This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Subsets of 𝔽pn×𝔽pn\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} without L-shaped configurations

Sarah Peluse School of Mathematics, Institute for Advanced Study, Princeton, NJ, USA Department of Mathematics, Princeton University, Princeton, NJ, USA [email protected]
Abstract.

Fix a prime p11p\geq 11. We show that there exists a positive integer mm such that any subset of 𝔽pn×𝔽pn\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} containing no nontrivial configurations of the form (x,y),(x,y+z),(x,y+2z),(x+z,y)(x,y),(x,y+z),(x,y+2z),(x+z,y) must have density 1/logmn\ll 1/\log_{m}{n}, where logm\log_{m} denotes the mm-fold iterated logarithm. This gives the first reasonable bound in the multidimensional Szemerédi theorem for a two-dimensional four-point configuration in any setting.

1. Introduction

Szemerédi’s famous theorem on arithmetic progressions, which states that any subset of the integers with positive upper density contains arbitrarily long arithmetic progressions, has the following multidimensional generalization due to Furstenberg and Katznelson [4]:

Theorem 1.1.

Let XX be a finite, nonempty subset of d\mathbb{Z}^{d}. If S[N]dS\subset[N]^{d} contains no nontrivial homothetic copy a+bXa+bX of XX, then |S|=o(Nd)|S|=o(N^{d}).

Here we use the standard notation [N]:={1,,N}[N]:=\{1,\dots,N\}. There has been great interest over the past few decades in proving a quantitative version of this theorem with reasonable bounds, i.e., with an upper bound for |S||S| whose savings over the trivial bound of NdN^{d} grows at least as quickly as a finite number of iterated logarithms. Indeed, Gowers has posed the problem of proving such a result on several occasions [5, 7, 8], and others, such as Graham [11], have asked for bounds for sets lacking particular multidimensional configurations. While reasonable bounds are known in Szemerédi’s theorem due to work of Gowers [6, 8], none are known in the Furstenberg–Katznelson theorem in general. Furstenberg and Katznelson’s original proof, which was via ergodic theory, produces no explicit bounds, while the hypergraph regularity proofs of Nagle, Rödl, Schacht, and Skokan [16, 18], Gowers [9], and Tao [22] each give a saving over the trivial bound of inverse Ackermann type.

Reasonable bounds in Theorem 1.1 are currently known for only one genuinely multidimensional configuration: two-dimensional corners

(1.1) (x,y),(x,y+z),(x+z,y),(x,y),(x,y+z),(x+z,y),

(and, thus, their linear images,) due to work of Shkredov [19, 20], who proved that any subset of [N]×[N][N]\times[N] containing no nontrivial corners has size at most N2/(loglogN)c\ll N^{2}/(\log\log{N})^{c} for some absolute constant c>0c>0. No reasonable bounds are known for any two-or-more-dimensional four-point configuration, such as three-dimensional corners,

(1.2) (x,y,z),(x,y,z+w),(x,y+w,z),(x+w,y,z),(x,y,z),(x,y,z+w),(x,y+w,z),(x+w,y,z),

or axis-aligned squares,

(1.3) (x,y),(x,y+z),(x+z,y),(x+z,y+z).(x,y),(x,y+z),(x+z,y),(x+z,y+z).

The latter of these two configurations is the topic of a conjecture of Graham [11], which states that any subset S×S\subset\mathbb{N}\times\mathbb{N} for which (x,y)S1x2+y2\sum_{(x,y)\in S}\frac{1}{x^{2}+y^{2}} diverges must contain an axis-aligned square. Graham also conjectured, more generally, that if (x,y)S1x2+y2\sum_{(x,y)\in S}\frac{1}{x^{2}+y^{2}} diverges, then SS must contain a homothetic copy of [m]×[m][m]\times[m] for every positive integer mm. This is a two-dimensional generalization of the famous and still unresolved conjecture of Erdős that every subset TT\subset\mathbb{N} for which nT1n\sum_{n\in T}\frac{1}{n} diverges must contain arbitrarily long arithmetic progressions.

Proving reasonable bounds for sets lacking the four-point configurations (1.2) and (1.3) seems to be out of reach. This is because no one has managed yet to prove anything useful about a certain two-dimensional directional uniformity norm that naturally appears in the study of these configurations. Details on this difficulty can be found in the work of Austin [1, 2], where he demonstrates how enormously complicated and difficult even 100% and 99% inverse theorems can be for directional uniformity norms.

The purpose of this paper is to identify the first two-dimensional four-point configuration for which reasonable bounds in the multidimensional Szemerédi theorem can be proven, and to prove such bounds in the finite field model setting. We will study the configuration

(1.4) (x,y),(x,y+z),(x,y+2z),(x+z,y),(x,y),(x,y+z),(x,y+2z),(x+z,y),

which, when plotted on a two-dimensional integer grid, takes the shape of the capital letter “L”. Because of this, we refer to (1.4) as an L-shaped configuration, and an L-shaped configuration with z0z\neq 0 as a nontrivial L-shaped configuration.

Theorem 1.2.

There exists a natural number mm and a constant C>0C>0 such that the following holds. Fix a prime p11p\geq 11, and set N:=pnN:=p^{n}. If nCn\geq C, then all S𝔽pn×𝔽pnS\subset\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} containing no nontrivial L-shaped configurations satisfy

|S|N2logmN.|S|\ll\frac{N^{2}}{\log_{m}{N}}.

The mm obtained in the theorem is huge, so we do not attempt to compute it. The bulk of the size of mm comes from our use of a recent quantitative inverse theorem for the U10U^{10}-norm on 𝔽pn\mathbb{F}_{p}^{n} due to Gowers and Milićević, who in [10] give a rough upper bound for the number of iterated exponentials appearing in their result. Based on this, mm is likely at least 24 trillion. The use of this inverse theorem is necessary in our proof, and no amount of care to argue efficiently in the rest of the argument can reduce mm by much. So, we have not tried to optimize the proof of Theorem 1.2, choosing instead to present the simplest argument that gives a reasonable upper bound.

It is likely that the proof of Theorem 1.2 can be adapted to the integer setting to prove a reasonable bound for subsets of [N]×[N][N]\times[N] lacking L-shaped configurations, with the bound obtained being far more reasonable than the bound in Theorem 1.2. This is because the quantitative aspects of Manners’s [15] inverse theorem for the UsU^{s}-norm on cyclic groups are better than those of Gowers and Milićević’s inverse theorem when s>4s>4. It is also likely that Theorem 1.2 can be extended to more general L-shaped configurations with a longer vertical “leg”,

(x,y),(x,y+z),,(x,y+mz),(x+z,y),(x,y),(x,y+z),\dots,(x,y+mz),(x+z,y),

in both the finite field model and integer settings. We expect, however, that understanding L-shaped configurations with two longer “legs”,

(x,y),(x,y+z),,(x,y+mz),(x+z,y),,(x+z,y),(x,y),(x,y+z),\dots,(x,y+mz),(x+z,y),\dots,(x+\ell z,y),

is significantly more difficult, for some of the same reasons that proving reasonable bounds for sets lacking three-dimensional corners or axis-aligned squares seems out of reach.

While progress in proving a quantitative version of the multidimensional Szemerédi theorem has so far been extremely limited, there has been a bit more success in proving reasonable bounds for sets lacking multidimensional configurations with more degrees of freedom than those in Theorem 1.1. Prendiville [17] has proven reasonable bounds for subsets of [N]d[N]^{d} lacking any sufficiently nondegenerate three- or four-term matrix progression, and one consequence of his work is that any subset of [N]×[N][N]\times[N] containing no four vertices of any square (not necessarily axis-aligned) has size at most N2/(loglogN)c\ll N^{2}/(\log\log{N})^{c^{\prime}} for some absolute constant c>0c^{\prime}>0.

The remainder of this paper is organized as follows. In Section 2, we give a detailed outline of our proof of Theorem 1.2, including statements of the three main components of the density-increment argument: control of the count of L-shaped configurations by directional uniformity norms, obtaining a density-increment on a structured set, and pseudorandomizing the structured set previously obtained. After introducing additional technical preliminaries in Sections 3 and 4, we prove these three main components in Sections 56, and 7, respectively. We then carry out the density increment argument in Section 8, proving Theorem 1.2.

Acknowledgments

The author thanks Ben Green and Freddie Manners for helpful discussions, and Ben Green, Noah Kravitz, Terry Tao, and the anonymous referees for useful comments on earlier drafts.

The author is supported by the NSF Mathematical Sciences Postdoctoral Research Fellowship Program under Grant No. DMS-1903038 and the Oswald Veblen fund, and also gratefully acknowledges the support and hospitality of the Hausdorff Institute for Mathematics, where the bulk of this paper was written.

2. Outline of the proof of Theorem 1.2

We begin this section by introducing the minimum amount of notation and preliminaries needed to understand our proof outline. We will use the standard asymptotic notation O,Ω,O,\Omega, and oo, along with Vinogradov’s notation ,,\ll,\gg, and \asymp. For any two quantities AA and BB, the relations A=O(B)A=O(B), B=Ω(A)B=\Omega(A), ABA\ll B, and BAB\gg A all mean that |A|C|B||A|\leq C|B| for some absolute constant C>0C>0. We will write O(B)O(B) to represent a quantity that is B\ll B and Ω(A)\Omega(A) to represent a quantity that is A\gg A. When any of these asymptotic symbols appears with a subscript, the implied constant is allowed to depend on the parameters in the subscript. Since we fix a prime pp in Theorem 1.2, the implied constants appearing throughout the paper will sometimes depend on pp even though we will not alert the reader to this with a subscript. We will use logm\log_{m} to denote the mm-fold iterated logarithm, so that log1:=log\log_{1}:=\log and logi:=loglogi1\log_{i}:=\log\circ\log_{i-1} for all i>1i>1, as well as expm\exp^{m} to denote the mm-fold iterated exponential, so that exp1=exp\exp^{1}=\exp and expi:=expexpi1\exp^{i}:=\exp\circ\exp^{i-1} for all i>1i>1.

We will frequently denote the indicator function of a set AA by the letter AA itself, so that

A(x):={1xA0xA.A(x):=\begin{cases}1&x\in A\\ 0&x\notin A\end{cases}.

For any pair of finite sets XYX\subset Y with YY\neq\emptyset, we denote the density of XX in YY by

μY(X):=|X||Y|.\mu_{Y}(X):=\frac{|X|}{|Y|}.

For any function f:Xf:X\to\mathbb{C}, we denote the average of ff over XX by

𝔼xXf(x):=1|X|xXf(x).\mathbb{E}_{x\in X}f(x):=\frac{1}{|X|}\sum_{x\in X}f(x).

When X=𝔽pnX=\mathbb{F}_{p}^{n}, we will usually drop “X\in X” and just write 𝔼x\mathbb{E}_{x} for 𝔼x𝔽pn\mathbb{E}_{x\in\mathbb{F}_{p}^{n}}. Whenever ff satisfies |f(x)|1|f(x)|\leq 1 for all xx in its domain, we say that it is 11-bounded. Note that the indicator function of any set is 11-bounded.

For any f:𝔽pnf:\mathbb{F}_{p}^{n}\to\mathbb{C} and ξ𝔽pn\xi\in\mathbb{F}_{p}^{n}, we define the Fourier coefficient of ff at ξ\xi using the normalization

f^(ξ):=𝔼xf(x)ep(ξx),\widehat{f}(\xi):=\mathbb{E}_{x}f(x)e_{p}(-\xi\cdot x),

where ep(z):=e2πiz/pe_{p}(z):=e^{2\pi iz/p} and \cdot denotes the usual dot product in 𝔽pn\mathbb{F}_{p}^{n}. With this choice of normalization, the Fourier inversion formula and Parseval’s identity read

f(x)=ξ𝔽pnf^(ξ)ep(ξx)f(x)=\sum_{\xi\in\mathbb{F}_{p}^{n}}\widehat{f}(\xi)e_{p}(\xi\cdot x)

and

𝔼x|f(x)|2=ξ𝔽pn|f^(ξ)|2,\mathbb{E}_{x}|f(x)|^{2}=\sum_{\xi\in\mathbb{F}_{p}^{n}}\left|\widehat{f}(\xi)\right|^{2},

respectively.

Let HH be any abelian group and g:Hg:H\to\mathbb{C}. For any hHh\in H, we define the function Δhg:H\Delta_{h}g:H\to\mathbb{C} by

Δhg(x):=g(x)g(x+h)¯,\Delta_{h}g(x):=g(x)\overline{g(x+h)},

and, for any h1,,hsHh_{1},\dots,h_{s}\in H, define the ss-fold iterated differencing operator Δh1,,hs\Delta_{h_{1},\dots,h_{s}} by

Δh1,,hsg:=Δh1Δhsg.\Delta_{h_{1},\dots,h_{s}}g:=\Delta_{h_{1}}\cdots\Delta_{h_{s}}g.

Note that Δh1,,hsg=Δhσ(1),,hσ(s)g\Delta_{h_{1},\dots,h_{s}}g=\Delta_{h_{\sigma(1)},\dots,h_{\sigma(s)}}g for any permutation σ\sigma of {1,,s}\{1,\dots,s\}.

Now we can recall the definition of the Gowers uniformity norms.

Definition 2.1.

Let ss\in\mathbb{N}, HH be an abelian group, and f:Hf:H\to\mathbb{C}. The UsU^{s}-norm of ff is defined by

fUs(H)2s:=𝔼x,h1,,hsHΔh1,,hsf(x)\|f\|_{U^{s}(H)}^{2^{s}}:=\mathbb{E}_{x,h_{1},\dots,h_{s}\in H}\Delta_{h_{1},\dots,h_{s}}f(x)

The basic properties of these norms can be found in [23]. One such fact needed in the upcoming outline is the inverse theorem for the U2U^{2}-norm, which is a simple consequence of Fourier inversion and Parseval’s identity.

Lemma 2.2.

Let HH be an abelian group and f:Hf:H\to\mathbb{C} be 11-bounded. If fU2(H)δ\|f\|_{U^{2}(H)}\geq\delta, then there exists a ψH^\psi\in\widehat{H} such that

|𝔼xHf(x)ψ(x)|δ2.|\mathbb{E}_{x\in H}f(x)\psi(x)|\geq\delta^{2}.

We will also sometimes need the notion of the U2U^{2}-norm on an affine subspace w+Vw+V of 𝔽pn\mathbb{F}_{p}^{n}, which is defined by fU2(w+V):=f(w)U2(V)\|f\|_{U^{2}(w+V)}:=\|f(\cdot-w)\|_{U^{2}(V)}. The corresponding inverse theorem for these norms follows from Lemma 2.2.

2.1. A review of Shkredov’s argument in the finite field model setting

Before we outline the proof of Theorem 1.2, it will be instructive to review Shkredov’s argument for corners (1.1) in the finite field model setting. A detailed account of the argument can be found in the expositions of Green [12, 13].

Shkredov’s proof proceeds via a density-increment argument. As in all analytic approaches to Szemerédi’s theorem and its generalizations, we begin by defining a multilinear average over the configuration of interest. For g0,g1,g2:𝔽pn×𝔽png_{0},g_{1},g_{2}:\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}\to\mathbb{C}, set

Λ(g0,g1,g2):=𝔼x,y,zg0(x,y)g1(x,y+z)g2(x+z,y).\Lambda_{\llcorner}(g_{0},g_{1},g_{2}):=\mathbb{E}_{x,y,z}g_{0}(x,y)g_{1}(x,y+z)g_{2}(x+z,y).

Then, for any S𝔽pn×𝔽pnS\subset\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}, the quantity Λ(S,S,S)\Lambda_{\llcorner}(S,S,S) equals the normalized count,

#{x,y,z𝔽pn:(x,y),(x,y+z),(x+z,y)S}p3,\frac{\#\left\{x,y,z\in\mathbb{F}_{p}^{n}:(x,y),(x,y+z),(x+z,y)\in S\right\}}{p^{3}},

of the number of corners in SS. Setting N:=pn=|𝔽pn|N:=p^{n}=|\mathbb{F}_{p}^{n}|, we let σ:=|S|/N2\sigma:=|S|/N^{2} denote the density of SS in 𝔽pn×𝔽pn\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} and gS:=Sσg_{S}:=S-\sigma denote the balanced function of SS. It follows from the trilinearity of Λ\Lambda_{\llcorner} that

Λ(S,S,S)=σΛ(1,S,S)+Λ(gS,S,S).\Lambda_{\llcorner}(S,S,S)=\sigma\Lambda_{\llcorner}(1,S,S)+\Lambda_{\llcorner}(g_{S},S,S).

Since Λ(1,S,S)σ2\Lambda_{\llcorner}(1,S,S)\geq\sigma^{2} by the Cauchy–Schwarz inequality, if the normalized count of corners in SS is far below the σ3\sim\sigma^{3} expected for a random set of density σ\sigma, which is the case when SS has no nontrivial corners and NN is sufficiently large in terms of σ\sigma, then |Λ(gS,S,S)||\Lambda_{\llcorner}(g_{S},S,S)| must be large.

It can then be shown, by an appropriate sequence of applications of the Cauchy–Schwarz inequality, that gSg_{S} must have large box norm

gS:=(𝔼x,y,x,ygS(x,y)gS(x,y)gS(x,y)¯gS(x,y))1/4.\|g_{S}\|_{\square}:=\left(\mathbb{E}_{x,y,x^{\prime},y^{\prime}}g_{S}(x,y)\overline{g_{S}(x,y^{\prime})g_{S}(x^{\prime},y)}g_{S}(x^{\prime},y^{\prime})\right)^{1/4}.

If gS\|g_{S}\|_{\square} is large, it follows by an averaging argument that SS has density at least σ+Ω(σO(1))\sigma+\Omega(\sigma^{O(1)}) on a product set A×BA\times B for some large A,B𝔽pnA,B\subset\mathbb{F}_{p}^{n}.

One may then hope to continue the density-increment argument by proving the following generalization of the result just sketched: if SS is a subset of density σ\sigma of a product set T=A×BT=A\times B and contains no nontrivial corners, then SS has density at least σ+Ω(σO(1))\sigma+\Omega(\sigma^{O(1)}) on a product set TT^{\prime} contained in TT.

It turns out, however, that the Cauchy–Schwarz argument mentioned previously yields a lower bound on the box norm of large enough size only when AA and BB are sufficiently Fourier pseudorandom, meaning that their balanced functions A|A|/NA-|A|/N and B|B|/NB-|B|/N both have small U2U^{2}-norm. The components of the product set just obtained are essentially arbitrary aside from being large. They are, in particular, not guaranteed to be Fourier pseudorandom.

To overcome this difficulty, Shkredov introduced a pseudorandomizing step into his proof. He used an energy increment argument incorporating the U2U^{2}-inverse theorem to partition 𝔽pn×𝔽pn\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} into products of large affine subspaces of the form

(2.1) (u+V)×(w+V),(u+V)\times(w+V),

for most of which the sets (Au)V(A-u)\cap V and (Bw)V(B-w)\cap V are Fourier pseudorandom in VV. By an averaging argument, there must exist such a product of affine subspaces (2.1) on which the restrictions of AA and BB are both sufficiently dense and Fourier pseudorandom, and such that SS still has increased density σ+Ω(σO(1))\sigma+\Omega(\sigma^{O(1)}) on the intersection of TT with (u+V)×(w+V)(u+V)\times(w+V).

By passing to this product of cosets and using that corners are preserved by translation and invertible linear transformations of the form (x,y)(Ex,Ey)(x,y)\mapsto(Ex,Ey), one can then continue the density-increment argument with 𝔽pn×𝔽pn\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} replaced by 𝔽pn×𝔽pn\mathbb{F}_{p}^{n^{\prime}}\times\mathbb{F}_{p}^{n^{\prime}}, where n=dimVn^{\prime}=\dim{V}. If STS\subset T contains no nontrivial corners and AA and BB are sufficiently Fourier pseudorandom, then gSg_{S} must have large box norm localized to TT. One must then prove that SS has a further density-increment on a product set contained in TT, which is, fortunately, of exactly the same difficulty whether T=𝔽pn×𝔽pnT=\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} or some other large product set. By applying the pseudorandomizing procedure to the factors of the product set just produced, one can then deduce that if SS is a subset of density σ\sigma of a product set T=A×BT=A\times B, where AA and BB are large and sufficiently Fourier pseudorandom, and SS contains no nontrivial corners, then SS has density at least σ+Ω(σO(1))\sigma+\Omega(\sigma^{O(1)}) on a product set T=A×BT^{\prime}=A^{\prime}\times B^{\prime} contained in TT, where AA^{\prime} and BB^{\prime} are also large and sufficiently Fourier pseudorandom. The density increment iteration can be carried out repeatedly to produce a good bound for subsets of 𝔽pn×𝔽pn\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} lacking corners.

2.2. An outline of our argument

The obstructions to uniformity for L-shaped configurations are not just (skew) product sets, as was the case for corners, but also very general sets of the form

{(x,y)𝔽pn×𝔽pn:yux+Vx},\left\{(x,y)\in\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}:y\in u_{x}+V_{x}\right\},

where each ux+Vxu_{x}+V_{x} is an affine subspace of 𝔽pn\mathbb{F}_{p}^{n}. For example, assume that n3n\geq 3, and consider the set

{(x,y)𝔽pn×𝔽pn:xy=0}.\left\{(x,y)\in\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}:x\cdot y=0\right\}.

This set has density

(N1)N/p+NN21p\frac{(N-1)N/p+N}{N^{2}}\sim\frac{1}{p}

in 𝔽pn×𝔽pn\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}, but

[(N1)(p1)](Np1)Np2+(Np1)(p1)Np+N+2(N1)NpN3p3\left[(N-1)-(p-1)\right]\left(\frac{N}{p}-1\right)\frac{N}{p^{2}}+\left(\frac{N}{p}-1\right)(p-1)\frac{N}{p}+N+2(N-1)\frac{N}{p}\sim\frac{N^{3}}{p^{3}}

L-shaped configurations, in contrast to the N3/p4\sim N^{3}/p^{4} expected in a random subset of 𝔽pn×𝔽pn\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} of density 1/p1/p. Similarly, the number of L-shaped configurations in the sets

{(x,y)𝔽pn×𝔽pn:ϕ(x)y=0}\left\{(x,y)\in\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}:\phi(x)\cdot y=0\right\}

and

{(x,y)𝔽pn×𝔽pn:y1=u(x)},\left\{(x,y)\in\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}:y_{1}=u(x)\right\},

where ϕ(x)𝔽pn\phi(x)\in\mathbb{F}_{p}^{n} and u(x)𝔽pu(x)\in\mathbb{F}_{p} are now chosen uniformly at random, is also N3/p3\sim N^{3}/p^{3} with high probability, while the sets have density 1/p\sim 1/p with high probability. These new sorts of obstructions to uniformity are the main reason why the study of L-shaped configurations is significantly more difficult than that of corners, and must be taken into account to prove Theorem 1.2.

For any functions g0,g1,g2,g3:𝔽pn×𝔽png_{0},g_{1},g_{2},g_{3}:\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}\to\mathbb{C}, we define

(2.2) Λ(g0,g1,g2,g3):=𝔼x,y,zg0(x,y)g1(x,y+z)g2(x,y+2z)g3(x+z,y),\Lambda(g_{0},g_{1},g_{2},g_{3}):=\mathbb{E}_{x,y,z}g_{0}(x,y)g_{1}(x,y+z)g_{2}(x,y+2z)g_{3}(x+z,y),

so that Λ(S,S,S,S)\Lambda(S,S,S,S) equals the normalized count of L-shaped configurations in any subset SS of 𝔽pn×𝔽pn\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}. The multilinearity of Λ\Lambda implies that

(2.3) |Λ(S,S,S,S)σ4|σ2|Λ(1,1,gS,S)|+σ|Λ(1,gS,S,S)|+|Λ(gS,S,S,S)|,|\Lambda(S,S,S,S)-\sigma^{4}|\leq\sigma^{2}|\Lambda(1,1,g_{S},S)|+\sigma|\Lambda(1,g_{S},S,S)|+|\Lambda(g_{S},S,S,S)|,

where, as before, gS=Sσg_{S}=S-\sigma is the balanced function of SS. Thus, if the normalized count of L-shaped configurations in SS is far from the random normalized count σ4\sigma^{4}, one of |Λ(1,1,gS,S)||\Lambda(1,1,g_{S},S)|, |Λ(1,gS,S,S)||\Lambda(1,g_{S},S,S)|, or |Λ(gS,S,S,S)||\Lambda(g_{S},S,S,S)| must be large. In particular, when SS contains no nontrivial L-shaped configurations and NN is sufficiently large in terms of σ\sigma, one of these quantities will be larger than σ4/2\sigma^{4}/2. It then follows from several applications of the Cauchy–Schwarz inequality that one of the following directional uniformity norms of gSg_{S} must be larger than σ4/2\sigma^{4}/2:

(2.4) g1:=(𝔼x,y,h1,h2,h3Δ(0,h1),(0,h2),(h3,0)g(x,y))1/8,\|g\|_{\star_{1}}:=\left(\mathbb{E}_{x,y,h_{1},h_{2},h_{3}}\Delta_{(0,h_{1}),(0,h_{2}),(h_{3},0)}g(x,y)\right)^{1/8},
(2.5) g2:=(𝔼x,y,h1,h2Δ(0,h1),(h2,h2)g(x,y))1/4,\|g\|_{\star_{2}}:=\left(\mathbb{E}_{x,y,h_{1},h_{2}}\Delta_{(0,h_{1}),(-h_{2},h_{2})}g(x,y)\right)^{1/4},

or

(2.6) g3:=(𝔼x,y,h1Δ(h1,2h1)g(x,y))1/2.\|g\|_{\star_{3}}:=\left(\mathbb{E}_{x,y,h_{1}}\Delta_{(-h_{1},2h_{1})}g(x,y)\right)^{1/2}.

Here 3\|\cdot\|_{\star_{3}} is only a semi-norm, while 1\|\cdot\|_{\star_{1}} and 2\|\cdot\|_{\star_{2}} are genuine norms. Since these are all Gowers box norms, one can find a proof that they are (semi-)norms in Appendix B of [14]. The norm 1\|\cdot\|_{\star_{1}} had previously been studied, in the setting of cyclic groups, in work of Shkredov [21].

Directional uniformity norms with two differencing parameters,

[𝔼x,y,h,kHΔhv1,kv2g(x,y)]1/4,\left[\mathbb{E}_{x,y,h,k\in H}\Delta_{hv_{1},kv_{2}}g(x,y)\right]^{1/4},

for fixed nonzero v1,v2H×Hv_{1},v_{2}\in H\times H, are well-understood. Either v1v_{1} and v2v_{2} are scalar multiples of each other, in which case the norm is just the U2U^{2}-norm on v1\langle v_{1}\rangle averaged over cosets of v1\langle v_{1}\rangle, or they are linearly independent, as in the definition of 2\|\cdot\|_{\star_{2}}, in which case the norm is, after a change of variables, equivalent to the two-dimensional box norm. Directional uniformity norms with three differencing parameters,

[𝔼x,y,h1,h2,h3HΔh1v1,h2v2,h3v3g(x,y)]1/8,\left[\mathbb{E}_{x,y,h_{1},h_{2},h_{3}\in H}\Delta_{h_{1}v_{1},h_{2}v_{2},h_{3}v_{3}}g(x,y)\right]^{1/8},

for fixed nonzero v1,v2,v3H×Hv_{1},v_{2},v_{3}\in H\times H analogously fall into one of three cases: either v1,v2,v_{1},v_{2}, and v3v_{3} are collinear, lie on exactly two lines, or are in general position. In the first case, the norm is just the U3U^{3}-norm on v1\langle v_{1}\rangle averaged over cosets of v1\langle v_{1}\rangle. In the third case, the norm is linearly equivalent to the intractable norm that arises in the study of 33-dimensional corners and axis-aligned squares. The norm 1\|\cdot\|_{\star_{1}} we encounter falls into the second case, and the study and fruitful use of this norm turns out to be possible (though still complicated) due to its structure as a “U1×U2U^{1}\times U^{2}-norm”.

The upshot is that if SS contains no nontrivial L-shaped configurations, then it must have density at least σ+Ω(σO(1))\sigma+\Omega(\sigma^{O(1)}) on a set of the form

(2.7) T:={(x,y)𝔽pn×𝔽pn:B(y)C(x+y)D(2x+y)Φ(x,y)=1},T:=\left\{(x,y)\in\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}:B(y)C(x+y)D(2x+y)\Phi(x,y)=1\right\},

where ΦA×𝔽pn\Phi\subset A\times\mathbb{F}_{p}^{n} is of the form

(2.8) Φ:={(x,y)A×𝔽pn:yu+Vx},\Phi:=\left\{(x,y)\in A\times\mathbb{F}_{p}^{n}:y\in u+V_{x}\right\},

for some element u𝔽pnu\in\mathbb{F}_{p}^{n} and collection of subspaces {Vx:xA}\{V_{x}:x\in A\} of 𝔽pn\mathbb{F}_{p}^{n}, where A,B,C,D𝔽pnA,B,C,D\subset\mathbb{F}_{p}^{n} are large and codimVx\operatorname{codim}V_{x} is small for each xAx\in A. Note that this set Φ\Phi is not quite as general as the one appearing at the very beginning of this subsection, as the element uu of 𝔽pn\mathbb{F}_{p}^{n} does not vary with xx. It takes some extra work to show that we can guarantee Φ\Phi to be of this special form, which turns out to be necessary for our density-increment iteration. We say more about this point in Section 6.

We would like to continue the density increment iteration and show that S:=TSS^{\prime}:=T\cap S, which also lacks L-shaped configurations, has a further density increment of at least the same size as the first on a subset TT^{\prime} of TT of the same general form (2.7). Analogously to Shkredov’s argument for corners, we can only hope to do this if A,B,C,D,A,B,C,D, and Φ\Phi are sufficiently pseudorandom, for some appropriate notions of pseudorandomness. We will need to control the count of L-shaped configurations by the norms 1\|\cdot\|_{\star_{1}}, 2\|\cdot\|_{\star_{2}}, and 3\|\cdot\|_{\star_{3}} defined in (2.4), (2.5), and (2.6) with no loss of density factors, i.e., show that

(2.9) |Λ(f0,f1,f2,f3)|Λ(T,T,T,T)δf01T1δ1,\frac{|\Lambda(f_{0},f_{1},f_{2},f_{3})|}{\Lambda(T,T,T,T)}\geq\delta\implies\frac{\|f_{0}\|_{\star_{1}}}{\|T\|_{\star_{1}}}\gg_{\delta}1,
(2.10) |Λ(T,f1,f2,f3)|Λ(T,T,T,T)δf12T2δ1,\frac{|\Lambda(T,f_{1},f_{2},f_{3})|}{\Lambda(T,T,T,T)}\geq\delta\implies\frac{\|f_{1}\|_{\star_{2}}}{\|T\|_{\star_{2}}}\gg_{\delta}1,

and

(2.11) |Λ(T,T,f2,f3)|Λ(T,T,T,T)δf23T3δ1,\frac{|\Lambda(T,T,f_{2},f_{3})|}{\Lambda(T,T,T,T)}\geq\delta\implies\frac{\|f_{2}\|_{\star_{3}}}{\|T\|_{\star_{3}}}\gg_{\delta}1,

and also obtain a density-increment with no loss of density factors when some localized norm i\|\cdot\|_{\star_{i}} of the balanced function of a set is large, i.e., show that if

gS1T1,gS2T2, or gS3T3δ,\frac{\|g_{S}\|_{\star_{1}}}{\|T\|_{\star_{1}}},\frac{\|g_{S}\|_{\star_{2}}}{\|T\|_{\star_{2}}},\text{ or }\frac{\|g_{S}\|_{\star_{3}}}{\|T\|_{\star_{3}}}\geq\delta,

where now gS:=SσTg_{S}:=S-\sigma T, then there exists a subset TTT^{\prime}\subset T of the same general form,

T:={(x,y)𝔽pn×𝔽pn:B(y)C(x+y)D(2x+y)Φ(x,y)=1},T^{\prime}:=\{(x,y)\in\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}:B^{\prime}(y)C^{\prime}(x+y)D^{\prime}(2x+y)\Phi^{\prime}(x,y)=1\},

as TT on which SS has a density increment

𝔼(x,y)TS(x,y)σ+Ωδ(1)\mathbb{E}_{(x,y)\in T^{\prime}}S(x,y)\geq\sigma+\Omega_{\delta}(1)

depending only on δ\delta. Such results are needed so that the density increment obtained at each step of the iteration is independent of the step. If one is not sufficiently careful, it is easy to end up with a density increment that gets smaller as the subset TT of 𝔽pn×𝔽pn\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} gets sparser, which is not enough to close the density increment iteration.

To carry out these arguments, we will need A,B,C,A,B,C, and DD to be pseudorandom with respect to the U10(𝔽pn)U^{10}(\mathbb{F}_{p}^{n})-norm. The situation for Φ\Phi is more complicated, and deciding on a good measure of pseudorandomness for Φ\Phi that is amenable to a Shkredov-like pseudorandomization procedure and can also be used to analyze the various averages appearing throughout our argument is one of the challenges of the proof of Theorem 1.2. A suitable condition on Φ\Phi turns out to be that it is pseudorandom with respect to the U8(𝔽pn×𝔽pn)U^{8}(\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n})-norm. This condition is not, on its own, immediately useful in the arguments of Sections 5 and 6, since the various averages that appear are not controllable by the U8(𝔽pn×𝔽pn)U^{8}(\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n})-norm of Φ\Phi. It takes a bit of work to show that it implies a roughly equivalent statement about the typical codimensions of certain affine subspaces obtained from Φ\Phi. We prove this in Section 4, deriving some new results on the combinatorics of approximate polynomials along the way.

The proof of the implications (2.9), (2.10), and (2.11) when A,B,C,D,A,B,C,D, and Φ\Phi are sufficiently pseudorandom consists of many careful applications of the Cauchy–Schwarz inequality, along with appeals to standard facts about the number of linear configurations of bounded Cauchy–Schwarz complexity in products of pseudorandom sets intersected with subspaces of bounded codimension. We carry out this argument in Section 5.

Obtaining a large enough density-increment when gS1\|g_{S}\|_{\star_{1}} is large for STS\subset T requires some new ideas and a significant amount of extra work beyond the proof of the non-localized case, in contrast to the situation for the box norm localized to product sets, where the argument is the same as the non-localized case. In order to get such a density-increment that only depends on δ\delta and not on the densities of A,B,C,D,A,B,C,D, or Φ\Phi, one of the key ingredients is a density-preserving inverse theorem for the U2(Φ(x,))U^{2}(\Phi(x,\cdot))-norms on pseudorandom sets derived from A,B,C,A,B,C, and DD, which we prove using a version of the transference principle. We carry out this argument in Section 6.

As was the case for corners, the sets A,B,C,D,A^{\prime},B^{\prime},C^{\prime},D^{\prime}, and Φ\Phi^{\prime} obtained in the previous paragraph are not guaranteed to be pseudorandom. We must also carry out a pseudorandomizing procedure to locate a product of large affine subspaces of the form (u+V)×(w+V)(u+V)\times(w+V) on which A,B,C,D,A^{\prime},B^{\prime},C^{\prime},D^{\prime}, and Φ\Phi^{\prime} are sufficiently pseudorandom and SS still has a large density increment on T[(u+V)×(w+V)]T^{\prime}\cap[(u+V)\times(w+V)]. Our pseudorandomization procedure is similar to Shkredov’s, but with some new complications coming from our desire for A,B,C,A^{\prime},B^{\prime},C^{\prime}, and DD^{\prime} and Φ\Phi^{\prime} to be pseudorandom with respect to the U10(𝔽pn)U^{10}(\mathbb{F}_{p}^{n})- and U8(𝔽pn×𝔽pn)U^{8}(\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n})-norms, respectively, and from Φ\Phi^{\prime}’s particular structure as a union of affine subspaces in the second factor of 𝔽pn×𝔽pn\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}. To handle the first complication, we use a recent quantitative inverse theorem of Gowers and Milićević [10] for the UsU^{s}-norms on vector spaces over finite fields, combined with a result of Cohen and Tal [3] that allows us to partition 𝔽pn\mathbb{F}_{p}^{n} into large affine subspaces on which any finite collection of bounded degree polynomials are all constant. The structure of Φ\Phi^{\prime} has the potential to cause issues in a Shkredov-like pseudorandomization argument, since the intersection of Φ\Phi^{\prime} with a cell may no longer be the union of affine subspaces all having the same dimension. We will explain how this complication is dealt with in Section 7, since it requires a bit of set up.

2.3. Key intermediate results

We finish this section by stating the key intermediate results needed to prove Theorem 1.2 that we just described in the outline. Recall that gS=Sσg_{S}=S-\sigma denotes the balanced function of SS.

Lemma 2.3 (Estimation of Λ(T,T,T,S)\Lambda(T,T,T,S)).

There exist absolute constants 0<c1<1<c20<c_{1}<1<c_{2} such that the following holds. Let dd be a nonnegative integer, and set ρ:=pd\rho:=p^{-d}. Suppose that A,B,C,D𝔽pnA,B,C,D\subset\mathbb{F}_{p}^{n} have densities α,β,γ,δ\alpha,\beta,\gamma,\delta, respectively, and that Φ𝔽pn×𝔽pn\Phi\subset\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} takes the form

Φ={(x,y)A×𝔽pn:yu+Vx},\Phi=\left\{(x,y)\in A\times\mathbb{F}_{p}^{n}:y\in u+V_{x}\right\},

where each VxV_{x} is a subspace of 𝔽pn\mathbb{F}_{p}^{n} of codimension dd. Define T𝔽pn×𝔽pnT\subset\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} by (2.7) and suppose that STS\subset T has density σ\sigma in TT. Let εc1(σαβγδρ)c2\varepsilon\leq c_{1}(\sigma\alpha\beta\gamma\delta\rho)^{c_{2}} and assume that

AαU5(𝔽pn),BβU5(𝔽pn),CγU5(𝔽pn),DδU5(𝔽pn),ΦαρU2(𝔽pn×𝔽pn)<ε.\|A-\alpha\|_{U^{5}(\mathbb{F}_{p}^{n})},\|B-\beta\|_{U^{5}(\mathbb{F}_{p}^{n})},\|C-\gamma\|_{U^{5}(\mathbb{F}_{p}^{n})},\|D-\delta\|_{U^{5}(\mathbb{F}_{p}^{n})},\|\Phi-\alpha\rho\|_{U^{2}(\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n})}<\varepsilon.

Then

Λ(T,T,T,S)σα2β3γ3δ3ρ3.\Lambda(T,T,T,S)\gg\sigma\alpha^{2}\beta^{3}\gamma^{3}\delta^{3}\rho^{3}.

As a consequence, we get that if ε\varepsilon is small enough, nn is large enough, and STS\subset T has no nontrivial L-shaped configurations, then

max(|Λ(gS,S,S,S)|,|Λ(T,gS,S,S)|,|Λ(T,T,gS,S)|)σ4α2β3γ3δ3ρ3.\max(|\Lambda(g_{S},S,S,S)|,|\Lambda(T,g_{S},S,S)|,|\Lambda(T,T,g_{S},S)|)\gg\sigma^{4}\alpha^{2}\beta^{3}\gamma^{3}\delta^{3}\rho^{3}.
Lemma 2.4 (Control by i\|\cdot\|_{\star_{i}} norms).

Let dd be a nonnegative integer, and set ρ:=pd\rho:=p^{-d}. Suppose that A,B,C,D𝔽pnA,B,C,D\subset\mathbb{F}_{p}^{n} have densities α,β,γ,δ\alpha,\beta,\gamma,\delta, respectively, and that Φ𝔽pn×𝔽pn\Phi\subset\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} takes the form

Φ={(x,y)A×𝔽pn:yu+Vx},\Phi=\left\{(x,y)\in A\times\mathbb{F}_{p}^{n}:y\in u+V_{x}\right\},

where each VxV_{x} is a subspace of 𝔽pn\mathbb{F}_{p}^{n} of codimension dd. Assume that

AαU8(𝔽pn),BβU8(𝔽pn),CγU8(𝔽pn),DδU8(𝔽pn),ΦαρU6(𝔽pn×𝔽pn)<ε.\|A-\alpha\|_{U^{8}(\mathbb{F}_{p}^{n})},\|B-\beta\|_{U^{8}(\mathbb{F}_{p}^{n})},\|C-\gamma\|_{U^{8}(\mathbb{F}_{p}^{n})},\|D-\delta\|_{U^{8}(\mathbb{F}_{p}^{n})},\|\Phi-\alpha\rho\|_{U^{6}(\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n})}<\varepsilon.

Define T𝔽pn×𝔽pnT\subset\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} by (2.7) and suppose that f0,f1,f2,f3:𝔽pn×𝔽pnf_{0},f_{1},f_{2},f_{3}:\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}\to\mathbb{C} are 11-bounded functions supported on TT. Then

(2.12) |Λ(f0,f1,f2,f3)|8α14β20γ16δ16ρ18f018+O(εΩ(1)ρO(1))|\Lambda(f_{0},f_{1},f_{2},f_{3})|^{8}\leq\alpha^{14}\beta^{20}\gamma^{16}\delta^{16}\rho^{18}\|f_{0}\|_{\star_{1}}^{8}+O\left(\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}}\right)
(2.13) |Λ(T,f1,f2,f3)|4α8β8γ10δ8ρ8f124+O(εΩ(1)ρO(1))|\Lambda(T,f_{1},f_{2},f_{3})|^{4}\leq\alpha^{8}\beta^{8}\gamma^{10}\delta^{8}\rho^{8}\|f_{1}\|_{\star_{2}}^{4}+O\left(\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}}\right)

and

(2.14) |Λ(T,T,f2,f3)|2αβ3γ3δ4ρ3f232+O(εΩ(1)ρO(1)).\left|\Lambda(T,T,f_{2},f_{3})\right|^{2}\leq\alpha\beta^{3}\gamma^{3}\delta^{4}\rho^{3}\|f_{2}\|_{\star_{3}}^{2}+O\left(\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}}\right).

Thus, if ε\varepsilon is small enough, nn is large enough, and STS\subset T has no nontrivial L-shaped configurations, then one of

gS1T1,gS2T2, or gS3T3\frac{\|g_{S}\|_{\star_{1}}}{\|T\|_{\star_{1}}},\frac{\|g_{S}\|_{\star_{2}}}{\|T\|_{\star_{2}}},\text{ or }\frac{\|g_{S}\|_{\star_{3}}}{\|T\|_{\star_{3}}}

is σO(1)\gg\sigma^{O(1)}.

Theorem 2.5 (gS1\|g_{S}\|_{\star_{1}}, gS2\|g_{S}\|_{\star_{2}}, or gS3\|g_{S}\|_{\star_{3}} large implies a density-increment).

There exist absolute constants 0<c1<1<c2,c30<c_{1}<1<c_{2},c_{3} such that the following holds. Let dd be a nonnegative integer, and set ρ:=pd\rho:=p^{-d}. Suppose that A,B,C,D𝔽pnA,B,C,D\subset\mathbb{F}_{p}^{n} have densities α,β,γ,δ\alpha,\beta,\gamma,\delta, respectively, and that Φ𝔽pn×𝔽pn\Phi\subset\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} takes the form

Φ={(x,y)A×𝔽pn:yu+Vx},\Phi=\left\{(x,y)\in A\times\mathbb{F}_{p}^{n}:y\in u+V_{x}\right\},

where each VxV_{x} is a subspace of 𝔽pn\mathbb{F}_{p}^{n} of codimension dd. Let σ,τ>0\sigma,\tau>0 and

εc1(σταβγδρ)c2exp((64/τ8)c3),\varepsilon\leq c_{1}(\sigma\tau\alpha\beta\gamma\delta\rho)^{c_{2}}\exp(-(64/\tau^{8})^{c_{3}}),

and assume that

AαU10(𝔽pn),BβU10(𝔽pn),CγU10(𝔽pn),DδU10(𝔽pn),ΦαρU8(𝔽pn×𝔽pn)<ε.\|A-\alpha\|_{U^{10}(\mathbb{F}_{p}^{n})},\|B-\beta\|_{U^{10}(\mathbb{F}_{p}^{n})},\|C-\gamma\|_{U^{10}(\mathbb{F}_{p}^{n})},\|D-\delta\|_{U^{10}(\mathbb{F}_{p}^{n})},\|\Phi-\alpha\rho\|_{U^{8}(\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n})}<\varepsilon.

Define T𝔽pn×𝔽pnT\subset\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} by (2.7) and assume that STS\subset T has density σ\sigma in TT. Suppose that

gS1τα1/4β1/2γδρ3/4,\|g_{S}\|_{\star_{1}}\geq\tau\alpha^{1/4}\beta^{1/2}\gamma\delta\rho^{3/4},
gS2τα1/2βγ1/2δρ,\|g_{S}\|_{\star_{2}}\geq\tau\alpha^{1/2}\beta\gamma^{1/2}\delta\rho,

or

gS3ταβγδ1/2ρ.\|g_{S}\|_{\star_{3}}\geq\tau\alpha\beta\gamma\delta^{1/2}\rho.

Then, SS has density at least σ+Ω(τO(1))\sigma+\Omega(\tau^{O(1)}) on a subset TTT^{\prime}\subset T of the form

T:={(x,y)𝔽pn×𝔽pn:B(y)C(x+y)D(2x+y)Φ(x,y)=1},T^{\prime}:=\left\{(x,y)\in\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}:B^{\prime}(y)C^{\prime}(x+y)D^{\prime}(2x+y)\Phi^{\prime}(x,y)=1\right\},

where the densities of A,B,C,D𝔽pnA^{\prime},B^{\prime},C^{\prime},D^{\prime}\subset\mathbb{F}_{p}^{n} are all (σταβγδρ)O(1)\gg(\sigma\tau\alpha\beta\gamma\delta\rho)^{O(1)}, and the set Φ𝔽pn×𝔽pn\Phi^{\prime}\subset\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} takes the form

Φ={(x,y)A×𝔽pn:yu+Vx},\Phi^{\prime}=\{(x,y)\in A^{\prime}\times\mathbb{F}_{p}^{n}:y\in u^{\prime}+V_{x}^{\prime}\},

where each VxV_{x}^{\prime} is a subspace of 𝔽pn\mathbb{F}_{p}^{n} of codimension d+1d+1.

The first three lemmas combined tell us that if SS has density σ\sigma and contains no nontrivial L-shaped configurations, then one can find a subset TT of 𝔽pn×𝔽pn\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} of the form (2.7) on which SS has density at least σ+Ω(σO(1))\sigma+\Omega(\sigma^{O(1)}). The next lemma tells us that, after restricting to a product of large affine subspaces, we can get this same conclusion with A,B,C,D,A,B,C,D, and Φ\Phi as pseudorandom as we need, which will allow us to continue the density-increment iteration.

Lemma 2.6.

