This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Study of Compact Stars in +α𝒜\mathcal{R}+\alpha\mathcal{A} Gravity

M. Farasat Shamir [email protected] National University of Computer and Emerging Sciences,
Lahore Campus, Pakistan.
   Eesha Meer [email protected] National University of Computer and Emerging Sciences,
Lahore Campus, Pakistan.
Abstract

The main goal of this work is to provide a comprehensive study of relativistic structures in the context of recently proposed +α𝒜\mathcal{R}+\alpha\mathcal{A} gravity, where \mathcal{R} is the Ricci scalar, and 𝒜\mathcal{A} is the anti-curvature scalar. For this purpose, we examine a new classification of embedded class-I solutions of compact stars. To accomplish this goal, we consider an anisotropic matter distribution for +α𝒜\mathcal{R}+\alpha\mathcal{A} gravity model with static spherically symmetric spacetime distribution. Due to highly non-linear nature of field equations, we use the Karmarkar condition to link the grrg_{rr} and gttg_{tt} components of the metric. Further, we compute the values of constant parameters using the observational data of different compact stars. It is worthy to mention here that we chose a set of twelve important compact stars from the recent literature namely 4U1538524U~{}1538-52, SAXJ1808.43658SAX~{}J1808.4-3658, HerX1Her~{}X-1, LMCX4LMC~{}X-4, SMCX4SMC~{}X-4, 4U1820304U~{}1820-30, CenX3Cen~{}X-3, 4U1608524U~{}1608-52, PSRJ1903+327PSR~{}J1903+327, PSRJ16142230PSR~{}J1614-2230, VelaX1Vela~{}X-1, EXO1785248EXO~{}1785-248. To evaluate the feasibility of +α𝒜\mathcal{R}+\alpha\mathcal{A} gravity model, we conduct several physical checks, such as evolution of energy density and pressure components, stability and equilibrium conditions, energy bounds, behavior of mass function and adiabatic index. It is concluded that +α𝒜\mathcal{R}+\alpha\mathcal{A} gravity supports the existence of compact objects which follow observable patterns.

Keywords: Compact stars, Karmarker, metric potentials, +α𝒜\mathcal{R}+\alpha\mathcal{A} gravity.

I Introduction

Investigation of relativistic stellar structures has now become an interesting research pursuit in astrophysics. The fundamental features of compact stars have encouraged several researchers not only in the prospect of usual general relativity (𝒢\mathcal{GR}) but also in broadly emerging gravitational alternative theories during the last few decades Skm ; Bhr ; Akp ; SMR ; Vum ; Bmk ; Hin ; Nag ; Hat ; Add .

Compact stars are originated as the result of gravitational collapse that happens due to the pressure of the relativistic objects. The gravitational collapse occurs at the center of the massive star which is highly exothermic and this happens when the internal pressure of the stars fails to maintain the pressure against the external force. As the result of gravitational collapse, either a compact star will be born, like neutron stars, white dwarfs, or it will be extended as a black hole. 𝒢\mathcal{GR} provides most suitable results in the study of stellar objects and develop basic understanding about gravitational theories. However, 𝒢\mathcal{GR} alone does not provide satisfactory outcomes in order to determine the mysterious nature of dark energy. Due to the limitation of 𝒢\mathcal{GR}, the modified theories have gained the attention of researchers. As an alternative to the theory of 𝒢\mathcal{GR}, modified theories of gravity have played an important role to somehow explain the accelerating expansion of the universe. Various modified gravitational theories are presented in literature, some of mostly debated are f()f(\mathcal{R}), f(,𝒯)f(\mathcal{R},\mathcal{T}), f(𝒢)f(\mathcal{G}), f(𝒢,𝒯)f(\mathcal{G},\mathcal{T}), f(,𝒢)f(\mathcal{R},\mathcal{G}) Hbl ; MFS ; Stn ; Sma ; Ssz . A recently proposed theory namely f(,𝒜)f(\mathcal{R},\mathcal{A}) gravity has also gained some popularity due to the involvement of bivariate function of Ricci and anti-curvature scalars Luca .

We require a precise solution to the Einstein field equations (\mathcal{EFE}) to examine celestial compact structure models. Schwarzschild Sch was the first who discovered the \mathcal{EFE} solution for the internal structure of compact stars in 1916. Tolman Tol and Oppenheimer Opp explored some feasible models of stellar objects to represent the relationship between internal pressure and the gravitational force. Bowers and Liang Bal introduced the idea of non-zero anisotropy in a stellar arrangement. Ruderman Rud was the first to discover that the nuclear density becomes anisotropic at the center of compact objects. Errehymy et al. Err investigated the solutions of dense stars in the domain of 𝒢\mathcal{GR}. A new class of solution describing an anisotropic star which is satisfying Karmarkers condition was reported by Maurya et al. Sbs . The discussion of compact structures in modified gravity also seems interesting. Nojiri and Odintsov Nao discussed some viable and stable results of different models in the framework of f()f(\mathcal{R}) gravity. Starobinsky Star also presented the outcomes of various models of f()f(\mathcal{R}) gravity. Hu and Sawicki Has suggested several f()f(\mathcal{R}) gravity models. Cognola et al. Cog examined the physical behavior of the compact stars in the exponential type models of f()f(\mathcal{R}) gravity. Schlai Sli identified the embedding problem on geometrically significant spacetimes. Shamir et al. Mir explored the solutions of dense stars using Karmarkar condition in the background of f()f(\mathcal{R}) theory of gravity. Naz et al. Naz investigated the existence of solutions of anisotropic compact objects through embedding approach in the context of f()f(\mathcal{R}) gravity by applying Karmarkar condition.

Motivated from the interesting properties of stellar structures in modified theories of gravity, we aim to investigate anisotropic compact structures in the background of Ricci inverse (\mathcal{RI}) gravity. In particular, we provide a detailed investigation of stellar structure for twelve important compact stars from the recent literature namely 4U1538524U~{}1538-52, SAXJ1808.43658SAX~{}J1808.4-3658, HerX1Her~{}X-1, LMCX4LMC~{}X-4, SMCX4SMC~{}X-4, 4U1820304U~{}1820-30, CenX3Cen~{}X-3, 4U1608524U~{}1608-52, PSRJ1903+327PSR~{}J1903+327, PSRJ16142230PSR~{}J1614-2230, VelaX1Vela~{}X-1, EXO1785248EXO~{}1785-248. Our work is managed as follows: Section II presents the fundamental concepts, structure, and the modified field equations of \mathcal{RI} gravity. In Section III, the matching constraints for the chosen linear \mathcal{RI} gravity model (+α𝒜\mathcal{R}+\alpha\mathcal{A}) are developed using Schwarzschild’s geometry. Section IV is devoted to calculate and analyze physical properties such as energy density, pressure profiles etc. The last section contains final remarks.

