This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Sub-Feller Semigroups Generated by Pseudodifferential Operators on Symmetric Spaces of Noncompact Type

Rosemary Shewell Brockway
Abstract

We consider global pseudodifferential operators on symmetric spaces of noncompact type, defined using spherical functions. The associated symbols have a natural probabilistic form that extend the notion of the characteristic exponent appearing in Gangolli’s Lévy–Khinchine formula to a function of two variables. The Hille–Yosida–Ray theorem is used to obtain conditions on such a symbol so that the corresponding pseudodifferential operator has an extension that generates a sub-Feller semigroup, generalising existing results for Euclidean space.

Keywords and Phrases. Riemannian symmetric space, Lie group, pseudodifferential operator, symbol, Feller process, Feller semigroup, generator, isotropic Sobolev space, spherical transform, fractional Laplacian.

MSC 2020. 43A85, 47D07, 47G20, 47G30, 60B15, 60G53

1 Introduction

Pseudodifferential operator theory is a powerful tool in the study of Feller–Markov processes on Euclidean space (see for example Knopova et al. (2015); Schilling (1998a, b, c); Schilling and Schnurr (2015), or Böttcher et al. (2013) §5 for a summary). Primarily developed by Niels Jacob and collaborators (see e.g. Jacob (1993, 1994); Hoh (1998)), this framework characterises sub-Feller semigroups and their generators as pseudodifferential operators (Ψ\PsiDOs) acting on C0(d)C_{0}(\mathbb{R}^{d}), the Banach space of continuous, real-valued functions on d\mathbb{R}^{d} that vanish at infinity. The associated symbols capture many properties of the sub-Feller processes and semigroups they represent, generalising the well-established relationship between Lévy processes and their characteristic exponents given by the Lévy–Khinchine formula. The key difference is that the Feller–Markov symbols typically depend on two variables instead of one — in the case of Feller processes, this is sometimes described as the Lévy characteristics having gained spatial dependence.

Manifold-valued Feller–Markov processes have also attracted interest in recent years (see Elworthy (1988); Hsu (2002) and Kunita (2019) §7 for excellent summaries), though the absence of a global harmonic analysis on general manifolds has so far prevented a Ψ\PsiDO approach. Lie groups and symmetric spaces come with their own harmonic analysis, however, in the form of the spherical transform (see Harish-Chandra (1958a, b) and Helgason (2001, 1984)). A natural question to ask then is to what extent a Ψ\PsiDO-based approach can be applied to the study of sub-Feller processes on Lie groups and symmetric spaces. Much work has already been done in this area, especially in the “constant coefficient” case of Lévy processes, in which the symbol depends only on its second argument. Here, the symbols are given by Gangolli’s Lévy–Khinchine formula (Gangolli (1964) Theorem 6.2), a direct analogue to the classical result. The first paper to use probabilistic Ψ\PsiDO methods on a Lie group was Applebaum and Cohen (2004), where Ψ\PsiDOs are used to study Lévy processes on the Heisenberg group. Pseudodifferential operator representations of semigroups and generators have also been found for Lévy processes on a general Lie group — see Applebaum (2011a, b) for the compact case and Applebaum (2013) Section 5 for the noncompact case. For Feller processes, Ψ\PsiDO representations have been found when the Lie group or symmetric space is compact — see Applebaum and Le Ngan (2020a, b).

This paper seeks to develop a more general theory of Ψ\PsiDOs for symmetric spaces of noncompact type, and apply it to seek conditions on a symbol so that the corresponding Ψ\PsiDO extends to the generator of some sub-Feller process. For the d\mathbb{R}^{d} case, this question has been studied thoroughly in Jacob (1993, 1994), as well as Hoh (1998) Chapter 4.

The spherical transform enjoys many of the same properties as the Fourier transform on d\mathbb{R}^{d}, and we find that several of the arguments in Jacob (1994) and Hoh (1998) generalise directly to the symmetric space setting. However, a direct transcription of Jacob and Hoh’s arguments is certainly not possible. One notable difference, for example, is the use of directional derivatives in the condition (2.2) of Jacob (1994), which on a manifold would depend on a choice of coordinate chart. Even on a symmetric space, there was no straightforward analogue for this condition, and a different approach is needed. We take a more operator-theoretic approach, and replace each of the partial derivatives xi\frac{\partial}{\partial x_{i}} (i=1,,di=1,\ldots,d) with the fractional Laplacian Δ\sqrt{-\Delta}. This is an exciting object to work with, and we found it to be far more compatible with our harmonic analytical approach.

The structure of this paper will be the following. Section 2 presents a summary of necessary concepts and results from harmonic analysis on symmetric spaces, and introduces the system of symbols and Ψ\PsiDOs that will be used later on. We also introduce here the spherical anisotropic Sobolev spaces, a generalisation of the anisotropic Sobolev spaces first considered by Niels Jacob — see e.g. Jacob (1993, 1994).

In Section 3, we consider the Hille–Yosida–Ray theorem (see Theorem 3.1), and build on the work of Applebaum and Le Ngan (2020a, b), introducing a class of operators we will call Gangolli operators, which satisfy all but one of the conditions of Hille–Yosida–Ray. We prove that Gangolli operators are Ψ\PsiDOs in the sense of Section 2.5, and derive a formula for their symbols (Theorem 3.7).

Section 4 is concerned with seeking sufficient conditions for a Gangolli operator q(σ,D)q(\sigma,D) to extend to the generator a sub-Feller semigroup. Informed by the work of the previous section, this amounts to finding conditions that ensure

Ran(α+q(σ,D))¯=C0(K|G|K)\overline{\operatorname{Ran}(\alpha+q(\sigma,D))}=C_{0}(K|G|K)

for some α>0\alpha>0 (see Theorem 3.1 (3)). This section perhaps most closely follows the approach of Jacob (1994) and Hoh (1998) Chapter 4, and where proofs are similar to these sources, we omit detail, and instead aim to emphasise what is different about the symmetric space setting. Full proofs may be found in my PhD thesis (Shewell Brockway, in preparation).

In Section 5 we present a large class of examples of symbols that satisfy the conditions found in Sections 3 and 4.

Notation. For a topological space XX, (X)\mathcal{B}(X) will denote the Borel σ\sigma-algebra associated with XX, and Bb(X)B_{b}(X) the space of bounded, Borel functions from XX\to\mathbb{R}, a Banach space with respect to the supremum norm. If XX is a locally compact Hausdorff space, then we write C0(X)C_{0}(X) for the closed subspace of Bb(X)B_{b}(X) consisting of continuous functions vanishing at infinity, and Cc(X)C_{c}(X) for the dense subspace of compactly supported continuous functions. If XX is a smooth manifold and M{}M\in\mathbb{N}\cup\{\infty\}, then we write CcM(X)C^{M}_{c}(X) for the space of compactly supported MM-times continuously differentiable functions on XX.

2 Preliminaries

Let MM be a Riemannian symmetric space. By Theorem 3.3 of Helgason (2001), pp. 208, MM is diffeomorphic to a homogeneous space G/KG/K, where GG is a connected Lie group and KK is a compact subgroup of GG. Moreover, for some nontrivial involution Θ\Theta on GG,

G0ΘKGΘ,G^{\Theta}_{0}\subseteq K\subseteq G^{\Theta},

where GΘG^{\Theta} is the fixed point set of Θ\Theta, and G0ΘG^{\Theta}_{0} is the identity component of GΘG^{\Theta}. Let 𝔤\mathfrak{g} and 𝔨\mathfrak{k} denote the Lie algebras of GG and KK, respectively. Note that 𝔨\mathfrak{k} is the +1+1 eigenspace of the differential θ:=dΘ\theta:=d\Theta; let 𝔭\mathfrak{p} denote the 1-1 eigenspace. In fact, θ\theta is a Cartan involution on 𝔤\mathfrak{g}, and the corresponding Cartan decomposition is

𝔤=𝔭𝔨.\mathfrak{g}=\mathfrak{p}\oplus\mathfrak{k}. (2.1)

Let BB denote the Killing form of GG, defined for each for all X,Y𝔤X,Y\in\mathfrak{g} by B(X,Y)=tr(adXadY)B(X,Y)=\operatorname{tr}(\operatorname{ad}X\operatorname{ad}Y). Assume that (G,K)(G,K) is of noncompact type, so that BB negative definite on 𝔨\mathfrak{k} and positive definite on 𝔭\mathfrak{p}. Since BB is nondegenerate, GG is semisimple.

Fix an Ad(K)\operatorname{Ad}(K)-invariant inner product ,\langle\cdot,\cdot\rangle on 𝔤\mathfrak{g}, with respect to which (2.1) is an orthogonal direct sum. The Riemannian structure of MG/KM\cong G/K is induced by the restriction of ,\langle\cdot,\cdot\rangle to 𝔭\mathfrak{p}.

There is a one to one correspondence between functions on G/KG/K and KK-right-invariant functions on GG, we denote both by (G/K)\mathcal{F}(G/K). Similarly, we identify KK-invariant functions on G/KG/K with KK-bi-invariant functions on GG, and denote both by (K|G|K)\mathcal{F}(K|G|K). Similar conventions will be used to denote standard subspaces of (G/K)\mathcal{F}(G/K) and (K|G|K)\mathcal{F}(K|G|K); for example C(K|G|K)C(K|G|K) will denote both the space of continuous, KK-invariant functions on G/KG/K, and the space of continuous, KK-bi-invariant functions on GG.

Equip GG with Haar measure, and for p1p\geq 1 let Lp(G)L^{p}(G) denote the corresponding LpL^{p} of real-valued functions. Lp(K|G|K)L^{p}(K|G|K) will denote the closed subspace of Lp(G)L^{p}(G) consisting of KK-bi-invariant elements. Since GG is unimodular, Haar measure is translation invariant, and can be projected onto the coset spaces G/KG/K and K|G|KK|G|K in a well-defined way. We continue to identify KK-bi-invariant functions on GG with functions on K|G|KK|G|K, as well as with KK-invariant functions on G/KG/K, in this LpL^{p} setting.

2.1 Harmonic Analysis on Symmetric Spaces of Noncompact Type

For a thorough treatment of this topic, see Helgason (2001, 1984). Let 𝐃(G){\bf D}(G) denote the set of all left invariant differential operators on GG, and let 𝐃K(G){\bf D}_{K}(G) denote the subspace of those operators that are also KK-right-invariant. A mapping ϕ:G\phi:G\to\mathbb{C} is called a spherical if it is KK-bi-invariant, satisfies ϕ(e)=1\phi(e)=1, and is a simultaneous eigenfunction of every element of 𝐃K(G){\bf D}_{K}(G).

Fix an Iwasawa decomposition G=NAKG=NAK, where NN is a nilpotent Lie subgroup of GG, and AA is Abelian. Let 𝔫\mathfrak{n} and 𝔞\mathfrak{a} denote respectively the Lie algebras of NN and AA. For each σG\sigma\in G, let A(σ)A(\sigma) denote the unique element of 𝔞\operatorname{\mathfrak{a}} such that σNeA(σ)K\sigma\in Ne^{A(\sigma)}K. Harish-Chandra’s integral formula states that every spherical function on GG takes the form

ϕλ(σ)=Ke(ρ+iλ)(A(kσ))𝑑k,σG,\phi_{\lambda}(\sigma)=\int_{K}e^{(\rho+i\lambda)(A(k\sigma))}dk,\hskip 20.0pt\forall\sigma\in G, (2.2)

for some λ𝔞\lambda\in\operatorname{\mathfrak{a}_{\mathbb{C}}^{\ast}}*. Moreover, ϕλ=ϕλ\phi_{\lambda}=\phi_{\lambda^{\prime}} if an only if s(λ)=λs(\lambda)=\lambda^{\prime} for some element ss of the Weyl group WW. A spherical function ϕλ\phi_{\lambda} is positive definite if and only if λ𝔞\lambda\in\operatorname{\mathfrak{a}^{\ast}}*.

The spherical transform of a function fL1(K|G|K)f\in L^{1}(K|G|K) is the function f^:𝔞\hat{f}:\operatorname{\mathfrak{a}^{\ast}}*\to\mathbb{C} given by

f^(λ)=Gϕλ(σ)f(σ)dσ,λ𝔞.\hat{f}(\lambda)=\int_{G}\phi_{-\lambda}(\sigma)f(\sigma)d\sigma,\hskip 20.0pt\forall\lambda\in\operatorname{\mathfrak{a}^{\ast}}*. (2.3)

Similarly, given a finite Borel measure μ\mu on GG, the spherical transform of μ\mu is the mapping μ^:𝔞\hat{\mu}:\operatorname{\mathfrak{a}^{\ast}}*\to\mathbb{C} given by

μ^(λ)=Gϕλ(σ)μ(dσ).\hat{\mu}(\lambda)=\int_{G}\phi_{-\lambda}(\sigma)\mu(d\sigma).

The spherical transform enjoys many useful properties, the most powerful being that it defines an isomorphism of the Banach convolution algebra L1(K|G|K)L^{1}(K|G|K) with the space L1(𝔞,ω)WL^{1}(\operatorname{\mathfrak{a}^{\ast}}*,\omega)^{W} of Weyl group invariant elements of L1(𝔞,ω)L^{1}(\operatorname{\mathfrak{a}^{\ast}}*,\omega). The Borel measure ω\omega is called Plancherel measure, and is given by

ω(dλ)=|𝐜(λ)|2dλ,\omega(d\lambda)=|\operatorname{\bf c}(\lambda)|^{-2}d\lambda,

where 𝐜\operatorname{\bf c} denotes Harish-Chandra’s 𝐜\operatorname{\bf c}-function. According to the spherical inversion formula, for all fCc(K|G|K)f\in C_{c}^{\infty}(K|G|K) and all σG\sigma\in G,

f(σ)=𝔞ϕλ(σ)f^(λ)ω(dλ).f(\sigma)=\int_{\operatorname{\mathfrak{a}^{\ast}}*}\phi_{\lambda}(\sigma)\hat{f}(\lambda)\omega(d\lambda). (2.4)

There is also a version of Plancherel’s identity for the spherical transform, namely

fL2(K|G|K)=f^L2(𝔞,ω),fCc(K|G|K).\|f\|_{L^{2}(K|G|K)}=\|\hat{f}\|_{L^{2}(\operatorname{\mathfrak{a}^{\ast}}*,\omega)},\hskip 20.0pt\forall f\in C_{c}^{\infty}(K|G|K). (2.5)

Let L2(𝔞,ω)WL^{2}(\operatorname{\mathfrak{a}^{\ast}}*,\omega)^{W} denote the subspace of L2(𝔞,ω)L^{2}(\operatorname{\mathfrak{a}^{\ast}}*,\omega) consisting of WW-invariants. Then the image of Cc(K|G|K)C_{c}^{\infty}(K|G|K) under spherical transformation is a dense subspace of L2(𝔞,ω)WL^{2}(\operatorname{\mathfrak{a}^{\ast}}*,\omega)^{W}, and as such the spherical transform extends to an isometric isomorphism between the Hilbert spaces L2(K|G|K)L^{2}(K|G|K) and L2(𝔞,ω)WL^{2}(\operatorname{\mathfrak{a}^{\ast}}*,\omega)^{W}. For more details, see for example Helgason (1984) Chapter IV § 7.3, pp. 454.

Similarly to classical Fourier theory, the most natural setting for the spherical transform is Schwarz space. A function fC(G)f\in C^{\infty}(G) is called rapidly decreasing if

supσG(1+|σ|)qϕ0(σ)1(Df)(σ)<,D𝐃(G),q{0},\sup_{\sigma\in G}(1+|\sigma|)^{q}\phi_{0}(\sigma)^{-1}(Df)(\sigma)<\infty,\hskip 20.0pt\forall D\in{\bf D}(G),\;q\in\mathbb{N}\cup\{0\}, (2.6)

where |σ||\sigma| denotes the geodesic distance on G/KG/K from o:=eKo:=eK to σK\sigma K. Equivalently, if σ=eXk\sigma=e^{X}k, where X𝔭X\in\mathfrak{p}, then |σ|=X|\sigma|=\|X\| — see Gangolli and Varadarajan (1980) pp.167 for more details.

The (KK-bi-invariant) Schwarz space 𝒮(K|G|K)\mathcal{S}(K|G|K) is the Fréchet space comprising of all rapidly decreasing, KK-bi-invariant functions fC(G)f\in C^{\infty}(G), together with the family of seminorms given by the left-hand side of (2.6). By viewing the spaces 𝔞\operatorname{\mathfrak{a}} and 𝔞\operatorname{\mathfrak{a}^{\ast}}* as finite dimensional vector spaces, we also consider the classical Schwartz spaces 𝒮(𝔞)\mathcal{S}(\operatorname{\mathfrak{a}^{\ast}}*) and 𝒮(𝔞)\mathcal{S}(\operatorname{\mathfrak{a}}), as well as WW-invariant subspaces 𝒮(𝔞)W\mathcal{S}(\operatorname{\mathfrak{a}})^{W} and 𝒮(𝔞)W\mathcal{S}(\operatorname{\mathfrak{a}^{\ast}}*)^{W}. The Euclidean Fourier transform

(f)(λ)=𝔞eiλ(H)f(H)dH,f𝒮(𝔞),λ𝔞\mathscr{F}(f)(\lambda)=\int_{\operatorname{\mathfrak{a}}}e^{-i\lambda(H)}f(H)dH,\hskip 20.0pt\forall f\in\mathcal{S}(\operatorname{\mathfrak{a}}),\lambda\in\operatorname{\mathfrak{a}^{\ast}}* (2.7)

defines a topological isomorphism between the spaces 𝒮(𝔞)W\mathcal{S}(\operatorname{\mathfrak{a}})^{W} and 𝒮(𝔞)W\mathcal{S}(\operatorname{\mathfrak{a}^{\ast}}*)^{W} in the usual way. Given f𝒮(K|G|K)f\in\mathcal{S}(K|G|K) and H𝔞H\in\operatorname{\mathfrak{a}}, the Abel transform is defined by

𝒜f(H)=eρ(H)Nf((expH)n)𝑑n.\mathscr{A}f(H)=e^{\rho(H)}\int_{N}f((\exp H)n)dn.

The Abel transform is fascinating in its own right, and we refer to Sawyer (2003) for more information. However, for our purposes we are mainly interested in its role in the following:

Theorem 2.1.

Writing \mathscr{H} for the spherical transform, the diagram

𝒮(𝔞)W\mathcal{S}(\operatorname{\mathfrak{a}^{\ast}}*)^{W}𝒮(𝔞)W\mathcal{S}(\operatorname{\mathfrak{a}})^{W}𝒮(K|G|K)\mathcal{S}(K|G|K)\mathscr{F}\mathscr{H}𝒜\mathscr{A}

commutes, up to normalizing constants. Each arrow describes an isomorphism of Fréchet algebras.

This result will be extremely useful in later sections, especially when proving Theorem 4.17. For more details, see Proposition 3 in Anker (1990), Gangolli and Varadarajan (1980) page 265, and Helgason (1984) pp. 450.

2.2 Probability on Lie Groups and Symmetric spaces

We summarise a few key notions from probability theory on Lie groups and symmetric spaces. Sources for this material include Liao and Wang (2007) and Liao (2004, 2018).

Fix a probability space (Ω,,P)(\Omega,\mathcal{F},P). Just as with functions on GG and G/KG/K, we may view stochastic processes on G/KG/K as projections of processes on GG whose laws are KK-right invariant. Let Y=(Y(t),t0)Y=(Y(t),t\geq 0) a stochastic process taking values on GG. The random variables

Y(s)1Y(t),0st,Y(s)^{-1}Y(t),\hskip 20.0pt0\leq s\leq t,

are called the increments of YY. Equipped with its natural filtration {tY,t0}\{\mathcal{F}^{Y}_{t},t\geq 0\}, YY is said to have independent increments if for all t>s0t>s\geq 0, Y(s)1Y(t)Y(s)^{-1}Y(t) is independent of sX\mathcal{F}^{X}_{s}, and stationary increments if

Y(s)1Y(t)Y(0)1Y(ts)t>s0.Y(s)^{-1}Y(t)\sim Y(0)^{-1}Y(t-s)\hskip 20.0pt\forall t>s\geq 0.

A process Y=(Y(t),t0)Y=(Y(t),t\geq 0) on GG is stochastically continuous if, for all s0s\geq 0 and all B(G)B\in\mathcal{B}(G) with eBe\notin B,

limtsP(Y(s)1Y(t)B)=0.\lim_{t\rightarrow s}P(Y(s)^{-1}Y(t)\in B)=0.

A stochastically continuous process YY on GG with stationary and independent increments is called a Lévy process on GG. A process on G/KG/K is called a Lévy process if it is the projection of a Lévy process on GG, under the canonical surjection π:GG/K\pi:G\mapsto G/K. Lévy processes on G/KG/K correspond precisely to the GG-invariant Feller processes on G/KG/K. The proof of this is similar to the well-known result for d\mathbb{R}^{d}-valued Lévy processes.

The convolution product of two Borel measures μ1,μ2\mu_{1},\mu_{2} on GG is defined for each B(G)B\in\mathcal{B}(G) by

(μ1μ2)(B)=GG𝟏B(στ)μ1(dσ)μ2(dτ).(\mu_{1}\ast\mu_{2})(B)=\int_{G}\int_{G}\operatorname{\bf 1}_{B}(\sigma\tau)\mu_{1}(d\sigma)\mu_{2}(d\tau). (2.8)

Note that since GG is semisimple, it is unimodular, and hence this operation is commutative. It is also clear from the definition that μ1μ2\mu_{1}\ast\mu_{2} is KK-bi-invariant whenever μ1\mu_{1} and μ2\mu_{2} are.

Definition 2.2.

A family (μt,t0)(\mu_{t},t\geq 0) of finite Borel measures on GG will be called a convolution semigroup (of probability measures) if

  1. 1.

    μt(G)=1\mu_{t}(G)=1 for all t0t\geq 0,

  2. 2.

    μs+t=μsμt\mu_{s+t}=\mu_{s}\ast\mu_{t} for all s,t0s,t\geq 0, and

  3. 3.

    μtμ0\mu_{t}\rightarrow\mu_{0} weakly as t0t\rightarrow 0.

Note that μ0\mu_{0} must be an idempotent measure, in the sense that μ0μ0=μ0\mu_{0}\ast\mu_{0}=\mu_{0}. By Theorem 1.2.10 on page 34 of Heyer (1977), μ0\mu_{0} must coincide with Haar measure on a compact subgroup of GG. We we will frequently take μ0\mu_{0} to be normalised Haar measure on KK, so that the image of μ0\mu_{0} after projecting onto G/KG/K is δo\delta_{o}, the delta mass at o:=eKo:=eK.

One may also define convolution of measures on G/KG/K, and convolution semigroups on G/KG/K are defined analogously — see Liao (2018) Section 1.3 for more details. In fact, the projection map π:GG/K\pi:G\to G/K induces a bijection between the set of all convolution semigroups on G/KG/K and the set of all KK-bi-invariant convolution semigroups on GG — see Liao (2018) Propositions 1.9 and 1.12, pp. 11–13. We henceforth identify these two sets, but generally opt to perform calculations using objects defined on GG, for simplicity.

Let YY be a Lévy process on GG, and for each t0t\geq 0, let μt\mu_{t} denote the law of Y(0)1Y(t)Y(0)^{-1}Y(t). By Liao (2018) Theorem 1.7, pp. 8, (μt,t0)(\mu_{t},t\geq 0) is a convolution semigroup of probability measures on GG.

Definition 2.3.

We call (μt,t0)(\mu_{t},t\geq 0) the convolution semigroup associated with XX.

Let YY be a Lévy process on G/KG/K, and XX a Lévy process on GG for which Y=π(X)Y=\pi(X). Let (pt,t0)(p_{t},t\geq 0) and (qt,t0)(q_{t},t\geq 0) denote the transition probabilities of YY and XX, respectively. Then for all t0t\geq 0, σG\sigma\in G and A(G/K)A\in\mathcal{B}(G/K),

pt(σK,A)=(π(X(t))A|π(X)=σK)=qt(σ,π1(A)).p_{t}(\sigma K,A)=\mathbb{P}\left.\left(\pi\big{(}X(t)\big{)}\in A\right|\pi\big{(}X\big{)}=\sigma K\right)=q_{t}\left(\sigma,\pi^{-1}(A)\right).

In particular, the prescription

νt:=pt(o,),t0\nu_{t}:=p_{t}(o,\cdot),\hskip 20.0pt\forall t\geq 0

defines a convolution semigroup (νt,t0)(\nu_{t},t\geq 0) on G/KG/K. By Liao (2018) Proposition 1.12, pp. 13, (νt,t0)(\nu_{t},t\geq 0) is KK-invariant, and there is a KK-bi-invariant convolution semigroup (μt,t0)(\mu_{t},t\geq 0) on GG for which

νt=μtπ1,t0.\nu_{t}=\mu_{t}\circ\pi^{-1},\hskip 20.0pt\forall t\geq 0. (2.9)

It may be tempting to think that (μt,t0)(\mu_{t},t\geq 0) should be the convolution semigroup of XX. In fact, this is not the case: if it were, then we would have μ0=δ0\mu_{0}=\delta_{0}, which is not a KK-bi-invariant measure on GG. However, if we denote the convolution semigroup of XX by (μte,t0)(\mu^{e}_{t},t\geq 0), and normalised Haar measure on KK by ρK\rho_{K}, then by Liao (2018) Theorem 3.14, pp. 88,

μt:=ρKμte,t0\mu_{t}:=\rho_{K}\ast\mu^{e}_{t},\hskip 20.0pt\forall t\geq 0

is a suitable choice for the KK-bi-invariant convolution semigroup (μt,t0)(\mu_{t},t\geq 0) on GG, for which (2.9) is satisfied. In particular, μ0=ρK\mu_{0}=\rho_{K}.