There exist absolute constants 0<c1<1<c2,c,c0<c_{1}<1<c_{2},c,c^{\prime} such that the following holds. Let dd be a nonnegative integer, and set ρ:=pd\rho:=p^{-d}. Let ε>0\varepsilon^{\prime}>0, and suppose that A,B,C,D𝔽pnA,B,C,D\subset\mathbb{F}_{p}^{n} have densities α,β,γ,δ\alpha,\beta,\gamma,\delta, respectively, and that Φ𝔽pn×𝔽pn\Phi\subset\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} and takes the form

Φ={(x,y)A×𝔽pn:yu+Vx},\Phi=\left\{(x,y)\in A\times\mathbb{F}_{p}^{n}:y\in u+V_{x}\right\},

where each VxV_{x} is a subspace of 𝔽pn\mathbb{F}_{p}^{n} of codimension dd. Define T𝔽pn×𝔽pnT\subset\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} by (2.7), and assume that STS\subset T has density σ+τ\sigma+\tau in TT, as well as that

nexp2(c2expc(c/ε)dτμ𝔽pn×𝔽pn(T)).n\geq\exp^{2}\left(c_{2}\frac{\exp^{c}(c^{\prime}/\varepsilon^{\prime})}{d\tau\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(T)}\right).

Then there exists a subspace V𝔽pnV\leq\mathbb{F}_{p}^{n} of dimension

dimVnc1O(expc(c/ε)/dτμ𝔽pn×𝔽pn(T)),\dim{V}\gg n^{c_{1}^{O\left(\exp^{c}\left(c^{\prime}/\varepsilon^{\prime}\right)/d\tau\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(T)\right)}},

u,w𝔽pnu,w\in\mathbb{F}_{p}^{n}, and 0id0\leq i\leq d such that, on setting 𝒞=(u+V)×(w+V)\mathcal{C}=(u+V)\times(w+V),

  • B:=B(w+V)B^{\prime}:=B\cap(w+V),

  • C:=C(u+w+V)C^{\prime}:=C\cap(u+w+V),

  • D:=D(2u+w+V)D^{\prime}:=D\cap(2u+w+V),

  • Ψ:=Φ𝒞\Psi^{\prime}:=\Phi\cap\mathcal{C} and Φ:={(x,y)Ψ:𝔼zw+VΨ(x,z)=pi}\Phi^{\prime}:=\left\{(x,y)\in\Psi^{\prime}:\mathbb{E}_{z\in w+V}\Psi^{\prime}(x,z)=p^{-i}\right\},

  • A:={xu+V:𝔼zw+VΦ(x,z)0}A^{\prime}:=\left\{x\in u+V:\mathbb{E}_{z\in w+V}\Phi^{\prime}(x,z)\neq 0\right\},

  • α=μu+V(A)\alpha^{\prime}=\mu_{u+V}(A^{\prime}),

  • β:=μw+V(B)\beta^{\prime}:=\mu_{w+V}(B^{\prime}),

  • γ:=μu+w+V(C)\gamma^{\prime}:=\mu_{u+w+V}(C^{\prime}),

  • δ:=μ2u+w+V(D)\delta^{\prime}:=\mu_{2u+w+V}(D^{\prime}),

  • ρ:=pi\rho^{\prime}:=p^{-i}, and

  • T:={(x,y)𝒞:B(y)C(x+y)D(2x+y)Φ(x,y)=1}T^{\prime}:=\left\{(x,y)\in\mathcal{C}:B^{\prime}(y)C^{\prime}(x+y)D^{\prime}(2x+y)\Phi^{\prime}(x,y)=1\right\},

we have

AρU10(u+V),BβU10(w+V),CγU10(u+w+V),DδU10(2u+w+V),ΦαρU8(𝒞)<2ε,\|A^{\prime}-\rho^{\prime}\|_{U^{10}(u+V)},\|B^{\prime}-\beta^{\prime}\|_{U^{10}(w+V)},\|C^{\prime}-\gamma^{\prime}\|_{U^{10}(u+w+V)},\|D^{\prime}-\delta^{\prime}\|_{U^{10}(2u+w+V)},\|\Phi^{\prime}-\alpha^{\prime}\rho^{\prime}\|_{U^{8}(\mathcal{C})}<2\varepsilon,

α,β,γ,δτμ𝔽pn×𝔽pn(T)/4\alpha^{\prime},\beta^{\prime},\gamma^{\prime},\delta^{\prime}\gg\tau\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(T)/4, and

μ𝒞(ST)(σ+τ4)μ𝒞(T).\mu_{\mathcal{C}}(S\cap T^{\prime})\geq\left(\sigma+\frac{\tau}{4}\right)\mu_{\mathcal{C}}(T^{\prime}).

By combining the previous four lemmas and using that L-shaped configurations are preserved by translation and invertible linear transformations of the form (x,y)(Ex,Ey)(x,y)\mapsto(Ex,Ey), we thus deduce the following density-increment lemma, which we will iterate in Section 8 to prove Theorem 1.2.

Lemma 2.7.

There exist absolute constants 0<c1<1<c2,c3,c4,c,c0<c_{1}<1<c_{2},c_{3},c_{4},c,c^{\prime} such that the following holds. Let dd be a nonnegative integer, and set ρ:=pd\rho:=p^{-d}. Suppose that that A,B,C,D𝔽pnA,B,C,D\subset\mathbb{F}_{p}^{n} have densities α,β,γ,δ\alpha,\beta,\gamma,\delta, respectively, and that Φ𝔽pn×𝔽pn\Phi\subset\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} takes the form

Φ={(x,y)A×𝔽pn:yu+Vx},\Phi=\{(x,y)\in A\times\mathbb{F}_{p}^{n}:y\in u+V_{x}\},

where each VxV_{x} is a subspace of 𝔽pn\mathbb{F}_{p}^{n} of codimension dd. Define TT by (2.7) and let STS\subset T have density σ\sigma in TT. Let ε(σαβγδρ)c2exp((64/σ)c3)\varepsilon\leq(\sigma\alpha\beta\gamma\delta\rho)^{c_{2}}\exp(-(64/\sigma)^{c_{3}}), and assume that

AαU10(𝔽pn),BβU10(𝔽pn),CγU10(𝔽pn),DδU10(𝔽pn),ΦαρU8(𝔽pn×𝔽pn)<ε.\|A-\alpha\|_{U^{10}(\mathbb{F}_{p}^{n})},\|B-\beta\|_{U^{10}(\mathbb{F}_{p}^{n})},\|C-\gamma\|_{U^{10}(\mathbb{F}_{p}^{n})},\|D-\delta\|_{U^{10}(\mathbb{F}_{p}^{n})},\|\Phi-\alpha\rho\|_{U^{8}(\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n})}<\varepsilon.

Let ε>0\varepsilon^{\prime}>0, and suppose that SS has no nontrivial L-shaped configurations. Then either

  1. (1)

    n<exp2(c4expc(c/ε)(σαβγδρ)c2)n<\exp^{2}\left(\frac{c_{4}\exp^{c}(c^{\prime}/\varepsilon^{\prime})}{(\sigma\alpha\beta\gamma\delta\rho)^{c_{2}}}\right) or

  2. (2)

    there exists natural numbers nn^{\prime} and dd^{\prime} satisfying

    nnc1expc(c/ε)/(σαβγδρ)c2n^{\prime}\gg n^{c_{1}^{\exp^{c}\left(c^{\prime}/\varepsilon^{\prime}\right)/(\sigma\alpha\beta\gamma\delta\rho)^{c_{2}}}}

    and 0dd+10\leq d^{\prime}\leq d+1, subsets A,B,C,D𝔽pnA^{\prime},B^{\prime},C^{\prime},D^{\prime}\subset\mathbb{F}_{p}^{n^{\prime}} of densities α,β,γ,δ\alpha^{\prime},\beta^{\prime},\gamma^{\prime},\delta^{\prime}, respectively, a subset Φ𝔽pn×𝔽pn\Phi^{\prime}\subset\mathbb{F}_{p}^{n^{\prime}}\times\mathbb{F}_{p}^{n^{\prime}} of the form

    Φ={(x,y)A×𝔽pn:yu+Vx},\Phi^{\prime}=\left\{(x,y)\in A^{\prime}\times\mathbb{F}_{p}^{n^{\prime}}:y\in u^{\prime}+V_{x}^{\prime}\right\},

    where each VxV_{x}^{\prime} is a subspace of 𝔽pn\mathbb{F}_{p}^{n^{\prime}} of codimension dd^{\prime} (so that Φ\Phi^{\prime} has density αρ\alpha^{\prime}\rho^{\prime}, where ρ:=pd\rho^{\prime}:=p^{-d^{\prime}}), and a subset STS^{\prime}\subset T^{\prime}, where

    T:={(x,y)𝔽pn×𝔽pn:B(y)C(x+y)D(2x+y)Φ(x,y)=1},T^{\prime}:=\left\{(x,y)\in\mathbb{F}_{p}^{n^{\prime}}\times\mathbb{F}_{p}^{n^{\prime}}:B^{\prime}(y)C^{\prime}(x+y)D^{\prime}(2x+y)\Phi^{\prime}(x,y)=1\right\},

    of density at least σ+Ω(σO(1))\sigma+\Omega(\sigma^{O(1)}) in TT^{\prime}, such that

    AαU10(𝔽pn),BβU10(𝔽pn),CγU10(𝔽pn),DδU10(𝔽pn),ΦαρU8(𝔽pn×𝔽pn)<ε,\|A^{\prime}-\alpha^{\prime}\|_{U^{10}(\mathbb{F}_{p}^{n^{\prime}})},\|B^{\prime}-\beta^{\prime}\|_{U^{10}(\mathbb{F}_{p}^{n^{\prime}})},\|C^{\prime}-\gamma^{\prime}\|_{U^{10}(\mathbb{F}_{p}^{n^{\prime}})},\|D^{\prime}-\delta^{\prime}\|_{U^{10}(\mathbb{F}_{p}^{n^{\prime}})},\|\Phi^{\prime}-\alpha^{\prime}\rho^{\prime}\|_{U^{8}(\mathbb{F}_{p}^{n^{\prime}}\times\mathbb{F}_{p}^{n^{\prime}})}<\varepsilon^{\prime},

    α,β,γ,δ(σαβγδρ)c2\alpha^{\prime},\beta^{\prime},\gamma^{\prime},\delta^{\prime}\geq(\sigma\alpha\beta\gamma\delta\rho)^{c_{2}}, and SS^{\prime} contains no nontrivial L-shaped configurations.

3. Additional preliminaries

In this section, we present some more preliminaries that were not needed for the outline of the proof of Theorem 1.2, but will be convenient to have for the proof itself. We begin with the notion of Cauchy–Schwarz complexity, first defined by Green and Tao in [14].

Definition 3.1 (Cauchy–Schwarz complexity).

Let ψ1,,ψd:(𝔽pn)r𝔽pn\psi_{1},\dots,\psi_{d}:(\mathbb{F}_{p}^{n})^{r}\to\mathbb{F}_{p}^{n} be a collection of linear forms in rr variables. We say that ψ1,,ψd\psi_{1},\dots,\psi_{d} has Cauchy–Schwarz complexity at most ss if, for every j[d]j\in[d], there exists a partition of {ψ1,,ψd}{ψj}\{\psi_{1},\dots,\psi_{d}\}\setminus\{\psi_{j}\} into at most s+1s+1 subsets such that ψj\psi_{j} is not contained in the linear span of any of the subsets.

The smallest ss such that {ψ1,,ψd}\{\psi_{1},\dots,\psi_{d}\} has Cauchy–Schwarz complexity at most ss is called the Cauchy–Schwarz complexity of {ψ1,,ψd}\{\psi_{1},\dots,\psi_{d}\}.

For example, four term arithmetic progressions,

x,x+y,x+2y,x+3y,x,x+y,x+2y,x+3y,

have Cauchy–Schwarz complexity 22.

Any system of linear forms of complexity at most ss can be shown to be controlled by the Us+1U^{s+1}-norm using repeated applications of the Cauchy–Schwarz inequality. In particular, carrying out the proof of the generalized von Neumann theorem of Green and Tao in [14] in the finite field model setting (where the technical details are much simpler) produces the following useful result.

Theorem 3.2.

Let ψ1,,ψd:(𝔽pn)r𝔽pn\psi_{1},\dots,\psi_{d}:(\mathbb{F}_{p}^{n})^{r}\to\mathbb{F}_{p}^{n} be a collection of linear forms in rr variables with Cauchy–Schwarz complexity at most ss. For any 11-bounded functions f1,,fd:𝔽pnf_{1},\dots,f_{d}:\mathbb{F}_{p}^{n}\to\mathbb{C}, we have

|𝔼x1,,xrj=1dfj(ψj(x1,,xr))|min1jdfjUs+1(𝔽pn).\left|\mathbb{E}_{x_{1},\dots,x_{r}}\prod_{j=1}^{d}f_{j}(\psi_{j}(x_{1},\dots,x_{r}))\right|\leq\min_{1\leq j\leq d}\|f_{j}\|_{U^{s+1}(\mathbb{F}_{p}^{n})}.

Further, if all of f1,,fdf_{1},\dots,f_{d} are supported on a set A𝔽pnA\subset\mathbb{F}_{p}^{n} of density α\alpha that satisfies AαUs+1(𝔽pn)<αε\|A-\alpha\|_{U^{s+1}(\mathbb{F}_{p}^{n})}<\alpha\varepsilon, then

|𝔼x1,,xrj=1dfj(ψj(x1,,xr))|αd1min1jdfjUs+1(𝔽pn)+Od,s(εΩd,s(1)).\left|\mathbb{E}_{x_{1},\dots,x_{r}}\prod_{j=1}^{d}f_{j}(\psi_{j}(x_{1},\dots,x_{r}))\right|\leq\alpha^{d-1}\min_{1\leq j\leq d}\|f_{j}\|_{U^{s+1}(\mathbb{F}_{p}^{n})}+O_{d,s}\left(\varepsilon^{\Omega_{d,s}(1)}\right).

We will use the following immediate corollary of Theorem 3.2 numerous times throughout the proof of Theorem 1.2.

Corollary 3.3.

Let ψ1,,ψd:(𝔽pn)r𝔽pn\psi_{1},\dots,\psi_{d}:(\mathbb{F}_{p}^{n})^{r}\to\mathbb{F}_{p}^{n} be a collection of linear forms in rr variables with Cauchy–Schwarz complexity at most ss. Suppose that f1,,fd:𝔽pnf_{1},\dots,f_{d}:\mathbb{F}_{p}^{n}\to\mathbb{C} are 11-bounded functions having average values α1,,αd\alpha_{1},\dots,\alpha_{d}, respectively, and that

fjαjUs+1(𝔽pn)εj\|f_{j}-\alpha_{j}\|_{U^{s+1}(\mathbb{F}_{p}^{n})}\leq\varepsilon_{j}

for all 1jd1\leq j\leq d. Then

|𝔼x1,,xrj=1dfj(ψj(x1,,xr))j=1dαj|dmax1jdεj.\left|\mathbb{E}_{x_{1},\dots,x_{r}}\prod_{j=1}^{d}f_{j}(\psi_{j}(x_{1},\dots,x_{r}))-\prod_{j=1}^{d}\alpha_{j}\right|\leq d\max_{1\leq j\leq d}\varepsilon_{j}.

We will also need the Gowers–Cauchy–Schwarz inequality.

Lemma 3.4 (Gowers–Cauchy–Schwarz inequality).

Let ss be a natural number, HH be an abelian group, and fω:Hf_{\omega}:H\to\mathbb{C} for every ω{0,1}s\omega\in\{0,1\}^{s}. We have

|𝔼x,h1,,hsHω{0,1}sfω(x+ω(h1,,hs))|ω{0,1}sfωUs(H).\left|\mathbb{E}_{x,h_{1},\dots,h_{s}\in H}\prod_{\omega\in\{0,1\}^{s}}f_{\omega}(x+\omega\cdot(h_{1},\dots,h_{s}))\right|\leq\prod_{\omega\in\{0,1\}^{s}}\|f_{\omega}\|_{U^{s}(H)}.

Next, we record the basic fact that a function on 𝔽pn\mathbb{F}_{p}^{n} with small U2U^{2}-norm has small average on affine subspaces of small codimension.

Lemma 3.5.

Let f:𝔽pnf:\mathbb{F}_{p}^{n}\to\mathbb{C} be a 11-bounded function satisfying fU2(𝔽pn)<ε\|f\|_{U^{2}(\mathbb{F}_{p}^{n})}<\varepsilon and w+V𝔽pnw+V\subset\mathbb{F}_{p}^{n} be an affine subspace of codimension dd. Then

|𝔼xw+Vf(x)|<pdε.\left|\mathbb{E}_{x\in w+V}f(x)\right|<p^{d}\varepsilon.
Proof.

The indicator function of VV can be written as

1pdξVep(ξx),\frac{1}{p^{d}}\sum_{\xi\in V^{\perp}}e_{p}(\xi\cdot x),

so we have that

|𝔼xf(xw)V(x)|1pdξV|𝔼xf(x)ep(ξx)|fU2(𝔽pn),\left|\mathbb{E}_{x}f(x-w)V(x)\right|\leq\frac{1}{p^{d}}\sum_{\xi\in V^{\perp}}\left|\mathbb{E}_{x}f(x)e_{p}\left(\xi\cdot x\right)\right|\leq\|f\|_{U^{2}(\mathbb{F}_{p}^{n})},

by the Gowers–Cauchy–Schwarz inequality. Since |V|=|𝔽pn|/pd|V|=|\mathbb{F}_{p}^{n}|/p^{d}, the desired result follows. ∎

The last lemma of this section will be used to analyze the various averages appearing in the proofs of Lemmas 2.32.4, and 2.5.

Lemma 3.6.

Let ψ1,,ψd𝔽p[x1,,xt,y]\psi_{1},\dots,\psi_{d}\in\mathbb{F}_{p}[x_{1},\dots,x_{t},y] be a collection of linear forms such that the coefficient of yy in each of ψ1,,ψd\psi_{1},\dots,\psi_{d} is nonzero, and F:(𝔽pn)t×𝔽pn[0,1]F:(\mathbb{F}_{p}^{n})^{t}\times\mathbb{F}_{p}^{n}\to[0,1] be a function of the form

F(𝐱,y)=j=1dfj(ψj(𝐱,y))F(\mathbf{x},y)=\prod_{j=1}^{d}f_{j}(\psi_{j}(\mathbf{x},y))

for some 11-bounded functions fj:𝔽pnf_{j}:\mathbb{F}_{p}^{n}\to\mathbb{C} with average value βj\beta_{j}, each satisfying fjβjUs(𝔽pn)<ε\|f_{j}-\beta_{j}\|_{U^{s}(\mathbb{F}_{p}^{n})}<\varepsilon. If the Cauchy–Schwarz complexity of the set of linear forms

(3.1) j=1d{ψj(𝐱,y),ψj(𝐱,y+h),ψj(𝐱,y+k),ψj(𝐱,y+h+k)}\bigcup_{j=1}^{d}\left\{\psi_{j}(\mathbf{x},y),\psi_{j}(\mathbf{x},y+h),\psi_{j}(\mathbf{x},y+k),\psi_{j}(\mathbf{x},y+h+k)\right\}

in the variables x1,,xt,y,h,kx_{1},\dots,x_{t},y,h,k, is at most s1s-1, then

(𝐱(𝔽pn)t:F(𝐱,)j=1dβjU2(𝔽pn)ε1/8)dε.\mathbb{P}\left(\mathbf{x}\in(\mathbb{F}_{p}^{n})^{t}:\left\|F(\mathbf{x},\cdot)-\prod_{j=1}^{d}\beta_{j}\right\|_{U^{2}(\mathbb{F}_{p}^{n})}\geq\varepsilon^{1/8}\right)\ll_{d}\sqrt{\varepsilon}.
Proof.

Set β:=j=1dβj\beta:=\prod_{j=1}^{d}\beta_{j}. Note that 𝔼𝐱(𝔽pn)tF(𝐱,)βU2(𝔽pn)4\mathbb{E}_{\mathbf{x}\in(\mathbb{F}_{p}^{n})^{t}}\|F(\mathbf{x},\cdot)-\beta\|_{U^{2}(\mathbb{F}_{p}^{n})}^{4} equals

ω{0,1}4(β)|ω|𝔼𝐱(𝔽pn)t𝔼y,h,kf1ω(𝐱,y)f2ω(𝐱,y+h)f3ω(𝐱,y+k)f4ω(𝐱,y+h+k),\sum_{\omega\in\{0,1\}^{4}}(-\beta)^{|\omega|}\mathbb{E}_{\mathbf{x}\in(\mathbb{F}_{p}^{n})^{t}}\mathbb{E}_{y,h,k}f_{1}^{\omega}(\mathbf{x},y)f_{2}^{\omega}(\mathbf{x},y+h)f_{3}^{\omega}(\mathbf{x},y+k)f_{4}^{\omega}(\mathbf{x},y+h+k),

where

fiω(𝐱,y)={1ωi=1F(𝐱,y)ωi=0f_{i}^{\omega}(\mathbf{x},y)=\begin{cases}1&\omega_{i}=1\\ F(\mathbf{x},y)&\omega_{i}=0\end{cases}

for each ω{0,1}4\omega\in\{0,1\}^{4} and 1i41\leq i\leq 4. Since (3.1) has Cauchy–Schwarz complexity at most s1s-1 by hypothesis, Corollary 3.3 implies that

𝔼𝐱(𝔽pn)t𝔼y,h,kf1ω(𝐱,y)f2ω(𝐱,y+h)f3ω(𝐱,y+k)f4ω(𝐱,y+h+k)=β4|ω|+Od(ε)\mathbb{E}_{\mathbf{x}\in(\mathbb{F}_{p}^{n})^{t}}\mathbb{E}_{y,h,k}f_{1}^{\omega}(\mathbf{x},y)f_{2}^{\omega}(\mathbf{x},y+h)f_{3}^{\omega}(\mathbf{x},y+k)f_{4}^{\omega}(\mathbf{x},y+h+k)=\beta^{4-|\omega|}+O_{d}(\varepsilon)

for every ω{0,1}4\omega\in\{0,1\}^{4}. Thus,

𝔼𝐱(𝔽pn)tF(𝐱,)βU2(𝔽pn)4dε\mathbb{E}_{\mathbf{x}\in(\mathbb{F}_{p}^{n})^{t}}\|F(\mathbf{x},\cdot)-\beta\|_{U^{2}(\mathbb{F}_{p}^{n})}^{4}\ll_{d}\varepsilon

Markov’s inequality then gives

(𝐱(𝔽pn)t:F(𝐱,)βU2(𝔽pn)r)dεr4\mathbb{P}(\mathbf{x}\in(\mathbb{F}_{p}^{n})^{t}:\|F(\mathbf{x},\cdot)-\beta\|_{U^{2}(\mathbb{F}_{p}^{n})}\geq r)\ll_{d}\frac{\varepsilon}{r^{4}}

for every r>0r>0. Taking r=ε1/8r=\varepsilon^{1/8} gives the conclusion of the lemma. ∎

4. Pseudorandomness of Φ\Phi

The main purpose of this section is to show that if ΦαρU2s+2(𝔽pn×𝔽pn)\|\Phi-\alpha\rho\|_{U^{2s+2}(\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n})} is small and Φ\Phi is a subset of the form

Φ={(x,y)A×𝔽pn:yu+Vx},\Phi=\left\{(x,y)\in A\times\mathbb{F}_{p}^{n}:y\in u+V_{x}\right\},

where each Vx𝐅pnV_{x}\leq\mathbf{F}_{p}^{n} is a subspace of density ρ\rho in 𝐅pn\mathbf{F}_{p}^{n} and A𝐅pnA\subset\mathbf{F}_{p}^{n} has density α\alpha in 𝐅pn\mathbf{F}_{p}^{n}, then, whenever ψ1,,ψr𝔽p[x1,,xm]\psi_{1},\dots,\psi_{r}\in\mathbb{F}_{p}[x_{1},\dots,x_{m}] is a collection of linear forms of Cauchy–Schwarz complexity at most ss and w1,,wr𝔽pnw_{1},\dots,w_{r}\in\mathbb{F}_{p}^{n}, the affine subspaces

{y𝔽pn:i=1rΦ(ψi(𝐱),y+wi)=1}\left\{y\in\mathbb{F}_{p}^{n}:\prod_{i=1}^{r}\Phi(\psi_{i}(\mathbf{x}),y+w_{i})=1\right\}

typically have maximum possible codimension. This allows us to transform the condition that Φ\Phi is U8(𝔽pn×𝔽pn)U^{8}(\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n})-pseudorandom into a more useful property for evaluating the various averages that arise in the proof of Theorem 1.2.

Lemma 4.1.

For each nonnegative integer ss and positive integer rr, there exist constants Cs,r,cs,r>0C_{s,r},c_{s,r}>0 such that the following holds. Let dd be a nonnegative integer, and set ρ:=pd\rho:=p^{-d}. Let δ>0\delta>0, A𝔽pnA\subset\mathbb{F}_{p}^{n} have density α\alpha, and Φ𝔽pn×𝔽pn\Phi\subset\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} be a set of the form

Φ={(x,y)A×𝔽pn:yu+Vx},\Phi=\left\{(x,y)\in A\times\mathbb{F}_{p}^{n}:y\in u+V_{x}\right\},

where each Vx𝔽pnV_{x}\leq\mathbb{F}_{p}^{n} is a subspace of codimension dd. Assume that

ΦαρU2s+2(𝔽pn×𝔽pn)<Cs,r(αδρ)cs,r.\|\Phi-\alpha\rho\|_{U^{2s+2}(\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n})}<C_{s,r}(\alpha\delta\rho)^{c_{s,r}}.

Let ψ1,,ψr𝔽p[x1,,xm]\psi_{1},\dots,\psi_{r}\in\mathbb{F}_{p}[x_{1},\dots,x_{m}] be a collection of linear forms of Cauchy–Schwarz complexity at most ss. Then, for all but at most a δ\delta-proportion of mm-tuples 𝐱(𝔽pn)m\mathbf{x}\in(\mathbb{F}_{p}^{n})^{m} for which ψ1(𝐱),,ψr(𝐱)A\psi_{1}(\mathbf{x}),\dots,\psi_{r}(\mathbf{x})\in A, we must have that

codim{y𝔽pn:i=1rΦ(ψi(𝐱),y+wi)=1}=rd\operatorname{codim}{\left\{y\in\mathbb{F}_{p}^{n}:\prod_{i=1}^{r}\Phi(\psi_{i}(\mathbf{x}),y+w_{i})=1\right\}}=rd

for all w1,,wr𝔽pnw_{1},\dots,w_{r}\in\mathbb{F}_{p}^{n}.

We begin by showing that if Φ\Phi is pseudorandom with respect to the Us(𝔽pn×𝔽pn)U^{s}(\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n})-norm, then AA is pseudorandom with respect to the Us(𝔽pn)U^{s}(\mathbb{F}_{p}^{n})-norm. This result will also be useful at a few other points in the proof of Theorem 1.2.

Lemma 4.2.

Let dd be a nonnegative integer, and set ρ:=pd\rho:=p^{-d}. Let A𝔽pnA\subset\mathbb{F}_{p}^{n} have density α\alpha and Φ𝔽pn×𝔽pn\Phi\subset\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} be of the form

Φ={(x,y)A×𝔽pn:yu+Vx},\Phi=\left\{(x,y)\in A\times\mathbb{F}_{p}^{n}:y\in u+V_{x}\right\},

where each VxV_{x} is a subspace of 𝔽pn\mathbb{F}_{p}^{n} of codimension dd. Then, for every natural number ss, we have

AαUs(𝔽pn)1ρΦαρUs(𝔽pn×𝔽pn).\|A-\alpha\|_{U^{s}(\mathbb{F}_{p}^{n})}\leq\frac{1}{\rho}\|\Phi-\alpha\rho\|_{U^{s}(\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n})}.
Proof.

We write

AαUs(𝔽pn)2s=𝔼x,h1,,hsω{0,1}s(Aα)(x+ω(h1,,hs))\|A-\alpha\|_{U^{s}(\mathbb{F}_{p}^{n})}^{2^{s}}=\mathbb{E}_{x,h_{1},\dots,h_{s}}\prod_{\omega\in\{0,1\}^{s}}(A-\alpha)(x+\omega\cdot(h_{1},\dots,h_{s}))

and then, for each ω{0,1}s\omega\in\{0,1\}^{s}, insert the identity

(Aα)(x+ω(h1,,hs))=1ρ𝔼kω(Φαρ)(x+ω(h1,,hs),kω)(A-\alpha)(x+\omega\cdot(h_{1},\dots,h_{s}))=\frac{1}{\rho}\mathbb{E}_{k_{\omega}}(\Phi-\alpha\rho)(x+\omega\cdot(h_{1},\dots,h_{s}),k_{\omega})

to get that AαUs(𝔽pn)2s\|A-\alpha\|_{U^{s}(\mathbb{F}_{p}^{n})}^{2^{s}} equals

1ρ2s𝔼x,h1,,hs𝔼kω𝔽pnω{0,1}sω{0,1}s(Φαρ)(x+ω(h1,,hs),kω).\frac{1}{\rho^{2^{s}}}\mathbb{E}_{x,h_{1},\dots,h_{s}}\mathbb{E}_{\begin{subarray}{c}k_{\omega}\in\mathbb{F}_{p}^{n}\\ \omega\in\{0,1\}^{s}\end{subarray}}\prod_{\omega\in\{0,1\}^{s}}(\Phi-\alpha\rho)(x+\omega\cdot(h_{1},\dots,h_{s}),k_{\omega}).

We can average the above quantity over y,1,,sy,\ell_{1},\dots,\ell_{s} and make the change of variables kωkω+y+ω(1,,s)k_{\omega}\mapsto k_{\omega}+y+\omega\cdot(\ell_{1},\dots,\ell_{s}) to get that it equals

(4.1) 1ρ2s𝔼kω𝔽pnω{0,1}s𝔼x,y,h1,,hs,1,,sω{0,1}s(Φαρ)((x,kω+y)+ω((h1,1),,(hs,s))).\frac{1}{\rho^{2^{s}}}\mathbb{E}_{\begin{subarray}{c}k_{\omega}\in\mathbb{F}_{p}^{n}\\ \omega\in\{0,1\}^{s}\end{subarray}}\mathbb{E}_{x,y,h_{1},\dots,h_{s},\ell_{1},\dots,\ell_{s}}\prod_{\omega\in\{0,1\}^{s}}(\Phi-\alpha\rho)((x,k_{\omega}+y)+\omega\cdot((h_{1},\ell_{1}),\dots,(h_{s},\ell_{s}))).

Applying the Gowers–Cauchy–Schwarz inequality bounds (4.1) above by

1ρ2s𝔼kω𝔽pnω{0,1}sω{0,1}s(Φαρ)(,kω+)Us(𝔽pn×𝔽pn)=1ρ2sΦαρUs(𝔽pn×𝔽pn)2s,\frac{1}{\rho^{2^{s}}}\mathbb{E}_{\begin{subarray}{c}k_{\omega}\in\mathbb{F}_{p}^{n}\\ \omega\in\{0,1\}^{s}\end{subarray}}\prod_{\omega\in\{0,1\}^{s}}\|(\Phi-\alpha\rho)(\cdot,k_{\omega}+\cdot)\|_{U^{s}(\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n})}=\frac{1}{\rho^{2^{s}}}\|\Phi-\alpha\rho\|^{2^{s}}_{U^{s}(\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n})},

which gives us the conclusion of the lemma. ∎

To prove Lemma 4.1, we will need the notion of an approximate polynomial of bounded degree, which we define using the additive discrete difference operator \partial. For ϕ:HH\phi:H\to H and hHh\in H, define hϕ:HH\partial_{h}\phi:H\to H by

hϕ(x):=ϕ(x)ϕ(x+h),\partial_{h}\phi(x):=\phi(x)-\phi(x+h),

and, for h1,,hsHh_{1},\dots,h_{s}\in H, the ss-fold additive difference operator h1,,hs\partial_{h_{1},\dots,h_{s}} by

h1,,hsf:=h1hsf.\partial_{h_{1},\dots,h_{s}}f:=\partial_{h_{1}}\cdots\partial_{h_{s}}f.
Definition 4.3.

Let HH be an abelian group, AHA\subset H, and ϕ:AH\phi:A\to H. We say that ϕ\phi is an ε\varepsilon-approximate polynomial of degree at most s1s-1 on AA if

h1,,hsϕ(x)=0\partial_{h_{1},\dots,h_{s}}\phi(x)=0

for at least an ε\varepsilon-proportion of (s+1)(s+1)-tuples (x,h1,,hs)Hs+1(x,h_{1},\dots,h_{s})\in H^{s+1} for which x+ω(h1,,hs)Ax+\omega\cdot(h_{1},\dots,h_{s})\in A for all ω{0,1}s\omega\in\{0,1\}^{s}.

We will also need the following result, which is the key combinatorial input into the proof of Lemma 4.1.

Lemma 4.4.

For each nonnegative integer ss, there exist constants Cs,cs>0C_{s},c_{s}>0 such that the following holds. Let A𝔽pnA\subset\mathbb{F}_{p}^{n} have density α\alpha, with

AαU2s+2(𝔽pn)<Cs(αδ)cs\|A-\alpha\|_{U^{2s+2}(\mathbb{F}_{p}^{n})}<C_{s}(\alpha\delta)^{c_{s}}

and ϕ:A𝔽pn\phi:A\to\mathbb{F}_{p}^{n} be a δ\delta-approximate polynomial of degree at most ss on AA. Then, for at least a Ωs(δOs(1))\Omega_{s}(\delta^{O_{s}(1)})-proportion of (2s+2)(2s+2)-dimensional parallelopipeds

(x+ω(h1,,h2s+2))ω{0,1}2s+2(x+\omega\cdot(h_{1},\dots,h_{2s+2}))_{\omega\in\{0,1\}^{2s+2}}

in A22s+2A^{2^{2s+2}}, the derivative of ϕ\phi on the (2s+1)(2s+1)-dimensional face (x+ω(h1,,h2s+2))ω{0,1}2s+2ωi=ϵ(x+\omega\cdot(h_{1},\dots,h_{2s+2}))_{\begin{subarray}{c}\omega\in\{0,1\}^{2s+2}\\ \omega_{i}=\epsilon\end{subarray}},

ω{0,1}2s+2ωi=ϵ(1)|ω|ϕ(x+ω(h1,,h2s+2)),\sum_{\begin{subarray}{c}\omega\in\{0,1\}^{2s+2}\\ \omega_{i}=\epsilon\end{subarray}}(-1)^{|\omega|}\phi(x+\omega\cdot(h_{1},\dots,h_{2s+2})),

vanishes for all 1i2s+21\leq i\leq 2s+2 and ϵ=0,1\epsilon=0,1.

Proof.

We proceed by induction on ss, beginning with the case s=0s=0. If ϕ\phi is a δ\delta-approximate polynomial of degree at most 0 on AA, then 𝔼x,yA1ϕ(x)=ϕ(y)δ\mathbb{E}_{x,y\in A}1_{\phi(x)=\phi(y)}\geq\delta, so that, by the pigeonhole principle, there exists some z𝔽pnz\in\mathbb{F}_{p}^{n} for which μA({xA:ϕ(x)=z})δ\mu_{A}\left(\left\{x\in A:\phi(x)=z\right\}\right)\geq\delta. Set X:={xA:ϕ(x)=z}X:=\{x\in A:\phi(x)=z\}, and consider the set of quadruples

X:={(x,x+h,x+k,x+h+k)A4:x,x+h,x+k,x+h+kX}.X^{\prime}:=\left\{(x,x+h,x+k,x+h+k)\in A^{4}:x,x+h,x+k,x+h+k\in X\right\}.

Note that if (x,x+h,x+k,x+h+k)X(x,x+h,x+k,x+h+k)\in X^{\prime}, then

ϕ(x)=ϕ(x+h)=ϕ(x+k)=ϕ(x+h+k)=z,\phi(x)=\phi(x+h)=\phi(x+k)=\phi(x+h+k)=z,

so certainly the derivatives

ϕ(x)ϕ(x+h),ϕ(x)ϕ(x+k),ϕ(x+h)ϕ(x+h+k), and ϕ(x+k)ϕ(x+h+k)\phi(x)-\phi(x+h),\phi(x)-\phi(x+k),\phi(x+h)-\phi(x+h+k),\text{ and }\phi(x+k)-\phi(x+h+k)

of ϕ\phi on each of the 11-dimensional faces of the parallelopiped (x,x+h,x+k,x+h+k)(x,x+h,x+k,x+h+k) vanish. Since

αδXU1(𝔽pn)XU2(𝔽pn)=(|X|p3n)1/4,\alpha\delta\leq\|X\|_{U^{1}(\mathbb{F}_{p}^{n})}\leq\|X\|_{U^{2}(\mathbb{F}_{p}^{n})}=\left(\frac{|X^{\prime}|}{p^{3n}}\right)^{1/4},

we must have |X|(αδ)4p3n|X^{\prime}|\geq(\alpha\delta)^{4}p^{3n}. Taking c0=8c_{0}=8, the total number of quadruples (x,x+h,x+k,x+h+k)(x,x+h,x+k,x+h+k) in A4A^{4} is (α4+O(C0α8))p3n(\alpha^{4}+O(C_{0}\alpha^{8}))p^{3n} by Corollary 3.3, which means that XX^{\prime} consists of at least a δ4/2\delta^{4}/2-proportion of parallelograms (x,x+h,x+k,x+h+k)(x,x+h,x+k,x+h+k) in A4A^{4} if C0C_{0} is chosen small enough. Thus, for at least a δ4/2\delta^{4}/2-proportion of parallelograms (x,x+h,x+k,x+h+k)(x,x+h,x+k,x+h+k) in A4A^{4}, the derivative of ϕ\phi on each 11-dimensional face vanishes, as desired.

Now suppose that the result holds for a general degree s10s-1\geq 0, and let ϕ\phi be a δ\delta-approximate polynomial of degree at most ss on AA. By Corollary 3.3,

𝔼h𝔽pnΔhAα2U2s(𝔽pn)22ssCs(αδ)cs,\mathbb{E}_{h\in\mathbb{F}_{p}^{n}}\|\Delta_{h}A-\alpha^{2}\|_{U^{2s}(\mathbb{F}_{p}^{n})}^{2^{2s}}\ll_{s}C_{s}(\alpha\delta)^{c_{s}},

so that, as long as CsC_{s} is sufficiently small and csc_{s} is sufficiently large, it follows from Markov’s inequality that

ΔhAα2U2s(𝔽pn)<Cs1(αδ/2)2cs12,\|\Delta_{h}A-\alpha^{2}\|_{U^{2s}(\mathbb{F}_{p}^{n})}<\frac{C_{s-1}(\alpha\delta/2)^{2c_{s-1}}}{2},

and thus

|μ𝔽pn(A(Ah))α2|<Cs1(αδ/2)2cs12|\mu_{\mathbb{F}_{p}^{n}}(A\cap(A-h))-\alpha^{2}|<\frac{C_{s-1}(\alpha\delta/2)^{2c_{s-1}}}{2}

as well, for all but a O(δ2)O(\delta^{2})-proportion of h𝔽pnh\in\mathbb{F}_{p}^{n} . Thus, for at least a Ω(δ)\Omega(\delta)-proportion of hs+1𝔽pnh_{s+1}\in\mathbb{F}_{p}^{n}, we have Δhs+1Aα2U2s(𝔽pn)<Cs1(αδ/2)2cs1/2\|\Delta_{h_{s+1}}A-\alpha^{2}\|_{U^{2s}(\mathbb{F}_{p}^{n})}<C_{s-1}(\alpha\delta/2)^{2c_{s-1}}/2, |μ𝔽pn(A(Ahs+1))α2|<Cs1(αδ/2)2cs1/2|\mu_{\mathbb{F}_{p}^{n}}(A\cap(A-h_{s+1}))-\alpha^{2}|<C_{s-1}(\alpha\delta/2)^{2c_{s-1}}/2, and that the function hs+1ϕ\partial_{h_{s+1}}\phi is a O(δ)O(\delta)-approximate polynomial of degree at most s1s-1 on A(Ahs+1)A\cap(A-h_{s+1}). Denoting the set of such hs+1h_{s+1} by HH, so that μ𝔽pn(H)δ\mu_{\mathbb{F}_{p}^{n}}(H)\gg\delta, the induction hypothesis then says that, for each hHh\in H, there are at least a Ωs(δOs(1))\Omega_{s}(\delta^{O_{s}(1)})-proportion of 2s2s-dimensional parallelopipeds (x+ω(h1,,h2s))ω{0,1}2s(x+\omega\cdot(h_{1},\dots,h_{2s}))_{\omega\in\{0,1\}^{2s}} in (A(Ah))22s(A\cap(A-h))^{2^{2s}} for which the derivative of hϕ\partial_{h}\phi on each (2s1)(2s-1)-dimensional face vanishes.

Summing over all hHh\in H, it follows that, for at least a Ωs(δOs(1))\Omega_{s}(\delta^{O_{s}(1)})-proportion of (2s+2)(2s+2)-tuples (x,y,h1,,h2s)(x,y,h_{1},\dots,h_{2s}) for which (x+ω(h1,,h2s))ω{0,1}2s(x+\omega\cdot(h_{1},\dots,h_{2s}))_{\omega\in\{0,1\}^{2s}} and (y+ω(h1,,h2s))ω{0,1}2s(y+\omega\cdot(h_{1},\dots,h_{2s}))_{\omega\in\{0,1\}^{2s}} are both in A22sA^{2^{2s}}, one has

h1,,hi^,,h2sϕ(x+ϵhi)=h1,,hi^,,h2sϕ(y+ϵhi)\partial_{h_{1},\dots,\widehat{h_{i}},\dots,h_{2s}}\phi(x+\epsilon h_{i})=\partial_{h_{1},\dots,\widehat{h_{i}},\dots,h_{2s}}\phi(y+\epsilon h_{i})

for all i=1,,2si=1,\dots,2s and ϵ=0,1\epsilon=0,1. By Corollary 3.3,

𝔼h1,,h2sΔh1,,h2sAα22sU1(𝔽pn)2sCs(αδ)cs,\mathbb{E}_{h_{1},\dots,h_{2s}}\|\Delta_{h_{1},\dots,h_{2s}}A-\alpha^{2^{2s}}\|_{U^{1}(\mathbb{F}_{p}^{n})}^{2}\ll_{s}C_{s}(\alpha\delta)^{c_{s}},

and so, by Markov’s inequality,

(4.2) μ𝔽pn(ω{0,1}2s[Aω(h1,,h2s)])=α22s+O([Cs(αδ)cs]Ω(1))\mu_{\mathbb{F}_{p}^{n}}\left(\bigcap_{\omega\in\{0,1\}^{2s}}[A-\omega\cdot(h_{1},\dots,h_{2s})]\right)=\alpha^{2^{2s}}+O\left([C_{s}(\alpha\delta)^{c_{s}}]^{\Omega(1)}\right)

for all but a O([Cs(αδ)cs]Ω(1))O([C_{s}(\alpha\delta)^{c_{s}}]^{\Omega(1)})-proportion of (h1,,h2s)(h_{1},\dots,h_{2s}) in (𝔽pn)2s(\mathbb{F}_{p}^{n})^{2s}. By taking CsC_{s} small enough and csc_{s} large enough, there are therefore at least a Ωs(δOs(1))\Omega_{s}(\delta^{O_{s}(1)})-proportion of 2s2s-tuples (h1,,h2s)(h_{1},\dots,h_{2s}) in (𝔽pn)2s(\mathbb{F}_{p}^{n})^{2s} for which (4.2) holds and, for at least a Ωs(δOs(1))\Omega_{s}(\delta^{O_{s}(1)})-proportion of pairs (x,y)A2(x,y)\in A^{2} such that (x+ω(h1,,h2s))ω{0,1}2s(x+\omega\cdot(h_{1},\dots,h_{2s}))_{\omega\in\{0,1\}^{2s}} and (y+ω(h1,,h2s))ω{0,1}2s(y+\omega\cdot(h_{1},\dots,h_{2s}))_{\omega\in\{0,1\}^{2s}} are both in A22sA^{2^{2s}}, one also has

h1,,hi^,,h2sϕ(x+ϵhi)=h1,,hi^,,h2sϕ(y+ϵhi)\partial_{h_{1},\dots,\widehat{h_{i}},\dots,h_{2s}}\phi(x+\epsilon h_{i})=\partial_{h_{1},\dots,\widehat{h_{i}},\dots,h_{2s}}\phi(y+\epsilon h_{i})

for all i=1,,2si=1,\dots,2s and ϵ=0,1\epsilon=0,1. For each such 2s2s-tuple 𝐡\mathbf{h}, it follows from the pigeonhole principle that there exists a y𝐡y_{\mathbf{h}} in the set

A𝐡:=ω{0,1}2s(Aω(h1,,h2s))A_{\mathbf{h}}:=\bigcap_{\omega\in\{0,1\}^{2s}}(A-\omega\cdot(h_{1},\dots,h_{2s}))

such that, for at least a Ωs(δOs(1))\Omega_{s}(\delta^{O_{s}(1)})-proportion of xA𝐡x\in A_{\mathbf{h}}, one has

h1,,hi^,,h2sϕ(x+ϵhi)=h1,,hi^,,h2sϕ(y𝐡+ϵhi)\partial_{h_{1},\dots,\widehat{h_{i}},\dots,h_{2s}}\phi(x+\epsilon h_{i})=\partial_{h_{1},\dots,\widehat{h_{i}},\dots,h_{2s}}\phi(y_{\mathbf{h}}+\epsilon h_{i})

for all i=1,,2si=1,\dots,2s and ϵ=0,1\epsilon=0,1.

Now set vi,ϵ,𝐡:=h1,,hi^,,h2sϕ(y𝐡+ϵhi)v_{i,\epsilon,\mathbf{h}}:=\partial_{h_{1},\dots,\widehat{h_{i}},\dots,h_{2s}}\phi(y_{\mathbf{h}}+\epsilon h_{i}),

X𝐡:={xA𝐡:h1,,hi^,,h2sϕ(x+ϵhi)=vi,ϵ,𝐡 for all i=1,,2s and ϵ=0,1},X_{\mathbf{h}}:=\left\{x\in A_{\mathbf{h}}:\partial_{h_{1},\dots,\widehat{h_{i}},\dots,h_{2s}}\phi(x+\epsilon h_{i})=v_{i,\epsilon,\mathbf{h}}\text{ for all }i=1,\dots,2s\text{ and }\epsilon=0,1\right\},

so that μA𝐡(X𝐡)sδOs(1)\mu_{A_{\mathbf{h}}}(X_{\mathbf{h}})\gg_{s}\delta^{O_{s}(1)}, and

X𝐡:={(x,x+k,x+k,x+k+k)A𝐡4:x,x+k,x+k,x+k+kX𝐡}.X_{\mathbf{h}}^{\prime}:=\left\{(x,x+k,x+k^{\prime},x+k+k^{\prime})\in A_{\mathbf{h}}^{4}:x,x+k,x+k^{\prime},x+k+k^{\prime}\in X_{\mathbf{h}}\right\}.