II f(,𝒜)f(\mathcal{R},\mathcal{A}) Gravity and Modified Field Equations

The inverse of the Ricci tensor known as the anticurvature tensor helps to form an alternative theory namely f(,𝒜)f(\mathcal{R},\mathcal{A}) gravity Luca , where \mathcal{R} and 𝒜\mathcal{A} are the traces of curvature and anticurvature respectively. This theory can be explored to verify the widespread presence of spectral instabilities and to understand the effects of perturbations such as the propagation of gravitational waves, perturbation growth, or the Newtonian bound. Such theory is confirmed as a suitable choice to be regarded as a cosmological model after deriving the general field equations of the Lagrangian f(,𝒜)f(\mathcal{R},\mathcal{A}). According to a no-go theorem, every Lagrangian action f(,𝒜)f(\mathcal{R},\mathcal{A}) containing terms with any positive or negative exponent of anticurvature 𝒜\mathcal{A} can be used to justify dark energy Luca . Thus, it would be exceptionally intriguing to analyze this theory further. In this work, we focus ourselves to study compact structures in this theory. The starting point to derive the field equations is to define a tensor 𝒜ηξ\mathcal{A}^{\eta\xi} as inverse of ηξ\mathcal{R}_{\eta\xi}, such that

𝒜ηααξ=δξη.\mathcal{A}^{\eta\alpha}\mathcal{R}_{\alpha\xi}=\delta^{\eta}_{\xi}. (1)

In order to develop the modified field equations, we need the following definition of the f(,𝒜)f(\mathcal{R},\mathcal{A}) gravitational action:

S=d4xg[f(,𝒜)+m],S=\int d^{4}x\sqrt{-g}[f(\mathcal{R},\mathcal{A})+\mathcal{L}_{m}], (2)

where, the arbitrary function f(,𝒜)f(\mathcal{R},\mathcal{A}) depends on the Ricci scalar \mathcal{R} and the anticurvature scalar 𝒜\mathcal{A}, which are the traces of the Ricci tensor and the anticurvature tensor respectively. Here, m\mathcal{L}_{m} is matter Lagrangian and gg represents the determinant of the metric. We get the following f(,𝒜)f(\mathcal{R},\mathcal{A}) gravity field equation by varying the action mentioned in Eq. (2) with respect to the metric tensor

fηξf𝒜𝒜ηξ12fgηξ\displaystyle f_{\mathcal{R}}\mathcal{R}^{\eta\xi}-f_{\mathcal{A}}\mathcal{A}^{\eta\xi}-\frac{1}{2}fg^{\eta\xi} +gμηβμ(f𝒜𝒜σβ𝒜ξσ)12κκ(f𝒜𝒜ση𝒜ξσ)\displaystyle+g^{\mu\eta}\nabla_{\beta}\nabla_{\mu}(\ f_{\mathcal{A}}\mathcal{A}_{\sigma}^{\beta}\mathcal{A}^{\xi\sigma})\ -\frac{1}{2}\nabla^{\kappa}\nabla_{\kappa}(\ f_{\mathcal{A}}\mathcal{A}_{\sigma}^{\eta}\mathcal{A}^{\xi\sigma})\
12gηξβμ(f𝒜𝒜σβAμσ)ηξf+gηξκκf=𝒯ηξ,\displaystyle-\frac{1}{2}g^{\eta\xi}\nabla_{\beta}\nabla_{\mu}(\ f_{\mathcal{A}}\mathcal{A}_{\sigma}^{\beta}A^{\mu\sigma})\ -\nabla^{\eta}\nabla^{\xi}f_{\mathcal{R}}+g^{\eta\xi}\nabla^{\kappa}\nabla_{\kappa}f_{\mathcal{R}}=\mathcal{T}^{\eta\xi}, (3)

where, f=f(,𝒜)f=f(\mathcal{R},\mathcal{A}), f=ff_{\mathcal{R}}=\frac{\partial f}{\partial\mathcal{R}}, f𝒜=f𝒜f_{\mathcal{A}}=\frac{\partial f}{\partial\mathcal{A}}, 𝒜ηξ\mathcal{A}^{\eta\xi} is the anticurvature tensor which is the inverse of the Ricci tensor ηξ\mathcal{R}_{\eta\xi}. The stress-energy momentum tensor 𝒯ηξ\mathcal{T}_{\eta\xi} is chosen as

𝒯ηξ=(ρ+pt)uηuξptgηξ+(prpt)χηχξ.\mathcal{T}_{\eta\xi}=(\rho+p_{t})u_{\eta}u_{\xi}-p_{t}g_{\eta\xi}+(p_{r}-p_{t})\mathcal{\chi}_{\eta}\mathcal{\chi}_{\xi}. (4)

Here, ρ,\rho, prp_{r} and ptp_{t} are energy density, radial and transverse pressure components respectively, while uηu_{\eta} and χη\mathcal{\chi}_{\eta} are four velocity vectors, which satisfy the relations uηuη=χηχη=1u^{\eta}u_{\eta}=-\mathcal{\chi}^{\eta}\mathcal{\chi}_{\eta}=1. Furthermore, we consider a static spherically symmetric line element which is represented as

ds2=eνdt2eλdr2r2(dθ2+sin2θdϕ2),ds^{2}=e^{\nu}dt^{2}-e^{\lambda}dr^{2}-r^{2}(d\theta^{2}+sin^{2}\theta d\phi^{2}), (5)

where, ν\nu and λ\lambda are the functions of radial coordinate. Our stress-energy tensor is assumed to be anisotropic, with relativistic geometrized units 8πG=18\pi G=1. Moreover, the embedded class-I family is represented by the metric tensor (5), if it fulfills the Karmarkar condition, i.e.

14142323=12123434+12241334,\mathcal{R}_{1414}\mathcal{R}_{2323}=\mathcal{R}_{1212}\mathcal{R}_{3434}+\mathcal{R}_{1224}\mathcal{R}_{1334}, (6)

with 23230\mathcal{R}_{2323}\neq 0. The following differential equation for the given metric (5) is developed by using the well-known Karmarkar condition as

λν2ν′′(ν)2=λν1eλ,\lambda^{\prime}\nu^{\prime}-2\nu^{\prime\prime}-(\nu^{\prime})^{2}=\frac{\lambda^{\prime}\nu^{\prime}}{1-e^{\lambda}}, (7)

where eλ1e^{\lambda}\neq 1. Integrating Eq. (7), we obtain

eν=[(A+Beλ1𝑑r)2].e^{\nu}=\left[(A+B\int\sqrt{e^{\lambda}-1}dr)^{2}\right]. (8)