In this way, Lévy processes on G/KG/K may be understood through the study of KK-bi-invariant convolution semigroups on GG. The corresponding Lévy processes on GG are called KK-bi-invariant Lévy processes. For such a process XX, with KK-bi-invariant convolution semigroup (μt,t0)(\mu_{t},t\geq 0), the Hunt semigroup (Tt,t0)(T_{t},t\geq 0) of (μt,t0)(\mu_{t},t\geq 0)) is given by

Ttf(σ)=Gf(στ)μt(dτ)fBb(G),σG.T_{t}f(\sigma)=\int_{G}f(\sigma\tau)\mu_{t}(d\tau)\hskip 20.0pt\forall f\in B_{b}(G),\;\sigma\in G. (2.10)

Note that since μ0=ρK\mu_{0}=\rho_{K}, we have T0=IT_{0}=I. In fact, (Tt,t0)(T_{t},t\geq 0) forms a strongly continuous operator semigroup on C0(G/K)C_{0}(G/K), and the restriction of each TtT_{t} to C0(K|G|K)C_{0}(K|G|K) yields a strongly continuous semigroup on C0(K|G|K)C_{0}(K|G|K). (Tt,t0)(T_{t},t\geq 0) is a left invariant Feller semigroup in each of these cases (see Ngan (2019) pp. 82–83).

Restricting to the KK-bi-invariant functions in this way will be advantageous, as we have the spherical transform at our disposal. As an early application of this, we prove the following useful eigenvalue relation for the Hunt semigroup of a KK-bi-invariant convolution semigroup.

Proposition 2.4.

Let (μt,t0)(\mu_{t},t\geq 0) be a KK-bi-invariant convolution semigroup on GG, and let (Tt,t0)(T_{t},t\geq 0) denote the the restriction to C0(K|G|K)C_{0}(K|G|K) of the Hunt semigroup associated with (μt,t0)(\mu_{t},t\geq 0). Then for all t0t\geq 0, λ𝔞\lambda\in\operatorname{\mathfrak{a}^{\ast}}* and σG\sigma\in G,

Ttϕλ(σ)=μ^t(λ)ϕλ(σ).T_{t}\phi_{\lambda}(\sigma)=\hat{\mu}_{t}(\lambda)\phi_{\lambda}(\sigma).
Proof.

Let t0t\geq 0, λ𝔞\lambda\in\operatorname{\mathfrak{a}^{\ast}}* and σG\sigma\in G. Observe that since each μt\mu_{t} is invariant under all translations by KK,

Ttϕλ(σ)=Gϕλ(σkτ)μt(dτ)T_{t}\phi_{\lambda}(\sigma)=\int_{G}\phi_{\lambda}(\sigma k\tau)\mu_{t}(d\tau)

for each kKk\in K. Integrating over KK and applying a Fubini argument,

Ttϕλ(σ)=KGϕλ(σkτ)μt(dτ)𝑑k=GKϕλ(σkτ)𝑑kμt(dτ).T_{t}\phi_{\lambda}(\sigma)=\int_{K}\int_{G}\phi_{\lambda}(\sigma k\tau)\mu_{t}(d\tau)dk=\int_{G}\int_{K}\phi_{\lambda}(\sigma k\tau)dk\mu_{t}(d\tau).

We can now apply the beautiful integral formula for spherical functions,

ϕλ(σ)ϕλ(τ)=Kϕλ(σkτ)𝑑k\phi_{\lambda}(\sigma)\phi_{\lambda}(\tau)=\int_{K}\phi_{\lambda}(\sigma k\tau)dk (2.11)

(c.f Helgason (1984) pp. 400–402), to conclude

Ttϕλ(σ)=Gϕλ(σ)ϕ(τ)μt(dτ)=ϕλ(σ)μ^t(λ),T_{t}\phi_{\lambda}(\sigma)=\int_{G}\phi_{\lambda}(\sigma)\phi(\tau)\mu_{t}(d\tau)=\phi_{\lambda}(\sigma)\hat{\mu}_{t}(\lambda),

as desired. ∎

The infinitesimal generator of a Lévy process YY on GG is given by the celebrated Hunt formula (Hunt (1956) Theorem 5.1). We describe a version of this next, specialising to the KK-bi-invariant case most relevant to our work on symmetric spaces. We first introduce a local coordinate system on GG, defined in terms of the orthogonal decomposition (2.1).

Definition 2.5.

Let X1,,XlX_{1},\ldots,X_{l} be a basis of 𝔤\mathfrak{g}, ordered so that X1,,XdX_{1},\ldots,X_{d} is a basis of 𝔭\mathfrak{p}. A collection {x1,,xl}\{x_{1},\ldots,x_{l}\} of smooth functions of compact support is called a system of exponential coordinate functions if there is a neighbourhood UU of ee for which

σ=exp(i=1lxi(σ)Xi)σU.\sigma=\exp\left(\sum_{i=1}^{l}x_{i}(\sigma)X_{i}\right)\hskip 20.0pt\forall\sigma\in U. (2.12)

The xix_{i} may be chosen so as to be KK-right-invariant for i=1,,mi=1,\ldots,m, and such that

i=1dxi(kσ)Xi=i=1dxi(σ)Ad(k)XikK.\sum_{i=1}^{d}x_{i}(k\sigma)X_{i}=\sum_{i=1}^{d}x_{i}(\sigma)\operatorname{Ad}(k)X_{i}\hskip 20.0pt\forall k\in K.

For more details, see Liao (2018) pp.36–37, 83.

The choice of basis of 𝔭\mathfrak{p} enables us to view Ad(k)\operatorname{Ad}(k) as a d×dd\times d matrix, for each kKk\in K. A vector bmb\in\mathbb{R}^{m} is said to be Ad(K)\operatorname{Ad}(K)-invariant if

b=Ad(k)Tb,kK.b=\operatorname{Ad}(k)^{T}b,\hskip 20.0pt\forall k\in K.

Similarly, a d×dd\times d real-valued matrix a=(aij)a=(a_{ij}) is Ad(K)\operatorname{Ad}(K)-invariant if

a=Ad(k)TaAd(k)kK.a=\operatorname{Ad}(k)^{T}a\operatorname{Ad}(k)\hskip 20.0pt\forall k\in K.

A Borel measure ν\nu on GG is called a Lévy measure if ν({e})=0\nu(\{e\})=0, ν(Uc)<\nu(U^{c})<\infty, and Gi=1lxi(σ)2ν(dσ)\int_{G}\sum_{i=1}^{l}x_{i}(\sigma)^{2}\nu(d\sigma).

We state a useful corollary of the famous Hunt formula. For more details, including a proof, see Section 3.2 of Liao (2018), pp. 78.

Theorem 2.6.

Let 𝒜\mathcal{A} be the infinitesimal generator associated with a KK-bi-invariant Lévy process on GG. Then Cc(G)Dom𝒜C_{c}^{\infty}(G)\subseteq\operatorname{Dom}\mathcal{A}, and there is an Ad(K)\operatorname{Ad}(K)-invariant vector bdb\in\mathbb{R}^{d}, an Ad(K)\operatorname{Ad}(K)-invariant, non-negative definite, symmetric d×dd\times d matrix a:=(aij)a:=(a_{ij}), and a KK-bi-invariant Lévy measure ν\nu such that

𝒜f(σ)=i=1d\displaystyle\mathcal{A}f(\sigma)=\sum_{i=1}^{d} biXif(σ)+i,j=1daijXiXjf(σ)\displaystyle b_{i}X_{i}f(\sigma)+\sum_{i,j=1}^{d}a_{ij}X_{i}X_{j}f(\sigma)
+G(f(στ)f(σ)i=1dxi(τ)Xif(σ))ν(dσ),\displaystyle+\int_{G}\left(f(\sigma\tau)-f(\sigma)-\sum_{i=1}^{d}x_{i}(\tau)X_{i}f(\sigma)\right)\nu(d\sigma),

for all fCc(G)f\in C_{c}^{\infty}(G) and σG\sigma\in G. Moreover, the triple (b,a,ν)(b,a,\nu) is completely determined by 𝒜\mathcal{A}, and independent of the choice of exponential coordinate functions xi,i=1,,dx_{i},\;i=1,\ldots,d.

Conversely, given a triple (b,a,ν)(b,a,\nu) of this kind, there is a unique KK-bi-invariant convolution semigroup of probability measures on GG with infinitesimal generator given by 𝒜\mathcal{A}.

Since GG is semisimple, 𝔭\mathfrak{p} has no non-zero Ad(K)\operatorname{Ad}(K)-invariant elements. This means that for the class of manifold we are considering, KK-bi-invariant Lévy generators will take the form

𝒜f(σ)=i,j=1daijXiXjf(σ)+G(f(στ)f(σ)i=1dxi(τ)Xif(σ))ν(dσ),\mathcal{A}f(\sigma)=\sum_{i,j=1}^{d}a_{ij}X_{i}X_{j}f(\sigma)+\int_{G}\left(f(\sigma\tau)-f(\sigma)-\sum_{i=1}^{d}x_{i}(\tau)X_{i}f(\sigma)\right)\nu(d\sigma), (2.13)

Given such a Lévy generator, we write 𝒜D=i,j=1daijXiXj\mathcal{A}_{D}=\sum_{i,j=1}^{d}a_{ij}X_{i}X_{j} for the diffusion part of 𝒜\mathcal{A}. By the discussion surrounding (3.3) in Liao (2018), pp. 75, 𝒜D𝐃K(G)\mathcal{A}_{D}\in{\bf D}_{K}(G), and so for each λ𝔞\lambda\in\operatorname{\mathfrak{a}^{\ast}}* there is β(𝒜D,λ)\beta(\mathcal{A}_{D},\lambda)\in\mathbb{C} such that

𝒜Dϕλ=β(𝒜D,λ)ϕλ.\mathcal{A}_{D}\phi_{\lambda}=\beta(\mathcal{A}_{D},\lambda)\phi_{\lambda}. (2.14)

Moreover, λβ(𝒜D,λ)\lambda\mapsto\beta(\mathcal{A}_{D},\lambda) is a WW-invariant quadratic polynomial function on 𝔞\operatorname{\mathfrak{a}^{\ast}}*.

Theorem 2.7 (Gangolli’s Lévy–Khinchine formula).

Let (μt,t0)(\mu_{t},t\geq 0) be a KK-bi-invariant convolution semigroup of probability measures on GG with infinitesimal generator 𝒜\mathcal{A}, and let 𝒜D\mathcal{A}_{D} denote the diffusion part of 𝒜\mathcal{A}. Then μ^t=etψ\hat{\mu}_{t}=e^{-t\psi}, where

ψ(λ)=β(𝒜D,λ)+G(1ϕλ(σ))ν(dσ)λ𝔞,\psi(\lambda)=-\beta(\mathcal{A}_{D},\lambda)+\int_{G}(1-\phi_{\lambda}(\sigma))\nu(d\sigma)\hskip 20.0pt\forall\lambda\in\operatorname{\mathfrak{a}^{\ast}}*, (2.15)

and β(𝒜D,λ)\beta(\mathcal{A}_{D},\lambda) is given by (2.14).

This result was first proven in Gangolli (1964), see also Liao and Wang (2007). For a proof of the specific statement above, see page 139 of Liao (2018).

The function ψ\psi given by (2.15) will be called the Gangolli exponent of the process XX.

Remark 2.8.

If Definition 2.2 (1) is relaxed so that each μt\mu_{t} need only satisfy μt(G)1\mu_{t}(G)\leq 1, all of the results described in this subsection continue to hold, except “sub-” must be added to some to the terms: convolution semigroups of sub-probability measures, sub-Lévy generators, sub-diffusion operators, and so on.

2.3 Positive and Negative Definite Functions

By viewing 𝔞\operatorname{\mathfrak{a}^{\ast}}* as a finite-dimensional real vector space, we may consider positive and negative definite functions on 𝔞\operatorname{\mathfrak{a}^{\ast}}*, defined in the usual way.

Proposition 2.9.
  1. 1.

    For all σG\sigma\in G, λϕλ(σ)\lambda\mapsto\phi_{\lambda}(\sigma) is positive definite.

  2. 2.

    Let μ\mu be a finite KK-bi-invariant Borel measure. Then μ^\hat{\mu} is positive definite.

Proof.

Let σG\sigma\in G, nn\in\mathbb{N}, λ1,,λn𝔞\lambda_{1},\ldots,\lambda_{n}\in\operatorname{\mathfrak{a}^{\ast}}*, and c1,,cnc_{1},\ldots,c_{n}\in\mathbb{C}, and note that

α,β=1ncαcβ¯e(i(λαλβ)+ρ)A(kσ)=|α=1ncαe(iλα+ρ2)A(kσ)|20.\sum_{\alpha,\beta=1}^{n}c_{\alpha}\overline{c_{\beta}}e^{(i(\lambda_{\alpha}-\lambda_{\beta})+\rho)A(k\sigma)}=\left|\sum_{\alpha=1}^{n}c_{\alpha}e^{(i\lambda_{\alpha}+\frac{\rho}{2})A(k\sigma)}\right|^{2}\geq 0.

Therefore, by the Harish-Chandra integral formula (2.2),

α,β=1ncαcβ¯ϕλαλβ(σ)=Kα,β=1ncαcβ¯e(i(λαλβ)+ρ)A(kσ)dk0.\sum_{\alpha,\beta=1}^{n}c_{\alpha}\overline{c_{\beta}}\phi_{\lambda_{\alpha}-\lambda_{\beta}}(\sigma)=\int_{K}\sum_{\alpha,\beta=1}^{n}c_{\alpha}\overline{c_{\beta}}e^{(i(\lambda_{\alpha}-\lambda_{\beta})+\rho)A(k\sigma)}dk\geq 0. (2.16)

Part 1 follows.

For part 2, observe that since (2.16) holds for all c1,,cnc_{1},\ldots,c_{n}, we can replace each cjc_{j} by its complex conjugate. Therefore, α,β=1ncα¯cβϕλαλβ(σ)0\sum_{\alpha,\beta=1}^{n}\overline{c_{\alpha}}c_{\beta}\phi_{\lambda_{\alpha}-\lambda_{\beta}}(\sigma)\geq 0 for all σG\sigma\in G, nn\in\mathbb{N}, λ1,,λn𝔞\lambda_{1},\ldots,\lambda_{n}\in\operatorname{\mathfrak{a}^{\ast}}*, and c1,,cnc_{1},\ldots,c_{n}\in\mathbb{C}. Taking complex conjugates,

α,β=1ncαcβ¯ϕ(λαλβ)(σ)=α,β=1ncα¯cβϕλαλβ¯0,\sum_{\alpha,\beta=1}^{n}c_{\alpha}\overline{c_{\beta}}\phi_{-(\lambda_{\alpha}-\lambda_{\beta})}(\sigma)=\overline{\sum_{\alpha,\beta=1}^{n}\overline{c_{\alpha}}c_{\beta}\phi_{\lambda_{\alpha}-\lambda_{\beta}}}\geq 0,

for all σG\sigma\in G, nn\in\mathbb{N}, λ1,,λn𝔞\lambda_{1},\ldots,\lambda_{n}\in\operatorname{\mathfrak{a}^{\ast}}*, and c1,,cnc_{1},\ldots,c_{n}\in\mathbb{C}, and hence

α,β=1ncαcβ¯μ^(λαλβ)=𝔞α,β=1ncαcβ¯ϕ(λαλβ)(σ)μ(dσ)0.\sum_{\alpha,\beta=1}^{n}c_{\alpha}\overline{c_{\beta}}\hat{\mu}(\lambda_{\alpha}-\lambda_{\beta})=\int_{\operatorname{\mathfrak{a}^{\ast}}*}\sum_{\alpha,\beta=1}^{n}c_{\alpha}\overline{c_{\beta}}\phi_{-(\lambda_{\alpha}-\lambda_{\beta})}(\sigma)\mu(d\sigma)\geq 0.

By choosing a basis of 𝔞\operatorname{\mathfrak{a}^{\ast}}*, we may identify it with m\mathbb{R}^{m}, and apply classical results about positive (resp. negative) definite functions on Euclidean space to functions on 𝔞\operatorname{\mathfrak{a}^{\ast}}*, to obtain results about positive (resp. negative) definite functions in this new setting.

One useful application of this is the Schoenberg correspondence, which states that a map ψ:𝔞\psi:\operatorname{\mathfrak{a}^{\ast}}*\to\mathbb{C} is negative definite if and only if ψ(0)0\psi(0)\geq 0 and etψe^{-t\psi} is positive definite for all t>0t>0. This is immediate by the Schoenberg correspondence on m\mathbb{R}^{m} — see Berg and Forst. (1975) page 41 for a proof.

Proposition 2.10.

Let ψ:𝔞\psi:\operatorname{\mathfrak{a}^{\ast}}*\to\mathbb{C} be the Gangolli exponent of a Lévy process on G/KG/K. Then ψ\psi is negative definite.

Proof.

Let X=(X(t),t0)X=(X(t),t\geq 0) is a Lévy process on G/KG/K, and let νt\nu_{t} be the law of X(t)X(t), for all t0t\geq 0. Then (νt,t0)(\nu_{t},t\geq 0) forms a convolution semigroup on G/KG/K. By Proposition 1.12 of Liao (2018) (pp. 13), (νt,t0)(\nu_{t},t\geq 0) arises as the projection onto G/KG/K of a KK-bi-invariant convolution semigroup (μt,t0)(\mu_{t},t\geq 0) on GG. By Proposition 2.9, the spherical transform of each μt\mu_{t} is positive definite, and by the Schoenberg correspondence, for each t0t\geq 0, there is a negative definite function ψt\psi_{t} on 𝔞\operatorname{\mathfrak{a}^{\ast}}* such that ψt(0)0\psi_{t}(0)\geq 0 and μ^t=eψt\hat{\mu}_{t}=e^{-\psi_{t}}. In fact, since (μt,t0)(\mu_{t},t\geq 0) is a convolution semigroup, it must be the case that

μ^t=etψ1,t0.\hat{\mu}_{t}=e^{-t\psi_{1}},\hskip 20.0pt\forall t\geq 0.

By uniqueness of Gangolli exponents, ψ=ψ1\psi=\psi_{1}, a negative definite function. ∎

We finish this subsection with a collection of results about negative definite functions, which will be useful in later sections.

Proposition 2.11.

Let ψ:𝔞\psi:\operatorname{\mathfrak{a}^{\ast}}*\to\mathbb{C} be a continuous negative definite function. Then

  1. 1.

    For all λ,η𝔞\lambda,\eta\in\operatorname{\mathfrak{a}^{\ast}}*,

    ||ψ(λ)||ψ(η)|||ψ(λη)|\left|\sqrt{|\psi(\lambda)|}-\sqrt{|\psi(\eta)|}\right|\leq\sqrt{|\psi(\lambda-\eta)|}
  2. 2.

    (Generalised Peetre inequality) For all ss\in\mathbb{R} and λ,η𝔞\lambda,\eta\in\operatorname{\mathfrak{a}^{\ast}}*,

    (1+|ψ(λ)|1+|ψ(η)|)s2|s|(1+|ψ(λη)|)|s|.\left(\frac{1+|\psi(\lambda)|}{1+|\psi(\eta)|}\right)^{s}\leq 2^{|s|}(1+|\psi(\lambda-\eta)|)^{|s|}.
  3. 3.

    There is a constant cψ>0c_{\psi}>0 such that

    |ψ(λ)|cψ(1+|λ|2)λ𝔞.|\psi(\lambda)|\leq c_{\psi}(1+|\lambda|^{2})\hskip 20.0pt\forall\lambda\in\operatorname{\mathfrak{a}^{\ast}}*. (2.17)
Proof.

These results follow from their analogues on m\mathbb{R}^{m} — see Hoh (1998) page 16. ∎

2.4 Spherical Anisotropic Sobolev Spaces

Suppose ψ\psi is a real-valued continuous negative definite function, and let ss\in\mathbb{R}. We define the (spherical) anisotropic Sobolev space associated with ψ\psi and ss to be

Hψ,s:={u𝒮(K|G|K):G(1+ψ(λ))s|u^(λ)|2ω(dλ)<},H^{\psi,s}:=\left\{u\in\mathcal{S}^{\prime}(K|G|K):\int_{G}(1+\psi(\lambda))^{s}|\hat{u}(\lambda)|^{2}\omega(d\lambda)<\infty\right\},

where 𝒮(K|G|K)\mathcal{S}^{\prime}(K|G|K) denotes the space of KK-bi-invariant tempered distributions. One can check that each Hψ,sH^{\psi,s} is a Hilbert space with respect to the inner product

u,vψ,s:=𝔞(1+ψ(λ))su^(λ)v^(λ)¯ω(dλ),u,vHψ,s.\langle u,v\rangle_{\psi,s}:=\int_{\operatorname{\mathfrak{a}^{\ast}}*}(1+\psi(\lambda))^{s}\hat{u}(\lambda)\overline{\hat{v}(\lambda)}\omega(d\lambda),\hskip 20.0pt\forall u,v\in H^{\psi,s}.

These spaces are a generalisation of the anisotropic Sobolev spaces first introduced by Niels Jacob, see Jacob (1993), and developed further by Hoh, see Hoh (1998). For the special case ψ(λ)=|ρ|2+|λ|2\psi(\lambda)=|\rho|^{2}+|\lambda|^{2}, we will write Hψ,s=HsH^{\psi,s}=H^{s}. Note also that Hψ,0=L2(K|G|K)H^{\psi,0}=L^{2}(K|G|K), by the Plancherel theorem. In this case, we will omit subscripts and just write ,\langle\cdot,\cdot\rangle for the L2L^{2} inner product.

Note that ψ\psi is a non-negative function, since it is negative definite and real-valued. We impose an additional assumption, namely that there exist constants r,c>0r,c>0 such that

ψ(λ)c|λ|2rλ𝔞,|λ|1.\psi(\lambda)\geq c|\lambda|^{2r}\hskip 20.0pt\forall\lambda\in\operatorname{\mathfrak{a}^{\ast}}*,\;|\lambda|\geq 1. (2.18)

Analogous assumptions are made in Jacob (1994) (1.5) and Hoh (1998) (4.2), and the role of (2.18) will be very similar.

Theorem 2.12.

Let ψ\psi be a real-valued, continuous negative definite symbol, satisfying (2.18). Then

  1. 1.

    Cc(K|G|K)C_{c}^{\infty}(K|G|K) and 𝒮(K|G|K)\mathcal{S}(K|G|K) are dense in each Hψ,sH^{\psi,s}, and we have continuous embeddings

    𝒮(K|G|K)Hψ,s𝒮(K|G|K)\mathcal{S}(K|G|K)\hookrightarrow H^{\psi,s}\hookrightarrow\mathcal{S}^{\prime}(K|G|K)
  2. 2.

    We have continuous embeddings

    Hψ,s2Hψ,s1H^{\psi,s_{2}}\hookrightarrow H^{\psi,s_{1}}

    whenever s1,s2s_{1},s_{2}\in\mathbb{R} with s2s1s_{2}\geq s_{1}. In particular, Hψ,sL2(K|G|K)H^{\psi,s}\hookrightarrow L^{2}(K|G|K) for all s0s\geq 0.

  3. 3.

    Under the standard identification of L2(K|G|K)L^{2}(K|G|K) with its dual, the dual space of each Hψ,sH^{\psi,s} is isomorphic to Hψ,sH^{\psi,-s}, with

    uψ,s=sup{|u,v|vψ,s:vCc(K|G|K),v0},\|u\|_{\psi,-s}=\sup\left\{\frac{|\langle u,v\rangle|}{\|v\|_{\psi,s}}:v\in C_{c}^{\infty}(K|G|K),\;v\neq 0\right\}, (2.19)

    for all ss\in\mathbb{R}.

  4. 4.

    For r>0r>0 as in equation (2.18), we have continuous embeddings

    HsHψ,sHrs,H^{s}\hookrightarrow H^{\psi,s}\hookrightarrow H^{rs},

    for all s0s\geq 0.

  5. 5.

    Let s3>s2>s1s_{3}>s_{2}>s_{1}. Then for all ϵ>0\epsilon>0, there is c(ϵ)0c(\epsilon)\geq 0 such that

    uψ,s2ϵuψ,s3+c(ϵ)uψ,s1\|u\|_{\psi,s_{2}}\leq\epsilon\|u\|_{\psi,s_{3}}+c(\epsilon)\|u\|_{\psi,s_{1}} (2.20)

    for all uHψ,s3u\in H^{\psi,s_{3}}.

  6. 6.

    There exist continuous embeddings

    Hψ,sC0(K|G|K)H^{\psi,s}\hookrightarrow C_{0}(K|G|K)

    for all s>drs>\frac{d}{r}, where d=dim(G/K)d=\dim(G/K).

For brevity, let

λ:=1+|λ|2,λ𝔞,\langle\lambda\rangle:=\sqrt{1+|\lambda|^{2}},\hskip 20.0pt\forall\lambda\in\operatorname{\mathfrak{a}^{\ast}}*, (2.21)

and

Ψ(λ):=1+ψ(λ),λ𝔞.\Psi(\lambda):=\sqrt{1+\psi(\lambda)},\hskip 20.0pt\forall\lambda\in\operatorname{\mathfrak{a}^{\ast}}*. (2.22)

The proof of Theorem 2.12 will be given after the next lemma.

Lemma 2.13.

Let M>d=dim(G/K)M>d=\dim(G/K). Then ML1(𝔞,ω)\langle\cdot\rangle^{-M}\in L^{1}(\operatorname{\mathfrak{a}^{\ast}}*,\omega).

Proof.