Note that (x,x+k,x+k,x+k+k)X𝐡(x,x+k,x+k^{\prime},x+k+k^{\prime})\in X^{\prime}_{\mathbf{h}} if and only if

h1,,hi^,,h2sϕ(x+ϵhi+ω(k,k))=vi,ϵ,𝐡\partial_{h_{1},\dots,\widehat{h_{i}},\dots,h_{2s}}\phi(x+\epsilon h_{i}+\omega^{\prime}\cdot(k,k^{\prime}))=v_{i,\epsilon,\mathbf{h}}

for all i=1,,2si=1,\dots,2s, ϵ=0,1\epsilon=0,1, and ω{0,1}2\omega^{\prime}\in\{0,1\}^{2}. Thus, whenever (x,x+k,x+k,x+k+k)X𝐡(x,x+k,x+k^{\prime},x+k+k^{\prime})\in X^{\prime}_{\mathbf{h}}, we have

h1,,h2s,kϕ(x)=h1,,h2s,kϕ(x)=h1,,h2s,kϕ(x+k)\displaystyle\partial_{h_{1},\dots,h_{2s},k}\phi(x)=\partial_{h_{1},\dots,h_{2s},k^{\prime}}\phi(x)=\partial_{h_{1},\dots,h_{2s},k}\phi(x+k^{\prime}) =h1,,h2s,kϕ(x+k)\displaystyle=\partial_{h_{1},\dots,h_{2s},k^{\prime}}\phi(x+k)
=v1,0,𝐡v1,1,𝐡(v1,0,𝐡v1,1,𝐡)\displaystyle=v_{1,0,\mathbf{h}}-v_{1,1,\mathbf{h}}-(v_{1,0,\mathbf{h}}-v_{1,1,\mathbf{h}})
=0\displaystyle=0

and

h1,,hi^,,h2s,k,kϕ(x+ϵhi)=vi,ε,𝐡vi,ε,𝐡vi,ε,𝐡+vi,ε,𝐡=0\partial_{h_{1},\dots,\widehat{h_{i}},\dots,h_{2s},k,k^{\prime}}\phi(x+\epsilon h_{i})=v_{i,\varepsilon,\mathbf{h}}-v_{i,\varepsilon,\mathbf{h}}-v_{i,\varepsilon,\mathbf{h}}+v_{i,\varepsilon,\mathbf{h}}=0

for all i=1,,2si=1,\dots,2s and ϵ=0,1\epsilon=0,1. That is, the derivative of ϕ\phi vanishes on all (2s+1)(2s+1)-dimensional faces of the (2s+2)(2s+2)-dimensional parallelopiped (x+ω(h1,,h2s,k,k))ω{0,1}2s+2(x+\omega\cdot(h_{1},\dots,h_{2s},k,k^{\prime}))_{\omega\in\{0,1\}^{2s+2}}.

As in the s=0s=0 case,

δOs(1)μ𝔽pn(A𝐡)sX𝐡U1(𝔽pn)X𝐡U2(𝔽pn)=(#X𝐡p3n)1/4,\delta^{O_{s}(1)}\mu_{\mathbb{F}_{p}^{n}}(A_{\mathbf{h}})\ll_{s}\|X_{\mathbf{h}}\|_{U^{1}(\mathbb{F}_{p}^{n})}\leq\|X_{\mathbf{h}}\|_{U^{2}(\mathbb{F}_{p}^{n})}=\left(\frac{\#X^{\prime}_{\mathbf{h}}}{p^{3n}}\right)^{1/4},

so that

#X𝐡sδOs(1)μ𝔽pn(A𝐡)4p3n\#X^{\prime}_{\mathbf{h}}\gg_{s}\delta^{O_{s}(1)}\mu_{\mathbb{F}_{p}^{n}}(A_{\mathbf{h}})^{4}p^{3n}

for at least a Ωs(δOs(1))\Omega_{s}(\delta^{O_{s}(1)})-proportion of 2s2s-tuples 𝐡\mathbf{h}. Each ordered quadruple (x,𝐡,k,k)(x,\mathbf{h},k,k^{\prime}) for which (x,x+k,x+k,x+k+k)X𝐡(x,x+k,x+k^{\prime},x+k+k^{\prime})\in X_{\mathbf{h}}^{\prime} corresponds to a unique (2s+2)(2s+2)-dimensional parallelopiped

P(x,𝐡,k,k)=(x+ω(h1,,h2s,k,k))ω{0,1}2s+2P(x,\mathbf{h},k,k^{\prime})=(x+\omega\cdot(h_{1},\dots,h_{2s},k,k^{\prime}))_{\omega\in\{0,1\}^{2s+2}}

in A2s+2A^{2s+2}. Thus

#{P(x,𝐡,k,k):𝐡(𝔽pn)2s and\displaystyle\#\{P(x,\mathbf{h},k,k^{\prime}):\mathbf{h}\in(\mathbb{F}_{p}^{n})^{2s}\text{ and } (x,x+k,x+k,x+k+k)X𝐡}\displaystyle(x,x+k,x+k^{\prime},x+k+k^{\prime})\in X_{\mathbf{h}}^{\prime}\}
sδOs(1)(α22s+2+O([Cs(αδ)cs]Ω(1)))p(2s+3)n.\displaystyle\gg_{s}\delta^{O_{s}(1)}\left(\alpha^{2^{2s+2}}+O\left([C_{s}(\alpha\delta)^{c_{s}}]^{\Omega(1)}\right)\right)p^{(2s+3)n}.

In comparison, the number of (2s+2)(2s+2)-dimensional parallelopipeds in AA is

(α22s+2+O(Cs(αδ)cs))p(2s+3)n\left(\alpha^{2^{2s+2}}+O\left(C_{s}(\alpha\delta)^{c_{s}}\right)\right)p^{(2s+3)n}

by Corollary 3.3. The conclusion of the lemma now follows as long as CsC_{s} is sufficiently small and csc_{s} is sufficiently large. ∎

With a bit more work, it is possible to prove a version of Lemma 4.4 with (2s+2)(2s+2)-dimensional parallelopipeds replaced by (s+2)(s+2)-dimensional parallelopipeds (which is optimal), and thus a version of Lemma 4.1 with the U2s+2U^{2s+2}-norm replaced by the Us+2U^{s+2}-norm, but this would make a negligible difference in Theorem 1.2.

Now we can prove Lemma 4.1.

Proof of Lemma 4.1.

We proceed by induction on rr and ss, beginning with the r=1r=1, s=0s=0 case111Note that if a system of rr linear forms has finite Cauchy–Schwarz complexity, then it has Cauchy–Schwarz complexity at most r1r-1.. Since codim{y𝔽pn:Φ(x,y)=1}=d\operatorname{codim}\{y\in\mathbb{F}_{p}^{n}:\Phi(x,y)=1\}=d for all xAx\in A, certainly

codim{y𝔽pn:Φ(ψ1(𝐱),y+w1)=1}=codim({y𝔽pn:Φ(ψ1(𝐱),y)=1}w1)=d\operatorname{codim}\{y\in\mathbb{F}_{p}^{n}:\Phi(\psi_{1}(\mathbf{x}),y+w_{1})=1\}=\operatorname{codim}\left(\{y\in\mathbb{F}_{p}^{n}:\Phi(\psi_{1}(\mathbf{x}),y)=1\}-w_{1}\right)=d

for all 𝐱(𝔽pn)m\mathbf{x}\in(\mathbb{F}_{p}^{n})^{m} for which ψ1(𝐱)A\psi_{1}(\mathbf{x})\in A, and this case follows trivially without even needing the assumption that ΦαρU2(𝔽pn×𝔽pn)\|\Phi-\alpha\rho\|_{U^{2}(\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n})} is small.

Now let r2r\geq 2 or s1s\geq 1, and assume that the result holds for all pairs of integers (r,s)(r^{\prime},s^{\prime}) satisfying

  1. (1)

    0r<r0\leq r^{\prime}<r and 1ss1\leq s^{\prime}\leq s or

  2. (2)

    1s<s1\leq s^{\prime}<s,

and let CC^{\prime} be at most the minimum of Cr,sC_{r^{\prime},s^{\prime}} and cc^{\prime} be at least the maximum of cr,sc_{r^{\prime},s^{\prime}} over all such pairs with r<max(r,2s+1)r^{\prime}<\max\left(r,2^{s+1}\right). As long as ΦαρU2s+2(𝔽pn×𝔽pn)<C(αδρ2r/2)c2r\|\Phi-\alpha\rho\|_{U^{2s+2}(\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n})}<C^{\prime}(\alpha\delta\rho^{2r}/2)^{c^{\prime}2^{r}}, it follows from the induction hypothesis that for all but a O(δ)O(\delta)-proportion of 𝐱(𝔽pn)m\mathbf{x}\in(\mathbb{F}_{p}^{n})^{m} for which ψ1(𝐱),,ψr(𝐱)A\psi_{1}(\mathbf{x}),\dots,\psi_{r}(\mathbf{x})\in A, we must have

𝔼yi=1r(Φρ)(ψi(𝐱),y+wi)=𝔼yi=1rΦ(ψi(𝐱),y+wi)ρr\mathbb{E}_{y}\prod_{i=1}^{r}(\Phi-\rho)(\psi_{i}(\mathbf{x}),y+w_{i})=\mathbb{E}_{y}\prod_{i=1}^{r}\Phi(\psi_{i}(\mathbf{x}),y+w_{i})-\rho^{r}

for all w1,,wr𝔽pnw_{1},\dots,w_{r}\in\mathbb{F}_{p}^{n}. If the codimension of some {y𝔽pn:i=1rΦ(ψi(𝐱),y+wi)=1}\{y\in\mathbb{F}_{p}^{n}:\prod_{i=1}^{r}\Phi(\psi_{i}(\mathbf{x}),y+w_{i})=1\} is not rdrd for one of these typical 𝐱\mathbf{x}, then it is either nn or at most rd1rd-1, which means that

(4.3) |𝔼yi=1r(Φρ)(ψi(𝐱),y+wi)|ρr2\left|\mathbb{E}_{y}\prod_{i=1}^{r}(\Phi-\rho)(\psi_{i}(\mathbf{x}),y+w_{i})\right|\geq\frac{\rho^{r}}{2}

in either case, since p2p\geq 2. Squaring both sides of (4.3), multiplying by i=1rA(ψi(𝐱))\prod_{i=1}^{r}A(\psi_{i}(\mathbf{x})), averaging over all 𝐱(𝔽pn)m\mathbf{x}\in(\mathbb{F}_{p}^{n})^{m}, swapping the order of summation, and applying Lemma 4.2 (to deduce the uniformity of AA) and Theorem 3.2 yields

𝔼y,z(ΦρA)(,y)(ΦρA)(,z)Us+1(𝔽pn)δρ2r(α+Os,r((C)Ωs(1)αc1)).\mathbb{E}_{y,z}\|(\Phi-\rho A)(\cdot,y)(\Phi-\rho A)(\cdot,z)\|_{U^{s+1}(\mathbb{F}_{p}^{n})}\gg\delta\rho^{2r}\left(\alpha+O_{s,r}\left((C^{\prime})^{\Omega_{s}(1)}\alpha^{c^{\prime}-1}\right)\right).

By Hölder’s inequality, we then have

𝔼x,h1,,hs+1|𝔼yΔ(h1,0),,(hs+1,0)(ΦρA)(x,y)|2s(δρ2r)2s+1(α2s+1+Os,r((C)Ωs(1)αc1)).\mathbb{E}_{x,h_{1},\dots,h_{s+1}}\left|\mathbb{E}_{y}\Delta_{(h_{1},0),\dots,(h_{s+1},0)}(\Phi-\rho A)(x,y)\right|^{2}\gg_{s}\left(\delta\rho^{2r}\right)^{2^{s+1}}\left(\alpha^{2^{s+1}}+O_{s,r}\left((C^{\prime})^{\Omega_{s}(1)}\alpha^{c^{\prime}-1}\right)\right).

It follows from this, the induction hypothesis, our assumption that ΦαρU2s+2(𝔽pn×𝔽pn)<C(αδρ2r/2)c2r\|\Phi-\alpha\rho\|_{U^{2s+2}(\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n})}<C^{\prime}(\alpha\delta\rho^{2r}/2)^{c^{\prime}2^{r}}, and Lemma 4.2 that

𝔼x,h1,,hs+1|𝔼yΔ(h1,0),,(hs+1,0)Φ(x,y)ρ2s+1A(x)|2s(δρ2r)2s+1(α2s+1+Os,r((C)Ωs(1)αc1)),\mathbb{E}_{x,h_{1},\dots,h_{s+1}}\left|\mathbb{E}_{y}\Delta_{(h_{1},0),\dots,(h_{s+1},0)}\Phi(x,y)-\rho^{2^{s+1}}A(x)\right|^{2}\gg_{s}(\delta\rho^{2r})^{2^{s+1}}\left(\alpha^{2^{s+1}}+O_{s,r}\left((C^{\prime})^{\Omega_{s}(1)}\alpha^{c^{\prime}-1}\right)\right),

since the Cauchy–Schwarz complexity of any proper subset of

{x+ω(h1,,hs+1):ω{0,1}s+1}\left\{x+\omega\cdot(h_{1},\dots,h_{s+1}):\omega\in\{0,1\}^{s+1}\right\}

is at most s1s-1.

Thus, by taking CC^{\prime} sufficiently small and cc^{\prime} sufficiently large, we get that

(4.4) codim{y𝔽pn:Δ(h1,0),,(hs+1,0)Φ(x,y)=1}2s+1d\operatorname{codim}\left\{y\in\mathbb{F}_{p}^{n}:\Delta_{(h_{1},0),\dots,(h_{s+1},0)}\Phi(x,y)=1\right\}\neq 2^{s+1}d

for at least a Ωs((δρ)Os(1))\Omega_{s}((\delta\rho)^{O_{s}(1)})-proportion of (s+2)(s+2)-tuples (x,h1,,hs+1)(𝔽pn)s+2(x,h_{1},\dots,h_{s+1})\in(\mathbb{F}_{p}^{n})^{s+2} for which (x+ω(h1,,hs+1))ω{0,1}s+1A2s+1(x+\omega\cdot(h_{1},\dots,h_{s+1}))_{\omega\in\{0,1\}^{s+1}}\in A^{2^{s+1}}. The condition (4.4) implies that, for each such (x,h1,,hs+1)(x,h_{1},\dots,h_{s+1}), there exist vectors vx,𝐡,ωVx+ω𝐡v_{x,\mathbf{h},\omega}\in V^{\perp}_{x+\omega\cdot\mathbf{h}}, ω{0,1}s+1\omega\in\{0,1\}^{s+1}, not all of which are zero, such that

ω{0,1}s+1vx,𝐡,ω=0.\sum_{\omega\in\{0,1\}^{s+1}}v_{x,\mathbf{h},\omega}=0.

Fix a basis {γz,1,,γz,d}\{\gamma_{z,1},\dots,\gamma_{z,d}\} of VzV_{z}^{\perp} for each z𝔽pnz\in\mathbb{F}_{p}^{n}. We can write every vector vx,𝐡,ωv_{x,\mathbf{h},\omega} in terms of this basis, giving us that

ω{0,1}s+1j=1dbx,𝐡,ω,jγx+ω𝐡,j=0\sum_{\omega\in\{0,1\}^{s+1}}\sum_{j=1}^{d}b_{x,\mathbf{h},\omega,j}\gamma_{x+\omega\cdot\mathbf{h},j}=0

for some 2s+1d2^{s+1}d-tuple of constants (bx,𝐡,ω,j)ω{0,1}s+1,1jd(b_{x,\mathbf{h},\omega,j})_{\omega\in\{0,1\}^{s+1},1\leq j\leq d}, not all of which are zero.

We apply the pigeonhole principle to deduce that there is some 2s+1d2^{s+1}d-tuple of constants (bω,j)ω{0,1}s+1,1jd(b_{\omega,j})_{\omega\in\{0,1\}^{s+1},1\leq j\leq d}, not all of which are zero, such that

ω{0,1}s+1j=1dbω,jγx+ω𝐡,j=0\sum_{\omega\in\{0,1\}^{s+1}}\sum_{j=1}^{d}b_{\omega,j}\gamma_{x+\omega\cdot\mathbf{h},j}=0

for at least a Ωs((δρ)Os(1))\Omega_{s}((\delta\rho)^{O_{s}(1)})-proportion of (s+2)(s+2)-tuples (x,h1,,hs+1)(𝔽pn)s+2(x,h_{1},\dots,h_{s+1})\in(\mathbb{F}_{p}^{n})^{s+2} for which (x+ω(h1,,hs+1))ω{0,1}s+1A2s+1(x+\omega\cdot(h_{1},\dots,h_{s+1}))_{\omega\in\{0,1\}^{s+1}}\in A^{2^{s+1}}. Defining

ϕω(z):=j=1dbω,jγz,j\phi_{\omega}(z):=\sum_{j=1}^{d}b_{\omega,j}\gamma_{z,j}

for each ω{0,1}s+1\omega\in\{0,1\}^{s+1}, the above says that, for at least a Ωs((δρ)Os(1))\Omega_{s}((\delta\rho)^{O_{s}(1)})-proportion of (s+2)(s+2)-tuples (x,h1,,hs+1)(𝔽pn)s+2(x,h_{1},\dots,h_{s+1})\in(\mathbb{F}_{p}^{n})^{s+2} for which (x+ω(h1,,hs+1))ω{0,1}s+1A2s+1(x+\omega\cdot(h_{1},\dots,h_{s+1}))_{\omega\in\{0,1\}^{s+1}}\in A^{2^{s+1}}, we must have

ω{0,1}s+1ϕω(x+ω𝐡)=0,\sum_{\omega\in\{0,1\}^{s+1}}\phi_{\omega}(x+\omega\cdot\mathbf{h})=0,

where at least one of the functions ϕω:𝔽pn𝔽pn\phi_{\omega}:\mathbb{F}_{p}^{n}\to\mathbb{F}_{p}^{n} does not have the zero vector in its image (because ϕω(z)\phi_{\omega}(z) is always a nontrivial linear combination of linearly independent vectors). Let ϕ\phi be any such ϕω\phi_{\omega}. It then follows by applying Corollary 3.3 to the inside average of

𝔼y𝔼x,h1,,hs+1ep(yω{0,1}s+1ϕω(x+ω𝐡))A(ϕω(x+ω𝐡))\mathbb{E}_{y}\mathbb{E}_{x,h_{1},\dots,h_{s+1}}e_{p}\left(y\cdot\sum_{\omega\in\{0,1\}^{s+1}}\phi_{\omega}(x+\omega\cdot\mathbf{h})\right)A\left(\phi_{\omega}(x+\omega\cdot\mathbf{h})\right)

that h1,,hs+1ϕ(x)=0\partial_{h_{1},\dots,h_{s+1}}\phi(x)=0 for at least a Ωs((δρ)Os(1))\Omega_{s}((\delta\rho)^{O_{s}(1)})-proportion of (s+2)(s+2)-tuples (x,h1,,hs+1)(𝔽pn)s+2(x,h_{1},\dots,h_{s+1})\in(\mathbb{F}_{p}^{n})^{s+2} for which (x+ω(h1,,hs+1))ω{0,1}s+1A2s+1(x+\omega\cdot(h_{1},\dots,h_{s+1}))_{\omega\in\{0,1\}^{s+1}}\in A^{2^{s+1}}, again provided that CC^{\prime} is sufficiently small and cc^{\prime} is sufficiently large. That is, ϕ\phi is a Ωs((δρ)Os(1))\Omega_{s}((\delta\rho)^{O_{s}(1)})-approximate polynomial of degree at most ss on AA.

If CC^{\prime} is small enough and cc^{\prime} is large enough, Lemmas 4.2 and 4.4 then imply that for at least a Ωs((αδρ)Os(1))\Omega_{s}((\alpha\delta\rho)^{O_{s}(1)})-proportion of (2s+2)(2s+2)-dimensional parallelopipeds (x+ω(h1,,h2s+2))ω{0,1}2s+2(x+\omega\cdot(h_{1},\dots,h_{2s+2}))_{\omega\in\{0,1\}^{2s+2}} in A22s+2A^{2^{2s+2}}, the derivative of ϕ\phi on each (2s+1)(2s+1)-dimensional face vanishes, i.e.,

ω{0,1}2s+2ωi=ϵ(1)|ω|ϕ(x+ω(h1,,h2s+2))=0\sum_{\begin{subarray}{c}\omega\in\{0,1\}^{2s+2}\\ \omega_{i}=\epsilon\end{subarray}}(-1)^{|\omega|}\phi(x+\omega\cdot(h_{1},\dots,h_{2s+2}))=0

for all i=1,,2s+2i=1,\dots,2s+2 and ϵ=0,1\epsilon=0,1. Call the set of (2s+3)(2s+3)-tuples (x,h1,,h2s+2)(x,h_{1},\dots,h_{2s+2}) corresponding to such (2s+2)(2s+2)-dimensional parallelopipeds XX. Consider ΦρAU2s+2(𝔽pn×𝔽pn)22s+2\|\Phi-\rho A\|_{U^{2s+2}(\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n})}^{2^{2s+2}}, which, plugging in the expression

ρA(x)0vVxep(v(yu))\rho A(x)\sum_{0\neq v\in V_{x}^{\perp}}e_{p}(v\cdot(y-u))

for ΦρA\Phi-\rho A, equals

ρ22s+2𝔼x,h1,,h2s+2Δh1,,h2s+2A(x)0vωVx+ω𝐡ω{0,1}2s+21i2s+2ϵ=0,11𝟎(ω{0,1}2s+2ωi=ϵ(1)|ω|vω).\rho^{2^{2s+2}}\mathbb{E}_{x,h_{1},\dots,h_{2s+2}}\Delta_{h_{1},\dots,h_{2s+2}}A(x)\sum_{\begin{subarray}{c}0\neq v_{\omega}\in V_{x+\omega\cdot\mathbf{h}}^{\perp}\\ \omega\in\{0,1\}^{2s+2}\end{subarray}}\prod_{\begin{subarray}{c}1\leq i\leq 2s+2\\ \epsilon=0,1\end{subarray}}1_{\mathbf{0}}\left(\sum_{\begin{subarray}{c}\omega\in\{0,1\}^{2s+2}\\ \omega_{i}=\epsilon\end{subarray}}(-1)^{|\omega|}v_{\omega}\right).

The above has size s(p1)(αρ)22s+2(αδρ)Os(1)s(αδρ)Os(1)\gg_{s}(p-1)(\alpha\rho)^{2^{2s+2}}(\alpha\delta\rho)^{O_{s}(1)}\gg_{s}(\alpha\delta\rho)^{O_{s}(1)}, coming from the contribution of vω=λϕ(x+ω(h1,,h2s+2))v_{\omega}=\lambda\phi(x+\omega\cdot(h_{1},\dots,h_{2s+2})) for each λ𝔽p×\lambda\in\mathbb{F}_{p}^{\times} and (x,h1,,h2s+2)X(x,h_{1},\dots,h_{2s+2})\in X. On the other hand, we have

ΦρAU2s+2(𝔽pn×𝔽pn)=Φρα+ραρAU2s+2(𝔽pn×𝔽pn)ΦραU2s+2(𝔽pn×𝔽pn)+ρAαU2s+2(𝔽pn),\|\Phi-\rho A\|_{U^{2s+2}(\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n})}=\|\Phi-\rho\alpha+\rho\alpha-\rho A\|_{U^{2s+2}(\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n})}\leq\|\Phi-\rho\alpha\|_{U^{2s+2}(\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n})}+\rho\|A-\alpha\|_{U^{2s+2}(\mathbb{F}_{p}^{n})},

so that

(αδρ)Os(1)sΦρAU2s+2(𝔽pn×𝔽pn)<2Cs,r(αδρ)cs,r.(\alpha\delta\rho)^{O_{s}(1)}\ll_{s}\|\Phi-\rho A\|_{U^{2s+2}(\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n})}<2C_{s,r}(\alpha\delta\rho)^{c_{s,r}}.

Taking Cs,rC_{s,r} sufficiently small and cs,rc_{s,r} sufficiently large will thus yield a contradiction if

codim{y𝔽pn:i=1rΦ(ψi(𝐱),y+wi)=1}rd\operatorname{codim}\left\{y\in\mathbb{F}_{p}^{n}:\prod_{i=1}^{r}\Phi(\psi_{i}(\mathbf{x}),y+w_{i})=1\right\}\neq rd

for some w1,,wr𝔽pnw_{1},\dots,w_{r}\in\mathbb{F}_{p}^{n} for a δ\delta-proportion of 𝐱(𝔽pn)m\mathbf{x}\in(\mathbb{F}_{p}^{n})^{m} for which ψ1(𝐱),,ψr(𝐱)A\psi_{1}(\mathbf{x}),\dots,\psi_{r}(\mathbf{x})\in A. ∎

5. Control by directional uniformity norms

This section is devoted to proving Lemmas 2.3 and 2.4. Our arguments mostly consist of careful, repeated applications of the Cauchy–Schwarz inequality to ensure that there is no loss of density factors and using the results of Sections 3 and 4 to analyze the resulting averages. As a simple warm-up, we begin by showing that if T𝔽pn×𝔽pnT\subset\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} has the form (2.7) and B,C,B,C, and DD are sufficiently pseudorandom, then TT has density close to the product density αβγδρ\alpha\beta\gamma\delta\rho.

Lemma 5.1.

Let dd be a nonnegative integer, and set ρ:=pd\rho:=p^{-d}. Let ε>0\varepsilon>0 and assume that A,B,C,D𝔽pnA,B,C,D\subset\mathbb{F}_{p}^{n} have densities α,β,γ,\alpha,\beta,\gamma, and δ\delta, respectively, and satisfy

BβU4(𝔽pn),CγU4(𝔽pn),DδU4(𝔽pn)<ε\|B-\beta\|_{U^{4}(\mathbb{F}_{p}^{n})},\|C-\gamma\|_{U^{4}(\mathbb{F}_{p}^{n})},\|D-\delta\|_{U^{4}(\mathbb{F}_{p}^{n})}<\varepsilon

and that Φ𝔽pn×𝔽pn\Phi\subset\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} takes the form

Φ={(x,y)A×𝔽pn:yu+Vx},\Phi=\left\{(x,y)\in A\times\mathbb{F}_{p}^{n}:y\in u+V_{x}\right\},

where each VxV_{x} is a subspace of 𝔽pn\mathbb{F}_{p}^{n} of codimension dd. Then the set T𝔽pn×𝔽pnT\subset\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} defined by (2.7) has density

αβγδρ+O(ε1/8).\alpha\beta\gamma\delta\rho+O(\varepsilon^{1/8}).
Proof.

The density of TT in 𝔽pn×𝔽pn\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} can be written as

𝔼x,yF(x,y)Φ(x,y),\mathbb{E}_{x,y}F(x,y)\Phi(x,y),

where F(x,y):=B(y)C(x+y)D(2x+y)F(x,y):=B(y)C(x+y)D(2x+y). Set L(x,y):={y,x+y,2x+y}L(x,y):=\{y,x+y,2x+y\}. Lemma 3.6 says that

(x𝔽pn:F(x,)βγδU2(𝔽pn)>ε1/8)ε,\mathbb{P}(x\in\mathbb{F}_{p}^{n}:\|F(x,\cdot)-\beta\gamma\delta\|_{U^{2}(\mathbb{F}_{p}^{n})}>\varepsilon^{1/8})\ll\sqrt{\varepsilon},

since

L(x,y)L(x,y+h)L(x,y+k)L(x,y+h+k)L(x,y)\cup L(x,y+h)\cup L(x,y+k)\cup L(x,y+h+k)

has Cauchy–Schwarz complexity at most 33. Thus, Lemma 3.5 yields

𝔼yF(x,y)Φ(x,y)=(βγδρ+O(ε1/8))A(x)\mathbb{E}_{y}F(x,y)\Phi(x,y)=\left(\beta\gamma\delta\rho+O(\varepsilon^{1/8})\right)A(x)

for all but a O(ε)O(\sqrt{\varepsilon})-proportion of x𝔽pnx\in\mathbb{F}_{p}^{n}, so that

𝔼x,yF(x,y)Φ(x,y)=αβγδρ+O(ε1/8).\mathbb{E}_{x,y}F(x,y)\Phi(x,y)=\alpha\beta\gamma\delta\rho+O(\varepsilon^{1/8}).

Now we can prove Lemma 2.3.

Proof of Lemma 2.3.

The quantity of interest Λ(T,T,T,S)\Lambda(T,T,T,S) is

𝔼x,y,zB(y+z)B(y+2z)C(x+y)C(x+y+2z)D(2x+y)D(2x+y+z)Φ(x,y)Φ(x,y+z)S(x+z,y),\mathbb{E}_{x,y,z}B(y+z)B(y+2z)C(x+y)C(x+y+2z)D(2x+y)D(2x+y+z)\Phi(x,y)\Phi(x,y+z)S(x+z,y),

which, after a change of variables, can be written as

𝔼x,yS(x,y)μ(x,y),\mathbb{E}_{x,y}S(x,y)\mu(x,y),

where μ(x,y)\mu(x,y) equals

𝔼zB(y+z)B(y+2z)C(x+yz)C(x+y+z)D(2x+y2z)D(2x+yz)Φ(xz,y)Φ(xz,y+z).\mathbb{E}_{z}B(y+z)B(y+2z)C(x+y-z)C(x+y+z)D(2x+y-2z)D(2x+y-z)\Phi(x-z,y)\Phi(x-z,y+z).

We will show that μ(x,y)\mu(x,y) is very close to the constant value αβ2γ2δ2ρ2\alpha\beta^{2}\gamma^{2}\delta^{2}\rho^{2} for almost every pair (x,y)𝔽pn×𝔽pn(x,y)\in\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}, from which it will then follow that Λ(T,T,T,S)\Lambda(T,T,T,S) is close to σα2β3γ3δ3ρ3\sigma\alpha^{2}\beta^{3}\gamma^{3}\delta^{3}\rho^{3}.

The first moment 𝔼x,yμ(x,y)\mathbb{E}_{x,y}\mu(x,y) equals

𝔼x,y,zB(y+z)B(y+2z)C(x+y)C(x+y+2z)D(2x+y)D(2x+y+z)Φ(x,y)Φ(x,y+z).\mathbb{E}_{x,y,z}B(y+z)B(y+2z)C(x+y)C(x+y+2z)D(2x+y)D(2x+y+z)\Phi(x,y)\Phi(x,y+z).

Applying Lemma 3.6 yields

((x,y)𝔽pn×𝔽pn:F(x,y,)β2γδU2(𝔽pn)ε1/8)ε,\mathbb{P}\left((x,y)\in\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}:\|F(x,y,\cdot)-\beta^{2}\gamma\delta\|_{U^{2}(\mathbb{F}_{p}^{n})}\geq\varepsilon^{1/8}\right)\ll\sqrt{\varepsilon},

where

F(x,y,z):=B(y+z)B(y+2z)C(x+y+2z)D(2x+y+z).F(x,y,z):=B(y+z)B(y+2z)C(x+y+2z)D(2x+y+z).

It therefore follows from Lemma 3.5 that

𝔼zF(x,y,z)Φ(x,y+z)=(β2γδρ+O(ε1/8))A(x)\mathbb{E}_{z}F(x,y,z)\Phi(x,y+z)=\left(\beta^{2}\gamma\delta\rho+O(\varepsilon^{1/8})\right)A(x)

for all but a O(ε)O(\sqrt{\varepsilon})-proportion of (x,y)𝔽pn×𝔽pn(x,y)\in\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}. Thus,

𝔼x,yμ(x,y)=β2γδρ𝔼x,yC(x+y)D(2x+y)Φ(x,y)+O(ε1/8).\mathbb{E}_{x,y}\mu(x,y)=\beta^{2}\gamma\delta\rho\mathbb{E}_{x,y}C(x+y)D(2x+y)\Phi(x,y)+O\left(\varepsilon^{1/8}\right).

By arguing as in the proof of Lemma 5.1, we have

𝔼x,yC(x+y)D(2x+y)Φ(x,y)=αγδρ+O(ε1/8),\mathbb{E}_{x,y}C(x+y)D(2x+y)\Phi(x,y)=\alpha\gamma\delta\rho+O\left(\varepsilon^{1/8}\right),

and thus conclude that

𝔼x,yμ(x,y)=αβ2γ2δ2ρ2+O(ε1/8).\mathbb{E}_{x,y}\mu(x,y)=\alpha\beta^{2}\gamma^{2}\delta^{2}\rho^{2}+O\left(\varepsilon^{1/8}\right).

The second moment 𝔼x,yμ(x,y)2\mathbb{E}_{x,y}\mu(x,y)^{2} equals

𝔼x,y,z,h(\displaystyle\mathbb{E}_{x,y,z,h}\bigg{(} ΔhB(y+z)Δ2hB(y+2z)ΔhC(x+y)ΔhC(x+y+2z)\displaystyle\Delta_{h}B(y+z)\Delta_{2h}B(y+2z)\Delta_{-h}C(x+y)\Delta_{h}C(x+y+2z)
Δ2hD(2x+y)ΔhD(2x+y+z)Δ(h,0)Φ(x,y)Δ(h,h)Φ(x,y+z)).\displaystyle\Delta_{-2h}D(2x+y)\Delta_{-h}D(2x+y+z)\Delta_{(-h,0)}\Phi(x,y)\Delta_{(-h,h)}\Phi(x,y+z)\bigg{)}.

Applying Lemma 3.6 again yields

((x,y,h)𝔽pn×𝔽pn×𝔽pn:G(x,y,h,)β4γ2δ2U2(𝔽pn)>ε1/8)ε\mathbb{P}\left((x,y,h)\in\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}:\|G(x,y,h,\cdot)-\beta^{4}\gamma^{2}\delta^{2}\|_{U^{2}(\mathbb{F}_{p}^{n})}>\varepsilon^{1/8}\right)\ll\sqrt{\varepsilon}

where

G(x,y,h,z):=ΔhB(y+z)Δ2hB(y+2z)ΔhC(x+y+2z)ΔhD(2x+y+z),G(x,y,h,z):=\Delta_{h}B(y+z)\Delta_{2h}B(y+2z)\Delta_{h}C(x+y+2z)\Delta_{-h}D(2x+y+z),

and applying Lemma 4.1 yields

((x,xh)A×A:codim{z𝔽pn:Δ(h,h)Φ(x,y+z)=1}2d)εΩ(1)ρO(1)\mathbb{P}\left((x,x-h)\in A\times A:\operatorname{codim}\left\{z\in\mathbb{F}_{p}^{n}:\Delta_{(-h,h)}\Phi(x,y+z)=1\right\}\neq 2d\right)\ll\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}}

for all y𝔽pny\in\mathbb{F}_{p}^{n}. Thus, by Lemma 3.5,

𝔼yG(x,y,h,z)Δ(h,h)Φ(x,y+z)=β4γ2δ2ρ2+O(ε1/8)\mathbb{E}_{y}G(x,y,h,z)\Delta_{(-h,h)}\Phi(x,y+z)=\beta^{4}\gamma^{2}\delta^{2}\rho^{2}+O(\varepsilon^{1/8})

for all but a O(εΩ(1)/ρO(1))O(\varepsilon^{\Omega(1)}/\rho^{O(1)})-proportion of (x,x+h,y)A×A×𝔽pn(x,x+h,y)\in A\times A\times\mathbb{F}_{p}^{n}, so that

𝔼x,yμ(x,y)2=β4γ2δ2ρ2𝔼x,y,hΔhC(x+y)Δ2hD(2x+y)Δ(h,0)Φ(x,y)+O(εΩ(1)ρO(1)).\mathbb{E}_{x,y}\mu(x,y)^{2}=\beta^{4}\gamma^{2}\delta^{2}\rho^{2}\mathbb{E}_{x,y,h}\Delta_{-h}C(x+y)\Delta_{-2h}D(2x+y)\Delta_{(-h,0)}\Phi(x,y)+O\left(\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}}\right).

By Lemmas 3.6 and 4.1 again, we have

((x,h)𝔽pn×𝔽pn:H(x,h,)γ2δ2U2(𝔽pn)>ε1/8)ε\mathbb{P}\left((x,h)\in\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}:\|H(x,h,\cdot)-\gamma^{2}\delta^{2}\|_{U^{2}(\mathbb{F}_{p}^{n})}>\varepsilon^{1/8}\right)\ll\sqrt{\varepsilon}

and

((x,xh)A×A:codim{y𝔽pn:Δ(h,0)Φ(x,y)=1}2d)εΩ(1)ρO(1),\mathbb{P}\left((x,x-h)\in A\times A:\operatorname{codim}\left\{y\in\mathbb{F}_{p}^{n}:\Delta_{(-h,0)}\Phi(x,y)=1\right\}\neq 2d\right)\ll\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}},

where

H(x,h,y):=ΔhC(x+y)Δ2hD(2x+y),H(x,h,y):=\Delta_{-h}C(x+y)\Delta_{-2h}D(2x+y),

so that

𝔼x,y,hΔhC(x+y)Δ2hD(2x+y)Δ(h,0)Φ(x,y)=γ2δ2ρ2𝔼x,hΔhA(x)+O(εΩ(1)ρO(1))\mathbb{E}_{x,y,h}\Delta_{-h}C(x+y)\Delta_{-2h}D(2x+y)\Delta_{(-h,0)}\Phi(x,y)=\gamma^{2}\delta^{2}\rho^{2}\mathbb{E}_{x,h}\Delta_{-h}A(x)+O\left(\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}}\right)

by Lemma 3.5. Using Corollary 3.3 to estimate 𝔼x,hΔhA(x)\mathbb{E}_{x,h}\Delta_{-h}A(x), we thus conclude that

𝔼x,yμ(x,y)2=α2β4γ4δ4ρ4+O(εΩ(1)ρO(1))\mathbb{E}_{x,y}\mu(x,y)^{2}=\alpha^{2}\beta^{4}\gamma^{4}\delta^{4}\rho^{4}+O\left(\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}}\right)

Our estimates for the first and second moments of μ\mu imply that μ\mu has variance 𝔼x,y|μ(x,y)αβ2γ2δ2ρ|2εΩ(1)/ρO(1)\mathbb{E}_{x,y}|\mu(x,y)-\alpha\beta^{2}\gamma^{2}\delta^{2}\rho|^{2}\ll\varepsilon^{\Omega(1)}/\rho^{O(1)}. It follows that

𝔼x,yS(x,y)μ(x,y)\displaystyle\mathbb{E}_{x,y}S(x,y)\mu(x,y) =σα2β3γ3δ3ρ3+O(𝔼x,y|μ(x,y)αβ2γ2δ2ρ2|)\displaystyle=\sigma\alpha^{2}\beta^{3}\gamma^{3}\delta^{3}\rho^{3}+O\left(\mathbb{E}_{x,y}|\mu(x,y)-\alpha\beta^{2}\gamma^{2}\delta^{2}\rho^{2}|\right)
=σα2β3γ3δ3ρ3+O([𝔼x,y|μ(x,y)αβ2γ2δ2ρ2|2]1/2)\displaystyle=\sigma\alpha^{2}\beta^{3}\gamma^{3}\delta^{3}\rho^{3}+O\left([\mathbb{E}_{x,y}|\mu(x,y)-\alpha\beta^{2}\gamma^{2}\delta^{2}\rho^{2}|^{2}]^{1/2}\right)
=σα2β3γ3δ3ρ3+O(εΩ(1)ρO(1)).\displaystyle=\sigma\alpha^{2}\beta^{3}\gamma^{3}\delta^{3}\rho^{3}+O\left(\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}}\right).

When c1c_{1} is sufficiently small and c2c_{2} is sufficiently large, this gives the desired lower bound for Λ(T,T,T,S)\Lambda(T,T,T,S). ∎

To finish this section, we prove Lemma 2.4.

Proof of Lemma 2.4.

We prove (2.12), (2.13), and then (2.14), proceeding in decreasing order of the number of applications of Cauchy–Schwarz required. For (2.12), we make the change of variables zzxyz\mapsto z-x-y to write Λ(f0,f1,f2,f3)\Lambda(f_{0},f_{1},f_{2},f_{3}) as

𝔼x,y,zf0(x,y)f1(x,zx)f2(x,2z2xy)f3(zy,y),\mathbb{E}_{x,y,z}f_{0}(x,y)f_{1}(x,z-x)f_{2}(x,2z-2x-y)f_{3}(z-y,y),

which, by applying the Cauchy–Schwarz inequality in the xx and zz variables, has modulus squared bounded by

μ𝔽pn×𝔽pn(T)𝔼x,zB(zx)D(x+z)|𝔼yf0(x,y)f2(x,2z2xy)f3(zy,y)|2.\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(T)\cdot\mathbb{E}_{x,z}B(z-x)D(x+z)\left|\mathbb{E}_{y}f_{0}(x,y)f_{2}(x,2z-2x-y)f_{3}(z-y,y)\right|^{2}.

The first factor equals αβγδρ+O(ε1/8)\alpha\beta\gamma\delta\rho+O(\varepsilon^{1/8}) by Lemma 5.1. Expanding the square and making a change of variables, the second factor equals

𝔼x,y,z,h1B(zx)D(x+z)Δ(0,h1)f0(x,y)Δ(0,h1)f2(x,2z2xy)Δ(h1,h1)f3(zy,y).\mathbb{E}_{x,y,z,h_{1}}B(z-x)D(x+z)\Delta_{(0,h_{1})}f_{0}(x,y)\Delta_{(0,-h_{1})}f_{2}(x,2z-2x-y)\Delta_{(-h_{1},h_{1})}f_{3}(z-y,y).

By another application of the Cauchy–Schwarz inequality in the y,z,y,z, and h1h_{1} variables, the modulus squared of this is at most

(5.1) 𝔼y,z,h1Δh1B(y)C(z+y)Δh1D(2z+y)Δ(h1,h1)Φ(z,y)\mathbb{E}_{y,z,h_{1}}\Delta_{h_{1}}B(y)C(z+y)\Delta_{-h_{1}}D(2z+y)\Delta_{(-h_{1},h_{1})}\Phi(z,y)

times

𝔼y,z,h1(\displaystyle\mathbb{E}_{y,z,h_{1}}\bigg{(} C(z)Δ(h1,h1)Φ(zy,y)|𝔼xB(zx)D(x+z)Δ(0,h1)f0(x,y)Δ(0,h1)f2(x,2z2xy)|2).\displaystyle C(z)\Delta_{(-h_{1},h_{1})}\Phi(z-y,y)\left|\mathbb{E}_{x}B(z-x)D(x+z)\Delta_{(0,h_{1})}f_{0}(x,y)\Delta_{(0,-h_{1})}f_{2}(x,2z-2x-y)\right|^{2}\bigg{)}.

The first factor (5.1) can be estimated in the same manner as the averages appearing in the proof of Lemma 2.3, and equals α2β2γδ2ρ2+O(εΩ(1)/ρO(1))\alpha^{2}\beta^{2}\gamma\delta^{2}\rho^{2}+O(\varepsilon^{\Omega(1)}/\rho^{O(1)}). Expanding the square and making a change of variables, we get that the second factor equals

𝔼x,y,z,h1,h2(\displaystyle\mathbb{E}_{x,y,z,h_{1},h_{2}}\bigg{(} Δh2B(yz)C(x+yz)Δh2D(2x+yz)Δ(h1,h1)Φ(x+z,y2z)\displaystyle\Delta_{-h_{2}}B(y-z)C(x+y-z)\Delta_{h_{2}}D(2x+y-z)\Delta_{(-h_{1},h_{1})}\Phi(x+z,y-2z)
Δ(0,h1),(h2,0)f0(x,y2z)Δ(0,h1),(h2,2h2)f2(x,y)).\displaystyle\Delta_{(0,h_{1}),(h_{2},0)}f_{0}(x,y-2z)\Delta_{(0,-h_{1}),(h_{2},-2h_{2})}f_{2}(x,y)\bigg{)}.

A final application of the Cauchy–Schwarz inequality in the x,y,h1,x,y,h_{1}, and h2h_{2} variables bounds the modulus squared of this by

(5.2) 𝔼x,y,h1,h2Δh1,2h2B(y)Δh1,h2C(x+y)Δh1D(2x+y)Δ(0,h1),(h2,2h2)Φ(x,y)\mathbb{E}_{x,y,h_{1},h_{2}}\Delta_{-h_{1},-2h_{2}}B(y)\Delta_{-h_{1},-h_{2}}C(x+y)\Delta_{-h_{1}}D(2x+y)\Delta_{(0,-h_{1}),(h_{2},-2h_{2})}\Phi(x,y)

times

𝔼x,y,h1,h2\displaystyle\mathbb{E}_{x,y,h_{1},h_{2}} Δh1,2h2B(y)Δh1,h2C(x+y)Δh1D(2x+y)Δ(h2,2h2)Φ(x,y)\displaystyle\Delta_{-h_{1},-2h_{2}}B(y)\Delta_{-h_{1},-h_{2}}C(x+y)\Delta_{-h_{1}}D(2x+y)\Delta_{(h_{2},-2h_{2})}\Phi(x,y)
|𝔼zΔh2B(yz)C(x+yz)Δh2D(2x+yz)Δ(h1,h1)Φ(x+z,y2z)\displaystyle\cdot|\mathbb{E}_{z}\Delta_{-h_{2}}B(y-z)C(x+y-z)\Delta_{h_{2}}D(2x+y-z)\Delta_{(-h_{1},h_{1})}\Phi(x+z,y-2z)
Δ(0,h1),(h2,0)f0(x,y2z)|2\displaystyle\ \ \ \ \ \ \ \Delta_{(0,h_{1}),(h_{2},0)}f_{0}(x,y-2z)|^{2}

By Lemmas 3.6 and 4.1, we have

((x,y,h2)𝔽pn×𝔽pn×𝔽pn:F(x,y,h2,)β2γ2δU2(𝔽pn)>ε1/8)ε,\mathbb{P}\left((x,y,h_{2})\in\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}:\|F(x,y,h_{2},\cdot)-\beta^{2}\gamma^{2}\delta\|_{U^{2}(\mathbb{F}_{p}^{n})}>\varepsilon^{1/8}\right)\ll\sqrt{\varepsilon},
((x,h2)𝔽pn×𝔽pn:G(x,h2,)β2γ2δU2(𝔽pn)>ε1/8)ε,\mathbb{P}\left((x,h_{2})\in\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}:\|G(x,h_{2},\cdot)-\beta^{2}\gamma^{2}\delta\|_{U^{2}(\mathbb{F}_{p}^{n})}>\varepsilon^{1/8}\right)\ll\sqrt{\varepsilon},
((x,x+h2)A×A:codim{h1𝔽pn:Δ(h2,2h2)Φ(x,yh1)=1}2d)εΩ(1)ρO(1)\mathbb{P}\left((x,x+h_{2})\in A\times A:\operatorname{codim}\left\{h_{1}\in\mathbb{F}_{p}^{n}:\Delta_{(h_{2},-2h_{2})}\Phi(x,y-h_{1})=1\right\}\neq 2d\right)\ll\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}}

for all y𝔽pny\in\mathbb{F}_{p}^{n}, and

((x,x+h2)A×A:codim{y𝔽pn:Δ(h2,2h2)Φ(x,y)=1}2d)εΩ(1)ρO(1),\mathbb{P}\left((x,x+h_{2})\in A\times A:\operatorname{codim}\left\{y\in\mathbb{F}_{p}^{n}:\Delta_{(h_{2},-2h_{2})}\Phi(x,y)=1\right\}\neq 2d\right)\ll\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}},

where

F(x,y,h2,h1):=Δ2h2B(yh1)Δh2C(x+yh1)D(2x+yh1)F(x,y,h_{2},h_{1}):=\Delta_{-2h_{2}}B(y-h_{1})\Delta_{-h_{2}}C(x+y-h_{1})D(2x+y-h_{1})

and

G(x,h2,y):=Δ2h2B(y)Δh2C(x+y)D(2x+y).G(x,h_{2},y):=\Delta_{-2h_{2}}B(y)\Delta_{-h_{2}}C(x+y)D(2x+y).

