This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\UseRawInputEncoding

Study of the 𝒆+𝒆𝝅+𝝅𝝎e^{+}e^{-}\to\pi^{+}\pi^{-}\omega process at center-of-mass energies between 4.0 and 4.6 GeV

Abstract

Using 15.615.6 fb1\rm fb^{-1} of e+ee^{+}e^{-} collision data collected at twenty-four center-of-mass energies from 4.04.0 to 4.64.6 GeV with the BESIII detector, the helicity amplitudes of the process e+eπ+πωe^{+}e^{-}\to\pi^{+}\pi^{-}\omega are analyzed for the first time. Born cross section measurements of two-body intermediate resonance states with statistical significance greater than 5σ\sigma are presented, such as f0(500)f_{0}(500), f0(980)f_{0}(980), f2(1270)f_{2}(1270), f0(1370)f_{0}(1370), b1(1235)±b_{1}(1235)^{\pm}, and ρ(1450)±\rho(1450)^{\pm}. In addition, evidence of a resonance state in e+eπ+πωe^{+}e^{-}\to\pi^{+}\pi^{-}\omega production is found. The mass of this state obtained by line shape fitting is about 4.24.2 GeV/c2c^{2}, which is consistent with the production of ψ(4160)\psi(4160) or Y(4220)Y(4220).

Keywords:
Charmonium (-like), Born cross section measurement, helicity amplitude analysis

1 INTRODUCTION

In recent years the study of charmonium-like(XYZXYZ) states has become a hot topic for both experimental and theoretical physics due to their unexpected resonance parameters and exotic decay patterns pdg . Since 20032003, a series of charmonium-like states inconsistent with the quark model, such as the X(3872)X(3872) ref5 , Y(4260)Y(4260) ref6 and Zc(3900)Z_{c}(3900) ref7 ; ref8 , have been observed. In particular, the vector charmonium-like state Y(4260)Y(4260) was observed by the BaBar experiment in e+eγISRπ+πJ/ψe^{+}e^{-}\to\gamma_{\rm ISR}\pi^{+}\pi^{-}J/\psi ref6 and was confirmed by the CLEO and Belle experiments ref9 ; ref10 . In 20172017, the BESIII experiment performed a dedicated scan of e+eπ+πJ/ψe^{+}e^{-}\to\pi^{+}\pi^{-}J/\psi and observed two structures in this energy region. The one with the mass M=(4222.0±3.1±1.4)M=(4222.0\pm 3.1\pm 1.4) MeV/c2c^{2} ref11 was regarded as the previously observed Y(4260)Y(4260), and renamed as Y(4220)Y(4220). The Y(4220)Y(4220) was then confirmed in the Born cross section line shapes of e+eωχc0e^{+}e^{-}\to\omega\chi_{c0} ref12 , π+πhc\pi^{+}\pi^{-}h_{c} ref13 , π+πψ(3686)\pi^{+}\pi^{-}\psi(3686) ref14 , and π+D0D\pi^{+}D^{0}D^{*-} ref15 measured by the BESIII experiment. The other structure was identified with the Y(4360)Y(4360), which was previously observed in e+eγISRπ+πψ(3686)e^{+}e^{-}\to\gamma_{\rm ISR}\pi^{+}\pi^{-}\psi(3686) by the BaBar experiment in 20072007 ref16 . Theoretically, many assignments, such as a tetraquark state ref3 ; ref4 ; a1 ; a2 ; a3 ; a4 ; a5 ; a6 , a hybrid state ref2 ; b1 ; b2 ; b3 ; b4 , a hadro-charmonium state c1 ; c2 ; c3 ; c4 , a molecular state d1 ; d2 ; d3 ; d4 , a kinematic effect e1 ; e2 ; e3 ; e4 , a baryonium state f1 , etc., were proposed to explain the YY state.

The traditional charmonium states, such as ψ(4160)\psi(4160) and ψ(4040)\psi(4040), were observed in e+ehadronse^{+}e^{-}\to\rm hadrons dasp ; bes2 ; rvue and B+K+μ+μB^{+}\to K^{+}\mu^{+}\mu^{-} psi4160 . However, their decays into light hadron final states have never been observed. Many searches have been performed for these charmonium(-like) states produced in e+ee^{+}e^{-} collisions and decaying to light hadron final states, including KS0K±ππ0/ηK_{S}^{0}K^{\pm}\pi^{\mp}\pi^{0}/\eta kkpipi0 , KS0K±πK_{S}^{0}K^{\pm}\pi^{\mp} kkpi , 2(pp¯)2(p\bar{p}) 4p , and π+ππ+ππ0\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0} 4040 . Only evidence for ψ(4040)π+ππ+ππ0\psi(4040)\to\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0} has been reported.

In this paper, we measure the Born cross sections of e+eπ+πωe^{+}e^{-}\to\pi^{+}\pi^{-}\omega at 24 center-of-mass (c.m.) energies between 4.0 and 4.6 GeV, to search for the charmonium(-like) states decaying into light hadron final sates. Furthermore, we study intermediate states in the e+eπ+πωe^{+}e^{-}\to\pi^{+}\pi^{-}\omega process via partial wave analysis (PWA).

2 BESIII DETECTOR AND MONTE CARLO SIMULATION

The BESIII detector is a magnetic spectrometer BESIII located at the Beijing Electron Positron Collider (BEPCII)  BEPCII . The cylindrical core of the BESIII detector consists of a helium-based multilayer drift chamber (MDC), a plastic scintillator time-of-flight system (TOF), and a CsI(Tl) electromagnetic calorimeter (EMC), which are all enclosed in a superconducting solenoidal magnet providing a 1.01.0 T magnetic fielddetvis . The solenoid is supported by an octagonal flux-return yoke with resistive plate counter muon identifier modules interleaved with steel. The acceptance of charged particles and photons is 93%93\% over 4π4\pi solid angle. The charged-particle momentum resolution at 1GeV/c1~{}{\rm GeV}/c is 0.5%0.5\%, and the specific ionization energy loss (dE/dx{\rm d}E/{\rm d}x) resolution is 6%6\% for the electrons from Bhabha scattering. The EMC measures photon energies with a resolution of 2.5%2.5\% (5%5\%) at 11 GeV in the barrel (end cap) region. The time resolution of the TOF barrel part is 6868 ps, while that of the end cap part is 110110 ps. The end cap TOF system was upgraded in 20152015 with multi-gap resistive plate chamber technology, providing a time resolution of 6060 ps tof ; about 84% of the data used here benefits from this improvement.

This analysis uses data sets taken at twenty-four c.m. energies ranging from 4.0 to 4.6 GeV. For each data set, the c.m. energy is calibrated by the di-muon process e+e(γISR,FSR)μ+μe^{+}e^{-}\to(\gamma_{\rm ISR,FSR})\mu^{+}\mu^{-} mumu , where γISR,FSR\gamma_{\rm ISR,FSR} stands for possible initial state radiative (ISR) or final state radiative (FSR) photons. The integrated luminosity (int\mathcal{L}_{\rm int}) is determined using large-angle Bhabha events rlum , and the total integrated luminosity of all data sets is 15.615.6 fb-1.

The BESIII detector is modeled with a Monte Carlo (MC) simulation using the software framework BOOST boost , based on GEANT4 geant4 , which includes the geometric and material description of the BESIII detector geo1 ; geo2 , the detector response, and digitization models, as well as the detector running conditions and performances. Simulated MC samples generated by a phase space (PHSP) model with kkmc kkmc are used for efficiency corrections in the PWA, and the TOY MC samples with detector simulation generated by ConExc besevtgen are used to determine detection efficiencies used for the Born cross-section determinations. The TOY MC events are generated based on helicity amplitude model with parameters fixed to the PWA results. The inclusive MC sample generated at s=4.178\sqrt{s}=4.178 GeV with kkmc kkmc is used to study the potential backgrounds.

3 EVENT SELECTION AND BACKGROUND ANALYSIS

For e+eπ+πωe^{+}e^{-}\to\pi^{+}\pi^{-}\omega, ωπ+ππ0\omega\to\pi^{+}\pi^{-}\pi^{0}, π0γγ\pi^{0}\to\gamma\gamma, the final state is characterized by four charged pion tracks and two photons. For each charged track, the distance of closest approach to the interaction point is required to be within 1010 cm in the beam direction and within 11 cm in the plane perpendicular to the beam direction. The track polar angle (θ\theta) must be within the fiducial volume of the MDC, i.e.i.e., |cosθ|<0.93|\rm{\cos\theta}|<0.93. Particle identification (PID) for charged tracks combines the dEE/dxx and TOF information to form likelihoods (h)(h=p,K,π)\mathcal{L}(h)~{}(h=p,K,\pi) for each particle hypothesis. Momentum-dependent PID is used to improve detection efficiency. Charged tracks with momentum less than 0.9 GeV/cc, are identified as pion candidates if their likelihoods satisfy (π)>(K){\mathcal{L}}(\pi)>{\mathcal{L}}(K) and (π)>(p){\mathcal{L}}(\pi)>{\mathcal{L}}(p). Those with momentum greater than 0.90.9 GeV/cc are assigned as pion candidates with no PID requirement.

Isolated EMC showers are considered as photon candidates. The deposited energy of each shower must be above 2525 MeV in the barrel region (|cosθ|<0.80|\cos\theta|<0.80) and 5050 MeV in the end cap region (0.86<|cosθ|<0.920.86<|\cos\theta|<0.92). Showers are required to occur within 700700 ns of the event start time to suppress noise. Photon pairs with an invariant mass in the interval 0.110.150.11\sim 0.15 GeV/c2c^{2} are taken as π0\pi^{0} candidates.

To reduce potential peaking backgrounds from e+eγωe^{+}e^{-}\to\gamma\omega with γ\gamma converting to e+ee^{+}e^{-}, the EEMC/p\rm E_{EMC}/\it p of the pion candidate from non-ω\omega decay is required to be less than 0.90.9, where p\it p and EEMC\rm E_{EMC} are momentum and EMC energy deposit associated with the track, respectively. To suppress the backgrounds from e+eKS0π+ππ0e^{+}e^{-}\to K_{S}^{0}\pi^{+}\pi^{-}\pi^{0} and e+eχc0ωe^{+}e^{-}\to\chi_{c0}\omega xc0 , the invariant mass of all four π+π\pi^{+}\pi^{-} combinations are required to be outside the range of (0.490.49, 0.510.51) and (3.393.39, 3.443.44) GeV/c2c^{2}, respectively. To further suppress the background and improve the mass resolution, we perform a five-constraint (55C) kinematic fit to the known initial four-momentum and π0\pi^{0} mass pdg . The χ5C2\chi^{2}_{\rm 5C} under the hypothesis of e+eπ+ππ+ππ0e^{+}e^{-}\to\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0} with π0γγ\pi^{0}\to\gamma\gamma is required to be less than 6060. If more than one combination satisfies the above selection requirements, only the one with the smallest χ5C2\chi^{2}_{\rm 5C} is kept. To suppress background contribution from the final states with an additional photon, the χ5C2\chi^{2}_{\rm 5C} under the π+ππ+ππ0\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0} hypothesis is required to be less than that under the π+ππ+ππ0γ\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0}\gamma hypothesis: χ5C2(π+ππ+ππ0)<χ5C2(π+ππ+ππ0γ)\chi^{2}_{\rm 5C}(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0})<\chi^{2}_{\rm 5C}(\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0}\gamma).

In each event, there are four π+ππ0\pi^{+}\pi^{-}\pi^{0} combinations; the one with the invariant mass Mπ+ππ0M_{\rm\pi^{+}\pi^{-}\pi^{0}} closest to the known ω\omega mass pdg is chosen as the ω\omega candidate. This may distort the combinatoric background shape. A study of an e+eπ+ππ+ππ0e^{+}e^{-}\to\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0} MC sample leads to a smooth distribution of the invariant mass of combinatoric π+ππ0\pi^{+}\pi^{-}\pi^{0} that can be described by a polynomial function. A study based on the signal MC sample shows that the ratio of the yield of combinatoric π+ππ0\pi^{+}\pi^{-}\pi^{0} background to the signal yield is 1.41.4% and results in a negligible difference of 0.10.1% on the fitted signal yield. Figure 1 shows the Mπ+ππ0M_{\rm\pi^{+}\pi^{-}\pi^{0}} distribution of the accepted events from the data sample taken at s=4.178\sqrt{s}=4.178 GeV. To extract the number of signal events, an unbinned extended maximum-likelihood fit is performed on the Mπ+ππ0M_{\rm\pi^{+}\pi^{-}\pi^{0}} distribution. The signal shape is a MC-derived shape convolved with an additional Gaussian smearing function, and the background shape is a second-order Chebychev polynomial function. The signal yields are listed in Table 3. Based on the Mπ+ππ0M_{\rm\pi^{+}\pi^{-}\pi^{0}} resolution from fitting, the ω\omega signal region is defined as Mπ+ππ0(0.76,0.82)M_{\pi^{+}\pi^{-}\pi^{0}}\in(0.76,0.82) GeV/c2c^{2}, while the ω\omega sideband regions are defined as the regions Mπ+ππ0(0.68,0.74)M_{\pi^{+}\pi^{-}\pi^{0}}\in(0.68,0.74) GeV/c2c^{2} and Mπ+ππ0(0.84,0.90)M_{\pi^{+}\pi^{-}\pi^{0}}\in(0.84,0.90) GeV/c2c^{2}.

