1=0.4,c2=0.1,c3=0.14c_{1}=0.4,c_{2}=-0.1,c_{3}=0.14 (dotted line), respectively. Sudden change of IP happens only at situation (2).

The dynamics of Bell-diagonal states under such common dephasing bath can be expressed by the following Kraus operators:

K1cb=(χ0000120000120000χ),K2cb=(1χ00001200001200001χ)K_{1cb}=\left(\begin{array}[]{cccc}\sqrt{\chi}&0&0&0\\ 0&\frac{1}{\sqrt{2}}&0&0\\ 0&0&\frac{1}{\sqrt{2}}&0\\ 0&0&0&\sqrt{\chi}\end{array}\right),\ \ K_{2cb}=\left(\begin{array}[]{cccc}\sqrt{1-\chi}&0&0&0\\ 0&\frac{1}{\sqrt{2}}&0&0\\ 0&0&\frac{1}{\sqrt{2}}&0\\ 0&0&0&-\sqrt{1-\chi}\end{array}\right) (25)

where χ=ξ4+12\chi=\frac{\xi^{4}+1}{2}, ξ(t)=exp[Γ(t)]\xi(t)=\exp[-\Gamma(t)], and Γ(t)\Gamma(t) is the decoherence function with the form

Γ(t)=01cos(ωt)ω2J(ω)d(ω).\Gamma(t)=\int_{0}^{\infty}\frac{1-\cos(\omega t)}{\omega^{2}}J(\omega)d(\omega). (26)

By considering the spectral density as J(ω)=ωsωcs1exp(ωωc)J(\omega)=\frac{\omega^{s}}{\omega_{c}^{s-1}}\exp(-\frac{\omega}{\omega_{c}}) with the cut-off frequency ωc=1\omega_{c}=1 and the positive parameter s=4s=4, we can investigate the dynamics of the Bell-diagonal states coupling to a same bosonic environment.

The matrix form of cb(ρ)\mathcal{E}_{cb}(\rho) with the initial Bell-diagonal state is as follow:

cb(ρ)=K1cbρK1cb+K2cbρK2cb=14(1+c300ξ4(t)(c1c2)01c3c1+c200c1+c21c30ξ4(t)(c1c2)001+c3)=14(𝟙𝟙+i=13ci(t)σiσi),\begin{split}\mathcal{E}_{cb}(\rho)&=K_{1cb}\rho K_{1cb}^{\dagger}+K_{2cb}\rho K_{2cb}^{\dagger}\\ &=\frac{1}{4}\left(\begin{array}[]{cccc}1+c_{3}&0&0&\xi^{4}(t)(c_{1}-c_{2})\\ 0&1-c_{3}&c_{1}+c_{2}&0\\ 0&c_{1}+c_{2}&1-c_{3}&0\\ \xi^{4}(t)(c_{1}-c_{2})&0&0&1+c_{3}\end{array}\right)\\ &=\frac{1}{4}(\mathbb{1}\otimes\mathbb{1}+\sum_{i=1}^{3}c_{i}(t)\sigma_{i}\otimes\sigma_{i}),\end{split} (27)

where c1(t)=[(1+ξ4(t))c1+(1ξ4(t))c2]/2c_{1}(t)=[(1+\xi^{4}(t))c_{1}+(1-\xi^{4}(t))c_{2}]/2, c2(t)=[(1ξ4(t))c1+(1+ξ4(t))c2]/2c_{2}(t)=[(1-\xi^{4}(t))c_{1}+(1+\xi^{4}(t))c_{2}]/2, and c3(t)=c3c_{3}(t)=c_{3}. By Eq. (18) with the proper parameter s=4s=4, we find that if c1=c2c_{1}=c_{2}, c1(t)c_{1}(t) and c2(t)c_{2}(t) will equal to c1c_{1}, then the IP of cb(ρ)\mathcal{E}_{cb}(\rho) will reduce to a constant. If c1c2c_{1}\neq c_{2}, the sudden change of IP happens when c3>(c1+c2)/2c_{3}>(c_{1}+c_{2})/2 with this kind of noise environment. We show this in Fig. 5.

5 Conclusion

In summary, we have investigated the dynamics of IP of the X class of quantum states under several different kinds of noise channel, such as amplitude noise, phase noise and depolarizing noise acting only on one qubit of the quantum system, and two different types of phase noise acting on both two qubits of the quantum system. Our results show that, as one of the discordlike measure, IP exhibits sudden change behavior, which is as similar as quantum discord. Compared with dynamics of IP under depolarizing noise, the sudden change of IP occurs under amplitude noise and phase noise if chosen proper initial states. In Ref. 31, sudden change of quantum discord under one side quantum channel is shown. In comparison, we show that sudden change of IP occurs when the quantum noise acts only on one qubit of the quantum system, which means that composite noise is not the necessary condition for the occurrence of sudden change of IP. Furthermore, our results show that the initial state ρ\rho having no sudden change of quantum discord exhibits a sudden change of IP under the dynamics of amplitude noise, but the converse is not true.