In this case, AA and BB are integration constants. Further, due to the highly non-linear nature of modified field equations, we have no other choice but to choose the component grr=eλ(r)g_{rr}=e^{\lambda(r)} in the following shape Bhr ; Spt

eλ=1+a2r2(1+br2)x,e^{\lambda}=1+a^{2}r^{2}(1+br^{2})^{x}, (9)

where one can choose any real value of xx other than zero. It is really important to mention here that in order to establish embedded class-I spacetime, the parameters aa and bb should not be zero. In the domain of 𝒢\mathcal{GR}, Singh and Pant Spt investigated the properties of stellar structures by considering some positive values of xx for embedding class-I solutions of different models of compact stars. Later, Bhar et al. Bhr also used this metric potential by taking the value of x=4x=-4, and the corresponding results are found stable in the context of 𝒢\mathcal{GR}. Inspired by the work of Bhar et al. Bhr , we aim to expand the study in the framework of \mathcal{RI} gravity by choosing x=4x=-4. Interestingly, we tried some other possibilities for the choice of xx (both positive and negative), however, we could not obtain physically acceptable results in those cases. Manipulating Eqs. (8) and (9), the metric potential expression becomes

eν=[(AaB2b(1+br2))2].e^{\nu}=\left[\left(A-\frac{aB}{2b(1+br^{2})}\right)^{2}\right]. (10)
Refer to caption Refer to caption
Figure 1: Graphical Behavior of gttg_{tt} and grrg_{rr} of S1S_{1} ( \bigstar), S2S_{2} ( \bigstar), S3S_{3} ( \bigstar), S4S_{4} ( \bigstar), S5S_{5} ( \bigstar), S6S_{6} ( \bigstar), S7S_{7} ( \bigstar), S8S_{8} ( \bigstar), S9S_{9} ( \bigstar), S10S_{10} ( \bigstar), S11S_{11} ( \bigstar), S12S_{12} ( \bigstar).

Further, to analyze the properties of compact stars, we probe the necessary conditions for the metric potentials of static spherically symmetric spacetime, namely eλ(0)=1e^{\lambda(0)}=1 and ((eλ(r)))r=0=0((e^{\lambda(r)})^{\prime})_{r=0}=0. The graphical response of grrg_{rr} should not contain any singularities, and the curvature must be regular. From Fig. 1, it is evident that all above properties are satisfied and also the plot of eλe^{\lambda} exhibits monotonically increasing behavior, reaching its maximum value near the boundary.

III Viable \mathcal{RI} gravity model and matching conditions

In this section, we provide some discussions about linear +α𝒜\mathcal{R}+\alpha\mathcal{A} gravity model and the matching conditions. By substituting this model in Eq.(II), the field equations are simplified as

ηξ12gηξα𝒜ηξ12α𝒜gηξ+α2(2gμηβμ𝒜σβ𝒜ξσκκ𝒜ση𝒜ξσgηξβμ𝒜σβ𝒜μσ)=𝒯ηξ\mathcal{R}^{\eta\xi}-\frac{1}{2}\mathcal{R}g^{\eta\xi}-\alpha\mathcal{A}^{\eta\xi}-\frac{1}{2}\alpha\mathcal{A}g^{\eta\xi}+\frac{\alpha}{2}(2g^{\mu\eta}\nabla_{\beta}\nabla_{\mu}\mathcal{A}_{\sigma}^{\beta}\mathcal{A}^{\xi\sigma}-\nabla^{\kappa}\nabla_{\kappa}\mathcal{A}_{\sigma}^{\eta}\mathcal{A}^{\xi\sigma}-g^{\eta\xi}\nabla_{\beta}\nabla_{\mu}\mathcal{A}_{\sigma}^{\beta}\mathcal{A}^{\mu\sigma})=\mathcal{T}^{\eta\xi} (11)

Using Eq. (11) and spacetime (5), modified field equations turn out to be

ρ\displaystyle\rho =eνΓ112Γ2αeνΓ312αΓ4+α2(eνλΓ5′′+eνλν′′Γ5+2eνλνΓ5+eνλ(ν)2Γ5λ2eνλΓ5\displaystyle=e^{-\nu}\Gamma_{1}-\frac{1}{2}\Gamma_{2}-\alpha e^{\nu}\Gamma_{3}-\frac{1}{2}\alpha\Gamma_{4}+\frac{\alpha}{2}(e^{\nu-\lambda}\Gamma_{5}^{\prime\prime}+e^{\nu-\lambda}\nu^{\prime\prime}\Gamma_{5}+2e^{\nu-\lambda}\nu^{\prime}\Gamma_{5}^{\prime}+e^{\nu-\lambda}(\nu^{\prime})^{2}\Gamma_{5}-\frac{\lambda^{\prime}}{2}e^{\nu-\lambda}\Gamma_{5}^{\prime}
νλ2eνλΓ5+2reνλΓ5+2νreνλΓ5Γ6′′λ′′Γ632λΓ6(λ)22Γ62reλΓ74r2Γ6),\displaystyle-\frac{\nu^{\prime}\lambda^{\prime}}{2}e^{\nu-\lambda}\Gamma_{5}+\frac{2}{r}e^{\nu-\lambda}\Gamma_{5}^{\prime}+\frac{2\nu^{\prime}}{r}e^{\nu-\lambda}\Gamma_{5}-\Gamma_{6}^{\prime\prime}-\lambda^{\prime\prime}\Gamma_{6}-\frac{3}{2}\lambda^{\prime}\Gamma_{6}^{\prime}-\frac{(\lambda^{\prime})^{2}}{2}\Gamma_{6}-2re^{-\lambda}\Gamma_{7}^{\prime}-\frac{4}{r^{2}}\Gamma_{6}), (12)
pr\displaystyle p_{r} =eλΓ8+12Γ2αeλΓ9+12αΓ4+α2((ν)22eνλΓ5+νλ2Γ6+ν2Γ6+4eλΓ7+2λrΓ6+2rΓ6\displaystyle=e^{-\lambda}\Gamma_{8}+\frac{1}{2}\Gamma_{2}-\alpha e^{\lambda}\Gamma_{9}+\frac{1}{2}\alpha\Gamma_{4}+\frac{\alpha}{2}(-\frac{(\nu^{\prime})^{2}}{2}e^{\nu-\lambda}\Gamma_{5}+\frac{\nu^{\prime}\lambda^{\prime}}{2}\Gamma_{6}+\frac{\nu^{\prime}}{2}\Gamma_{6}^{\prime}+4e^{-\lambda}\Gamma_{7}+\frac{2\lambda^{\prime}}{r}\Gamma_{6}+\frac{2}{r}\Gamma_{6}^{\prime}
ν2eνλΓ5+2reλΓ7),\displaystyle-\frac{\nu^{\prime}}{2}e^{\nu-\lambda}\Gamma_{5}^{\prime}+2re^{-\lambda}\Gamma_{7}^{\prime}), (13)
pt\displaystyle p_{t} =1r2Γ10+12Γ2αr2Γ11+12αΓ4+α2(ν2r2eλΓ7+reλνΓ7+r2eλΓ7′′+4eλΓ7+6reλΓ7\displaystyle=\frac{1}{r^{2}}\Gamma_{10}+\frac{1}{2}\Gamma_{2}-\alpha r^{2}\Gamma_{11}+\frac{1}{2}\alpha\Gamma_{4}+\frac{\alpha}{2}(\frac{\nu^{\prime}}{2}r^{2}e^{-\lambda}\Gamma_{7}^{\prime}+re^{-\lambda}\nu^{\prime}\Gamma_{7}+r^{2}e^{-\lambda}\Gamma_{7}^{\prime\prime}+4e^{-\lambda}\Gamma_{7}+6re^{-\lambda}\Gamma_{7}^{\prime}
λ2r2eλΓ7reλλΓ7ν2eνλΓ5+(ν)22Γ6+Γ6′′+λ′′Γ6+32λΓ6+(λ)22Γ6+2r2Γ6),\displaystyle-\frac{\lambda^{\prime}}{2}r^{2}e^{-\lambda}\Gamma_{7}^{\prime}-re^{-\lambda}\lambda^{\prime}\Gamma_{7}-\frac{\nu^{\prime}}{2}e^{\nu-\lambda}\Gamma_{5}^{\prime}+\frac{(\nu^{\prime})^{2}}{2}\Gamma_{6}+\Gamma_{6}^{\prime\prime}+\lambda^{\prime\prime}\Gamma_{6}+\frac{3}{2}\lambda^{\prime}\Gamma_{6}^{\prime}+\frac{(\lambda^{\prime})^{2}}{2}\Gamma_{6}+\frac{2}{r^{2}}\Gamma_{6}), (14)