Refer to caption
Figure 1: Distribution of Mπ+ππ0M_{\rm{\pi^{+}\pi^{-}\pi^{0}}} for events selected at s=4.1780\sqrt{s}=4.1780 GeV (black points with error bars). The blue solid curve is the total fit result, the red dashed curve is the fitted signal shape and the green dashed curve is the fitted background shape. The region between two dashed pink arrows is the ω\omega signal region, while the regions between the pairs of neighboring dashed blue arrows are the ω\omega sideband regions.

4 AMPLITUDE ANALYSIS

4.1 Kinematic variable and helicity angles

The π+πω\pi^{+}\pi^{-}\omega final sate is produced from the e+ee^{+}e^{-} annihilation into a virtual photon, followed by hadronization into the π+(p1)π(p2)ω(p3)\pi^{+}(p_{1})\pi^{-}(p_{2})\omega(p_{3}) final sate, where pip_{i} (i=i= 11, 22, 33) denote particle momenta after the kinematic fit. The π+πω\pi^{+}\pi^{-}\omega final state may be produced non-resonantly, or via an intermediate resonance and subsequent decay; the possible resonance diagrams are shown in Fig. 2.

The amplitudes for these diagrams are constructed using the helicity formalism. Taking the first diagram in Fig. 2 as an example, one may define the helicity rotation angles as in Fig. 3. For resonance R1R_{1} the polar angle (θ[12][123]\theta_{[12]}^{[123]}) is defined as the angle spanned between the R1R_{1} momentum and the positron beam direction, the azimuthal angle (ϕ[12][123]\phi_{[12]}^{[123]}) is the angle between the R1R_{1} production plane formed by the R1R_{1} momentum and the zz axis and the plane formed by the xx and zz axes. Here, xyzxyz denotes the laboratory coordinates. The helicity amplitude for γR1(λR)ω(λ3)\gamma^{*}\to R_{1}(\lambda_{R})\omega(\lambda_{3}) is denoted by FλR,λ3γF^{\gamma^{*}}_{\lambda_{R},\lambda_{3}} with specified helicity λR\lambda_{R} and λ3\lambda_{3}. For the R1π+πR_{1}\to\pi^{+}\pi^{-} decay, the azimuthal angle (ϕ[1][12]\phi_{[1]}^{[12]}) is defined as the angle between the R1R_{1} production plane and its decay plane, formed by the momenta of π+π\pi^{+}\pi^{-} from R1R_{1}. After boosting the two pion momenta to the R1R_{1} rest frame, they are still located in the same decay plane. The polar angle (θ[1][12]\theta_{[1]}^{[12]}) for π+\pi^{+} is defined as the angle between the π+\pi^{+} and R1R_{1} momenta in the R1R_{1} rest frame. The helicity amplitude of this decay is denoted by F0,0R1F^{R_{1}}_{0,0}. Helicity angles for the processes (b) and (c) are defined analogously. Table 1 summarizes the helicity angles and amplitudes for the three processes.

Refer to caption

Figure 2: The Feynman diagrams of quasi-two body decays in the process e+eπ+πωe^{+}e^{-}\to\pi^{+}\pi^{-}\omega with different subprocesses: (a) e+eR1ω,R1π+πe^{+}e^{-}\to R_{1}\omega,~{}R_{1}\to\pi^{+}\pi^{-}; (b) e+eπR2+,R2+π+ωe^{+}e^{-}\to\pi^{-}R_{2}^{+},~{}R_{2}^{+}\to\pi^{+}\omega; and (c) e+eπ+R2,R2πωe^{+}e^{-}\to\pi^{+}R_{2}^{-},~{}R_{2}^{-}\to\pi^{-}\omega, where R1R_{1} and R2±R_{2}^{\pm} denote intermediate states.
Refer to caption

Figure 3: Definitions of helicity rotation angles for the process e+eR1ω,R1π+πe^{+}e^{-}\to R_{1}\omega,~{}R_{1}\to\pi^{+}\pi^{-}.
Table 1: Variable definitions for the helicity angles and helicity amplitudes of the sequential processes (a), (b) and (c) shown in Fig. 2. The λi\lambda_{i} denotes the helicity value for the corresponding particle, and mm denotes the spin zz projection of virtual photon (γ\gamma^{*}) in electron-positron annihilation.
Process Helicity angle Helicity amplitude
e+eγ(m)R1(λR)ω(λ3)e^{+}e^{-}\to\gamma^{*}(m)\to R_{1}(\lambda_{R})\omega(\lambda_{3}) θ[12][123],ϕ[12][123]\theta_{[12]}^{[123]},\phi_{[12]}^{[123]} FλR,λ3γF^{\gamma^{*}}_{\lambda_{R},\lambda_{3}}
R1π+πR_{1}\to\pi^{+}\pi^{-} θ[1][12],ϕ[1][12]\theta_{[1]}^{[12]},\phi_{[1]}^{[12]} F0,0R1F^{R_{1}}_{0,0}
e+eγ(m)R2+(λ+)πe^{+}e^{-}\to\gamma^{*}(m)\to R_{2}^{+}(\lambda_{+})\pi^{-} θ[13][123],ϕ[13][123]\theta_{[13]}^{[123]},\phi_{[13]}^{[123]} Fλ+,0γF^{\gamma^{*}}_{\lambda_{+},0}
R2+ω(λ3)π+R_{2}^{+}\to\omega(\lambda_{3}^{{}^{\prime}})\pi^{+} θ[3][13],ϕ[3][13]\theta_{[3]}^{[13]},\phi_{[3]}^{[13]} Fλ3,0R2+F^{R_{2}^{+}}_{\lambda_{3}^{{}^{\prime}},0}
e+eγ(m)R2(λ)π+e^{+}e^{-}\to\gamma^{*}(m)\to R_{2}^{-}(\lambda_{-})\pi^{+} θ[23][123],ϕ[23][123]\theta_{[23]}^{[123]},\phi_{[23]}^{[123]} Fλ,0γF^{\gamma^{*}}_{\lambda_{-},0}
R2ω(λ3′′)πR_{2}^{-}\to\omega(\lambda_{3}^{{}^{\prime\prime}})\pi^{-} θ[3][23],ϕ[3][23]\theta_{[3]}^{[23]},\phi_{[3]}^{[23]} Fλ3′′,0R2F^{R_{2}^{-}}_{\lambda_{3}^{{}^{\prime\prime}},0}

4.2 Decay amplitude

The decay amplitude for the process (a) is

A1(m,λ3)=λRFλR,λ3γDm,λRλ31(ϕ[12][123],θ[12][123],0)BW(m12)F0,0R1DλR,0J(ϕ[1][12],θ[1][12],0),A_{1}(m,\lambda_{3})=\sum_{\lambda_{R}}F^{\gamma^{*}}_{\lambda_{R},\lambda_{3}}D^{1*}_{m,\lambda_{R}-\lambda_{3}}(\phi_{[12]}^{[123]},\theta_{[12]}^{[123]},0)BW(m_{12})F^{R_{1}}_{0,0}D^{J*}_{\lambda_{R},0}(\phi_{[1]}^{[12]},\theta_{[1]}^{[12]},0), (1)

where Dm,λJ(ϕ,θ,0)D^{J}_{m,\lambda}(\phi,\theta,0) is the Wigner DD-function, JJ is the spin quantum number of resonance R1R_{1}, and BWBW denotes the Breit-Wigner function.

The decay amplitude for the process (b) is

A2(m,λ3)\displaystyle A_{2}(m,\lambda_{3}) =\displaystyle= λ+,λ3Fλ+,0γDm,λ+1(ϕ[13][123],θ[13][123],0)BW(m13)Fλ3,0R2+Dλ+,λ3J(ϕ[3][13],θ[3][13],0)\displaystyle\sum_{\lambda_{+},\lambda_{3}^{\prime}}F^{\gamma^{*}}_{\lambda_{+},0}D^{1*}_{m,\lambda_{+}}(\phi_{[13]}^{[123]},\theta_{[13]}^{[123]},0)BW(m_{13})F^{R_{2}^{+}}_{\lambda_{3}^{\prime},0}D^{J*}_{\lambda_{+},\lambda_{3}^{\prime}}(\phi_{[3]}^{[13]},\theta_{[3]}^{[13]},0) (2)
×\displaystyle\times Dλ3,λ31(ϕ3,θ3,0),\displaystyle D^{1}_{\lambda_{3}^{\prime},\lambda_{3}}(\phi_{3}^{\prime},\theta_{3}^{\prime},0),

where JJ is the spin of R2+R_{2}^{+}. Since the ω\omega helicity defined in the R2+R_{2}^{+} helicity system is different from that defined in the process (a), one needs to perform a rotation by the angles (θ3,ϕ3\theta_{3}^{\prime},\phi_{3}^{\prime}) to align the ω\omega helicity to coincide with that in the process (a). This issue has been addressed in the analyses lhcb ; belle and derived in detail in Ref. pingrg .

The decay amplitude for the process (c) reads

A3(m,λ3)\displaystyle A_{3}(m,\lambda_{3}) =\displaystyle= λ,λ3′′Fλ,0γDm,λ1(ϕ[23][123],θ[23][123],0)BW(m23)Fλ3′′,0R2Dλ,λ3′′J(ϕ[3][23],θ[3][23],0)\displaystyle\sum_{\lambda_{-},\lambda_{3}^{\prime\prime}}F^{\gamma^{*}}_{\lambda_{-},0}D^{1*}_{m,\lambda_{-}}(\phi_{[23]}^{[123]},\theta_{[23]}^{[123]},0)BW(m_{23})F^{R_{2}^{-}}_{\lambda_{3}^{\prime\prime},0}D^{J*}_{\lambda_{-},\lambda_{3}^{\prime\prime}}(\phi_{[3]}^{[23]},\theta_{[3]}^{[23]},0) (3)
×\displaystyle\times Dλ3′′,λ31(ϕ3′′,θ3′′,0),\displaystyle D^{1}_{\lambda_{3}^{\prime\prime},\lambda_{3}}(\phi_{3}^{\prime\prime},\theta_{3}^{\prime\prime},0),

where the Wigner Dλ3′′,λ31(ϕ3′′,θ3′′,0)D^{1}_{\lambda_{3}^{\prime\prime},\lambda_{3}}(\phi_{3}^{\prime\prime},\theta_{3}^{\prime\prime},0) function is used to align the ω\omega helicity to coincide with that defined in the process (a).

For the direct three-body process e+eπ+πωe^{+}e^{-}\to\pi^{+}\pi^{-}\omega, the helicity amplitude is written as chung2 :

A4(m,λ3)=μFμ,λ3Dm,μ1(α,β,γ),A_{4}(m,\lambda_{3})=\sum_{\mu}{F_{\mu,\lambda_{3}}D^{1*}_{m,\mu}(\alpha,\beta,\gamma)}, (4)

where μ\mu is the zz component of the spin JJ of the virtual photon in the helicity system, and m(λ3)m(\lambda_{3}) is the helicity value for γ(ω)\gamma^{*}(\omega). Here, α\alpha, β\beta, and γ\gamma are the Euler angles as defined in chung2 (see Fig. 4). Fμ,λ3F_{\mu,\lambda_{3}} is the helicity amplitude; parity conservation requires F±,λ3=F±,λ3F_{\pm,\lambda_{3}}=-F_{\pm,-\lambda_{3}} and F0,λ3=F0,λ3F_{0,\lambda_{3}}=F_{0,-\lambda_{3}}. Parity conservation also requires F±,λ3(Ei)=F±,λ3(Ei)F_{\pm,\lambda_{3}}(E_{i})=-F_{\pm,-\lambda_{3}}(E_{i}) and F0,λ3(Ei)=F0,λ3(Ei)F_{0,\lambda_{3}}(E_{i})=F_{0,-\lambda_{3}}(E_{i}), where Ei(i=1,2,3)E_{i}(i=1,2,3) corresponds to the energy of the final state π+πω\pi^{+}\pi^{-}\omega.

Refer to caption

Figure 4: The illustration of rotations to carry the ω\omega, π+\pi^{+} and π\pi^{-} orientations from the rest frame xyzxyz to the three-body helicity system XYZXYZ by the three Euler angles α\alpha, β\beta and γ\gamma.