By standard arguments, one may check that dξM𝑑ξ<\int_{\mathbb{R}^{d}}\langle\xi\rangle^{-M}d\xi<\infty, for all M>dM>d. Writing p=dimN2p=\frac{\dim N}{2}, we have d=dim𝔞+2pd=\dim\operatorname{\mathfrak{a}^{\ast}}*+2p, and hence 𝔞λM+2p𝑑λ<\int_{\operatorname{\mathfrak{a}^{\ast}}*}\langle\lambda\rangle^{-M+2p}d\lambda<\infty whenever M>dM>d. By Proposition 7.2 on page 450 of Helgason (1984), there are C1,C2>0C_{1},C_{2}>0 such that

|𝐜(λ)|1C1+C2|λ|pλ𝔞.|\operatorname{\bf c}(\lambda)|^{-1}\leq C_{1}+C_{2}|\lambda|^{p}\hskip 20.0pt\forall\lambda\in\operatorname{\mathfrak{a}^{\ast}}*. (2.23)

Let C>0C>0 be such that (C1+C2|λ|p)2<C(1+|λ|2)p(C_{1}+C_{2}|\lambda|^{p})^{2}<C(1+|\lambda|^{2})^{p} for all λ𝔞\lambda\in\operatorname{\mathfrak{a}^{\ast}}*. Then

𝔞λMω(dλ)=𝔞λM|𝐜(λ)|2𝑑λC𝔞λM+2p𝑑λ<,\int_{\operatorname{\mathfrak{a}^{\ast}}*}\langle\lambda\rangle^{-M}\omega(d\lambda)=\int_{\operatorname{\mathfrak{a}^{\ast}}*}\langle\lambda\rangle^{-M}|\operatorname{\bf c}(\lambda)|^{-2}d\lambda\leq C\int_{\operatorname{\mathfrak{a}^{\ast}}*}\langle\lambda\rangle^{-M+2p}d\lambda<\infty, (2.24)

whenever M>dM>d. ∎

Proof of Theorem 2.12.

Much of this theorem may be proved by adapting proofs from the d\mathbb{R}^{d} case. For example, to prove Theorem 2.12 (1), let 𝒱ψ,s\mathcal{V}^{\psi,s} denote the space of all measurable functions vv on 𝔞\operatorname{\mathfrak{a}^{\ast}}* for which ΨsvL2(𝔞,ω)W\Psi^{s}v\in L^{2}(\operatorname{\mathfrak{a}^{\ast}}*,\omega)^{W}, a Hilbert space with respect to the inner product

u,v=𝔞Ψ(λ)2su(λ)v(λ)¯ω(dλ),u,v𝒱ψ,s.\langle u,v\rangle=\int_{\operatorname{\mathfrak{a}}^{\ast}}\Psi(\lambda)^{2s}u(\lambda)\overline{v(\lambda)}\omega(d\lambda),\hskip 20.0pt\forall u,v\in\mathcal{V}^{\psi,s}.

By viewing 𝔞\operatorname{\mathfrak{a}^{\ast}}* as a real vector space and using inequality (2.23) to relate ω\omega to Lebesgue measure, the proof of Theorem 3.10.3 on page 208 of Jacob (2001a) may be easily adapted to show that

𝒮(𝔞)W𝒱ψ,s𝒮(𝔞)W\mathcal{S}(\operatorname{\mathfrak{a}^{\ast}}*)^{W}\hookrightarrow\mathcal{V}^{\psi,s}\hookrightarrow\mathcal{S}^{\prime}(\operatorname{\mathfrak{a}^{\ast}}*)^{W}

is continuous. Noting Theorem 2.1, Theorem 2.12 (1) follows.

Proofs of Theorem 2.12 (2)–(5) are almost identical to their d\mathbb{R}^{d}-based counterparts, see Jacob (1994) §1, or Hoh (1998) pp. 46–48.

By Theorem 2.12 (4), Theorem 2.12 (6) will follow if we can prove the existence of a continuous embeddings

HsC0(K|G|K),H^{s}\hookrightarrow C_{0}(K|G|K), (2.25)

for all s>ds>d. Let s>ds>d and u𝒮(K|G|K)u\in\mathcal{S}(K|G|K). By Lemma 2.13, sL2(𝔞,ω)\langle\cdot\rangle^{-s}\in L^{2}(\operatorname{\mathfrak{a}}^{\ast},\omega), and by the spherical inversion formula (2.4),

|u(σ)|=|𝔞ϕλ(σ)u^(λ)ω(dλ)|𝔞|u^(λ)|ω(dλ)=𝔞λsλs|u^(λ)|ω(dλ),|u(\sigma)|=\left|\int_{\operatorname{\mathfrak{a}^{\ast}}*}\phi_{\lambda}(\sigma)\hat{u}(\lambda)\omega(d\lambda)\right|\leq\int_{\operatorname{\mathfrak{a}^{\ast}}*}|\hat{u}(\lambda)|\omega(d\lambda)=\int_{\operatorname{\mathfrak{a}^{\ast}}*}\langle\lambda\rangle^{-s}\langle\lambda\rangle^{s}|\hat{u}(\lambda)|\omega(d\lambda),

for all σG\sigma\in G. By the Cauchy–Schwarz inequality,

|u(σ)|sL2(𝔞,ω)su^L2(𝔞,ω)=Cus|u(\sigma)|\leq\|\langle\cdot\rangle^{-s}\|_{L^{2}(\operatorname{\mathfrak{a}^{\ast}}*,\omega)}\|\langle\cdot\rangle^{s}\hat{u}\|_{L^{2}(\operatorname{\mathfrak{a}^{\ast}}*,\omega)}=C\|u\|_{s}

for all σG\sigma\in G, where C=sL2(𝔞,ω)C=\|\langle\cdot\rangle^{-s}\|_{L^{2}(\operatorname{\mathfrak{a}^{\ast}}*,\omega)}. It follows that

uC0(K|G|K):=supσG|u(σ)|Cus.\|u\|_{C_{0}(K|G|K)}:=\sup_{\sigma\in G}|u(\sigma)|\leq C\|u\|_{s}.

The embedding (2.25) may then be obtained using a density argument. ∎

2.5 Pseudodifferential Operators and Their Symbols

A measurable mapping q:G×𝔞q:G\times\operatorname{\mathfrak{a}^{\ast}}*\to\mathbb{C} will be called a negative definite symbol if it is locally bounded, and if for each σG\sigma\in G, q(σ,)q(\sigma,\cdot) is negative definite and continuous. If in addition qq is continuous in its first argument, we will call qq a continuous negative definite symbol.

Let (G)\mathcal{M}(G) denote the set of all measurable functions on GG.

Theorem 2.14.

Let qq be a negative definite symbol, and for each fCc(K|G|K)f\in C^{\infty}_{c}(K|G|K) and σG\sigma\in G, define

q(σ,D)f(σ)=𝔞f^(λ)ϕλ(σ)q(σ,λ)ω(dλ).q(\sigma,D)f(\sigma)=\int_{\operatorname{\mathfrak{a}^{\ast}}*}\hat{f}(\lambda)\phi_{\lambda}(\sigma)q(\sigma,\lambda)\omega(d\lambda). (2.26)

Then

  1. 1.

    Equation (2.26) defines a linear operator q(σ,D):Cc(K|G|K)(G)q(\sigma,D):C_{c}^{\infty}(K|G|K)\to\mathcal{M}(G).

  2. 2.

    If qq is a continuous negative definite symbol, then q(σ,D):Cc(K|G|K)C(G)q(\sigma,D):C_{c}^{\infty}(K|G|K)\to C(G).

  3. 3.

    If qq is KK-bi-invariant in its first argument, then q(σ,D)fq(\sigma,D)f is KK-bi-invariant for all fCc(K|G|K)f\in C_{c}^{\infty}(K|G|K).

Proof.

Theorem 2.14 (1) and (2) are proved in a similar manner to Theorem 4.5.7 of Jacob (2001a), while (3) is immediate from the KK-bi-invariance of each spherical function ϕλ\phi_{\lambda}. ∎

Definition 2.15.

Operators of the form (2.26), where qq is a negative definite symbol, will be called (spherical) pseudodifferential operators on GG.

An important subclass of these operators first appeared for irreducible symmetric spaces in Applebaum (2013), with the symbol arising as the Gangolli exponent of a KK-bi-invariant Lévy process. Note that just as in the classical Euclidean case, the symbols arising from Lévy processes are spatially independent, in the sense that they are constant in their first argument. We explore some specific examples of this below. In Section 3, we introduce a large class of examples pseudodifferential operators with spatial dependence.

Example 2.16.
  1. 1.

    Diffusion operators with constant coefficients. Since GG is semisimple, the generator of a KK-bi-invariant diffusion-type Lévy process YY on GG takes the form 𝒜i,j=1daijXiXj\mathcal{A}\coloneqq\sum_{i,j=1}^{d}a_{ij}X_{i}X_{j}, where a=(aij)a=(a_{ij}) is an Ad(K)\operatorname{Ad}(K)-invariant, non-negative definite symmetric d×dd\times d matrix (c.f. (2.13)). As already noted, 𝒜𝐃K(G)\mathcal{A}\in{\bf D}_{K}(G); let β(𝒜,λ)\beta(\mathcal{A},\lambda) denote the ϕλ\phi_{\lambda}-eigenvalue of 𝒜\mathcal{A}. Note that λβ(𝒜,λ)\lambda\mapsto-\beta(\mathcal{A},\lambda) is the Gangolli exponent of YY .

    We claim that (σ,λ)β(𝒜,λ)(\sigma,\lambda)\mapsto-\beta(\mathcal{A},\lambda) is a continuous negative definite symbol, and the associated pseudodifferential operator is 𝒜-\mathcal{A}. To see this, let (μt,t0)(\mu_{t},t\geq 0) denote the convolution semigroup generated by 𝒜\mathcal{A}, and let (Tt,t0)(T_{t},t\geq 0) be the associated Hunt semigroup, as defined in (2.10). Then, given fCc(K|G|K)f\in C_{c}^{\infty}(K|G|K) and σG\sigma\in G,

    𝒜f(σ)=ddtTtf(σ)|t=0.\mathcal{A}f(\sigma)=\left.\frac{d}{dt}T_{t}f(\sigma)\right|_{t=0}. (2.27)

    By the spherical inversion formula (2.4), for all t0t\geq 0,

    Ttf(σ)=G𝔞f^(λ)ϕλ(στ)ω(dλ)pt(dτ).T_{t}f(\sigma)=\int_{G}\int_{\operatorname{\mathfrak{a}^{\ast}}*}\hat{f}(\lambda)\phi_{\lambda}(\sigma\tau)\omega(d\lambda)p_{t}(d\tau).

    Recalling that f^𝒮(𝔞)\hat{f}\in\mathcal{S}(\operatorname{\mathfrak{a}^{\ast}}*) whenever fCc(K|G|K)f\in C_{c}^{\infty}(K|G|K), a Fubini argument may be applied to conclude that Ttf(σ)=𝔞f^(λ)Ttϕλ(σ)ω(dλ)T_{t}f(\sigma)=\int_{\operatorname{\mathfrak{a}^{\ast}}*}\hat{f}(\lambda)T_{t}\phi_{\lambda}(\sigma)\omega(d\lambda). By Proposition 2.4 and Theorem 2.7,

    Ttϕλ=μ^t(λ)ϕλ=etβ(𝒜,λ),T_{t}\phi_{\lambda}=\hat{\mu}_{t}(\lambda)\phi_{\lambda}=e^{t\beta(\mathcal{A},\lambda)},

    and so

    Ttf(σ)=𝔞f^(λ)etβ(𝒜,λ)ϕλ(σ)ω(dλ).T_{t}f(\sigma)=\int_{\operatorname{\mathfrak{a}^{\ast}}*}\hat{f}(\lambda)e^{t\beta(\mathcal{A},\lambda)}\phi_{\lambda}(\sigma)\omega(d\lambda).

    By (2.27), for all fCc(K|G|K)f\in C_{c}^{\infty}(K|G|K) and σG\sigma\in G,

    𝒜f(σ)=limt0𝔞f^(λ)(etβ(𝒜,λ)1t)ϕλ(σ)ω(dλ).\mathcal{A}f(\sigma)=\lim_{t\rightarrow 0}\int_{\operatorname{\mathfrak{a}^{\ast}}*}\hat{f}(\lambda)\left(\frac{e^{t\beta(\mathcal{A},\lambda)}-1}{t}\right)\phi_{\lambda}(\sigma)\omega(d\lambda). (2.28)

    Now, if t>0t>0 and λ𝔞\lambda\in\operatorname{\mathfrak{a}^{\ast}}*, then

    |f^(λ)(etβ(𝒜,λ)1t)ϕλ(σ)||f^(λ)||etβ(𝒜,λ)1t||f^(λ)||β(𝒜,λ)|.\left|\hat{f}(\lambda)\left(\frac{e^{t\beta(\mathcal{A},\lambda)}-1}{t}\right)\phi_{\lambda}(\sigma)\right|\leq\left|\hat{f}(\lambda)\right|\left|\frac{e^{t\beta(\mathcal{A},\lambda)}-1}{t}\right|\leq\left|\hat{f}(\lambda)\right||\beta(\mathcal{A},\lambda)|.

    Moreover, |f^||β(𝒜,)|L1(𝔞,ω)W|\hat{f}||\beta(\mathcal{A},\cdot)|\in L^{1}(\operatorname{\mathfrak{a}^{\ast}}*,\omega)^{W}, since f^𝒮(𝔞)W\hat{f}\in\mathcal{S}(\operatorname{\mathfrak{a}^{\ast}}*)^{W}, and β(𝒜,)\beta(\mathcal{A},\cdot) is a WW-invariant polynomial function. By the dominated convergence theorem, we may bring the limit through the integral sign in (2.28) to conclude that

    𝒜f(σ)\displaystyle\mathcal{A}f(\sigma) =𝔞f^(λ)limt0(etβ(𝒜,λ)1t)ϕλ(σ)ω(dλ)\displaystyle=\int_{\operatorname{\mathfrak{a}^{\ast}}*}\hat{f}(\lambda)\lim_{t\rightarrow 0}\left(\frac{e^{t\beta(\mathcal{A},\lambda)}-1}{t}\right)\phi_{\lambda}(\sigma)\omega(d\lambda) (2.29)
    =𝔞f^(λ)ϕλ(σ)β(𝒜,λ)ω(dλ)\displaystyle=\int_{\operatorname{\mathfrak{a}^{\ast}}*}\hat{f}(\lambda)\phi_{\lambda}(\sigma)\beta(\mathcal{A},\lambda)\omega(d\lambda)

    for all fCc(K|G|K)f\in C_{c}^{\infty}(K|G|K) and σG\sigma\in G.

  2. 2.

    Brownian motion. As a special case of the above, Δ-\Delta is a pseudodifferential operator with symbol |ρ|2+|λ|2|\rho|^{2}+|\lambda|^{2}.

  3. 3.

    Killed diffusions. With minimal effort, the results of Example 2.16 (1) may be extended to include killing. To see this, note first that such operators are always of the form 𝒜c\mathcal{A}-c, where 𝒜\mathcal{A} is a diffusion operator of the form considered above, and c0c\geq 0. The associated ϕλ\phi_{\lambda}-eigenvalues must satisfy

    β(𝒜c,λ)=β(𝒜,λ)c,\beta(\mathcal{A}-c,\lambda)=\beta(\mathcal{A},\lambda)-c,

    and hence using (2.29) as well as the spherical inversion theorem,

    (𝒜c)f(σ)\displaystyle(\mathcal{A}-c)f(\sigma) =𝔞f^(λ)ϕλ(σ)β(𝒜,λ)ω(dλ)cf(σ)\displaystyle=\int_{\operatorname{\mathfrak{a}^{\ast}}*}\hat{f}(\lambda)\phi_{\lambda}(\sigma)\beta(\mathcal{A},\lambda)\omega(d\lambda)-cf(\sigma)
    =𝔞f^(λ)ϕλ(σ)β(𝒜c,λ)ω(dλ),\displaystyle=\int_{\operatorname{\mathfrak{a}^{\ast}}*}\hat{f}(\lambda)\phi_{\lambda}(\sigma)\beta(\mathcal{A}-c,\lambda)\omega(d\lambda),

    for all fCc(K|G|K)f\in C_{c}^{\infty}(K|G|K) and σG\sigma\in G.

  4. 4.

    Lévy generators. More generally, if 𝒜\mathcal{A} is the infinitesimal generator of a KK-bi-invariant Lévy process on GG, and if ψ\psi is the corresponding Gangolli exponent, then (σ,λ)ψ(λ)(\sigma,\lambda)\mapsto\psi(\lambda) is a continuous negative definite symbol, and 𝒜-\mathcal{A} is the corresponding pseudodifferential operator. This is proven in Applebaum (2013) Theorem 5.1 in the case where G/KG/K is irreducible, and later in this paper as a special case of Theorem 3.7.

3 Gangolli Operators and the Hille–Yosida–Ray Theorem

We will soon define the class of pseudodifferential operators that will be of primary interest. In this section, we motivate this definition with a short discussion of the Hille–Yosida–Ray theorem, and prove that our class of operators are pseudodifferential operators in the sense of Definition 2.15. We finish the section with some examples.

Let EE be a locally compact, Hausdorff space, let 𝒞\mathcal{C} be a closed subspace of C0(E)C_{0}(E), and let (E)\mathcal{F}(E) denote the space of all real-valued functions on EE. A C0C_{0}-semigroup (Tt,t0)(T_{t},t\geq 0) defined on C0(K|G|K)C_{0}(K|G|K) is called sub-Feller if for all fC0(E)f\in C_{0}(E), and all t0t\geq 0,

0f10Ttf1.0\leq f\leq 1~{}\Rightarrow~{}0\leq T_{t}f\leq 1.

A linear operator 𝒜:Dom(𝒜)(E)\mathcal{A}:\operatorname{Dom}(\mathcal{A})\to\mathcal{F}(E) is said to satisfy the positive maximum principle, if for all fDom(𝒜)f\in\operatorname{Dom}(\mathcal{A}) and x0Ex_{0}\in E such that f(x0)=supxEf(x)0f(x_{0})=\sup_{x\in E}f(x)\geq 0, we have 𝒜f(x0)0\mathcal{A}f(x_{0})\leq 0.

The following theorem is an extended version of the Hille–Yosida–Ray theorem, which fully characterises the operators that extend to generators of sub-Feller semigroups on C0(E)C_{0}(E). Similar versions in which E=dE=\mathbb{R}^{d} may found in Hoh (1998), pp. 53, and Jacob (2001a), pp. 333. For a proof, see Ethier and Kurtz (1986), pp. 165.

Theorem 3.1 (Hille–Yosida–Ray).

A linear operator (𝒜,Dom(𝒜))(\mathcal{A},\operatorname{Dom}(\mathcal{A})) on C0(E)C_{0}(E) is closable and its closure generates a strongly continuous, sub-Feller semigroup on C0(E)C_{0}(E) if and only if the following is satisfied:

  1. 1.

    Dom(𝒜)\operatorname{Dom}(\mathcal{A}) is dense in C0(E)C_{0}(E),

  2. 2.

    𝒜\mathcal{A} satisfies the positive maximum principle, and

  3. 3.

    There exists α>0\alpha>0 such that Ran(αI𝒜)\operatorname{Ran}(\alpha I-\mathcal{A}) is dense in C0(E)C_{0}(E).

In their papers Applebaum and Le Ngan (2020a, b), Applebaum and Ngan found necessary and sufficient conditions for an operator defined on Cc(K|G|K)C_{c}^{\infty}(K|G|K) to satisfy Theorem 3.1 (2), for the cases E=GE=G, G/KG/K and K|G|KK|G|K. We will focus primarily on the case E=K|G|KE=K|G|K, since this is the realm in which the spherical transform is available.

A mapping ν:G×[0,]\nu:G\times\mathcal{B}\to[0,\infty] will be called a KK-bi-invariant Lévy kernel if it is KK-bi-invariant in its first argument, and if for all σG\sigma\in G, ν(σ,)\nu(\sigma,\cdot) is a KK-bi-invariant Lévy measure. Fix a system of exponential coordinate functions, as defined in Definition 2.5, and adopt all of the notation conventions from this definition.

Definition 3.2.

An operator 𝒜:Cc(K|G|K)(G)\mathcal{A}:C_{c}^{\infty}(K|G|K)\to\mathcal{F}(G) will be called a Gangolli operator if there exist mappings c,ai,j(K|G|K)c,a_{i,j}\in\mathcal{F}(K|G|K) (1i,jd1\leq i,j\leq d), as well as a KK-bi-invariant Lévy kernel ν\nu, such that for all fCc(K|G|K)f\in C_{c}^{\infty}(K|G|K) and σG\sigma\in G,

𝒜f(σ)=c(σ)\displaystyle\mathcal{A}f(\sigma)=-c(\sigma) f(σ)+i,j=1dai,j(σ)XiXjf(σ)\displaystyle f(\sigma)+\sum_{i,j=1}^{d}a_{i,j}(\sigma)X_{i}X_{j}f(\sigma) (3.1)
+G(f(στ)f(σ)i=1dxi(τ)Xif(σ))ν(σ,dτ),\displaystyle+\int_{G}\left(f(\sigma\tau)-f(\sigma)-\sum_{i=1}^{d}x_{i}(\tau)X_{i}f(\sigma)\right)\nu(\sigma,d\tau),

and if for all σG\sigma\in G,

  1. 1.

    c(σ)0c(\sigma)\geq 0.

  2. 2.

    a(σ):=(ai,j(σ))a(\sigma):=(a_{i,j}(\sigma)) is an Ad(K)\operatorname{Ad}(K)-invariant, non-negative definite, symmetric matrix.

Remarks 3.3.
  1. 1.

    Gangolli operators were first introduced in Applebaum and Le Ngan (2020b) in compact symmetric spaces and for a more restrictive form of (3.1). By Theorem 3.2 (3) of Applebaum and Le Ngan (2020b), Gangolli operators map into (K|G|K)\mathcal{F}(K|G|K), and satisfy the positive maximum principle.

  2. 2.

    Equation (3.1) may be viewed as a spatially dependent generalisation of (2.13), with an additional killing term cc. As with previously, the absence of a drift term is due to the semisimplicity of GG.

For a Gangolli operator 𝒜\mathcal{A} given by (3.1), and for each σG\sigma\in G, we will denote by 𝒜σ\mathcal{A}^{\sigma} the operator obtained by freezing the coefficients of 𝒜\mathcal{A} at σ\sigma. Explicitly, for all fCc(K|G|K)f\in C_{c}^{\infty}(K|G|K) and σG\sigma^{\prime}\in G,

𝒜σf(σ)=c(σ)\displaystyle\mathcal{A}^{\sigma}f(\sigma^{\prime})=-c(\sigma) f(σ)+i,j=1dai,j(σ)XiXjf(σ)\displaystyle f(\sigma^{\prime})+\sum_{i,j=1}^{d}a_{i,j}(\sigma)X_{i}X_{j}f(\sigma^{\prime})
+G(f(στ)f(σ)i=1dxi(τ)Xif(σ))ν(σ,dτ).\displaystyle+\int_{G}\left(f(\sigma^{\prime}\tau)-f(\sigma^{\prime})-\sum_{i=1}^{d}x_{i}(\tau)X_{i}f(\sigma^{\prime})\right)\nu(\sigma,d\tau).

For each σG\sigma\in G, 𝒜σ\mathcal{A}^{\sigma} is the generator of a killed KK-bi-invariant Lévy process on GG. We continue to adopt the notation 𝒜Dσ\mathcal{A}^{\sigma}_{D} for the diffusion part, and β(𝒜Dσ,λ)\beta(\mathcal{A}_{D}^{\sigma},\lambda) for the ϕλ\phi_{\lambda}-eigenvalue of 𝒜Dσ\mathcal{A}_{D}^{\sigma}.

Consider the following continuity conditions on the coefficients (b,a,ν)(b,a,\nu) of 𝒜\mathcal{A}:

  • (c1)

    c,aijc,a_{ij} are continuous, for 1i,jd1\leq i,j\leq d.

  • (c2)

    For each fCb(K|G|K)f\in C_{b}(K|G|K), the mappings σUf(τ)i=1dxi(τ)2ν(σ,dτ)\sigma\mapsto\int_{U}f(\tau)\sum_{i=1}^{d}x_{i}(\tau)^{2}\nu(\sigma,d\tau) and σUcf(τ)ν(σ,dτ)\sigma\mapsto\int_{U^{c}}f(\tau)\nu(\sigma,d\tau) are continuous from GG to [0,)[0,\infty).

Lemma 3.4.

Let 𝒜\mathcal{A} be a Gangolli operator, and define q:G×𝔞q:G\times\operatorname{\mathfrak{a}^{\ast}}*\to\mathbb{C} by

q(σ,λ)=β(𝒜Dσ,λ)+G(1ϕλ(τ))ν(σ,dτ),σG,λ𝔞.q(\sigma,\lambda)=-\beta(\mathcal{A}_{D}^{\sigma},\lambda)+\int_{G}(1-\phi_{\lambda}(\tau))\nu(\sigma,d\tau),\hskip 20.0pt\forall\sigma\in G,\lambda\in\operatorname{\mathfrak{a}^{\ast}}*. (3.2)

Suppose (c1) and (c2) hold. Then qq is a continuous negative definite symbol.

Proof.

That qq is continuous in its first argument is immediate from (c1) and (c2). Fix σG\sigma\in G and consider q(σ,)c(σ)q(\sigma,\cdot)-c(\sigma). By Theorem 2.6, there is a convolution semigroup (μtσ,t0)(\mu^{\sigma}_{t},t\geq 0) generated by 𝒜σ+c(σ)\mathcal{A}^{\sigma}+c(\sigma), and by Theorem 2.7, the corresponding Gangolli exponent is a continuous negative definite mapping on 𝔞\operatorname{\mathfrak{a}^{\ast}}*, given by

ψσ(λ)=q(σ,λ)c(σ)λ𝔞.\psi^{\sigma}(\lambda)=q(\sigma,\lambda)-c(\sigma)\hskip 20.0pt\forall\lambda\in\operatorname{\mathfrak{a}^{\ast}}*.

Therefore q(σ,)q(\sigma,\cdot) is continuous, and negative definite since for fixed σ\sigma, c(σ)c(\sigma) is a non-negative constant. ∎

Definition 3.5.

The symbols described by Lemma 3.4 will be referred to as Gangolli symbols, due to their connection with Gangolli’s Lévy–Khinchine formula.

Remarks 3.6.
  1. 1.

    Gangolli exponents are precisely those Gangolli symbols constant in their first argument.

  2. 2.

    The set of all Gangolli symbols forms a convex cone.

Theorem 3.7.

Let 𝒜\mathcal{A} and qq be as in Lemma 3.4. Then 𝒜-\mathcal{A} is a pseudodifferential operator with symbol qq.