where, the values of Γi\Gamma_{i}’s (i=111)(i=1...11) are mentioned in Appendix and the prime represents the derivative with respect to rr.

The star’s geometrical structure, whether viewed from the outside or the inside, has no impact on the interior boundary metric. The metric components must be continuous to the boundary regardless of the referential frame in this emerging situation. While evaluating several matching conditions and exploring compact objects in the context of 𝒢\mathcal{GR}, the Schwarzschild solution seems to be the right approach. According to the Jebsen-Birkhoff theorem, given spherically symmetric spacetime, the solution of the Einstein field equations ()\mathcal{(EFE)} must be asymptotically flat and static. In modified gravitational theories, the exterior geometry solution may vary from the Schwarzschild solution when we consider modified (𝒯𝒪𝒱)\mathcal{(TOV)} equations Tol ; Opp with zero pressure and energy density. Furthermore, the Schwarzschild solution can be achieved in \mathcal{RI} gravity by choosing a realistic and viable +α𝒜\mathcal{R}+\alpha\mathcal{A} gravity model with non-zero density and pressure components. The Birkhoff theorem contradicts modified theories as a result Vfi . Numerous studies using Schwarzschild solution in matching constraints have produced impressive findings Ava ; Acn ; Agy ; Dmi . The radial pressure pr(r=R)=0p_{r}(r=R)=0 is used to calculate the field equations solution under the specified boundary conditions at r=Rr=R. Thus, we compare the internal geometry solution to the Schwarzschild external geometry provided by

ds2=(12Mr)dt2(12Mr)1dr2r2(dθ2+sin2θdϕ2),ds^{2}=\left(1-\frac{2M}{r}\right)dt^{2}-\left(1-\frac{2M}{r}\right)^{-1}dr^{2}-r^{2}(d\theta^{2}+sin^{2}\theta d\phi^{2}), (15)

where the entire mass contained within the star is represented by MM. The following expressions are derived at r=Rr=R by probing at the metric potentials as follows:

gtt+=gtt,grr+=grr,gtt+r=gttr,\displaystyle g_{tt}^{+}=g_{tt}^{-},\qquad g_{rr}^{+}=g_{rr}^{-},\qquad\frac{\partial g_{tt}^{+}}{\partial r}=\frac{\partial g_{tt}^{-}}{\partial r}, (16)

where, (+) refers to the external geometry and (-) represents the internal geometry. The values of the required unknown quantities can be obtained by comparing the inner and outer matrices as shown below:

a\displaystyle a =(1+bR2)2R2MR12MR,\displaystyle=\frac{(1+bR^{2})^{2}}{R}\sqrt{\frac{\frac{2M}{R}}{1-\frac{2M}{R}}}, b\displaystyle b =4MRR2(9R20M),\displaystyle=\frac{4M-R}{R^{2}(9R-20M)}, (17)
A\displaystyle A =aB2b(1+bR2)+12MR,\displaystyle=\frac{aB}{2b(1+bR^{2})}+\sqrt{1-\frac{2M}{R}}, B\displaystyle B =(12R)2MR.\displaystyle=\left(\frac{1}{2R}\right)\sqrt{\frac{2M}{R}}. (18)

We will use these matching conditions to analyze different compact star models in the background of +α𝒜\mathcal{R}+\alpha\mathcal{A} gravity. It is worthwhile to mention here that we provide a detailed comparison by considering 1212 compact star models namely 4U1538524U~{}1538-52, SAXJ1808.43658SAX~{}J1808.4-3658, HerX1Her~{}X-1, LMCX4LMC~{}X-4, SMCX4SMC~{}X-4, 4U1820304U~{}1820-30, CenX3Cen~{}X-3, 4U1608524U~{}1608-52, PSRJ1903+327PSR~{}J1903+327, PSRJ16142230PSR~{}J1614-2230, VelaX1Vela~{}X-1, EXO1785248EXO~{}1785-248. The values of the input parameters radius and mass of considered compact stars are given in Table I:

Star Model M(MΘ)M(M_{\Theta}) R(km)R(km)
4U 1538-52 (S1)(S_{1}) 0.87 ±\pm 0.07 SiU 7.866 ±\pm 0.21
SAX J1808.4-3658 (S2)(S_{2}) 0.9 ±\pm 0.3 Ele 7.951 ±\pm 1.0
Her X-1 (S3)(S_{3}) 0.85 ±\pm 0.15 MKA 8.1 ±\pm 0.41
LMC X-4 (S4)(S_{4}) 1.04 ±\pm 0.09 SiU 8.301 ±\pm 0.2
SMC X-4 (S5)(S_{5}) 1.29 ±\pm 0.05 SiU 8.831 ±\pm 0.09
4U 1820-30 (S6)(S_{6}) 1.58 ±\pm 0.06 GT 9.1 ±\pm 0.4
Cen X-3 (S7)(S_{7}) 1.49 ±\pm 0.08 SiU 9.178 ±\pm 0.13
4U 1608-52 (S8)(S_{8}) 1.74 ±\pm 0.01 Wro 9.3 ±\pm 0.10
PSR J1903+327 (S9)(S_{9}) 1.667 ±\pm 0.021 PCC 9.48 ±\pm 0.03
PSR J1614-2230 (S10)(S_{10}) 1.97 ±\pm 0.04 DEM 9.69 ±\pm 0.2
Vela X-1 (S11)(S_{11}) 1.77 ±\pm 0.08 SiU 9.56 ±\pm 0.08
EXO 1785-248 (S12)(S_{12}) 1.30 ±\pm 0.2 Oze 10.10 ±\pm 0.44
Table 1: Approximated values of input parameters