One usually expands the helicity amplitudes in terms of the partial waves for the two-body decay in the LSLS-coupling scheme chung2 . For a spin-JJ particle decay Js+σJ\to s+\sigma, it follows

Fλ,νJ=ls(2l+12J+1)1/2l0Sδ|Jδsλσν|SδglSrlBl(r)Bl(r0),F^{J}_{\lambda,\nu}=\sum_{ls}\left({2l+1\over 2J+1}\right)^{1/2}\langle l0S\delta|J\delta\rangle\langle s\lambda\sigma-\nu|S\delta\rangle g_{lS}r^{l}{B_{l}(r)\over B_{l}(r_{0})}, (5)

where λ\lambda and ν\nu are the helicities of two final-state particles ss and σ\sigma with δ=λν\delta=\lambda-\nu, and glSg_{lS} is a coupling constant, SS is the total spin 𝐒=𝐬+σ{\bf S=s+\sigma}, ll is the orbital angular momentum, r=|𝐫|r=|{\bf r}|, where 𝐫{\bf r} is the relative momentum between the two daughter particles in their mother rest frame, 𝐫0{\bf r}_{0} corresponds to the value at the resonance’s known mass. Bl(r)B_{l}(r) is the Blatt-Weisskopf factor chung2 , which suppresses the contributions with higher angular momentum. The Blatt-Weisskopf factors up to ll = 44 are

B0(r)/B0(r0)\displaystyle B_{0}(r)/B_{0}(r_{0}) =\displaystyle= 1,\displaystyle 1,
B1(r)/B1(r0)\displaystyle B_{1}(r)/B_{1}(r_{0}) =\displaystyle= 1+(dr0)21+(dr)2,\displaystyle\frac{\sqrt{1+(dr_{0})^{2}}}{\sqrt{1+(dr)^{2}}},
B2(r)/B2(r0)\displaystyle B_{2}(r)/B_{2}(r_{0}) =\displaystyle= 9+3(dr0)2+(dr0)49+3(dr)2+(dr)4,\displaystyle\frac{\sqrt{9+3(dr_{0})^{2}+(dr_{0})^{4}}}{\sqrt{9+3(dr)^{2}+(dr)^{4}}}, (6)
B3(r)/B3(r0)\displaystyle B_{3}(r)/B_{3}(r_{0}) =\displaystyle= 225+45(dr0)2+6(dr0)4+(dr0)6225+45(dr)2+6(dr)4+(dr)6,\displaystyle\frac{\sqrt{225+45(dr_{0})^{2}+6(dr_{0})^{4}+(dr_{0})^{6}}}{\sqrt{225+45(dr)^{2}+6(dr)^{4}+(dr)^{6}}},
B4(r)/B4(r0)\displaystyle B_{4}(r)/B_{4}(r_{0}) =\displaystyle= 11025+1575(dr0)2+135(dr0)4+10(dr0)6+(dr0)811025+1575(dr)2+135(dr)4+10(dr)6+(dr)8,\displaystyle\frac{\sqrt{11025+1575(dr_{0})^{2}+135(dr_{0})^{4}+10(dr_{0})^{6}+(dr_{0})^{8}}}{\sqrt{11025+1575(dr)^{2}+135(dr)^{4}+10(dr)^{6}+(dr)^{8}}},

where dd is a constant fixed to 33 GeV-1 for the meson final states lhcb .

The differential cross section is given by

dσ=12m,λ3Ω(λ3)|j=14Aj(m,λ3)|2dΦ,d\sigma=\frac{1}{2}\sum_{m,\lambda_{3}}\Omega(\lambda_{3})\left|\sum_{j=1}^{4}A_{j}(m,\lambda_{3})\right|^{2}d\Phi, (7)

where m=±1m=\pm 1 due to the polarization of the virtual photon being produced from e+ee^{+}e^{-} annihilation, and dΦd\Phi is the element of standard three-body PHSP. The Ω(λ3)=|𝜺(λ3)(𝐪𝟏×𝐪𝟐)|2\Omega(\lambda_{3})=|{\boldsymbol{\varepsilon}}(\lambda_{3})\cdot({\bf q_{1}}\times{\bf q_{2}})|^{2} is the ω\omega decay matrix element into the π+ππ0\pi^{+}\pi^{-}\pi^{0} final states, where 𝜺{\boldsymbol{\varepsilon}} is the ω\omega polarization vector, and 𝐪𝟏(𝐪𝟐)\bf q_{1}(q_{2}) is the momentum vector for π+(π)\pi^{+}(\pi^{-}) from the ω\omega decay. Here we factor out the BWBW function describing the ω\omega line shape into the MC integration when applying the amplitude analysis to the data events.

4.3 Simultaneous fit

The relative magnitudes and phases of the coupling constants are determined by an unbinned maximum likelihood fit. The joint probability density function (PDF) for the events observed in the data sample is defined as

=i=1NPi(p1,p2,p3,p4,p5),\mathcal{L}=\prod_{i=1}^{N}P_{i}(p_{1},p_{2},p_{3},p_{4},p_{5}), (8)

where pip_{i} (ii = 11, 22, …, 55) denotes the four-vector momenta of the final state particles, and PiP_{i} is a probability to produce the ii-th event. The normalized PiP_{i} is calculated from the differential cross section

Pi=(dσ/dΦ)iσMC,P_{i}={(d\sigma/d\Phi)_{i}\over\sigma_{\rm MC}}, (9)

where σMC\sigma_{\rm MC} is the normalization factor which is calculated with a large MC sample as

σMC1NMCi=1NMC(dσdΦ)i,\sigma_{\rm MC}\approx{1\over N_{\rm MC}}\sum_{i=1}^{N_{\rm MC}}\left({d\sigma\over d\Phi}\right)_{i}, (10)

where NMCN_{\rm MC} is the number of events retained with the same selection criteria as for data sample.

For technical reasons, rather than maximizing \mathcal{L}, S=lnS=-\ln\mathcal{L} is minimized using the package MINUIT minuit . To subtract the contribution of background, the ln\ln\mathcal{L} function is replaced with

ln=lndatalnbkg,\ln\mathcal{L}=\ln\mathcal{L}_{\textrm{data}}-\ln\mathcal{L}_{\textrm{bkg}}, (11)

where data\mathcal{L}_{\textrm{data}} and bkg\mathcal{L}_{\textrm{bkg}} are the joint PDFs for data and background, respectively. The background events are obtained from the ω\omega sideband regions mentioned in Section 3.

A simultaneous fit is performed to data sets collected at different c.m. energies. The common parameters for different data samples in this fit are the masses, widths, and Flatte´\rm Flatt\acute{e} parameters for the resonances. The total function is taken as the sum of individual ones, i.e.i.e.,

S=j=1Mlnj.S^{{}^{\prime}}=-\sum_{j=1}^{M}\ln{\mathcal{L_{\textrm{j}}}}. (12)

The signal yield for the ii-th resonance, NiN_{i}, can be estimated by scaling its cross section ratio RiR_{i} to the number of net events

Ni=Ri(NobsNbkg), with Ri=σiσtot,N_{i}=R_{i}(N_{\textrm{obs}}-N_{\textrm{bkg}}),\textrm{~{}with~{}}R_{i}={\sigma_{i}\over\sigma_{\textrm{tot}}}, (13)

where σi\sigma_{i} is the cross section for the ii-th resonance as defined in Eq.(7), σtot\sigma_{\textrm{tot}} is the total cross section, and NobsN_{\textrm{obs}} and NbkgN_{\textrm{bkg}} are the numbers of observed events and background events, respectively. In the simultaneous fit, the background events are taken from the ω\omega sideband regions, and the number NbkgN_{\rm bkg} is estimated with the background PDF with the ω\omega signal region (see Fig. 1).

The statistical uncertainty, ΔNi\Delta N_{i}, associated with the signal yield NiN_{i}, is estimated according to the error propagation formula using the covariance matrix, VV, obtained in the simultaneous fit, i.e.

ΔNi2=m=1Nparsn=1Npars(NiXmNiXn)𝐗=μVmn(𝐗),\Delta N_{i}^{2}=\sum_{m=1}^{N_{\textrm{pars}}}\sum_{n=1}^{N_{\textrm{pars}}}\left({\partial N_{i}\over\partial X_{m}}{\partial N_{i}\over\partial X_{n}}\right)_{\bf{X}={\bf\mu}}V_{mn}({\bf X}), (14)

where 𝐗{\bf X} is a vector containing parameters, and μ{\bf\mu} contains the fitted values for all parameters. The sum runs over all NparsN_{\textrm{pars}} parameters.

4.4 Intermediate states in π+πω\pi^{+}\pi^{-}\omega final state

In the π+π\pi^{+}\pi^{-} and ωπ±\omega\pi^{\pm} mass spectrum, the f0(500)f_{0}(500), f0(980)f_{0}(980), f2(1270)f_{2}(1270), f0(1370)f_{0}(1370), b1(1235)±b_{1}(1235)^{\pm}, ρ(1450)±\rho(1450)^{\pm}, and ρ(1570)±\rho(1570)^{\pm} resonances are included in the amplitude model. The f0(980)f_{0}(980) line shape is parameterized by the Flatte´\rm Flatt\acute{e} formula:

BW1(s)=1sM2+i(g1ρππ(s)+g2ρKK¯(s)),BW_{1}(s)={1\over s-M^{2}+i(g_{1}\rho_{\pi\pi}(s)+g_{2}\rho_{K\bar{K}}(s))}, (15)

where ρ(s)=2k/s\rho(s)=2k/\sqrt{s} and kk is the momentum of the π\pi or KK in the resonance rest frame, g1g_{1} and g2/g1g_{2}/g_{1} are fixed to the measured values (0.138±0.010)(0.138\pm 0.010) GeV2\rm GeV^{2} and 4.45±0.254.45\pm 0.25  besiia ; besiib , respectively. MM is the mass of f0(980)f_{0}(980) taken from the PDG pdg .

For the BW2BW_{2} function of a wide resonance, e.g., f0(500)f_{0}(500), there are many parametrizations for the energy-dependent width besiia ; besiib , and we take the one used by the E791 Collaboration in the nominal fit,

BW2(s)=1sm02+isΓ,withΓ=14mπ2sΓ0,BW_{2}(s)={1\over s-m_{0}^{2}+i\sqrt{s}\Gamma},\;{\rm with}\;\Gamma=\sqrt{1-{4m_{\pi}^{2}\over s}}\Gamma_{0}, (16)

where m0m_{0} is the nominal mass of the resonance, and Γ0\Gamma_{0} is its width. For other resonances, such as b1(1235)±b_{1}(1235)^{\pm}, f0(1370)f_{0}(1370), f2(1270)f_{2}(1270), ρ(1450)±\rho(1450)^{\pm}, ρ(1570)±\rho(1570)^{\pm}, their line shapes are described with the BW3BW_{3} function,

BW3(s)=1sm02+isΓ,BW_{3}(s)={1\over s-m_{0}^{2}+i\sqrt{s}\Gamma}, (17)

where the widths are fixed to the individual PDG values pdg .

Based on the signal events in the π+ππ0\pi^{+}\pi^{-}\pi^{0} mass spectrum, we select twelve c.m. energy points with relatively large statistics. We divide these selected points into two groups. Group A includes the data sets taken at s\sqrt{s} = 4.00764.0076, 4.17804.1780, 4.18904.1890, 4.19904.1990, 4.20934.2093, and 4.21884.2188 GeV, and group B includes s\sqrt{s} = 4.22634.2263, 4.23584.2358, 4.24394.2439, 4.25804.2580, 4.26684.2668, and 4.41564.4156 GeV. To check the significance of each resonance and determine the nominal solution, a simultaneous fit is performed to the data from a given group. In each group, the cross sections of these intermediate states are regarded to be energy-dependent, so the parameters responsible for the virtual photon γ\gamma^{*} coupling to a given state are allowed to vary in the fit for various energy points, while the coupling constant parameters for the subsequent decay are taken as the common parameters for all energies. The conjugate modes share the same coupling constants. The masses, widths or Flatte´\rm Flatt\acute{e} parameters for the resonances of f0(500)f_{0}(500), f0(980)f_{0}(980), f2(1270)f_{2}(1270), f0(1370)f_{0}(1370), ρ(1450)±\rho(1450)^{\pm}, and ρ(1570)±\rho(1570)^{\pm} are fixed to the measured values from PDG pdg , as given in Table 2. The mass and width of b1(1235)±b_{1}(1235)^{\pm} are floated due to large uncertainties. Then its nominal solution is fixed as the fitted result.