It then follows from Lemma 3.5 that (5.2) equals

β2γ2δρ2𝔼x,y,h1,h2Δ2h2B(y)Δh2C(x+y)D(2x+y)Δ(h2,2h2)Φ(x,y)+O(εΩ(1)ρO(1)),\beta^{2}\gamma^{2}\delta\rho^{2}\mathbb{E}_{x,y,h_{1},h_{2}}\Delta_{-2h_{2}}B(y)\Delta_{-h_{2}}C(x+y)D(2x+y)\Delta_{(h_{2},-2h_{2})}\Phi(x,y)+O\left(\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}}\right),

which equals

β4γ4δ2ρ4𝔼x,h2Δh2A(x)+O(εΩ(1)ρO(1))=α2β4γ4δ2ρ4+O(εΩ(1)ρO(1)).\beta^{4}\gamma^{4}\delta^{2}\rho^{4}\mathbb{E}_{x,h_{2}}\Delta_{h_{2}}A(x)+O\left(\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}}\right)=\alpha^{2}\beta^{4}\gamma^{4}\delta^{2}\rho^{4}+O\left(\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}}\right).

It remains to relate

𝔼x,y,h1,h2\displaystyle\mathbb{E}_{x,y,h_{1},h_{2}} Δh1,2h2B(y)Δh1,h2C(x+y)Δh1D(2x+y)Δ(h2,2h2)Φ(x,y)\displaystyle\Delta_{-h_{1},-2h_{2}}B(y)\Delta_{-h_{1},-h_{2}}C(x+y)\Delta_{-h_{1}}D(2x+y)\Delta_{(h_{2},-2h_{2})}\Phi(x,y)
|𝔼zΔh2B(yz)C(x+yz)Δh2D(2x+yz)Δ(h1,h1)Φ(x+z,y2z)\displaystyle\cdot|\mathbb{E}_{z}\Delta_{-h_{2}}B(y-z)C(x+y-z)\Delta_{h_{2}}D(2x+y-z)\Delta_{(-h_{1},h_{1})}\Phi(x+z,y-2z)
Δ(0,h1),(h2,0)f0(x,y2z)|2\displaystyle\ \ \ \ \ \ \ \Delta_{(0,h_{1}),(h_{2},0)}f_{0}(x,y-2z)|^{2}

to f01\|f_{0}\|_{\star_{1}}. Expanding the square and making a change of variables yields

𝔼x,y,z,h1,h2,h3(\displaystyle\mathbb{E}_{x,y,z,h_{1},h_{2},h_{3}}\big{(} Δh1,2h2B(y+2z)Δh2,h3B(y+z)\displaystyle\Delta_{-h_{1},-2h_{2}}B(y+2z)\Delta_{-h_{2},-h_{3}}B(y+z)
Δh1,h2C(x+y+2z)Δh3C(x+y+z)\displaystyle\Delta_{-h_{1},-h_{2}}C(x+y+2z)\Delta_{-h_{3}}C(x+y+z)
Δh1D(2x+y+2z)Δh2,h3D(2x+y+z)\displaystyle\Delta_{-h_{1}}D(2x+y+2z)\Delta_{h_{2},-h_{3}}D(2x+y+z)
Δ(h2,2h2)Φ(x,y+2z)Δ(h1,h1),(h3,2h3)Φ(x+z,y)\displaystyle\Delta_{(h_{2},-2h_{2})}\Phi(x,y+2z)\Delta_{(-h_{1},h_{1}),(h_{3},-2h_{3})}\Phi(x+z,y)
Δ(0,h1),(h2,0),(0,2h3)f0(x,y)),\displaystyle\Delta_{(0,h_{1}),(h_{2},0),(0,-2h_{3})}f_{0}(x,y)\big{)},

which can be written as

𝔼x,y,h1,h2,h3Δ(0,h1),(h2,0),(0,2h3)f0(x,y)μ(x,y,h1,h2,h3),\mathbb{E}_{x,y,h_{1},h_{2},h_{3}}\Delta_{(0,h_{1}),(h_{2},0),(0,-2h_{3})}f_{0}(x,y)\mu(x,y,h_{1},h_{2},h_{3}),

where

μ(x,y,h1,h2,h3):=𝔼z(\displaystyle\mu(x,y,h_{1},h_{2},h_{3}):=\mathbb{E}_{z}\big{(} Δh1,2h2B(y+2z)Δh2,h3B(y+z)\displaystyle\Delta_{-h_{1},-2h_{2}}B(y+2z)\Delta_{-h_{2},-h_{3}}B(y+z)
Δh1,h2C(x+y+2z)Δh3C(x+y+z)\displaystyle\Delta_{-h_{1},-h_{2}}C(x+y+2z)\Delta_{-h_{3}}C(x+y+z)
Δh1D(2x+y+2z)Δh2,h3D(2x+y+z)\displaystyle\Delta_{-h_{1}}D(2x+y+2z)\Delta_{h_{2},-h_{3}}D(2x+y+z)
Δ(h2,2h2)Φ(x,y+2z)Δ(h1,h1),(h3,2h3)Φ(x+z,y)).\displaystyle\Delta_{(h_{2},-2h_{2})}\Phi(x,y+2z)\Delta_{(-h_{1},h_{1}),(h_{3},-2h_{3})}\Phi(x+z,y)\big{)}.

We will show that, for almost every 55-tuple (x,y,h1,h2,h3)(𝔽pn)5(x,y,h_{1},h_{2},h_{3})\in(\mathbb{F}_{p}^{n})^{5} for which x,x+h2Ax,x+h_{2}\in A, μ(x,y,h1,h2,h3)\mu(x,y,h_{1},h_{2},h_{3}) is very close to the constant value α4β8γ6δ6ρ6\alpha^{4}\beta^{8}\gamma^{6}\delta^{6}\rho^{6}. Indeed, the first moment 𝔼x,y,h1,h2,h3x,x+h2Aμ(x,y,h1,h2,h3)\mathbb{E}_{\begin{subarray}{c}x,y,h_{1},h_{2},h_{3}\\ x,x+h_{2}\in A\end{subarray}}\mu(x,y,h_{1},h_{2},h_{3}) is

1α2+O(ε)𝔼x,y,z,h1,h2,h3(\displaystyle\frac{1}{\alpha^{2}+O(\varepsilon)}\mathbb{E}_{x,y,z,h_{1},h_{2},h_{3}}\big{(} Δh1,2h2B(y+2z)Δh2,h3B(y+z)\displaystyle\Delta_{-h_{1},-2h_{2}}B(y+2z)\Delta_{-h_{2},-h_{3}}B(y+z)
Δh1,h2C(x+y+2z)Δh3C(x+y+z)\displaystyle\Delta_{-h_{1},-h_{2}}C(x+y+2z)\Delta_{-h_{3}}C(x+y+z)
Δh1D(2x+y+2z)Δh2,h3D(2x+y+z)\displaystyle\Delta_{-h_{1}}D(2x+y+2z)\Delta_{h_{2},-h_{3}}D(2x+y+z)
Δ(h2,2h2)Φ(x,y+2z)Δ(h1,h1),(h3,2h3)Φ(x+z,y)).\displaystyle\Delta_{(h_{2},-2h_{2})}\Phi(x,y+2z)\Delta_{(-h_{1},h_{1}),(h_{3},-2h_{3})}\Phi(x+z,y)\big{)}.

Lemmas 3.6 and 4.1 tell us that

((x,z,h1,h2,h3)(𝔽pn)5:H(x,z,h1,h2,h3,)β8γ6δ6U2(𝔽pn)>ε1/8)ε\mathbb{P}\left((x,z,h_{1},h_{2},h_{3})\in(\mathbb{F}_{p}^{n})^{5}:\|H(x,z,h_{1},h_{2},h_{3},\cdot)-\beta^{8}\gamma^{6}\delta^{6}\|_{U^{2}(\mathbb{F}_{p}^{n})}>\varepsilon^{1/8}\right)\ll\sqrt{\varepsilon}

and

(\displaystyle\mathbb{P}\big{(} (x,x+h2,x+z,x+zh1,x+z+h3,x+zh1+h3)A6\displaystyle(x,x+h_{2},x+z,x+z-h_{1},x+z+h_{3},x+z-h_{1}+h_{3})\in A^{6}
:codim{y𝔽pn:Δ(h2,2h2)Φ(x,y+2z)Δ(h1,h1),(h3,2h3)Φ(x+z,y)=1}6d)εΩ(1)ρO(1),\displaystyle:\operatorname{codim}\left\{y\in\mathbb{F}_{p}^{n}:\Delta_{(h_{2},-2h_{2})}\Phi(x,y+2z)\Delta_{(-h_{1},h_{1}),(h_{3},-2h_{3})}\Phi(x+z,y)=1\right\}\neq 6d\big{)}\ll\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}},

where

H(x,y,h1,h2,h3,z):=(\displaystyle H(x,y,h_{1},h_{2},h_{3},z):=\big{(} Δh1,2h2B(y+2z)Δh2,h3B(y+z)Δh1,h2C(x+y+2z)\displaystyle\Delta_{-h_{1},-2h_{2}}B(y+2z)\Delta_{-h_{2},-h_{3}}B(y+z)\Delta_{-h_{1},-h_{2}}C(x+y+2z)
Δh3C(x+y+z)Δh1D(2x+y+2z)Δh2,h3D(2x+y+z))\displaystyle\Delta_{-h_{3}}C(x+y+z)\Delta_{-h_{1}}D(2x+y+2z)\Delta_{h_{2},-h_{3}}D(2x+y+z)\big{)}

so it follows from Lemma 3.5 that the first moment equals

1α2+O(ε)β8γ6δ6ρ6𝔼x,z,h1,h2,h3Δh2A(x)Δh1,h3A(x+z)+O(εΩ(1)ρO(1)),\frac{1}{\alpha^{2}+O(\varepsilon)}\beta^{8}\gamma^{6}\delta^{6}\rho^{6}\mathbb{E}_{x,z,h_{1},h_{2},h_{3}}\Delta_{h_{2}}A(x)\Delta_{-h_{1},h_{3}}A(x+z)+O\left(\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}}\right),

which equals

α4β8γ6δ6ρ6+O(εΩ(1)ρO(1))\alpha^{4}\beta^{8}\gamma^{6}\delta^{6}\rho^{6}+O\left(\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}}\right)

by Corollary 3.3. The second moment 𝔼x,y,h1,h2,h3x,x+h2Aμ(x,y,h1,h2,h3)2\mathbb{E}_{\begin{subarray}{c}x,y,h_{1},h_{2},h_{3}\\ x,x+h_{2}\in A\end{subarray}}\mu(x,y,h_{1},h_{2},h_{3})^{2} is

1α2+O(ε)𝔼x,y,z,h1,h2,h3,k(\displaystyle\frac{1}{\alpha^{2}+O(\varepsilon)}\mathbb{E}_{x,y,z,h_{1},h_{2},h_{3},k}\big{(} Δh1,2h2,2kB(y+2z)Δh2,h3,kB(y+z)\displaystyle\Delta_{-h_{1},-2h_{2},2k}B(y+2z)\Delta_{-h_{2},-h_{3},k}B(y+z)
Δh1,h2,2kC(x+y+2z)Δh3,kC(x+y+z)\displaystyle\Delta_{-h_{1},-h_{2},2k}C(x+y+2z)\Delta_{-h_{3},k}C(x+y+z)
Δh1,2kD(2x+y+2z)Δh2,h3,kD(2x+y+z)\displaystyle\Delta_{-h_{1},2k}D(2x+y+2z)\Delta_{h_{2},-h_{3},k}D(2x+y+z)
Δ(h2,2h2),(0,2k)Φ(x,y+2z)Δ(h1,h1),(h3,2h3),(k,0)Φ(x+z,y)),\displaystyle\Delta_{(h_{2},-2h_{2}),(0,2k)}\Phi(x,y+2z)\Delta_{(-h_{1},h_{1}),(h_{3},-2h_{3}),(k,0)}\Phi(x+z,y)\big{)},

which, noting that

Δ(h2,2h2),(0,2k)Φ(x,y+2z)=Δ(h2,2h2)Φ(x,y+2z)Δ(h2,2h2)Φ(x,2ku),\Delta_{(h_{2},-2h_{2}),(0,2k)}\Phi(x,y+2z)=\Delta_{(h_{2},-2h_{2})}\Phi(x,y+2z)\Delta_{(h_{2},-2h_{2})}\Phi(x,2k-u),

we can write as

𝔼x,y,z,h1,h2,h3,k(\displaystyle\mathbb{E}_{x,y,z,h_{1},h_{2},h_{3},k}\big{(} Δh1,2h2,2kB(y+2z)Δh2,h3,kB(y+z)\displaystyle\Delta_{-h_{1},-2h_{2},2k}B(y+2z)\Delta_{-h_{2},-h_{3},k}B(y+z)
Δh1,h2,2kC(x+y+2z)Δh3,kC(x+y+z)\displaystyle\Delta_{-h_{1},-h_{2},2k}C(x+y+2z)\Delta_{-h_{3},k}C(x+y+z)
Δh1,2kD(2x+y+2z)Δh2,h3,kD(2x+y+z)\displaystyle\Delta_{-h_{1},2k}D(2x+y+2z)\Delta_{h_{2},-h_{3},k}D(2x+y+z)
Δ(h2,2h2)Φ(x,y+2z)Δ(h1,h1),(h3,2h3),(k,0)Φ(x+z,y)\displaystyle\Delta_{(h_{2},-2h_{2})}\Phi(x,y+2z)\Delta_{(-h_{1},h_{1}),(h_{3},-2h_{3}),(k,0)}\Phi(x+z,y)
Δ(h2,2h2)Φ(x,2ku)),\displaystyle\Delta_{(h_{2},-2h_{2})}\Phi(x,2k-u)\big{)},

Lemmas 3.6 and 4.1, analogously to the case of the first moment, tell us that

((x,z,h1,h2,h3,k)(𝔽pn)6:I(x,z,h1,h2,h3,k,)β16γ12δ12U2(𝔽pn)>ε1/8)ε\mathbb{P}\left((x,z,h_{1},h_{2},h_{3},k)\in(\mathbb{F}_{p}^{n})^{6}:\|I(x,z,h_{1},h_{2},h_{3},k,\cdot)-\beta^{16}\gamma^{12}\delta^{12}\|_{U^{2}(\mathbb{F}_{p}^{n})}>\varepsilon^{1/8}\right)\ll\sqrt{\varepsilon}

and

(\displaystyle\mathbb{P}\big{(} xA(Ah2) and x+zω{0,1}8(Aω(h1,h3,k))\displaystyle x\in A\cap(A-h_{2})\text{ and }x+z\in\bigcap_{\omega\in\{0,1\}^{8}}(A-\omega\cdot(-h_{1},h_{3},k))
:codim{y𝔽pn:Δ(h2,2h2)Φ(x,y+2z)Δ(h1,h1),(h3,2h3),(k,0)Φ(x+z,y)=1}10d)εΩ(1)ρO(1),\displaystyle:\operatorname{codim}\left\{y\in\mathbb{F}_{p}^{n}:\Delta_{(h_{2},-2h_{2})}\Phi(x,y+2z)\Delta_{(-h_{1},h_{1}),(h_{3},-2h_{3}),(k,0)}\Phi(x+z,y)=1\right\}\neq 10d\big{)}\ll\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}},

where

I(x,z,h1,h2,h3,k,y):=(\displaystyle I(x,z,h_{1},h_{2},h_{3},k,y):=\big{(} Δh1,2h2,2kB(y+2z)Δh2,h3,kB(y+z)\displaystyle\Delta_{-h_{1},-2h_{2},2k}B(y+2z)\Delta_{-h_{2},-h_{3},k}B(y+z)
Δh1,h2,2kC(x+y+2z)Δh3,kC(x+y+z)\displaystyle\Delta_{-h_{1},-h_{2},2k}C(x+y+2z)\Delta_{-h_{3},k}C(x+y+z)
Δh1,2kD(2x+y+2z)Δh2,h3,kD(2x+y+z)),\displaystyle\Delta_{-h_{1},2k}D(2x+y+2z)\Delta_{h_{2},-h_{3},k}D(2x+y+z)\big{)},

so it follows from Lemma 3.5 that the second moment equals (α2+O(ε))1(\alpha^{2}+O(\varepsilon))^{-1} times

(5.3) β16γ12δ12ρ10𝔼x,z,h1,h2,h3,kΔh1,h3,kA(x+z)Δ(h2,2h2)Φ(x,2ku)+O(εΩ(1)ρO(1)).\beta^{16}\gamma^{12}\delta^{12}\rho^{10}\mathbb{E}_{x,z,h_{1},h_{2},h_{3},k}\Delta_{-h_{1},h_{3},k}A(x+z)\Delta_{(h_{2},-2h_{2})}\Phi(x,2k-u)+O\left(\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}}\right).

To estimate the main term of (5.3), we note that

Φ(,2u)αρU6(𝔽pn×𝔽pn)=ΦαρU6(𝔽pn×𝔽pn)\|\Phi(\cdot,2\cdot-u)-\alpha\rho\|_{U^{6}(\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n})}=\|\Phi-\alpha\rho\|_{U^{6}(\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n})}

and apply Lemmas 3.6 and 4.1 again to get that

((x,z,h1,h3)(𝔽pn)4:J(x,z,h1,h3,)α4U2(𝔽pn)>ε1/8)ε\mathbb{P}\left((x,z,h_{1},h_{3})\in(\mathbb{F}_{p}^{n})^{4}:\|J(x,z,h_{1},h_{3},\cdot)-\alpha^{4}\|_{U^{2}(\mathbb{F}_{p}^{n})}>\varepsilon^{1/8}\right)\ll\sqrt{\varepsilon}

and

((x,x+h2)A×A:codim{k𝔽pn:Δ(h2,2h2)Φ(x,2ku)=1}2d)εΩ(1)ρO(1),\mathbb{P}\left((x,x+h_{2})\in A\times A:\operatorname{codim}\left\{k\in\mathbb{F}_{p}^{n}:\Delta_{(h_{2},-2h_{2})}\Phi(x,2k-u)=1\right\}\neq 2d\right)\ll\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}},

where

J(x,z,h1,h3,k):=Δh1,h3A(x+z+k).J(x,z,h_{1},h_{3},k):=\Delta_{-h_{1},h_{3}}A(x+z+k).

Thus, by Lemma 3.5, we have that

𝔼x,z,h1,h2,h3,kΔh1,h3,kA(x+z)Δ(h2,2h2)Φ(x,2ku)\mathbb{E}_{x,z,h_{1},h_{2},h_{3},k}\Delta_{-h_{1},h_{3},k}A(x+z)\Delta_{(h_{2},-2h_{2})}\Phi(x,2k-u)

equals

α4ρ2𝔼x,z,h1,h2,h3Δh2A(x)Δh1,h3A(x+z)+O(εΩ(1)ρO(1)),\alpha^{4}\rho^{2}\mathbb{E}_{x,z,h_{1},h_{2},h_{3}}\Delta_{h_{2}}A(x)\Delta_{-h_{1},h_{3}}A(x+z)+O\left(\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}}\right),

which equals

α10ρ2+O(εΩ(1)ρO(1))\alpha^{10}\rho^{2}+O\left(\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}}\right)

by Corollary 3.3. It therefore follows that the second moment is

α8β16γ12δ12ρ12+O(εΩ(1)ρO(1)).\alpha^{8}\beta^{16}\gamma^{12}\delta^{12}\rho^{12}+O\left(\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}}\right).

Thus,

𝔼x,y,h1,h2,h3x,x+h2A|μ(x,y,h1,h2,h3)α4β8γ6δ6ρ6|2εΩ(1)ρO(1),\mathbb{E}_{\begin{subarray}{c}x,y,h_{1},h_{2},h_{3}\\ x,x+h_{2}\in A\end{subarray}}\left|\mu(x,y,h_{1},h_{2},h_{3})-\alpha^{4}\beta^{8}\gamma^{6}\delta^{6}\rho^{6}\right|^{2}\ll\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}},

and we conclude that

𝔼x,y,h1,h2,h3Δ(0,h1),(h2,0),(0,2h3)f0(x,y)μ(x,y,h1,h2,h3)=α4β8γ6δ6ρ6f018+O(εΩ(1)ρO(1)).\displaystyle\mathbb{E}_{x,y,h_{1},h_{2},h_{3}}\Delta_{(0,h_{1}),(h_{2},0),(0,-2h_{3})}f_{0}(x,y)\mu(x,y,h_{1},h_{2},h_{3})=\alpha^{4}\beta^{8}\gamma^{6}\delta^{6}\rho^{6}\|f_{0}\|_{\star_{1}}^{8}+O\left(\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}}\right).

Putting everything together gives

|Λ(f0,f1,f2,f3)|8α14β20γ16δ16ρ18f018+O(εΩ(1)ρO(1)),\left|\Lambda(f_{0},f_{1},f_{2},f_{3})\right|^{8}\leq\alpha^{14}\beta^{20}\gamma^{16}\delta^{16}\rho^{18}\|f_{0}\|_{\star_{1}}^{8}+O\left(\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}}\right),

as desired.

For (2.13), we make a change of variables and apply the Cauchy–Schwarz inequality to bound |Λ(T,f1,f2,f3)|2|\Lambda(T,f_{1},f_{2},f_{3})|^{2} by

μ𝔽pn×𝔽pn(T)𝔼x,yB(y)C(x+y)Φ(x,y)|𝔼zC(x+y2z)D(2x+y2z)f1(x,yz)f3(x+z,y2z)|2.\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(T)\cdot\mathbb{E}_{x,y}B(y)C(x+y)\Phi(x,y)|\mathbb{E}_{z}C(x+y-2z)D(2x+y-2z)f_{1}(x,y-z)f_{3}(x+z,y-2z)|^{2}.

Expanding the square in the second quantity and making a change of variables yields

𝔼x,y,z,h1\displaystyle\mathbb{E}_{x,y,z,h_{1}} B(y+2z)C(x+y+z)Δ2h1C(x+yz)Δ2h1D(2x+y2z)Φ(xz,y+2z)\displaystyle B(y+2z)C(x+y+z)\Delta_{-2h_{1}}C(x+y-z)\Delta_{-2h_{1}}D(2x+y-2z)\Phi(x-z,y+2z)
Δ(0,h1)f1(xz,y+z)Δ(h1,2h1)f3(x,y).\displaystyle\Delta_{(0,-h_{1})}f_{1}(x-z,y+z)\Delta_{(h_{1},-2h_{1})}f_{3}(x,y).

By applying the Cauchy–Schwarz inequality again in the x,y,x,y, and h1h_{1} variables, the modulus squared of this is bounded above by

(5.4) 𝔼x,y,h1Δ2h1B(y)Δh1C(x+y)D(2x+y)Δ(h1,2h1)Φ(x,y)\mathbb{E}_{x,y,h_{1}}\Delta_{-2h_{1}}B(y)\Delta_{-h_{1}}C(x+y)D(2x+y)\Delta_{(h_{1},-2h_{1})}\Phi(x,y)

times

𝔼x,y,h1(\displaystyle\mathbb{E}_{x,y,h_{1}}\big{(} Δ2h1B(y)D(2x+y)Δ(h1,2h1)Φ(x,y)\displaystyle\Delta_{-2h_{1}}B(y)D(2x+y)\Delta_{(h_{1},-2h_{1})}\Phi(x,y)
|𝔼z[B(y+2z)C(x+y+z)Δ2h1C(x+yz)Δ2h1D(2x+y2z)Φ(xz,y+2z)\displaystyle|\mathbb{E}_{z}[B(y+2z)C(x+y+z)\Delta_{-2h_{1}}C(x+y-z)\Delta_{-2h_{1}}D(2x+y-2z)\Phi(x-z,y+2z)
Δ(0,h1)f1(xz,y+z)]|2).\displaystyle\ \ \ \ \ \Delta_{(0,-h_{1})}f_{1}(x-z,y+z)]|^{2}\big{)}.

Expanding the square and making a change of variables, the second factor equals

𝔼x,y,z,h1,h2\displaystyle\mathbb{E}_{x,y,z,h_{1},h_{2}} Δ2h2B(y+z)Δ2h1B(yz)Δ2h1,h2C(x+yz)Δh2C(x+y+z)\displaystyle\Delta_{2h_{2}}B(y+z)\Delta_{-2h_{1}}B(y-z)\Delta_{-2h_{1},-h_{2}}C(x+y-z)\Delta_{h_{2}}C(x+y+z)
Δ2h1,2h2D(2x+yz)D(2x+y+z)Δ(h2,h2)Φ(x,y+z)Δ(h1,2h1)Φ(x+z,yz)\displaystyle\Delta_{-2h_{1},-2h_{2}}D(2x+y-z)D(2x+y+z)\Delta_{(-h_{2},h_{2})}\Phi(x,y+z)\Delta_{(h_{1},-2h_{1})}\Phi(x+z,y-z)
Δ(0,h1),(h2,h2)f1(x,y),\displaystyle\Delta_{(0,-h_{1}),(-h_{2},h_{2})}f_{1}(x,y),

which we can write as

𝔼x,y,h1,h2Δ(0,h1),(h2,h2)f1(x,y)μ(x,y,h1,h2),\mathbb{E}_{x,y,h_{1},h_{2}}\Delta_{(0,-h_{1}),(-h_{2},h_{2})}f_{1}(x,y)\mu^{\prime}(x,y,h_{1},h_{2}),

where

μ(x,y,h1,h2):=𝔼z\displaystyle\mu^{\prime}(x,y,h_{1},h_{2}):=\mathbb{E}_{z} Δ2h2B(y+z)Δ2h1B(yz)Δ2h1,h2C(x+yz)Δh2C(x+y+z)\displaystyle\Delta_{2h_{2}}B(y+z)\Delta_{-2h_{1}}B(y-z)\Delta_{-2h_{1},-h_{2}}C(x+y-z)\Delta_{h_{2}}C(x+y+z)
Δ2h1,2h2D(2x+yz)D(2x+y+z)Δ(h2,h2)Φ(x,y+z)Δ(h1,2h1)Φ(x+z,yz).\displaystyle\Delta_{-2h_{1},-2h_{2}}D(2x+y-z)D(2x+y+z)\Delta_{(-h_{2},h_{2})}\Phi(x,y+z)\Delta_{(h_{1},-2h_{1})}\Phi(x+z,y-z).

The quantity (5.4) and the weight μ\mu^{\prime} can be analyzed in the same manner as the corresponding quantity and weight in the proof of (2.12), so that

|Λ(T,f1,f2,f3)|4α8β8γ10δ8ρ8f124+O(εΩ(1)ρO(1)).|\Lambda(T,f_{1},f_{2},f_{3})|^{4}\leq\alpha^{8}\beta^{8}\gamma^{10}\delta^{8}\rho^{8}\|f_{1}\|_{\star_{2}}^{4}+O\left(\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}}\right).

Finally, for (2.14), we make a change of variables and apply the Cauchy–Schwarz inequality to bound |Λ(T,T,f2,f3)|2|\Lambda(T,T,f_{2},f_{3})|^{2} by μ𝔽pn×𝔽pn(T)\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(T) times

𝔼x,yB(y)C(x+y)Φ(x,y)|𝔼z\displaystyle\mathbb{E}_{x,y}B(y)C(x+y)\Phi(x,y)|\mathbb{E}_{z} B(y+z)C(x+yz)D(2x+y2z)D(2x+yz)\displaystyle B(y+z)C(x+y-z)D(2x+y-2z)D(2x+y-z)
Φ(xz,y+z)f2(xz,y+2z)|2\displaystyle\Phi(x-z,y+z)f_{2}(x-z,y+2z)|^{2}

Expanding the square in the second quantity and making a change of variables yields

𝔼x,y,z,h1\displaystyle\mathbb{E}_{x,y,z,h_{1}} B(y)C(x+yz)Φ(x+z,y2z)Δh1B(yz)Δh1C(x+y2z)\displaystyle B(y)C(x+y-z)\Phi(x+z,y-2z)\Delta_{h_{1}}B(y-z)\Delta_{-h_{1}}C(x+y-2z)
Δ2h1D(2x+y2z)Δh1D(2x+yz)Δ(h1,h1)Φ(x,yz)Δ(h1,2h1)f2(x,y),\displaystyle\Delta_{-2h_{1}}D(2x+y-2z)\Delta_{-h_{1}}D(2x+y-z)\Delta_{(-h_{1},h_{1})}\Phi(x,y-z)\Delta_{(-h_{1},2h_{1})}f_{2}(x,y),

which can be written as

𝔼x,y,h1Δ(h1,2h1)f2(x,y)μ′′(x,y,h1),\mathbb{E}_{x,y,h_{1}}\Delta_{(-h_{1},2h_{1})}f_{2}(x,y)\mu^{\prime\prime}(x,y,h_{1}),

where

μ′′(x,y,h1):=𝔼z\displaystyle\mu^{\prime\prime}(x,y,h_{1}):=\mathbb{E}_{z} B(y)C(x+yz)Φ(x+z,y2z)Δh1B(yz)Δh1C(x+y2z)\displaystyle B(y)C(x+y-z)\Phi(x+z,y-2z)\Delta_{h_{1}}B(y-z)\Delta_{-h_{1}}C(x+y-2z)
Δ2h1D(2x+y2z)Δh1D(2x+yz)Δ(h1,h1)Φ(x,yz).\displaystyle\Delta_{-2h_{1}}D(2x+y-2z)\Delta_{-h_{1}}D(2x+y-z)\Delta_{(-h_{1},h_{1})}\Phi(x,y-z).

This weight can again be analyzed in the same manner as the weights appearing in the proof of (2.12), giving

|Λ(T,T,f2,f3)|2αβ3γ3δ4ρ3f232+O(εΩ(1)ρO(1)),|\Lambda(T,T,f_{2},f_{3})|^{2}\leq\alpha\beta^{3}\gamma^{3}\delta^{4}\rho^{3}\|f_{2}\|_{\star_{3}}^{2}+O\left(\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}}\right),

and completing the proof of the lemma. ∎

6. Obtaining a density-increment

As was mentioned in Section 2, one ingredient in the proof of Theorem 2.5 is an inverse theorem for the U2(Φ(x,))U^{2}(\Phi(x,\cdot))-norm localized to pseudorandom sets. Applying the standard, nonlocalized inverse theorem for the U2(Φ(x,))U^{2}(\Phi(x,\cdot))-norm would yield a density-increment that gets weaker as TT becomes sparser, which is inadequate to close the density-increment iteration. To get a strong enough localized version of this inverse theorem, we will need to use the transference principle. The particular instance of it required is an immediate consequence of the dense model lemma from [24], which appears as Lemma 3.3 in that paper.

Lemma 6.1 (Dense model lemma for the UsU^{s}-norm on subspaces).

For every natural number ss, there exists a constant cs>0c_{s}>0 such that the following holds. Let ε>0\varepsilon>0, V𝔽pnV\leq\mathbb{F}_{p}^{n} be a subspace, and f,ν:V[0,)f,\nu:V\to[0,\infty) be functions satisfying

  1. (1)

    0fν0\leq f\leq\nu,

  2. (2)

    𝔼xVf(x)1\mathbb{E}_{x\in V}f(x)\leq 1, and

  3. (3)

    ν1Us(V)exp(εcs)\|\nu-1\|_{U^{s}(V)}\leq\exp(-\varepsilon^{-c_{s}}).

Then there exists a f~:V[0,1]\tilde{f}:V\to[0,1] such that 𝔼xVf(x)=𝔼xVf~(x)\mathbb{E}_{x\in V}f(x)=\mathbb{E}_{x\in V}\tilde{f}(x) and ff~Us(V)ε\|f-\tilde{f}\|_{U^{s}(V)}\leq\varepsilon.

One can see that this lemma is a consequence of Zhao’s lemma by using the Gowers–Cauchy–Schwarz inequality to translate between his (s,ε)(s,\varepsilon)-discrepancy pair condition and our UsU^{s}-uniformity condition.

In the course of the proof of Theorem 2.5, we will encounter various averages of linear forms that turn out to be controlled by certain degree 11 and 22 directional uniformity norms. Because of this, we will also need to obtain a density increment when these norms of the balanced function gS=Sσg_{S}=S-\sigma are large. The first two subsections of this section are devoted to proving that this is possible.

6.1. Results on degree 11 norms

We first show that the relevant fibers of any set of the form (2.7) typically have close to their average density, provided that A,B,C,D,A,B,C,D, and Φ\Phi are sufficiently pseduorandom.

Lemma 6.2.

Let dd be a nonnegative integer, and set ρ:=pd\rho:=p^{-d}. Suppose that A,B,C,D𝔽pnA,B,C,D\subset\mathbb{F}_{p}^{n} have densities α,β,γ,δ\alpha,\beta,\gamma,\delta, respectively, and that Φ𝔽pn×𝔽pn\Phi\subset\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} has density αρ\alpha\rho in 𝔽pn×𝔽pn\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} and takes the form

Φ={(x,y)A×𝔽pn:yu+Vx},\Phi=\{(x,y)\in A\times\mathbb{F}_{p}^{n}:y\in u+V_{x}\},

where each VxV_{x} is a subspace of 𝔽pn\mathbb{F}_{p}^{n} of codimension dd. Let ε>0\varepsilon>0 and assume that

AαU5(𝔽pn),BβU5(𝔽pn),CγU5(𝔽pn),DδU5(𝔽pn),ΦαρU2(𝔽pn×𝔽pn)<ε.\|A-\alpha\|_{U^{5}(\mathbb{F}_{p}^{n})},\|B-\beta\|_{U^{5}(\mathbb{F}_{p}^{n})},\|C-\gamma\|_{U^{5}(\mathbb{F}_{p}^{n})},\|D-\delta\|_{U^{5}(\mathbb{F}_{p}^{n})},\|\Phi-\alpha\rho\|_{U^{2}(\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n})}<\varepsilon.

Define TT by (2.7). Then

(xA:|μ𝔽pn(T(x,))βγδρ|>ε)ε1/8(ε)2α,\mathbb{P}\left(x\in A:|\mu_{\mathbb{F}_{p}^{n}}(T(x,\cdot))-\beta\gamma\delta\rho|>\varepsilon^{\prime}\right)\ll\frac{\varepsilon^{1/8}}{(\varepsilon^{\prime})^{2}\alpha},
(yB:|μ𝔽pn(T(,y))αγδρ|>ε)ε1/8(ε)2β,\mathbb{P}\left(y\in B:|\mu_{\mathbb{F}_{p}^{n}}(T(\cdot,y))-\alpha\gamma\delta\rho|>\varepsilon^{\prime}\right)\ll\frac{\varepsilon^{1/8}}{(\varepsilon^{\prime})^{2}\beta},
(zC:|μ𝔽pn(T(,z))αβδρ|>ε)ε1/8(ε)2γ\mathbb{P}\left(z\in C:|\mu_{\mathbb{F}_{p}^{n}}(T(\cdot,z-\cdot))-\alpha\beta\delta\rho|>\varepsilon^{\prime}\right)\ll\frac{\varepsilon^{1/8}}{(\varepsilon^{\prime})^{2}\gamma}

and

(wD:|μ𝔽pn(T(,w2))αβγρ|>ε)ε1/8(ε)2δ\mathbb{P}\left(w\in D:|\mu_{\mathbb{F}_{p}^{n}}(T(\cdot,w-2\cdot))-\alpha\beta\gamma\rho|>\varepsilon^{\prime}\right)\ll\frac{\varepsilon^{1/8}}{(\varepsilon^{\prime})^{2}\delta}

for any ε>0\varepsilon^{\prime}>0.

Proof.

From Lemma 5.1, we have 𝔼xAμ𝔽pn(T(x,))=βγδρ+O(ε1/8/α)\mathbb{E}_{x\in A}\mu_{\mathbb{F}_{p}^{n}}(T(x,\cdot))=\beta\gamma\delta\rho+O\left(\varepsilon^{1/8}/\alpha\right). For the second moment, we argue as in Section 5 to estimate

𝔼xA(x)|𝔼yB(y)C(x+y)D(2x+y)Φ(x,y)|2=αβ2γ2δ2ρ2+O(ε1/8)\mathbb{E}_{x}A(x)\left|\mathbb{E}_{y}B(y)C(x+y)D(2x+y)\Phi(x,y)\right|^{2}=\alpha\beta^{2}\gamma^{2}\delta^{2}\rho^{2}+O(\varepsilon^{1/8})

using Lemmas 3.5 and 3.6, giving 𝔼xAμ𝔽pn(T(x,))2=β2γ2δ2ρ2+O(ε1/8/α)\mathbb{E}_{x\in A}\mu_{\mathbb{F}_{p}^{n}}(T(x,\cdot))^{2}=\beta^{2}\gamma^{2}\delta^{2}\rho^{2}+O\left(\varepsilon^{1/8}/\alpha\right). It now follows from Markov’s inequality that

(xA:|μ𝔽pn(T(x,))βγδρ|>ε)ε1/8(ε)2α\mathbb{P}\left(x\in A:|\mu_{\mathbb{F}_{p}^{n}}(T(x,\cdot))-\beta\gamma\delta\rho|>\varepsilon^{\prime}\right)\ll\frac{\varepsilon^{1/8}}{(\varepsilon^{\prime})^{2}\alpha}

for all ε>0\varepsilon^{\prime}>0. The three other estimates are proved analogously. ∎

Now we can obtain a density-increment when the degree 11 uniformity norms controlled by 1\|\cdot\|_{\star_{1}} and 2\|\cdot\|_{\star_{2}} are large. The proof is essentially an averaging argument, like the proof of the analogous Lemma 3.1 in [12]. The most substantial new feature, which will arise many times in this section, is that we must now verify that the set on which we claim to have found a density-increment actually has close to the correct density in 𝔽pn×𝔽pn\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}. In the case of corners, any product set A×BA\times B trivially has density equal to the product of the densities of AA and BB. This is not, in general, the case for sets of the form (2.7) unless further assumptions are made about A,B,C,D,A,B,C,D, and Φ\Phi.

Lemma 6.3.

There exist absolute constants 0<c1<1<c20<c_{1}<1<c_{2} such that the following holds. Let dd be a nonnegative integer, and set ρ:=pd\rho:=p^{-d}. Suppose that A,B,C,D𝔽pnA,B,C,D\subset\mathbb{F}_{p}^{n} have densities α,β,γ,δ\alpha,\beta,\gamma,\delta, respectively, and that Φ𝔽pn×𝔽pn\Phi\subset\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} takes the form

Φ={(x,y)A×𝔽pn:yu+Vx},\Phi=\{(x,y)\in A\times\mathbb{F}_{p}^{n}:y\in u+V_{x}\},

where each VxV_{x} is a subspace of 𝔽pn\mathbb{F}_{p}^{n} of codimension dd. Let τ>0\tau>0 and εc1(ταβγδρ)c2\varepsilon\leq c_{1}(\tau\alpha\beta\gamma\delta\rho)^{c_{2}}, and assume that

AαU5(𝔽pn),BβU5(𝔽pn),CγU5(𝔽pn),DδU5(𝔽pn),Φ0ρU2(𝔽pn×𝔽pn)<ε.\|A-\alpha\|_{U^{5}(\mathbb{F}_{p}^{n})},\|B-\beta\|_{U^{5}(\mathbb{F}_{p}^{n})},\|C-\gamma\|_{U^{5}(\mathbb{F}_{p}^{n})},\|D-\delta\|_{U^{5}(\mathbb{F}_{p}^{n})},\|\Phi_{0}-\rho\|_{U^{2}(\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n})}<\varepsilon.

Define TT by (2.7), and let STS\subset T have density σ\sigma in TT. Suppose that

(6.1) 𝔼x,y,hΔ(0,h)gS(x,y)ταβ2γ2δ2ρ2,\mathbb{E}_{x,y,h}\Delta_{(0,h)}g_{S}(x,y)\geq\tau\alpha\beta^{2}\gamma^{2}\delta^{2}\rho^{2},
(6.2) 𝔼x,y,hΔ(h,0)gS(x,y)τα2βγ2δ2ρ2,\mathbb{E}_{x,y,h}\Delta_{(h,0)}g_{S}(x,y)\geq\tau\alpha^{2}\beta\gamma^{2}\delta^{2}\rho^{2},

or

(6.3) 𝔼x,y,hΔ(h,h)gS(x,y)τα2β2γδ2ρ2.\mathbb{E}_{x,y,h}\Delta_{(-h,h)}g_{S}(x,y)\geq\tau\alpha^{2}\beta^{2}\gamma\delta^{2}\rho^{2}.

Then SS has density at least σ+Ω(τO(1))\sigma+\Omega(\tau^{O(1)}) on some subset TT^{\prime} of TT of the form

T={(x,y)𝔽pn×𝔽pn:A(x)B(y)C(x+y)D(2x+y)Φ(x,y)=1},T^{\prime}=\left\{(x,y)\in\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}:A^{\prime}(x)B^{\prime}(y)C^{\prime}(x+y)D(2x+y)\Phi(x,y)=1\right\},

where the densities of A,B,C𝔽pnA^{\prime},B^{\prime},C^{\prime}\subset\mathbb{F}_{p}^{n} are Ω(τO(1)α)\Omega(\tau^{O(1)}\alpha), Ω(τO(1)β)\Omega(\tau^{O(1)}\beta), and Ω(τO(1)γ)\Omega(\tau^{O(1)}\gamma), respectively.

Proof.

The assumption (6.1) can be written as

𝔼xA|𝔼ygS(x,y)|2τβ2γ2δ2ρ2.\mathbb{E}_{x\in A}|\mathbb{E}_{y}g_{S}(x,y)|^{2}\geq\tau\beta^{2}\gamma^{2}\delta^{2}\rho^{2}.

Since μ𝔽pn(T(x,))>2βγδρ\mu_{\mathbb{F}_{p}^{n}}(T(x,\cdot))>2\beta\gamma\delta\rho for at most a O(ε1/8/α3β2γ2δ2ρ2)O(\varepsilon^{1/8}/\alpha^{3}\beta^{2}\gamma^{2}\delta^{2}\rho^{2})-proportion of xAx\in A by Lemma 6.2, it follows that, as long as c2c_{2} is sufficiently large, there exists a subset A0AA_{0}\subset A of relative density at least τ/4\tau/4 for which

|𝔼ygS(x,y)|τβγδρ4\left|\mathbb{E}_{y}g_{S}(x,y)\right|\geq\frac{\sqrt{\tau}\beta\gamma\delta\rho}{4}

for all xA0x\in A_{0}, provided that c1c_{1} is small enough and c2c_{2} is large enough. Note that 𝔼ygS(x,y)\mathbb{E}_{y}g_{S}(x,y) is a real number, and thus is either positive or negative. There must therefore exist a subset A1A0A_{1}\subset A_{0} of density at least 1/21/2 in A0A_{0} such that either

𝔼ygS(x,y)τβγδρ4\mathbb{E}_{y}g_{S}(x,y)\geq\frac{\sqrt{\tau}\beta\gamma\delta\rho}{4}

for every xA1x\in A_{1} or

𝔼ygS(x,y)τβγδρ4\mathbb{E}_{y}g_{S}(x,y)\leq-\frac{\sqrt{\tau}\beta\gamma\delta\rho}{4}

for every xA1x\in A_{1}.

In the first case, setting A=A1A^{\prime}=A_{1} and α=μ𝔽pn(A)\alpha^{\prime}=\mu_{\mathbb{F}_{p}^{n}}(A^{\prime}), we have

|𝔼xA𝔼ygS(x,y)(𝔼xA𝔼yS(x,y)σβγδρ)|<τβγδρ8\left|\mathbb{E}_{x\in A^{\prime}}\mathbb{E}_{y}g_{S}(x,y)-\left(\mathbb{E}_{x\in A^{\prime}}\mathbb{E}_{y}S(x,y)-\sigma\beta\gamma\delta\rho\right)\right|<\frac{\sqrt{\tau}\beta\gamma\delta\rho}{8}

by Lemma 6.2 whenever c1c_{1} is small enough and c2c_{2} is large enough, so that

𝔼x,yA(x)S(x,y)>(σ+τ8)αβγδρ.\mathbb{E}_{x,y}A^{\prime}(x)S(x,y)>\left(\sigma+\frac{\sqrt{\tau}}{8}\right)\alpha^{\prime}\beta\gamma\delta\rho.

Since 𝔼x,yA(x)B(y)C(x+y)D(2x+y)Φ(x,y)=αβγδρ+O(ε1/16/α)\mathbb{E}_{x,y}A^{\prime}(x)B(y)C(x+y)D(2x+y)\Phi(x,y)=\alpha^{\prime}\beta\gamma\delta\rho+O(\varepsilon^{1/16}/\alpha) by Lemma 6.2, the conclusion of the lemma follows when c1c_{1} is small enough and c2c_{2} is large enough by taking B=BB^{\prime}=B.

In the second case, setting A=AA1A^{\prime}=A\setminus A_{1} and α=μ𝔽pn(A)\alpha^{\prime}=\mu_{\mathbb{F}_{p}^{n}}(A^{\prime}), we use the fact that 𝔼x,ygS(x,y)=0\mathbb{E}_{x,y}g_{S}(x,y)=0 to deduce that

𝔼xA𝔼ygS(x,y)τ3/2βγδρ16\mathbb{E}_{x\in A^{\prime}}\mathbb{E}_{y}g_{S}(x,y)\geq\frac{\tau^{3/2}\beta\gamma\delta\rho}{16}

whenever c1c_{1} is small enough and c2c_{2} is large enough. Note that 𝔼x,yA(x)B(y)C(x+y)D(2x+y)Φ(x,y)=αβγδρ+O(ε1/16/α)\mathbb{E}_{x,y}A^{\prime}(x)B(y)C(x+y)D(2x+y)\Phi(x,y)=\alpha^{\prime}\beta\gamma\delta\rho+O(\varepsilon^{1/16}/\alpha) in this case as well by Lemma 6.2, so the conclusion of the lemma will follow as long as α=Ω(τO(1)α)\alpha^{\prime}=\Omega(\tau^{O(1)}\alpha). But this also follows from Lemma 6.2, for we have

τα(βγδρ)+O(ε1/16)|𝔼xA1(x)gS(x,y)|=|𝔼xA(x)gS(x,y)|=α(βγδρ)+O(αε1/16/α).\tau\alpha(\beta\gamma\delta\rho)+O(\varepsilon^{1/16})\ll\left|\mathbb{E}_{x}A_{1}(x)g_{S}(x,y)\right|=\left|\mathbb{E}_{x}A^{\prime}(x)g_{S}(x,y)\right|=\alpha^{\prime}(\beta\gamma\delta\rho)+O(\alpha^{\prime}\varepsilon^{1/16}/\alpha).