Proof.

By Theorem 2.14 and Lemma 3.4, f𝔞f^(λ)ϕλ(σ)q(σ,λ)ω(dλ)f\mapsto-\int_{\operatorname{\mathfrak{a}^{\ast}}*}\hat{f}(\lambda)\phi_{\lambda}(\sigma)q(\sigma,\lambda)\omega(d\lambda) is a well-defined mapping from Cc(K|G|K)C(G)C_{c}^{\infty}(K|G|K)\to C(G). We show that it is equal to 𝒜\mathcal{A}.

Let 𝒜J\mathcal{A}_{J} denote the non-local (i.e. jump) part of 𝒜\mathcal{A}, so that

𝒜Jf(σ)=G(f(στ)f(σ)i=1dxi(τ)Xif(σ))ν(σ,dτ)\mathcal{A}_{J}f(\sigma)=\int_{G}\left(f(\sigma\tau)-f(\sigma)-\sum_{i=1}^{d}x_{i}(\tau)X_{i}f(\sigma)\right)\nu(\sigma,d\tau) (3.3)

for all fCc(K|G|K)f\in C_{c}^{\infty}(K|G|K) and σG\sigma\in G. By design,

𝒜f(σ)=𝒜Dσf(σ)+𝒜Jf(σ),fCc(K|G|K),σG.\mathcal{A}f(\sigma)=\mathcal{A}_{D}^{\sigma}f(\sigma)+\mathcal{A}_{J}f(\sigma),\hskip 20.0pt\forall f\in C_{c}^{\infty}(K|G|K),\;\sigma\in G. (3.4)

For the diffusion part of 𝒜\mathcal{A}, note that for each σG\sigma\in G, 𝒜Dσ\mathcal{A}^{\sigma}_{D} is an operator of the form considered in Example 2.16 (3), and in particular satisfies

𝒜Dσf(σ)=𝔞f^(λ)β(𝒜Dσ,λ)ϕλ(σ)ω(dλ),\mathcal{A}_{D}^{\sigma}f(\sigma)=\int_{\operatorname{\mathfrak{a}^{\ast}}*}\hat{f}(\lambda)\beta(\mathcal{A}_{D}^{\sigma},\lambda)\phi_{\lambda}(\sigma)\omega(d\lambda), (3.5)

for all fCc(K|G|K)f\in C_{c}^{\infty}(K|G|K).

Consider now the jump part 𝒜J\mathcal{A}_{J}. By Lemma 2.3 on page 39 of Liao (2018), for each fixed σG\sigma\in G, and for all fCb2(K|G|K)f\in C_{b}^{2}(K|G|K), the integrand on the right-hand side of (3.3) is absolutely integrable with respect to ν(σ,)\nu(\sigma,\cdot). Therefore, (3.3) may be used to extend the domain of 𝒜J\mathcal{A}_{J} so as to include Cb2(K|G|K)C_{b}^{2}(K|G|K). We do so now, and (without any loss of precision) denote the extension by 𝒜J\mathcal{A}_{J}.

Let us proceed similarly to Applebaum and Le Ngan (2020b) Section 5, and define for each σG\sigma\in G a linear functional 𝒜J,σ:Cb2(K|G|K)\mathcal{A}_{J,\sigma}:C_{b}^{2}(K|G|K)\to\mathbb{C} by

𝒜J,σf:=𝒜J(Lσ1f)(σ),σG,fCb2(K|G|K).\mathcal{A}_{J,\sigma}f:=\mathcal{A}_{J}\left(L_{\sigma}^{-1}f\right)(\sigma),\hskip 20.0pt\forall\sigma\in G,\;f\in C_{b}^{2}(K|G|K).

Then 𝒜Jf(σ)=𝒜J,σ(Lσf)\mathcal{A}_{J}f(\sigma)=\mathcal{A}_{J,\sigma}(L_{\sigma}f), and hence

𝒜J,σϕλ=G(Lσ1ϕλ(στ)Lσ1ϕλ(σ)i=1dxi(τ)XiLσ1ϕλ(σ))ν(σ,dτ),\mathcal{A}_{J,\sigma}\phi_{\lambda}=\int_{G}\left(L_{\sigma}^{-1}\phi_{\lambda}(\sigma\tau)-L_{\sigma}^{-1}\phi_{\lambda}(\sigma)-\sum_{i=1}^{d}x_{i}(\tau)X_{i}L_{\sigma}^{-1}\phi_{\lambda}(\sigma)\right)\nu(\sigma,d\tau),

for all σG\sigma\in G and fCb2(K|G|K)f\in C_{b}^{2}(K|G|K). Moreover, the integrand on the right-hand side is absolutely ν(σ,)\nu(\sigma,\cdot)-integrable, for all λ𝔞\lambda\in\operatorname{\mathfrak{a}^{\ast}}* and σG\sigma\in G. Since ϕλ(e)=1\phi_{\lambda}(e)=1, and Xϕλ(e)=0X\phi_{\lambda}(e)=0 for all X𝔭X\in\mathfrak{p} (Theorem 5.3 (b) of Liao (2018)),

Lσ1ϕλ(στ)Lσ1ϕλ(σ)i=1dxi(τ)XiLσ1ϕλ(σ)=ϕλ(τ)1.\displaystyle L_{\sigma}^{-1}\phi_{\lambda}(\sigma\tau)-L_{\sigma}^{-1}\phi_{\lambda}(\sigma)-\sum_{i=1}^{d}x_{i}(\tau)X_{i}L_{\sigma}^{-1}\phi_{\lambda}(\sigma)=\phi_{\lambda}(\tau)-1.

Thus, for all λ𝔞\lambda\in\operatorname{\mathfrak{a}^{\ast}}* and σG\sigma\in G, ϕλ1\phi_{\lambda}-1 is absolutely ν(σ,)\nu(\sigma,\cdot)-integrable, and

𝒜J,σϕλ=G(ϕλ(τ)1)ν(σ,dτ).\mathcal{A}_{J,\sigma}\phi_{\lambda}=\int_{G}\left(\phi_{\lambda}(\tau)-1\right)\nu(\sigma,d\tau). (3.6)

A standard argument involving the functional equation (2.11) for spherical functions may now be applied in precisely the same way as in Applebaum and Le Ngan (2020b) (5.3)–(5.7), to infer that

𝒜Jϕλ(σ)=G(ϕλ(στ)ϕλ(σ))ν(σ,dτ)=G(ϕλ(τ)1)ϕλ(σ)ν(σ,dτ)\mathcal{A}_{J}\phi_{\lambda}(\sigma)=\int_{G}(\phi_{\lambda}(\sigma\tau)-\phi_{\lambda}(\sigma))\nu(\sigma,d\tau)=\int_{G}(\phi_{\lambda}(\tau)-1)\phi_{\lambda}(\sigma)\nu(\sigma,d\tau) (3.7)

for all σG\sigma\in G and λ𝔞\lambda\in\operatorname{\mathfrak{a}^{\ast}}*.

Finally, let fCc(K|G|K)f\in C_{c}^{\infty}(K|G|K), and observe that by the spherical inversion formula

𝒜Jf(σ)\displaystyle\mathcal{A}_{J}f(\sigma) =G(𝔞ϕλ(στ)f^(λ)ω(dλ)𝔞ϕλ(σ)f^(λ)ω(dλ)\displaystyle=\int_{G}\Bigg{(}\int_{\operatorname{\mathfrak{a}^{\ast}}*}\phi_{\lambda}(\sigma\tau)\hat{f}(\lambda)\omega(d\lambda)-\int_{\operatorname{\mathfrak{a}^{\ast}}*}\phi_{\lambda}(\sigma)\hat{f}(\lambda)\omega(d\lambda) (3.8)
i=1dxi(τ)Xi[𝔞ϕλf^(λ)ω(dλ)](σ))ν(σ,dτ)\displaystyle\hskip 70.0pt-\sum_{i=1}^{d}x_{i}(\tau)X_{i}\left[\int_{\operatorname{\mathfrak{a}^{\ast}}*}\phi_{\lambda}\hat{f}(\lambda)\omega(d\lambda)\right](\sigma)\Bigg{)}\nu(\sigma,d\tau)
Claim.

For all X𝔭X\in\mathfrak{p} and fCc(K|G|K)f\in C_{c}^{\infty}(K|G|K),

X[𝔞ϕλf^(λ)ω(dλ)](σ)=𝔞Xϕλ(σ)f^(λ)ω(dλ).X\left[\int_{\operatorname{\mathfrak{a}^{\ast}}*}\phi_{\lambda}\hat{f}(\lambda)\omega(d\lambda)\right](\sigma)=\int_{\operatorname{\mathfrak{a}^{\ast}}*}X\phi_{\lambda}(\sigma)\hat{f}(\lambda)\omega(d\lambda).
Proof of Claim.

This is a fairly standard differentiation-through-integration-sign argument. First note that by translation invariance of XX, it suffices to prove the claim for σ=e\sigma=e. Now,

X[𝔞ϕλf^(λ)ω(dλ)](e)\displaystyle X\left[\int_{\operatorname{\mathfrak{a}^{\ast}}*}\phi_{\lambda}\hat{f}(\lambda)\omega(d\lambda)\right](e) =ddt𝔞ϕλ(exptX)f^(λ)ω(dλ)|t=0\displaystyle=\left.\frac{d}{dt}\int_{\operatorname{\mathfrak{a}^{\ast}}*}\phi_{\lambda}(\exp tX)\hat{f}(\lambda)\omega(d\lambda)\right|_{t=0}
=limt0𝔞ϕλ(exptX)1tf^(λ)ω(dλ).\displaystyle=\lim_{t\rightarrow 0}\int_{\operatorname{\mathfrak{a}^{\ast}}*}\frac{\phi_{\lambda}(\exp tX)-1}{t}\hat{f}(\lambda)\omega(d\lambda).

The claim will follow if we can apply the dominated convergence theorem to bring the above limit through the integral sign. By the mean value theorem, for each t>0t>0 and λ𝔞\lambda\in\operatorname{\mathfrak{a}^{\ast}}*,

ϕλ(exptX)1t=Xϕλ(exptX),\frac{\phi_{\lambda}(\exp tX)-1}{t}=X\phi_{\lambda}(\exp t^{\prime}X),

for some 0<t<t0<t^{\prime}<t, and hence |ϕλ(exptX)1t|Xϕλ\left|\frac{\phi_{\lambda}(\exp tX)-1}{t}\right|\leq\|X\phi_{\lambda}\|_{\infty} for all t>0t>0. By Helgason Theorem 1.1 (iii), XϕλC(1+|λ|)\|X\phi_{\lambda}\|_{\infty}\leq C(1+|\lambda|), for some some constant C>0C>0. Thus, for fCc(K|G|K)f\in C_{c}^{\infty}(K|G|K), λ𝔞\lambda\in\operatorname{\mathfrak{a}^{\ast}}* and t>0t>0,

|ϕλ(exptX)1tf^(λ)|C(1+|λ|)|f^(λ)|,\left|\frac{\phi_{\lambda}(\exp tX)-1}{t}\hat{f}(\lambda)\right|\leq C(1+|\lambda|)|\hat{f}(\lambda)|,

and clearly C(1+||)f^L1(𝔞)WC(1+|\cdot|)\hat{f}\in L^{1}(\operatorname{\mathfrak{a}^{\ast}}*)^{W}, since f^𝒮(𝔞)\hat{f}\in\mathcal{S}(\operatorname{\mathfrak{a}^{\ast}}*). Hence we may apply dominated convergence as desired, and the claim follows.

Applying the claim to (3.8), for fCc(K|G|K)f\in C_{c}^{\infty}(K|G|K) and σG\sigma\in G,

𝒜Jf(σ)\displaystyle\mathcal{A}_{J}f(\sigma) =G(𝔞ϕλ(στ)f^(λ)ω(dλ)𝔞ϕλ(σ)f^(λ)ω(dλ)\displaystyle=\int_{G}\Bigg{(}\int_{\operatorname{\mathfrak{a}^{\ast}}*}\phi_{\lambda}(\sigma\tau)\hat{f}(\lambda)\omega(d\lambda)-\int_{\operatorname{\mathfrak{a}^{\ast}}*}\phi_{\lambda}(\sigma)\hat{f}(\lambda)\omega(d\lambda)
i=1dxi(τ)𝔞Xiϕλ(σ)f^(λ)ω(dλ))ν(σ,dτ)\displaystyle\hskip 120.0pt-\sum_{i=1}^{d}x_{i}(\tau)\int_{\operatorname{\mathfrak{a}^{\ast}}*}X_{i}\phi_{\lambda}(\sigma)\hat{f}(\lambda)\omega(d\lambda)\Bigg{)}\nu(\sigma,d\tau)
=G𝔞f^(λ)(ϕλ(στ)ϕλ(σ)i=1dxi(τ)Xiϕλ(σ))ω(dλ)ν(σ,dτ).\displaystyle=\int_{G}\int_{\operatorname{\mathfrak{a}^{\ast}}*}\hat{f}(\lambda)\left(\phi_{\lambda}(\sigma\tau)-\phi_{\lambda}(\sigma)-\sum_{i=1}^{d}x_{i}(\tau)X_{i}\phi_{\lambda}(\sigma)\right)\omega(d\lambda)\nu(\sigma,d\tau).

By the Fubini theorem,

𝒜Jf(σ)\displaystyle\mathcal{A}_{J}f(\sigma) =𝔞f^(λ)G(ϕλ(στ)ϕλ(σ)i=1dxi(τ)Xiϕλ(σ))ν(σ,dτ)ω(dλ)\displaystyle=\int_{\operatorname{\mathfrak{a}^{\ast}}*}\hat{f}(\lambda)\int_{G}\left(\phi_{\lambda}(\sigma\tau)-\phi_{\lambda}(\sigma)-\sum_{i=1}^{d}x_{i}(\tau)X_{i}\phi_{\lambda}(\sigma)\right)\nu(\sigma,d\tau)\omega(d\lambda)
=𝔞f^(λ)𝒜Jϕλ(σ)ω(dλ)\displaystyle=\int_{\operatorname{\mathfrak{a}^{\ast}}*}\hat{f}(\lambda)\mathcal{A}_{J}\phi_{\lambda}(\sigma)\omega(d\lambda)

for all fCc(K|G|K)f\in C_{c}^{\infty}(K|G|K) and σG\sigma\in G. It follows by (3.7) that

𝒜Jf(σ)=𝔞f^(λ)ϕλ(σ)G(ϕλ(τ)1)ν(σ,dτ)ω(dλ)\mathcal{A}_{J}f(\sigma)=\int_{\operatorname{\mathfrak{a}^{\ast}}*}\hat{f}(\lambda)\phi_{\lambda}(\sigma)\int_{G}(\phi_{\lambda}(\tau)-1)\nu(\sigma,d\tau)\omega(d\lambda) (3.9)

for all fCc(K|G|K)f\in C_{c}^{\infty}(K|G|K) and σG\sigma\in G.

The result now follows by substituting (3.9) and (3.5) into (3.4). ∎

Example 3.8.
  1. 1.

    Let uC(K|G|K)u\in C(K|G|K) be non-negative, and let v:𝔞v:\operatorname{\mathfrak{a}^{\ast}}*\to\mathbb{C} be a Gangolli exponent. Then q:G×𝔞q:G\times\operatorname{\mathfrak{a}^{\ast}}*\to\mathbb{C} given by

    q(σ,λ)=u(σ)v(λ)σG,λ𝔞q(\sigma,\lambda)=u(\sigma)v(\lambda)\hskip 20.0pt\forall\sigma\in G,\;\lambda\in\operatorname{\mathfrak{a}^{\ast}}*

    is a Gangolli symbol. Indeed, by Theorem 2.7, there exists a sub-diffusion operator 𝐃K(G)\mathcal{L}\in{\bf D}_{K}(G) and a KK-bi-invariant Lévy measure ν\nu such that for all λ𝔞\lambda\in\operatorname{\mathfrak{a}^{\ast}}*,

    v(λ)=β(,λ)+G(1ϕλ(σ))ν(dτ),v(\lambda)=-\beta(\mathcal{L},\lambda)+\int_{G}(1-\phi_{\lambda}(\sigma))\nu(d\tau),

    and hence for all σG\sigma\in G and λ𝔞\lambda\in\operatorname{\mathfrak{a}^{\ast}}*,

    q(σ,λ)=β(u(σ),λ)+G(1ϕλ(σ))u(σ)ν(dτ).q(\sigma,\lambda)=-\beta(u(\sigma)\mathcal{L},\lambda)+\int_{G}(1-\phi_{\lambda}(\sigma))u(\sigma)\nu(d\tau).

    If =c+i,j=1daijXiXj\mathcal{L}=-c+\sum_{i,j=1}^{d}a_{ij}X_{i}X_{j}, where c0c\geq 0 and a=(aij)a=(a_{ij}) is an Ad(K)\operatorname{Ad}(K)-invariant, non-negative definite symmetric matrix, then the characteristics are qq are

    c(σ):=u(σ)c,a(σ)=u(σ)a,andν(σ,)=u(σ)ν.c(\sigma):=u(\sigma)c,\hskip 10.0pta(\sigma)=u(\sigma)a,\hskip 5.0pt\text{and}\hskip 5.0pt\nu(\sigma,\cdot)=u(\sigma)\nu.

    Since uu is non-negative, continuous and KK-bi-invariant, the conditions of Definition 3.2 are easily verified for these characteristics, as are (c1) and (c2).

  2. 2.

    Hyperbolic plane. As described in Helgason (1984) (pp. 29–31), the Poincaré disc model DD of the hyperbolic plane is isomorphic to SU(1,1)/SO(2)SU(1,1)/SO(2). Moreover, DD is a symmetric space of noncompact type, with spherical functions are given by the Legendre functions

    ϕλ(z)=P12+iλ(coshd(0,z)),zD,λ.\phi_{\lambda}(z)=P_{\frac{1}{2}+i\lambda}\big{(}\cosh d_{\mathbb{H}}(0,z)\big{)},\hskip 20.0pt\forall z\in D,\lambda\in\mathbb{R}.

    (see Helgason (2001) Proposition 2.9, pp. 406). Since DD is irreducible and dimD>1\dim D>1, by Theorem 3.3 of Applebaum and Le Ngan (2020b), diffusion operators on DD must be multiples of the Laplace–Beltrami operator, and the symbols of Feller processes take the simplified form

    q(z,λ)=c(z)(14+λ2)+0{1P12+iλ(coshr)}ν(z,dr),q(z,\lambda)=c(z)\left(\frac{1}{4}+\lambda^{2}\right)+\int_{0}^{\infty}\big{\{}1-P_{\frac{1}{2}+i\lambda}(\cosh r)\big{\}}\nu(z,dr),

    for all zDz\in D and λ\lambda\in\mathbb{R}. The constant coefficient (i.e. Lévy) case of this formula was discovered by Getoor — see Getoor (1961) Theorem 7.4.

4 Construction of Sub-Feller Semigroups

In this section we tackle the third condition of Hille–Yosida–Ray (Theorem 3.1), when E=K|G|KE=K|G|K. To this end, we seek conditions on a symbol qq so that, for some α>0\alpha>0,

Ran(α+q(σ,D))¯=C0(K|G|K).\overline{\operatorname{Ran}(\alpha+q(\sigma,D))}=C_{0}(K|G|K). (4.1)

Our approach is based primarily on Jacob (1994) and Hoh (1998) Section 4. Now that we are on the level of operators, there are more arguments that closely resemble these sources. In these cases, proofs are not expanded in great detail, and may be omitted entirely to save space. Instead, we aim to emphasise what does not carry over from the Euclidean space setting.

For a mapping q:G×𝔞q:G\times\operatorname{\mathfrak{a}^{\ast}}*\to\mathbb{R} and for each λ,η𝔞\lambda,\eta\in\operatorname{\mathfrak{a}^{\ast}}*, σG\sigma\in G, define

Fλ,η(σ)=ϕλ(σ)q(σ,η).F_{\lambda,\eta}(\sigma)=\phi_{-\lambda}(\sigma)q(\sigma,\eta). (4.2)

Observe that if q(,η)L2(K|G|K)q(\cdot,\eta)\in L^{2}(K|G|K) for all η𝔞\eta\in\operatorname{\mathfrak{a}^{\ast}}*, then Fλ,ηL2(K|G|K)F_{\lambda,\eta}\in L^{2}(K|G|K), and we may consider the spherical transform F^λ,ηL2(𝔞,ω)\hat{F}_{\lambda,\eta}\in L^{2}(\operatorname{\mathfrak{a}^{\ast}}*,\omega), given by

F^λ,η(μ)=Gϕμ(σ)ϕλ(σ)q(σ,η)dσ,μ𝔞.\hat{F}_{\lambda,\eta}(\mu)=\int_{G}\phi_{-\mu}(\sigma)\phi_{-\lambda}(\sigma)q(\sigma,\eta)d\sigma,\hskip 20.0pt\forall\mu\in\operatorname{\mathfrak{a}^{\ast}}*.

To motivate the introduction of Fλ,ηF_{\lambda,\eta}, consider the case G=dG=\mathbb{R}^{d}, K={0}K=\{0\}. In this case, the so-called frequency shift property for the Fourier transform says that

F^λ,η(μ)\displaystyle\hat{F}_{\lambda,\eta}(\mu) =1(2π)d/2deiμxeiλxq(x,η)𝑑x\displaystyle=\frac{1}{(2\pi)^{d/2}}\int_{\mathbb{R}^{d}}e^{-i\mu\cdot x}e^{-i\lambda\cdot x}q(x,\eta)dx (4.3)
=1(2π)d/2dei(μ+λ)xq(x,η)𝑑x=q^(λ+μ,η),\displaystyle=\frac{1}{(2\pi)^{d/2}}\int_{\mathbb{R}^{d}}e^{-i(\mu+\lambda)\cdot x}q(x,\eta)dx=\hat{q}(\lambda+\mu,\eta),

where denotes the Fourier transform taken in the first argument of qq. Hoh (1998) and Jacob (2001b) make use of bounds on q^(λμ,η)\hat{q}(\lambda-\mu,\eta), and F^λ,η(μ)\hat{F}_{\lambda,\eta}(-\mu) will assume an analogous role in work to come.

As in previous work, let ψ:𝔞\psi:\operatorname{\mathfrak{a}^{\ast}}*\to\mathbb{R} be a fixed real-valued, continuous negative definite function satisfying (2.18) for some fixed r>0r>0. The next lemma is an analogue of Lemma 2.1 of Jacob (1994). See also Hoh (1998) Lemma 4.2, pp. 48. The primary difference in this work is the presence of integer powers of Δ\sqrt{-\Delta}, which replace the multinomial powers of x1,,xd\frac{\partial}{\partial x_{1}},\ldots,\frac{\partial}{\partial x_{d}} of the d\mathbb{R}^{d} setting.

One advantage of this approach is that (Δ)β/2(-\Delta)^{\beta/2} (β\beta\in\mathbb{N}) has a global definition that does not depend on our choice of local coordinates. Another advantage is that we know its symbol — see equations (4.8) and (4.9) below.

Lemma 4.1.

Let MM\in\mathbb{N}, q:G×𝔞q:G\times\operatorname{\mathfrak{a}^{\ast}}*\to\mathbb{R} and suppose q(,λ)CcM(K|G|K)q(\cdot,\lambda)\in C^{M}_{c}(K|G|K) for all λ𝔞\lambda\in\operatorname{\mathfrak{a}^{\ast}}*. Suppose that for each β{0,1,,M}\beta\in\{0,1,\ldots,M\}, there is a non-negative function ΦβL1(K|G|K)\Phi_{\beta}\in L^{1}(K|G|K) such that

|(Δ)β/2Fλ,η(σ)|Φβ(σ)λM(1+ψ(η)),\left|(-\Delta)^{\beta/2}F_{\lambda,\eta}(\sigma)\right|\leq\Phi_{\beta}(\sigma)\langle\lambda\rangle^{M}(1+\psi(\eta)), (4.4)

for all λ,η𝔞\lambda,\eta\in\operatorname{\mathfrak{a}^{\ast}}*, σG\sigma\in G. Then there is a constant CM>0C_{M}>0 such that

|F^λ,η(μ)|CMβ=0MΦβ1λ+μM(1+ψ(η)),\left|\hat{F}_{\lambda,\eta}(\mu)\right|\leq C_{M}\sum_{\beta=0}^{M}\|\Phi_{\beta}\|_{1}\langle\lambda+\mu\rangle^{-M}(1+\psi(\eta)), (4.5)

for all λ,μ,η𝔞\lambda,\mu,\eta\in\operatorname{\mathfrak{a}^{\ast}}*, where 1\|\cdot\|_{1} denotes the usual norm on the Banach space L1(K|G|K)L^{1}(K|G|K).

Remarks 4.2.
  1. 1.

    As in (2.21), λ:=1+|λ|2\langle\lambda\rangle:=\sqrt{1+|\lambda|^{2}}.

  2. 2.

    The condition (4.4) may seem quite obscure. The role of λ+μ\langle\lambda+\mu\rangle will hopefully become apparent in the proof of Theorem 4.6. For examples where it is satisfied, see §5.

  3. 3.

    Under the conditions of the lemma, and using the Fubini theorem, we have the following: for all uCc(K|G|K)u\in C_{c}^{\infty}(K|G|K) and λ𝔞\lambda\in\operatorname{\mathfrak{a}^{\ast}}*,

    (q(σ,D)u)(λ)\displaystyle(q(\sigma,D)u)^{\wedge}(\lambda) =G𝔞ϕλ(σ)ϕη(σ)q(σ,η)u^(η)ω(dη)𝑑σ\displaystyle=\int_{G}\int_{\operatorname{\mathfrak{a}^{\ast}}*}\phi_{-\lambda}(\sigma)\phi_{\eta}(\sigma)q(\sigma,\eta)\hat{u}(\eta)\omega(d\eta)d\sigma (4.6)
    =𝔞(Gϕη(σ)Fλ,η(σ)𝑑σ)u^(η)ω(dη)\displaystyle=\int_{\operatorname{\mathfrak{a}^{\ast}}*}\left(\int_{G}\phi_{\eta}(\sigma)F_{\lambda,\eta}(\sigma)d\sigma\right)\hat{u}(\eta)\omega(d\eta)
    =𝔞F^λ,η(η)u^(η)ω(dη).\displaystyle=\int_{\operatorname{\mathfrak{a}^{\ast}}*}\hat{F}_{\lambda,\eta}(-\eta)\hat{u}(\eta)\omega(d\eta).