The significance of each intermediate state is estimated by the changes of 2ln-2\ln\mathcal{L} and the number of degrees of freedom (NDF) after removing it from the simultaneous fit. We take the intermediate states with statistical significances greater than 5σ\sigma in two groups as the nominal solution, including f0(500)f_{0}(500), f0(980)f_{0}(980), f2(1270)f_{2}(1270), f0(1370)f_{0}(1370), b1(1235)±b_{1}(1235)^{\pm}, and ρ(1450)±\rho(1450)^{\pm}, as shown in Fig. 5. It is found that the contributions from f0(500)f_{0}(500) and b1(1235)±b_{1}(1235)^{\pm} are the most significant, as shown in the Mπ+πM_{\pi^{+}\pi^{-}} and Mωπ±M_{\omega\pi^{\pm}} spectra, respectively. The statistical significances for various intermediate resonances are shown in Table 2.

Table 2: Masses, widths and statistical significances for various intermediate resonances in e+eπ+πωe^{+}e^{-}\to\pi^{+}\pi^{-}\omega.
Resonance Mass (MeV/c2c^{2}) Width (MeV) Group A Group B
f0(500)f_{0}(500) 507 (400\sim550) 475 (400\sim700) 27.8σ\sigma 22.8σ\sigma
f0(980)f_{0}(980) 990±20990\pm 20 - 10.9σ\sigma 6.4σ\sigma
f0(1370)f_{0}(1370) 1350±\pm150 200±\pm50 6.2σ\sigma 3.4σ\sigma
f2(1270)f_{2}(1270) 1275.5±0.81275.5\pm 0.8 186.7±2.2186.7\pm 2.2 9.3σ\sigma 5.4σ\sigma
b1(1235)±b_{1}(1235)^{\pm} 1179.0±9.01179.0\pm 9.0 255.8±16.4255.8\pm 16.4 31.8σ\sigma 25.7σ\sigma
ρ(1450)±\rho(1450)^{\pm} 1465.0±\pm25 400±\pm60 4.7σ\sigma 6.9σ\sigma
ρ(1570)±\rho(1570)^{\pm} 1570±\pm70 144±\pm90 4.3σ\sigma 2.4σ\sigma
π+πω\pi^{+}\pi^{-}\omega - - 6.5σ\sigma 3.0σ\sigma

4.5 Fit results

For the simultaneous fit, the ratios and the signal yields of various intermediate states are obtained according to Eq. (13), as shown in Tables 4 and 5. And their statistical uncertainties are determined based on Eq. (14), in which the correlation among parameters is included. With the intermediate states in the nominal solution, we perform the simultaneous fit to the data samples for groups A and B. Taking the two data samples from s\sqrt{s} = 4.17804.1780 and 4.22634.2263 GeV with large integrated luminosity as examples, Figs. 5 and  6 show the fit results for groups A and B, respectively.

Refer to caption
Refer to caption
Refer to caption
Figure 5: Projections of the PWA solution on the mass spectra MππM_{\pi\pi}, Mωπ+M_{\omega\pi^{+}} and MωπM_{\omega\pi^{-}} for the data sample collected at s\sqrt{s} = 4.17804.1780 GeV. Points with error bars are data, the red histogram shows the final PWA fit results, and shaded histograms are the background estimated from the ω\omega mass sideband regions. Other line shapes marked with different colors represent the fitted line shapes of different intermediate resonance states. The pull distribution of the fit result is shown at the bottom of each plot.
Refer to caption
Refer to caption
Refer to caption
Figure 6: Projections of the PWA solution on the mass spectra MππM_{\pi\pi}, Mωπ+M_{\omega\pi^{+}} and MωπM_{\omega\pi^{-}} for the data sample collected at s\sqrt{s} = 4.22634.2263 GeV. Points with error bars are data, the red histogram shows the final PWA fit results, and shaded histograms are the background estimated from the ω\omega mass sideband regions. Other line shapes marked with different colors represent the fitted line shapes of different intermediate resonance states. The pull distribution of the fit result is shown at the bottom of each plot.

5 BORN CROSS SECTION

5.1 ISR correction factor

In e+ee^{+}e^{-} collision experiments, the observed cross section, σobs(s)\sigma_{\rm obs}(s), at a c.m. energy point s\sqrt{s}, is related to the corresponding Born cross section, σ0(s)\sigma_{0}(s), by the ISR factor

1+δ=σobs(s)σ0(s),1+\delta={\sigma_{\rm obs}(s)\over\sigma_{0}(s)}, (18)

with

σobs(s)=MthsW(s,x)σ0[s(1x)]|1Π(s)|2𝑑x,\sigma_{\rm obs}(s)=\int_{M_{\rm th}}^{\sqrt{s}}W(s,x){\sigma_{0}[s(1-x)]\over{|1-\Pi(\sqrt{s})|^{2}}}dx, (19)

where Π(s)\Pi(\sqrt{s}) is the vacuum polarization (VP) function. The MthM_{\rm th} corresponds to the π+πω\pi^{+}\pi^{-}\omega mass threshold, and xx is the effective fraction of the beam energy carried by photons emitted from the initial state, x=2Eγsx=\frac{2E_{\gamma}}{\sqrt{s}}, and EγE_{\gamma} is the energy of the ISR photons. The initial state radiative function, W(s,x)W(s,x), which uses the QED calculation up to next to leading order in Ref wx ; alpha ; wsx ,

W(s,x)\displaystyle W(s,x) =Δβxβ1β2(2x)+β28{(2x)[3ln(1x)\displaystyle=\Delta\beta x^{\beta-1}-\frac{\beta}{2}(2-x)+\frac{\beta^{2}}{8}\Big{\{}(2-x)[3\ln(1-x) (20)
4lnx]4ln(1x)x6+x},\displaystyle\phantom{=\;\;}-4\ln x]-4\frac{\ln(1-x)}{x}-6+x\Big{\}},

where

L=2lnsme,Δ=1+απ(32L+13π22)+(απ)2δ2,δ2=(982ξ2)L2(4516112ξ23ξ3)L65ξ2292ξ36ξ2ln2+38ξ2+5712,β=2απ(L1),ξ2=1.64493407,ξ3=1.2020569,\begin{split}L&=2\ln{\frac{\sqrt{s}}{m_{e}}},\\ \Delta&=1+\frac{\alpha}{\pi}\left(\frac{3}{2}L+\frac{1}{3}\pi^{2}-2\right)+\left(\frac{\alpha}{\pi}\right)^{2}\delta_{2},\\ \delta_{2}&=\left(\frac{9}{8}-2\xi_{2}\right)L^{2}-\left(\frac{45}{16}-\frac{11}{2}\xi_{2}-3\xi_{3}\right)L-\frac{6}{5}\xi_{2}^{2}-\frac{9}{2}\xi_{3}-6\xi_{2}\ln 2+\frac{3}{8}\xi_{2}+\frac{57}{12},\\ \beta&=\frac{2\alpha}{\pi}(L-1),~{}~{}\xi_{2}=1.64493407,~{}~{}\xi_{3}=1.2020569,\end{split} (21)

and we use the calculated results including the leptonic and hadronic parts both in the space-like and time-like region isr11 ; isr12 ; isr13 ; isr14 ; isr15 .

We use the generator model ConExc besevtgen to produce signal MC events and then iterate the Born cross-section measurement, in which the radiative function takes the result of high-order QED calculation up to the α2\alpha^{2} accuracy alpha . The Born cross sections from the π+πω\pi^{+}\pi^{-}\omega mass threshold to 4.6 GeV are used to calculate the ISR factor. The Born cross sections σ0(s)\sigma_{0}(s) in the c.m. energy ranges of below 3.03.0 GeV and (4.0,4.6)(4.0,4.6) GeV are taken from the measurements in Ref. babarXS and this work, respectively. In the c.m. energy interval of (3.0,4.0)(3.0,4.0) GeV, however, the Born cross section of e+ee^{+}e^{-}\to continuum light hadrons is described by a polynomial, and the Born cross sections for J/ψJ/\psi and ψ(3686)\psi(3686) are described by the function

σ(s)=2J+1(2S1+1)(2S2+1)4πk2[Γ2/4(ss0)2+Γ2/4]BinBout,\sigma(\sqrt{s})=\frac{2J+1}{(2S_{1}+1)(2S_{2}+1)}\frac{4\pi}{k^{2}}\left[\frac{\Gamma^{2}/4}{(\sqrt{s}-\sqrt{s}_{0})^{2}+\Gamma^{2}/4}\right]B_{\rm in}B_{\rm out}, (22)

where s\sqrt{s} is the c.m. energy, J=1J=1 is the spin of the resonance, and the numbers of polarization states of the two incident particles are 2S1+1=22S_{1}+1=2 and 2S2+1=22S_{2}+1=2, respectively. The maximum momentum of the final-state channel is denoted as kk, s0\sqrt{s}_{0} is the c.m. energy at the resonance, and Γ\Gamma is the width of the resonance. The branching fractions of the resonance decays into the initial-state and final-state channels are denoted as BinB_{\rm in} and BoutB_{\rm out}, respectively. The cross sections are smoothed by a fit to seven Gaussian functions in various energy intervals. Since the detection efficiency is affected by the radiative correction, an iteration over the cross section is done until the latest two results become stable; specifically, when the updated Born cross sections change by less than the statistical uncertainty. The ISR correction factor for each c.m. energy point is given in Table 3.

5.2 Born cross section of e+eπ+πωe^{+}e^{-}\to\pi^{+}\pi^{-}\omega

The Born cross section at each c.m. energy is calculated by

σBorn=Nsigintϵ(1+δγ)1|1Π|2Br(ωπ+ππ0)Br(π0γγ),\sigma^{\rm Born}=\frac{N^{\rm sig}}{\mathcal{L}_{\rm int}\cdot\epsilon\cdot(1+\delta^{\gamma})\cdot\frac{1}{|1-\Pi|^{2}}\cdot Br(\omega\to\pi^{+}\pi^{-}\pi^{0})\cdot Br(\pi^{0}\to\gamma\gamma)}, (23)

where NsigN^{\rm sig} is the number of observed signal events, (1+δγ)(1+\delta^{\gamma}) and 1|1Π|2\frac{1}{|1-\Pi|^{2}} are the ISR correction and VP corrections, respectively. The factors Br(ωπ+ππ0)Br(\omega\to\pi^{+}\pi^{-}\pi^{0}) and Br(π0γγ)Br(\pi^{0}\to\gamma\gamma) are the branching fractions of ωπ+ππ0\omega\to\pi^{+}\pi^{-}\pi^{0} and π0γγ\pi^{0}\to\gamma\gamma from the PDG pdg . We use ϵ\epsilon to denote the detection efficiency determined by the TOY MC sample with detector simulation of helicity amplitude model. The numerical results of Born cross sections are listed in Table 3.