6 Acknowledgement

F. L. Z. was supported by the National Natural Science Foundations of China (Grants Nos. 11675119). J. L. C. was supported by the National Natural Science Foundations of China (Grants Nos. 12275136 and 12075001). D. Z. was supported by the Nankai Zhide Foundations.

References

  • [1] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, England, 2000).
  • [2] H. Olliver and W. H. Zurek, Phys. Rev. Lett. 88 (2001) 017901.
  • [3] L. Henderson and V. Vedral, J. Phys. A: Math. Gen. 34 (2001) 6899.
  • [4] M. Piani, P. Horodecki and R. Horodecki, Phys. Rev. Lett. 100 (2008) 090502.
  • [5] B. P. Lanyon, M. Barbieri, M. P. Almeida and A. G. White, Phys. Rev. Lett. 101 (2008) 200501.
  • [6] W. H. Zurek, Phys. Rev. A 67 (2003) 012320.
  • [7] M. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim, A. Sen(De), U. Sen and B. Synak-Radtke, Phys. Rev. A 71 (2005) 062307.
  • [8] N. Li and S. Luo, Phys. Rev. A 76 (2007) 032327.
  • [9] S. Luo, Phys. Rev. A 77 (2007) 042303.
  • [10] T. Werlang, S. Souza, F. F. Fanchini and C. J. Villas Boas, Phys. Rev. A 80 (2009) 024103.
  • [11] M. S. Sarandy, Phys. Rev. A 80 (2009) 022108.
  • [12] J. Maziero, L. C. Céleri, R. M. Serra and V. Vedral, Phys. Rev. A 80 (2009) 044102.
  • [13] A. Datta, Phys. Rev. A 80 (2009) 052304.
  • [14] M. Ali, A. R. P. Rau and G. Alber, Phys. Rev. A 81 (2010) 042105.
  • [15] M. Ali, A. R. P. Rau and G. Alber, Phys. Rev. A 82 (2010) 069902.
  • [16] Q. Chen, C. Zhang, S. X. Yu, X. X. Yi and C. H. Oh, Phys. Rev. A 84 (2011) 042313.
  • [17] B. Li, Z.-X. Wang and S.-M. Fei, Phys. Rev. A 83 (2011) 022321.
  • [18] E. Chitambar, Phys. Rev. A 86 (2010) 032110.
  • [19] A. Datta, A. Shaji, and C. M. Caves, Phys. Rev. Lett. 100 (2008) 050502.
  • [20] M. Piani, M. Christandl, C. E. Mora, and P. Horodecki, Phys. Rev. Lett. 102 (2009) 250503.
  • [21] A. Shabani and D. A. Lidar, Phys. Rev. Lett. 102 (2009) 100402.
  • [22] B. Dakić, V. Vedral, and Č. Brukner, Phys. Rev. Lett. 105 (2010) 190502.
  • [23] L. Mazzola, J. Piilo, and S. Maniscalco, Phys. Rev. Lett. 104 (2010) 200401.
  • [24] R. Auccaise, L. C. Céleri, D. O. Soares-Pinto, E. R. deAzevedo, J. Maziero, A. M. Souza, T. J. Bonagamba, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, Phys. Rev. Lett. 107 (2011) 140403.
  • [25] R. Lo Franco, B. Bellomo, E. Andersson, and G. Compagno, Phys. Rev. A 85 (2012) 032318.
  • [26] B. Bellomo, R. Lo Franco, and G. Compagno, Phys. Rev. A 86 (2012) 012312.
  • [27] G. Karpat and Z. Gedik, Phys. Scr. T153 (2013) 014036.
  • [28] D. Girolami, T. Tufarelli, and G. Adesso, Phys. Rev. Lett. 110 (2013) 240402.
  • [29] D. Girolami, A. M. Souza, V. Giovannetti, T. Tufarelli, J. G. Filgueiras, R. S. Sarthour, D. O. Soares-Pinto, I. S. Oliveira, and G. Adesso, Phys. Rev. Lett. 112 (2014) 210401.
  • [30] S. Kim, L. Li, A. Kumar, and J. Wu, Phys. Rev. A 97 (2018) 032326.
  • [31] L. X. Jia, B. Li, R. H. Yue and H. Fan, Int. J. Quant. Inf. 11 (2013) 1350048.
  • [32] S. L. Braunstein and C. M. Caves, Phys. Rev. Lett. 72 (1994) 3439.
  • [33] T. Yu and J. H. Eberly, Phys. Rev. Lett. 93 (2004) 140404.
  • [34] A. Salles, F. de Melo, M. P. Almeida, M. Hor-Meyll, S. P. Walborn, P. H. Souto Ribeiro and L. Davidovich, Phys. Rev. A 78 (2008) 022322.
  • [35] S. Daffer, K. Wodkiewicz, J. D. Cresser and J. K. McIver, Phys. Rev. A 70 (2004) 010304.
  • [36] J. P. G. Pinto, G. Karpat and F. F. Fanchini, Phys. Rev. A 88 (2013) 034304.
  • [37] C. Benedetti, F. Sehdaran, M. Zandi and M. G. A. Paris, Phys. Rev A 97 (2018) 012126.