    Fubini’s theorem does indeed apply here — a suitable bound for the integrand on the first line of (4.6) may be found by noting that, by (4.4),

    |ϕλ(σ)ϕη(σ)q(σ,η)u^(η)||q(σ,η)||u^(η)|Φ0(σ)(1+ψ(η))|u^(η)|,|\phi_{-\lambda}(\sigma)\phi_{\eta}(\sigma)q(\sigma,\eta)\hat{u}(\eta)|\leq|q(\sigma,\eta)||\hat{u}(\eta)|\leq\Phi_{0}(\sigma)\big{(}1+\psi(\eta)\big{)}|\hat{u}(\eta)|, (4.7)

    for all λ,η𝔞\lambda,\eta\in\operatorname{\mathfrak{a}^{\ast}}* and σG\sigma\in G. By Theorem 2.1, u^𝒮(𝔞)\hat{u}\in\mathcal{S}(\operatorname{\mathfrak{a}^{\ast}}*), and the usual bound (2.23) on the density of Plancherel measure may be applied, similarly to (2.24), to conclude that the right-hand side of (4.7) is ω(dη)×dσ\omega(d\eta)\times d\sigma-integrable.

Proof of Lemma 4.1.

Let β{0,1,,M}\beta\in\{0,1,\ldots,M\} and λ,η𝔞\lambda,\eta\in\operatorname{\mathfrak{a}^{\ast}}* be fixed. The fractional Laplacian (Δ)β/2(-\Delta)^{\beta/2} satisfies a well-known eigenrelation

(Δ)β/2ϕμ=(|ρ|2+|μ|2)β/2ϕμ,μ𝔞,(-\Delta)^{\beta/2}\phi_{\mu}=\left(|\rho|^{2}+|\mu|^{2}\right)^{\beta/2}\phi_{\mu},\hskip 20.0pt\forall\mu\in\operatorname{\mathfrak{a}^{\ast}}*, (4.8)

which may be proven using subordination methods and properties of the Laplace-Beltrami operator on a symmetric space, using similar techniques to Section 5.7 of Applebaum (2014), pp. 154–7. One can also show using standard methods that

((Δ)β/2f)(μ)=(|ρ|2+|μ|2)β/2f^(μ),\left((-\Delta)^{\beta/2}f\right)^{\wedge}(\mu)=\left(|\rho|^{2}+|\mu|^{2}\right)^{\beta/2}\hat{f}(\mu), (4.9)

for all fCcM(K|G|K)f\in C^{M}_{c}(K|G|K) and μ𝔞\mu\in\operatorname{\mathfrak{a}^{\ast}}*. Then, using the definition of the spherical transform,

(|ρ|2+|μ|2)β/2f^(μ)=Gϕμ(σ)(Δ)β/2f(σ)𝑑σ,(|\rho|^{2}+|\mu|^{2})^{\beta/2}\hat{f}(\mu)=\int_{G}\phi_{-\mu}(\sigma)(-\Delta)^{\beta/2}f(\sigma)d\sigma,

for all fCcM(K|G|K)f\in C_{c}^{M}(K|G|K) and all μ𝔞\mu\in\operatorname{\mathfrak{a}^{\ast}}*. Applying this to f=Fλ,ηf=F_{\lambda,\eta}, we have for all μ𝔞\mu\in\operatorname{\mathfrak{a}}^{\ast},

|(|ρ|2+|μ|2)β/2F^λ,η(μ)|\displaystyle\left|\left(|\rho|^{2}+|\mu|^{2}\right)^{\beta/2}\hat{F}_{\lambda,\eta}(\mu)\right| G|ϕμ(σ)||(Δ)β/2Fλ,η(σ)|𝑑σ\displaystyle\leq\int_{G}|\phi_{-\mu}(\sigma)|\left|(-\Delta)^{\beta/2}F_{\lambda,\eta}(\sigma)\right|d\sigma
GΦβ(σ)λM(1+ψ(η))𝑑σ=Φβ1λM(1+ψ(η)),\displaystyle\leq\int_{G}\Phi_{\beta}(\sigma)\langle\lambda\rangle^{M}(1+\psi(\eta))d\sigma=\|\Phi_{\beta}\|_{1}\langle\lambda\rangle^{M}(1+\psi(\eta)),

and summing over β\beta,

β=0M(|ρ|2+|μ|2)β/2|F^λ,η(μ)|β=0MΦβ1λM(1+ψ(η)),\sum_{\beta=0}^{M}\left(|\rho|^{2}+|\mu|^{2}\right)^{\beta/2}\left|\hat{F}_{\lambda,\eta}(\mu)\right|\leq\sum_{\beta=0}^{M}\|\Phi_{\beta}\|_{1}\langle\lambda\rangle^{M}(1+\psi(\eta)), (4.10)

for all λ,μ,η𝔞\lambda,\mu,\eta\in\operatorname{\mathfrak{a}^{\ast}}*. Let CM>0C^{\prime}_{M}>0 be the smallest positive number such that

μMCMβ=0M(|ρ|2+|μ|2)β/2μ𝔞.\langle\mu\rangle^{M}\leq C^{\prime}_{M}\sum_{\beta=0}^{M}\left(|\rho|^{2}+|\mu|^{2}\right)^{\beta/2}\hskip 20.0pt\forall\mu\in\operatorname{\mathfrak{a}^{\ast}}*.

Then, rearranging (4.10),

|F^λ,η(μ)|CMβ=0MΦβ1μMλM(1+ψ(η)),\left|\hat{F}_{\lambda,\eta}(\mu)\right|\leq C^{\prime}_{M}\sum_{\beta=0}^{M}\|\Phi_{\beta}\|_{1}\langle\mu\rangle^{-M}\langle\lambda\rangle^{M}(1+\psi(\eta)), (4.11)

for all λ,μ,η𝔞\lambda,\mu,\eta\in\operatorname{\mathfrak{a}^{\ast}}*.

Finally, observe that by Peetre’s inequality (see Proposition 2.11 (2)),

λMλ+μM=(1+|λ|21+|λ+μ|2)M/22M/2(1+|μ|2)M/2=2M/2μM\langle\lambda\rangle^{M}\langle\lambda+\mu\rangle^{-M}=\left(\frac{1+|\lambda|^{2}}{1+|\lambda+\mu|^{2}}\right)^{M/2}\leq 2^{M/2}(1+|\mu|^{2})^{M/2}=2^{M/2}\langle\mu\rangle^{M}

for all λ,μ𝔞\lambda,\mu\in\operatorname{\mathfrak{a}^{\ast}}*. Therefore, for all λ,μ𝔞\lambda,\mu\in\operatorname{\mathfrak{a}^{\ast}}*,

μMλM2M/2λ+μM\langle\mu\rangle^{-M}\langle\lambda\rangle^{M}\leq 2^{M/2}\langle\lambda+\mu\rangle^{-M}

and by (4.11),

|F^λ,η(μ)|2M/2CMβ=0MΦβ1λ+μM(1+ψ(η))\left|\hat{F}_{\lambda,\eta}(\mu)\right|\leq 2^{M/2}C^{\prime}_{M}\sum_{\beta=0}^{M}\|\Phi_{\beta}\|_{1}\langle\lambda+\mu\rangle^{-M}(1+\psi(\eta))

The result now follows by taking CM=2M/2CMC_{M}=2^{M/2}C^{\prime}_{M}. ∎

Remark 4.3.

The constant

CM:=2M/2supλ𝔞λMβ=0M(|ρ|2+|λ|2)β/2C_{M}:=2^{M/2}\sup_{\lambda\in\operatorname{\mathfrak{a}^{\ast}}*}\frac{\langle\lambda\rangle^{M}}{\sum_{\beta=0}^{M}\big{(}|\rho|^{2}+|\lambda|^{2}\big{)}^{\beta/2}} (4.12)

appearing in the proof of Lemma 4.1 will remain relevant throughout this chapter.

Let now q:G×𝔞q:G\times\operatorname{\mathfrak{a}^{\ast}}*\to\mathbb{R} be a continuous negative definite symbol, KK-bi-invariant in its first argument, and WW-invariant in its second (for example, qq could be taken to be a Gangolli symbol, as in (3.2)). Similarly to Jacob (1994) §4 and Hoh (1998) (4.26), we write

q(σ,λ)=q1(λ)+q2(σ,λ),σG,λ𝔞,q(\sigma,\lambda)=q_{1}(\lambda)+q_{2}(\sigma,\lambda),\hskip 20.0pt\forall\sigma\in G,\lambda\in\operatorname{\mathfrak{a}^{\ast}}*, (4.13)

where q1(λ)=q(σ0,λ)q_{1}(\lambda)=q(\sigma_{0},\lambda) and q2(σ,λ)=q(σ,λ)q(σ0,λ)q_{2}(\sigma,\lambda)=q(\sigma,\lambda)-q(\sigma_{0},\lambda), for some fixed σ0G\sigma_{0}\in G. Observe that q1q_{1} is necessarily a negative definite symbol. Though q2q_{2} may not be, we may still define the operator q2(σ,D)q_{2}(\sigma,D) in a meaningful way, by

q2(σ,D):=q(σ,D)q1(D)=𝔞ϕλ(σ)q2(σ,λ)f^(λ)ω(dλ),σG.q_{2}(\sigma,D):=q(\sigma,D)-q_{1}(D)=\int_{\operatorname{\mathfrak{a}^{\ast}}*}\phi_{\lambda}(\sigma)q_{2}(\sigma,\lambda)\hat{f}(\lambda)\omega(d\lambda),\hskip 20.0pt\forall\sigma\in G.

By decomposing qq in this way, we view it as a perturbation of a negative definite function q1q_{1} by q2q_{2}. The assumptions we place on qq will control the size of this perturbation, as well as ensuring certain regularity properties of q(σ,D)q(\sigma,D) acting on the anisotropic Sobolev spaces introduced in Section 2.4.

Assumptions 4.4.

In the notation above, we impose the following:

  1. 1.

    There exist constants c0,c1>0c_{0},c_{1}>0 such that for all λ𝔞\lambda\in\operatorname{\mathfrak{a}^{\ast}}* with |λ|1|\lambda|\geq 1,

    c0(1+ψ(λ))q1(λ)c1(1+ψ(λ)).c_{0}(1+\psi(\lambda))\leq q_{1}(\lambda)\leq c_{1}(1+\psi(\lambda)). (4.14)
  2. 2.

    Let MM\in\mathbb{N}, M>dim(G/K)M>\dim(G/K), and suppose that q2(,λ)CcM(K|G|K)q_{2}(\cdot,\lambda)\in C^{M}_{c}(K|G|K) for all λ𝔞\lambda\in\operatorname{\mathfrak{a}^{\ast}}*. Suppose further that for β=0,1,,M\beta=0,1,\ldots,M, there exists ΦβL1(K|G|K)\Phi_{\beta}\in L^{1}(K|G|K) such that

    |(Δ)β/2Fλ,η(σ)|Φβ(σ)λM(1+ψ(η)),\left|(-\Delta)^{\beta/2}F_{\lambda,\eta}(\sigma)\right|\leq\Phi_{\beta}(\sigma)\langle\lambda\rangle^{M}\big{(}1+\psi(\eta)\big{)}, (4.15)

    for all λ,η𝔞\lambda,\eta\in\operatorname{\mathfrak{a}^{\ast}}*, σG\sigma\in G, where Fλ,η(σ)=ϕλ(σ)q2(σ,η)F_{\lambda,\eta}(\sigma)=\phi_{-\lambda}(\sigma)q_{2}(\sigma,\eta) (c.f. (4.2)).

Remarks 4.5.
  1. 1.

    These assumptions are analogues to P.1, P.2.q of Jacob (1994), pp. 156, or (A.1), (A.2.M) of Hoh (1998), pp.54.

  2. 2.

    As noted in Remark 4.2 (3), the conditions in Assumption 4.4 (2) imply that

    (q2(σ,D)u)(λ)=𝔞F^λ,η(η)u^(η)ω(dη),(q_{2}(\sigma,D)u)^{\wedge}(\lambda)=\int_{\operatorname{\mathfrak{a}^{\ast}}*}\hat{F}_{\lambda,\eta}(-\eta)\hat{u}(\eta)\omega(d\eta), (4.16)

    for all λ𝔞\lambda\in\operatorname{\mathfrak{a}^{\ast}}* and uCc(K|G|K)u\in C_{c}^{\infty}(K|G|K), a fact that will be useful several times more.

Theorem 4.6.

Subject to Assumptions 4.4, for all ss\in\mathbb{R}, q1(D)q_{1}(D) extends to a continuous operator from Hψ,s+2H^{\psi,s+2} to Hψ,sH^{\psi,s}, and q(σ,D)q(\sigma,D) extends to a continuous operator from Hψ,2H^{\psi,2} to L2(K|G|K)L^{2}(K|G|K).

Proof.

The proof of the first part is omitted, since it is an easy adaptation of the proof of Theorem 4.8 on page 55 of Hoh (1998) — first proved as Corollary 3.1 in Jacob (1994).

The second part is also proved similarly to Theorem 4.8 of Hoh (1998), the main difference being that F^λ,η(η)\hat{F}_{\lambda,\eta}(-\eta) takes the place of the transformed symbol, as discussed previously (see (4.3)). By (4.16) and the Plancherel theorem,

|q2(σ,D)u,v|\displaystyle|\langle q_{2}(\sigma,D)u,v\rangle| =|𝔞(q2(σ,D)u)(λ)v^(λ)¯ω(dλ)|\displaystyle=\left|\int_{\operatorname{\mathfrak{a}^{\ast}}*}(q_{2}(\sigma,D)u)^{\wedge}(\lambda)\overline{\hat{v}(\lambda)}\omega(d\lambda)\right|
=|𝔞𝔞F^λ,η(η)u^(η)v^(λ)¯ω(dη)ω(dλ)|\displaystyle=\left|\int_{\operatorname{\mathfrak{a}^{\ast}}*}\int_{\operatorname{\mathfrak{a}^{\ast}}*}\hat{F}_{\lambda,\eta}(-\eta)\hat{u}(\eta)\overline{\hat{v}(\lambda)}\omega(d\eta)\omega(d\lambda)\right|
𝔞𝔞|F^λ,η(η)||u^(η)||v^(λ)|ω(dη)ω(dλ).\displaystyle\leq\int_{\operatorname{\mathfrak{a}^{\ast}}*}\int_{\operatorname{\mathfrak{a}^{\ast}}*}\left|\hat{F}_{\lambda,\eta}(-\eta)\right||\hat{u}(\eta)||\hat{v}(\lambda)|\omega(d\eta)\omega(d\lambda).

Then, using (4.15), Lemma 4.1 and Young’s convolution inequality111See Simon (2015) Theorem 6.6.3, page 550. Here, we are again identifying 𝔞\operatorname{\mathfrak{a}^{\ast}}* with a Euclidean space.,

|q2(σ,D)u,v|\displaystyle|\langle q_{2}(\sigma,D)u,v\rangle| CMβ=0MΦβ1𝔞𝔞ληMΨ(η)2|u^(η)||v^(λ)|ω(dη)ω(dλ)\displaystyle\leq C_{M}\sum_{\beta=0}^{M}\|\Phi_{\beta}\|_{1}\int_{\operatorname{\mathfrak{a}^{\ast}}*}\int_{\operatorname{\mathfrak{a}^{\ast}}*}\langle\lambda-\eta\rangle^{-M}\Psi(\eta)^{2}|\hat{u}(\eta)||\hat{v}(\lambda)|\omega(d\eta)\omega(d\lambda)
=CMβ=0MΦβ1𝔞[M(Ψ2|u^|)](λ)|v^(λ)|ω(dλ)\displaystyle=C_{M}\sum_{\beta=0}^{M}\|\Phi_{\beta}\|_{1}\int_{\operatorname{\mathfrak{a}^{\ast}}*}\left[\langle\cdot\rangle^{-M}\ast\big{(}\Psi^{2}|\hat{u}|\big{)}\right](\lambda)|\hat{v}(\lambda)|\omega(d\lambda)
CMβ=0MΦβ1M(Ψ2|u^|)L2(𝔞,ω)v^L2(𝔞,ω)\displaystyle\leq C_{M}\sum_{\beta=0}^{M}\|\Phi_{\beta}\|_{1}\left\|\langle\cdot\rangle^{-M}\ast\big{(}\Psi^{2}|\hat{u}|\big{)}\right\|_{L^{2}(\operatorname{\mathfrak{a}^{\ast}}*,\omega)}\|\hat{v}\|_{L^{2}(\operatorname{\mathfrak{a}^{\ast}}*,\omega)}
CMβ=0MΦβ1ML1(𝔞,ω)uψ,2v,\displaystyle\leq C_{M}\sum_{\beta=0}^{M}\|\Phi_{\beta}\|_{1}\left\|\langle\cdot\rangle^{-M}\right\|_{L^{1}(\operatorname{\mathfrak{a}^{\ast}}*,\omega)}\|u\|_{\psi,2}\|v\|,

for all u,vCc(K|G|K)u,v\in C_{c}^{\infty}(K|G|K). Hence, for all uCc(K|G|K)u\in C_{c}^{\infty}(K|G|K),

q2(σ,D)u\displaystyle\|q_{2}(\sigma,D)u\| =supvCc(K|G|K)v=1|q2(σ,D)u,v|CMβ=0MΦβ1ML1(𝔞,ω)uψ,2,\displaystyle=\sup_{\begin{subarray}{c}v\in C_{c}^{\infty}(K|G|K)\\ \|v\|=1\end{subarray}}|\langle q_{2}(\sigma,D)u,v\rangle|\leq C_{M}\sum_{\beta=0}^{M}\|\Phi_{\beta}\|_{1}\left\|\langle\cdot\rangle^{-M}\right\|_{L^{1}(\operatorname{\mathfrak{a}^{\ast}}*,\omega)}\|u\|_{\psi,2},

and q2(σ,D)q_{2}(\sigma,D) extends to a bounded linear operator Hψ,2L2(K|G|K)H^{\psi,2}\to L^{2}(K|G|K). ∎

Under an additional assumption, we are able to obtain a more powerful result.

Theorem 4.7.

Suppose Assumptions 4.4 hold, and suppose further that ss\in\mathbb{R} satisfies |s1|+1+dim(G/K)<M|s-1|+1+\dim(G/K)<M. Then q(σ,D)q(\sigma,D) extends to a continuous linear operator from Hψ,s+2Hψ,sH^{\psi,s+2}\to H^{\psi,s}.

We first need a technical lemma.

Lemma 4.8.

Let ss\in\mathbb{R} and MM\in\mathbb{N} be such that |s1|+1+dim(G/K)<M|s-1|+1+\dim(G/K)<M. Then for all λ,η𝔞\lambda,\eta\in\operatorname{\mathfrak{a}^{\ast}}*,

|Ψ(λ)sΨ(η)s|Cs,ψλη|s1|+1Ψ(η)s1,\left|\Psi(\lambda)^{s}-\Psi(\eta)^{s}\right|\leq C_{s,\psi}\langle\lambda-\eta\rangle^{|s-1|+1}\Psi(\eta)^{s-1}, (4.17)

where

Cs,ψ=2(|s1|+2)/2(1+cψ)(|s1|+1)/2|s|,C_{s,\psi}=2^{(|s-1|+2)/2}(1+c_{\psi})^{(|s-1|+1)/2}|s|, (4.18)

and cψc_{\psi} is the constant from Proposition 2.11 (3).

Proof.

This is a special case of a bound obtained in Hoh (1998) — see page 50, lines 5–11. ∎

Proof of Theorem 4.7.

By Theorem 4.6, it suffices to prove that q2(σ,D)q_{2}(\sigma,D) extends to a continuous operator from Hψ,s+2Hψ,sH^{\psi,s+2}\to H^{\psi,s}. Given uCc(K|G|K)u\in C^{\infty}_{c}(K|G|K),

q2(σ,D)uψ,s\displaystyle\|q_{2}(\sigma,D)u\|_{\psi,s} =Ψ(D)sq2(σ,D)u\displaystyle=\|\Psi(D)^{s}q_{2}(\sigma,D)u\| (4.19)
q2(σ,D)Ψ(D)su+[Ψ(D)s,q2(σ,D)]u.\displaystyle\leq\|q_{2}(\sigma,D)\Psi(D)^{s}u\|+\|[\Psi(D)^{s},q_{2}(\sigma,D)]u\|.

Also, by Theorem 4.6 and Theorem 2.12 (2),

q2(σ,D)Ψ(D)suCΨ(D)suψ,2=Cuψ,s+2,\|q_{2}(\sigma,D)\Psi(D)^{s}u\|\leq C\|\Psi(D)^{s}u\|_{\psi,2}=C\|u\|_{\psi,s+2}, (4.20)

where C=CMβ=0MΦβ1ML1(𝔞,ω)C=C_{M}\sum_{\beta=0}^{M}\|\Phi_{\beta}\|_{1}\left\|\langle\cdot\rangle^{-M}\right\|_{L^{1}(\operatorname{\mathfrak{a}^{\ast}}*,\omega)}. We will estimate

[Ψ(D)s,q2(σ,D)]u,\left\|[\Psi(D)^{s},q_{2}(\sigma,D)]u\right\|,

Our method is similar to that in Theorem 4.3 of Hoh (1998), and so some details are omitted. The map Fλ,ηF_{\lambda,\eta} replaces the transformed symbol q^\hat{q} once again.

One can check using (4.16) that for all λ𝔞\lambda\in\operatorname{\mathfrak{a}^{\ast}}*,

([Ψ(D)s,q2(σ,D)]u)(λ)=𝔞F^λ,η(η){Ψ(λ)sΨ(η)s}u^(η)ω(dη),([\Psi(D)^{s},q_{2}(\sigma,D)]u)^{\wedge}(\lambda)=\int_{\operatorname{\mathfrak{a}^{\ast}}*}\hat{F}_{\lambda,\eta}(-\eta)\big{\{}\Psi(\lambda)^{s}-\Psi(\eta)^{s}\big{\}}\hat{u}(\eta)\omega(d\eta),

and hence for all u,vCc(K|G|K)u,v\in C_{c}^{\infty}(K|G|K),

|[Ψ(D)s,q2(σ,D)]u,v|𝔞𝔞|F^λ,η(η)||Ψ(λ)sΨ(η)s||u^(η)||v^(λ)|ω(dη)ω(dλ).\left|\big{\langle}[\Psi(D)^{s},q_{2}(\sigma,D)]u,v\big{\rangle}\right|\leq\int_{\operatorname{\mathfrak{a}^{\ast}}*}\int_{\operatorname{\mathfrak{a}^{\ast}}*}\left|\hat{F}_{\lambda,\eta}(-\eta)\right|\left|\Psi(\lambda)^{s}-\Psi(\eta)^{s}\right||\hat{u}(\eta)||\hat{v}(\lambda)|\omega(d\eta)\omega(d\lambda).

By Lemmas 4.1 and 4.8,

|[Ψ(D)s,q2(σ,D)]u,v|\displaystyle\left|\big{\langle}[\Psi(D)^{s},q_{2}(\sigma,D)]u,v\big{\rangle}\right|
Cs,ψ,M𝔞𝔞ληM+|s1|+1Ψ(η)s+1|u^(η)||v^(λ)|ω(dη)ω(dλ)\displaystyle\hskip 50.0pt\leq C_{s,\psi,M}\int_{\operatorname{\mathfrak{a}^{\ast}}*}\int_{\operatorname{\mathfrak{a}^{\ast}}*}\langle\lambda-\eta\rangle^{-M+|s-1|+1}\Psi(\eta)^{s+1}|\hat{u}(\eta)||\hat{v}(\lambda)|\omega(d\eta)\omega(d\lambda)
=Cs,ψ,M𝔞(M+|s1|+1[Ψs+1|u^|])(λ)|v^(λ)|ω(dλ),\displaystyle\hskip 50.0pt=C_{s,\psi,M}\int_{\operatorname{\mathfrak{a}^{\ast}}*}\left(\langle\cdot\rangle^{-M+|s-1|+1}\ast\left[\Psi^{s+1}|\hat{u}|\right]\right)(\lambda)|\hat{v}(\lambda)|\omega(d\lambda),

where Cs,ψ,M=Cs,ψCMβ=0MΦβ1C_{s,\psi,M}=C_{s,\psi}C_{M}\sum_{\beta=0}^{M}\|\Phi_{\beta}\|_{1}. By Lemma 2.13, (M|s1|2)L1(𝔞,ω)\langle\cdot\rangle^{-(M-|s-1|-2)}\in L^{1}(\operatorname{\mathfrak{a}^{\ast}}*,\omega), and one can check using the Cauchy–Schwarz and Young inequalities that

|[Ψ(D)s,q2(σ,D)]u,v|Cs,ψ,M(M|s1|1)L1(𝔞,ω)uψ,s+1v.\left|\big{\langle}[\Psi(D)^{s},q_{2}(\sigma,D)]u,v\big{\rangle}\right|\leq C_{s,\psi,M}\left\|\langle\cdot\rangle^{-(M-|s-1|-1)}\right\|_{L^{1}(\operatorname{\mathfrak{a}^{\ast}}*,\omega)}\|u\|_{\psi,s+1}\|v\|.

Taking the supremum over vCc(K|G|K)v\in C_{c}^{\infty}(K|G|K), with v=1\|v\|=1,

[Ψ(D)s,q2(σ,D)]uCs,ψ,M(M|s1|1)L1(𝔞,ω)uψ,s+1.\|[\Psi(D)^{s},q_{2}(\sigma,D)]u\|\leq C_{s,\psi,M}\left\|\langle\cdot\rangle^{-(M-|s-1|-1)}\right\|_{L^{1}(\operatorname{\mathfrak{a}^{\ast}}*,\omega)}\|u\|_{\psi,s+1}.