Table 3: Integrated luminosities (int\mathcal{L}_{\rm int}), detection efficiencies (ϵ\epsilon), signal yields (NsigN^{\rm sig}), ISR factors (1+δγ)(1+\delta^{\gamma}), VP factors (1|1Π|2)(\frac{1}{|1-\Pi|^{2}}), and the obtained Born cross sections (σBorn\sigma^{\rm Born}) at different c.m. energies (s\sqrt{s}). The first uncertainties for Born cross sections are statistical and the second are systematic.
s\sqrt{s} (GeV) int(pb1)\mathcal{L}_{\rm int}~{}(\rm pb^{-1}) ϵ(%)\epsilon(\%) NsigN^{\rm sig} (1+δγ)(1+\delta^{\gamma}) 1|1Π|2\frac{1}{|1-\Pi|^{2}} σBorn\sigma^{\rm Born} (pb)
4.0076 482. 0 3.93.9 634 ±\pm 28 4.5 1.0435 8.1±0.4±0.68.1\pm 0.4\pm 0.6
4.1285 393. 4 4.44.4 408 ±\pm 23 4.6 1.0526 5.5±0.3±0.55.5\pm 0.3\pm 0.5
4.1574 406. 9 4.24.2 398 ±\pm 22 4.8 1.0535 5.1±0.3±0.55.1\pm 0.3\pm 0.5
4.1780 3194. 5 4.14.1 2888 ±\pm 60 4.8 1.0548 4.9±0.1±0.54.9\pm 0.1\pm 0.5
4.1890 523. 9 4.24.2 452 ±\pm 24 4.8 1.0560 4.6±0.2±0.44.6\pm 0.2\pm 0.4
4.1990 525. 2 4.24.2 462 ±\pm 26 4.9 1.0568 4.6±0.3±0.54.6\pm 0.3\pm 0.5
4.2093 517. 2 4.14.1 467 ±\pm 24 4.8 1.0565 4.9±0.3±0.54.9\pm 0.3\pm 0.5
4.2188 513. 4 4.34.3 444 ±\pm 24 4.9 1.0565 4.5±0.2±0.44.5\pm 0.2\pm 0.4
4.2263 1056. 4 3.93.9 909 ±\pm 34 4.9 1.0548 4.8±0.2±0.44.8\pm 0.2\pm 0.4
4.2358 529. 1 4.04.0 427 ±\pm 23 5.0 1.0554 4.3±0.2±0.44.3\pm 0.2\pm 0.4
4.2439 536. 3 4.34.3 459 ±\pm 24 5.0 1.0552 4.4±0.2±0.44.4\pm 0.2\pm 0.4
4.2580 828. 4 3.93.9 670 ±\pm 30 5.0 1.0533 4.5±0.2±0.44.5\pm 0.2\pm 0.4
4.2668 529. 7 3.83.8 430 ±\pm 13 5.0 1.0531 4.5±0.1±0.44.5\pm 0.1\pm 0.4
4.2777 175. 2 3.73.7 131 ±\pm 14 5.1 1.0529 4.3±0.5±0.54.3\pm 0.5\pm 0.5
4.2879 491. 5 3.93.9 421 ±\pm 23 5.1 1.0525 4.6±0.3±0.44.6\pm 0.3\pm 0.4
4.3121 492. 1 3.73.7 366 ±\pm 22 5.2 1.0519 4.2±0.3±0.54.2\pm 0.3\pm 0.5
4.3374 501. 1 3.73.7 390 ±\pm 22 5.2 1.0508 4.3±0.2±0.54.3\pm 0.2\pm 0.5
4.3583 543. 9 3.73.7 377 ±\pm 22 5.3 1.0511 3.8±0.2±0.33.8\pm 0.2\pm 0.3
4.3774 522. 8 3.83.8 406 ±\pm 22 5.4 1.0514 4.1±0.2±0.34.1\pm 0.2\pm 0.3
4.3965 505. 0 3.43.4 255 ±\pm 18 5.4 1.0517 2.9±0.2±0.32.9\pm 0.2\pm 0.3
4.4156 1043. 9 3.73.7 716 ±\pm 30 5.4 1.0524 3.7±0.2±0.33.7\pm 0.2\pm 0.3
4.4362 568. 1 3.73.7 365 ±\pm 21 5.5 1.0543 3.4±0.2±0.43.4\pm 0.2\pm 0.4
4.4671 111. 1 3.63.6 80 ±\pm 10 5.6 1.0548 3.8±0.5±0.43.8\pm 0.5\pm 0.4
4.5995 586. 9 3.13.1 259 ±\pm 18 6.1 1.0547 2.5±0.2±0.22.5\pm 0.2\pm 0.2

5.3 Born cross section for intermediate states

The Born cross section for each intermediate state is calculated by

σiBorn=RiσBorn,\sigma^{\rm Born}_{i}=R_{i}\,\sigma^{\rm Born}, (24)

where σBorn\sigma^{\rm Born} is the total Born cross section of e+eπ+πωe^{+}e^{-}\to\pi^{+}\pi^{-}\omega, including the interference contributions among all intermediate states. The cross-section ratio, RiR_{i}, is calculated according to Eq. (13) and given in Table 4, and the Born cross section of each intermediate state is shown in Fig. 7.

Refer to caption
Figure 7: The Born cross sections of the processes containing f0(500)f_{0}(500), f0(980)f_{0}(980), f2(1270)f_{2}(1270), f0(1370)f_{0}(1370), b1(1235)±b_{1}(1235)^{\pm}, and ρ(1450)±\rho(1450)^{\pm}. Uncertainties combine both statistical and systematic uncertainties.
Table 4: The ratios of signal yields for intermediate states (f0(500)f_{0}(500), f0(980)f_{0}(980), f2(1270)f_{2}(1270), f0(1370)f_{0}(1370), b1(1235)±b_{1}(1235)^{\pm}, ρ(1450)±\rho(1450)^{\pm}), and non-resonant π+πω\pi^{+}\pi^{-}\omega at different c.m. energy points, which are divided into groups A and B for higher statistics.
Group s\sqrt{s} (GeV) f0(500)f_{0}(500) f0(980)f_{0}(980) f0(1370)f_{0}(1370) f2(1270)f_{2}(1270) b1(1235)±b_{1}(1235)^{\pm} ρ(1450)±\rho(1450)^{\pm} π+πω\pi^{+}\pi^{-}\omega
4.0076 0.13±0.020.13\pm 0.02 0.06±0.020.06\pm 0.02 0.03±0.020.03\pm 0.02 0.15±0.030.15\pm 0.03 0.40±0.050.40\pm 0.05 0.21±0.040.21\pm 0.04 0.00±0.010.00\pm 0.01
4.1780 0.11±0.010.11\pm 0.01 0.05±0.010.05\pm 0.01 0.07±0.010.07\pm 0.01 0.11±0.010.11\pm 0.01 0.48±0.020.48\pm 0.02 0.10±0.020.10\pm 0.02 0.09±0.020.09\pm 0.02
A 4.1890 0.11±0.020.11\pm 0.02 0.03±0.020.03\pm 0.02 0.05±0.030.05\pm 0.03 0.09±0.030.09\pm 0.03 0.40±0.050.40\pm 0.05 0.17±0.040.17\pm 0.04 0.12±0.040.12\pm 0.04
4.1990 0.13±0.020.13\pm 0.02 0.07±0.030.07\pm 0.03 0.10±0.040.10\pm 0.04 0.12±0.040.12\pm 0.04 0.42±0.050.42\pm 0.05 0.13±0.040.13\pm 0.04 0.09±0.030.09\pm 0.03
4.2093 0.14±0.030.14\pm 0.03 0.05±0.030.05\pm 0.03 0.06±0.040.06\pm 0.04 0.07±0.030.07\pm 0.03 0.43±0.050.43\pm 0.05 0.17±0.050.17\pm 0.05 0.06±0.030.06\pm 0.03
4.2188 0.11±0.020.11\pm 0.02 0.03±0.020.03\pm 0.02 0.04±0.030.04\pm 0.03 0.14±0.030.14\pm 0.03 0.51±0.060.51\pm 0.06 0.13±0.050.13\pm 0.05 0.06±0.030.06\pm 0.03
4.2263 0.15±0.020.15\pm 0.02 0.03±0.010.03\pm 0.01 0.04±0.020.04\pm 0.02 0.09±0.020.09\pm 0.02 0.56±0.040.56\pm 0.04 0.11±0.030.11\pm 0.03 0.03±0.030.03\pm 0.03
4.2358 0.12±0.030.12\pm 0.03 0.10±0.030.10\pm 0.03 0.05±0.040.05\pm 0.04 0.11±0.020.11\pm 0.02 0.39±0.050.39\pm 0.05 0.24±0.030.24\pm 0.03 0.05±0.030.05\pm 0.03
B 4.2439 0.16±0.030.16\pm 0.03 0.02±0.020.02\pm 0.02 0.04±0.020.04\pm 0.02 0.07±0.020.07\pm 0.02 0.51±0.050.51\pm 0.05 0.10±0.040.10\pm 0.04 0.10±0.040.10\pm 0.04
4.2580 0.13±0.020.13\pm 0.02 0.02±0.010.02\pm 0.01 0.07±0.030.07\pm 0.03 0.09±0.020.09\pm 0.02 0.40±0.040.40\pm 0.04 0.15±0.030.15\pm 0.03 0.11±0.030.11\pm 0.03
4.2668 0.12±0.020.12\pm 0.02 0.03±0.020.03\pm 0.02 0.06±0.040.06\pm 0.04 0.08±0.030.08\pm 0.03 0.60±0.070.60\pm 0.07 0.07±0.040.07\pm 0.04 0.03±0.030.03\pm 0.03
4.4156 0.15±0.020.15\pm 0.02 0.10±0.030.10\pm 0.03 0.05±0.030.05\pm 0.03 0.10±0.020.10\pm 0.02 0.51±0.050.51\pm 0.05 0.14±0.040.14\pm 0.04 0.01±0.010.01\pm 0.01
Table 5: The signal yields for intermediate states (f0(500)f_{0}(500), f0(980)f_{0}(980), f2(1270)f_{2}(1270), f0(1370)f_{0}(1370), b1(1235)±b_{1}(1235)^{\pm}, and ρ(1450)±\rho(1450)^{\pm}) at different c.m. energy points, which are divided into groups A and B for higher statistics. The errors are statistical only.
Group s\sqrt{s} (GeV) f0(500)f_{0}(500) f0(980)f_{0}(980) f0(1370)f_{0}(1370) f2(1270)f_{2}(1270) b1(1235)±b_{1}(1235)^{\pm} ρ(1450)±\rho(1450)^{\pm}
4.0076 77.40 ±\pm 13.51 34.88 ±\pm 12.36 17.21 ±\pm 12.15 89.32 ±\pm 15.50 233.49 ±\pm 26.19 123.89 ±\pm 23.47
4.1780 298.92 ±\pm 28.95 136.22 ±\pm 29.90 179.80 ±\pm 40.13 281.23 ±\pm 37.93 1284.20 ±\pm 63.06 260.12 ±\pm 42.96
A 4.1890 47.14 ±\pm 10.67 12.28 ±\pm 11.92 20.31 ±\pm 13.80 39.90 ±\pm 13.47 170.09 ±\pm 19.53 71.91 ±\pm 17.73
4.1990 53.41 ±\pm 11.19 27.73 ±\pm 14.27 42.27 ±\pm 16.92 50.58 ±\pm 15.52 176.50 ±\pm 19.13 54.62 ±\pm 16.57
4.2093 59.40 ±\pm 12.32 21.34 ±\pm 11.31 26.77 ±\pm 17.14 28.84 ±\pm 13.23 180.88 ±\pm 19.48 70.47 ±\pm 19.60
4.2188 42.73 ±\pm 10.00 13.99 ±\pm 9.97 17.97 ±\pm 13.92 56.45 ±\pm 13.82 203.56 ±\pm 22.39 54.25 ±\pm 19.80
4.2263 128.26 ±\pm 17.67 26.69 ±\pm 12.74 34.71 ±\pm 18.75 77.60 ±\pm 17.80 466.33 ±\pm 33.06 95.40 ±\pm 24.50
4.2358 47.61 ±\pm 12.54 39.58 ±\pm 13.21 20.56 ±\pm 15.28 43.47 ±\pm 10.32 153.61 ±\pm 20.45 92.14 ±\pm 19.50
B 4.2439 68.69 ±\pm 11.56 9.99 ±\pm 7.78 15.42 ±\pm 11.29 28.71 ±\pm 11.16 214.59 ±\pm 20.95 41.08 ±\pm 18.88
4.2580 81.67 ±\pm 15.42 12.52 ±\pm 8.91 43.09 ±\pm 16.44 53.24 ±\pm 14.53 246.22 ±\pm 24.71 89.86 ±\pm 21.01
4.2668 49.34 ±\pm 11.15 13.15 ±\pm 8.74 22.76 ±\pm 16.21 31.61 ±\pm 13.65 237.85 ±\pm 26.53 27.10 ±\pm 18.16
4.4156 96.94 ±\pm 16.25 64.90 ±\pm 20.71 35.83 ±\pm 26.22 62.95 ±\pm 17.77 334.32 ±\pm 28.10 94.23 ±\pm 24.30

6 SYSTEMATIC UNCERTAINTY

6.1 Uncertainty of the Born cross section

The uncertainties in the Born cross section measurements arise from the luminosity measurement, tracking and PID efficiency, photon detection efficiency, branching fraction, KS0K_{S}^{0} veto, ISR correction, fit procedure, PWA, and insignificant resonances. However, the effects of the EEMC/p\rm E_{EMC}/\it p requirement and χc0\chi_{c0} veto on efficiency are negligible.

  • Luminosity. The integrated luminosity is measured by the Bhabha scattering process, and the uncertainty is 1.01.0rlum .

  • Tracking and PID efficiencies. The uncertainty of the tracking efficiency has been studied with a high purity control sample of e+eπ+πK+Ke^{+}e^{-}\to\pi^{+}\pi^{-}K^{+}K^{-} prd1012003 . The differences of the tracking and PID efficiencies between data and MC simulation in different transverse momentum and momentum ranges are taken as the systematic uncertainties of tracking and PID efficiencies, both 1.01.0% per charged pion.

  • Photon detection efficiency. The uncertainty from the photon detection has been studied with the control samples of ψ(3686)π0π0J/ψ\psi(3686)\to\pi^{0}\pi^{0}J/\psi and e+eωπ0π+ππ0π0e^{+}e^{-}\to\omega\pi^{0}\to\pi^{+}\pi^{-}\pi^{0}\pi^{0} prd1012003 , which is 1.01.0% per photon.