The proof of the lemma starting from the assumptions (6.2) and (6.3) is essentially identical, but using the second and third probability estimates from Lemma 6.2, respectively. ∎

6.2. Results on degree 22 norms

To obtain a density-increment when the relevant degree 22 directional uniformity norms of gSg_{S} are large, we first need to show that certain degree 22 “inner products” are controlled by the degree 11 directional uniformity norms studied in the previous subsection.

Lemma 6.4.

Let dd be a nonnegative integer, and set ρ:=pd\rho:=p^{-d}. Suppose that A,B,C,D𝔽pnA,B,C,D\subset\mathbb{F}_{p}^{n} have densities α,β,γ,δ\alpha,\beta,\gamma,\delta, respectively, and that Φ𝔽pn×𝔽pn\Phi\subset\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} takes the form

Φ={(x,y)A×𝔽pn:yu+Vx},\Phi=\left\{(x,y)\in A\times\mathbb{F}_{p}^{n}:y\in u+V_{x}\right\},

where each VxV_{x} is a subspace of 𝔽pn\mathbb{F}_{p}^{n} of codimension dd. Let ε>0\varepsilon>0 and assume that

AαU8(𝔽pn),BβU8(𝔽pn),CγU8(𝔽pn),DδU8(𝔽pn),ΦαρU4(𝔽pn×𝔽pn)<ε.\|A-\alpha\|_{U^{8}(\mathbb{F}_{p}^{n})},\|B-\beta\|_{U^{8}(\mathbb{F}_{p}^{n})},\|C-\gamma\|_{U^{8}(\mathbb{F}_{p}^{n})},\|D-\delta\|_{U^{8}(\mathbb{F}_{p}^{n})},\|\Phi-\alpha\rho\|_{U^{4}(\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n})}<\varepsilon.

Define TT by (2.7), and let STS\subset T and τ>0\tau>0.

If

(6.4) |𝔼x,y,h,kω{0,1}2gω((x,y)+ω((0,h),(0,k)))|ταβ4γ4δ4ρ3,\left|\mathbb{E}_{x,y,h,k}\prod_{\omega\in\{0,1\}^{2}}g_{\omega}((x,y)+\omega\cdot((0,h),(0,k)))\right|\geq\tau\alpha\beta^{4}\gamma^{4}\delta^{4}\rho^{3},

where gωg_{\omega} equals TT or gSg_{S} for all ω{0,1}2\omega\in\{0,1\}^{2}, at least one gωg_{\omega} equals gSg_{S}, and at least one gωg_{\omega} equals TT, then

𝔼x,y,hΔ(0,h)gS(x,y)τ2αβ2γ2δ2ρ2+O(εΩ(1)(αβγδρ)O(1)).\mathbb{E}_{x,y,h}\Delta_{(0,h)}g_{S}(x,y)\geq\tau^{2}\alpha\beta^{2}\gamma^{2}\delta^{2}\rho^{2}+O\left(\frac{\varepsilon^{\Omega(1)}}{(\alpha\beta\gamma\delta\rho)^{O(1)}}\right).

If

(6.5) |𝔼x,y,h,kω{0,1}2gω((x,y)+ω((h,0),(0,k)))|τα2β2γ4δ4ρ4,\left|\mathbb{E}_{x,y,h,k}\prod_{\omega\in\{0,1\}^{2}}g_{\omega}((x,y)+\omega\cdot((h,0),(0,k)))\right|\geq\tau\alpha^{2}\beta^{2}\gamma^{4}\delta^{4}\rho^{4},

where gωg_{\omega} equals TT or gSg_{S} for all ω{0,1}2\omega\in\{0,1\}^{2}, at least one gωg_{\omega} equals gSg_{S}, and at least one gωg_{\omega} equals TT, then

𝔼x,y,hΔ(0,h)gS(x,y)τ2αβ2γ2δ2ρ2+O(εΩ(1)(αβγδρ)O(1))\mathbb{E}_{x,y,h}\Delta_{(0,h)}g_{S}(x,y)\geq\tau^{2}\alpha\beta^{2}\gamma^{2}\delta^{2}\rho^{2}+O\left(\frac{\varepsilon^{\Omega(1)}}{(\alpha\beta\gamma\delta\rho)^{O(1)}}\right)

or

𝔼x,y,hΔ(h,0)gS(x,y)τ2α2βγ2δ2ρ2+O(εΩ(1)(αβγδρ)O(1)).\mathbb{E}_{x,y,h}\Delta_{(h,0)}g_{S}(x,y)\geq\tau^{2}\alpha^{2}\beta\gamma^{2}\delta^{2}\rho^{2}+O\left(\frac{\varepsilon^{\Omega(1)}}{(\alpha\beta\gamma\delta\rho)^{O(1)}}\right).

If

(6.6) |𝔼x,y,h,kω{0,1}2gω((x,y)+ω((0,h),(k,k)))|τα2β4γ2δ4ρ4,\left|\mathbb{E}_{x,y,h,k}\prod_{\omega\in\{0,1\}^{2}}g_{\omega}((x,y)+\omega\cdot((0,h),(-k,k)))\right|\geq\tau\alpha^{2}\beta^{4}\gamma^{2}\delta^{4}\rho^{4},

where gωg_{\omega} equals TT or gSg_{S} for all ω{0,1}2\omega\in\{0,1\}^{2}, at least one gωg_{\omega} equals gSg_{S}, and at least one gωg_{\omega} equals TT, then

𝔼x,y,hΔ(0,h)gS(x,y)τ2αβ2γ2δ2ρ2+O(εΩ(1)(αβγδρ)O(1)),\mathbb{E}_{x,y,h}\Delta_{(0,h)}g_{S}(x,y)\geq\tau^{2}\alpha\beta^{2}\gamma^{2}\delta^{2}\rho^{2}+O\left(\frac{\varepsilon^{\Omega(1)}}{(\alpha\beta\gamma\delta\rho)^{O(1)}}\right),

or

𝔼x,y,hΔ(h,h)gS(x,y)τ2α2β2γδ2ρ2+O(εΩ(1)(αβγδρ)O(1)).\mathbb{E}_{x,y,h}\Delta_{(-h,h)}g_{S}(x,y)\geq\tau^{2}\alpha^{2}\beta^{2}\gamma\delta^{2}\rho^{2}+O\left(\frac{\varepsilon^{\Omega(1)}}{(\alpha\beta\gamma\delta\rho)^{O(1)}}\right).
Proof.

We rewrite the various assumptions that (6.4), (6.5), and (6.6) hold when at least two of the gωg_{\omega}’s equal TT as

|𝔼x,y,hgS(x,y)gS(x,y+h)μ1(x,y,h)|ταβ4γ4δ4ρ3,\left|\mathbb{E}_{x,y,h}g_{S}(x,y)g_{S}(x,y+h)\mu_{1}(x,y,h)\right|\geq\tau\alpha\beta^{4}\gamma^{4}\delta^{4}\rho^{3},
|𝔼x,ygS(x,y)μ2(x,y)|ταβ4γ4δ4ρ3,\left|\mathbb{E}_{x,y}g_{S}(x,y)\mu_{2}(x,y)\right|\geq\tau\alpha\beta^{4}\gamma^{4}\delta^{4}\rho^{3},
|𝔼x,y,kgS(x,y)gS(x,y+k)μ3(x,y,k)|τα2β2γ4δ4ρ4,\left|\mathbb{E}_{x,y,k}g_{S}(x,y)g_{S}(x,y+k)\mu_{3}(x,y,k)\right|\geq\tau\alpha^{2}\beta^{2}\gamma^{4}\delta^{4}\rho^{4},
|𝔼x,y,hgS(x,y)gS(x+h,y)μ4(x,y,h)|τα2β2γ4δ4ρ4,\left|\mathbb{E}_{x,y,h}g_{S}(x,y)g_{S}(x+h,y)\mu_{4}(x,y,h)\right|\geq\tau\alpha^{2}\beta^{2}\gamma^{4}\delta^{4}\rho^{4},
|𝔼x,ygS(x,y)μ5(x,y)|τα2β2γ4δ4ρ4,\left|\mathbb{E}_{x,y}g_{S}(x,y)\mu_{5}(x,y)\right|\geq\tau\alpha^{2}\beta^{2}\gamma^{4}\delta^{4}\rho^{4},
|𝔼x,y,hgS(x,y)gS(x,y+h)μ6(x,y,h)|τα2β4γ2δ4ρ4,\left|\mathbb{E}_{x,y,h}g_{S}(x,y)g_{S}(x,y+h)\mu_{6}(x,y,h)\right|\geq\tau\alpha^{2}\beta^{4}\gamma^{2}\delta^{4}\rho^{4},
|𝔼x,y,kgS(x,y)gS(xk,y+k)μ7(x,y,k)|τα2β4γ2δ4ρ4,\left|\mathbb{E}_{x,y,k}g_{S}(x,y)g_{S}(x-k,y+k)\mu_{7}(x,y,k)\right|\geq\tau\alpha^{2}\beta^{4}\gamma^{2}\delta^{4}\rho^{4},

and

|𝔼x,ygS(x,y)μ8(x,y)|τα2β4γ2δ4ρ4,\left|\mathbb{E}_{x,y}g_{S}(x,y)\mu_{8}(x,y)\right|\geq\tau\alpha^{2}\beta^{4}\gamma^{2}\delta^{4}\rho^{4},

where

μ1(x,y,h)=𝔼kT(x,y+k)T(x,y+h+k),\mu_{1}(x,y,h)=\mathbb{E}_{k}T(x,y+k)T(x,y+h+k),
μ2(x,y)=𝔼h,kT(x,y+h)T(x,y+k)T(x,y+h+k),\mu_{2}(x,y)=\mathbb{E}_{h,k}T(x,y+h)T(x,y+k)T(x,y+h+k),
μ3(x,y,k)=𝔼hT(x+h,y)T(x+h,y+k),\mu_{3}(x,y,k)=\mathbb{E}_{h}T(x+h,y)T(x+h,y+k),
μ4(x,y,h)=𝔼kT(x,y+k)T(x+h,y+k),\mu_{4}(x,y,h)=\mathbb{E}_{k}T(x,y+k)T(x+h,y+k),
μ5(x,y)=𝔼h,kT(x+h,y)T(x,y+k)T(x+h,y+k),\mu_{5}(x,y)=\mathbb{E}_{h,k}T(x+h,y)T(x,y+k)T(x+h,y+k),
μ6(x,y,h)=𝔼kT(xk,y+k)T(xk,y+h+k),\mu_{6}(x,y,h)=\mathbb{E}_{k}T(x-k,y+k)T(x-k,y+h+k),
μ7(x,y,k)=𝔼hT(x,y+h)T(xk,y+h+k),\mu_{7}(x,y,k)=\mathbb{E}_{h}T(x,y+h)T(x-k,y+h+k),

and

μ8(x,y)=𝔼h,kT(x,y+h)T(xk,y+k)T(xk,y+h+k).\mu_{8}(x,y)=\mathbb{E}_{h,k}T(x,y+h)T(x-k,y+k)T(x-k,y+h+k).

Using the definition (2.7) of TT and arguing as in Section 5 using Lemmas 3.53.6, and 4.1 gives that each of μ1,,μ8\mu_{1},\dots,\mu_{8} is typically very close to its average value on its support. Precisely, we have the estimates

𝔼x,y,hA(x)Φ(x,hu)|μ1(x,y,h)β2γ2δ2ρ|2εΩ(1)ρO(1),\mathbb{E}_{x,y,h}A(x)\Phi(x,h-u)|\mu_{1}(x,y,h)-\beta^{2}\gamma^{2}\delta^{2}\rho|^{2}\ll\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}},
𝔼x,yA(x)Φ(x,y)|μ2(x,y)β3γ3δ3ρ2|2εΩ(1)ρO(1),\mathbb{E}_{x,y}A(x)\Phi(x,y)|\mu_{2}(x,y)-\beta^{3}\gamma^{3}\delta^{3}\rho^{2}|^{2}\ll\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}},
𝔼x,y,kB(y)B(y+k)|μ3(x,y,k)αγ2δ2ρ2|2εΩ(1)ρO(1),\mathbb{E}_{x,y,k}B(y)B(y+k)|\mu_{3}(x,y,k)-\alpha\gamma^{2}\delta^{2}\rho^{2}|^{2}\ll\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}},
𝔼x,y,hA(x)A(x+h)|μ4(x,y,h)βγ2δ2ρ2|2εΩ(1)ρO(1),\mathbb{E}_{x,y,h}A(x)A(x+h)|\mu_{4}(x,y,h)-\beta\gamma^{2}\delta^{2}\rho^{2}|^{2}\ll\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}},
𝔼x,yA(x)B(y)|μ5(x,y)β2γ3δ3ρ3|2εΩ(1)ρO(1),\mathbb{E}_{x,y}A(x)B(y)|\mu_{5}(x,y)-\beta^{2}\gamma^{3}\delta^{3}\rho^{3}|^{2}\ll\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}},
𝔼x,y,hC(x+y)C(x+y+h)|μ6(x,y,h)αβ2δ2ρ2|2εΩ(1)ρO(1),\mathbb{E}_{x,y,h}C(x+y)C(x+y+h)|\mu_{6}(x,y,h)-\alpha\beta^{2}\delta^{2}\rho^{2}|^{2}\ll\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}},
𝔼x,y,kA(x)A(xk)|μ7(x,y,k)β2γδ2ρ2|2εΩ(1)ρO(1),\mathbb{E}_{x,y,k}A(x)A(x-k)|\mu_{7}(x,y,k)-\beta^{2}\gamma\delta^{2}\rho^{2}|^{2}\ll\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}},

and

𝔼x,yA(x)C(x+y)|μ8(x,y)αβ3γδ3ρ3|2εΩ(1)ρO(1),\mathbb{E}_{x,y}A(x)C(x+y)|\mu_{8}(x,y)-\alpha\beta^{3}\gamma\delta^{3}\rho^{3}|^{2}\ll\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}},

which imply that

|𝔼x,y,hgS(x,y)gS(x,y+h)μ1(x,y,h)|=β2γ2δ2ρ𝔼x,y,hgS(x,y)gS(x,y+h)+O(εΩ(1)ρO(1)),\left|\mathbb{E}_{x,y,h}g_{S}(x,y)g_{S}(x,y+h)\mu_{1}(x,y,h)\right|=\beta^{2}\gamma^{2}\delta^{2}\rho\mathbb{E}_{x,y,h}g_{S}(x,y)g_{S}(x,y+h)+O\left(\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}}\right),
|𝔼x,ygS(x,y)μ2(x,y)|=β3γ3δ3ρ2|𝔼x,ygS(x,y)|+O(εΩ(1)ρO(1)),\left|\mathbb{E}_{x,y}g_{S}(x,y)\mu_{2}(x,y)\right|=\beta^{3}\gamma^{3}\delta^{3}\rho^{2}|\mathbb{E}_{x,y}g_{S}(x,y)|+O\left(\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}}\right),
|𝔼x,y,kgS(x,y)gS(x,y+k)μ3(x,y,k)|=αγ2δ2ρ2𝔼x,y,kgS(x,y)gS(x,y+k)+O(εΩ(1)ρO(1)),\left|\mathbb{E}_{x,y,k}g_{S}(x,y)g_{S}(x,y+k)\mu_{3}(x,y,k)\right|=\alpha\gamma^{2}\delta^{2}\rho^{2}\mathbb{E}_{x,y,k}g_{S}(x,y)g_{S}(x,y+k)+O\left(\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}}\right),
|𝔼x,y,hgS(x,y)gS(x+h,y)μ4(x,y,h)|=βγ2δ2ρ2𝔼x,y,hgS(x,y)gS(x+h,y)+O(εΩ(1)ρO(1)),\left|\mathbb{E}_{x,y,h}g_{S}(x,y)g_{S}(x+h,y)\mu_{4}(x,y,h)\right|=\beta\gamma^{2}\delta^{2}\rho^{2}\mathbb{E}_{x,y,h}g_{S}(x,y)g_{S}(x+h,y)+O\left(\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}}\right),
|𝔼x,ygS(x,y)μ5(x,y)|=β2γ3δ3ρ3|𝔼x,ygS(x,y)|+O(εΩ(1)ρO(1)),\left|\mathbb{E}_{x,y}g_{S}(x,y)\mu_{5}(x,y)\right|=\beta^{2}\gamma^{3}\delta^{3}\rho^{3}|\mathbb{E}_{x,y}g_{S}(x,y)|+O\left(\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}}\right),
|𝔼x,y,hgS(x,y)gS(x,y+h)μ6(x,y,h)|=αβ2δ2ρ2𝔼x,y,hgS(x,y)gS(x,y+h)+O(εΩ(1)ρO(1)),\left|\mathbb{E}_{x,y,h}g_{S}(x,y)g_{S}(x,y+h)\mu_{6}(x,y,h)\right|=\alpha\beta^{2}\delta^{2}\rho^{2}\mathbb{E}_{x,y,h}g_{S}(x,y)g_{S}(x,y+h)+O\left(\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}}\right),
|𝔼x,y,kgS(x,y)gS(xk,y+k)μ7(x,y,k)|=β2γδ2ρ2𝔼x,y,kgS(x,y)gS(xk,y+k)+O(εΩ(1)ρO(1)),\left|\mathbb{E}_{x,y,k}g_{S}(x,y)g_{S}(x-k,y+k)\mu_{7}(x,y,k)\right|=\beta^{2}\gamma\delta^{2}\rho^{2}\mathbb{E}_{x,y,k}g_{S}(x,y)g_{S}(x-k,y+k)+O\left(\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}}\right),

and

|𝔼x,ygS(x,y)μ8(x,y)|=αβ3γδ3ρ3|𝔼x,ygS(x,y)|+O(εΩ(1)ρO(1)).\left|\mathbb{E}_{x,y}g_{S}(x,y)\mu_{8}(x,y)\right|=\alpha\beta^{3}\gamma\delta^{3}\rho^{3}\left|\mathbb{E}_{x,y}g_{S}(x,y)\right|+O\left(\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}}\right).

Since |𝔼x,ygS(x,y)|2α𝔼x,y,hgS(x,y)gS(x,y+h)|\mathbb{E}_{x,y}g_{S}(x,y)|^{2}\leq\alpha\mathbb{E}_{x,y,h}g_{S}(x,y)g_{S}(x,y+h) by an application of the Cauchy–Schwarz inequality, the conclusion of the lemma easily follows starting from any one of the assumptions (6.4), (6.5), or (6.6) when at least two of the gωg_{\omega}’s equal TT.

To prove the lemma when only one gωg_{\omega} in (6.4), (6.5), or (6.6) equals TT, we will apply the Cauchy–Schwarz inequality once, and then argue analogously. By making a change of variables, we may start from the assumption that

|𝔼x,y,h,kgS(x,y)gS(x,y+h)gS(x,y+k)T(x,y+h+k)|ταβ4γ4δ4ρ3,\left|\mathbb{E}_{x,y,h,k}g_{S}(x,y)g_{S}(x,y+h)g_{S}(x,y+k)T(x,y+h+k)\right|\geq\tau\alpha\beta^{4}\gamma^{4}\delta^{4}\rho^{3},
|𝔼x,y,h,kgS(x,y)gS(x+h,y)gS(x,y+k)T(x+h,y+k)|τα2β2γ4δ4ρ4,\left|\mathbb{E}_{x,y,h,k}g_{S}(x,y)g_{S}(x+h,y)g_{S}(x,y+k)T(x+h,y+k)\right|\geq\tau\alpha^{2}\beta^{2}\gamma^{4}\delta^{4}\rho^{4},

or

|𝔼x,y,h,kgS(x,y)gS(x,y+h)gS(xk,y+k)T(xk,y+h+k)|τα2β4γ2δ4ρ4.\left|\mathbb{E}_{x,y,h,k}g_{S}(x,y)g_{S}(x,y+h)g_{S}(x-k,y+k)T(x-k,y+h+k)\right|\geq\tau\alpha^{2}\beta^{4}\gamma^{2}\delta^{4}\rho^{4}.

We apply the Cauchy–Schwarz inequality in each of these three cases to get that

(6.7) 𝔼x,y,h|𝔼kgS(x,y+k)T(x,y+h+k)|2ΔhB(y)ΔhC(x+y)ΔhD(2x+y)Φ(x,y)\mathbb{E}_{x,y,h}\left|\mathbb{E}_{k}g_{S}(x,y+k)T(x,y+h+k)\right|^{2}\Delta_{h}B(y)\Delta_{h}C(x+y)\Delta_{h}D(2x+y)\Phi(x,y)

times 𝔼x,y,hΔ(0,h)T(x,y)\mathbb{E}_{x,y,h}\Delta_{(0,h)}T(x,y) is at least τ2α2β8γ8δ8ρ6\tau^{2}\alpha^{2}\beta^{8}\gamma^{8}\delta^{8}\rho^{6},

(6.8) 𝔼x,y,h|𝔼kgS(x,y+k)T(x+h,y+k)|2B(y)ΔhC(x+y)Δ2hD(2x+y)Δ(h,0)Φ(x,y)\mathbb{E}_{x,y,h}\left|\mathbb{E}_{k}g_{S}(x,y+k)T(x+h,y+k)\right|^{2}B(y)\Delta_{h}C(x+y)\Delta_{2h}D(2x+y)\Delta_{(h,0)}\Phi(x,y)

times 𝔼x,y,hΔ(h,0)T(x,y)\mathbb{E}_{x,y,h}\Delta_{(h,0)}T(x,y) is at least τ2α4β4γ8δ8ρ8\tau^{2}\alpha^{4}\beta^{4}\gamma^{8}\delta^{8}\rho^{8}, or

(6.9) 𝔼x,y,h|𝔼kgS(xk,y+k)T(xk,y+h+k)|2A(x)ΔhB(y)ΔhD(2x+y)Δ(0,h)Φ(x,y)\mathbb{E}_{x,y,h}\left|\mathbb{E}_{k}g_{S}(x-k,y+k)T(x-k,y+h+k)\right|^{2}A(x)\Delta_{h}B(y)\Delta_{h}D(2x+y)\Delta_{(0,h)}\Phi(x,y)

times 𝔼x,y,hΔ(0,h)T(x,y)\mathbb{E}_{x,y,h}\Delta_{(0,h)}T(x,y) is at least τ2α4β8γ4δ8ρ8\tau^{2}\alpha^{4}\beta^{8}\gamma^{4}\delta^{8}\rho^{8}.

We have

𝔼x,y,hΔ(0,h)T(x,y)=αβ2γ2δ2ρ2+O(εΩ(1)ρO(1))\mathbb{E}_{x,y,h}\Delta_{(0,h)}T(x,y)=\alpha\beta^{2}\gamma^{2}\delta^{2}\rho^{2}+O\left(\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}}\right)

and

𝔼x,y,hΔ(h,0)T(x,y)=α2βγ2δ2ρ2+O(εΩ(1)ρO(1))\mathbb{E}_{x,y,h}\Delta_{(h,0)}T(x,y)=\alpha^{2}\beta\gamma^{2}\delta^{2}\rho^{2}+O\left(\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}}\right)

by Lemmas 3.53.6, and 4.1. Expanding the square and making a change of variables, (6.7) equals

𝔼x,y,lΔ(0,)gS(x,y)μ9(x,y,),\mathbb{E}_{x,y,l}\Delta_{(0,\ell)}g_{S}(x,y)\mu_{9}(x,y,\ell),

where

μ9(x,y,):=𝔼h,k\displaystyle\mu_{9}(x,y,\ell):=\mathbb{E}_{h,k} ΔhB(yk)ΔB(y+h)ΔhC(x+yk)ΔC(x+y+h)\displaystyle\Delta_{h}B(y-k)\Delta_{\ell}B(y+h)\Delta_{h}C(x+y-k)\Delta_{\ell}C(x+y+h)
ΔhD(2x+yk)ΔD(2x+y+h)Φ(x,yk)Φ(x,y+h)\displaystyle\Delta_{h}D(2x+y-k)\Delta_{\ell}D(2x+y+h)\Phi(x,y-k)\Phi(x,y+h)

(6.8) equals

𝔼x,y,Δ(0,)gS(x,y)μ10(x,y,),\mathbb{E}_{x,y,\ell}\Delta_{(0,\ell)}g_{S}(x,y)\mu_{10}(x,y,\ell),

where

μ10(x,y,):=𝔼h,k\displaystyle\mu_{10}(x,y,\ell):=\mathbb{E}_{h,k} B(yk)ΔhC(x+yk)ΔC(x+y+h)\displaystyle B(y-k)\Delta_{h}C(x+y-k)\Delta_{\ell}C(x+y+h)
Δ2hD(2x+yk)ΔD(2x+y+2h)Δ(h,0)Φ(x,yk)Δ(0,)Φ(x+h,y)\displaystyle\Delta_{2h}D(2x+y-k)\Delta_{\ell}D(2x+y+2h)\Delta_{(h,0)}\Phi(x,y-k)\Delta_{(0,\ell)}\Phi(x+h,y)

and (6.9) equals

𝔼x,y,Δ(,)gS(x,y)μ11(x,y,),\mathbb{E}_{x,y,\ell}\Delta_{(-\ell,\ell)}g_{S}(x,y)\mu_{11}(x,y,\ell),

where

μ11(x,y,):=𝔼h,k\displaystyle\mu_{11}(x,y,\ell):=\mathbb{E}_{h,k} ΔhB(yk)ΔB(y+h)C(x+y+h)\displaystyle\Delta_{h}B(y-k)\Delta_{\ell}B(y+h)C(x+y+h)
ΔhD(2x+y+k)ΔD(2x+y+h)Δ(0,h)Φ(x+k,yk)Δ(,)Φ(x,y+h)\displaystyle\Delta_{h}D(2x+y+k)\Delta_{-\ell}D(2x+y+h)\Delta_{(0,h)}\Phi(x+k,y-k)\Delta_{(-\ell,\ell)}\Phi(x,y+h)

Analogously to the weights μ1,,μ8\mu_{1},\dots,\mu_{8}, Lemmas 3.53.6, and 4.1 give the estimates

𝔼x,y,Δ(0,)Φ(x,y)|μ9(x,y,)β4γ4δ4ρ2|2εΩ(1)ρO(1),\mathbb{E}_{x,y,\ell}\Delta_{(0,\ell)}\Phi(x,y)\left|\mu_{9}(x,y,\ell)-\beta^{4}\gamma^{4}\delta^{4}\rho^{2}\right|^{2}\ll\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}},
𝔼x,y,A(x)ΔB(y)|μ10(x,y,)αβγ4δ4ρ4|2εΩ(1)ρO(1),\mathbb{E}_{x,y,\ell}A(x)\Delta_{\ell}B(y)\left|\mu_{10}(x,y,\ell)-\alpha\beta\gamma^{4}\delta^{4}\rho^{4}\right|^{2}\ll\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}},

and

𝔼x,y,ΔA(x)|μ11(x,y,)αβ4γδ4ρ4|2εΩ(1)ρO(1),\mathbb{E}_{x,y,\ell}\Delta_{-\ell}A(x)\left|\mu_{11}(x,y,\ell)-\alpha\beta^{4}\gamma\delta^{4}\rho^{4}\right|^{2}\ll\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}},

from which it follows that

|𝔼x,y,Δ(0,)gS(x,y)μ9(x,y,)|=β4γ4δ4ρ2𝔼x,y,Δ(0,)gS(x,y)+O(εΩ(1)ρO(1)),\left|\mathbb{E}_{x,y,\ell}\Delta_{(0,\ell)}g_{S}(x,y)\mu_{9}(x,y,\ell)\right|=\beta^{4}\gamma^{4}\delta^{4}\rho^{2}\mathbb{E}_{x,y,\ell}\Delta_{(0,\ell)}g_{S}(x,y)+O\left(\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}}\right),
|𝔼x,y,Δ(0,)gS(x,y)μ10(x,y,)|=αβγ4δ4ρ4𝔼x,y,Δ(0,)gS(x,y)+O(εΩ(1)ρO(1)),\left|\mathbb{E}_{x,y,\ell}\Delta_{(0,\ell)}g_{S}(x,y)\mu_{10}(x,y,\ell)\right|=\alpha\beta\gamma^{4}\delta^{4}\rho^{4}\mathbb{E}_{x,y,\ell}\Delta_{(0,\ell)}g_{S}(x,y)+O\left(\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}}\right),

and

|𝔼x,y,Δ(,)gS(x,y)μ11(x,y,)|=αβ4γδ4ρ4𝔼x,y,Δ(,)gS(x,y)+O(εΩ(1)ρO(1)).\left|\mathbb{E}_{x,y,\ell}\Delta_{(-\ell,\ell)}g_{S}(x,y)\mu_{11}(x,y,\ell)\right|=\alpha\beta^{4}\gamma\delta^{4}\rho^{4}\mathbb{E}_{x,y,\ell}\Delta_{(-\ell,\ell)}g_{S}(x,y)+O\left(\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}}\right).

This completes the proof of the lemma. ∎

Now we are almost ready to prove our desired density-increment result for the localized degree 22 directional uniformity norms controlled by 1\|\cdot\|_{\star_{1}}:

Lemma 6.5.

There exist absolute constants 0<c1<1<c2,c30<c_{1}<1<c_{2},c_{3} such that the following holds. Let dd be a nonnegative integer, and set ρ:=pd\rho:=p^{-d}. Suppose that A,B,C,D𝔽pnA,B,C,D\subset\mathbb{F}_{p}^{n} have densities α,β,γ,δ\alpha,\beta,\gamma,\delta, respectively, and that Φ𝔽pn×𝔽pn\Phi\subset\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} takes the form

Φ={(x,y)A×𝔽pn:yu+Vx},\Phi=\{(x,y)\in A\times\mathbb{F}_{p}^{n}:y\in u+V_{x}\},

where each VxV_{x} is a subspace of 𝔽pn\mathbb{F}_{p}^{n} of codimension dd. Let τ>0\tau>0 and εc1(ταβγδρ)c2exp((32/τ)c3)\varepsilon\leq c_{1}(\tau\alpha\beta\gamma\delta\rho)^{c_{2}}\exp(-(32/\tau)^{c_{3}}), and assume that

AαU8(𝔽pn),BβU8(𝔽pn),CγU8(𝔽pn),DδU8(𝔽pn),ΦαρU4(𝔽pn×𝔽pn)<ε.\|A-\alpha\|_{U^{8}(\mathbb{F}_{p}^{n})},\|B-\beta\|_{U^{8}(\mathbb{F}_{p}^{n})},\|C-\gamma\|_{U^{8}(\mathbb{F}_{p}^{n})},\|D-\delta\|_{U^{8}(\mathbb{F}_{p}^{n})},\|\Phi-\alpha\rho\|_{U^{4}(\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n})}<\varepsilon.

Define TT by (2.7), and let STS\subset T have density σ\sigma in TT. Suppose that

(6.10) 𝔼x,y,h,kΔ(0,h),(0,k)gS(x,y)ταβ4γ4δ4ρ3\mathbb{E}_{x,y,h,k}\Delta_{(0,h),(0,k)}g_{S}(x,y)\geq\tau\alpha\beta^{4}\gamma^{4}\delta^{4}\rho^{3}

or

(6.11) 𝔼x,y,h,kΔ(h,0),(0,k)gS(x,y)τα2β2γ4δ4ρ4.\mathbb{E}_{x,y,h,k}\Delta_{(h,0),(0,k)}g_{S}(x,y)\geq\tau\alpha^{2}\beta^{2}\gamma^{4}\delta^{4}\rho^{4}.

Then SS has density at least σ+Ω(τO(1))\sigma+\Omega(\tau^{O(1)}) on some subset TT^{\prime} of TT of the form

T={(x,y)𝔽pn×𝔽pn:A(x)B(y)C(x+y)D(2x+y)Φ(x,y)=1},T^{\prime}=\left\{(x,y)\in\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}:A^{\prime}(x)B^{\prime}(y)C(x+y)D(2x+y)\Phi^{\prime}(x,y)=1\right\},

where the densities of A,B𝔽pnA^{\prime},B^{\prime}\subset\mathbb{F}_{p}^{n} are both Ω((σταβγδρ)O(1))\Omega((\sigma\tau\alpha\beta\gamma\delta\rho)^{O(1)}), and Φ\Phi^{\prime} is of the form

Φ={(x,y)A×𝔽pn:yu+Vx},\Phi^{\prime}=\left\{(x,y)\in A^{\prime}\times\mathbb{F}_{p}^{n}:y\in u^{\prime}+V^{\prime}_{x}\right\},

where each VxV_{x}^{\prime} is a subspace of 𝔽pn\mathbb{F}_{p}^{n} of codimension d+1d+1.

To prove this lemma starting from the assumption (6.10), we will apply a localized U2(Φ(x,))U^{2}(\Phi(x,\cdot))-norm inverse theorem for many fixed xx, which will produce a density-increment on a set of the form

(6.12) {(x,y)𝔽pn×𝔽pn:A(x)B(y)C(x+y)D(2x+y)Ψ(x,y)=1},\left\{(x,y)\in\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}:A^{\prime}(x)B(y)C(x+y)D(2x+y)\Psi(x,y)=1\right\},

where

Ψ={(x,y)A×𝔽pn:yux+Vx}.\Psi=\{(x,y)\in A^{\prime}\times\mathbb{F}_{p}^{n}:y\in u_{x}^{\prime}+V_{x}^{\prime}\}.

This is not yet what the conclusion of the lemma promises, since uxu^{\prime}_{x} varies with xx. To show that we can select a fixed uu^{\prime} (at the cost of shrinking the size of AA^{\prime} a bit) we will need Lemma 6.6 below.

The reader may wonder why we cannot just run the density-increment argument on sets of the form (6.12) and skip having to prove Lemma 6.6. The issue with this hypothetical proof is that Us(𝔽pn×𝔽pn)U^{s}(\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n})-uniformity of a set of the form Ψ\Psi is not strong enough to guarantee that the analogue of Lemma 4.1 is true, regardless of how large ss is taken to be. Thus, such sets are not as amenable to a Shkredov-like pseudorandomization procedure.

Lemma 6.6.

There exist absolute constants 0<c1<1<c20<c_{1}<1<c_{2} such that the following holds. Let dd be a nonnegative integer, and set ρ:=pd\rho:=p^{-d}. Let A𝔽pnA\subset\mathbb{F}_{p}^{n} have density α\alpha, Ψ𝔽pn×𝔽pn\Psi\subset\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} take the form

Ψ={(x,y)A×𝔽pn:yux+Vx},\Psi=\{(x,y)\in A\times\mathbb{F}_{p}^{n}:y\in u_{x}+V_{x}\},

where ux𝔽pnu_{x}\in\mathbb{F}_{p}^{n} and each VxV_{x} is a subspace of 𝔽pn\mathbb{F}_{p}^{n} of codimension dd, and KA×𝔽pnK\subset A\times\mathbb{F}_{p}^{n} satisfy

|𝔼yK(x,y)κ|,|𝔼yK(x,y)H(y)κρ|<ε\left|\mathbb{E}_{y}K(x,y)-\kappa\right|,\left|\mathbb{E}_{y}K(x,y)H(y)-\kappa\rho\right|<\varepsilon

for every xAx\in A and every affine subspace HH of 𝔽pn\mathbb{F}_{p}^{n} of codimension dd. Let τ>0\tau>0, assume that εc1(ταβγδρ)c2\varepsilon\leq c_{1}(\tau\alpha\beta\gamma\delta\rho)^{c_{2}}, and suppose that S𝔽pn×𝔽pnS\subset\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} has density at least σ+τ\sigma+\tau in KΨK\cap\Psi, where σ>0\sigma>0. Then there exists a u𝔽pnu\in\mathbb{F}_{p}^{n} and a subset AAA^{\prime}\subset A such that STS\cap T^{\prime} has density at least σ+τ/4\sigma+\tau/4 in TT^{\prime}, where

T:=A×𝔽pnKΦ,T^{\prime}:=A^{\prime}\times\mathbb{F}_{p}^{n}\cap K\cap\Phi^{\prime},
Φ:={(x,y)A×𝔽pn:yu+Vx},\Phi^{\prime}:=\{(x,y)\in A^{\prime}\times\mathbb{F}_{p}^{n}:y\in u+V_{x}\},

and μ𝔽pn×𝔽pn(A)αρτ/2\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(A^{\prime})\geq\alpha\rho\tau/2.

Proof.

Define

Ψu:={(x,y)A×𝔽pn:yu+Vx}\Psi_{u}:=\{(x,y)\in A\times\mathbb{F}_{p}^{n}:y\in u+V_{x}\}

and

Au:={xA:uxuVx}A_{u}:=\{x\in A:u_{x}-u\in V_{x}\}

for every u𝔽pnu\in\mathbb{F}_{p}^{n}, and set αu:=μ𝔽pn(Au)\alpha_{u}:=\mu_{\mathbb{F}_{p}^{n}}(A_{u}), so that 𝔼uαu=αρ\mathbb{E}_{u}\alpha_{u}=\alpha\rho. By our assumption on KK, we have

μ𝔽pn×𝔽pn(K)=ακ+O(ε)\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(K)=\alpha\kappa+O\left(\varepsilon\right)

and

μ𝔽pn×𝔽pn(KΨu)=αuκρ+O(ε)\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(K\cap\Psi_{u})=\alpha_{u}\kappa\rho+O\left(\varepsilon\right)

for all u𝔽pnu\in\mathbb{F}_{p}^{n}.

Note that

𝔼uμ𝔽pn×𝔽pn(SKΨu)ρ(σ+τ)μ𝔽pn×𝔽pn(K)=(σ+τ)ακρ2+O(ε),\mathbb{E}_{u}\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(S\cap K\cap\Psi_{u})\geq\rho(\sigma+\tau)\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(K)=(\sigma+\tau)\alpha\kappa\rho^{2}+O\left(\varepsilon\right),

and set

G(u):=μ𝔽pn×𝔽pn(SKΨu)μ𝔽pn×𝔽pn(KΨu)G(u):=\frac{\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(S\cap K\cap\Psi_{u})}{\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(K\cap\Psi_{u})}

for each u𝔽pnu\in\mathbb{F}_{p}^{n}. Then we have

(σ+τ)ακρ2+O(ε)\displaystyle(\sigma+\tau)\alpha\kappa\rho^{2}+O\left(\varepsilon\right) κρ𝔼uαuG(u)\displaystyle\leq\kappa\rho\mathbb{E}_{u}\alpha_{u}G(u)
<κρpn((σ+τ4)u𝔽pnG(u)<σ+τ/4αu+u𝔽pnG(u)σ+τ/4αu)\displaystyle<\frac{\kappa\rho}{p^{n}}\left(\left(\sigma+\frac{\tau}{4}\right)\sum_{\begin{subarray}{c}u\in\mathbb{F}_{p}^{n}\\ G(u)<\sigma+\tau/4\end{subarray}}\alpha_{u}+\sum_{\begin{subarray}{c}u\in\mathbb{F}_{p}^{n}\\ G(u)\geq\sigma+\tau/4\end{subarray}}\alpha_{u}\right)
<κρ((σ+τ4)(αρη)+η),\displaystyle<\kappa\rho\left(\left(\sigma+\frac{\tau}{4}\right)\left(\alpha\rho-\eta\right)+\eta\right),

where

η:=1pnu𝔽pnG(u)σ+τ/4αu,\eta:=\frac{1}{p^{n}}\sum_{\begin{subarray}{c}u\in\mathbb{F}_{p}^{n}\\ G(u)\geq\sigma+\tau/4\end{subarray}}\alpha_{u},

so that

η>5ταρ8\eta>\frac{5\tau\alpha\rho}{8}

when c1c_{1} is small enough and c2c_{2} is large enough. The contribution to η\eta coming from uu for which αu<ταρ/2\alpha_{u}<\tau\alpha\rho/2 is obviously at most ταρ/2\tau\alpha\rho/2, which implies that

1pnu𝔽pnG(u)σ+τ/4αuταρ/2αu>ταρ8,\frac{1}{p^{n}}\sum_{\begin{subarray}{c}u\in\mathbb{F}_{p}^{n}\\ G(u)\geq\sigma+\tau/4\\ \alpha_{u}\geq\tau\alpha\rho/2\end{subarray}}\alpha_{u}>\frac{\tau\alpha\rho}{8},

which is clearly positive. We thus conclude that there must exist a u𝔽pnu\in\mathbb{F}_{p}^{n} for which αu=μ𝔽pn(Au)ταρ/2\alpha_{u}=\mu_{\mathbb{F}_{p}^{n}}(A_{u})\geq\tau\alpha\rho/2 and

μ𝔽pn×𝔽pn(SKΨu)(σ+τ4)μ𝔽pn×𝔽pn(KΨu).\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(S\cap K\cap\Psi_{u})\geq\left(\sigma+\frac{\tau}{4}\right)\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(K\cap\Psi_{u}).

The conclusion of the lemma now follows by taking A=AuA^{\prime}=A_{u} and Φ=Ψu(A×𝔽pn)\Phi^{\prime}=\Psi_{u}\cap(A^{\prime}\times\mathbb{F}_{p}^{n}). ∎

Now we can prove Lemma 6.5.

Proof of Lemma 6.5.

First assume that (6.10) holds. By writing S=gS+σTS=g_{S}+\sigma T, we see that 𝔼x,y,h,kΔ(0,h),(0,k)S(x,y)\mathbb{E}_{x,y,h,k}\Delta_{(0,h),(0,k)}S(x,y) equals

σ4𝔼x,y,h,kΔ(0,h),(0,k)T(x,y)+𝔼x,y,h,kΔ(0,h),(0,k)gS(x,y)\sigma^{4}\mathbb{E}_{x,y,h,k}\Delta_{(0,h),(0,k)}T(x,y)+\mathbb{E}_{x,y,h,k}\Delta_{(0,h),(0,k)}g_{S}(x,y)

plus 1414 terms of the form

(6.13) 𝔼x,y,h,kω{0,1}2gω((x,y)+ω((0,h),(0,k))),\mathbb{E}_{x,y,h,k}\prod_{\omega\in\{0,1\}^{2}}g_{\omega}((x,y)+\omega\cdot((0,h),(0,k))),

where at least one gωg_{\omega} equals gSg_{S} and at least one other equals σT\sigma T, and

σ4𝔼x,y,h,kΔ(0,h),(0,k)T(x,y)+𝔼x,y,h,kΔ(0,h),(0,k)gS(x,y)(σ4+τ)αβ4γ4δ4ρ3+O(εΩ(1)ρO(1)).\sigma^{4}\mathbb{E}_{x,y,h,k}\Delta_{(0,h),(0,k)}T(x,y)+\mathbb{E}_{x,y,h,k}\Delta_{(0,h),(0,k)}g_{S}(x,y)\geq(\sigma^{4}+\tau)\alpha\beta^{4}\gamma^{4}\delta^{4}\rho^{3}+O\left(\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}}\right).

If one of the terms (6.13) has absolute value larger than ταβ4γ4δ4ρ3/32\tau\alpha\beta^{4}\gamma^{4}\delta^{4}\rho^{3}/32, then combining Lemmas 6.4 and 6.3 produces the desired density increment. Thus, we may proceed under the assumption that all have size at most ταβ4γ4δ4ρ3/32\tau\alpha\beta^{4}\gamma^{4}\delta^{4}\rho^{3}/32, so that

𝔼x,y,h,kΔ(0,h),(0,k)S(x,y)(σ4+τ2)αβ4γ4δ4ρ3.\mathbb{E}_{x,y,h,k}\Delta_{(0,h),(0,k)}S(x,y)\geq\left(\sigma^{4}+\frac{\tau}{2}\right)\alpha\beta^{4}\gamma^{4}\delta^{4}\rho^{3}.

For each x𝔽pnx\in\mathbb{F}_{p}^{n}, set Φx(y):=Φ(x,y)\Phi_{x}(y):=\Phi(x,y), Tx(y):=T(x,y)T_{x}(y):=T(x,y), and Sx(y)=S(x,y)S_{x}(y)=S(x,y). Lemmas 3.53.6, and 4.1 tell us that

𝔼xA(x)|𝔼y,h,kΔh,kTx(y)β4γ4δ4ρ3|εΩ(1),\mathbb{E}_{x}A(x)\left|\mathbb{E}_{y,h,k}\Delta_{h,k}T_{x}(y)-\beta^{4}\gamma^{4}\delta^{4}\rho^{3}\right|\ll\varepsilon^{\Omega(1)},
𝔼xA(x)TxβγδU2(Φx)4εΩ(1),\mathbb{E}_{x}A(x)\|T_{x}-\beta\gamma\delta\|_{U^{2}(\Phi_{x})}^{4}\ll\varepsilon^{\Omega(1)},

and that

𝔼xA(x)|𝔼yΦxSx(y)σβγδ|2<τ464αβ2γ2δ2ρ2,\mathbb{E}_{x}A(x)\left|\mathbb{E}_{y\in\Phi_{x}}S_{x}(y)-\sigma\beta\gamma\delta\right|^{2}<\frac{\tau^{4}}{64}\alpha\beta^{2}\gamma^{2}\delta^{2}\rho^{2},

or else Lemma 6.3 will again give the desired density increment. It follows that there exists a subset A0AA_{0}\subset A of density τ\gg\tau in AA such that

SxU2(Φx)4(σ4+τ4)β4γ4δ4,TxβγδU2(Φx)εΩ(1), and |𝔼yΦxSx(y)σβγδ|<τβγδ64\|S_{x}\|_{U^{2}(\Phi_{x})}^{4}\geq\left(\sigma^{4}+\frac{\tau}{4}\right)\beta^{4}\gamma^{4}\delta^{4},\|T_{x}-\beta\gamma\delta\|_{U^{2}(\Phi_{x})}\ll\varepsilon^{\Omega(1)},\text{ and }\left|\mathbb{E}_{y\in\Phi_{x}}S_{x}(y)-\sigma\beta\gamma\delta\right|<\frac{\tau\beta\gamma\delta}{64}

for every xA0x\in A_{0}. Setting

fx(y):=1βγδSx(y) and νx:=1βγδTx,f_{x}(y):=\frac{1}{\beta\gamma\delta}S_{x}(y)\qquad\text{ and }\qquad\nu_{x}:=\frac{1}{\beta\gamma\delta}T_{x},

for all xA0x\in A_{0} we then have fxU2(Φx)4σ4+τ/4\|f_{x}\|^{4}_{U^{2}(\Phi_{x})}\geq\sigma^{4}+\tau/4, 0fxνx0\leq f_{x}\leq\nu_{x}, 𝔼yfx(y)1\mathbb{E}_{y}f_{x}(y)\leq 1, and

νx1U2(Φx)εΩ(1)(αβγδρ)O(1)exp((32/τ)c3),\|\nu_{x}-1\|_{U^{2}(\Phi_{x})}\ll\frac{\varepsilon^{\Omega(1)}}{(\alpha\beta\gamma\delta\rho)^{O(1)}}\leq\exp\left(-(32/\tau)^{c_{3}}\right),

provided that c1c_{1} is small enough and c2c_{2} is large enough. Thus, as long as c3c_{3} is sufficiently large, Lemma 6.1 tells us that there exists a function f~x:Φx[0,1]\tilde{f}_{x}:\Phi_{x}\to[0,1] such that 𝔼yΦxfx(y)=𝔼yΦxf~x(y)\mathbb{E}_{y\in\Phi_{x}}f_{x}(y)=\mathbb{E}_{y\in\Phi_{x}}\tilde{f}_{x}(y) and fxf~xU2(Φx)4τ/32\|f_{x}-\tilde{f}_{x}\|_{U^{2}(\Phi_{x})}^{4}\leq\tau/32. As a consequence, since fxU2(Φx)4σ4+τ4\|f_{x}\|^{4}_{U^{2}(\Phi_{x})}\geq\sigma^{4}+\frac{\tau}{4}, we must have

f~xU2(Φx)4σ4+τ8\|\tilde{f}_{x}\|_{U^{2}(\Phi_{x})}^{4}\geq\sigma^{4}+\frac{\tau}{8}

as well. Set σ~x:=𝔼yfx(y)=𝔼yf~x(y)\tilde{\sigma}_{x}:=\mathbb{E}_{y}f_{x}(y)=\mathbb{E}_{y}\tilde{f}_{x}(y) and let vxΦxv_{x}\in\Phi_{x}, so that

f~xU2(Φx)4=σ~x4+0ξΦxvx^|(f~xσ~^)(ξ)|4.\|\tilde{f}_{x}\|_{U^{2}(\Phi_{x})}^{4}=\tilde{\sigma}_{x}^{4}+\sum_{0\neq\xi\in\widehat{\Phi_{x}-v_{x}}}\left|(\widehat{\tilde{f}_{x}-\tilde{\sigma}})(\xi)\right|^{4}.