By using the values of the input parameters from Table I and manipulating Eqs. (17), the values of the output parameters aa, bb, AA, and BB are shown in the following Table:

Star Model a(km)a(km) b(km)b(km) A(km)A(km) B(km)B(km)
4U 1538-52 (S1)(S_{1}) 0.0784715 -0.00097169 -0.744456 0.0364083
SAX J1808.4-3658 (S2)(S_{2}) 0.0793101 -0.000920891 -0.851084 0.0364385
Her X-1 (S3)(S_{3}) 0.0726951 -0.000977202 -0.538845 0.0344393
LMC X-4 (S4)(S_{4}) 0.0838586 -0.000705186 -1.50207 0.0367192
SMC X-4 (S5)(S_{5}) 0.0934356 -0.000366545 -4.13713 0.0372694
4U 1820-30 (S6)(S_{6}) 0.115014 0.0000941913 24.5842 0.039431
Cen X-3 (S7)(S_{7}) 0.103164 -0.000104682 -18.0737 0.0378044
4U 1608-52 (S8)(S_{8}) 0.127851 0.000368416 7.40205 0.0400518
PSR J1903+327 (S9)(S_{9}) 0.112672 0.000126983 17.4001 0.0380914
PSR J1614-2230 (S10)(S_{10}) 0.156003 0.0009043 3.91745 0.0413433
Vela X-1 (S11)(S_{11}) 0.122018 0.000306813 8.16831 0.0387589
EXO 1785-248 (S12)(S_{12}) 0.0708703 -0.000447232 -1.75321 0.0305887
Table 2: Approximated values of output parameters with α=1.3×1011\alpha=1.3\times 10^{-11}

Further, the requirements for a well-behaved compact structure are specified as:

\bullet The plots of ρ\rho, prp_{r}, and ptp_{t} must always be positive, finite, and maximum at the center.
\bullet The gradient of ρ\rho, prp_{r}, and ptp_{t} should be negative.
\bullet All of the energy requirements must be achieved.
\bullet The equation of state (EoSEoS) should satisfy the mandatory constraints, namely 0<ωr0<\omega_{r}, ωt<1\omega_{t}<1.
\bullet The equilibrium stability condition must be fulfilled by all of the forces.
\bullet The parameters of speed of sound must be between [0,1][0,1], i.e. 0<υr20<\upsilon_{r}^{2}, and υt2<1\upsilon_{t}^{2}<1.
\bullet Adiabatic index must be greater than 43\frac{4}{3} for an anisotropic fluid sphere.

IV Physical characteristics of the compact star models

In this section, we discuss some important physical properties of the observed compact stars in the context of considered +α𝒜\mathcal{R}+\alpha\mathcal{A} gravity model. For this purpose, we provide the graphical representations of energy density, pressure components, energy conditions, mass function, adiabatic index, stability and equilibrium conditions. Moreover, for our given model, we take the parameter α=1.3×1011\alpha=1.3\times 10^{-11} for various compact stars. The parameter α\alpha has a very limited range which provides us physically accepted results. We have checked two other values of parameter α=1.0×109\alpha=1.0\times 10^{-9}, α=1.9×108\alpha=1.9\times 10^{-8} and found that there is a very slight difference in the behavior of the graphs towards the boundary. That difference is shown for one star VelaX1Vela~{}X-1 as a magnified image in Fig. 2.

IV.1 Energy Density and Pressure Profiles

We display the graphical behavior of ρ\rho, prp_{r} and ptp_{t} for +α𝒜\mathcal{R}+\alpha\mathcal{A} model in this subsection. The graphical action of these aspects is presented in Fig. 2. In addition, we also show the graphical response of gradients of ρ\rho, prp_{r} and ptp_{t} in the Fig 3. It is clearly seen from the Fig. 2 that plots of energy density, radial and transverse pressures are positive as well as finite. One can easily notice that the demonstration of ρ\rho, prp_{r} and ptp_{t} components reach the maximum values at the center of compact star and decline towards the stellar surface boundary.

Refer to caption Refer to caption Refer to caption
Figure 2: Behavior of ρ\rho, prp_{r} and ptp_{t} of S1S_{1} ( \bigstar), S2S_{2} ( \bigstar), S3S_{3} ( \bigstar), S4S_{4} ( \bigstar), S5S_{5} ( \bigstar), S6S_{6} ( \bigstar), S7S_{7} ( \bigstar), S8S_{8} ( \bigstar), S9S_{9} ( \bigstar), S10S_{10} ( \bigstar), S11S_{11} ( \bigstar), S12S_{12} ( \bigstar). The magnified images in the figure show the behavior of the star VelaX1Vela~{}X-1 for two different values of parameter α=1.0×109\alpha=1.0\times 10^{-9}, α=1.9×108\alpha=1.9\times 10^{-8}.

In Fig. 3, the gradients of ρ\rho, prp_{r} and ptp_{t} are plotted which are finite but negative. These elements indicate the high compactness character of the compact stars.

Refer to caption Refer to caption Refer to caption
Figure 3: Variation of dρdr\frac{d\rho}{dr}, dprdr\frac{dp_{r}}{dr} and dptdr\frac{dp_{t}}{dr} of S1S_{1} ( \bigstar), S2S_{2} ( \bigstar), S3S_{3} ( \bigstar), S4S_{4} ( \bigstar), S5S_{5} ( \bigstar), S6S_{6} ( \bigstar), S7S_{7} ( \bigstar), S8S_{8} ( \bigstar), S9S_{9} ( \bigstar), S10S_{10} ( \bigstar), S11S_{11} ( \bigstar), S12S_{12} ( \bigstar).

IV.2 Anisotropy

In this portion, we discuss the graphical response of anisotropy parameter Cgb which is represented by Δ\Delta and defined as the difference between the transverse and radial pressures i.e. Δ=ptpr\Delta=p_{t}-p_{r}. The nature of Δ\Delta is attractive if pt<prp_{t}<p_{r} and repulsive if pt>prp_{t}>p_{r}. Therefore, the anisotropy must indicate repulsive nature Mkg for the compact stars to exist. From Fig. 4, it is obvious that anisotropy remains positive in our case i.e. Δ>0\Delta>0, which implies that anisotropic force is drawn outwards.

Refer to caption
Figure 4: Evolution of Δ\Delta of S1S_{1} ( \bigstar), S2S_{2} ( \bigstar), S3S_{3} ( \bigstar), S4S_{4} ( \bigstar), S5S_{5} ( \bigstar), S6S_{6} ( \bigstar), S7S_{7} ( \bigstar), S8S_{8} ( \bigstar), S9S_{9} ( \bigstar), S10S_{10} ( \bigstar), S11S_{11} ( \bigstar), S12S_{12} ( \bigstar).