  • Branching fraction. The branching fractions Br(ωπ+ππ0)Br(\omega\to\pi^{+}\pi^{-}\pi^{0}) and Br(π0γγ)Br(\pi^{0}\to\gamma\gamma) are quoted from the PDG pdg , which are (89.2±0.789.2\pm 0.7)% and (98.823±0.03498.823\pm 0.034)%, respectively. The relevant systematic uncertainty is 0.750.75% in total.

  • KS0K_{S}^{0} veto. The uncertainty of KS0K_{S}^{0} veto is taken as the difference of efficiencies with and without KS0K_{S}^{0} veto between data and MC simulation, which is 0.80.8%.

  • ISR correction. To obtain reliable detection efficiencies, the Born cross sections input in the generator have been iterated until the (1+δr)ϵ(1+\delta^{\mathit{r}})\cdot\epsilon values converge. The differences of (1+δr)ϵ(1+\delta^{\mathit{r}})\cdot\epsilon between the last two iterations are taken as the corresponding systematic uncertainties.

  • Fit procedure. The systematic uncertainty in the fit of Mπ+ππ0M_{\pi^{+}\pi^{-}\pi^{0}} mainly comes from the fit range, signal shape and background shape. The fit range is changed from [0.680.68, 0.910.91] GeV/c2c^{2} to [0.670.67, 0.920.92] GeV/c2c^{2}. The signal shape is changed to the BWBW function convolved with a Gaussian resolution function. The background shape is changed from the second-order Chebyshev polynomial to the third-order, and the parameter of the background function is fixed to that derived from the fit to the largest data sample taken at s=4.178\sqrt{s}=4.178 GeV. The quadrature sum of the changes in the fitted signal yield is taken as the uncertainty.

  • PWA. The uncertainties due to the mass and width of the intermediate resonance state, the background level, and the kinematic fit are considered in the systematic uncertainty of PWA. The main contribution comes from f0(500)f_{0}(500), f0(980)f_{0}(980), f2(1270)f_{2}(1270), b1(1235)±b_{1}(1235)^{\pm}, and ρ(1450)±\rho(1450)^{\pm}. The total uncertainty is the sum of the following three detailed sources.

  • Mass and width. The masses and widths of the intermediate resonance states in this analysis are fixed on the PDG values pdg . To estimate their systematic uncertainties, we shift the mass and width of each intermediate resonance within one standard deviation.

  • Background level. The background level is determined by the ω\omega sideband events of the data sample. It is the same size as the number of events obtained in the ω\omega signal region after the integration of the background function. To estimate the systematic uncertainty of the background level, we determine the deviation of the background level according to Δn=N\Delta n=\sqrt{N}, where NN is the estimated number of the background events in the ω\omega signal region, and change the background yield by (N+ΔnN+\Delta n).

  • Kinematic fit. The uncertainty of the kinematic fit is estimated by correcting the helix parameters of the charged tracks to improve the consistency between data and MC simulation prd012002 . The difference in the detection efficiencies of the TOY MC samples is regarded as the systematic uncertainty in PWA.

  • Insignificant resonance. An intermediate state with significance less than 5σ5\sigma, ρ(1570)±\rho(1570)^{\pm}, is removed in the normal solution. The uncertainty is defined as the difference between the detection efficiencies of the normal solution with and without the ρ(1570)±\rho(1570)^{\pm} contribution.

The numerical values of these systematic uncertainties are summarized in Table 6. For the total uncertainty these contributions are added in quadrature.

6.2 Uncertainty of the Born cross section for intermediate process

The systematic uncertainty in the measurements of the Born cross sections for the intermediate processes is the same as that of e+eπ+πωe^{+}e^{-}\to\pi^{+}\pi^{-}\omega. Whereas, for the Born cross section measurement of intermediate state, the uncertainty in PWA depends on the ratio of each intermediate state, RiR_{i}. We mainly estimate the systematic uncertainty of the Born cross section of different intermediate processes for the twelve c.m. energy points with higher statistics. Their uncertainties are obtained by adding the individual contributions in quadrature and summarized in Table 7.

  • Mass and width. For the uncertainties of the mass and width of any of the intermediate resonance states, we change its mass and width according to the PDG values within ±1σ\pm 1\sigma.

  • Background level. We determine the deviation of the background level according to ni{n}_{i}, and change the background yield to obtain the uncertainty of the background level.

  • Kinematic fit. We use the PHSP signal MC sample corrected by the helix parameters to re-perform PWA to estimate the uncertainty of the kinematic fit.

  • Insignificant resonance. The uncertainty due to one insignificant resonance was defined as the difference between the ratio of the normal solution with and without the ρ(1570)±\rho(1570)^{\pm} contribution.

For each source, the deviation from the nominal result is taken as the corresponding systematic uncertainty.

Table 6: Relative systematic uncertainties (in %) in the cross section measurements include the luminosity(Lum), the tracking efficiency (Trk), the PID, the photon detection (PD), the branching fraction (BF), the veto of KS0K_{S}^{0} (KSVK_{S}^{V}), the ISR correction (ISR), the signal shape (SS), the background shape (BS), the fit range (FR), PWA, and insignificant resonance (IR). The sources with a superscript * are the common systematic uncertainties for different c.m. energies.
s\sqrt{s} (GeV) Lum\rm Lum^{*} Trk\rm Trk^{*} PID\rm PID^{*} PD\rm PD^{*} BF\rm BF^{*} KSVK_{S}^{V} ISR SS BS FR PWA IR Total
4.0076 1.0 4.0 4.0 2.0 0.75 0.8 1.1 0.8 1.1 0.6 0.3 3.1 7.2
4.1285 1.0 4.0 4.0 2.0 0.75 0.8 2.8 0.7 0.7 1.0 0.2 4.1 8.1
4.1574 1.0 4.0 4.0 2.0 0.75 0.8 1.5 1.0 1.5 0.0 4.8 0.4 8.2
4.1780 1.0 4.0 4.0 2.0 0.75 0.8 5.2 0.6 1.1 0.7 0.0 1.7 8.4
4.1890 1.0 4.0 4.0 2.0 0.75 0.8 0.7 0.9 0.7 0.0 3.5 3.0 7.8
4.1990 1.0 4.0 4.0 2.0 0.75 0.8 5.5 0.0 1.5 0.7 2.6 4.6 10.0
4.2093 1.0 4.0 4.0 2.0 0.75 0.8 3.9 0.6 0.9 1.2 2.7 2.6 8.3
4.2188 1.0 4.0 4.0 2.0 0.75 0.8 1.0 0.7 0.9 1.1 1.7 5.8 8.9
4.2263 1.0 4.0 4.0 2.0 0.75 0.8 0.6 0.3 1.3 0.4 1.3 3.9 7.6
4.2358 1.0 4.0 4.0 2.0 0.75 0.8 3.6 0.2 0.9 1.9 2.1 2.9 8.3
4.2439 1.0 4.0 4.0 2.0 0.75 0.8 1.5 0.7 1.1 0.7 0.8 3.1 7.3
4.2580 1.0 4.0 4.0 2.0 0.75 0.8 0.8 1.4 1.5 1.1 2.7 1.4 7.3
4.2668 1.0 4.0 4.0 2.0 0.75 0.8 1.1 0.2 1.2 0.0 1.5 4.0 7.7
4.2777 1.0 4.0 4.0 2.0 0.75 0.8 4.7 0.0 1.5 0.0 1.5 4.6 9.3
4.2879 1.0 4.0 4.0 2.0 0.75 0.8 2.7 0.5 1.0 0.5 0.2 1.0 6.9
4.3121 1.0 4.0 4.0 2.0 0.75 0.8 5.9 0.6 1.6 1.1 0.9 5.0 10.1
4.3374 1.0 4.0 4.0 2.0 0.75 0.8 6.8 1.0 0.5 0.5 3.0 1.1 9.8
4.3583 1.0 4.0 4.0 2.0 0.75 0.8 3.2 1.1 1.3 1.6 1.1 2.5 7.8
4.3774 1.0 4.0 4.0 2.0 0.75 0.8 0.0 0.5 1.0 1.5 0.2 0.5 6.5
4.3965 1.0 4.0 4.0 2.0 0.75 0.8 2.9 0.4 0.8 0.0 2.0 1.2 7.3
4.4156 1.0 4.0 4.0 2.0 0.75 0.8 1.4 0.3 0.8 0.9 1.7 3.2 7.4
4.4362 1.0 4.0 4.0 2.0 0.75 0.8 5.5 0.8 1.1 0.8 3.3 0.1 9.0
4.4671 1.0 4.0 4.0 2.0 0.75 0.8 3.8 0.0 1.3 1.3 2.8 5.6 9.7
4.5995 1.0 4.0 4.0 2.0 0.75 0.8 1.6 0.8 1.1 1.6 3.0 2.4 7.7
Table 7: The systematic uncertainties (in %) in the cross section measurements of the intermediate processes containing f0(500)f_{0}(500), f0(980)f_{0}(980), f2(1270)f_{2}(1270), f0(1370)f_{0}(1370), b1(1235)±b_{1}(1235)^{\pm}, and ρ(1450)±\rho(1450)^{\pm}. The results of simultaneous to groups A and B, which are combined from twelve c.m. energy points for higher statistics.
Group s\sqrt{s} (GeV) f0(500)f_{0}(500) f0(980)f_{0}(980) f0(1370)f_{0}(1370) f2(1270)f_{2}(1270) b1(1235)±b_{1}(1235)^{\pm} ρ(1450)±\rho(1450)^{\pm}
4.0076 7.9 7.1 9.1 7.2 7.2 7.1
4.1780 8.5 8.3 10.3 8.3 8.3 8.2
A 4.1890 7.0 6.5 9.4 6.5 6.5 6.4
4.1990 8.7 8.7 10.1 8.7 8.7 8.6
4.2093 7.7 7.5 9.3 7.5 7.6 7.5
4.2188 7.2 6.9 9.0 6.9 6.9 6.8
4.2263 6.9 6.6 8.4 6.6 6.6 6.5
4.2358 7.9 7.7 9.6 7.7 7.7 7.6
B 4.2439 7.3 6.6 8.9 6.6 6.7 6.6
4.2580 7.3 6.7 9.3 6.6 6.7 6.8
4.2668 8.5 7.5 10.2 7.5 7.6 7.9
4.4156 7.6 6.9 9.2 6.8 6.9 7.1

7 FIT TO THE LINE SHAPE

The line shape for total Born cross section of e+eπ+πωe^{+}e^{-}\to\pi^{+}\pi^{-}\omega is fitted with the least square method leastchi2 . First, the energy-dependent Born cross section is parameterized by a non-resonant function f(s)=a/snf(\sqrt{s})=a/s^{n}, where aa and nn are free parameters. The correlations among different c.m. energy points are considered in the fit with the χ2\chi^{2} defined as below (and minimized by MINUIT minuit ),

χ2=i(σBiσBifit)2δi2,\mathcal{\chi}^{2}=\sum_{i}\frac{(\sigma_{B_{i}}-\sigma_{B_{i}}^{\rm fit})^{2}}{\delta^{2}_{i}}, (25)

where σBi\sigma_{B_{i}} and σBifit\sigma_{B_{i}}^{\rm fit} are the measured and fitted values for Born cross section at the ii-th c.m. energy point, respectively. here, δi\delta_{i} is the uncertainty for the ii-th c.m. energy point, which includes the statistical uncertainty and the uncorrelated part of the systematic uncertainty. Figure 8 shows the fit result with χ2/NDF=27.75/(2421)1.32\chi^{2}/\rm NDF=27.75/(24-2-1)\approx 1.32.

Secondly, the Born cross section is parameterized as the coherent sum of the energy-dependent non-resonant function and one charmonium or charmonium-like state amplitude,

σBorn(s)=|BW(s)eiϕ+f(s)|2,\sigma^{\rm Born}(\sqrt{s})=|BW(\sqrt{s})e^{i\phi}+\sqrt{\it f(\sqrt{s})}|^{2}, (26)

where f(s)f(\sqrt{s}) denotes the non-resonant amplitude, ϕ\phi is the relative phase between the continuum and resonant amplitudes, and BW(s)BW(\sqrt{s}) is a relativistic BWBW function which is used to describe the charmonium states, BW(s)=12πΓeeBrΓtotsM2+iMΓtotBW(\sqrt{s})=\frac{\sqrt{12\pi\Gamma_{ee}Br\Gamma_{\rm tot}}}{s-M^{2}+iM\Gamma_{\rm tot}}. And since these energies are far from the threshold of the e+eπ+πωe^{+}e^{-}\to\pi^{+}\pi^{-}\omega process, the effect of the three-body phase space factor is very small and therefore this BW(s)BW(\sqrt{s}) function omits it. The symbols MM, BrBr, Γee\Gamma_{ee}, and Γtot\Gamma_{\rm tot} denote the mass, the branching fraction of Yπ+πω\rm Y\to\pi^{+}\pi^{-}\omega, the partial width to e+ee^{+}e^{-}, and the total width, respectively. The considered charmonium and charmonium-like states include ψ(4160)\psi(4160), Y(4220)Y(4220), Y(4360)Y(4360), and ψ(4415)\psi(4415). In the fit, these resonance states are individually fitted with fixed mass and width from the PDG. The fit results are shown in Fig. 8. The goodness-of-fit tests for ψ(4160)\psi(4160), Y(4220)Y(4220), Y(4360)Y(4360), and ψ(4415)\psi(4415) yield χ2/NDF=\chi^{2}/\rm NDF= 19.8/1919.8/19, 21.4/1921.4/19, 26.4/1926.4/19, and 26.6/1926.6/19, respectively. The fit has two solutions with equal fit quality. The fitted parameters of various resonance states are shown in Table 8. The statistical significances of ψ(4160)\psi(4160) and Y(4220)Y(4220) are 3.6σ3.6\sigma and 3.1σ3.1\sigma, while those of Y(4360)Y(4360) and ψ(4415)\psi(4415) are 1.1σ1.1\sigma and 1.0σ1.0\sigma, respectively.