Since |σ~xσ|<τ/64|\tilde{\sigma}_{x}-\sigma|<\tau/64, it follows that there exists a nonzero ξxΦxvx^\xi_{x}\in\widehat{\Phi_{x}-v_{x}} such that

|𝔼yΦx(f~xσ)(y)ep(ξxy)|τ16,\left|\mathbb{E}_{y\in\Phi_{x}}(\tilde{f}_{x}-\sigma)(y)e_{p}(\xi_{x}\cdot y)\right|\geq\frac{\tau}{16},

where we have crucially used that f~x\tilde{f}_{x} is 11-bounded. As fxf~xU2(Φx)4τ/32\|f_{x}-\tilde{f}_{x}\|_{U^{2}(\Phi_{x})}^{4}\leq\tau/32, it therefore follows that

|𝔼yΦx(fxσ)(y)ep(ξxy)|τ32\left|\mathbb{E}_{y\in\Phi_{x}}(f_{x}-\sigma)(y)e_{p}(\xi_{x}\cdot y)\right|\geq\frac{\tau}{32}

for every xA0x\in A_{0}.

Extend xξxx\mapsto\xi_{x} from A0A_{0} to AA by picking a nonzero ξxΦxvx^\xi_{x}\in\widehat{\Phi_{x}-v_{x}} arbitrarily for all xAA0x\in A\setminus A_{0}. We now split the average over yΦxy\in\Phi_{x} above into an average of averages over cosets of ξx\langle\xi_{x}\rangle^{\perp} in Φx\Phi_{x} and average over all of AA to get that

𝔼xA𝔼t𝔽p|𝔼yΦxξxy=t(fxσ)(y)|τ,\mathbb{E}_{x\in A}\mathbb{E}_{t\in\mathbb{F}_{p}}\left|\mathbb{E}_{\begin{subarray}{c}y\in\Phi_{x}\\ \xi_{x}\cdot y=t\end{subarray}}(f_{x}-\sigma)(y)\right|\gg\tau,

and use the fact that

𝔼xA𝔼t𝔽p𝔼yΦxξxy=t(fxσ)(y)=𝔼xA𝔼yΦx(fxσ)(y)=0\mathbb{E}_{x\in A}\mathbb{E}_{t\in\mathbb{F}_{p}}\mathbb{E}_{\begin{subarray}{c}y\in\Phi_{x}\\ \xi_{x}\cdot y=t\end{subarray}}(f_{x}-\sigma)(y)=\mathbb{E}_{x\in A}\mathbb{E}_{y\in\Phi_{x}}(f_{x}-\sigma)(y)=0

to deduce that

𝔼xA𝔼t𝔽pmax(0,𝔼yΦxξxy=t(fxσ)(y))τ.\mathbb{E}_{x\in A}\mathbb{E}_{t\in\mathbb{F}_{p}}\max\left(0,\mathbb{E}_{\begin{subarray}{c}y\in\Phi_{x}\\ \xi_{x}\cdot y=t\end{subarray}}(f_{x}-\sigma)(y)\right)\gg\tau.

By applying the pigeonhole principle in the xx and tt variables, it follows that there exists a subset A1AA_{1}\subset A of density τ\gg\tau in AA and, for each xA1x\in A_{1}, an element tx𝔽pt_{x}\in\mathbb{F}_{p} for which

𝔼yΦxξxy=tx(fxσ)(y)τ.\mathbb{E}_{\begin{subarray}{c}y\in\Phi_{x}\\ \xi_{x}\cdot y=t_{x}\end{subarray}}(f_{x}-\sigma)(y)\gg\tau.

Thus, recalling the definition of fxf_{x}, we have

(6.14) 𝔼xA1𝔼yΦxξxy=txS(x,y)(σ+Ω(τ))βγδ.\mathbb{E}_{x\in A_{1}}\mathbb{E}_{\begin{subarray}{c}y\in\Phi_{x}\\ \xi_{x}\cdot y=t_{x}\end{subarray}}S(x,y)\geq\left(\sigma+\Omega\left(\tau\right)\right)\beta\gamma\delta.

Define ϕ:𝔽pn𝔽pn\phi:\mathbb{F}_{p}^{n}\to\mathbb{F}_{p}^{n} by taking ϕ(x)=ξx\phi(x)=\xi_{x} for all xAx\in A and ϕ(x)\phi(x) to be an arbitrary element of (Φxvx){0}(\Phi_{x}-v_{x})^{\perp}\setminus\{0\} for all x𝔽pnAx\in\mathbb{F}_{p}^{n}\setminus A, and similarly extend xtxx\mapsto t_{x} from A1A_{1} to AA by taking txt_{x} to be an arbitrary element of 𝔽p\mathbb{F}_{p} for which

𝔼yΦxϕ(x)y=txS(x,y)𝔼yΦxS(x,y)\mathbb{E}_{\begin{subarray}{c}y\in\Phi_{x}\\ \phi(x)\cdot y=t_{x}\end{subarray}}S(x,y)\geq\mathbb{E}_{y\in\Phi_{x}}S(x,y)

for all xAA1x\in A\setminus A_{1}. Such an element must exist by the pigeonhole principle. Set

Ψ:={(x,y)Φ:ϕ(x)y=tx},\Psi:=\{(x,y)\in\Phi:\phi(x)\cdot y=t_{x}\},

so that codim{y𝔽pn:Ψ(x,y)=1}=d+1\operatorname{codim}\{y\in\mathbb{F}_{p}^{n}:\Psi(x,y)=1\}=d+1 for every xAx\in A, and α1:=|A1|/pn\alpha_{1}:=|A_{1}|/p^{n}. Then (6.14) can be rewritten as

𝔼x,yS(x,y)A1(x)Ψ(x,y)(σ+Ω(τ))α1βγδρp.\mathbb{E}_{x,y}S(x,y)A_{1}(x)\Psi(x,y)\geq\left(\sigma+\Omega\left(\tau\right)\right)\frac{\alpha_{1}\beta\gamma\delta\rho}{p}.

It remains to check that the density 𝔼x,yA1(x)B(y)C(x+y)D(2x+y)Ψ(x,y)\mathbb{E}_{x,y}A_{1}(x)B(y)C(x+y)D(2x+y)\Psi(x,y) is close to α1βγδρ/p\alpha_{1}\beta\gamma\delta\rho/p, so that we indeed have the desired density-increment. But by Lemmas 3.5 and 3.6, we have

𝔼yB(y)C(x+y)D(2x+y)Ψ(x,y)=βγδρp+O(ε1/8)\mathbb{E}_{y}B(y)C(x+y)D(2x+y)\Psi(x,y)=\frac{\beta\gamma\delta\rho}{p}+O\left(\varepsilon^{1/8}\right)

for all but a O(ε)O(\sqrt{\varepsilon})-proportion of xAx\in A, from which it follows that

𝔼x,yA1(x)B(y)C(x+y)D(2x+y)Ψ(x,y)=α1βγδρp+O(ε1/8).\mathbb{E}_{x,y}A_{1}(x)B(y)C(x+y)D(2x+y)\Psi(x,y)=\frac{\alpha_{1}\beta\gamma\delta\rho}{p}+O\left(\varepsilon^{1/8}\right).

Thus, SS has density at least σ+Ω(τ)\sigma+\Omega(\tau) on

Q:={(x,y)𝔽pn×𝔽pn:A1(x)B(y)C(x+y)D(2x+y)Ψ(x,y)=1},Q:=\{(x,y)\in\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}:A_{1}(x)B(y)C(x+y)D(2x+y)\Psi(x,y)=1\},

provided that c2c_{2} is large enough. The conclusion of the lemma now follows from Lemma 6.6

Now suppose that (6.11) holds. By writing S=gS+σTS=g_{S}+\sigma T and arguing as in the first case, we may proceed under the assumption that

𝔼x,x,y,yS(x,y)S(x,y)S(x,y)S(x,y)(σ4+τ2)α2β2γ4δ4ρ4.\mathbb{E}_{x,x^{\prime},y,y^{\prime}}S(x,y)S(x,y^{\prime})S(x^{\prime},y)S(x^{\prime},y^{\prime})\geq\left(\sigma^{4}+\frac{\tau}{2}\right)\alpha^{2}\beta^{2}\gamma^{4}\delta^{4}\rho^{4}.

We will first show that either

𝔼x,yS(x,y)S(x,y)C(x+y)D(2x+y)Φ(x,y)=(σ2+O(τ2))αβγ3δ3ρ3\mathbb{E}_{x,y}S(x,y^{\prime})S(x^{\prime},y)C(x+y)D(2x+y)\Phi(x,y)=\left(\sigma^{2}+O(\tau^{2})\right)\alpha\beta\gamma^{3}\delta^{3}\rho^{3}

for almost every pair (x,y)S(x^{\prime},y^{\prime})\in S, or else we can deduce the desired density-increment using Lemma 6.3.

Consider the average

𝔼x,x,y,yS(x,y)S(x,y)S(x,y)C(x+y)D(2x+y)Φ(x,y).\mathbb{E}_{x,x^{\prime},y,y^{\prime}}S(x,y^{\prime})S(x^{\prime},y)S(x^{\prime},y^{\prime})C(x+y)D(2x+y)\Phi(x,y).

Using that S=gS+σTS=g_{S}+\sigma T, the above can be written as

(6.15) σ3𝔼x,x,y,yT(x,y)T(x,y)T(x,y)C(x+y)D(2x+y)Φ(x,y)\sigma^{3}\mathbb{E}_{x,x^{\prime},y,y^{\prime}}T(x,y^{\prime})T(x^{\prime},y)T(x^{\prime},y^{\prime})C(x+y)D(2x+y)\Phi(x,y)

plus seven other terms of the form

(6.16) 𝔼x,x,y,yg0(x,y)g1(x,y)g2(x,y)C(x+y)D(2x+y)Φ(x,y),\mathbb{E}_{x,x^{\prime},y,y^{\prime}}g_{0}(x,y^{\prime})g_{1}(x^{\prime},y)g_{2}(x^{\prime},y^{\prime})C(x+y)D(2x+y)\Phi(x,y),

where g0,g1,g_{0},g_{1}, and g2g_{2} all equal gSg_{S} or σT\sigma T and at least one gig_{i} equals gSg_{S}. By Lemmas 3.53.6, and 4.1, the quantity (6.15) equals σ3α2β2γ4δ4ρ4+O(εΩ(1)/ρO(1))\sigma^{3}\alpha^{2}\beta^{2}\gamma^{4}\delta^{4}\rho^{4}+O(\varepsilon^{\Omega(1)}/\rho^{O(1)}). Suppose that kk of the functions g0,g1,g_{0},g_{1}, and g2g_{2} in (6.16) equal σT\sigma T. By a similar argument to those used to prove Lemma 6.4, if any term of the form (6.16) has size at least τ4σkα2β2γ4δ4ρ4\tau^{4}\sigma^{k}\alpha^{2}\beta^{2}\gamma^{4}\delta^{4}\rho^{4}, then

𝔼x,y,hΔ(0,h)gS(x,y)τ8αβ2γ2δ2ρ2+O(εΩ(1)ρO(1))\mathbb{E}_{x,y,h}\Delta_{(0,h)}g_{S}(x,y)\geq\tau^{8}\alpha\beta^{2}\gamma^{2}\delta^{2}\rho^{2}+O\left(\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}}\right)

or

𝔼x,y,hΔ(h,0)gS(x,y)τ8α2βγ2δ2ρ2+O(εΩ(1)ρO(1)),\mathbb{E}_{x,y,h}\Delta_{(h,0)}g_{S}(x,y)\geq\tau^{8}\alpha^{2}\beta\gamma^{2}\delta^{2}\rho^{2}+O\left(\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}}\right),

so that the desired density-increment follows from Lemma 6.3. Thus, we may proceed under the assumption that

𝔼(x,y)S𝔼x,yS(x,y)S(x,y)C(x+y)D(2x+y)Φ(x,y)=σ2αβγ3δ3ρ3+O(τ4αβγ3δ3ρ3)\mathbb{E}_{(x^{\prime},y^{\prime})\in S}\mathbb{E}_{x,y}S(x,y^{\prime})S(x^{\prime},y)C(x+y)D(2x+y)\Phi(x,y)=\sigma^{2}\alpha\beta\gamma^{3}\delta^{3}\rho^{3}+O(\tau^{4}\alpha\beta\gamma^{3}\delta^{3}\rho^{3})

Now consider the average

𝔼x,yS(x,y)|𝔼x,yS(x,y)S(x,y)C(x+y)D(2x+y)Φ(x,y)|2.\mathbb{E}_{x^{\prime},y^{\prime}}S(x^{\prime},y^{\prime})\left|\mathbb{E}_{x,y}S(x,y^{\prime})S(x^{\prime},y)C(x+y)D(2x+y)\Phi(x,y)\right|^{2}.

Using that S=gS+σTS=g_{S}+\sigma T, the above can be written as

(6.17) σ5𝔼x,yT(x,y)|𝔼x,yT(x,y)T(x,y)C(x+y)D(2x+y)Φ(x,y)|2,\sigma^{5}\mathbb{E}_{x^{\prime},y^{\prime}}T(x^{\prime},y^{\prime})\left|\mathbb{E}_{x,y}T(x,y^{\prime})T(x^{\prime},y)C(x+y)D(2x+y)\Phi(x,y)\right|^{2},

plus 31 other terms of the form

(6.18) 𝔼x,y,x,y,w,zg0(x,y)g1(x,y)g2(x,y)g3(z,y)g4(x,w)C(x+y)C(z+w)D(2x+y)D(2z+w)Φ(x,y)Φ(z,w),\mathbb{E}_{x,y,x^{\prime},y^{\prime},w,z}g_{0}(x^{\prime},y^{\prime})g_{1}(x,y^{\prime})g_{2}(x^{\prime},y)g_{3}(z,y^{\prime})g_{4}(x^{\prime},w)C(x+y)C(z+w)D(2x+y)D(2z+w)\Phi(x,y)\Phi(z,w),

where g0,g1,g2,g3,g_{0},g_{1},g_{2},g_{3}, and g4g_{4} all equal gSg_{S} or σT\sigma T and at least one gig_{i} equals gSg_{S}.

By Lemmas 3.53.6, and 4.1, the quantity (6.17) equals σ5α3β3γ7δ7ρ7+O(εΩ(1)/ρO(1))\sigma^{5}\alpha^{3}\beta^{3}\gamma^{7}\delta^{7}\rho^{7}+O(\varepsilon^{\Omega(1)}/\rho^{O(1)}). Suppose that kk of the functions g0,,g4g_{0},\dots,g_{4} in (6.18) equal σT\sigma T. Analogously to the situation for the first moment, if any of the terms of the form (6.18) has size at least τ8σkα3β3γ7δ7ρ7\tau^{8}\sigma^{k}\alpha^{3}\beta^{3}\gamma^{7}\delta^{7}\rho^{7}, then we will be able to deduce the desired density-increment. The most involved case is when g0==g4=gSg_{0}=\dots=g_{4}=g_{S}. All other cases can be handled using a simpler version of the argument we are about to carry out.

So, consider this most involved case, i.e., that

𝔼x,y,x,y,w,zgS(x,y)gS(x,y)gS(x,y)gS(z,y)gS(x,w)C(x+y)C(z+w)D(2x+y)D(2z+w)Φ(x,y)Φ(z,w)\mathbb{E}_{x,y,x^{\prime},y^{\prime},w,z}g_{S}(x^{\prime},y^{\prime})g_{S}(x,y^{\prime})g_{S}(x^{\prime},y)g_{S}(z,y^{\prime})g_{S}(x^{\prime},w)C(x+y)C(z+w)D(2x+y)D(2z+w)\Phi(x,y)\Phi(z,w)

has size at least τ8α3β3γ7δ7ρ7\tau^{8}\alpha^{3}\beta^{3}\gamma^{7}\delta^{7}\rho^{7}. Applying the Cauchy–Schwarz inequality in the variables x,y,y,x^{\prime},y^{\prime},y, and ww gives that

𝔼x,y,y,wT(x,y)T(x,y)T(x,w)\mathbb{E}_{x^{\prime},y^{\prime},y,w}T(x^{\prime},y^{\prime})T(x^{\prime},y)T(x^{\prime},w)

times

𝔼x,y,y,w(\displaystyle\mathbb{E}_{x^{\prime},y^{\prime},y,w}\big{(} |𝔼x,zgS(x,y)gS(z,y)C(x+y)C(z+w)D(2x+w)D(2z+w)Φ(x,y)Φ(z,w)|2\displaystyle\left|\mathbb{E}_{x,z}g_{S}(x,y^{\prime})g_{S}(z,y^{\prime})C(x+y)C(z+w)D(2x+w)D(2z+w)\Phi(x,y)\Phi(z,w)\right|^{2}
B(y)B(w)C(x+y)C(x+y)C(x+w)\displaystyle\cdot B(y)B(w)C(x^{\prime}+y^{\prime})C(x^{\prime}+y)C(x^{\prime}+w)
D(2x+y)D(2x+y)D(2x+w)Φ(x,y)Φ(x,y)Φ(x,w))\displaystyle\cdot D(2x^{\prime}+y^{\prime})D(2x^{\prime}+y)D(2x^{\prime}+w)\Phi(x^{\prime},y^{\prime})\Phi(x^{\prime},y)\Phi(x^{\prime},w)\big{)}

is at least τ8α6β6γ14δ14ρ14\tau^{8}\alpha^{6}\beta^{6}\gamma^{14}\delta^{14}\rho^{14}. By Lemmas 3.53.6, and 4.1, 𝔼x,y,y,wT(x,y)T(x,y)T(x,w)=αβ3γ3δ3ρ3+O(εΩ(1)/ρO(1))\mathbb{E}_{x^{\prime},y^{\prime},y,w}T(x^{\prime},y^{\prime})T(x^{\prime},y)T(x^{\prime},w)=\alpha\beta^{3}\gamma^{3}\delta^{3}\rho^{3}+O(\varepsilon^{\Omega(1)}/\rho^{O(1)}). Expanding the square in the average above, this means that

𝔼x,y,y,w,x,z,u,v(\displaystyle\mathbb{E}_{x^{\prime},y^{\prime},y,w,x,z,u,v}\big{(} gS(x,y)gS(z,y)gS(u,y)gS(v,y)\displaystyle g_{S}(x,y^{\prime})g_{S}(z,y^{\prime})g_{S}(u,y^{\prime})g_{S}(v,y^{\prime})
B(y)B(w)C(x+y)C(x+y)C(x+w)\displaystyle B(y)B(w)C(x^{\prime}+y^{\prime})C(x^{\prime}+y)C(x^{\prime}+w)
C(x+y)C(z+w)C(u+y)C(v+w)\displaystyle C(x+y)C(z+w)C(u+y)C(v+w)
D(2x+w)D(2z+w)D(2u+w)D(2v+w)\displaystyle D(2x+w)D(2z+w)D(2u+w)D(2v+w)
D(2x+y)D(2x+y)D(2x+w)\displaystyle D(2x^{\prime}+y^{\prime})D(2x^{\prime}+y)D(2x^{\prime}+w)
Φ(x,y)Φ(z,w)Φ(u,y)Φ(v,w)Φ(x,y)Φ(x,y)Φ(x,w))\displaystyle\Phi(x,y)\Phi(z,w)\Phi(u,y)\Phi(v,w)\Phi(x^{\prime},y^{\prime})\Phi(x^{\prime},y)\Phi(x^{\prime},w)\big{)}

is τ8α5β3γ11δ11ρ11\gg\tau^{8}\alpha^{5}\beta^{3}\gamma^{11}\delta^{11}\rho^{11}, provided that c1c_{1} is small enough and c2c_{2} is large enough. We can write the above as

𝔼y,x,z,u,vgS(x,y)gS(z,y)gS(u,y)gS(v,y)μ(y,x,z,u,v),\mathbb{E}_{y^{\prime},x,z,u,v}g_{S}(x,y^{\prime})g_{S}(z,y^{\prime})g_{S}(u,y^{\prime})g_{S}(v,y^{\prime})\mu(y^{\prime},x,z,u,v),

where

μ(y,x,z,u,v):=𝔼x,y,w(\displaystyle\mu(y^{\prime},x,z,u,v):=\mathbb{E}_{x^{\prime},y,w}\big{(} B(y)B(w)C(x+y)C(x+y)C(x+w)\displaystyle B(y)B(w)C(x^{\prime}+y^{\prime})C(x^{\prime}+y)C(x^{\prime}+w)
C(x+y)C(z+w)C(u+y)C(v+w)\displaystyle C(x+y)C(z+w)C(u+y)C(v+w)
D(2x+w)D(2z+w)D(2u+w)D(2v+w)\displaystyle D(2x+w)D(2z+w)D(2u+w)D(2v+w)
D(2x+y)D(2x+y)D(2x+w)\displaystyle D(2x^{\prime}+y^{\prime})D(2x^{\prime}+y)D(2x^{\prime}+w)
Φ(x,y)Φ(z,w)Φ(u,y)Φ(v,w)Φ(x,y)Φ(x,y)Φ(x,w)).\displaystyle\Phi(x,y)\Phi(z,w)\Phi(u,y)\Phi(v,w)\Phi(x^{\prime},y^{\prime})\Phi(x^{\prime},y)\Phi(x^{\prime},w)\big{)}.

Yet more applications of Lemmas 3.53.6, and 4.1 give the estimate

𝔼y,x,z,u,vA(x)A(z)A(u)A(w)|μ(y,x,z,u,v)αβ2γ7δ7ρ7|2εΩ(1)ρO(1),\mathbb{E}_{y^{\prime},x,z,u,v}A(x)A(z)A(u)A(w)\left|\mu(y^{\prime},x,z,u,v)-\alpha\beta^{2}\gamma^{7}\delta^{7}\rho^{7}\right|^{2}\ll\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}},

so that

𝔼y,x,z,u,vgS(x,y)gS(z,y)gS(u,y)gS(v,y)τ8α4βγ4δ4ρ4.\mathbb{E}_{y^{\prime},x,z,u,v}g_{S}(x,y^{\prime})g_{S}(z,y^{\prime})g_{S}(u,y^{\prime})g_{S}(v,y^{\prime})\gg\tau^{8}\alpha^{4}\beta\gamma^{4}\delta^{4}\rho^{4}.

It follows from one more application of the Cauchy–Schwarz inequality in the variables y,z,u,y^{\prime},z,u, and vv and a similar analysis to above that

𝔼x,y,hΔ(h,0)gS(x,y)τ16α2βγ2δ2ρ2,\mathbb{E}_{x,y,h}\Delta_{(h,0)}g_{S}(x,y^{\prime})\gg\tau^{16}\alpha^{2}\beta\gamma^{2}\delta^{2}\rho^{2},

which, combined with Lemma 6.3, gives the desired density-increment.

Thus, we may also proceed under the assumption that

𝔼(x,y)S|𝔼x,yS(x,y)S(x,y)C(x+y)D(2x+y)Φ(x,y)σ2αβγ3δ3ρ3|2τ4α2β2γ6δ6ρ6.\mathbb{E}_{(x^{\prime},y^{\prime})\in S}\left|\mathbb{E}_{x,y}S(x,y^{\prime})S(x^{\prime},y)C(x+y)D(2x+y)\Phi(x,y)-\sigma^{2}\alpha\beta\gamma^{3}\delta^{3}\rho^{3}\right|^{2}\ll\tau^{4}\alpha^{2}\beta^{2}\gamma^{6}\delta^{6}\rho^{6}.

By Markov’s inequality, we therefore have

(6.19) 𝔼x,yS(x,y)S(x,y)C(x+y)D(2x+y)Φ(x,y)=(σ2+O(τ2))αβγ3δ3ρ3\mathbb{E}_{x,y}S(x,y^{\prime})S(x^{\prime},y)C(x+y)D(2x+y)\Phi(x,y)=(\sigma^{2}+O(\tau^{2}))\alpha\beta\gamma^{3}\delta^{3}\rho^{3}

for all but a O(τ2)O(\tau^{2})-proportion of (x,y)S(x^{\prime},y^{\prime})\in S. As a consequence, there exists a pair (x,y)S(x^{\prime},y^{\prime})\in S for which both (6.19) holds and

𝔼x,yS(x,y)S(x,y)S(x,y)(σ3+τ4)αβγ3δ3ρ3,\mathbb{E}_{x,y}S(x,y)S(x,y^{\prime})S(x^{\prime},y)\geq\left(\sigma^{3}+\frac{\tau}{4}\right)\alpha\beta\gamma^{3}\delta^{3}\rho^{3},

which together imply that

|ST||T|σ+Ω(τ)\frac{|S\cap T^{\prime}|}{|T^{\prime}|}\geq\sigma+\Omega(\tau)

when we take A(x)=S(x,y)A^{\prime}(x)=S(x,y^{\prime}), B(y)=S(x,y)B^{\prime}(y)=S(x^{\prime},y), C=CC^{\prime}=C, D=DD^{\prime}=D, and Φ=Φ\Phi^{\prime}=\Phi in the definition of TT^{\prime}. ∎

6.3. More preliminaries for 1\|\cdot\|_{\star_{1}}

We will similarly need that certain 1\|\cdot\|_{\star_{1}}-inner products are controlled by the degree 11 and 22 directional uniformity norms appearing in the previous subsections. The proof of the lemma below is similar to the proof of Lemma 6.4, but with an extra application of the Cauchy–Schwarz inequality in some cases.

Lemma 6.7.

Let dd be a nonnegative integer, and set ρ:=pd\rho:=p^{-d}. Suppose that A,B,C,D𝔽pnA,B,C,D\subset\mathbb{F}_{p}^{n} have densities α,β,γ,δ\alpha,\beta,\gamma,\delta, respectively, and that Φ𝔽pn×𝔽pn\Phi\subset\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} takes the form

Φ={(x,y)A×𝔽pn:yu+Vx},\Phi=\{(x,y)\in A\times\mathbb{F}_{p}^{n}:y\in u+V_{x}\},

where each VxV_{x} is a subspace of 𝔽pn\mathbb{F}_{p}^{n} of codimension dd. Let ε>0\varepsilon>0, and assume that

AαU10(𝔽pn),BβU10(𝔽pn),CγU10(𝔽pn),DδU10(𝔽pn),ΦαρU8(𝔽pn×𝔽pn)<ε.\|A-\alpha\|_{U^{10}(\mathbb{F}_{p}^{n})},\|B-\beta\|_{U^{10}(\mathbb{F}_{p}^{n})},\|C-\gamma\|_{U^{10}(\mathbb{F}_{p}^{n})},\|D-\delta\|_{U^{10}(\mathbb{F}_{p}^{n})},\|\Phi-\alpha\rho\|_{U^{8}(\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n})}<\varepsilon.

Define TT by (2.7), and let STS\subset T and τ>0\tau>0. If

|𝔼x,y,h1,h2,h3ω{0,1}3gω((x,y)+ω((0,h1),(0,h2),(h3,0)))|τα2β4γ8δ8ρ6,\left|\mathbb{E}_{x,y,h_{1},h_{2},h_{3}}\prod_{\omega\in\{0,1\}^{3}}g_{\omega}((x,y)+\omega\cdot((0,h_{1}),(0,h_{2}),(h_{3},0)))\right|\geq\tau\alpha^{2}\beta^{4}\gamma^{8}\delta^{8}\rho^{6},

where at least one gωg_{\omega} equals TT and another equals gSg_{S}, then

𝔼x,y,hΔ(0,h)gS(x,y)τ8αβ2γ2δ2ρ2+O(εΩ(1)(αβγδρ)O(1)),\mathbb{E}_{x,y,h}\Delta_{(0,h)}g_{S}(x,y)\geq\tau^{8}\alpha\beta^{2}\gamma^{2}\delta^{2}\rho^{2}+O\left(\frac{\varepsilon^{\Omega(1)}}{(\alpha\beta\gamma\delta\rho)^{O(1)}}\right),
𝔼x,y,hΔ(h,0)gS(x,y)τ8α2βγ2δ2ρ2+O(εΩ(1)(αβγδρ)O(1)),\mathbb{E}_{x,y,h}\Delta_{(h,0)}g_{S}(x,y)\geq\tau^{8}\alpha^{2}\beta\gamma^{2}\delta^{2}\rho^{2}+O\left(\frac{\varepsilon^{\Omega(1)}}{(\alpha\beta\gamma\delta\rho)^{O(1)}}\right),
𝔼x,y,h,kΔ(0,h),(0,k)gS(x,y)τ8αβ4γ4δ4ρ3+O(εΩ(1)(αβγδρ)O(1)),\mathbb{E}_{x,y,h,k}\Delta_{(0,h),(0,k)}g_{S}(x,y)\geq\tau^{8}\alpha\beta^{4}\gamma^{4}\delta^{4}\rho^{3}+O\left(\frac{\varepsilon^{\Omega(1)}}{(\alpha\beta\gamma\delta\rho)^{O(1)}}\right),

or

𝔼x,y,h,kΔ(h,0),(0,k)gS(x,y)τ8α2β2γ4δ4ρ4+O(εΩ(1)(αβγδρ)O(1)).\mathbb{E}_{x,y,h,k}\Delta_{(h,0),(0,k)}g_{S}(x,y)\geq\tau^{8}\alpha^{2}\beta^{2}\gamma^{4}\delta^{4}\rho^{4}+O\left(\frac{\varepsilon^{\Omega(1)}}{(\alpha\beta\gamma\delta\rho)^{O(1)}}\right).

Our final preliminary lemma says that, for almost every (x,x+h3)A2(x,x+h_{3})\in A^{2}, the function Δ(h3,0)S(x,)\Delta_{(h_{3},0)}S(x,\cdot) is supported on a Fourier uniform subset of the affine subspace {y𝔽pn:Δ(h3,0)Φ(x,y)=1}\{y\in\mathbb{F}_{p}^{n}:\Delta_{(h_{3},0)}\Phi(x,y)=1\}.

Lemma 6.8.

Let dd be a nonnegative integer, and set ρ:=pd\rho:=p^{-d}. Suppose that A,B,C,D𝔽pnA,B,C,D\subset\mathbb{F}_{p}^{n} have densities α,β,γ,δ\alpha,\beta,\gamma,\delta, respectively, and that Φ𝔽pn×𝔽pn\Phi\subset\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} takes the form

Φ={(x,y)A×𝔽pn:yu+Vx},\Phi=\{(x,y)\in A\times\mathbb{F}_{p}^{n}:y\in u+V_{x}\},

where each VxV_{x} is a subspace of 𝔽pn\mathbb{F}_{p}^{n} of codimension dd. Let ε>0\varepsilon>0, and assume that

AαU4(𝔽pn),BβU4(𝔽pn),CγU4(𝔽pn),DδU4(𝔽pn),ΦαρU4(𝔽pn×𝔽pn)<ε.\|A-\alpha\|_{U^{4}(\mathbb{F}_{p}^{n})},\|B-\beta\|_{U^{4}(\mathbb{F}_{p}^{n})},\|C-\gamma\|_{U^{4}(\mathbb{F}_{p}^{n})},\|D-\delta\|_{U^{4}(\mathbb{F}_{p}^{n})},\|\Phi-\alpha\rho\|_{U^{4}(\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n})}<\varepsilon.

Setting

Rx,h(y):=B(y)ΔhC(x+y)Δ2hD(2x+y)R_{x,h}(y):=B(y)\Delta_{h}C(x+y)\Delta_{2h}D(2x+y)

and

Φx,h:=Δ(h,0)Φ,\Phi_{x,h}:=\Delta_{(h,0)}\Phi,

then the probability

((x,x+h)A2:codim{y𝔽pn:Φx,h(y)=1}2d or Rx,hΦx,hβγ2δ2U2(Φx,h)ε1/32ρ3/2)\mathbb{P}\left((x,x+h)\in A^{2}:\operatorname{codim}\{y\in\mathbb{F}_{p}^{n}:\Phi_{x,h}(y)=1\}\neq 2d\text{ or }\|R_{x,h}\Phi_{x,h}-\beta\gamma^{2}\delta^{2}\|_{U^{2}(\Phi_{x,h})}\geq\frac{\varepsilon^{1/32}}{\rho^{3/2}}\right)

is εΩ(1)/ρO(1)\ll\varepsilon^{\Omega(1)}/\rho^{O(1)}.

Proof.

By Lemmas 3.6 and 4.1, we have that Rx,yβγ2δ2U2(𝔽pn)ε1/8\|R_{x,y}-\beta\gamma^{2}\delta^{2}\|_{U^{2}(\mathbb{F}_{p}^{n})}\geq\varepsilon^{1/8} or codim{y𝔽pn:Φx,h(y)=1}2d\operatorname{codim}\{y\in\mathbb{F}_{p}^{n}:\Phi_{x,h}(y)=1\}\neq 2d for at most a O(εΩ(1)/ρO(1))O(\varepsilon^{\Omega(1)}/\rho^{O(1)})-proportion of pairs (x,x+h)A2(x,x+h)\in A^{2}. For all of these typical pairs (x,h)(x,h), we have

Rx,hΦx,hβγ2δ2U2(Φx,h)4=ρ6𝔼y,k,Δk,[Rx,hβγ2δ2](y)Φx,h(y)Φx,h(y+k)Φx,h(y+),\|R_{x,h}\Phi_{x,h}-\beta\gamma^{2}\delta^{2}\|_{U^{2}(\Phi_{x,h})}^{4}=\rho^{-6}\mathbb{E}_{y,k,\ell}\Delta_{k,\ell}[R_{x,h}-\beta\gamma^{2}\delta^{2}](y)\Phi_{x,h}(y)\Phi_{x,h}(y+k)\Phi_{x,h}(y+\ell),

which is at most

ξ,η,ν(Φx,hu)|𝔼y,k,\displaystyle\sum_{\xi,\eta,\nu\in(\Phi_{x,h}-u)^{\perp}}\big{|}\mathbb{E}_{y,k,\ell} [Rx,hβγ2δ2](y)ep(ξy)[Rx,hβγ2δ2](y+k)ep(η(y+k))\displaystyle[R_{x,h}-\beta\gamma^{2}\delta^{2}](y)e_{p}(\xi\cdot y)[R_{x,h}-\beta\gamma^{2}\delta^{2}](y+k)e_{p}(\eta\cdot(y+k))
[Rx,hβγ2δ2](y+)ep(ν(y+))[Rx,hβγ2δ2](y+k+)|\displaystyle[R_{x,h}-\beta\gamma^{2}\delta^{2}](y+\ell)e_{p}(\nu\cdot(y+\ell))[R_{x,h}-\beta\gamma^{2}\delta^{2}](y+k+\ell)\big{|}

by inserting the identity

Φx,h(z)=1p2dξ(Φx,hu)ep(ξ[zu])\Phi_{x,h}(z)=\frac{1}{p^{2d}}\sum_{\xi\in(\Phi_{x,h}-u)^{\perp}}e_{p}(\xi\cdot[z-u])

for every z𝔽pnz\in\mathbb{F}_{p}^{n}. For each fixed triple (ξ,η,ν)(\xi,\eta,\nu), the interior average above is bounded by Rx,hβγ2δ2U2(𝔽pn)\|R_{x,h}-\beta\gamma^{2}\delta^{2}\|_{U^{2}(\mathbb{F}_{p}^{n})} by the Gowers–Cauchy–Schwarz inequality. Since there are ρ6\rho^{-6} possible triples to sum over, we must have

Rx,hΦx,hβγ2δ2U2(Φx,h)4ρ6Rx,hβγ2δ2U2(𝔽pn)<ε1/8/ρ6,\|R_{x,h}\Phi_{x,h}-\beta\gamma^{2}\delta^{2}\|_{U^{2}(\Phi_{x,h})}^{4}\leq\rho^{-6}\|R_{x,h}-\beta\gamma^{2}\delta^{2}\|_{U^{2}(\mathbb{F}_{p}^{n})}<\varepsilon^{1/8}/\rho^{6},

from which the conclusion of the lemma follows. ∎

6.4. Proof of Theorem 2.5

Now we can finally finish the proof of Theorem 2.5.

Proof of Theorem 2.5.

First assume that

gS1τα1/4β1/2γδρ3/4.\|g_{S}\|_{\star_{1}}\geq\tau\alpha^{1/4}\beta^{1/2}\gamma\delta\rho^{3/4}.

Analogously to the proof of Lemma 6.5, by writing S=gS+σTS=g_{S}+\sigma T, we see that S18\|S\|_{\star_{1}}^{8} equals

σ8T18+gS18\sigma^{8}\|T\|_{\star_{1}}^{8}+\|g_{S}\|_{\star_{1}}^{8}

plus 62 terms of the form

(6.20) 𝔼x,y,h1,h2,h3ω{0,1}3gω((x,y)+ω((0,h1),(0,h2),(h3,0))),\mathbb{E}_{x,y,h_{1},h_{2},h_{3}}\prod_{\omega\in\{0,1\}^{3}}g_{\omega}((x,y)+\omega\cdot((0,h_{1}),(0,h_{2}),(h_{3},0))),

where at least one gωg_{\omega} equals σT\sigma T and at least one other equals gSg_{S}. Note that

T18=α2β4γ8δ8ρ6+O(εΩ(1)ρO(1))\|T\|_{\star_{1}}^{8}=\alpha^{2}\beta^{4}\gamma^{8}\delta^{8}\rho^{6}+O\left(\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}}\right)

by Lemmas 3.53.6, and 4.1. If any of the terms (6.20) have absolute value at least 1128τ8α2β4γ8δ8ρ6\frac{1}{128}\tau^{8}\alpha^{2}\beta^{4}\gamma^{8}\delta^{8}\rho^{6}, then combining Lemma 6.7 with Lemma 6.3 or Lemma 6.5 produces the desired density increment. We may thus proceed under the assumption that these terms are all small, so that

𝔼x,y,h1,h2,h3Δ(0,h1),(0,h2),(h3,0)S(x,y)(σ8+τ82)α2β4γ8δ8ρ6.\mathbb{E}_{x,y,h_{1},h_{2},h_{3}}\Delta_{(0,h_{1}),(0,h_{2}),(h_{3},0)}S(x,y)\geq\left(\sigma^{8}+\frac{\tau^{8}}{2}\right)\alpha^{2}\beta^{4}\gamma^{8}\delta^{8}\rho^{6}.

For each pair (x,x+h)A2(x,x+h)\in A^{2}, let Rx,hR_{x,h} and Φx,h\Phi_{x,h} be as in Lemma 6.8, and set Sx,h(y):=Δ(h,0)S(x,y)S_{x,h}(y):=\Delta_{(h,0)}S(x,y). By Markov’s inequality, either

(6.21) ((x,x+h)A×A:|𝔼ySx,h(y)σ2βγ2δ2ρ2|τ864βγ2δ2ρ2)<τ84,\mathbb{P}\left((x,x+h)\in A\times A:\left|\mathbb{E}_{y}S_{x,h}(y)-\sigma^{2}\beta\gamma^{2}\delta^{2}\rho^{2}\right|\geq\frac{\tau^{8}}{64}\beta\gamma^{2}\delta^{2}\rho^{2}\right)<\frac{\tau^{8}}{4},

or else 𝔼x,x+hA|𝔼ySx,h(y)σ2βγ2δ2ρ2|2\mathbb{E}_{x,x+h\in A}|\mathbb{E}_{y}S_{x,h}(y)-\sigma^{2}\beta\gamma^{2}\delta^{2}\rho^{2}|^{2} is τ16β2γ4δ4ρ4\gg\tau^{16}\beta^{2}\gamma^{4}\delta^{4}\rho^{4}, in which case a combination of Lemmas 6.36.4, and 6.5 will produce the desired density increment. We may thus proceed under the assumption that (6.21) holds.

By (6.21) and Lemma 6.8, there exists a subset A0{(x,h)𝔽pn×𝔽pn:x,x+hA}A_{0}\subset\{(x,h)\in\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}:x,x+h\in A\} of density τO(1)α2\gg\tau^{O(1)}\alpha^{2} in 𝔽pn×𝔽pn\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} such that

Sx,hU2(Φx,h)4(σ8+τ84)β4γ8δ8,\|S_{x,h}\|_{U^{2}(\Phi_{x,h})}^{4}\geq\left(\sigma^{8}+\frac{\tau^{8}}{4}\right)\beta^{4}\gamma^{8}\delta^{8},
|𝔼ySx,h(y)σ2βγ2δ2ρ2|<τ864βγ2δ2ρ2,\left|\mathbb{E}_{y}S_{x,h}(y)-\sigma^{2}\beta\gamma^{2}\delta^{2}\rho^{2}\right|<\frac{\tau^{8}}{64}\beta\gamma^{2}\delta^{2}\rho^{2},
Rx,hΦx,hβγ2δ2U2(Φx,h)<ε1/32ρ3/2,\|R_{x,h}\Phi_{x,h}-\beta\gamma^{2}\delta^{2}\|_{U^{2}(\Phi_{x,h})}<\frac{\varepsilon^{1/32}}{\rho^{3/2}},

and codim{y𝔽pn:Φx,h(y)=1}=2d\operatorname{codim}\{y\in\mathbb{F}_{p}^{n}:\Phi_{x,h}(y)=1\}=2d for all (x,h)A0(x,h)\in A_{0}. Note that Sx,hS_{x,h} is supported on Rx,hΦx,hR_{x,h}\Phi_{x,h}, and, setting

fx,h:=1βγ2δ2Sx,handνx,h:=1βγ2δ2Rx,hΦx,h,f_{x,h}:=\frac{1}{\beta\gamma^{2}\delta^{2}}S_{x,h}\qquad\text{and}\qquad\nu_{x,h}:=\frac{1}{\beta\gamma^{2}\delta^{2}}R_{x,h}\Phi_{x,h},

we have fx,hU2(Φx,h)4σ8+τ8/4\|f_{x,h}\|^{4}_{U^{2}(\Phi_{x,h})}\geq\sigma^{8}+\tau^{8}/4, 0fx,hνx,h0\leq f_{x,h}\leq\nu_{x,h}, 𝔼fx,h1\mathbb{E}f_{x,h}\leq 1, |𝔼fx,hσ2|<τ8/64|\mathbb{E}f_{x,h}-\sigma^{2}|<\tau^{8}/64, and νx,h1U2(Φx,h)<ε1/32/βγ2δ2ρ3/2<exp((64/τ)c3)\|\nu_{x,h}-1\|_{U^{2}(\Phi_{x,h})}<\varepsilon^{1/32}/\beta\gamma^{2}\delta^{2}\rho^{3/2}<\exp(-(64/\tau)^{c_{3}}), provided that c1c_{1} is small enough and c2c_{2} is large enough. Applying Lemma 6.1 on the affine subspace Φx,h\Phi_{x,h} yields a function f~x,h:Φx,h[0,1]\tilde{f}_{x,h}:\Phi_{x,h}\to[0,1] such that

𝔼f~x,h=𝔼fx,h and f~x,hfx,hU2(Φx,h)τ864,\mathbb{E}\tilde{f}_{x,h}=\mathbb{E}f_{x,h}\qquad\text{ and }\qquad\|\tilde{f}_{x,h}-f_{x,h}\|_{U^{2}(\Phi_{x,h})}\leq\frac{\tau^{8}}{64},

provided that c3c_{3} is large enough. We must then also have

f~x,hU2(Φx,h)4σ8+τ816.\|\tilde{f}_{x,h}\|^{4}_{U^{2}(\Phi_{x,h})}\geq\sigma^{8}+\frac{\tau^{8}}{16}.

Arguing as in the proof of the first part of Lemma 6.5, it follows that, for every pair (x,h)A0(x,h)\in A_{0}, there exists a nonzero ξx,hΦx,hu^\xi_{x,h}\in\widehat{\Phi_{x,h}-u} such that

|𝔼yΦx,h(f~x,hσ2)(y)ep(ξx,hy)|τ832,\left|\mathbb{E}_{y\in\Phi_{x,h}}(\tilde{f}_{x,h}-\sigma^{2})(y)e_{p}(\xi_{x,h}\cdot y)\right|\geq\frac{\tau^{8}}{32},

so that

|𝔼yΦx,h(fx,hσ2)(y)ep(ξx,hy)|τ864\left|\mathbb{E}_{y\in\Phi_{x,h}}(f_{x,h}-\sigma^{2})(y)e_{p}(\xi_{x,h}\cdot y)\right|\geq\frac{\tau^{8}}{64}

as well.