IV.3 Energy Conditions

The significant role of energy conditions in describing the existence of anisotropic compact stars is widely known in literature Zya . These energy limitations are classified namely null energy, strong energy, weak energy and dominant energy bounds represented by 𝒩𝒞\mathcal{NEC}, 𝒮𝒞\mathcal{SEC}, 𝒲𝒞\mathcal{WEC} and 𝒟𝒞\mathcal{DEC}, sequentially and expressed as

𝒩𝒞:ρ+pr0,ρ+pt0,𝒲𝒞:ρ0,ρ+pr0,ρ+pt0,\displaystyle\mathcal{NEC}:\rho+p_{r}\geq 0,\quad\rho+p_{t}\geq 0,\qquad\mathcal{WEC}:\rho\geq 0,\quad\rho+p_{r}\geq 0,\quad\rho+p_{t}\geq 0,
𝒮𝒞:ρ+pr+2pt0,𝒟𝒞:ρ0,ρ|pr|0,ρ|pt|0.\displaystyle\mathcal{SEC}:\rho+p_{r}+2p_{t}\geq 0,\qquad\mathcal{DEC}:\rho\geq 0,\quad\rho-|p_{r}|\geq 0,\quad\rho-|p_{t}|\geq 0. (19)

From Fig. 5, it is clearly observed that all energy conditions are satisfied for considered +α𝒜\mathcal{R}+\alpha\mathcal{A} gravity model.

Refer to caption Refer to caption Refer to caption
Refer to caption Refer to caption Refer to caption
Figure 5: Profiles of the energy conditions of S1S_{1} ( \bigstar), S2S_{2} ( \bigstar), S3S_{3} ( \bigstar), S4S_{4} ( \bigstar), S5S_{5} ( \bigstar), S6S_{6} ( \bigstar), S7S_{7} ( \bigstar), S8S_{8} ( \bigstar), S9S_{9} ( \bigstar), S10S_{10} ( \bigstar), S11S_{11} ( \bigstar), S12S_{12} ( \bigstar).

IV.4 Equilibrium Conditions

Now, we investigate the equilibrium condition of our model under the existence of hydrostatic force, gravitational force and anisotropic force. The equilibrium condition among all these forces can be written as

MG(r)(ρ+pr)reλυ2+dprdr2r(ptpr)=0.\frac{M_{G}(r)(\rho+p_{r})}{r}e^{\frac{\lambda-\upsilon}{2}}+\frac{dp_{r}}{dr}-\frac{2}{r}(p_{t}-p_{r})=0. (20)

The effective gravitational mass MG(r)M_{G}(r) is expressed as

MG(r)=12υeυλ2.M_{G}(r)=\frac{1}{2}\upsilon^{\prime}e^{\frac{\upsilon-\lambda}{2}}. (21)

Inserting value of MG(r)M_{G}(r) in Eq. (21), we get

υ2(ρ+pr)+dprdr2r(ptpr)=0,\frac{\upsilon^{\prime}}{2}(\rho+p_{r})+\frac{dp_{r}}{dr}-\frac{2}{r}(p_{t}-p_{r})=0, (22)

where, g=υ2(ρ+pr)\mathcal{F}_{g}=-\frac{\upsilon^{\prime}}{2}(\rho+p_{r}), h=dprdr\mathcal{F}_{h}=-\frac{dp_{r}}{dr} and a=2rΔ\mathcal{F}_{a}=\frac{2}{r}\Delta with g\mathcal{F}_{g}, h\mathcal{F}_{h} and a\mathcal{F}_{a} identified as gravitational force, hydrostatic force and anisotropic force. The sum of these three forces should be equal to zero for the system to be balanced. Therefore, Eq. (23) gives

g+h+a=0.\mathcal{F}_{g}+\mathcal{F}_{h}+\mathcal{F}_{a}=0. (23)

It can be easily noticed from Fig. 6, that all these forces express the required equilibrium condition.

Refer to caption
Figure 6: Behavior of h\mathcal{F}_{h}, g\mathcal{F}_{g} and a\mathcal{F}_{a} of S1S_{1} ( \bigstar), S2S_{2} ( \bigstar), S3S_{3} ( \bigstar), S4S_{4} ( \bigstar), S5S_{5} ( \bigstar), S6S_{6} ( \bigstar), S7S_{7} ( \bigstar), S8S_{8} ( \bigstar), S9S_{9} ( \bigstar), S10S_{10} ( \bigstar), S11S_{11} ( \bigstar), S12S_{12} ( \bigstar).

IV.5 Equation of State

Further, we determine (EoSEoS) parameters for radial and tangential pressures, presented by

ωr=prρ,ωt=ptρ.\displaystyle\omega_{r}=\frac{p_{r}}{\rho},\qquad\omega_{t}=\frac{p_{t}}{\rho}. (24)

The graphical illustration of both parameters in Fig. 7, clearly shows that 0<ωr0<\omega_{r}, ωt<1\omega_{t}<1. Thus, it is concluded that the EoSEoS satisfy the necessary conditions for compact stars under discussion.

Refer to caption Refer to caption
Figure 7: Profiles of ωr\omega_{r} and ωt\omega_{t} of S1S_{1} ( \bigstar), S2S_{2} ( \bigstar), S3S_{3} ( \bigstar), S4S_{4} ( \bigstar), S5S_{5} ( \bigstar), S6S_{6} ( \bigstar), S7S_{7} ( \bigstar), S8S_{8} ( \bigstar), S9S_{9} ( \bigstar), S10S_{10} ( \bigstar), S11S_{11} ( \bigstar), S12S_{12} ( \bigstar).

IV.6 Causality Condition

The causality condition is subjected to the sound speed of both pressure components, i.e. radial and transverse pressures which are expressed as

υr2=dprdρ,υt2=dptdρ.\displaystyle\upsilon_{r}^{2}=\frac{dp_{r}}{d\rho},\qquad\upsilon_{t}^{2}=\frac{dp_{t}}{d\rho}. (25)

Here, υr2\upsilon_{r}^{2} and υt2\upsilon_{t}^{2} stand for radial and tangential sound speed. Using the concept of Herrera Lhr i.e., (0υr2,υt21)(0\leq\upsilon_{r}^{2},\upsilon_{t}^{2}\leq 1), both of the sound speeds of pressure components must vary from 0 to 1 to stabilize our system. Further, we examine the graphical response of our selected model for the Andreasson condition Han , |υr2υt2|1|\upsilon_{r}^{2}-\upsilon_{t}^{2}|\leq 1. The graphical representations in Fig. 8, indicate the stability and balanced nature of +α𝒜\mathcal{R}+\alpha\mathcal{A} model satisfying the causality condition.

Refer to caption Refer to caption
Refer to caption Refer to caption
Figure 8: Behavior of speeds of sound parameters, and Abreu condition of S1S_{1} ( \bigstar), S2S_{2} ( \bigstar), S3S_{3} ( \bigstar), S4S_{4} ( \bigstar), S5S_{5} ( \bigstar), S6S_{6} ( \bigstar), S7S_{7} ( \bigstar), S8S_{8} ( \bigstar), S9S_{9} ( \bigstar), S10S_{10} ( \bigstar), S11S_{11} ( \bigstar), S12S_{12} ( \bigstar).