Combining with (4.19) and (4.20),

q2(σ,D)uψ,sCMβ=0MΦβL1(𝔞,ω)(ML1(𝔞,ω)uψ,s+2+Cs,ψuψ,s+1).\|q_{2}(\sigma,D)u\|_{\psi,s}\leq C_{M}\sum_{\beta=0}^{M}\|\Phi_{\beta}\|_{L^{1}(\operatorname{\mathfrak{a}^{\ast}}*,\omega)}\Big{(}\left\|\langle\cdot\rangle^{-M}\right\|_{L^{1}(\operatorname{\mathfrak{a}^{\ast}}*,\omega)}\|u\|_{\psi,s+2}+C_{s,\psi}\|u\|_{\psi,s+1}\Big{)}. (4.21)

Theorem 2.12 (2) may now be used to obtain the desired bound. ∎

To prove (4.1), we seek solutions uu to the equation

(q(σ,D)+α)u=f,(q(\sigma,D)+\alpha)u=f, (4.22)

for a given function ff and α>0\alpha>0. Consider the bilinear form BαB_{\alpha} defined by

Bα(u,v)=(q(σ,D)+α)u,v,u,vCc(K|G|K).B_{\alpha}(u,v)=\langle(q(\sigma,D)+\alpha)u,v\rangle,\hskip 20.0pt\forall u,v\in C_{c}^{\infty}(K|G|K).
Theorem 4.9.

Suppose Assumptions 4.4 hold with M>dim(G/K)+1M>\dim(G/K)+1. Then BαB_{\alpha} extends continuously to Hψ,1×Hψ,1H^{\psi,1}\times H^{\psi,1}.

Proof.

This proof is very similar to those of Jacob (1994) Lemma 3.2, pp. 160, and Hoh (1998) Theorem 4.9, pp. 56, and so we give only a sketch.

Let u,vHψ,1u,v\in H^{\psi,1}. Using Assumption 4.4 (1) and the fact that q1q_{1} is continuous, there is κ1>0\kappa_{1}>0 such that |q1|κ1Ψ2|q_{1}|\leq\kappa_{1}\Psi^{2}. Plancherel’s identity may then be used to show that

|q1(D)u,v|𝔞|q1(λ)||u^(λ)||v^(λ)|ω(dλ)κ1uψ,1vψ,1.\left|\langle q_{1}(D)u,v\rangle\right|\leq\int_{\operatorname{\mathfrak{a}^{\ast}}*}|q_{1}(\lambda)||\hat{u}(\lambda)||\hat{v}(\lambda)|\omega(d\lambda)\leq\kappa_{1}\|u\|_{\psi,1}\|v\|_{\psi,1}.

Furthermore, methods similar to the proof of Theorem 4.7 are used to show that

|q2(σ,D)u,v|κ2M+1L1(𝔞,ω)uψ,1vψ,1,\left|\langle q_{2}(\sigma,D)u,v\rangle\right|\leq\kappa_{2}\left\|\langle\cdot\rangle^{-M+1}\right\|_{L^{1}(\operatorname{\mathfrak{a}^{\ast}}*,\omega)}\|u\|_{\psi,1}\|v\|_{\psi,1}, (4.23)

where

κ2=CM2(1+cψ)β=0MΦβL1(𝔞,ω).\kappa_{2}=C_{M}\sqrt{2(1+c_{\psi})}\sum_{\beta=0}^{M}\|\Phi_{\beta}\|_{L^{1}(\operatorname{\mathfrak{a}^{\ast}}*,\omega)}. (4.24)

By Theorem 2.12 (2), there is κ3>0\kappa_{3}>0 such that uκ3uψ,1\|u\|\leq\kappa_{3}\|u\|_{\psi,1}, and thus

|Bα(u,v)||q1(D)u,v|+|q2(σ,D)u,v|+α|u,v|(κ1+κ2+ακ32)uψ,1vψ,2,\left|B_{\alpha}(u,v)\right|\leq\left|\langle q_{1}(D)u,v\rangle\right|+\left|\langle q_{2}(\sigma,D)u,v\rangle\right|+\alpha\left|\langle u,v\rangle\right|\leq\left(\kappa_{1}+\kappa_{2}+\alpha\kappa_{3}^{2}\right)\|u\|_{\psi,1}\|v\|_{\psi,2},

for all u,vHψ,1u,v\in H^{\psi,1}, which proves the theorem. ∎

The following assumption will ensure that for α\alpha sufficiently large, BαB_{\alpha} is coercive on Hψ,1H^{\psi,1}. We will then use the Lax–Milgram theorem to obtain a weak solution to (4.22).

Assumption 4.10.

Let MM\in\mathbb{N}, M>dim(G/K)+1M>\dim(G/K)+1, and write

γM=(8CM(2(1+cψ))1/2M+1L1(𝔞,ω))1,\gamma_{M}=\left(8C_{M}(2(1+c_{\psi}))^{1/2}\|\langle\cdot\rangle^{-M+1}\|_{L^{1}(\operatorname{\mathfrak{a}^{\ast}}*,\omega)}\right)^{-1},

where cψc_{\psi} and CMC_{M} are constants given by (2.17) and (4.12), respectively.

For c0c_{0} is as in Assumption 4.4 (1), assume that

β=0MΦβ1γMc0.\sum_{\beta=0}^{M}\|\Phi_{\beta}\|_{1}\leq\gamma_{M}c_{0}.
Remark 4.11.

See Jacob (1994) P.3 and P.4, pp. 161, or Hoh (1998) (A.3.M), pp. 54, for comparison. Examples where Assumption 4.10 is satisfied are considered in Section 5.

The next theorem is an analogue of Theorem 3.1 of Jacob (1994).

Theorem 4.12.

Suppose Assumptions 4.4 and 4.10 hold, with M>dim(G/K)+1M>\dim(G/K)+1. Then there is α0>0\alpha_{0}>0 such that

Bα(u,u)c02u1,λ2,B_{\alpha}(u,u)\geq\frac{c_{0}}{2}\|u\|_{1,\lambda}^{2},

for all αα0\alpha\geq\alpha_{0} and uHψ,1u\in H^{\psi,1}. In particular, BαB_{\alpha} is coercive for all αα0\alpha\geq\alpha_{0}.

Proof.

Proceed exactly as in Hoh (1998) page 57, lines 8–17. By Assumption 4.4 (1), there is α0>0\alpha_{0}>0 such that

q1(λ)c0Ψ(λ)2α0λ𝔞.q_{1}(\lambda)\geq c_{0}\Psi(\lambda)^{2}-\alpha_{0}\hskip 20.0pt\forall\lambda\in\operatorname{\mathfrak{a}^{\ast}}*. (4.25)

This may be used to prove that for all uHψ,1u\in H^{\psi,1},

q1(D)u,uc0uψ,12α0u2,\langle q_{1}(D)u,u\rangle\geq c_{0}\|u\|_{\psi,1}^{2}-\alpha_{0}\|u\|^{2},

at which point we can apply (4.24) and (4.23), as well as Assumption 4.10, to conclude

|q2(σ,D)u,u|\displaystyle\left|\langle q_{2}(\sigma,D)u,u\rangle\right| CM2(1+cψ)β=0MΦβL1(𝔞,ω)M+1L1(𝔞,ω)uψ,12\displaystyle\leq C_{M}\sqrt{2(1+c_{\psi})}\sum_{\beta=0}^{M}\|\Phi_{\beta}\|_{L^{1}(\operatorname{\mathfrak{a}^{\ast}}*,\omega)}\left\|\langle\cdot\rangle^{-M+1}\right\|_{L^{1}(\operatorname{\mathfrak{a}^{\ast}}*,\omega)}\|u\|_{\psi,1}^{2}
=18γMβ=0MΦβL1(𝔞,ω)uψ,12c08uψ,1,\displaystyle=\frac{1}{8\gamma_{M}}\sum_{\beta=0}^{M}\|\Phi_{\beta}\|_{L^{1}(\operatorname{\mathfrak{a}^{\ast}}*,\omega)}\|u\|_{\psi,1}^{2}\leq\frac{c_{0}}{8}\|u\|_{\psi,1},

for all uHψ,1u\in H^{\psi,1}. Thus, for all uHψ,1u\in H^{\psi,1}

q(σ,D)u,u\displaystyle\langle q(\sigma,D)u,u\rangle q1(D)u,u|q2(σ,D)u,u|\displaystyle\geq\langle q_{1}(D)u,u\rangle-\left|\langle q_{2}(\sigma,D)u,u\rangle\right|
(c0c08)uψ,12α0uψ,12c02uψ,12α0uψ,12.\displaystyle\geq(c_{0}-\frac{c_{0}}{8})\|u\|_{\psi,1}^{2}-\alpha_{0}\|u\|_{\psi,1}^{2}\geq\frac{c_{0}}{2}\|u\|_{\psi,1}^{2}-\alpha_{0}\|u\|_{\psi,1}^{2}.

Therefore, for all αα0\alpha\geq\alpha_{0} and uHψ,1u\in H^{\psi,1}

Bα(u,u)\displaystyle B_{\alpha}(u,u) =q(σ,D)u,u+αuq(σ,D)u,u+α0uc02uψ,12,\displaystyle=\langle q(\sigma,D)u,u\rangle+\alpha\|u\|\geq\langle q(\sigma,D)u,u\rangle+\alpha_{0}\|u\|\geq\frac{c_{0}}{2}\|u\|_{\psi,1}^{2},

Theorem 4.13.

Let αα0\alpha\geq\alpha_{0}. Then (4.22) has a weak solution in the following sense: for all fL2(K|G|K)f\in L^{2}(K|G|K) there is a unique uHψ,1u\in H^{\psi,1} such that for all vHψ,1v\in H^{\psi,1},

Bα(u,v)=f,v.B_{\alpha}(u,v)=\langle f,v\rangle.
Proof.

Apply the Lax–Milgram theorem (Theorem 1 of Evans (1998), pp. 297) to BαB_{\alpha}, using the linear functional vf,vv\mapsto\langle f,v\rangle. ∎

Having found a weak solution to (4.22), the next task is to prove that this solution is in fact a strong solution that belongs to C0(K|G|K)C_{0}(K|G|K). This will be achieved using the Sobolev embedding of Theorem 2.12 (6).

Just as in Jacob (1994) Theorem 3.1 and Hoh (1998) Theorem 4.11, we have a useful lower bound for the pseudodifferential operator q(σ,D)q(\sigma,D) acting on Hψ,sH^{\psi,s}, when s0s\geq 0.

Theorem 4.14.

Let s0s\geq 0, and suppose the symbol qq satisfies Assumptions 4.4 and 4.10, for some M>|s1|+1+dim(G/K)M>|s-1|+1+\dim(G/K). Then there is κ>0\kappa>0 such that for all uHψ,s+2u\in H^{\psi,s+2},

q(σ,D)uψ,sc04uψ,s+2κu.\|q(\sigma,D)u\|_{\psi,s}\geq\frac{c_{0}}{4}\|u\|_{\psi,s+2}-\kappa\|u\|.
Proof.

The proof is formally no different to the sources mentioned: let uHψ,s+2u\in H^{\psi,s+2}, and use (4.25) and Theorem 2.12 (5) to prove that

q1(D)uψ,sc02uψ,s+2κ1u,\|q_{1}(D)u\|_{\psi,s}\geq\frac{c_{0}}{2}\|u\|_{\psi,s+2}-\kappa_{1}\|u\|, (4.26)

for some κ1>0\kappa_{1}>0. Recall the estimate (4.21) of q2(σ,D)uψ,s\|q_{2}(\sigma,D)u\|_{\psi,s} from the proof of Theorem 4.7. In light of Assumption 4.10 and the particular form chosen for γM\gamma_{M}, one can use (4.21) to show that

q2(σ,D)uψ,s\displaystyle\|q_{2}(\sigma,D)u\|_{\psi,s} CMβ=0MΦβL1(𝔞,ω)(ML1(𝔞,ω)uψ,s+2+Cs,ψuψ,s+1)\displaystyle\leq C_{M}\sum_{\beta=0}^{M}\|\Phi_{\beta}\|_{L^{1}(\operatorname{\mathfrak{a}^{\ast}}*,\omega)}\Big{(}\left\|\langle\cdot\rangle^{-M}\right\|_{L^{1}(\operatorname{\mathfrak{a}^{\ast}}*,\omega)}\|u\|_{\psi,s+2}+C_{s,\psi}\|u\|_{\psi,s+1}\Big{)}
CMc0γM(ML1(𝔞,ω)uψ,s+2+Cs,ψuψ,s+1)\displaystyle\leq C_{M}c_{0}\gamma_{M}\Big{(}\left\|\langle\cdot\rangle^{-M}\right\|_{L^{1}(\operatorname{\mathfrak{a}^{\ast}}*,\omega)}\|u\|_{\psi,s+2}+C_{s,\psi}\|u\|_{\psi,s+1}\Big{)}
c08uψ,s+2+cuψ,s+1,\displaystyle\leq\frac{c_{0}}{8}\|u\|_{\psi,s+2}+c\|u\|_{\psi,s+1},

where c>0c>0 is a constant. Using Theorem 2.12 (5) once again, let κ2>0\kappa_{2}>0 such that

cuψ,s+1c08uψ,s+2+κ2u.c\|u\|_{\psi,s+1}\leq\frac{c_{0}}{8}\|u\|_{\psi,s+2}+\kappa_{2}\|u\|.

Then, by the above,

q2(σ,D)uψ,sc04uψ,s+2+κ2u.\|q_{2}(\sigma,D)u\|_{\psi,s}\leq\frac{c_{0}}{4}\|u\|_{\psi,s+2}+\kappa_{2}\|u\|. (4.27)

Combining (4.26) and (4.27), we get

q(σ,D)uψ,sq1(D)uψ,sq2(σ,D)uψ,sc04uψ,s+2(κ1+κ2)u.\|q(\sigma,D)u\|_{\psi,s}\geq\|q_{1}(D)u\|_{\psi,s}-\|q_{2}(\sigma,D)u\|_{\psi,s}\geq\frac{c_{0}}{4}\|u\|_{\psi,s+2}-(\kappa_{1}+\kappa_{2})\|u\|.

The proof of the next theorem makes use of a particular family (Jϵ,0<ϵ1)(J_{\epsilon},0<\epsilon\leq 1) of bounded linear operators on L2(K|G|K)L^{2}(K|G|K), which will play the role of a Friedrich mollifier, but in the noncompact symmetric space setting.

First note that by identifying 𝔞\operatorname{\mathfrak{a}} with m\mathbb{R}^{m} via our chosen basis, it makes sense to consider Friedrich mollifiers on 𝔞\operatorname{\mathfrak{a}}. For 0<ϵ10<\epsilon\leq 1 and H𝔞H\in\operatorname{\mathfrak{a}}, let

l(H):=C0e1|H|21𝟏B1(0)(H), and lϵ(H):=ϵml(H/ϵ),l(H):=C_{0}e^{\frac{1}{|H|^{2}-1}}\operatorname{\bf 1}_{B_{1}(0)}(H),~{}~{}\text{ and }~{}~{}l_{\epsilon}(H):=\epsilon^{-m}l(H/\epsilon),

where C0>0C_{0}>0 is a constant chosen so that 𝔞l(H)𝑑H=1\int_{\operatorname{\mathfrak{a}}}l(H)dH=1. This mollifier is used frequently in Evans (1998) (see Appendix C.4, pp. 629), and Jacob (1994) and Hoh (1998) use it to pass from a weak solution result to a strong solution result.

Observe that l,lϵ𝒮(𝔞)Wl,l_{\epsilon}\in\mathcal{S}(\operatorname{\mathfrak{a}})^{W} for all 0<ϵ10<\epsilon\leq 1. Using Theorem 2.1, let j,jϵ𝒮(K|G|K)j,j_{\epsilon}\in\mathcal{S}(K|G|K) be such that

j^=(l), and jϵ^=(lϵ),0<ϵ1,\hat{j}=\mathscr{F}(l),\hskip 5.0pt\text{ and }\hskip 5.0pt\hat{j_{\epsilon}}=\mathscr{F}(l_{\epsilon}),\hskip 20.0pt\forall 0<\epsilon\leq 1,

where \mathscr{F} denotes the Euclidean Fourier transform (see equation (2.7)). For 0<ϵ10<\epsilon\leq 1, let JϵJ_{\epsilon} be the convolution operator defined on L2(K|G|K)L^{2}(K|G|K) by

Jϵu=jϵufL2(K|G|K).J_{\epsilon}u=j_{\epsilon}\ast u\hskip 20.0pt\forall f\in L^{2}(K|G|K).

The most important properties of (Jϵ,0<ϵ1)(J_{\epsilon},0<\epsilon\leq 1) needed for the proof of Theorem 4.17 are stated below, and proven in the Section 6.

Proposition 4.15.
  1. 1.

    jϵ^(λ)=j^(ϵλ)\hat{j_{\epsilon}}(\lambda)=\hat{j}(\epsilon\lambda) for all 0<ϵ10<\epsilon\leq 1 and λ𝔞\lambda\in\operatorname{\mathfrak{a}^{\ast}}*.

  2. 2.

    For all 0<ϵ10<\epsilon\leq 1, JϵJ_{\epsilon} is a self-adjoint contraction of L2(K|G|K)L^{2}(K|G|K).

  3. 3.

    JϵuHψ,sJ_{\epsilon}u\in H^{\psi,s} for all s0s\geq 0, uL2(K|G|K)u\in L^{2}(K|G|K) and 0<ϵ10<\epsilon\leq 1, and if uHψ,su\in H^{\psi,s}, then

    Jϵuψ,suψ,s.\|J_{\epsilon}u\|_{\psi,s}\leq\|u\|_{\psi,s}.
  4. 4.

    For all s0s\geq 0 and uHψ,su\in H^{\psi,s}, Jϵuuψ,s0\|J_{\epsilon}u-u\|_{\psi,s}\rightarrow 0 as ϵ0\epsilon\rightarrow 0.

The following commutator estimate will also be useful in the proof of Theorem 4.17.

Lemma 4.16.

Let s0s\geq 0, and suppose qq is a continuous negative definite symbol satisfying Assumption 4.4 (2) for M>|s1|+1+dim(G/K)M>|s-1|+1+\dim(G/K). Then there is c>0c>0 such that for all 0<ϵ10<\epsilon\leq 1 and all uCc(K|G|K)u\in C_{c}^{\infty}(K|G|K),

[Jϵ,q(σ,D)]uψ,scuψ,s+1.\|[J_{\epsilon},q(\sigma,D)]u\|_{\psi,s}\leq c\|u\|_{\psi,s+1}.
Proof.

Let 0<ϵ10<\epsilon\leq 1 and uCc(K|G|K)u\in C_{c}^{\infty}(K|G|K), and observe that by Proposition 4.15 (2),

[Jϵ,q1(D)]u)(λ)=j^(ϵλ)q1(λ)u^(λ)q1(λ)j^(ϵλ)u^(λ)=0,[J_{\epsilon},q_{1}(D)]u)^{\wedge}(\lambda)=\hat{j}(\epsilon\lambda)q_{1}(\lambda)\hat{u}(\lambda)-q_{1}(\lambda)\hat{j}(\epsilon\lambda)\hat{u}(\lambda)=0,

for all λ𝔞\lambda\in\operatorname{\mathfrak{a}^{\ast}}*, so [Jϵ,q1(D)]u=0[J_{\epsilon},q_{1}(D)]u=0. For λ,η𝔞\lambda,\eta\in\operatorname{\mathfrak{a}^{\ast}}*, let Fλ,η=ϕλq2(,η)F_{\lambda,\eta}=\phi_{-\lambda}q_{2}(\cdot,\eta), as previously (c.f. (4.2)). Then by (4.6) and Proposition 4.15 (1), for all λ𝔞\lambda\in\operatorname{\mathfrak{a}^{\ast}}*,

([Jϵ,q(σ,D)]u)(λ)\displaystyle\left([J_{\epsilon},q(\sigma,D)]u\right)^{\wedge}(\lambda) =(Jϵq2(σ,D)u)(λ)(q2(σ,D)Jϵu)(λ)\displaystyle=(J_{\epsilon}q_{2}(\sigma,D)u)^{\wedge}(\lambda)-(q_{2}(\sigma,D)J_{\epsilon}u)^{\wedge}(\lambda)
=j^(ϵλ)(q2(σ,D)u)(λ)𝔞F^λ,η(η)(Jϵu)(η)ω(dη)\displaystyle=\hat{j}(\epsilon\lambda)(q_{2}(\sigma,D)u)^{\wedge}(\lambda)-\int_{\operatorname{\mathfrak{a}^{\ast}}*}\hat{F}_{\lambda,\eta}(-\eta)(J_{\epsilon}u)^{\wedge}(\eta)\omega(d\eta)
=j^(ϵλ)(q2(σ,D)u)(λ)𝔞F^λ,η(η)j^(ϵη)u^(η)ω(dη).\displaystyle=\hat{j}(\epsilon\lambda)(q_{2}(\sigma,D)u)^{\wedge}(\lambda)-\int_{\operatorname{\mathfrak{a}^{\ast}}*}\hat{F}_{\lambda,\eta}(-\eta)\hat{j}(\epsilon\eta)\hat{u}(\eta)\omega(d\eta).

Applying (4.6) once more,

([Jϵ,q(σ,D)]u)(λ)=𝔞F^λ,η(η)(j^(ϵλ)j^(ϵη))u^(η)ω(dη),\left([J_{\epsilon},q(\sigma,D)]u\right)^{\wedge}(\lambda)=\int_{\operatorname{\mathfrak{a}^{\ast}}*}\hat{F}_{\lambda,\eta}(-\eta)\left(\hat{j}(\epsilon\lambda)-\hat{j}(\epsilon\eta)\right)\hat{u}(\eta)\omega(d\eta), (4.28)

for all λ𝔞\lambda\in\operatorname{\mathfrak{a}^{\ast}}*. From here, a straightforward adaptation to the proof of Hoh (1998) Theorem 4.4, pp. 51–52, with (4.28) replacing Hoh (1998) (4.23), completes the proof of the lemma. ∎

We are now ready to state and prove that, subject to our conditions, a strong solution to (4.22) exists, and belongs to an anisotropic Sobolev space of suitably high order.

Theorem 4.17.

Let α0\alpha_{0} be as in Theorem 4.12, let αα0\alpha\geq\alpha_{0}, and let s0s\geq 0. Suppose that the continuous negative definite symbol qq satisfies Assumptions 4.4 and 4.10, where M>|s1|+1+dim(G/K)M>|s-1|+1+\dim(G/K). Then for all fHψ,sf\in H^{\psi,s}, there is a unique uHψ,s+2u\in H^{\psi,s+2} such that

(q(σ,D)+α)u=f.(q(\sigma,D)+\alpha)u=f. (4.29)
Proof.

Let fHψ,sf\in H^{\psi,s}. By Theorem 2.12 we also have fL2(K|G|K)f\in L^{2}(K|G|K), and so by Theorem 4.13 there is a unique uHψ,1u\in H^{\psi,1} such that

Bα(u,v)=f,vvCc(K|G|K).B_{\alpha}(u,v)=\langle f,v\rangle\hskip 20.0pt\forall v\in C_{c}^{\infty}(K|G|K). (4.30)

The proof follows that of Jacob (1994) Theorem 4.3, pp. 163 and Hoh (1998) Theorem 4.12, pp. 59, using induction to show that that uHψ,tu\in H^{\psi,t} for 1ts+21\leq t\leq s+2, and in particular, that uHψ,s+2u\in H^{\psi,s+2}. The family of operators (Jϵ,0<ϵ1)(J_{\epsilon},0<\epsilon\leq 1) take over role of the Friedrich mollifiers of Jacob (1994) and Hoh (1998). By Proposition 4.15 these operators satisfy the properties needed for the proof to carry over with little alteration. Lemma 4.16 and Theorem 4.14 replace Hoh (1998) Theorem 4.4 and 4.11, respectively. ∎

Theorem 4.18.

Let qq be a continuous negative definite symbol, satisfying Assumptions 4.4 and 4.10 with M>max{1,dr}+dM>\max\left\{1,\frac{d}{r}\right\}+d, where d=dim(G/K)d=\dim(G/K). Then for all αα0\alpha\geq\alpha_{0},

Ran(α+q(σ,D))¯=C0(K|G|K).\overline{\operatorname{Ran}(\alpha+q(\sigma,D))}=C_{0}(K|G|K).
Proof.

Fix ss\in\mathbb{R} with max{dr,1}<s<Md\max\left\{\frac{d}{r},1\right\}<s<M-d. Let 𝒜\mathcal{A} denote the linear operator on C0(K|G|K)C_{0}(K|G|K) with domain Hψ,s+2H^{\psi,s+2}, defined by 𝒜u=q(σ,D)u\mathcal{A}u=-q(\sigma,D)u for all uDom(𝒜)u\in\operatorname{Dom}(\mathcal{A}). By a similar argument to that on page 60 of Hoh (1998), one can show using that Cc(K|G|K)C_{c}^{\infty}(K|G|K) is a operator core for 𝒜\mathcal{A}, with

Ran(α+q(σ,D))¯=Ran(α𝒜)¯\overline{\operatorname{Ran}(\alpha+q(\sigma,D))}=\overline{\operatorname{Ran}(\alpha-\mathcal{A})}

for all α\alpha\in\mathbb{R}. Here, Theorem 2.12 (6) replaces Hoh (1998) Proposition 4.1, and Theorem 4.7 replaces Hoh (1998) Theorems 4.8 and 4.11.

Let α0\alpha_{0} be as in Theorem 4.17. We show that Ran(α𝒜)¯=C0(K|G|K)\overline{\operatorname{Ran}(\alpha-\mathcal{A})}=C_{0}(K|G|K) for all αα0\alpha\geq\alpha_{0}. Given fC0(K|G|K)f\in C_{0}(K|G|K), choose a sequence (fn)(f_{n}) in Hψ,sH^{\psi,s} such that fnf0\|f_{n}-f\|_{\infty}\rightarrow 0 as nn\rightarrow\infty. Then fnRan(α𝒜)f_{n}\in\operatorname{Ran}(\alpha-\mathcal{A}) for all αα0\alpha\geq\alpha_{0}, and thus fRan(α𝒜)¯f\in\overline{\operatorname{Ran}(\alpha-\mathcal{A})} for all αα0\alpha\geq\alpha_{0}. ∎

Combining Theorem 4.18 with the work of Section 3 yields the following.