Extend (x,h)ξx,h(x,h)\mapsto\xi_{x,h} from A0A_{0} to the set {(x,h)𝔽pn×𝔽pn:x,x+hA}\{(x,h)\in\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}:x,x+h\in A\} by picking a nonzero ξx,hΦx,hu^\xi_{x,h}\in\widehat{\Phi_{x,h}-u} arbitrarily for all pairs outside of A0A_{0}. We split the average over yΦx,hy\in\Phi_{x,h} up into an average of averages over cosets of ξx,h\langle\xi_{x,h}\rangle^{\perp} and average over all pairs (x,h)(x,h) such that x,x+hAx,x+h\in A to get that

(6.22) 𝔼x,x+hA𝔼t𝔽p|𝔼yΦx,hξx,hy=t(fx,hσ2)(y)|τc\mathbb{E}_{x,x+h\in A}\mathbb{E}_{t\in\mathbb{F}_{p}}\left|\mathbb{E}_{\begin{subarray}{c}y\in\Phi_{x,h}\\ \xi_{x,h}\cdot y=t\end{subarray}}(f_{x,h}-\sigma^{2})(y)\right|\gg\tau^{c}

for some absolute constant c>0c>0. Note that

𝔼x,x+hA𝔼t𝔽p𝔼yΦx,hξx,hy=t(fx,hσ2)(y)\displaystyle\mathbb{E}_{x,x+h\in A}\mathbb{E}_{t\in\mathbb{F}_{p}}\mathbb{E}_{\begin{subarray}{c}y\in\Phi_{x,h}\\ \xi_{x,h}\cdot y=t\end{subarray}}(f_{x,h}-\sigma^{2})(y) =1α2βγ2δ2ρ2𝔼x,y,hS(x,y)S(x+h,y)σ2\displaystyle=\frac{1}{\alpha^{2}\beta\gamma^{2}\delta^{2}\rho^{2}}\mathbb{E}_{x,y,h}S(x,y)S(x+h,y)-\sigma^{2}
=1α2βγ2δ2ρ2𝔼x,y,hgS(x,y)gS(x+h,y),\displaystyle=\frac{1}{\alpha^{2}\beta\gamma^{2}\delta^{2}\rho^{2}}\mathbb{E}_{x,y,h}g_{S}(x,y)g_{S}(x+h,y),

so that, if it were the case that

|𝔼x,x+hA𝔼t𝔽p𝔼yΦx,hξx,hy=t(fx,hσ2)(y)|τ2c,\left|\mathbb{E}_{x,x+h\in A}\mathbb{E}_{t\in\mathbb{F}_{p}}\mathbb{E}_{\begin{subarray}{c}y\in\Phi_{x,h}\\ \xi_{x,h}\cdot y=t\end{subarray}}(f_{x,h}-\sigma^{2})(y)\right|\gg\tau^{2c},

then we would be able to deduce the desired density-increment from Lemma 6.3. Thus, we may proceed under the assumption

|𝔼x,x+hA𝔼t𝔽p𝔼yΦx,hξx,hy=t(fx,hσ2)(y)|τ2c,\left|\mathbb{E}_{x,x+h\in A}\mathbb{E}_{t\in\mathbb{F}_{p}}\mathbb{E}_{\begin{subarray}{c}y\in\Phi_{x,h}\\ \xi_{x,h}\cdot y=t\end{subarray}}(f_{x,h}-\sigma^{2})(y)\right|\ll\tau^{2c},

which we can combine with (6.22), a change of variables, and an application of the pigeonhole principle in the tt variable to deduce that

(6.23) 𝔼x,hAmax(0,𝔼yΦx,hxξx,hxy=t(fx,hxσ2)(y))τc\mathbb{E}_{x,h\in A}\max\left(0,\mathbb{E}_{\begin{subarray}{c}y\in\Phi_{x,h-x}\\ \xi_{x,h-x}\cdot y=t\end{subarray}}(f_{x,h-x}-\sigma^{2})(y)\right)\gg\tau^{c}

for some fixed t𝔽pt\in\mathbb{F}_{p}. Set

(6.24) Ψh:={(x,y)𝔽pn×𝔽pn:yΦx,hx and ξx,hxy=t}.\Psi_{h}:=\left\{(x,y)\in\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}:y\in\Phi_{x,h-x}\text{ and }\xi_{x,h-x}\cdot y=t\right\}.

To deduce the desired density-increment by applying the pigeonhole principle to (6.23), we will have to show that almost every set of the form

{(x,y)T:S(h,y)A1(x,hx)Ψh(x,y)=1}\{(x,y)\in T:S(h,y)A_{1}(x,h-x)\Psi_{h}(x,y)=1\}

has close to the “correct” density. Most of the remainder of our argument for 1\|\cdot\|_{\star_{1}} is devoted to this task.

Set Qx,h(y):=S(h,y)C(x+y)D(2x+y)Q_{x,h}(y):=S(h,y)C(x+y)D(2x+y). We start by showing that either Qx,hσβγ2δ2U2(Φx,hx)\|Q_{x,h}-\sigma\beta\gamma^{2}\delta^{2}\|_{U^{2}(\Phi_{x,h-x})} is small for almost every pair (x,h)A×A(x,h)\in A\times A, or else we can deduce a density-increment from Lemmas 6.3 and 6.5. Note first that

𝔼x,y,hA(x)A(h)Φx,hx(y)Qx,h(y)\displaystyle\mathbb{E}_{x,y,h}A(x)A(h)\Phi_{x,h-x}(y)Q_{x,h}(y) =𝔼x,y,hS(h,y)A(x)C(x+y)D(2x+y)Φ(x,y)\displaystyle=\mathbb{E}_{x,y,h}S(h,y)A(x)C(x+y)D(2x+y)\Phi(x,y)
=𝔼h,yS(h,y)μ(y),\displaystyle=\mathbb{E}_{h,y}S(h,y)\mu(y),

where μ(y):=𝔼xA(x)C(x+y)D(2x+y)Φ(x,y)\mu(y):=\mathbb{E}_{x}A(x)C(x+y)D(2x+y)\Phi(x,y). By Lemmas 3.53.6, and 4.1, we have

(y𝔽pn:|μ(y)αγδρ|>ε)εΩ(1)ρO(1),\mathbb{P}\left(y\in\mathbb{F}_{p}^{n}:|\mu(y)-\alpha\gamma\delta\rho|>\varepsilon\right)\ll\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}},

so that |𝔼x,h,yA(x)A(h)Φx,hx(y)Qx,h(y)σα2βγ2δ2ρ2|<εΩ(1)/ρO(1)|\mathbb{E}_{x,h,y}A(x)A(h)\Phi_{x,h-x}(y)Q_{x,h}(y)-\sigma\alpha^{2}\beta\gamma^{2}\delta^{2}\rho^{2}|<\varepsilon^{\Omega(1)}/\rho^{O(1)}. Similarly, the average 𝔼x,hA(x)A(h)|𝔼yQx,h(y)Φx,hx(y)σβγ2δ2ρ2|2\mathbb{E}_{x,h}A(x)A(h)|\mathbb{E}_{y}Q_{x,h}(y)\Phi_{x,h-x}(y)-\sigma\beta\gamma^{2}\delta^{2}\rho^{2}|^{2} equals

𝔼x,y,h,kA(x)A(h)Φx,hx(y)Φx,hx(y+k)Qx,h(y)Qx,h(y+k)σ2α2β2γ4δ4ρ4+O(εΩ(1)ρO(1)),\mathbb{E}_{x,y,h,k}A(x)A(h)\Phi_{x,h-x}(y)\Phi_{x,h-x}(y+k)Q_{x,h}(y)Q_{x,h}(y+k)-\sigma^{2}\alpha^{2}\beta^{2}\gamma^{4}\delta^{4}\rho^{4}+O\left(\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}}\right),

and 𝔼x,y,h,kA(x)A(h)Φx,hx(y)Φx,hx(y+k)Qx,h(y)Qx,h(y+k)\mathbb{E}_{x,y,h,k}A(x)A(h)\Phi_{x,h-x}(y)\Phi_{x,h-x}(y+k)Q_{x,h}(y)Q_{x,h}(y+k) equals

𝔼y,h,kS(h,y)S(h,y+k)μ(y,k),\mathbb{E}_{y,h,k}S(h,y)S(h,y+k)\mu^{\prime}(y,k),

where

μ(y,k)=𝔼xA(x)C(x+y)C(x+y+k)D(2x+y)D(2x+y+k)Φ(x,y)Φ(x,y+k).\mu^{\prime}(y,k)=\mathbb{E}_{x}A(x)C(x+y)C(x+y+k)D(2x+y)D(2x+y+k)\Phi(x,y)\Phi(x,y+k).

By Lemmas 3.53.6, and 4.1, we have

((y,k)𝔽pn×𝔽pn:|μ(y,k)αγ2δ2ρ2|>ε)εΩ(1)ρO(1),\mathbb{P}\left((y,k)\in\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}:|\mu^{\prime}(y,k)-\alpha\gamma^{2}\delta^{2}\rho^{2}|>\varepsilon\right)\ll\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}},

so that

𝔼x,y,h,kA(x)A(h)Φx,hx(y)Φx,hx(y+k)Qx,h(y)Qx,h(y+k)\mathbb{E}_{x,y,h,k}A(x)A(h)\Phi_{x,h-x}(y)\Phi_{x,h-x}(y+k)Q_{x,h}(y)Q_{x,h}(y+k)

equals

αγ2δ2ρ2𝔼y,h,kS(h,y)S(h,y+k)+O(εΩ(1)ρO(1)).\alpha\gamma^{2}\delta^{2}\rho^{2}\mathbb{E}_{y,h,k}S(h,y)S(h,y+k)+O\left(\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}}\right).

Thus, if

𝔼x,hA(x)A(h)|𝔼yQx,h(y)Φx,hx(y)σβγ2δ2ρ2|2τ4cσ2α2β2γ4δ4ρ4\mathbb{E}_{x,h}A(x)A(h)|\mathbb{E}_{y}Q_{x,h}(y)\Phi_{x,h-x}(y)-\sigma\beta\gamma^{2}\delta^{2}\rho^{2}|^{2}\gg\tau^{4c^{\prime}}\sigma^{2}\alpha^{2}\beta^{2}\gamma^{4}\delta^{4}\rho^{4}

for some c>0c^{\prime}>0 (to be chosen later), and c1c_{1} is small enough and c2c_{2} is large enough, then

𝔼x,y,hS(x,y)S(x,y+h)(σ2+Ω(τ4c))αβ2γ2δ2ρ2,\mathbb{E}_{x,y,h}S(x,y)S(x,y+h)\geq\left(\sigma^{2}+\Omega(\tau^{4c^{\prime}})\right)\alpha\beta^{2}\gamma^{2}\delta^{2}\rho^{2},

in which case the desired density increment follows from Lemma 6.3. We may thus proceed under the assumption that

𝔼x,hA(x)A(h)|𝔼yQx,h(y)Φx,hx(y)σβγ2δ2ρ2|2τ4cσ2α2β2γ4δ4ρ4,\mathbb{E}_{x,h}A(x)A(h)|\mathbb{E}_{y}Q_{x,h}(y)\Phi_{x,h-x}(y)-\sigma\beta\gamma^{2}\delta^{2}\rho^{2}|^{2}\ll\tau^{4c^{\prime}}\sigma^{2}\alpha^{2}\beta^{2}\gamma^{4}\delta^{4}\rho^{4},

so that, by Markov’s inequality, we have

((x,h)A×A:|𝔼yQx,h(y)Φx,hx(y)σβγ2δ2ρ2|τ2cσβγ2δ2ρ2)τ2c.\mathbb{P}\left((x,h)\in A\times A:|\mathbb{E}_{y}Q_{x,h}(y)\Phi_{x,h-x}(y)-\sigma\beta\gamma^{2}\delta^{2}\rho^{2}|\geq\tau^{2c^{\prime}}\sigma\beta\gamma^{2}\delta^{2}\rho^{2}\right)\ll\tau^{2c^{\prime}}.

It follows that 𝔼x,hA(x)A(h)Qx,hσβγ2δ2U2(Φx,hx)4\mathbb{E}_{x,h}A(x)A(h)\|Q_{x,h}-\sigma\beta\gamma^{2}\delta^{2}\|_{U^{2}(\Phi_{x,h-x})}^{4} equals

𝔼x,h𝔽pny,y+k,y+Φx,hxA(x)A(h)Δk,Qx,h(y)σ4α2β4γ8δ8+O(τ2cα2β4γ8δ8).\mathbb{E}_{\begin{subarray}{c}x,h\in\mathbb{F}_{p}^{n}\\ y,y+k,y+\ell\in\Phi_{x,h-x}\end{subarray}}A(x)A(h)\Delta_{k,\ell}Q_{x,h}(y)-\sigma^{4}\alpha^{2}\beta^{4}\gamma^{8}\delta^{8}+O(\tau^{2c^{\prime}}\alpha^{2}\beta^{4}\gamma^{8}\delta^{8}).

By Lemmas 3.5 and 3.6,

𝔼x,h𝔽pny,y+k,y+Φx,hxA(x)A(h)Δk,Qx,h(y)=αγ4δ4ρ3𝔼x,y,k,Δ(0,k),(0,)S(x,y)+O(εΩ(1)ρO(1)).\mathbb{E}_{\begin{subarray}{c}x,h\in\mathbb{F}_{p}^{n}\\ y,y+k,y+\ell\in\Phi_{x,h-x}\end{subarray}}A(x)A(h)\Delta_{k,\ell}Q_{x,h}(y)=\frac{\alpha\gamma^{4}\delta^{4}}{\rho^{3}}\mathbb{E}_{x,y,k,\ell}\Delta_{(0,k),(0,\ell)}S(x,y)+O\left(\frac{\varepsilon^{\Omega(1)}}{\rho^{O(1)}}\right).

If

|𝔼x,y,k,Δ(0,k),(0,)S(x,y)σ4αβ4γ4δ4ρ3|τ4cαβ4γ4δ4ρ3,\left|\mathbb{E}_{x,y,k,\ell}\Delta_{(0,k),(0,\ell)}S(x,y)-\sigma^{4}\alpha\beta^{4}\gamma^{4}\delta^{4}\rho^{3}\right|\gg\tau^{4c^{\prime}}\alpha\beta^{4}\gamma^{4}\delta^{4}\rho^{3},

then we could deduce the desired density increment from Lemma 6.5. So, we may proceed under the assumption that this inequality does not hold, which implies that 𝔼x,hA(x)A(h)Qx,hσβγ2δ2U2(Φx,hx)4τ4cα2β4γ8δ8\mathbb{E}_{x,h}A(x)A(h)\|Q_{x,h}-\sigma\beta\gamma^{2}\delta^{2}\|_{U^{2}(\Phi_{x,h-x})}^{4}\ll\tau^{4c^{\prime}}\alpha^{2}\beta^{4}\gamma^{8}\delta^{8}. It then follows from Markov’s inequality that

(6.25) ((x,h)A×A:Qx,hσβγ2δ2U2(Φx,hx)τ2cβγ2δ2)τ2c.\mathbb{P}\left((x,h)\in A\times A:\|Q_{x,h}-\sigma\beta\gamma^{2}\delta^{2}\|_{U^{2}(\Phi_{x,h-x})}\gg\tau^{2c^{\prime}}\beta\gamma^{2}\delta^{2}\right)\ll\tau^{2c^{\prime}}.

Next, we will show that, for typical (x,h)A×A(x,h)\in A\times A, the average size of S(x,y)S(h,y)Ψh(x,y)S(x,y)S(h,y)\Psi_{h}(x,y) is not very large. Certainly,

𝔼yS(x,y)S(h,y)Ψh(x,y)\displaystyle\mathbb{E}_{y}S(x,y)S(h,y)\Psi_{h}(x,y) 𝔼yT(x,y)T(h,y)Ψh(x,y)\displaystyle\leq\mathbb{E}_{y}T(x,y)T(h,y)\Psi_{h}(x,y)
=𝔼yB(y)C(x+y)C(h+y)D(2x+y)D(2h+y)Ψh(x,y)\displaystyle=\mathbb{E}_{y}B(y)C(x+y)C(h+y)D(2x+y)D(2h+y)\Psi_{h}(x,y)

for every (x,h)A×A(x,h)\in A\times A. Setting

F(x,h,y):=B(y)C(x+y)C(h+y)D(2x+y)D(2h+y),F(x,h,y):=B(y)C(x+y)C(h+y)D(2x+y)D(2h+y),

Lemma 3.6 says that

((x,h)𝔽pn×𝔽pn:F(x,h,)βγ2δ2U2(𝔽pn)>ε1/8)ε.\mathbb{P}\left((x,h)\in\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}:\|F(x,h,\cdot)-\beta\gamma^{2}\delta^{2}\|_{U^{2}(\mathbb{F}_{p}^{n})}>\varepsilon^{1/8}\right)\ll\sqrt{\varepsilon}.

Thus, by 3.5, as long as c2c_{2} is large enough, we have

(6.26) ((x,h)𝔽pn×𝔽pn:|𝔼yS(x,y)S(h,y)Ψh(x,y)|>100βγ2δ2ρ2p)c1(σταβγδρ)16c,\mathbb{P}\left((x,h)\in\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}:\left|\mathbb{E}_{y}S(x,y)S(h,y)\Psi_{h}(x,y)\right|>100\frac{\beta\gamma^{2}\delta^{2}\rho^{2}}{p}\right)\ll\sqrt{c_{1}}(\sigma\tau\alpha\beta\gamma\delta\rho)^{16c},

say.

Now, setting c=8cc^{\prime}=8c, the contribution to the left-hand side of (6.23) coming from pairs (x,h)A×A(x,h)\in A\times A for which Qx,hσβγ2δ2U2(Φx,hx)τ16cβγ2δ2\|Q_{x,h}-\sigma\beta\gamma^{2}\delta^{2}\|_{U^{2}(\Phi_{x,h-x})}\gg\tau^{16c}\beta\gamma^{2}\delta^{2} or |𝔼yS(x,y)S(h,y)Ψh(x,y)|>100βγ2δ2ρ2/p|\mathbb{E}_{y}S(x,y)S(h,y)\Psi_{h}(x,y)|>100\beta\gamma^{2}\delta^{2}\rho^{2}/p is τ16c\ll\tau^{16c}. Thus, by the pigeonhole principle, there exists an hAh\in A and a subset AAA^{\prime}\subset A of density ατO(1)α\alpha^{\prime}\gg\tau^{O(1)}\alpha in 𝔽pn\mathbb{F}_{p}^{n} such that

𝔼xA𝔼(x,y)Ψh(fx,hσ2)(y)τc\mathbb{E}_{x\in A^{\prime}}\mathbb{E}_{(x,y)\in\Psi_{h}}(f_{x,h}-\sigma^{2})(y)\gg\tau^{c}

and Qx,hσβγ2δ2U2(Φx,hx)τ16cβγ2δ2\|Q_{x,h}-\sigma\beta\gamma^{2}\delta^{2}\|_{U^{2}(\Phi_{x,h-x})}\ll\tau^{16c}\beta\gamma^{2}\delta^{2} for every xAx\in A^{\prime}. Recalling the definition of fx,hf_{x,h}, the above displayed equation says that

𝔼x,yS(x,y)A(x)S(h,y)Ψh(x,y)(σ+Ω(τc))ασβγ2δ2ρ2p.\mathbb{E}_{x,y}S(x,y)A^{\prime}(x)S(h,y)\Psi_{h}(x,y)\geq(\sigma+\Omega(\tau^{c}))\frac{\alpha^{\prime}\sigma\beta\gamma^{2}\delta^{2}\rho^{2}}{p}.

We now use Lemma 6.6 to find a subset A′′AA^{\prime\prime}\subset A^{\prime} of density α′′αρτO(1)\alpha^{\prime\prime}\gg\alpha^{\prime}\rho\tau^{O(1)} and a u𝔽pnu^{\prime}\in\mathbb{F}_{p}^{n} such that

𝔼x,yS(x,y)A(x)S(h,y)Φh(x,y)(σ+Ω(τc))α′′σβγ2δ2ρ2p,\mathbb{E}_{x,y}S(x,y)A^{\prime}(x)S(h,y)\Phi_{h}^{\prime}(x,y)\geq\left(\sigma+\Omega(\tau^{c})\right)\frac{\alpha^{\prime\prime}\sigma\beta\gamma^{2}\delta^{2}\rho^{2}}{p},

where

Φh={(x,y)𝔽pn×𝔽pn:yΦx,hx and ξx,h(yu)=0}.\Phi_{h}^{\prime}=\left\{(x,y)\in\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}:y\in\Phi_{x,h-x}\text{ and }\xi_{x,h}\cdot(y-u^{\prime})=0\right\}.

This gives the conclusion of the lemma.

The proofs of the two remaining cases are very similar to those appearing in earlier subsections, so we will be more brief in our arguments. Next, assume that

gS2τα1/2βγ1/2δρ.\|g_{S}\|_{\star_{2}}\geq\tau\alpha^{1/2}\beta\gamma^{1/2}\delta\rho.

As in the second part of the proof of Lemma 6.5, we may proceed under the assumption that

𝔼x,y,x,yS(x,y)S(x,yx)S(x,x+y+x)S(x,x+y)(σ4+τ42)α2β4γ2δ4ρ4,\mathbb{E}_{x,y,x^{\prime},y^{\prime}}S(x,y)S(x,y^{\prime}-x)S(-x^{\prime},x+y+x^{\prime})S(-x^{\prime},x^{\prime}+y^{\prime})\geq\left(\sigma^{4}+\frac{\tau^{4}}{2}\right)\alpha^{2}\beta^{4}\gamma^{2}\delta^{4}\rho^{4},

and use it to show that either

𝔼x,yB(y)D(2x+y)Φ(x,y)S(x,yx)S(x,x+y+x)=(σ2+O(τ5))αβ3γδ3ρ3\mathbb{E}_{x,y}B(y)D(2x+y)\Phi(x,y)S(x,y^{\prime}-x)S(-x^{\prime},x+y+x^{\prime})=\left(\sigma^{2}+O(\tau^{5})\right)\alpha\beta^{3}\gamma\delta^{3}\rho^{3}

for almost every pair (x,y)(x^{\prime},y^{\prime}) for which (x,x+y)S(-x^{\prime},x^{\prime}+y^{\prime})\in S, or else the desired density-increment follows from Lemma 6.3. By Lemmas 3.53.6, and 4.1 and the Cauchy–Schwarz inequality, either

𝔼x,y(x,x+y)S𝔼x,yB(y)D(2x+y)Φ(x,y)S(x,yx)S(x,x+y+x)=σ2αβ3γδ3ρ3+O(τ16αβ3γδ3ρ3)\mathbb{E}_{\begin{subarray}{c}x^{\prime},y^{\prime}\\ (-x^{\prime},x^{\prime}+y^{\prime})\in S\end{subarray}}\mathbb{E}_{x,y}B(y)D(2x+y)\Phi(x,y)S(x,y^{\prime}-x)S(-x^{\prime},x+y+x^{\prime})=\sigma^{2}\alpha\beta^{3}\gamma\delta^{3}\rho^{3}+O(\tau^{16}\alpha\beta^{3}\gamma\delta^{3}\rho^{3})

and

𝔼x,y(x,x+y)S|𝔼x,yB(y)D(2x+y)Φ(x,y)S(x,yx)S(x,x+y+x)σ2αβ3γδ3ρ3|2τ32α2β6γ2δ6ρ6\mathbb{E}_{\begin{subarray}{c}x^{\prime},y^{\prime}\\ (-x^{\prime},x^{\prime}+y^{\prime})\in S\end{subarray}}\left|\mathbb{E}_{x,y}B(y)D(2x+y)\Phi(x,y)S(x,y^{\prime}-x)S(-x^{\prime},x+y+x^{\prime})-\sigma^{2}\alpha\beta^{3}\gamma\delta^{3}\rho^{3}\right|^{2}\ll\tau^{32}\alpha^{2}\beta^{6}\gamma^{2}\delta^{6}\rho^{6}

or else we have the desired density-increment from Lemma 6.3. It then follows from Markov’s inequality that

𝔼x,yB(y)D(2x+y)Φ(x,y)S(x,yx)S(x,x+y+x)=(σ2+O(τ5))αβ3γδ3ρ3\mathbb{E}_{x,y}B(y)D(2x+y)\Phi(x,y)S(x,y^{\prime}-x)S(-x^{\prime},x+y+x^{\prime})=\left(\sigma^{2}+O(\tau^{5})\right)\alpha\beta^{3}\gamma\delta^{3}\rho^{3}

for all but a τ/4\tau/4-proportion of pairs (x,y)(x^{\prime},y^{\prime}) for which (x,x+y)S(-x^{\prime},x^{\prime}+y^{\prime})\in S, which means that we can find such a pair for which we also have

𝔼x,yS(x,y)S(x,yx)S(x,x+y+x)(σ4+τ42)α2β4γ2δ4ρ4,\mathbb{E}_{x,y}S(x,y)S(x,y^{\prime}-x)S(-x^{\prime},x+y+x^{\prime})\geq\left(\sigma^{4}+\frac{\tau^{4}}{2}\right)\alpha^{2}\beta^{4}\gamma^{2}\delta^{4}\rho^{4},

so that we get the desired density-increment by taking A=S(x,yx)A^{\prime}=S(x,y^{\prime}-x), B=BB^{\prime}=B, C=S(x,x+y+x)C^{\prime}=S(-x^{\prime},x+y+x^{\prime}), D=DD^{\prime}=D, and Φ=Φ\Phi^{\prime}=\Phi in the definition of TT^{\prime}.

Now assume that

gS3ταβγδ1/2ρ,\|g_{S}\|_{\star_{3}}\geq\tau\alpha\beta\gamma\delta^{1/2}\rho,

which means

𝔼zD|𝔼2x+y=zgS(x,y)|2τ2α2β2γ2ρ2.\mathbb{E}_{z\in D}|\mathbb{E}_{2x+y=z}g_{S}(x,y)|^{2}\geq\tau^{2}\alpha^{2}\beta^{2}\gamma^{2}\rho^{2}.

By Lemma 6.2 and the pigeonhole principle, there exists a subset D0DD_{0}\subset D of density at least τ2/2\tau^{2}/2 for which

|𝔼2x+y=zgS(x,y)|ταβγρ4|\mathbb{E}_{2x+y=z}g_{S}(x,y)|\geq\frac{\tau\alpha\beta\gamma\rho}{4}

whenever zD0z\in D_{0}. As in the proof of Lemma 6.3, there is a subset D1D0D_{1}\subset D_{0} of density at least 1/21/2 in D0D_{0} such that either 𝔼2x+y=zgS(x,y)ταβγρ/4\mathbb{E}_{2x+y=z}g_{S}(x,y)\geq\tau\alpha\beta\gamma\rho/4 or 𝔼2x+y=zgS(x,y)ταβγρ/4\mathbb{E}_{2x+y=z}g_{S}(x,y)\leq-\tau\alpha\beta\gamma\rho/4 for all zD1z\in D_{1}. As in the proof of Lemma 6.3, we can simply take D=D1D^{\prime}=D_{1} and D=DD1D^{\prime}=D\setminus D_{1} in these cases, respectively, since, by Lemma 6.2, the fibers {(x,y)T:2x+y=z}\{(x,y)\in T:2x+y=z\} typically have very close to their average size. ∎

7. Pseudorandomization

This section begins with yet more preliminaries. To prove Lemma 2.6, we will need a result of Cohen and Tal, which says that, for any finite set of polynomials in 𝔽p[x1,,xm]\mathbb{F}_{p}[x_{1},\dots,x_{m}], one can find a partition of 𝔽pm\mathbb{F}_{p}^{m} into affine subspaces of relatively large dimension on which all of the polynomials are constant.

Theorem 7.1 (Cohen and Tal, Theorem 3.6 of [3] specialized to prime fields).

Let d,m,d,m, and tt be natural numbers. There exists a positive integer mm^{\prime} satisfying

mm1/(d1)!tem^{\prime}\gg\frac{m^{1/(d-1)!}}{t^{e}}

such that, for any polynomials P1,,Pt𝔽p[x1,,xm]P_{1},\dots,P_{t}\in\mathbb{F}_{p}[x_{1},\dots,x_{m}] of degree at most dd, there is a partition of 𝔽pm\mathbb{F}_{p}^{m} into affine subspaces of dimension mm^{\prime} such that P1,,PtP_{1},\dots,P_{t} are constant on each affine subspace.

To see that this formulation of Cohen and Tal’s theorem is equivalent to Theorem 3.6 of [3], note that one can make all of the affine subspaces in the partitions produced by their theorem have the same dimension by simply partitioning each subspace not of the minimum possible dimension into more subspaces.

We will also need a “bilinear” version of Cohen and Tal’s result, which we will use to find partitions of 𝔽pn×𝔽pn\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} into product spaces of the form (u+V)×(w+V)(u+V)\times(w+V) on which polynomials in two sets of variables x1,,xm,y1,,ymx_{1},\dots,x_{m},y_{1},\dots,y_{m} are constant.

Corollary 7.2.

Let dd and mm be natural numbers. There exists a positive integer mm^{\prime} satisfying

mm1/(d1)!2dem^{\prime}\gg\frac{m^{1/(d-1)!^{2}}}{d^{e}}

such that, for any polynomial R𝔽p[x1,,xm,y1,,ym]R\in\mathbb{F}_{p}[x_{1},\dots,x_{m},y_{1},\dots,y_{m}] of degree at most dd, there is a partition of 𝔽pm×𝔽pm\mathbb{F}_{p}^{m}\times\mathbb{F}_{p}^{m} into products of affine subspaces of the form

(u+V)×(w+V),(u+V)\times(w+V),

with each dimV=m\dim V=m^{\prime}, such that RR is constant on each product of affine subspaces.

Proof.

Write

R(𝐱,𝐲)=i=0dPi(𝐱)Qi(𝐲),R(\mathbf{x},\mathbf{y})=\sum_{i=0}^{d}P_{i}(\mathbf{x})Q_{i}(\mathbf{y}),

where P0,,Pd,Q0,,Qd𝔽p[z1,,zm]P_{0},\dots,P_{d},Q_{0},\dots,Q_{d}\in\mathbb{F}_{p}[z_{1},\dots,z_{m}] satisfy degPii\deg{P_{i}}\leq i and degQidi\deg{Q_{i}}\leq d-i for all 0id0\leq i\leq d. Applying Theorem 7.1 to P0,,PdP_{0},\dots,P_{d} gives us a positive integer m0m1/(d1)!(d+1)em^{\prime}_{0}\gg\frac{m^{1/(d-1)!}}{(d+1)^{e}} and a partition

𝔽pm=jJ(uj+Vj)\mathbb{F}_{p}^{m}=\coprod_{j\in J}(u_{j}+V_{j})

of 𝔽pm\mathbb{F}_{p}^{m}, with dimVj=m0\dim{V_{j}}=m^{\prime}_{0} for each jJj\in J, such that P0,,PdP_{0},\dots,P_{d} are all constant on each affine subspace uj+Vju_{j}+V_{j}.

Now write

𝔽pm×𝔽pm=jJ(uj+Vj)×𝔽pm=jJw+Vj𝔽pm/Vj(uj+Vj)×(w+Vj).\mathbb{F}_{p}^{m}\times\mathbb{F}_{p}^{m}=\coprod_{j\in J}(u_{j}+V_{j})\times\mathbb{F}_{p}^{m}=\coprod_{j\in J}\coprod_{w+V_{j}\in\mathbb{F}_{p}^{m}/V_{j}}(u_{j}+V_{j})\times(w+V_{j}).

Since restricting a polynomial to a subspace cannot increase its degree, for each jJj\in J, we can apply Theorem 7.1 on each affine subspace w+Vjw+V_{j} to the polynomial

Qj,w(𝐲):=i=0dPi(uj+Vj)Qi(𝐲)Q_{j,w}(\mathbf{y}):=\sum_{i=0}^{d}P_{i}(u_{j}+V_{j})Q_{i}(\mathbf{y})

to get that there exists a positive integer mm^{\prime} satisfying

m(m0)1/(d1)!(d+1)em1/(d1)!2dem^{\prime}\gg\frac{(m^{\prime}_{0})^{1/(d-1)!}}{(d+1)^{e}}\gg\frac{m^{1/(d-1)!^{2}}}{d^{e}}

and a partition

w+Vj=kKj,w(wk+Vk),w+V_{j}=\coprod_{k\in K_{j,w}}(w_{k}+V_{k}^{\prime}),

with each subspace VkVjV_{k}^{\prime}\leq V_{j} having dimVk=m\dim V_{k}^{\prime}=m^{\prime}, such that Qj,wQ_{j,w} is constant on each wk+Vkw_{k}+V_{k}^{\prime}.

Thus, we can write

𝔽pm×𝔽pm=jJw+Vj𝔽pm/VjkKj,w(uj+Vj)×(wk+Vk),\mathbb{F}_{p}^{m}\times\mathbb{F}_{p}^{m}=\coprod_{j\in J}\coprod_{w+V_{j}\in\mathbb{F}_{p}^{m}/V_{j}}\coprod_{k\in K_{j,w}}(u_{j}+V_{j})\times(w_{k}+V_{k}^{\prime}),

where RR is constant on each product (uj+Vj)×(wk+Vk)(u_{j}+V_{j})\times(w_{k}+V_{k}^{\prime}). Since VkVjV_{k}^{\prime}\leq V_{j} we can further refine this partition to one of the desired form

𝔽pm×𝔽pm=jJw+Vj𝔽pm/VjkKj,wu+VkVj/Vk(u+Vk)×(wk+Vk),\mathbb{F}_{p}^{m}\times\mathbb{F}_{p}^{m}=\coprod_{j\in J}\coprod_{w+V_{j}\in\mathbb{F}_{p}^{m}/V_{j}}\coprod_{k\in K_{j,w}}\coprod_{u+V_{k}^{\prime}\in V_{j}/V_{k}^{\prime}}(u+V_{k}^{\prime})\times(w_{k}+V_{k}^{\prime}),

on each part of which RR is still constant. ∎

Finally, we will recall the recent quantitative inverse theorem of Gowers and Milićević for the UsU^{s}-norms on vector spaces over finite fields:

Theorem 7.3 (Gowers and Milićević, Theorem 7 of [10]).

Let ss be a natural number and assume that psp\geq s. There exist constants cs,cs,p>0c_{s},c_{s,p}^{\prime}>0 so that, if f:𝔽pmf:\mathbb{F}_{p}^{m}\to\mathbb{C} is a 11-bounded function satisfying

fUsδ,\|f\|_{U^{s}}\geq\delta,

then there exists a polynomial P𝔽p[x1,,xm]P\in\mathbb{F}_{p}[x_{1},\dots,x_{m}] of degree degPs1\deg{P}\leq s-1 such that

|𝔼xf(x)ep(P(x))|s,p1expcs(cs,p/δ).\left|\mathbb{E}_{x}f(x)e_{p}(P(x))\right|\gg_{s,p}\frac{1}{\exp^{c_{s}}(c_{s,p}^{\prime}/\delta)}.

7.1. Proof of Lemma 2.6

Our proof of Lemma 2.6 is modeled after the corresponding pseudorandomization arguments in [19, 20] and [12]. As was said in the outline, some new features arise from our desire for B,C,D,B^{\prime},C^{\prime},D^{\prime}, and Φ\Phi^{\prime} to be uniform with respect to UsU^{s}-norms of degree greater than 22 and from Φ\Phi’s particular structure as a union of affine subspaces of the second factor of 𝔽pn×𝔽pn\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}. The first of these two complications can be overcome by using Theorem 7.3 and then Theorem 7.1 or Corollary 7.2. We will discuss how Φ\Phi’s structure influences our proof shortly.

The proof of Lemma 2.6 proceeds via an energy-increment argument. Each step of the energy-increment iteration will produce a partition 𝒞j=(𝒞i,j)iIj\mathscr{C}_{j}=(\mathcal{C}_{i,j})_{i\in I_{j}} of 𝔽pn×𝔽pn\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} into cells 𝒞i,j\mathcal{C}_{i,j} of the form

𝒞i,j=(ui,j+Vi,j)×(wi,j+Vi,j)\mathcal{C}_{i,j}=(u_{i,j}+V_{i,j})\times(w_{i,j}+V_{i,j})

for some subspace Vi,j𝔽pnV_{i,j}\leq\mathbb{F}_{p}^{n}. For each cell 𝒞=(u+V)×(w+V)\mathcal{C}=(u+V)\times(w+V) in a partition 𝒞\mathscr{C}, we set

  • B𝒞:=B(w+V)B_{\mathcal{C}}:=B\cap(w+V),

  • C𝒞:=C(u+w+V)C_{\mathcal{C}}:=C\cap(u+w+V),

  • D𝒞:=D(2u+w+V)D_{\mathcal{C}}:=D\cap(2u+w+V), and

  • Φ𝒞:=Φ𝒞\Phi_{\mathcal{C}}:=\Phi\cap\mathcal{C},

and, correspondingly,

  • β(𝒞):=μw+V(B𝒞)\beta(\mathcal{C}):=\mu_{w+V}(B_{\mathcal{C}}),

  • γ(𝒞):=μu+w+V(C𝒞)\gamma(\mathcal{C}):=\mu_{u+w+V}(C_{\mathcal{C}}),

  • δ(𝒞):=μ2u+w+V(D𝒞)\delta(\mathcal{C}):=\mu_{2u+w+V}(D_{\mathcal{C}}), and

  • ϕ(𝒞):=μ𝒞(Φ𝒞)\phi(\mathcal{C}):=\mu_{\mathcal{C}}(\Phi_{\mathcal{C}}),

so that

T𝒞={(x,y)𝒞:B𝒞(y)C𝒞(x+y)D𝒞(2x+y)Φ𝒞(x,y)=1}T\cap\mathcal{C}=\left\{(x,y)\in\mathcal{C}:B_{\mathcal{C}}(y)C_{\mathcal{C}}(x+y)D_{\mathcal{C}}(2x+y)\Phi_{\mathcal{C}}(x,y)=1\right\}

Analogously to the pseudorandomization procedure for corners, we will show that if B𝒞β(𝒞)U8(𝔽pn),C𝒞γ(𝒞)U8(𝔽pn),\|B_{\mathcal{C}}-\beta(\mathcal{C})\|_{U^{8}(\mathbb{F}_{p}^{n})},\|C_{\mathcal{C}}-\gamma(\mathcal{C})\|_{U^{8}(\mathbb{F}_{p}^{n})}, or D𝒞δ(𝒞)U8(𝔽pn)\|D_{\mathcal{C}}-\delta(\mathcal{C})\|_{U^{8}(\mathbb{F}_{p}^{n})} is large for a substantial portion of cells 𝒞\mathcal{C} in a partition 𝒞\mathscr{C}, then there exists a refinement 𝒞\mathscr{C}^{\prime} of 𝒞\mathscr{C} which has substantially larger energy. But even if Φ𝒞\Phi_{\mathcal{C}} is a union of affine subspaces of the same codimension dd for most cells in the partition, this may not be the case for the Φ𝒞\Phi_{\mathcal{C}^{\prime}}’s corresponding to the cells 𝒞\mathcal{C}^{\prime} in the refinement 𝒞\mathscr{C}^{\prime}. The codimensions of the affine subspaces {yw+V:Φ𝒞(x,y)=1}\{y\in w^{\prime}+V^{\prime}:\Phi_{\mathcal{C}^{\prime}}(x,y)=1\} can range from 0 to dd, so before even considering how to obtain a pseudorandom Φ\Phi^{\prime}, we have already found an obstacle to even getting a set of the same general form as Φ\Phi^{\prime}.

To get around this issue, we will pseudorandomize each of the sets

(7.1) Φ𝒞i:={(x,y)Φ𝒞:𝔼zw+VΦ(x,z)pi}\Phi^{\leq i}_{\mathcal{C}}:=\left\{(x,y)\in\Phi_{\mathcal{C}}:\mathbb{E}_{z\in w+V}\Phi(x,z)\geq p^{-i}\right\}

for 0id0\leq i\leq d, instead of just Φ𝒞=Φ𝒞d\Phi_{\mathcal{C}}=\Phi^{\leq d}_{\mathcal{C}} itself. The definition (7.1) of Φ𝒞i\Phi^{\leq i}_{\mathcal{C}} selects all of the subspaces of the second factor of 𝒞\mathcal{C} comprising Φ𝒞\Phi_{\mathcal{C}} that have codimension at most ii. This will pseudorandomize each of

Φ𝒞i:={(x,y)Φ𝒞:𝔼zw+VΦ(x,z)=pi}=Φ𝒞iΦ𝒞i1\Phi^{i}_{\mathcal{C}}:=\left\{(x,y)\in\Phi_{\mathcal{C}}:\mathbb{E}_{z\in w+V}\Phi(x,z)=p^{-i}\right\}=\Phi^{\leq i}_{\mathcal{C}}\setminus\Phi^{\leq i-1}_{\mathcal{C}}

as well. At the end of the proof of Lemma 2.6, we will use an averaging argument to choose Φ\Phi^{\prime} to be some suitable Φ𝒞i\Phi_{\mathcal{C}}^{i}.

For each 0id0\leq i\leq d, set ϕi(𝒞):=μ𝒞(Φ𝒞i)\phi^{\leq i}(\mathcal{C}):=\mu_{\mathcal{C}}(\Phi_{\mathcal{C}}^{\leq i}). We define the energy E(𝒞)E(\mathscr{C}) of a partition 𝒞\mathscr{C} of 𝔽pn×𝔽pn\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} by

E(𝒞):=14+d𝒞𝒞(β(𝒞)2+γ(𝒞)2+δ(𝒞)2+i=0dϕi(𝒞)2)μ𝔽pn×𝔽pn(𝒞)E(\mathscr{C}):=\frac{1}{4+d}\sum_{\mathcal{C}\in\mathscr{C}}\left(\beta(\mathcal{C})^{2}+\gamma(\mathcal{C})^{2}+\delta(\mathcal{C})^{2}+\sum_{i=0}^{d}\phi^{\leq i}(\mathcal{C})^{2}\right)\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(\mathcal{C})

Note that the energy of any partition is bounded above by 11. We will now prove a couple of lemmas concerning this energy.

Lemma 7.4.

Let m>mm^{\prime}>m and dd be nonnegative integers, A,B,C,D𝔽pnA,B,C,D\subset\mathbb{F}_{p}^{n}, Φ𝔽pn×𝔽pn\Phi\subset\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} be of the form

Φ={(x,y)A×𝔽pn:yu+Vx},\Phi=\{(x,y)\in A\times\mathbb{F}_{p}^{n}:y\in u+V_{x}\},

where each VxV_{x} is a subspace of 𝔽pn\mathbb{F}_{p}^{n} of codimension between 0 and dd, 𝒞\mathscr{C} be a partition of 𝔽pn×𝔽pn\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} with each cell 𝒞\mathcal{C} taking the form

𝒞=(u𝒞+V𝒞)×(w𝒞+V𝒞)\mathcal{C}=(u_{\mathcal{C}}+V_{\mathcal{C}})\times(w_{\mathcal{C}}+V_{\mathcal{C}})

for some subspace V𝒞𝔽pnV_{\mathcal{C}}\leq\mathbb{F}_{p}^{n} of codimension mm, and suppose that 𝒞\mathscr{C}^{\prime} is a refinement of 𝒞\mathscr{C} with each cell 𝒞\mathcal{C}^{\prime} taking the form

𝒞=(u𝒞+V𝒞)×(w𝒞+V𝒞)\mathcal{C}^{\prime}=(u_{\mathcal{C}^{\prime}}^{\prime}+V_{\mathcal{C}^{\prime}}^{\prime})\times(w_{\mathcal{C}^{\prime}}^{\prime}+V_{\mathcal{C}^{\prime}}^{\prime})

for some subspace V𝒞V^{\prime}_{\mathcal{C}^{\prime}} of codimension mm^{\prime}. Then

𝒞𝒞β(𝒞)2μ𝔽pn×𝔽pn(𝒞)𝒞𝒞β(𝒞)2μ𝔽pn×𝔽pn(𝒞),\sum_{\mathcal{C}^{\prime}\in\mathscr{C}^{\prime}}\beta(\mathcal{C}^{\prime})^{2}\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(\mathcal{C}^{\prime})\geq\sum_{\mathcal{C}\in\mathscr{C}}\beta(\mathcal{C})^{2}\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(\mathcal{C}),
𝒞𝒞γ(𝒞)2μ𝔽pn×𝔽pn(𝒞)𝒞𝒞γ(𝒞)2μ𝔽pn×𝔽pn(𝒞),\sum_{\mathcal{C}^{\prime}\in\mathscr{C}^{\prime}}\gamma(\mathcal{C}^{\prime})^{2}\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(\mathcal{C}^{\prime})\geq\sum_{\mathcal{C}\in\mathscr{C}}\gamma(\mathcal{C})^{2}\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(\mathcal{C}),
𝒞𝒞δ(𝒞)2μ𝔽pn×𝔽pn(𝒞)𝒞𝒞δ(𝒞)2μ𝔽pn×𝔽pn(𝒞),\sum_{\mathcal{C}^{\prime}\in\mathscr{C}^{\prime}}\delta(\mathcal{C}^{\prime})^{2}\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(\mathcal{C}^{\prime})\geq\sum_{\mathcal{C}\in\mathscr{C}}\delta(\mathcal{C})^{2}\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(\mathcal{C}),

and

𝒞𝒞ϕi(𝒞)2μ𝔽pn×𝔽pn(𝒞)𝒞𝒞ϕi(𝒞)2μ𝔽pn×𝔽pn(𝒞)\sum_{\mathcal{C}^{\prime}\in\mathscr{C}^{\prime}}\phi^{\leq i}(\mathcal{C}^{\prime})^{2}\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(\mathcal{C}^{\prime})\geq\sum_{\mathcal{C}\in\mathscr{C}}\phi^{\leq i}(\mathcal{C})^{2}\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(\mathcal{C})

for every 0id0\leq i\leq d.

Proof.

Note that it suffices to prove the result with the sum over 𝒞𝒞\mathcal{C}\in\mathscr{C} restricted to a single cell 𝒞0\mathcal{C}_{0} and the sum over 𝒞𝒞\mathcal{C}^{\prime}\in\mathscr{C}^{\prime} restricted to all cells contained in 𝒞0\mathcal{C}_{0}, since one can then just sum over 𝒞0\mathcal{C}_{0} in 𝒞\mathscr{C} to get the desired result. So, we may assume without loss of generality that 𝒞\mathscr{C} is the trivial partition {𝔽pn×𝔽pn}\{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}\}.

Let β,γ,\beta,\gamma, and δ\delta denote the densities of B,C,B,C, and DD, respectively, in 𝔽pn\mathbb{F}_{p}^{n}. Since 𝔽pn×B\mathbb{F}_{p}^{n}\times B has density β\beta in 𝔽pn×𝔽pn\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}, we have

β=𝒞𝒞β(𝒞)μ𝔽pn×𝔽pn(𝒞),\beta=\sum_{\mathcal{C}^{\prime}\in\mathscr{C}^{\prime}}\beta(\mathcal{C}^{\prime})\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(\mathcal{C}^{\prime}),

so that, by the Cauchy–Schwarz inequality,

β2\displaystyle\beta^{2} (𝒞𝒞β(𝒞)2)(𝒞𝒞μ𝔽pn×𝔽pn(𝒞)2)\displaystyle\leq\left(\sum_{\mathcal{C}^{\prime}\in\mathscr{C}^{\prime}}\beta(\mathcal{C}^{\prime})^{2}\right)\left(\sum_{\mathcal{C}^{\prime}\in\mathscr{C}^{\prime}}\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(\mathcal{C}^{\prime})^{2}\right)
=𝒞𝒞β(𝒞)2μ𝔽pn×𝔽pn(𝒞),\displaystyle=\sum_{\mathcal{C}^{\prime}\in\mathscr{C}^{\prime}}\beta(\mathcal{C}^{\prime})^{2}\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(\mathcal{C}^{\prime}),

as desired, since

𝒞𝒞μ𝔽pn×𝔽pn(𝒞)2=p2np2n2m1p4m=1p2m=μ𝔽pn×𝔽pn(𝒞)\sum_{\mathcal{C}^{\prime}\in\mathscr{C}^{\prime}}\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(\mathcal{C}^{\prime})^{2}=\frac{p^{2n}}{p^{2n-2m^{\prime}}}\cdot\frac{1}{p^{4m^{\prime}}}=\frac{1}{p^{2m^{\prime}}}=\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(\mathcal{C}^{\prime})

for all cells 𝒞\mathcal{C}^{\prime} of 𝒞\mathscr{C}^{\prime}. Similarly, since {(x,y)𝔽pn×𝔽pn:x+yC}\{(x,y)\in\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}:x+y\in C\} has density γ\gamma in 𝔽pn×𝔽pn\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} and {(x,y)𝔽pn×𝔽pn:2x+yD}\{(x,y)\in\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}:2x+y\in D\} has density δ\delta in 𝔽pn×𝔽pn\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}, we have

γ=𝒞𝒞γ(𝒞)μ𝔽pn×𝔽pn(𝒞)\gamma=\sum_{\mathcal{C}^{\prime}\in\mathscr{C}^{\prime}}\gamma(\mathcal{C}^{\prime})\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(\mathcal{C}^{\prime})

and

δ=𝒞𝒞δ(𝒞)μ𝔽pn×𝔽pn(𝒞),\delta=\sum_{\mathcal{C}^{\prime}\in\mathscr{C}^{\prime}}\delta(\mathcal{C}^{\prime})\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(\mathcal{C}^{\prime}),

it follows again from the Cauchy–Schwarz inequality that

𝒞𝒞γ(𝒞)2μ𝔽pn×𝔽pn(𝒞)γ2\sum_{\mathcal{C}^{\prime}\in\mathscr{C}^{\prime}}\gamma(\mathcal{C}^{\prime})^{2}\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(\mathcal{C}^{\prime})\geq\gamma^{2}

and

𝒞𝒞δ(𝒞)2μ𝔽pn×𝔽pn(𝒞)δ2.\sum_{\mathcal{C}^{\prime}\in\mathscr{C}^{\prime}}\delta(\mathcal{C}^{\prime})^{2}\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(\mathcal{C}^{\prime})\geq\delta^{2}.