Table 8: Fitted parameters and statistical significances for various charmonium states decaying into π+πω\pi^{+}\pi^{-}\omega. The uncertainties are statistical only.
Parameter ψ(4160)\psi(4160) Y(4220)Y(4220)
Solution I Solution II Solution I Solution II
12πΓeeBr12\pi\Gamma_{ee}Br (eV) 0.03±0.020.03\pm 0.02 24.57±0.4724.57\pm 0.47 18.29±0.3218.29\pm 0.32 0.02±0.020.02\pm 0.02
Γtot\Gamma_{\rm tot} (GeV)(\rm GeV) 0.070 0.055
M (GeV/c2)(\rm GeV/c^{2}) 4.191 4.23
ϕ\phi (rad) 4.61±0.344.61\pm 0.34 4.68±0.014.68\pm 0.01 4.70±0.014.70\pm 0.01 5.38±0.315.38\pm 0.31
Significance (σ\sigma) 3.6 3.1
Refer to caption
Figure 8: Fitted results of the measured Born cross sections at c.m. energies between 4.04.0 and 4.64.6 GeV. The data are presented as filled triangles with error bars combining statistical and uncorrelated systematic uncertainties. The curves are the fit results to various amplitudes as described in the text.

8 SUMMARY

In conclusion, the process of e+eπ+πωe^{+}e^{-}\to\pi^{+}\pi^{-}\omega is studied at twenty-four c.m. energies in the region from 4.04.0 to 4.64.6 GeV. The Born cross sections of e+eπ+πωe^{+}e^{-}\to\pi^{+}\pi^{-}\omega and the intermediate state production at twelve c.m. energy points are measured with helicity amplitude analysis method. The results indicate that the dominant contributions are from e+ef0(500)ωe^{+}e^{-}\to f_{0}(500)\omega, f0(980)ωf_{0}(980)\omega, f2(1270)ωf_{2}(1270)\omega, f0(1370)ωf_{0}(1370)\omega, b1(1235)±πb_{1}(1235)^{\pm}\pi^{\mp}, ρ(1450)±π\rho(1450)^{\pm}\pi^{\mp} with statistical significances greater than 5σ5\sigma. By analyzing the line shape of the Born cross section of the e+eπ+πωe^{+}e^{-}\to\pi^{+}\pi^{-}\omega process, greater than 3σ3\sigma evidence for a state with mass about 4.24.2 GeV/c2c^{2} is found, which is consistent with the production of either ψ(4160)\psi(4160) or Y(4220)Y(4220).

Acknowledgements.
      The BESIII collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support. This work is supported in part by National Key R&D Program of China under Contracts Nos. 2020YFA0406300, 2020YFA0406400; National Natural Science Foundation of China (NSFC) under Contracts Nos. 11975118, 12175244, 11875262, 11635010, 11735014, 11835012, 11935015, 11935016, 11935018, 11961141012, 12022510, 12025502, 12035009, 12035013, 12192260, 12192261, 12192262, 12192263, 12192264, 12192265, 12061131003; the Science and Technology Innovation Program of Hunan Province under Contract No. 2020RC3054; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contract No. U1832207; the CAS Center for Excellence in Particle Physics (CCEPP); 100 Talents Program of CAS; The Institute of Nuclear and Particle Physics (INPAC) and Shanghai Key Laboratory for Particle Physics and Cosmology; ERC under Contract No. 758462; European Union’s Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement under Contract No. 894790; German Research Foundation DFG under Contracts Nos. 443159800, Collaborative Research Center CRC 1044, GRK 2149; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey under Contract No. DPT2006K-120470; National Science and Technology fund; National Science Research and Innovation Fund (NSRF) via the Program Management Unit for Human Resources & Institutional Development, Research and Innovation under Contract No. B16F640076; STFC (United Kingdom); Suranaree University of Technology (SUT), Thailand Science Research and Innovation (TSRI), and National Science Research and Innovation Fund (NSRF) under Contract No. 160355; The Royal Society, UK under Contracts Nos. DH140054, DH160214; The Swedish Research Council; U. S. Department of Energy under Contract No. DE-FG02-05ER41374

References

M. Ablikim1, M. N. Achasov11,b, P. Adlarson70, M. Albrecht4, R. Aliberti31, A. Amoroso69A,69C, M. R. An35, Q. An66,53, Y. Bai52, O. Bakina32, R. Baldini Ferroli26A, I. Balossino27A, Y. Ban42,g, V. Batozskaya1,40, D. Becker31, K. Begzsuren29, N. Berger31, M. Bertani26A, D. Bettoni27A, F. Bianchi69A,69C, E. Bianco69A,69C, J. Bloms63, A. Bortone69A,69C, I. Boyko32, R. A. Briere5, A. Brueggemann63, H. Cai71, X. Cai1,53, A. Calcaterra26A, G. F. Cao1,58, N. Cao1,58, S. A. Cetin57A, J. F. Chang1,53, W. L. Chang1,58, G. R. Che39, G. Chelkov32,a, C. Chen39, Chao Chen50, G. Chen1, H. S. Chen1,58, M. L. Chen1,53, S. J. Chen38, S. M. Chen56, T. Chen1, X. R. Chen28,58, X. T. Chen1, Y. B. Chen1,53, Z. J. Chen23,h, W. S. Cheng69C, S. K. Choi 50, X. Chu39, G. Cibinetto27A, F. Cossio69C, J. J. Cui45, H. L. Dai1,53, J. P. Dai73, A. Dbeyssi17, R.  E. de Boer4, D. Dedovich32, Z. Y. Deng1, A. Denig31, I. Denysenko32, M. Destefanis69A,69C, F. De Mori69A,69C, Y. Ding30, Y. Ding36, J. Dong1,53, L. Y. Dong1,58, M. Y. Dong1,53,58, X. Dong71, S. X. Du75, Z. H. Duan38, P. Egorov32,a, Y. L. Fan71, J. Fang1,53, S. S. Fang1,58, W. X. Fang1, Y. Fang1, R. Farinelli27A, L. Fava69B,69C, F. Feldbauer4, G. Felici26A, C. Q. Feng66,53, J. H. Feng54, K Fischer64, M. Fritsch4, C. Fritzsch63, C. D. Fu1, H. Gao58, Y. N. Gao42,g, Yang Gao66,53, S. Garbolino69C, I. Garzia27A,27B, P. T. Ge71, Z. W. Ge38, C. Geng54, E. M. Gersabeck62, A Gilman64, K. Goetzen12, L. Gong36, W. X. Gong1,53, W. Gradl31, M. Greco69A,69C, L. M. Gu38, M. H. Gu1,53, Y. T. Gu14, C. Y Guan1,58, A. Q. Guo28,58, L. B. Guo37, R. P. Guo44, Y. P. Guo10,f, A. Guskov32,a, W. Y. Han35, X. Q. Hao18, F. A. Harris60, K. K. He50, K. L. He1,58, F. H. Heinsius4, C. H. Heinz31, Y. K. Heng1,53,58, C. Herold55, G. Y. Hou1,58, Y. R. Hou58, Z. L. Hou1, H. M. Hu1,58, J. F. Hu51,i, T. Hu1,53,58, Y. Hu1, G. S. Huang66,53, K. X. Huang54, L. Q. Huang28,58, X. T. Huang45, Y. P. Huang1, Z. Huang42,g, T. Hussain68, N Hüsken25,31, W. Imoehl25, M. Irshad66,53, J. Jackson25, S. Jaeger4, S. Janchiv29, E. Jang50, J. H. Jeong50, Q. Ji1, Q. P. Ji18, X. B. Ji1,58, X. L. Ji1,53, Y. Y. Ji45, Z. K. Jia66,53, S. S. Jiang35, X. S. Jiang1,53,58, Y. Jiang58, J. B. Jiao45, Z. Jiao21, S. Jin38, Y. Jin61, M. Q. Jing1,58, T. Johansson70, N. Kalantar-Nayestanaki59, X. S. Kang36, R. Kappert59, M. Kavatsyuk59, B. C. Ke75, I. K. Keshk4, A. Khoukaz63, R. Kiuchi1, R. Kliemt12, L. Koch33, O. B. Kolcu57A, B. Kopf4, M. Kuemmel4, M. Kuessner4, A. Kupsc40,70, W. Kühn33, J. J. Lane62, J. S. Lange33, P.  Larin17, A. Lavania24, L. Lavezzi69A,69C, Z. H. Lei66,53, H. Leithoff31, M. Lellmann31, T. Lenz31, C. Li39, C. Li43, C. H. Li35, Cheng Li66,53, D. M. Li75, F. Li1,53, G. Li1, H. Li66,53, H. Li47, H. B. Li1,58, H. J. Li18, H. N. Li51,i, J. Q. Li4, J. S. Li54, J. W. Li45, Ke Li1, L. J Li1, L. K. Li1, Lei Li3, M. H. Li39, P. R. Li34,j,k, S. X. Li10, S. Y. Li56, T.  Li45, W. D. Li1,58, W. G. Li1, X. H. Li66,53, X. L. Li45, Xiaoyu Li1,58, Y. G. Li42,g, Z. X. Li14, Z. Y. Li54, C. Liang38, H. Liang30, H. Liang1,58, H. Liang66,53, Y. F. Liang49, Y. T. Liang28,58, G. R. Liao13, L. Z. Liao45, J. Libby24, A.  Limphirat55, C. X. Lin54, D. X. Lin28,58, T. Lin1, B. J. Liu1, C. Liu30, C. X. Liu1, D.  Liu17,66, F. H. Liu48, Fang Liu1, Feng Liu6, G. M. Liu51,i, H. Liu34,j,k, H. B. Liu14, H. M. Liu1,58, Huanhuan Liu1, Huihui Liu19, J. B. Liu66,53, J. L. Liu67, J. Y. Liu1,58, K. Liu1, K. Y. Liu36, Ke Liu20, L. Liu66,53, Lu Liu39, M. H. Liu10,f, P. L. Liu1, Q. Liu58, S. B. Liu66,53, T. Liu10,f, W. K. Liu39, W. M. Liu66,53, X. Liu34,j,k, Y. Liu34,j,k, Y. B. Liu39, Z. A. Liu1,53,58, Z. Q. Liu45, X. C. Lou1,53,58, F. X. Lu54, H. J. Lu21, J. G. Lu1,53, X. L. Lu1, Y. Lu7, Y. P. Lu1,53, Z. H. Lu1, C. L. Luo37, M. X. Luo74, T. Luo10,f, X. L. Luo1,53, X. R. Lyu58, Y. F. Lyu39, F. C. Ma36, H. L. Ma1, L. L. Ma45, M. M. Ma1,58, Q. M. Ma1, R. Q. Ma1,58, R. T. Ma58, X. Y. Ma1,53, Y. Ma42,g, F. E. Maas17, M. Maggiora69A,69C, S. Maldaner4, S. Malde64, Q. A. Malik68, A. Mangoni26B, Y. J. Mao42,g, Z. P. Mao1, S. Marcello69A,69C, Z. X. Meng61, J. G. Messchendorp12,59, G. Mezzadri27A, H. Miao1, T. J. Min38, R. E. Mitchell25, X. H. Mo1,53,58, N. Yu. Muchnoi11,b, Y. Nefedov32, F. Nerling17,d, I. B. Nikolaev11,b, Z. Ning1,53, S. Nisar9,l, Y. Niu 45, S. L. Olsen58, Q. Ouyang1,53,58, S. Pacetti26B,26C, X. Pan10,f, Y. Pan52, A.  Pathak30, M. Pelizaeus4, H. P. Peng66,53, K. Peters12,d, J. L. Ping37, R. G. Ping1,58, S. Plura31, S. Pogodin32, V. Prasad66,53, F. Z. Qi1, H. Qi66,53, H. R. Qi56, M. Qi38, T. Y. Qi10,f, S. Qian1,53, W. B. Qian58, Z. Qian54, C. F. Qiao58, J. J. Qin67, L. Q. Qin13, X. P. Qin10,f, X. S. Qin45, Z. H. Qin1,53, J. F. Qiu1, S. Q. Qu56, K. H. Rashid68, C. F. Redmer31, K. J. Ren35, A. Rivetti69C, V. Rodin59, M. Rolo69C, G. Rong1,58, Ch. Rosner17, S. N. Ruan39, A. Sarantsev32,c, Y. Schelhaas31, C. Schnier4, K. Schoenning70, M. Scodeggio27A,27B, K. Y. Shan10,f, W. Shan22, X. Y. Shan66,53, J. F. Shangguan50, L. G. Shao1,58, M. Shao66,53, C. P. Shen10,f, H. F. Shen1,58, X. Y. Shen1,58, B. A. Shi58, H. C. Shi66,53, J. Y. Shi1, Q. Q. Shi50, R. S. Shi1,58, X. Shi1,53, X. D Shi66,53, J. J. Song18, W. M. Song30,1, Y. X. Song42,g, S. Sosio69A,69C, S. Spataro69A,69C, F. Stieler31, K. X. Su71, P. P. Su50, Y. J. Su58, G. X. Sun1, H. Sun58, H. K. Sun1, J. F. Sun18, L. Sun71, S. S. Sun1,58, T. Sun1,58, W. Y. Sun30, Y. J. Sun66,53, Y. Z. Sun1, Z. T. Sun45, Y. H. Tan71, Y. X. Tan66,53, C. J. Tang49, G. Y. Tang1, J. Tang54, L. Y Tao67, Q. T. Tao23,h, M. Tat64, J. X. Teng66,53, V. Thoren70, W. H. Tian47, Y. Tian28,58, I. Uman57B, B. Wang1, B. L. Wang58, C. W. Wang38, D. Y. Wang42,g, F. Wang67, H. J. Wang34,j,k, H. P. Wang1,58, K. Wang1,53, L. L. Wang1, M. Wang45, M. Z. Wang42,g, Meng Wang1,58, S. Wang10,f, S. Wang13, T.  Wang10,f, T. J. Wang39, W. Wang54, W. H. Wang71, W. P. Wang66,53, X. Wang42,g, X. F. Wang34,j,k, X. L. Wang10,f, Y. Wang56, Y. D. Wang41, Y. F. Wang1,53,58, Y. H. Wang43, Y. Q. Wang1, Yaqian Wang16,1, Z. Wang1,53, Z. Y. Wang1,58, Ziyi Wang58, D. H. Wei13, F. Weidner63, S. P. Wen1, D. J. White62, U. Wiedner4, G. Wilkinson64, M. Wolke70, L. Wollenberg4, J. F. Wu1,58, L. H. Wu1, L. J. Wu1,58, X. Wu10,f, X. H. Wu30, Y. Wu66, Y. J Wu28, Z. Wu1,53, L. Xia66,53, T. Xiang42,g, D. Xiao34,j,k, G. Y. Xiao38, H. Xiao10,f, S. Y. Xiao1, Y.  L. Xiao10,f, Z. J. Xiao37, C. Xie38, X. H. Xie42,g, Y. Xie45, Y. G. Xie1,53, Y. H. Xie6, Z. P. Xie66,53, T. Y. Xing1,58, C. F. Xu1, C. J. Xu54, G. F. Xu1, H. Y. Xu61, Q. J. Xu15, X. P. Xu50, Y. C. Xu58, Z. P. Xu38, F. Yan10,f, L. Yan10,f, W. B. Yan66,53, W. C. Yan75, H. J. Yang46,e, H. L. Yang30, H. X. Yang1, L. Yang47, Tao Yang1, Y. F. Yang39, Y. X. Yang1,58, Yifan Yang1,58, M. Ye1,53, M. H. Ye8, J. H. Yin1, Z. Y. You54, B. X. Yu1,53,58, C. X. Yu39, G. Yu1,58, T. Yu67, X. D. Yu42,g, C. Z. Yuan1,58, L. Yuan2, S. C. Yuan1, X. Q. Yuan1, Y. Yuan1,58, Z. Y. Yuan54, C. X. Yue35, A. A. Zafar68, F. R. Zeng45, X. Zeng6, Y. Zeng23,h, X. Y. Zhai30, Y. H. Zhan54, A. Q. Zhang1, B. L. Zhang1, B. X. Zhang1, D. H. Zhang39, G. Y. Zhang18, H. Zhang66, H. H. Zhang54, H. H. Zhang30, H. Y. Zhang1,53, J. L. Zhang72, J. Q. Zhang37, J. W. Zhang1,53,58, J. X. Zhang34,j,k, J. Y. Zhang1, J. Z. Zhang1,58, Jianyu Zhang1,58, Jiawei Zhang1,58, L. M. Zhang56, L. Q. Zhang54, Lei Zhang38, P. Zhang1, Q. Y.  Zhang35,75, Shuihan Zhang1,58, Shulei Zhang23,h, X. D. Zhang41, X. M. Zhang1, X. Y. Zhang45, X. Y. Zhang50, Y. Zhang64, Y.  T. Zhang75, Y. H. Zhang1,53, Yan Zhang66,53, Yao Zhang1, Z. H. Zhang1, Z. L. Zhang30, Z. Y. Zhang39, Z. Y. Zhang71, G. Zhao1, J. Zhao35, J. Y. Zhao1,58, J. Z. Zhao1,53, Lei Zhao66,53, Ling Zhao1, M. G. Zhao39, S. J. Zhao75, Y. B. Zhao1,53, Y. X. Zhao28,58, Z. G. Zhao66,53, A. Zhemchugov32,a, B. Zheng67, J. P. Zheng1,53, Y. H. Zheng58, B. Zhong37, C. Zhong67, X. Zhong54, H.  Zhou45, L. P. Zhou1,58, X. Zhou71, X. K. Zhou58, X. R. Zhou66,53, X. Y. Zhou35, Y. Z. Zhou10,f, J. Zhu39, K. Zhu1, K. J. Zhu1,53,58, L. X. Zhu58, S. H. Zhu65, S. Q. Zhu38, T. J. Zhu72, W. J. Zhu10,f, Y. C. Zhu66,53, Z. A. Zhu1,58, J. H. Zou1