IV.7 Mass Function, Compactness Factor and Redshift Analysis

The mass function Bhr attained by making use of the metric potential grr=grr+g_{rr}^{-}=g_{rr}^{+} is given as

(r)=a2r32[(1+br2)4+a2r2].\mathcal{M}(r)=\frac{a^{2}r^{3}}{2[(1+br^{2})^{4}+a^{2}r^{2}]}. (26)

Moreover, we compute the compactness parameter 𝒰(r)\mathcal{U}(r) Mkm and the redshift function 𝒵(r)\mathcal{Z}(r) Cgb , derived as the following expressions

𝒰(r)=2(r)r=a2r2[(1+br2)4+a2r2],\mathcal{U}(r)=\frac{2\mathcal{M}(r)}{r}=\frac{a^{2}r^{2}}{[(1+br^{2})^{4}+a^{2}r^{2}]}, (27)
𝒵(r)=eν21.\mathcal{Z}(r)=e^{-\frac{\nu}{2}}-1. (28)

Fig. 9 shows the graphical behavior of (r)\mathcal{M}(r), 𝒰(r)\mathcal{U}(r) and 𝒵(r)\mathcal{Z}(r). The nature of mass function meets the Buchdahl Hab and Bondi Hbi constraint i.e., 2MR<89\frac{2M}{R}<\frac{8}{9}. In addition, it can be noticed that as we advance towards the boundary, mass function and compactness parameter increase monotonically while the plot of redshift indicates monotonically decreasing behavior. Therefore, we sum up that these graphs illustrate the satisfactory behavior for our model.

Refer to caption Refer to caption Refer to caption
Figure 9: Graphs of mass function (left panel), compactness factor (middle panel), and redshift(right panel) of S1S_{1} ( \bigstar), S2S_{2} ( \bigstar), S3S_{3} ( \bigstar), S4S_{4} ( \bigstar), S5S_{5} ( \bigstar), S6S_{6} ( \bigstar), S7S_{7} ( \bigstar), S8S_{8} ( \bigstar), S9S_{9} ( \bigstar), S10S_{10} ( \bigstar), S11S_{11} ( \bigstar), S12S_{12} ( \bigstar).

IV.8 Adiabatic Index

The stiffness of (EoSEoS) for a given energy density is described by adiabatic index. It verifies the stability of stellar objects, both relativistically and non relativistically. Chandrasekhar Scd presented the theory of dynamical stability for the infinitesimal, radial adiabatic oscillations of stellar spheres. His idea has been tested by many authors for isotropic and anisotropic stellar structures Hhn ; Whi ; Dho ; Ddd ; Hos ; Iba . The value of adiabatic index should be greater than 43\frac{4}{3}, for compact star models to be stable. Adiabatic index of pressure components, prp_{r} and ptp_{t} have the following expressions respectively

γr=ρ+prpr(dprdρ)=ρ+prprvr2,γt=ρ+ptpt(dptdρ)=ρ+ptptvt2.\displaystyle\gamma_{r}=\frac{\rho+p_{r}}{p_{r}}(\frac{dp_{r}}{d\rho})=\frac{\rho+p_{r}}{p_{r}}v_{r}^{2},\qquad\gamma_{t}=\frac{\rho+p_{t}}{p_{t}}(\frac{dp_{t}}{d\rho})=\frac{\rho+p_{t}}{p_{t}}v_{t}^{2}. (29)

It is concluded from Fig. 10 that the considered +α𝒜\mathcal{R}+\alpha\mathcal{A} model is potentially balanced under the above stability condition.

Refer to caption Refer to caption
Figure 10: Variation of γr\gamma_{r}, and γt\gamma_{t} of S1S_{1} ( \bigstar), S2S_{2} ( \bigstar), S3S_{3} ( \bigstar), S4S_{4} ( \bigstar), S5S_{5} ( \bigstar), S6S_{6} ( \bigstar), S7S_{7} ( \bigstar), S8S_{8} ( \bigstar), S9S_{9} ( \bigstar), S10S_{10} ( \bigstar), S11S_{11} ( \bigstar), S12S_{12} ( \bigstar).

V Summary and Concluding Remarks

We assume a realistic +α𝒜\mathcal{R}+\alpha\mathcal{A} gravity model by using the Karmarkar condition to investigate a novel family of embedded class-I solutions in the anisotropic framework. Since the Karmarkar condition provides a link between grrg_{rr} and gttg_{tt}, it simplifies the solution generating process of \mathcal{EFE} to a single metric potential. Assuming the metric potential eλ=1+a2r2(1+br2)4e^{\lambda}=1+\frac{a^{2}r^{2}}{(1+br^{2})^{4}} for this purpose, we use the Karmarkar condition to determine the second metric potential, eν=[(AaB2b(1+br2))2]e^{\nu}=\left[\left(A-\frac{aB}{2b(1+br^{2})}\right)^{2}\right], where aa, bb, AA, and BB are arbitrary constants. We also determine the unknown constants by applying matching constraints between the internal and Schwarzschild external geometries. We examine the physical behavior of twelve different compact stars to confirm that the discussed solutions are physically feasible. The primary objective of our research is to study stellar structures using a viable +α𝒜\mathcal{R}+\alpha\mathcal{A} gravity model in the context of an anisotropic matter source. The notable results are listed below.

  • Metric potentials are frequently used to characterize the properties of spacetime. According to Fig. 1, both the metric potentials grr=eλg_{rr}=e^{\lambda} and gtt=eνg_{tt}=e^{\nu} exhibit graphical behavior that is finite, positive, singularity-free, and satisfies the criteria, i.e., eλ(r=0)=1e^{\lambda(r=0)}=1 and eν(r=0)=[AaB2b]2e^{\nu(r=0)}=\left[A-\frac{aB}{2b}\right]^{2}. Since these graphs expand monotonically and reach their maximum values at the boundary, the progression of both potentials exhibits excellent outcomes, supporting the +α𝒜\mathcal{R}+\alpha\mathcal{A} gravity model.

  • The trend of density and pressure components for +α𝒜\mathcal{R}+\alpha\mathcal{A} gravity model is shown in Fig. 2. For this purpose, we consider the model parameter α=1.3×1011\alpha=1.3\times 10^{-11}. It is important to mention here that the parameter α\alpha has a very limited range which provides us physically accepted results. We have checked two other values of parameter α=1.0×109\alpha=1.0\times 10^{-9}, α=1.9×108\alpha=1.9\times 10^{-8} and found that there is a very slight difference in the behavior of the graphs towards the boundary. That difference is shown for one star only VelaX1Vela~{}X-1 as a magnified image in Fig. 2. The variations of ρ\rho, prp_{r}, and ptp_{t} with respect to rr are finite and regular at the center. It is also evident that graphs of ρ\rho, prp_{r}, and ptp_{t} reach their highest values at the center and show a diminishing response toward the border, supporting the stability of our model. The gradient of ρ\rho, prp_{r}, and ptp_{t} has been depicted in Fig. 3. These graphs exhibit negative behavior, demonstrating the consistency of our suggested model.