The argument for the ϕi\phi^{\leq i}’s is also essentially identical, but with one small difference. For ease of notation, set Φi:=Φ𝔽pn×𝔽pni\Phi^{\leq i}:=\Phi^{\leq i}_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}} and ϕi:=ϕi(𝔽pn×𝔽pn)\phi^{\leq i}:=\phi^{\leq i}(\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}) for all 0id0\leq i\leq d. Then we actually have

ϕi𝒞𝒞ϕi(𝒞)μ𝔽pn×𝔽pn(𝒞),\phi^{\leq i}\leq\sum_{\mathcal{C}^{\prime}\in\mathscr{C}^{\prime}}\phi^{\leq i}(\mathcal{C}^{\prime})\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(\mathcal{C}^{\prime}),

instead of equality, since Φi𝒞Φ𝒞i\Phi^{\leq i}\cap\mathcal{C}^{\prime}\subset\Phi^{\leq i}_{\mathcal{C}^{\prime}} (which is why we run the energy-increment argument with the Φi\Phi^{\leq i}’s, instead of the Φi\Phi^{i}’s). It therefore follows yet again from the Cauchy–Schwarz inequality that

𝒞𝒞ϕi(𝒞)2μ𝔽pn×𝔽pn(𝒞)(ϕi)2\sum_{\mathcal{C}^{\prime}\in\mathscr{C}^{\prime}}\phi^{\leq i}(\mathcal{C}^{\prime})^{2}\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(\mathcal{C}^{\prime})\geq(\phi^{\leq i})^{2}

for all 0id0\leq i\leq d. ∎

Lemma 7.5.

Let mm and dd be nonnegative integers, A,B,C,D𝔽pnA,B,C,D\subset\mathbb{F}_{p}^{n}, Φ𝔽pn×𝔽pn\Phi\subset\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} be of the form

Φ={(x,y)A×𝔽pn:yu+Vx},\Phi=\{(x,y)\in A\times\mathbb{F}_{p}^{n}:y\in u+V_{x}\},

where each VxV_{x} is a subspace of 𝔽pn\mathbb{F}_{p}^{n} of codimension between 0 and dd, and 𝒞\mathscr{C} be a partition of 𝔽pn×𝔽pn\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} with each cell 𝒞\mathcal{C} taking the form

𝒞=(u𝒞+V𝒞)×(w𝒞+V𝒞)\mathcal{C}=(u_{\mathcal{C}}+V_{\mathcal{C}})\times(w_{\mathcal{C}}+V_{\mathcal{C}})

for some subspace V𝒞𝔽pnV_{\mathcal{C}}\leq\mathbb{F}_{p}^{n} of dimension mm. There exists a positive integer

mm1/(8!)2m^{\prime}\gg m^{1/(8!)^{2}}

and positive integers c,cp>0c,c^{\prime}_{p}>0, such that the following holds.

Let 𝒞𝒞\mathcal{C}\in\mathscr{C}.

  1. (1)

    If B𝒞β(𝒞)U10(w𝒞+V𝒞)ε\|B_{\mathcal{C}}-\beta(\mathcal{C})\|_{U^{10}(w_{\mathcal{C}}+V_{\mathcal{C}})}\geq\varepsilon, then there exists a partition 𝒞𝒞\mathscr{C}^{\prime}_{\mathcal{C}} of 𝒞\mathcal{C} with each cell 𝒞\mathcal{C}^{\prime} taking the form

    𝒞=(u𝒞+V𝒞)×(w𝒞+V𝒞),\mathcal{C}^{\prime}=(u_{\mathcal{C}^{\prime}}^{\prime}+V_{\mathcal{C}^{\prime}}^{\prime})\times(w_{\mathcal{C}^{\prime}}^{\prime}+V_{\mathcal{C}^{\prime}}^{\prime}),

    with each dimVC=m\dim V_{C^{\prime}}^{\prime}=m^{\prime}, such that

    𝒞𝒞𝒞β(𝒞)2μ𝒞(𝒞)β(𝒞)2+Ω(1expc(cp/ε)2).\sum_{\mathcal{C}^{\prime}\in\mathscr{C}^{\prime}_{\mathcal{C}}}\beta(\mathcal{C}^{\prime})^{2}\mu_{\mathcal{C}}(\mathcal{C}^{\prime})\geq\beta(\mathcal{C})^{2}+\Omega\left(\frac{1}{\exp^{c}(c^{\prime}_{p}/\varepsilon)^{2}}\right).
  2. (2)

    If C𝒞γ(𝒞)U10(u𝒞+w𝒞+V𝒞)ε\|C_{\mathcal{C}}-\gamma(\mathcal{C})\|_{U^{10}(u_{\mathcal{C}}+w_{\mathcal{C}}+V_{\mathcal{C}})}\geq\varepsilon, then there exists a partition 𝒞𝒞\mathscr{C}^{\prime}_{\mathcal{C}} of 𝒞\mathcal{C} with each cell 𝒞\mathcal{C}^{\prime} taking the form

    𝒞=(u𝒞+V𝒞)×(w𝒞+V𝒞),\mathcal{C}^{\prime}=(u_{\mathcal{C}^{\prime}}^{\prime}+V_{\mathcal{C}^{\prime}}^{\prime})\times(w_{\mathcal{C}^{\prime}}^{\prime}+V_{\mathcal{C}^{\prime}}^{\prime}),

    with each dimVC=m\dim V_{C^{\prime}}^{\prime}=m^{\prime}, such that

    𝒞𝒞𝒞γ(𝒞)2μ𝒞(𝒞)γ(𝒞)2+Ω(1expc(cp/ε)2).\sum_{\mathcal{C}^{\prime}\in\mathscr{C}^{\prime}_{\mathcal{C}}}\gamma(\mathcal{C}^{\prime})^{2}\mu_{\mathcal{C}}(\mathcal{C}^{\prime})\geq\gamma(\mathcal{C})^{2}+\Omega\left(\frac{1}{\exp^{c}(c^{\prime}_{p}/\varepsilon)^{2}}\right).
  3. (3)

    If D𝒞δ(𝒞)U10(2u𝒞+w𝒞+V𝒞)ε\|D_{\mathcal{C}}-\delta(\mathcal{C})\|_{U^{10}(2u_{\mathcal{C}}+w_{\mathcal{C}}+V_{\mathcal{C}})}\geq\varepsilon, then there exists a partition 𝒞𝒞\mathscr{C}^{\prime}_{\mathcal{C}} of 𝒞\mathcal{C} with each cell 𝒞\mathcal{C}^{\prime} taking the form

    𝒞=(u𝒞+V𝒞)×(w𝒞+V𝒞),\mathcal{C}^{\prime}=(u_{\mathcal{C}^{\prime}}^{\prime}+V_{\mathcal{C}^{\prime}}^{\prime})\times(w_{\mathcal{C}^{\prime}}^{\prime}+V_{\mathcal{C}^{\prime}}^{\prime}),

    with each dimVC=m\dim V_{C^{\prime}}^{\prime}=m^{\prime}, such that

    𝒞𝒞𝒞δ(𝒞)2μ𝒞(𝒞)δ(𝒞)2+Ω(1expc(cp/ε)2).\sum_{\mathcal{C}^{\prime}\in\mathscr{C}^{\prime}_{\mathcal{C}}}\delta(\mathcal{C}^{\prime})^{2}\mu_{\mathcal{C}}(\mathcal{C}^{\prime})\geq\delta(\mathcal{C})^{2}+\Omega\left(\frac{1}{\exp^{c}(c^{\prime}_{p}/\varepsilon)^{2}}\right).
  4. (4)

    Let 0id0\leq i\leq d. If Φ𝒞iϕi(𝒞)U8(𝒞)ε\|\Phi^{\leq i}_{\mathcal{C}}-\phi^{\leq i}(\mathcal{C})\|_{U^{8}(\mathcal{C})}\geq\varepsilon, then there exists a partition 𝒞𝒞\mathscr{C}^{\prime}_{\mathcal{C}} of 𝒞\mathcal{C} with each cell 𝒞\mathcal{C}^{\prime} taking the form

    𝒞=(u𝒞+V𝒞)×(w𝒞+V𝒞),\mathcal{C}^{\prime}=(u_{\mathcal{C}^{\prime}}^{\prime}+V_{\mathcal{C}^{\prime}}^{\prime})\times(w_{\mathcal{C}^{\prime}}^{\prime}+V_{\mathcal{C}^{\prime}}^{\prime}),

    with each dimVC=m\dim V_{C^{\prime}}^{\prime}=m^{\prime}, such that

    𝒞𝒞𝒞ϕi(𝒞)2μ𝒞(𝒞)ϕi(𝒞)2+Ω(1expc(cp/ε)2).\sum_{\mathcal{C}^{\prime}\in\mathscr{C}^{\prime}_{\mathcal{C}}}\phi^{\leq i}(\mathcal{C}^{\prime})^{2}\mu_{\mathcal{C}}(\mathcal{C}^{\prime})\geq\phi^{\leq i}(\mathcal{C})^{2}+\Omega\left(\frac{1}{\exp^{c}(c^{\prime}_{p}/\varepsilon)^{2}}\right).
Proof.

Let cc and cpc^{\prime}_{p} denote the constants c10c_{10} and c10,pc_{10,p}^{\prime}, respectively, from Theorem 7.3, and mm^{\prime} denote the smaller of the two minimum values of mm^{\prime} appearing in Theorem 7.1 when we take mm as in this lemma, d=9d=9, and t=1t=1 and mm^{\prime} appearing in Corollary 7.2 when we take mm as in this lemma and d=7d=7.

First assume that B𝒞β(𝒞)U10(w𝒞+V𝒞)ε\|B_{\mathcal{C}}-\beta(\mathcal{C})\|_{U^{10}(w_{\mathcal{C}}+V_{\mathcal{C}})}\geq\varepsilon. Then applying Theorem 7.3 with s=10s=10 yields a polynomial P𝔽p[x1,,xm]P\in\mathbb{F}_{p}[x_{1},\dots,x_{m}] of degree at most 99 such that

|𝔼xw𝒞+V𝒞(B𝒞β(𝒞))(x)ep(P(x))|1expc(cp/ε).\left|\mathbb{E}_{x\in w_{\mathcal{C}}+V_{\mathcal{C}}}(B_{\mathcal{C}}-\beta(\mathcal{C}))(x)e_{p}(P(x))\right|\gg\frac{1}{\exp^{c}(c^{\prime}_{p}/\varepsilon)}.

By Theorem 7.1, there exists a partition (wi+Vi)iI(w_{i}+V_{i})_{i\in I} of w𝒞+V𝒞w_{\mathcal{C}}+V_{\mathcal{C}} into affine subspaces of w𝒞+V𝒞w_{\mathcal{C}}+V_{\mathcal{C}} of dimension mm^{\prime}, on each of which PP is constant. Thus, by the triangle inequality,

𝔼iI|𝔼xwi+Vi(B𝒞β(𝒞))(x)|1expc(cp/ε),\mathbb{E}_{i\in I}\left|\mathbb{E}_{x\in w_{i}+V_{i}}(B_{\mathcal{C}}-\beta(\mathcal{C}))(x)\right|\gg\frac{1}{\exp^{c}(c^{\prime}_{p}/\varepsilon)},

so that, by the Cauchy–Schwarz inequality,

𝔼iI|𝔼xwi+Vi(B𝒞β(𝒞))(x)|21expc(cp/ε)2.\mathbb{E}_{i\in I}\left|\mathbb{E}_{x\in w_{i}+V_{i}}(B_{\mathcal{C}}-\beta(\mathcal{C}))(x)\right|^{2}\gg\frac{1}{\exp^{c}(c^{\prime}_{p}/\varepsilon)^{2}}.

Expanding the square, this means that

(7.2) 𝔼iI|𝔼xwi+ViB𝒞(x)|2β(𝒞)2+Ω(1expc(cp/ε)2).\mathbb{E}_{i\in I}\left|\mathbb{E}_{x\in w_{i}+V_{i}}B_{\mathcal{C}}(x)\right|^{2}\geq\beta(\mathcal{C})^{2}+\Omega\left(\frac{1}{\exp^{c}(c^{\prime}_{p}/\varepsilon)^{2}}\right).

Now we partition the whole cell of interest 𝒞\mathcal{C} by writing

𝒞=(u𝒞+V𝒞)×iI(wi+Vi)=iI(u𝒞+V𝒞)×(wi+Vi),\mathcal{C}=(u_{\mathcal{C}}+V_{\mathcal{C}})\times\coprod_{i\in I}(w_{i}+V_{i})=\coprod_{i\in I}(u_{\mathcal{C}}+V_{\mathcal{C}})\times(w_{i}+V_{i}),

and, for each iIi\in I, use that ViV𝒞V_{i}\leq V_{\mathcal{C}} to partition u𝒞+V𝒞u_{\mathcal{C}}+V_{\mathcal{C}} into cosets of ViV_{i} to get

𝒞=iIu+ViV𝒞/Vi(u𝒞+u+Vi)×(wi+Vi)=:𝒞𝒞𝒞𝒞.\mathcal{C}=\coprod_{i\in I}\coprod_{u^{\prime}+V_{i}\in V_{\mathcal{C}}/V_{i}}(u_{\mathcal{C}}+u^{\prime}+V_{i})\times(w_{i}+V_{i})=:\coprod_{\mathcal{C}^{\prime}\in\mathscr{C}_{\mathcal{C}}}\mathcal{C}^{\prime}.

Since μ𝒞(𝒞)=|𝒞|1\mu_{\mathcal{C}}(\mathcal{C}^{\prime})=|\mathscr{C}^{\prime}|^{-1} for each 𝒞𝒞𝒞\mathcal{C}^{\prime}\in\mathscr{C}_{\mathcal{C}}^{\prime}, (7.2) reads

𝒞𝒞𝒞β(𝒞)2μ𝒞(𝒞)β(𝒞)2+Ω(1expc(cp/ε)2).\sum_{\mathcal{C}^{\prime}\in\mathscr{C}_{\mathcal{C}}^{\prime}}\beta(\mathcal{C}^{\prime})^{2}\mu_{\mathcal{C}}(\mathcal{C}^{\prime})\geq\beta(\mathcal{C})^{2}+\Omega\left(\frac{1}{\exp^{c}(c^{\prime}_{p}/\varepsilon)^{2}}\right).

The arguments for C𝒞C_{\mathcal{C}} and D𝒞D_{\mathcal{C}} are again analogous, but we include them for the sake of completeness. Next, assume that C𝒞γ(𝒞)U10(u𝒞+w𝒞+V𝒞)ε\|C_{\mathcal{C}}-\gamma(\mathcal{C})\|_{U^{10}(u_{\mathcal{C}}+w_{\mathcal{C}}+V_{\mathcal{C}})}\geq\varepsilon. Applying Theorem 7.3 yields a polynomial P𝔽p[x1,,xm]P\in\mathbb{F}_{p}[x_{1},\dots,x_{m}] of degree at most 99 such that

|𝔼xu𝒞+w𝒞+V𝒞(C𝒞γ(𝒞))(x)ep(P(x))|1expc(cp/ε).\left|\mathbb{E}_{x\in u_{\mathcal{C}}+w_{\mathcal{C}}+V_{\mathcal{C}}}(C_{\mathcal{C}}-\gamma(\mathcal{C}))(x)e_{p}(P(x))\right|\gg\frac{1}{\exp^{c}(c^{\prime}_{p}/\varepsilon)}.

By Theorem 7.1, there exists a partition (vi+Vi)iI(v_{i}+V_{i})_{i\in I} of u𝒞+w𝒞+V𝒞u_{\mathcal{C}}+w_{\mathcal{C}}+V_{\mathcal{C}} into affine subspaces of u𝒞+w𝒞+V𝒞u_{\mathcal{C}}+w_{\mathcal{C}}+V_{\mathcal{C}} of dimension mm^{\prime} on each of which PP is constant. Thus, by the Cauchy–Schwarz inequality again,

𝔼iI|𝔼xvi+ViC𝒞(x)|2γ(𝒞)2+Ω(1expc(cp/ε)2).\mathbb{E}_{i\in I}\left|\mathbb{E}_{x\in v_{i}+V_{i}}C_{\mathcal{C}}(x)\right|^{2}\geq\gamma(\mathcal{C})^{2}+\Omega\left(\frac{1}{\exp^{c}(c^{\prime}_{p}/\varepsilon)^{2}}\right).

Now we partition the whole cell 𝒞\mathcal{C} by writing

𝒞=iIv+ViV𝒞/Vi(viw𝒞+v+Vi)×(w𝒞v+Vi)=:𝒞𝒞𝒞𝒞.\mathcal{C}=\coprod_{i\in I}\coprod_{v^{\prime}+V_{i}\in V_{\mathcal{C}}/V_{i}}(v_{i}-w_{\mathcal{C}}+v^{\prime}+V_{i})\times(w_{\mathcal{C}}-v^{\prime}+V_{i})=:\coprod_{\mathcal{C}^{\prime}\in\mathscr{C}_{\mathcal{C}}}\mathcal{C}^{\prime}.

Since (viw𝒞+v+Vi)+(w𝒞v+Vi)=vi+Vi(v_{i}-w_{\mathcal{C}}+v^{\prime}+V_{i})+(w_{\mathcal{C}}-v^{\prime}+V_{i})=v_{i}+V_{i}, we conclude that

𝒞𝒞𝒞γ(𝒞)2μ𝒞(𝒞)γ(𝒞)2+Ω(1expc(cp/ε)2).\sum_{\mathcal{C}^{\prime}\in\mathscr{C}_{\mathcal{C}}^{\prime}}\gamma(\mathcal{C}^{\prime})^{2}\mu_{\mathcal{C}}(\mathcal{C}^{\prime})\geq\gamma(\mathcal{C})^{2}+\Omega\left(\frac{1}{\exp^{c}(c^{\prime}_{p}/\varepsilon)^{2}}\right).

Now assume that D𝒞δ(𝒞)U10(2u𝒞+w𝒞+V𝒞)ε\|D_{\mathcal{C}}-\delta(\mathcal{C})\|_{U^{10}(2u_{\mathcal{C}}+w_{\mathcal{C}}+V_{\mathcal{C}})}\geq\varepsilon. Applying Theorem 7.3 yields a polynomial P𝔽p[x1,,xm]P\in\mathbb{F}_{p}[x_{1},\dots,x_{m}] of degree at most 99 such that

|𝔼x2u𝒞+w𝒞+V𝒞(D𝒞δ(𝒞))(x)ep(P(x))|1expc(cp/ε).\left|\mathbb{E}_{x\in 2u_{\mathcal{C}}+w_{\mathcal{C}}+V_{\mathcal{C}}}(D_{\mathcal{C}}-\delta(\mathcal{C}))(x)e_{p}(P(x))\right|\gg\frac{1}{\exp^{c}(c^{\prime}_{p}/\varepsilon)}.

By Theorem 7.1, there exists a partition (vi+Vi)iI(v_{i}+V_{i})_{i\in I} of 2u𝒞+w𝒞+V𝒞2u_{\mathcal{C}}+w_{\mathcal{C}}+V_{\mathcal{C}} into affine subspaces of 2u𝒞+w𝒞+V𝒞2u_{\mathcal{C}}+w_{\mathcal{C}}+V_{\mathcal{C}} of dimension mm^{\prime} on each of which PP is constant. Thus, by the Cauchy–Schwarz inequality yet again,

𝔼iI|𝔼xvi+ViD𝒞(x)|2δ(𝒞)2+Ω(1expc(cp/ε)2).\mathbb{E}_{i\in I}\left|\mathbb{E}_{x\in v_{i}+V_{i}}D_{\mathcal{C}}(x)\right|^{2}\geq\delta(\mathcal{C})^{2}+\Omega\left(\frac{1}{\exp^{c}(c^{\prime}_{p}/\varepsilon)^{2}}\right).

Now we partition the whole cell 𝒞\mathcal{C} by writing

𝒞=iIv+ViV𝒞/Vi(u𝒞+v+Vi)×(vi2u𝒞2v+Vi)=:𝒞𝒞𝒞𝒞.\mathcal{C}=\coprod_{i\in I}\coprod_{v^{\prime}+V_{i}\in V_{\mathcal{C}}/V_{i}}(u_{\mathcal{C}}+v^{\prime}+V_{i})\times(v_{i}-2u_{\mathcal{C}}-2v^{\prime}+V_{i})=:\coprod_{\mathcal{C}^{\prime}\in\mathscr{C}_{\mathcal{C}}}\mathcal{C}^{\prime}.

Since (2u𝒞+2v+Vi)+(vi2u𝒞2v+Vi)=vi+Vi(2u_{\mathcal{C}}+2v^{\prime}+V_{i})+(v_{i}-2u_{\mathcal{C}}-2v^{\prime}+V_{i})=v_{i}+V_{i}, we conclude that

𝒞𝒞𝒞δ(𝒞)2μ𝒞(𝒞)δ(𝒞)2+Ω(1expc(cp/ε)2).\sum_{\mathcal{C}^{\prime}\in\mathscr{C}_{\mathcal{C}}^{\prime}}\delta(\mathcal{C}^{\prime})^{2}\mu_{\mathcal{C}}(\mathcal{C}^{\prime})\geq\delta(\mathcal{C})^{2}+\Omega\left(\frac{1}{\exp^{c}(c^{\prime}_{p}/\varepsilon)^{2}}\right).

Finally, suppose that Φ𝒞iϕi(𝒞)U8(𝒞)ε\|\Phi^{\leq i}_{\mathcal{C}}-\phi^{\leq i}(\mathcal{C})\|_{U^{8}(\mathcal{C})}\geq\varepsilon for some 0id0\leq i\leq d. Theorem 7.3 then says that there exists a polynomial R𝔽p[x1,,xm,y1,,ym]R\in\mathbb{F}_{p}[x_{1},\dots,x_{m},y_{1},\dots,y_{m}] of degree at most 77 such that

|𝔼(x,y)𝒞(Φ𝒞iϕi(𝒞))(x,y)ep(R(x,y))|1expc(cp/ε).\left|\mathbb{E}_{(x,y)\in\mathcal{C}}(\Phi^{\leq i}_{\mathcal{C}}-\phi^{\leq i}(\mathcal{C}))(x,y)e_{p}(R(x,y))\right|\gg\frac{1}{\exp^{c}(c^{\prime}_{p}/\varepsilon)}.

By Corollary 7.2, there exists a partition 𝒞𝒞\mathscr{C}^{\prime}_{\mathcal{C}} of 𝒞\mathcal{C} into affine subspaces of the form (u+V)×(w+V)(u+V)\times(w+V) with dimV=m\dim V=m^{\prime}, on each of which RR is constant. Thus, by the Cauchy–Schwarz inequality, we have

𝔼𝒞𝒞𝒞|𝔼(x,y)𝒞Φ𝒞i(x,y)|2ϕi(𝒞)2+Ω(1expc(cp/ε)2).\mathbb{E}_{\mathcal{C}^{\prime}\in\mathscr{C}^{\prime}_{\mathcal{C}}}\left|\mathbb{E}_{(x,y)\in\mathcal{C}^{\prime}}\Phi^{\leq i}_{\mathcal{C}}(x,y)\right|^{2}\geq\phi^{\leq i}(\mathcal{C})^{2}+\Omega\left(\frac{1}{\exp^{c}(c^{\prime}_{p}/\varepsilon)^{2}}\right).

Since

𝔼(x,y)𝒞Φ𝒞i(x,y)𝔼(x,y)𝒞Φ𝒞i(x,y)=ϕi(𝒞),\mathbb{E}_{(x,y)\in\mathcal{C}^{\prime}}\Phi^{\leq i}_{\mathcal{C}}(x,y)\leq\mathbb{E}_{(x,y)\in\mathcal{C}^{\prime}}\Phi^{\leq i}_{\mathcal{C}^{\prime}}(x,y)=\phi^{\leq i}(\mathcal{C}^{\prime}),

the conclusion

𝒞𝒞𝒞ϕi(𝒞)2μ𝒞(𝒞)ϕi(𝒞)2+Ω(1expc(cp/ε)2)\sum_{\mathcal{C}^{\prime}\in\mathscr{C}^{\prime}_{\mathcal{C}}}\phi^{\leq i}(\mathcal{C}^{\prime})^{2}\mu_{\mathcal{C}}(\mathcal{C}^{\prime})\geq\phi^{\leq i}(\mathcal{C})^{2}+\Omega\left(\frac{1}{\exp^{c}(c^{\prime}_{p}/\varepsilon)^{2}}\right)

now follows. ∎

Now we can prove Lemma 2.6.

Proof of Lemma 2.6.

We proceed via an energy-increment argument, as described at the beginning of the subsection. A cell 𝒞=(u+V)×(w+V)\mathcal{C}=(u+V)\times(w+V) in a partition 𝒞j\mathscr{C}_{j} is said to be expired if β(𝒞),γ(𝒞),δ(𝒞),\beta(\mathcal{C}),\gamma(\mathcal{C}),\delta(\mathcal{C}), or ϕd(𝒞)\phi^{\leq d}(\mathcal{C}) is less than τμ𝔽pn×𝔽pn(T)/4\tau\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(T)/4, and a nonexpired cell 𝒞\mathcal{C} is said to be uniform if

B𝒞β(𝒞)U10(w+V),C𝒞γ(𝒞)U10(u+w+V),D𝒞δ(𝒞)U10(2u+w+V)<ε\|B_{\mathcal{C}}-\beta(\mathcal{C})\|_{U^{10}(w+V)},\|C_{\mathcal{C}}-\gamma(\mathcal{C})\|_{U^{10}(u+w+V)},\|D_{\mathcal{C}}-\delta(\mathcal{C})\|_{U^{10}(2u+w+V)}<\varepsilon

and

Φ𝒞iϕiU8(𝒞)<ε\|\Phi^{\leq i}_{\mathcal{C}}-\phi^{\leq i}\|_{U^{8}(\mathcal{C})}<\varepsilon

for all 0id0\leq i\leq d. We will denote the subset of expired cells of 𝒞j\mathscr{C}_{j} by j\mathscr{E}_{j}, the subset of uniform cells by 𝒰j\mathscr{U}_{j}, and the subset of nonexpired, nonuniform cells by 𝒩j\mathscr{N}_{j}, so that j,𝒰j\mathscr{E}_{j},\mathscr{U}_{j}, and 𝒩j\mathscr{N}_{j} partition 𝒞j\mathscr{C}_{j}. For any subset KIjK\subset I_{j}, we define η(K)\eta(K) to be the measure of all cells indexed by KK:

η(K):=μ𝔽pn×𝔽pn(kK𝒞k,j).\eta(K):=\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}\left(\coprod_{k\in K}\mathcal{C}_{k,j}\right).

Finally, we define a sequence of integers (mj)j=0(m_{j})_{j=0}^{\infty} by setting m0=nm_{0}=n and, for every j>0j>0, mjm_{j} to be the minimum of the value of mm^{\prime} appearing in Theorem 7.1 when we take m=mj1m=m_{j-1}, d=9d=9, and t=1t=1 and of mm^{\prime} appearing in Corollary 7.2 when we take m=mj1m=m_{j-1} and d=7d=7, so that

mjc1nc2jm_{j}\geq c_{1}n^{c_{2}^{j}}

for some absolute constants 0<c1,c2<10<c_{1},c_{2}<1.

Set 𝒞0\mathscr{C}_{0} to be the trivial partition {𝔽pn×𝔽pn}\{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}\} of 𝔽pn×𝔽pn\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}. Letting c=c10c=c_{10} and c=c10,pc^{\prime}=c^{\prime}_{10,p} be as in Lemma 7.5, then, as long as η(𝒩j)τμ𝔽pn×𝔽pn(T)/2\eta(\mathscr{N}_{j})\geq\tau\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(T)/2 and mj+11m_{j+1}\geq 1, there exists a refinement 𝒞j+1\mathscr{C}_{j+1} of 𝒞j\mathscr{C}_{j} such that

  1. (1)

    dimVi,j+1mj+1\dim{V_{i,j+1}}\geq m_{j+1} for every iIj+1i\in I_{j+1} and dimVi,j+1=mj+1\dim{V_{i,j+1}}=m_{j+1} whenever 𝒞i,j+1𝒩j+1\mathcal{C}_{i,j+1}\in\mathscr{N}_{j+1} and

  2. (2)

    E(𝒞j+1)E(𝒞j)+Ω(τμ𝔽pn×𝔽pn(T)dexpc(cp/ε)2)E(\mathscr{C}_{j+1})\geq E(\mathscr{C}_{j})+\Omega\left(\frac{\tau\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(T)}{d\exp^{c}(c^{\prime}_{p}/\varepsilon)^{2}}\right).

Indeed, suppose that η(𝒩j)τμ𝔽pn×𝔽pn(T)/2\eta(\mathscr{N}_{j})\geq\tau\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(T)/2. Each cell 𝒞\mathcal{C} in 𝒩j\mathscr{N}_{j} must be of dimension mj×mjm_{j}\times m_{j}. By Lemmas 7.4 and 7.5, there exists a partition 𝒞k,j+1=(𝒞k,j+1)kK𝒞\mathscr{C}_{k,j+1}=(\mathcal{C}_{k,j+1})_{k\in K_{\mathcal{C}}} of each 𝒞𝒩j\mathcal{C}\in\mathscr{N}_{j} such that

14+dkK𝒞(β(𝒞k,j+1)2+γ(𝒞k,j+1)2+δ(𝒞k,j+1)2+i=0dϕi(𝒞k,j+1)2)μ𝒞(𝒞k,j+1)\frac{1}{4+d}\sum_{k\in K_{\mathcal{C}}}\left(\beta(\mathcal{C}_{k,j+1})^{2}+\gamma(\mathcal{C}_{k,j+1})^{2}+\delta(\mathcal{C}_{k,j+1})^{2}+\sum_{i=0}^{d}\phi^{\leq i}(\mathcal{C}_{k,j+1})^{2}\right)\mu_{\mathcal{C}}(\mathcal{C}_{k,j+1})

is at least

β(𝒞)2+γ(𝒞)2+δ(𝒞)2+i=0dϕi(𝒞)24+d+Ω(1dexpc(c/ε)2)\frac{\beta(\mathcal{C})^{2}+\gamma(\mathcal{C})^{2}+\delta(\mathcal{C})^{2}+\sum_{i=0}^{d}\phi^{\leq i}(\mathcal{C})^{2}}{4+d}+\Omega\left(\frac{1}{d\exp^{c}(c^{\prime}/\varepsilon)^{2}}\right)

and each 𝒞k,j+1\mathcal{C}_{k,j+1} is of the form (u+V)×(w+V)(u^{\prime}+V^{\prime})\times(w^{\prime}+V^{\prime}) with dimV=mj+11\dim{V^{\prime}}=m_{j+1}\geq 1. Taking

𝒞j+1:={𝒞k,j+1:kK𝒞,𝒞𝒩j}j𝒰j,\mathscr{C}_{j+1}:=\left\{\mathcal{C}_{k,j+1}:k\in K_{\mathcal{C}},\mathcal{C}\in\mathscr{N}_{j}\right\}\cup\mathscr{E}_{j}\cup\mathscr{U}_{j},

we see that multiplying both sides of the above by μ𝔽pn×𝔽pn(𝒞)\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(\mathcal{C}) and summing over 𝒞𝒩j\mathcal{C}\in\mathscr{N}_{j} yields

E(𝒞j+1)E(𝒞j)+Ω(τμ𝔽pn×𝔽pn(T)dexpc(c/ε)2).E(\mathscr{C}_{j+1})\geq E(\mathscr{C}_{j})+\Omega\left(\frac{\tau\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(T)}{d\exp^{c}(c^{\prime}/\varepsilon)^{2}}\right).

Since E(𝒞)1E(\mathscr{C})\leq 1 for all partitions 𝒞\mathscr{C}, this iteration must terminate for some j=j0dexpc(c/ε)2τμ𝔽pn×𝔽pn(T)j=j_{0}\ll\frac{d\exp^{c}(c^{\prime}/\varepsilon)^{2}}{\tau\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(T)}, at which point either η(𝒩j0)<τμ𝔽pn×𝔽pn(T)/2\eta(\mathscr{N}_{j_{0}})<\tau\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(T)/2 or mj0+1<1m_{j_{0}+1}<1. Assuming that nc1c2(j0+1)n\geq c_{1}^{-c_{2}^{-(j_{0}+1)}} ensures that the latter case cannot occur.

Since η(j)<τμ𝔽pn×𝔽pn(T)/4\eta(\mathscr{E}_{j})<\tau\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(T)/4, we have

μ𝔽pn×𝔽pn(S𝒞𝒰j0𝒞)(σ+τ4)μ𝔽pn×𝔽pn(T).\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}\left(S\cap\bigcup_{\mathcal{C}\in\mathscr{U}_{j_{0}}}\mathcal{C}\right)\geq\left(\sigma+\frac{\tau}{4}\right)\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(T).

This certainly implies that

𝒞𝒰j0μ𝔽pn×𝔽pn(S𝒞)(σ+τ4)𝒞𝒰j0μ𝔽pn×𝔽pn(T𝒞),\sum_{\mathcal{C}\in\mathscr{U}_{j_{0}}}\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(S\cap\mathcal{C})\geq\left(\sigma+\frac{\tau}{4}\right)\sum_{\mathcal{C}\in\mathscr{U}_{j_{0}}}\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(T\cap\mathcal{C}),

so that, by the pigeonhole principle, there exists a cell 𝒞0\mathcal{C}_{0} in 𝒰j0\mathscr{U}_{j_{0}} for which

μ𝔽pn×𝔽pn(S𝒞0)(σ+τ4)μ𝔽pn×𝔽pn(T𝒞0).\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(S\cap\mathcal{C}_{0})\geq\left(\sigma+\frac{\tau}{4}\right)\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(T\cap\mathcal{C}_{0}).

Since Φ𝒞0=i=0dΦ𝒞0i\Phi_{\mathcal{C}_{0}}=\coprod_{i=0}^{d}\Phi^{i}_{\mathcal{C}_{0}}, another application of the pigeonhole principle tells us that there exists a 0id0\leq i\leq d for which we also have the density-increment

μ𝔽pn×𝔽pn(S𝒞0Φ𝒞0i)(σ+τ4)μ𝔽pn×𝔽pn(T𝒞0Φ𝒞0i).\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(S\cap\mathcal{C}_{0}\cap\Phi_{\mathcal{C}_{0}}^{i})\geq\left(\sigma+\frac{\tau}{4}\right)\mu_{\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}}(T\cap\mathcal{C}_{0}\cap\Phi_{\mathcal{C}_{0}}^{i}).

As noted at the beginning of this subsection,

Φ𝒞0iϕi(𝒞0)U8(𝒞0)=Φ𝒞0iϕi(𝒞0)+ϕi1(𝒞0)Φ𝒞0i1U8(𝒞0)<2ε,\|\Phi^{i}_{\mathcal{C}_{0}}-\phi^{i}(\mathcal{C}_{0})\|_{U^{8}(\mathcal{C}_{0})}=\|\Phi^{\leq i}_{\mathcal{C}_{0}}-\phi^{\leq i}(\mathcal{C}_{0})+\phi^{\leq i-1}(\mathcal{C}_{0})-\Phi^{\leq i-1}_{\mathcal{C}_{0}}\|_{U^{8}(\mathcal{C}_{0})}<2\varepsilon,

so that the conclusion of the lemma now follows. ∎

8. The density-increment argument

Now we can finally prove Theorem 1.2 by iterating Lemma 2.7.

Proof of Theorem 1.2.

Suppose that S𝔽pn×𝔽pnS\subset\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n} has density σ\sigma and contains no nontrivial L-shaped configurations. Set S0:=SS_{0}:=S, n0:=nn_{0}:=n, d0=0d_{0}=0, ε0:=1\varepsilon_{0}:=1, A0=B0=C0=D0=𝔽pnA_{0}=B_{0}=C_{0}=D_{0}=\mathbb{F}_{p}^{n}, and Φ0:=𝔽pn×𝔽pn\Phi_{0}:=\mathbb{F}_{p}^{n}\times\mathbb{F}_{p}^{n}. Applying Lemma 2.7 repeatedly produces sequences of SiS_{i}’s, nin_{i}’s, did_{i}’s, εi\varepsilon_{i}’s, AiA_{i}’s, BiB_{i}’s, CiC_{i}’s, DiD_{i}’s, and Φi\Phi_{i}’s, with Ai,Bi,Ci,Di𝔽pniA_{i},B_{i},C_{i},D_{i}\subset\mathbb{F}_{p}^{n_{i}} and ΦiAi×𝔽pni\Phi_{i}\subset A_{i}\times\mathbb{F}_{p}^{n_{i}} of the form

Φi={(x,y)Ai×𝔽pni:yu+Vx},\Phi_{i}=\left\{(x,y)\in A_{i}\times\mathbb{F}_{p}^{n_{i}}:y\in u+V_{x}\right\},

where each Vx𝔽pniV_{x}\leq\mathbb{F}_{p}^{n_{i}} is a subspace of codimension did_{i}, such that, on setting

Ti:={(x,y)𝔽pni×𝔽pni:Bi(y)Ci(x+y)Di(2x+y)Φi(x,y)=1},T_{i}:=\left\{(x,y)\in\mathbb{F}_{p}^{n_{i}}\times\mathbb{F}_{p}^{n_{i}}:B_{i}(y)C_{i}(x+y)D_{i}(2x+y)\Phi_{i}(x,y)=1\right\},

αi:=μ𝔽pni(Ai)\alpha_{i}:=\mu_{\mathbb{F}_{p}^{n_{i}}}(A_{i}), βi:=μ𝔽pni(Bi)\beta_{i}:=\mu_{\mathbb{F}_{p}^{n_{i}}}(B_{i}), γi:=μ𝔽pni(Ci)\gamma_{i}:=\mu_{\mathbb{F}_{p}^{n_{i}}}(C_{i}), δi:=μ𝔽pni(Di)\delta_{i}:=\mu_{\mathbb{F}_{p}^{n_{i}}}(D_{i}), and ρi:=μ𝔽pni×𝔽pni(Φi)/αi=pdi\rho_{i}:=\mu_{\mathbb{F}_{p}^{n_{i}}\times\mathbb{F}_{p}^{n_{i}}}(\Phi_{i})/\alpha_{i}=p^{-d_{i}}, we have, for each i1i\geq 1, that

  1. (1)

    SiTiS_{i}\subset T_{i} has density σi\sigma_{i} in TiT_{i}, where σiσi1+Ω(σO(1))\sigma_{i}\geq\sigma_{i-1}+\Omega\left(\sigma^{O(1)}\right),

  2. (2)

    nini1c1O(expc(c/εi)/(σαi1βi1γi1δi1ρi1)O(1))n_{i}\gg n_{i-1}^{c_{1}^{O\left(\exp^{c}(c^{\prime}/\varepsilon_{i})/(\sigma\alpha_{i-1}\beta_{i-1}\gamma_{i-1}\delta_{i-1}\rho_{i-1})^{O(1)}\right)}},

  3. (3)

    εi(σαiβiγiδiρi)O(1)exp((64/σ)O(1))\varepsilon_{i}\leq(\sigma\alpha_{i}\beta_{i}\gamma_{i}\delta_{i}\rho_{i})^{O(1)}\exp(-(64/\sigma)^{O(1)}),

  4. (4)

    αi,βi,γi,δi(σαi1βi1γi1δi1ρi1)O(1)\alpha_{i},\beta_{i},\gamma_{i},\delta_{i}\gg(\sigma\alpha_{i-1}\beta_{i-1}\gamma_{i-1}\delta_{i-1}\rho_{i-1})^{O(1)},

  5. (5)

    didi1+1d_{i}\leq d_{i-1}+1,

  6. (6)

    AiαiU10(𝔽pni),BiβiU10(𝔽pni),CiγiU10(𝔽pni),DiδiU10(𝔽pni),ΦiαiρiU8(𝔽pni×𝔽pni)<εi\|A_{i}-\alpha_{i}\|_{U^{10}(\mathbb{F}_{p}^{n_{i}})},\|B_{i}-\beta_{i}\|_{U^{10}(\mathbb{F}_{p}^{n_{i}})},\|C_{i}-\gamma_{i}\|_{U^{10}(\mathbb{F}_{p}^{n_{i}})},\|D_{i}-\delta_{i}\|_{U^{10}(\mathbb{F}_{p}^{n_{i}})},\|\Phi_{i}-\alpha_{i}\rho_{i}\|_{U^{8}(\mathbb{F}_{p}^{n_{i}}\times\mathbb{F}_{p}^{n_{i}})}<\varepsilon_{i},

  7. (7)

    and SiS_{i} contains no nontrivial L-shaped configurations,

provided that

(8.1) ni1exp2(O(expc(c/εi)(σαi1βi1γi1δi1ρi1)c4)).n_{i-1}\geq\exp^{2}\left(O\left(\frac{\exp^{c}(c^{\prime}/\varepsilon_{i})}{(\sigma\alpha_{i-1}\beta_{i-1}\gamma_{i-1}\delta_{i-1}\rho_{i-1})^{c_{4}}}\right)\right).

Since no set can have density larger than 11, the lower bound (8.1) must fail for some i=i0+1σO(1)i=i_{0}+1\ll\sigma^{-O(1)}. Thus, there exists an absolute constant c′′>1c^{\prime\prime}>1 such that

ni0expc′′(O(1/σO(1)))n_{i_{0}}\ll\exp^{c^{\prime\prime}}(O(1/\sigma^{O(1)}))

while, on the other hand

ni0nc1O(expc′′(O(1/σO(1)))).n_{i_{0}}\gg n^{c_{1}^{O\left(\exp^{c^{\prime\prime}}\left(O\left(1/\sigma^{O(1)}\right)\right)\right)}}.

Comparing the upper and lower bounds for ni0n_{i_{0}} and taking the c′′c^{\prime\prime}-fold iterated logarithm of both sides yields the bound in Theorem 1.2. ∎

References

  • [1] T. Austin. Partial difference equations over compact Abelian groups, I: modules of solutions. 2013. arXiv:1305.7269.
  • [2] T. Austin. Partial difference equations over compact Abelian groups, II: step-polynomial solutions. 2013. arXiv:1309.3577.
  • [3] G. Cohen and A. Tal. Two structural results for low degree polynomials and applications. In Approximation, randomization, and combinatorial optimization. Algorithms and techniques, volume 40 of LIPIcs. Leibniz Int. Proc. Inform., pages 680–709. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2015.
  • [4] H. Furstenberg and Y. Katznelson. An ergodic Szemerédi theorem for commuting transformations. J. Analyse Math., 34:275–291 (1979), 1978.
  • [5] W. T. Gowers. Fourier analysis and Szemerédi’s theorem. In Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998), number Extra Vol. I, pages 617–629, 1998.
  • [6] W. T. Gowers. A new proof of Szemerédi’s theorem for arithmetic progressions of length four. Geom. Funct. Anal., 8(3):529–551, 1998.
  • [7] W. T. Gowers. Arithmetic progressions in sparse sets. In Current developments in mathematics, 2000, pages 149–196. Int. Press, Somerville, MA, 2001.
  • [8] W. T. Gowers. A new proof of Szemerédi’s theorem. Geom. Funct. Anal., 11(3):465–588, 2001.
  • [9] W. T. Gowers. Hypergraph regularity and the multidimensional Szemerédi theorem. Ann. of Math. (2), 166(3):897–946, 2007.
  • [10] W. T. Gowers and L. Milićević. An inverse theorem for Freiman multi-homomorphisms. preprint, 2020. arXiv:2002.11667.
  • [11] R. L. Graham. Euclidean Ramsey theory. In Handbook of discrete and computational geometry, CRC Press Ser. Discrete Math. Appl., pages 153–166. CRC, Boca Raton, FL, 1997.
  • [12] B. Green. An argument of Shkredov in the finite field setting. preprint, 2005. http://people.maths.ox.ac.uk/greenbj/papers/corners.pdf.
  • [13] B. Green. Finite field models in additive combinatorics. In Surveys in combinatorics 2005, volume 327 of London Math. Soc. Lecture Note Ser., pages 1–27. Cambridge Univ. Press, Cambridge, 2005.
  • [14] B. Green and T. Tao. Linear equations in primes. Ann. of Math. (2), 171(3):1753–1850, 2010.
  • [15] F. Manners. Quantitative bounds in the inverse theorem for the Gowers Us+1U^{s+1}-norms over cyclic groups. preprint, 2018. arXiv:1811.00718.
  • [16] B. Nagle, V. Rödl, and M. Schacht. The counting lemma for regular kk-uniform hypergraphs. Random Structures Algorithms, 28(2):113–179, 2006.
  • [17] S. Prendiville. Matrix progressions in multidimensional sets of integers. Mathematika, 61(1):14–48, 2015.
  • [18] V. Rödl and J. Skokan. Regularity lemma for kk-uniform hypergraphs. Random Structures Algorithms, 25(1):1–42, 2004.
  • [19] I. D. Shkredov. On a generalization of Szemerédi’s theorem. Proc. London Math. Soc. (3), 93(3):723–760, 2006.
  • [20] I. D. Shkredov. On a problem of Gowers. Izv. Ross. Akad. Nauk Ser. Mat., 70(2):179–221, 2006.
  • [21] I. D. Shkredov. On an inverse theorem for 𝐔3()\mathbf{U}^{3}(\square)-norm. In Modern problems of mathematics and mechanics, Mathematics, Dynamical systems, volume 4, 2, pages 55–127, 2009.
  • [22] T. Tao. A variant of the hypergraph removal lemma. J. Combin. Theory Ser. A, 113(7):1257–1280, 2006.
  • [23] T. Tao. Higher order Fourier analysis, volume 142 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2012.
  • [24] Y. Zhao. An arithmetic transference proof of a relative Szemerédi theorem. Math. Proc. Cambridge Philos. Soc., 156(2):255–261, 2014.