Corollary 4.19.

Let qq be a Gangolli symbol that satisfies Assumptions 4.4 and 4.10 for some M>min{1,d/r}+dM>\min\{1,d/r\}+d. Then q(σ,D)-q(\sigma,D) extends to the infinitesimal generator of a strongly continuous sub-Feller semigroup on C0(K|G|K)C_{0}(K|G|K).

Proof.

By construction, q(σ,D)-q(\sigma,D) is a densely defined linear operator on C0(K|G|K)C_{0}(K|G|K). It is a Gangolli operator, and hence satisfies the positive maximum principle. By Theorems 3.1 and 4.18, q(σ,D)-q(\sigma,D) is closable, and its closure generates a strongly continuous sub-Feller semigroup. ∎

5 A Class of Examples

We now present a class of Gangolli symbols that satisfy the conditions of Corollary 4.19. Let MM\in\mathbb{N} such that M>min{1,d/r}+d+1M>\min\{1,d/r\}+d+1. We consider symbols q:G×𝔞q:G\times\operatorname{\mathfrak{a}^{\ast}}*\to\mathbb{R} of the form

q(σ,λ)=κψ(λ)+u(σ)v(λ),σG,λ𝔞,q(\sigma,\lambda)=\kappa\psi(\lambda)+u(\sigma)v(\lambda),\hskip 20.0pt\forall\sigma\in G,\lambda\in\operatorname{\mathfrak{a}^{\ast}}*, (5.1)

where κ\kappa is a positive constant, ψ:𝔞\psi:\operatorname{\mathfrak{a}^{\ast}}*\to\mathbb{R} is a Gangolli exponent satisfying (2.18), uCcM(K|G|K)u\in C^{M}_{c}(K|G|K) is non-negative, and v:𝔞v:\operatorname{\mathfrak{a}^{\ast}}*\to\mathbb{R} is a Gangolli exponent satisfying, for some cv>0c_{v}>0,

|v(λ)|cv(1+ψ(λ))λ𝔞.|v(\lambda)|\leq c_{v}(1+\psi(\lambda))\hskip 20.0pt\forall\lambda\in\operatorname{\mathfrak{a}^{\ast}}*. (5.2)

By Example 3.8, the mappings (σ,λ)c0ψ(λ)(\sigma,\lambda)\mapsto c_{0}\psi(\lambda) and (σ,λ)u(σ)v(λ)(\sigma,\lambda)\mapsto u(\sigma)v(\lambda) are both Gangolli symbols, and hence so is qq.

For each λ𝔞\lambda\in\operatorname{\mathfrak{a}^{\ast}}* and σG\sigma\in G, let

q1(λ)=κψ(λ), and q2(σ,λ)=u(σ)v(λ).q_{1}(\lambda)=\kappa\psi(\lambda),\hskip 10.0pt\text{ and }\hskip 10.0ptq_{2}(\sigma,\lambda)=u(\sigma)v(\lambda). (5.3)

Observe that qq is of the form (4.13): since vv has compact support, Supp(v)G\operatorname{Supp}(v)\neq G, and if σ0GSupp(v)\sigma_{0}\in G\setminus\operatorname{Supp}(v), then q1=q(σ0,)q_{1}=q(\sigma_{0},\cdot).

Proposition 5.1.

q1q_{1} satisfies Assumption 4.4 (1).

Proof.

The upper bound of (4.14) may be easily verified by taking c1=κc_{1}=\kappa. For the lower bound, suppose |λ|1|\lambda|\geq 1. Then by (2.18),

q1(λ)=κ2(ψ(λ)+ψ(λ))κ2(c|λ|r+ψ(λ))κ2min{1,c}(1+ψ(λ)),q_{1}(\lambda)=\frac{\kappa}{2}(\psi(\lambda)+\psi(\lambda))\geq\frac{\kappa}{2}(c|\lambda|^{r}+\psi(\lambda))\geq\frac{\kappa}{2}\min\{1,c\}(1+\psi(\lambda)),

and so taking c0=κ2min{1,c}c_{0}=\frac{\kappa}{2}\min\{1,c\}, the result follows. ∎

For Assumption 4.4 (2), note that in the case we are considering,

Fλ,η(σ)=ϕλ(σ)u(σ)v(η),σG,λ,η𝔞,F_{\lambda,\eta}(\sigma)=\phi_{-\lambda}(\sigma)u(\sigma)v(\eta),\hskip 20.0pt\forall\sigma\in G,\;\lambda,\eta\in\operatorname{\mathfrak{a}^{\ast}}*,

and so, for β=0,1,,M\beta=0,1,\ldots,M,

(Δ)β/2Fλ,η(σ)=v(η)(Δ)β/2(ϕλu)(σ),(-\Delta)^{\beta/2}F_{\lambda,\eta}(\sigma)=v(\eta)(-\Delta)^{\beta/2}(\phi_{-\lambda}u)(\sigma),

for all λ,η𝔞\lambda,\eta\in\operatorname{\mathfrak{a}^{\ast}}* and σG\sigma\in G. By (5.2),

|(Δ)β/2Fλ,η(σ)|=|v(η)||(Δ)β/2(ϕλu)(σ)|cv|(Δ)β/2(ϕλu)(σ)|(1+ψ(η)).\left|(-\Delta)^{\beta/2}F_{\lambda,\eta}(\sigma)\right|=|v(\eta)|\left|(-\Delta)^{\beta/2}(\phi_{-\lambda}u)(\sigma)\right|\leq c_{v}\left|(-\Delta)^{\beta/2}(\phi_{-\lambda}u)(\sigma)\right|\big{(}1+\psi(\eta)\big{)}.

For each nn\in\mathbb{N}, a noncommutative version of the multinomial theorem tells us that

(Δ)n(ϕλu)=(1)n(j=1dXj2)n(ϕλu)=α0d,|α|rcαXα(ϕλu)(-\Delta)^{n}(\phi_{-\lambda}u)=(-1)^{n}\left(\sum_{j=1}^{d}X_{j}^{2}\right)^{n}(\phi_{-\lambda}u)=\sum_{\begin{subarray}{c}\alpha\in\mathbb{N}_{0}^{d},\\ |\alpha|\leq r\end{subarray}}c_{\alpha}X^{\alpha}(\phi_{-\lambda}u) (5.4)

for some coefficients cαc_{\alpha}, where |α|=α1++αd|\alpha|=\alpha_{1}+\ldots+\alpha_{d} and Xα:=X1α1XdαdX^{\alpha}:=X_{1}^{\alpha_{1}}\ldots X_{d}^{\alpha_{d}}. Expanding the right-hand side of (5.4) using the fact that each XjX_{j} is a derivation will give a large sum of terms of the form

κX,YXϕλYu,\kappa_{X,Y}X\phi_{-\lambda}Yu,

where the κX,Y\kappa_{X,Y} are constants, and X,Y𝐃(G)X,Y\in{\bf D}(G) are products of powers of X1,,XdX_{1},\ldots,X_{d}, each with degree at most 2n2n. Let 𝒰n\mathscr{U}_{n} be the set of all the XX’s and 𝒱n\mathscr{V}_{n} the set of all the YY’s, so that

(Δ)n(ϕλu)=X𝒰n,Y𝒱nκX,YXϕλYu.(-\Delta)^{n}(\phi_{-\lambda}u)=\sum_{\begin{subarray}{c}X\in\mathscr{U}_{n},\\ Y\in\mathscr{V}_{n}\end{subarray}}\kappa_{X,Y}X\phi_{-\lambda}Yu. (5.5)

The following bound will be useful.

Lemma 5.2.

For all X𝐃(G)X\in{\bf D}(G), there is a constant CX>0C_{X}>0 such that

|Xϕλ(σ)|CXλdegXϕ0(σ),|X\phi_{\lambda}(\sigma)|\leq C_{X}\langle\lambda\rangle^{\deg X}\phi_{0}(\sigma), (5.6)

for all λ𝔞\lambda\in\operatorname{\mathfrak{a}^{\ast}}* and σG\sigma\in G.

Proof.

This is a straightforward corollary of Theorem 1.1 (iii) of (Helgason, , supplementary notes) — see also Harish-Chandra (1958a), Lemma 46, pp. 294. ∎

Proposition 5.3.

The mapping q2q_{2} in (5.3) satisfies Assumption 4.4 (2).

Proof.

It is clear by construction that q2(,λ)CcM(K|G|K)q_{2}(\cdot,\lambda)\in C_{c}^{M}(K|G|K) for all λ𝔞\lambda\in\operatorname{\mathfrak{a}^{\ast}}*.

To verify the rest of Assumption 4.4 (2), it will be useful to assume that MM is even. Note that this is an acceptable assumption, since if MM is odd, we may replace it with M1M-1 — the conditions of Corollary 4.19 will still be satisfied. Let β{0,1,,M}\beta\in\{0,1,\ldots,M\}. We seek ΦβL1(K|G|K)\Phi_{\beta}\in L^{1}(K|G|K) for which

|(Δ)β/2(ϕλu)(σ)|ΦβλM,σG,λ𝔞.\left|(-\Delta)^{\beta/2}(\phi_{-\lambda}u)(\sigma)\right|\leq\Phi_{\beta}\langle\lambda\rangle^{M},\hskip 20.0pt\forall\sigma\in G,\;\lambda\in\operatorname{\mathfrak{a}^{\ast}}*. (5.7)

Let n=βn=\lfloor\beta\rfloor. Assume first that β\beta is even, so that n=β/2n=\beta/2. By (5.5) and Lemma 5.2,

|(Δ)β/2(ϕλu)|X𝒰n,Y𝒱n|κX,Y||Xϕλ||Yu|\displaystyle\left|(-\Delta)^{\beta/2}(\phi_{-\lambda}u)\right|\leq\sum_{\begin{subarray}{c}X\in\mathscr{U}_{n},\\ Y\in\mathscr{V}_{n}\end{subarray}}|\kappa_{X,Y}||X\phi_{-\lambda}||Yu| X𝒰n,Y𝒱nCX|κX,Y||Yu|λdegX|ϕ0|\displaystyle\leq\sum_{\begin{subarray}{c}X\in\mathscr{U}_{n},\\ Y\in\mathscr{V}_{n}\end{subarray}}C_{X}|\kappa_{X,Y}||Yu|\langle\lambda\rangle^{\deg X}|\phi_{0}|
X𝒰n,Y𝒱nCX|κX,Y||Yu|λdegX,\displaystyle\leq\sum_{\begin{subarray}{c}X\in\mathscr{U}_{n},\\ Y\in\mathscr{V}_{n}\end{subarray}}C_{X}|\kappa_{X,Y}||Yu|\langle\lambda\rangle^{\deg X},

since |ϕ0|1|\phi_{0}|\leq 1. Now, degX2n=βM\deg X\leq 2n=\beta\leq M for all X𝒰nX\in\mathscr{U}_{n}, and therefore,

|(Δ)β/2(ϕλu)|κβY𝒱β/2|Yu|λM\left|(-\Delta)^{\beta/2}(\phi_{-\lambda}u)\right|\leq\kappa_{\beta}\sum_{Y\in\mathscr{V}_{\beta/2}}|Yu|\langle\lambda\rangle^{M}

where

κβ=sup{CX|κX,Y|:X𝒰β/2,Y𝒱β/2}.\kappa_{\beta}=\sup\left\{C_{X}|\kappa_{X,Y}|:X\in\mathscr{U}_{\beta/2},Y\in\mathscr{V}_{\beta/2}\right\}.

Let

Φβ:=κβY𝒱β/2|Yu|.\Phi_{\beta}:=\kappa_{\beta}\sum_{Y\in\mathscr{V}_{\beta/2}}|Yu|. (5.8)

Then ΦβL1(K|G|K)\Phi_{\beta}\in L^{1}(K|G|K), since each YuYu is a continuous function of compact support. Moreover,

Φβ1κβY𝒱β/2Yu1\|\Phi_{\beta}\|_{1}\leq\kappa_{\beta}\sum_{Y\in\mathscr{V}_{\beta/2}}\|Yu\|_{1} (5.9)

In particular, we have verified (5.7) when β\beta is even.

Assume now that β\beta is odd, so that (Δ)β/2=Δ(Δ)n(-\Delta)^{\beta/2}=\sqrt{-\Delta}(-\Delta)^{n}. Since MM is even, note also that 1βM11\leq\beta\leq M-1. Applying Δ\sqrt{-\Delta} to both sides of (5.5),

|(Δ)β/2(ϕλu)|=|Δ(Δ)n(ϕλu)|X𝒰n,Y𝒱n|κX,Y||Δ(XϕλYu)|.\left|(-\Delta)^{\beta/2}(\phi_{\lambda}u)\right|=\left|\sqrt{-\Delta}(-\Delta)^{n}(\phi_{\lambda}u)\right|\leq\sum_{\begin{subarray}{c}X\in\mathscr{U}_{n},\\ Y\in\mathscr{V}_{n}\end{subarray}}|\kappa_{X,Y}|\left|\sqrt{-\Delta}\big{(}X\phi_{-\lambda}Yu\big{)}\right|. (5.10)

The families 𝒰n\mathscr{U}_{n} and 𝒱n\mathscr{V}_{n} now each consist of differential operators of degree at most 2n=β12n=\beta-1.

Now, Δ-\sqrt{-\Delta} is the infinitesimal generator of the process obtained by subordinating Brownian motion on G/KG/K by the standard 12\frac{1}{2}-stable subordinator on \mathbb{R}. By standard subordination theory (see Applebaum (2014) §5.7, pp. 154) Δ\sqrt{-\Delta} may be expressed as a Bochner integral

Δ=12π0+t3/2(1Tt)𝑑t,\sqrt{-\Delta}=\frac{1}{2\sqrt{\pi}}\int_{0+}^{\infty}t^{-3/2}(1-T_{t})dt, (5.11)

where (Tt,t0)(T_{t},t\geq 0) denotes the heat semigroup generated by Δ\Delta.

Given X𝒰nX\in\mathscr{U}_{n}, Y𝒱nY\in\mathscr{V}_{n} and σG\sigma\in G,

|Δ(XϕλYu)(σ)|\displaystyle\left|\sqrt{-\Delta}(X\phi_{-\lambda}Yu)(\sigma)\right| =12π|0+t3/2(1Tt)(XϕλYu)𝑑t|\displaystyle=\frac{1}{2\sqrt{\pi}}\left|\int_{0+}^{\infty}t^{-3/2}(1-T_{t})\big{(}X\phi_{-\lambda}Yu\big{)}dt\right| (5.12)
12π[|0+1t3/2(1Tt)(XϕλYu)(σ)dt|\displaystyle\leq\frac{1}{2\sqrt{\pi}}\Bigg{[}\left|\int_{0+}^{1}t^{-3/2}(1-T_{t})\big{(}X\phi_{-\lambda}Yu\big{)}(\sigma)dt\right|
+|1t3/2(1Tt)(XϕλYu)(σ)dt|].\displaystyle\hskip 90.0pt+\left|\int_{1}^{\infty}t^{-3/2}(1-T_{t})\big{(}X\phi_{-\lambda}Yu\big{)}(\sigma)dt\right|\Bigg{]}.

Let (ht,t0)(h_{t},t\geq 0) denote the heat kernel associated with (Tt,t0)(T_{t},t\geq 0). For the 1\int_{1}^{\infty} term of (5.12), note that 1t3/2𝑑t=2\int_{1}^{\infty}t^{-3/2}dt=2, and so

|1t3/2(1Tt)(XϕλYu)(σ)𝑑t|\displaystyle\left|\int_{1}^{\infty}t^{-3/2}(1-T_{t})\big{(}X\phi_{-\lambda}Yu\big{)}(\sigma)dt\right|
=|1t3/2Xϕλ(σ)Yu(σ)𝑑t1t3/2Tt(XϕλYu)(σ)𝑑t|\displaystyle\hskip 100.0pt=\left|\int_{1}^{\infty}t^{-3/2}X\phi_{-\lambda}(\sigma)Yu(\sigma)dt-\int_{1}^{\infty}t^{-3/2}T_{t}\big{(}X\phi_{-\lambda}Yu\big{)}(\sigma)dt\right|
2|Xϕλ(σ)||Yu(σ)|+|1t3/2GXϕλ(στ)Yu(στ)ht(τ)𝑑τ𝑑t|.\displaystyle\hskip 100.0pt\leq 2|X\phi_{-\lambda}(\sigma)||Yu(\sigma)|+\left|\int_{1}^{\infty}t^{-3/2}\int_{G}X\phi_{-\lambda}(\sigma\tau)Yu(\sigma\tau)h_{t}(\tau)d\tau dt\right|.

By Lemma 5.2 and the fact that degXβ1\deg X\leq\beta-1,

|Xϕλ|CXλdegXCλβ1,λ𝔞,|X\phi_{-\lambda}|\leq C_{X}\langle\lambda\rangle^{\deg X}\leq C\langle\lambda\rangle^{\beta-1},\hskip 20.0pt\forall\lambda\in\operatorname{\mathfrak{a}^{\ast}}*, (5.13)

where CXC_{X} is as in (5.6), and C=max{CX:X𝒰n}C=\max\{C_{X}:X\in\mathscr{U}_{n}\}. Thus

|1t3/2(1Tt)(XϕλYu)(σ)𝑑t|\displaystyle\left|\int_{1}^{\infty}t^{-3/2}(1-T_{t})\big{(}X\phi_{-\lambda}Yu\big{)}(\sigma)dt\right|
2|Xϕλ(σ)||Yu(σ)|+1t3/2G|Xϕλ(στ)||Yu(στ)|ht(τ)𝑑τ𝑑t\displaystyle\hskip 80.0pt\leq 2|X\phi_{-\lambda}(\sigma)||Yu(\sigma)|+\int_{1}^{\infty}t^{-3/2}\int_{G}|X\phi_{-\lambda}(\sigma\tau)||Yu(\sigma\tau)|h_{t}(\tau)d\tau dt
C(2|Yu(σ)|+1t3/2G|Yu(στ)|ht(τ)𝑑τ𝑑t)λβ1\displaystyle\hskip 80.0pt\leq C\left(2|Yu(\sigma)|+\int_{1}^{\infty}t^{-3/2}\int_{G}|Yu(\sigma\tau)|h_{t}(\tau)d\tau dt\right)\langle\lambda\rangle^{\beta-1}
=Φβ,Y(1)(σ)λβ1,\displaystyle\hskip 80.0pt=\Phi_{\beta,Y}^{(1)}(\sigma)\langle\lambda\rangle^{\beta-1},

where

Φβ,Y(1):=C(2|Yu|+1t3/2Tt(|Yu|)𝑑t).\Phi_{\beta,Y}^{(1)}:=C\left(2|Yu|+\int_{1}^{\infty}t^{-3/2}T_{t}\big{(}|Yu|\big{)}dt\right). (5.14)

Since β1M\beta-1\leq M and λ1\langle\lambda\rangle\geq 1 for all λ𝔞\lambda\in\operatorname{\mathfrak{a}^{\ast}}*, it follows that for all λ𝔞\lambda\in\operatorname{\mathfrak{a}^{\ast}}*,

|1t3/2(1Tt)(XϕλYu)𝑑t|Φβ,Y(1)λM.\left|\int_{1}^{\infty}t^{-3/2}(1-T_{t})\big{(}X\phi_{-\lambda}Yu\big{)}dt\right|\leq\Phi_{\beta,Y}^{(1)}\langle\lambda\rangle^{M}. (5.15)

We claim that Φβ,Y(1)L1(K|G|K)\Phi_{\beta,Y}^{(1)}\in L^{1}(K|G|K). Clearly |Yu|L1(K|G|K)|Yu|\in L^{1}(K|G|K), since it is a continuous function of compact support. Each of the operators TtT_{t} is a positivity preserving contraction of L1(K|G|K)L^{1}(K|G|K), and so

1t3/2GTt(|Yu|)(σ)𝑑σ𝑑t=1t3/2Tt(|Yu|)1𝑑t1t3/2Yu1𝑑t=2Yu1.\int_{1}^{\infty}t^{-3/2}\int_{G}T_{t}\big{(}|Yu|\big{)}(\sigma)d\sigma dt=\int_{1}^{\infty}t^{-3/2}\left\|T_{t}\big{(}|Yu|\big{)}\right\|_{1}dt\leq\int_{1}^{\infty}t^{-3/2}\|Yu\|_{1}dt=2\|Yu\|_{1}.

By Fubini’s theorem, 1t3/2Tt(|Yu|)𝑑tL1(K|G|K)\int_{1}^{\infty}t^{-3/2}T_{t}\big{(}|Yu|\big{)}dt\in L^{1}(K|G|K), with

1t3/2Tt(|Yu|)𝑑tL1(K|G|K)2Yu1.\left\|\int_{1}^{\infty}t^{-3/2}T_{t}\big{(}|Yu|\big{)}dt\right\|_{L_{1}(K|G|K)}\leq 2\|Yu\|_{1}.

It follows by (5.14) that Φβ,Y(1)L1(K|G|K)\Phi_{\beta,Y}^{(1)}\in L^{1}(K|G|K), and that

Φβ,Y(1)14CYu1.\|\Phi_{\beta,Y}^{(1)}\|_{1}\leq 4C\|Yu\|_{1}. (5.16)

For the 0+1\int_{0+}^{1} term of (5.12), observe that by Lemma 6.1.12 of Davies (2007), pp. 169, as well as the Fubini theorem,

0+1t3/2(1Tt)(XϕλYu)𝑑t\displaystyle\int_{0+}^{1}t^{-3/2}(1-T_{t})\big{(}X\phi_{-\lambda}Yu\big{)}dt =0+1t3/20tTsΔ(XϕλYu)𝑑s𝑑t\displaystyle=-\int_{0+}^{1}t^{-3/2}\int_{0}^{t}T_{s}\Delta\big{(}X\phi_{-\lambda}Yu\big{)}dsdt
=01s1t3/2TsΔ(XϕλYu)𝑑t𝑑s\displaystyle=-\int_{0}^{1}\int_{s}^{1}t^{-3/2}T_{s}\Delta\big{(}X\phi_{-\lambda}Yu\big{)}dtds
=012(s1/21)TsΔ(XϕλYu)𝑑s.\displaystyle=-\int_{0}^{1}2(s^{-1/2}-1)T_{s}\Delta\big{(}X\phi_{-\lambda}Yu\big{)}ds.

Hence, using the product formula for Δ\Delta,

0+1t3/2(1Tt)(XϕλYu)𝑑t\displaystyle\int_{0+}^{1}t^{-3/2}(1-T_{t})\big{(}X\phi_{-\lambda}Yu\big{)}dt =201(s1/21){Ts(XϕλΔYu)\displaystyle=-2\int_{0}^{1}(s^{-1/2}-1)\Big{\{}T_{s}\big{(}X\phi_{-\lambda}\Delta Yu\big{)} (5.17)
+2j=1dTs(XjXϕλXjYu)+Ts(ΔXϕλYu)}ds.\displaystyle\hskip 6.0pt+2\sum_{j=1}^{d}T_{s}\big{(}X_{j}X\phi_{-\lambda}X_{j}Yu\big{)}+T_{s}\big{(}\Delta X\phi_{-\lambda}Yu\big{)}\Big{\}}ds.

Let CC and CXC_{X} be as in (5.13). Then for all σG\sigma\in G,

|Ts(XϕλΔYu)(σ)|\displaystyle\left|T_{s}\big{(}X\phi_{-\lambda}\Delta Yu\big{)}(\sigma)\right| =|GXϕλ(στ)ΔYu(στ)hs(τ)𝑑τ|\displaystyle=\left|\int_{G}X\phi_{-\lambda}(\sigma\tau)\Delta Yu(\sigma\tau)h_{s}(\tau)d\tau\right|
G|Xϕλ(στ)||ΔYu(στ)|hs(τ)𝑑τ\displaystyle\leq\int_{G}|X\phi_{-\lambda}(\sigma\tau)||\Delta Yu(\sigma\tau)|h_{s}(\tau)d\tau
CXλdegXG|ΔYu(στ)|hs(τ)𝑑τCλβ1Ts|ΔYu|(σ).\displaystyle\leq C_{X}\langle\lambda\rangle^{\deg X}\int_{G}|\Delta Yu(\sigma\tau)|h_{s}(\tau)d\tau\leq C\langle\lambda\rangle^{\beta-1}T_{s}|\Delta Yu|(\sigma).