(BESIII Collaboration)

1 Institute of High Energy Physics, Beijing 100049, People’s Republic of China
2 Beihang University, Beijing 100191, People’s Republic of China
3 Beijing Institute of Petrochemical Technology, Beijing 102617, People’s Republic of China
4 Bochum Ruhr-University, D-44780 Bochum, Germany
5 Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
6 Central China Normal University, Wuhan 430079, People’s Republic of China
7 Central South University, Changsha 410083, People’s Republic of China
8 China Center of Advanced Science and Technology, Beijing 100190, People’s Republic of China
9 COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
10 Fudan University, Shanghai 200433, People’s Republic of China
11 G.I. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia
12 GSI Helmholtzcentre for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany
13 Guangxi Normal University, Guilin 541004, People’s Republic of China
14 Guangxi University, Nanning 530004, People’s Republic of China
15 Hangzhou Normal University, Hangzhou 310036, People’s Republic of China
16 Hebei University, Baoding 071002, People’s Republic of China
17 Helmholtz Institute Mainz, Staudinger Weg 18, D-55099 Mainz, Germany
18 Henan Normal University, Xinxiang 453007, People’s Republic of China
19 Henan University of Science and Technology, Luoyang 471003, People’s Republic of China
20 Henan University of Technology, Zhengzhou 450001, People’s Republic of China
21 Huangshan College, Huangshan 245000, People’s Republic of China
22 Hunan Normal University, Changsha 410081, People’s Republic of China
23 Hunan University, Changsha 410082, People’s Republic of China
24 Indian Institute of Technology Madras, Chennai 600036, India
25 Indiana University, Bloomington, Indiana 47405, USA
26 INFN Laboratori Nazionali di Frascati , (A)INFN Laboratori Nazionali di Frascati, I-00044, Frascati, Italy; (B)INFN Sezione di Perugia, I-06100, Perugia, Italy; (C)University of Perugia, I-06100, Perugia, Italy
27 INFN Sezione di Ferrara, (A)INFN Sezione di Ferrara, I-44122, Ferrara, Italy; (B)University of Ferrara, I-44122, Ferrara, Italy
28 Institute of Modern Physics, Lanzhou 730000, People’s Republic of China
29 Institute of Physics and Technology, Peace Avenue 54B, Ulaanbaatar 13330, Mongolia
30 Jilin University, Changchun 130012, People’s Republic of China
31 Johannes Gutenberg University of Mainz, Johann-Joachim-Becher-Weg 45, D-55099 Mainz, Germany
32 Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
33 Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
34 Lanzhou University, Lanzhou 730000, People’s Republic of China
35 Liaoning Normal University, Dalian 116029, People’s Republic of China
36 Liaoning University, Shenyang 110036, People’s Republic of China
37 Nanjing Normal University, Nanjing 210023, People’s Republic of China
38 Nanjing University, Nanjing 210093, People’s Republic of China
39 Nankai University, Tianjin 300071, People’s Republic of China
40 National Centre for Nuclear Research, Warsaw 02-093, Poland
41 North China Electric Power University, Beijing 102206, People’s Republic of China
42 Peking University, Beijing 100871, People’s Republic of China
43 Qufu Normal University, Qufu 273165, People’s Republic of China
44 Shandong Normal University, Jinan 250014, People’s Republic of China
45 Shandong University, Jinan 250100, People’s Republic of China
46 Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
47 Shanxi Normal University, Linfen 041004, People’s Republic of China
48 Shanxi University, Taiyuan 030006, People’s Republic of China
49 Sichuan University, Chengdu 610064, People’s Republic of China
50 Soochow University, Suzhou 215006, People’s Republic of China
51 South China Normal University, Guangzhou 510006, People’s Republic of China
52 Southeast University, Nanjing 211100, People’s Republic of China
53 State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, People’s Republic of China
54 Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
55 Suranaree University of Technology, University Avenue 111, Nakhon Ratchasima 30000, Thailand
56 Tsinghua University, Beijing 100084, People’s Republic of China
57 Turkish Accelerator Center Particle Factory Group, (A)Istinye University, 34010, Istanbul, Turkey; (B)Near East University, Nicosia, North Cyprus, Mersin 10, Turkey
58 University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
59 University of Groningen, NL-9747 AA Groningen, The Netherlands
60 University of Hawaii, Honolulu, Hawaii 96822, USA
61 University of Jinan, Jinan 250022, People’s Republic of China
62 University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
63 University of Muenster, Wilhelm-Klemm-Strasse 9, 48149 Muenster, Germany
64 University of Oxford, Keble Road, Oxford OX13RH, United Kingdom
65 University of Science and Technology Liaoning, Anshan 114051, People’s Republic of China
66 University of Science and Technology of China, Hefei 230026, People’s Republic of China
67 University of South China, Hengyang 421001, People’s Republic of China
68 University of the Punjab, Lahore-54590, Pakistan
69 University of Turin and INFN, (A)University of Turin, I-10125, Turin, Italy; (B)University of Eastern Piedmont, I-15121, Alessandria, Italy; (C)INFN, I-10125, Turin, Italy
70 Uppsala University, Box 516, SE-75120 Uppsala, Sweden
71 Wuhan University, Wuhan 430072, People’s Republic of China
72 Xinyang Normal University, Xinyang 464000, People’s Republic of China
73 Yunnan University, Kunming 650500, People’s Republic of China
74 Zhejiang University, Hangzhou 310027, People’s Republic of China
75 Zhengzhou University, Zhengzhou 450001, People’s Republic of China

a Also at the Moscow Institute of Physics and Technology, Moscow 141700, Russia
b Also at the Novosibirsk State University, Novosibirsk, 630090, Russia
c Also at the NRC "Kurchatov Institute", PNPI, 188300, Gatchina, Russia
d Also at Goethe University Frankfurt, 60323 Frankfurt am Main, Germany
e Also at Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology; Institute of Nuclear and Particle Physics, Shanghai 200240, People’s Republic of China
f Also at Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443, People’s Republic of China
g Also at State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People’s Republic of China
h Also at School of Physics and Electronics, Hunan University, Changsha 410082, China
i Also at Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, South China Normal University, Guangzhou 510006, China
j Also at Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, People’s Republic of China
k Also at Lanzhou Center for Theoretical Physics, Lanzhou University, Lanzhou 730000, People’s Republic of China
l Also at the Department of Mathematical Sciences, IBA, Karachi , Pakistan