In exactly the same way, for j=1,,dj=1,\ldots,d,

|Ts(XjXϕλXjYu)|CX(j)λdegX+1Ts|XjYu|CλβTs|XjYu|,\left|T_{s}\big{(}X_{j}X\phi_{-\lambda}X_{j}Yu\big{)}\right|\leq C_{X}^{(j)}\langle\lambda\rangle^{\deg X+1}T_{s}|X_{j}Yu|\leq C^{\prime}\langle\lambda\rangle^{\beta}T_{s}|X_{j}Yu|,

and also

|Ts(ΔXϕλYu)|CX(0)λdegX+2Ts|Yu|Cλβ+1Ts|Yu|,\left|T_{s}\big{(}\Delta X\phi_{-\lambda}Yu\big{)}\right|\leq C_{X}^{(0)}\langle\lambda\rangle^{\deg X+2}T_{s}|Yu|\leq C^{\prime}\langle\lambda\rangle^{\beta+1}T_{s}|Yu|,

where the constants CX(j),C(j)C_{X}^{(j)},C^{(j)} are chosen so that for all λ𝔞\lambda\in\operatorname{\mathfrak{a}^{\ast}}* and j=1,,dj=1,\ldots,d,

|Xϕλ|CX(0)λdegX+2,|XjXϕλ|CX(j)λdegX+1,|X\phi_{-\lambda}|\leq C_{X}^{(0)}\langle\lambda\rangle^{\deg X+2},\hskip 40.0pt|X_{j}X\phi_{-\lambda}|\leq C_{X}^{(j)}\langle\lambda\rangle^{\deg X+1},

and C:=max{CX(j):X𝒰n,j=0,1,,d}C^{\prime}:=\max\{C_{X}^{(j)}:X\in\mathscr{U}_{n},j=0,1,\ldots,d\}. Such constants exist by Lemma 5.2. Now,

λβ1λβλβ+1\langle\lambda\rangle^{\beta-1}\leq\langle\lambda\rangle^{\beta}\leq\langle\lambda\rangle^{\beta+1}

for all λ𝔞\lambda\in\operatorname{\mathfrak{a}^{\ast}}*, and hence by (5.17),

|0+1t3/2(1Tt)(XϕλYu)𝑑t|\displaystyle\left|\int_{0+}^{1}t^{-3/2}(1-T_{t})\big{(}X\phi_{-\lambda}Yu\big{)}dt\right|
201(s1/21){|Ts(XϕλΔYu)|+2j=1d|Ts(XjXϕλXjYu)|\displaystyle\hskip 20.0pt\leq 2\int_{0}^{1}(s^{-1/2}-1)\Big{\{}\left|T_{s}\big{(}X\phi_{-\lambda}\Delta Yu\big{)}\right|+2\sum_{j=1}^{d}\left|T_{s}\big{(}X_{j}X\phi_{-\lambda}X_{j}Yu\big{)}\right|
+|Ts(ΔXϕλYu)|}ds\displaystyle\hskip 240.0pt+\left|T_{s}\big{(}\Delta X\phi_{-\lambda}Yu\big{)}\right|\Big{\}}ds
2Cλβ+101(s1/21)Ts(|ΔYu|+2j=1d|XjYu|+|Yu|)𝑑s.\displaystyle\hskip 20.0pt\leq 2C^{\prime}\langle\lambda\rangle^{\beta+1}\int_{0}^{1}(s^{-1/2}-1)T_{s}\left(|\Delta Yu|+2\sum_{j=1}^{d}|X_{j}Yu|+|Yu|\right)ds.

Since βM1\beta\leq M-1, it follows that for all X𝒰nX\in\mathscr{U}_{n} and Y𝒱nY\in\mathscr{V}_{n},

|0+1t3/2(1Tt)(XϕλYu)𝑑t|Φβ,Y(2)λM,\left|\int_{0+}^{1}t^{-3/2}(1-T_{t})\big{(}X\phi_{-\lambda}Yu\big{)}dt\right|\leq\Phi_{\beta,Y}^{(2)}\langle\lambda\rangle^{M}, (5.18)

where

Φβ,Y(2)=C01(s1/21)Ts(|ΔYu|+2j=1d|XjYu|+|Yu|)𝑑s.\Phi_{\beta,Y}^{(2)}=C^{\prime}\int_{0}^{1}(s^{-1/2}-1)T_{s}\left(|\Delta Yu|+2\sum_{j=1}^{d}|X_{j}Yu|+|Yu|\right)ds. (5.19)

Observe that Φβ,Y(2)L1(K|G|K)\Phi_{\beta,Y}^{(2)}\in L^{1}(K|G|K) for all Y𝒱nY\in\mathscr{V}_{n}. Indeed, uCcM(K|G|K)u\in C_{c}^{M}(K|G|K), and degYβ1M2\deg Y\leq\beta-1\leq M-2, hence |ΔYu||\Delta Yu|, j=1d|XjYu|\sum_{j=1}^{d}|X_{j}Yu| and |Yu||Yu| are all continuous functions of compact support. Thus Ts(|ΔYu|+2j=1d|XjYu|+|Yu|)L1(K|G|K)T_{s}\big{(}|\Delta Yu|+2\sum_{j=1}^{d}|X_{j}Yu|+|Yu|\big{)}\in L^{1}(K|G|K), and, since TsT_{s} is an L1(K|G|K)L^{1}(K|G|K)-contraction,

Ts(|ΔYu|+2j=1d|XjYu|+|Yu|)1ΔYu1+2j=1dXjYu1+Yu1.\left\|T_{s}\left(|\Delta Yu|+2\sum_{j=1}^{d}|X_{j}Yu|+|Yu|\right)\right\|_{1}\leq\|\Delta Yu\|_{1}+2\sum_{j=1}^{d}\|X_{j}Yu\|_{1}+\|Yu\|_{1}.

Noting that 01(s1/21)𝑑s=1\int_{0}^{1}(s^{-1/2}-1)ds=1, it follows by Fubini’s theorem that Φβ,Y(2)L1(K|G|K)\Phi_{\beta,Y}^{(2)}\in L^{1}(K|G|K), with

Φβ,Y(2)1CX(ΔYu1+2j=1dXjYu1+Yu1).\left\|\Phi_{\beta,Y}^{(2)}\right\|_{1}\leq C_{X}^{\prime}\left(\|\Delta Yu\|_{1}+2\sum_{j=1}^{d}\|X_{j}Yu\|_{1}+\|Yu\|_{1}\right). (5.20)

Substituting (5.18) and (5.15) into (5.12), we obtain the pointwise estimate

|Δ(XϕλYu)|12π(Φβ,Y(1)+Φβ,Y(2))λM,\left|\sqrt{-\Delta}(X\phi_{-\lambda}Yu)\right|\leq\frac{1}{2\sqrt{\pi}}\left(\Phi_{\beta,Y}^{(1)}+\Phi_{\beta,Y}^{(2)}\right)\langle\lambda\rangle^{M}, (5.21)

for all X𝒰nX\in\mathscr{U}_{n}, Y𝒱nY\in\mathscr{V}_{n} and λ𝔞\lambda\in\operatorname{\mathfrak{a}^{\ast}}*, where the Φβ,Y(j)\Phi_{\beta,Y}^{(j)} (j=1,2j=1,2) are given by (5.14) and (5.19). Hence by (5.10), for all λ𝔞\lambda\in\operatorname{\mathfrak{a}^{\ast}}*,

|(Δ)β/2(ϕλu)|X𝒰n,Y𝒱n|κX,Y||Δ(XϕλYu)|ΦβλM,\left|(-\Delta)^{\beta/2}(\phi_{\lambda}u)\right|\leq\sum_{\begin{subarray}{c}X\in\mathscr{U}_{n},\\ Y\in\mathscr{V}_{n}\end{subarray}}|\kappa_{X,Y}|\left|\sqrt{-\Delta}\big{(}X\phi_{-\lambda}Yu\big{)}\right|\leq\Phi_{\beta}\langle\lambda\rangle^{M},

where

Φβ:=12πX𝒰n,Y𝒱n|κX,Y|(Φβ,Y(1)+Φβ,Y(2)),\Phi_{\beta}:=\frac{1}{2\sqrt{\pi}}\sum_{\begin{subarray}{c}X\in\mathscr{U}_{n},\\ Y\in\mathscr{V}_{n}\end{subarray}}|\kappa_{X,Y}|\left(\Phi_{\beta,Y}^{(1)}+\Phi_{\beta,Y}^{(2)}\right), (5.22)

and β\beta is still assumed to be odd. As already noted, Φβ,Y(1),Φβ,Y(2)L1(K|G|K)\Phi_{\beta,Y}^{(1)},\Phi_{\beta,Y}^{(2)}\in L^{1}(K|G|K) for all Y𝒱nY\in\mathscr{V}_{n}, and hence ΦβL1(K|G|K)\Phi_{\beta}\in L^{1}(K|G|K). Moreover, by (5.16) and (5.20),

Φβ1\displaystyle\left\|\Phi_{\beta}\right\|_{1} κβY𝒱n(ΔYu1+j=1dXjYu1+Yu1),\displaystyle\leq\kappa_{\beta}^{\prime}\sum_{Y\in\mathscr{V}_{n}}\Bigg{(}\|\Delta Yu\|_{1}+\sum_{j=1}^{d}\|X_{j}Yu\|_{1}+\|Yu\|_{1}\Bigg{)}, (5.23)

for some positive constant κβ\kappa_{\beta}^{\prime}. In particular, we have verified (5.7) when β\beta is odd. ∎

Corollary 5.4.

Let q:G×𝔞q:G\times\operatorname{\mathfrak{a}^{\ast}}*\to\mathbb{R} be of the form (5.1). Then for κ\kappa sufficiently large, the conditions of Corollary 4.19 are satisfied. In particular, q(σ,D)-q(\sigma,D) extends to the infinitesimal generator of a strongly continuous sub-Feller semigroup on C0(K|G|K)C_{0}(K|G|K).

6 Proof of Proposition 4.15

  1. 1.

    Let 0<ϵ10<\epsilon\leq 1 and λ𝔞\lambda\in\operatorname{\mathfrak{a}^{\ast}}*. Using a change of variable Hϵ1HH\mapsto\epsilon^{-1}H,

    jϵ^(λ)=(lϵ)(λ)\displaystyle\hat{j_{\epsilon}}(\lambda)=\mathscr{F}(l_{\epsilon})(\lambda) =𝔞eiλ(H)ϵml(ϵ1H)𝑑H\displaystyle=\int_{\operatorname{\mathfrak{a}}}e^{-i\lambda(H)}\epsilon^{-m}l(\epsilon^{-1}H)dH
    =𝔞eiϵλ(H)l(H)𝑑H=(l)(ϵλ)=j^(ϵλ).\displaystyle=\int_{\operatorname{\mathfrak{a}}}e^{-i\epsilon\lambda(H)}l(H)dH=\mathscr{F}(l)(\epsilon\lambda)=\hat{j}(\epsilon\lambda).
  2. 2.

    The map ll is symmetric under HHH\mapsto-H, and hence (l)=j^\mathscr{F}(l)=\hat{j} is real-valued. Therefore, given u,vL2(K|G|K)u,v\in L^{2}(K|G|K) and 0<ϵ10<\epsilon\leq 1,

    Jϵu,v=𝔞j^(ϵλ)u^(λ)v^(λ)¯ω(dλ)=𝔞u^(λ)j^(ϵλ)v^(λ)¯ω(dλ)=u,Jϵv.\langle J_{\epsilon}u,v\rangle=\int_{\operatorname{\mathfrak{a}^{\ast}}*}\hat{j}(\epsilon\lambda)\hat{u}(\lambda)\overline{\hat{v}(\lambda)}\omega(d\lambda)=\int_{\operatorname{\mathfrak{a}^{\ast}}*}\hat{u}(\lambda)\overline{\hat{j}(\epsilon\lambda)\hat{v}(\lambda)}\omega(d\lambda)=\langle u,J_{\epsilon}v\rangle.

    To see that JϵJ_{\epsilon} is a contraction, note that |jϵ^(λ)|=|j^(ϵλ)|j^(0)=1|\hat{j_{\epsilon}}(\lambda)|=|\hat{j}(\epsilon\lambda)|\leq\hat{j}(0)=1 for all λ𝔞\lambda\in\operatorname{\mathfrak{a}^{\ast}}*, and so by Plancherel’s identity

    Jϵu=j^ϵu^L2(𝔞,ω)u^L2(K|G|K)=u,\|J_{\epsilon}u\|=\|\hat{j}_{\epsilon}\hat{u}\|_{L^{2}(\operatorname{\mathfrak{a}^{\ast}}*,\omega)}\leq\|\hat{u}\|_{L^{2}(K|G|K)}=\|u\|,

    for all uL2(K|G|K)u\in L^{2}(K|G|K) and all 0<ϵ10<\epsilon\leq 1.

  3. 3.

    Let s0s\geq 0 and 0<ϵ10<\epsilon\leq 1. By Theorem 2.1, j^𝒮(𝔞)W\hat{j}\in\mathcal{S}(\operatorname{\mathfrak{a}^{\ast}}*)^{W}, and hence there is κ>0\kappa>0 such that

    λs|j^(ϵλ)|κ,λ𝔞.\langle\lambda\rangle^{s}\left|\hat{j}(\epsilon\lambda)\right|\leq\kappa,\hskip 20.0pt\forall\lambda\in\operatorname{\mathfrak{a}^{\ast}}*.

    Then, using Proposition 2.11 (3),

    Ψ(λ)s|j^(ϵλ)|cψs/2λs|j^(ϵλ)|cψs/2κ,\Psi(\lambda)^{s}\left|\hat{j}(\epsilon\lambda)\right|\leq c_{\psi}^{s/2}\langle\lambda\rangle^{s}\left|\hat{j}(\epsilon\lambda)\right|\leq c_{\psi}^{s/2}\kappa,

    for all λ𝔞\lambda\in\operatorname{\mathfrak{a}^{\ast}}*. Let uL2(K|G|K)u\in L^{2}(K|G|K). By Plancherel’s identity,

    𝔞Ψ(λ)2s|j^(ϵλ)|2|u^(λ)|2ω(dλ)cψsκ2u2<.\int_{\operatorname{\mathfrak{a}^{\ast}}*}\Psi(\lambda)^{2s}\left|\hat{j}(\epsilon\lambda)\right|^{2}|\hat{u}(\lambda)|^{2}\omega(d\lambda)\leq c_{\psi}^{s}\kappa^{2}\|u\|^{2}<\infty.

    By Proposition 4.15 (1), (Jϵu)(λ)=j^(ϵλ)u^(λ)(J_{\epsilon}u)^{\wedge}(\lambda)=\hat{j}(\epsilon\lambda)\hat{u}(\lambda), for all λ𝔞\lambda\in\operatorname{\mathfrak{a}^{\ast}}*, and hence

    𝔞Ψ(λ)2s|(Jϵu)(λ)|2ω(dλ)<.\int_{\operatorname{\mathfrak{a}^{\ast}}*}\Psi(\lambda)^{2s}|(J_{\epsilon}u)^{\wedge}(\lambda)|^{2}\omega(d\lambda)<\infty.

    That is, JϵuHψ,sJ_{\epsilon}u\in H^{\psi,s}.

    Next, suppose uHψ,su\in H^{\psi,s}. Then, since |jϵ^|1|\hat{j_{\epsilon}}|\leq 1,

    Jϵuψ,s=Ψsjϵ^u^L2(𝔞,ω)Ψsu^L2(𝔞,ω)=uψ,s,\|J_{\epsilon}u\|_{\psi,s}=\|\Psi^{s}\hat{j_{\epsilon}}\hat{u}\|_{L^{2}(\operatorname{\mathfrak{a}^{\ast}}*,\omega)}\leq\|\Psi^{s}\hat{u}\|_{L^{2}(\operatorname{\mathfrak{a}^{\ast}}*,\omega)}=\|u\|_{\psi,s},

    as desired.

  4. 4.

    By Theorem 1 on page 250 of Evans (1998), for all v𝒮(𝔞)Wv\in\mathcal{S}(\operatorname{\mathfrak{a}})^{W}, lϵvvl_{\epsilon}\ast v\rightarrow v as ϵ0\epsilon\rightarrow 0, in the classical Sobolev space Ws(𝔞)W^{s}(\operatorname{\mathfrak{a}^{\ast}}*), for all s0s\geq 0. Therefore,

    limϵ0𝔞(1+|λ|2)s|(lϵvv)(λ)|2𝑑λ=0,s0,v𝒮(𝔞)W.\lim_{\epsilon\rightarrow 0}\int_{\operatorname{\mathfrak{a}^{\ast}}*}(1+|\lambda|^{2})^{s}|\mathscr{F}(l_{\epsilon}\ast v-v)(\lambda)|^{2}d\lambda=0,\hskip 20.0pt\forall s\geq 0,\;v\in\mathcal{S}(\operatorname{\mathfrak{a}})^{W}.

    Let uCc(K|G|K)u\in C_{c}^{\infty}(K|G|K) and v=1(u^)v=\mathscr{F}^{-1}(\hat{u}). Then v𝒮(𝔞)Wv\in\mathcal{S}(\operatorname{\mathfrak{a}})^{W}, and

    (lϵvv)=(j^ϵ1)u^=(Jϵuu).\mathscr{F}(l_{\epsilon}\ast v-v)=(\hat{j}_{\epsilon}-1)\hat{u}=(J_{\epsilon}u-u)^{\wedge}.

    Hence limϵ0𝔞(1+|λ|2)s|(Jϵuu)(λ)|2𝑑λ=0\lim_{\epsilon\rightarrow 0}\int_{\operatorname{\mathfrak{a}^{\ast}}*}(1+|\lambda|^{2})^{s}|(J_{\epsilon}u-u)^{\wedge}(\lambda)|^{2}d\lambda=0, for all s0s\geq 0. By (2.23),

    𝔞(1+|λ|2)s|(Jϵu\displaystyle\int_{\operatorname{\mathfrak{a}^{\ast}}*}(1+|\lambda|^{2})^{s}|(J_{\epsilon}u u)(λ)|2ω(dλ)\displaystyle-u)^{\wedge}(\lambda)|^{2}\omega(d\lambda)
    𝔞(1+|λ|2)s|(Jϵuu)(λ)|2(C1+C2|λ|p)2𝑑λ\displaystyle\leq\int_{\operatorname{\mathfrak{a}^{\ast}}*}(1+|\lambda|^{2})^{s}|(J_{\epsilon}u-u)^{\wedge}(\lambda)|^{2}(C_{1}+C_{2}|\lambda|^{p})^{2}d\lambda
    κ𝔞(1+|λ|2)s+p|(Jϵuu)(λ)|2𝑑λ,\displaystyle\leq\kappa\int_{\operatorname{\mathfrak{a}^{\ast}}*}(1+|\lambda|^{2})^{s+p}|(J_{\epsilon}u-u)^{\wedge}(\lambda)|^{2}d\lambda,

    for some constant κ>0\kappa>0, and where p=dimN2p=\frac{\dim N}{2}. Thus

    limϵ0𝔞(1+|λ|2)s|(Jϵuu)(λ)|2ω(dλ)=0,s0.\lim_{\epsilon\rightarrow 0}\int_{\operatorname{\mathfrak{a}^{\ast}}*}(1+|\lambda|^{2})^{s}|(J_{\epsilon}u-u)^{\wedge}(\lambda)|^{2}\omega(d\lambda)=0,\hskip 20.0pt\forall s\geq 0.

    By Proposition 2.11 (3),

    Jϵuuψ,s2\displaystyle\|J_{\epsilon}u-u\|_{\psi,s}^{2} =𝔞(1+ψ(λ))s|(Jϵuu)(λ)|2ω(dλ)\displaystyle=\int_{\operatorname{\mathfrak{a}^{\ast}}*}(1+\psi(\lambda))^{s}|(J_{\epsilon}u-u)^{\wedge}(\lambda)|^{2}\omega(d\lambda)
    cψ𝔞(1+|λ|2)s|(Jϵuu)(λ)|2ω(dλ)0\displaystyle\leq c_{\psi}\int_{\operatorname{\mathfrak{a}^{\ast}}*}(1+|\lambda|^{2})^{s}|(J_{\epsilon}u-u)^{\wedge}(\lambda)|^{2}\omega(d\lambda)\rightarrow 0

    as ϵ0\epsilon\rightarrow 0. Since Cc(K|G|K)C_{c}^{\infty}(K|G|K) is dense in Hψ,sH^{\psi,s}, Proposition 4.15 (4) follows.

Acknowledgement.

Many thanks to David Applebaum for his advice and support with writing this paper. Thanks also to the University of Sheffield’s School of Mathematics and Statistics, and to the EPSRC for providing PhD funding while this research was carried out.

References

  • Anker (1990) J.P. Anker. LpL_{p} Fourier multipliers on Riemannian symmetric spaces of the noncompact type. Annals of Mathematics, 132:597–628, 1990.
  • Applebaum (2011a) D. Applebaum. Infinitely divisible central probability measures on compact Lie groups - regularity, semigroups and transition kernels. Ann. Probab., 39(6):2474 – 2496, 2011a.
  • Applebaum (2011b) D. Applebaum. Pseudo differential operators and Markov semigroups on compact Lie groups. J. Math. Anal. Appl., 384(2):331–348, 2011b.
  • Applebaum (2013) D. Applebaum. Aspects of recurrence and transience for Lévy processes in transformation groups and noncompact Riemannian symmetric pairs. J. Aust. Math. Soc., 94(3):304–320, 2013.
  • Applebaum (2014) D. Applebaum. Probability on Compact Lie Groups. Springer, 2014.
  • Applebaum and Cohen (2004) D. Applebaum and S. Cohen. Lévy processes, pseudo-differential operators and Dirichlet forms in the Heisenberg group. Ann. Fac. Sci. Toulouse Math., Ser. 6, 13(2):149–177, 2004.
  • Applebaum and Le Ngan (2020a) D. Applebaum and T. Le Ngan. The positive maximum principle on Lie groups. J. London Math. Soc., 101:136–155, 2020a.
  • Applebaum and Le Ngan (2020b) D. Applebaum and T. Le Ngan. The positive maximum principle on symmetric spaces. Positivity, 24:1519–1533, 2020b.
  • Berg and Forst. (1975) C. Berg and G Forst. Potential Theory on Locally Compact Abelian Groups. Springer, 1975.
  • Böttcher et al. (2013) B. Böttcher, R. Schilling, and J. Wang. Lévy Matters III, Lévy Type Processes: Construction, Approximation and Sample Path Properties. Springer, 2013.
  • Davies (2007) E.B. Davies. Linear Operators and their Spectra. Cambridge Univ. Press, 2007.
  • Elworthy (1988) K.D. Elworthy. Geometric Aspects of Diffusions on Manifolds. Springer, 1988.
  • Ethier and Kurtz (1986) S.N. Ethier and T.G Kurtz. Markov Processes: Characterization and Convergence. Wiley, 1986.
  • Evans (1998) L. Evans. Partial Differential Equations. American Math. Soc., 1998.
  • Gangolli (1964) R. Gangolli. Isotropic infinitely divisible measures on symmetric spaces. Acta Math., 111:213–246, 1964.
  • Gangolli and Varadarajan (1980) R. Gangolli and V.S. Varadarajan. Harmonic Analysis of Spherical Functions on Real Reductive Groups. Springer, 1980.
  • Getoor (1961) R. K. Getoor. Infinitely divisible probabilities on the hyperbolic plane. Pacific J. Math., 11(4):1287–1308, 1961.
  • Harish-Chandra (1958a) Harish-Chandra. Spherical functions on a semi-simple Lie group I. Amer. J. Math., 80(2):241–310, 1958a.
  • Harish-Chandra (1958b) Harish-Chandra. Spherical functions on a semi-simple Lie group II. Amer. J. Math., 80(3):553–613, 1958b.
  • (20) S. Helgason. Supplementary Notes to: S. Helgason: Groups and Geometric Analysis, Math. Surveys and Monographs, Vol.83, Amer. Math. Soc. 2000. http://www-math.mit.edu/~helgason/group-geoanal-vol83.pdf.
  • Helgason (1984) S. Helgason. Groups and Geometric Analysis. Academic Press, Inc., 1984.
  • Helgason (2001) S. Helgason. Differential Geometry, Lie Groups and Symmetric Spaces. AMS; New Ed edition, 2001.
  • Heyer (1977) H. Heyer. Probability Measures on Locally Compact Groups. Springer-Verlag, 1977.
  • Hoh (1998) W. Hoh. Pseudo Differential Operators Generating Markov Processes. Habilitationsschrift, Bielefeld, 1998.
  • Hsu (2002) E.P. Hsu. Stochastic Analysis on Manifolds. American Math. Soc., 2002.
  • Hunt (1956) G.A. Hunt. Semi-groups of measures on Lie groups. Trans. Amer. Math. Soc., 81:264–293, 1956.
  • Jacob (1993) N. Jacob. Further pseudodifferential operators generating Feller semigroups and Dirichlet forms. Revista Matemática Iberoamericana, 9(2):373–407, 1993.
  • Jacob (1994) N. Jacob. A class of Feller semigroups generated by pseudo differential operators. Math. Zeitschrift, 215(1):1432–1823, 1994.
  • Jacob (2001a) N. Jacob. Pseudo Differential Operators and Markov Processes, volume I. Imperial College Press, 2001a.
  • Jacob (2001b) N. Jacob. Pseudo Differential Operators and Markov Processes, volume II. Imperial College Press, 2001b.
  • Knopova et al. (2015) V. Knopova, R. Schilling, and J. Wang. Lower bounds of the Hausdorff dimension for the images of Feller processes. Stat. and Probab. Letters, 97:222–228, 2015.
  • Kunita (2019) H. Kunita. Stochastic Flows and Jump Diffusions. Springer, 2019.
  • Liao (2004) M. Liao. Lévy Processes on Lie groups. Cambridge Univ. Press, 2004.
  • Liao (2018) M. Liao. Invariant Markov Processes Under Lie Group Actions. Springer, 2018.
  • Liao and Wang (2007) M. Liao and L. Wang. Lévy–Khinchin formula and existence of densities for convolution semigroups on symmetric spaces. Potential Analysis, 27(2):133–150, 2007.
  • Ngan (2019) T.L. Ngan. The Positive Maximum Principle on Lie Groups and Symmetric Spaces. PhD thesis, The University of Sheffield, 2019. URL http://etheses.whiterose.ac.uk/id/eprint/22779.
  • Sawyer (2003) P. Sawyer. The Abel transform on symmetric spaces of noncompact type. Amer. Math. Soc. Transl., 210(2):331–355, 2003.
  • Schilling (1998a) R. Schilling. Conservativeness and extensions of Feller semigroups. Potential Analysis, 9:91–104, 1998a.
  • Schilling (1998b) R. Schilling. Conservativeness of semigroups generated by pseudo differential operators. Potential Analysis, 9:91–104, 1998b.
  • Schilling (1998c) R. Schilling. Growth and Hölder conditions for sample paths of Feller processes. Probab. Theory Relat. Fields, 112:565–611, 1998c.
  • Schilling and Schnurr (2015) R. Schilling and A. Schnurr. The symbol associated with the solution of a stochastic differential equation. Electron. J. Probab., 15:1369–1393, 2015.
  • Shewell Brockway (in preparation) R Shewell Brockway. PhD thesis, University of Sheffield, in preparation.
  • Simon (2015) B. Simon. Real Analysis, A Comprehensive Course in Analysis, Part 1. American Math. Soc., 2015.