  • It is clear from Fig. 4 that anisotropy is positive throughout the stellar objects. This behavior demonstrates that anisotropy has a repulsive nature, confirming its existence for compact objects.

  • The energy bounds for the suggested +α𝒜\mathcal{R}+\alpha\mathcal{A} model are shown in Fig. 5. We observed that our given model fulfills all energy bounds.

  • The equilibrium conditions of g\mathcal{F}_{g}, h\mathcal{F}_{h}, and a\mathcal{F}_{a} of our physically acceptable model show balancing behavior in Fig. 6.

  • The graphical response of EoSEoS must fulfill the requirements 0<ωr0<\omega_{r}, ωt<1\omega_{t}<1 for the consistency of the stellar objects. The corresponding graphical representation in Fig. 7 depicts that both EoSEoS ratios have a stable character.

  • The radial component sound velocity υr2\upsilon_{r}^{2} plot and the transverse component sound velocity υt2\upsilon_{t}^{2} plot should fall within the range [0, 1] for compact stars. According to Fig. 8, the stability constraints for our model are stable.

  • From Fig. 9, it is easy to notice that the graphs of the mass function and the compactness parameter demonstrate monotonically increasing responses. On the other hand, the graphical illustration of redshift analysis reveals monotonically decreasing behavior. The behavior shows that our given model achieves the stability criteria.

  • In Fig. 10, the adiabatic index of γr\gamma_{r} and γt\gamma_{t} for our given model is more than 43\frac{4}{3}, confirming the stability of our system.

As a final observation, we have used the Karmarkar condition to provide a stellar system that is both well-stable and singularity-free. We conclude that +α𝒜\mathcal{R}+\alpha\mathcal{A} gravity model supports the existence of compact objects which follow observable patterns. Furthermore, it is worth mentioning that our suggested results are almost similar to the outcomes investigated by Naz et al. Naz in the context of f()f(\mathcal{R}) theory of gravity. It may be noted that due to the involvement of inverse curvature terms, we get more dense stars in our case.

Acknowledgements

The authors appreciate important comments from anonymous reviewer which improved the paper.

References

References

  • (1) S.K. Maurya, Y.K. Gupta, Saibal Ray, S.R. Chowdhury, Eur. Phys. J. C 75, 389 (2015).
  • (2) P. Bhar, K.N. Singh, T. Manna, Int. J. Mod. Phys. D 26, 1750090 (2017).
  • (3) A.K. Prasad, et al., Astrophys. Space Sci. 364, 66 (2019).
  • (4) S. K. Maurya, M. Govender, S. Kaur, R. Nag, Eur. Phys. J. C 82, 100 (2022).
  • (5) V.U.M. Rao, K.V.S. Sireesha, and D.Ch. Papa Rao, Eur. Phys. J. Plus 129, 17 (2014).
  • (6) B. Modak, K. Sarkar A. K Sanyal, Astrophys Space Sci. 353, 707–720 (2014).
  • (7) H. Azmat, M. Zubair, Eur. Phys. J. Plus 136, 112 (2021).
  • (8) R. Nagpal, S. K. J Pacif, Eur. Phys. J. Plus 136, 875 (2021).
  • (9) H. Azmat, M. Zubair, Z. Ahmad, Ann. Phys. 439, 168769 (2022).
  • (10) A. Addazi, S. Capozziello, S. Odintsovgh, Phys. Lett. B 816, 136257, (2021).
  • (11) H. A. Buchdahl, Mon. Not. R. Ast. Soc. 150, 1 (1970).
  • (12) M. F. Shamir, Eur. Phys. J. C 75, 354 (2015).
  • (13) M. F. Shamir, T. Naz, Phys. Lett. B 806, 135519 (2020).
  • (14) M. F. Shamir, M. Ahmad, Mod. Phys. Lett. A 32, 1750086 (2017).
  • (15) M. F. Shamir, S. Zia, Eur. Phys. J. C 77, 448 (2017).
  • (16) L. Amendola, L. Giani, G. Laverda, Phys. Let. B 811, 135923(2020).
  • (17) K. Schwarzschild, Sit. Dtsch. Akad. Wiss. Math. Phys. Ber. 24, 424 (1916).
  • (18) R.C. Tolman, Phys. Rev. 55, 364 (1939).
  • (19) J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55, 374 (1939).
  • (20) R.L. Bowers, E.P.T. Liang, Astrophys. J. 188, 657 (1974).
  • (21) R. Ruderman, Annu. Rev. Astron. Astrophys. 10, 427 (1972).
  • (22) A. Errehymy, Y. Khedif, M. Daoud, Eur. Phys. J. C 81, 266 (2021).
  • (23) S.K. Maurya, B.S. Ratanpal, M. Govender, Ann. Phys. 382, 36-49 (2017).
  • (24) S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011).
  • (25) A.A. Starobinsky, JETP Lett. 86, 157 (2007).
  • (26) W. Hu, I. Sawicki, Phys. Rev. D 76, 064004 (2007).
  • (27) G. Cognola, et al., Phys. Rev. D 77, 046009 (2008).
  • (28) L. Schlai, Ann. Mat. 5, 170 (1871).
  • (29) M. F. Shamir, A. Usman, T. Naz, Eur. Phys. J. Plus 136, 55 (2021).
  • (30) T. Naz, A. Usman, M. F. Shamir, Ann. Phys. 429, 168491(2021).
  • (31) K.N. Singh, N. Pant, Eur. Phys. C 76, 524 (2016).
  • (32) V. Faraoni, Phys. Rev. D 81, 044002 (2010).
  • (33) A.V. Astashenok, S. Capozziello, S.D. Odintsov, J. Cosmol. Astropart. Phys. 12, 040 (2013).
  • (34) A. Cooney, S.D. Deo, D. Psaltis, Phys. Rev. D 82, 064033 (2010).
  • (35) A. Ganguly, R. Gannouji, R. Goswami, S. Ray, Phys. Rev. D 89, 064019 (2014).
  • (36) D. Momeni, R. Myrzakulov, Int. J. Geom. Methods Mod. Phys. 12, 1550014 (2015).
  • (37) C. G. Bohmer, T. Harko, Cla. Qua. Grav. 23, 6479 (2006).
  • (38) M.K. Gokhroo, A.L. Mehra, Gen. Relativity Gravitation 26, 75 (1994).
  • (39) Z. Yousaf, Eur. Phys. J. Plus 132 (2017) 276.
  • (40) L. Herrera, Phys. Lett. A 165, 206 (1992).
  • (41) H. Andreasson, Comm. Math. Phys. 288, 715 (2009).
  • (42) M.K. Mak, T. Harko, Proc. R. Soc. Lond. A 459, 393 (2003).
  • (43) C. G. Bohmer, T. Harko, Cla. Qua. Grav. 23, 6479 (2006).
  • (44) H.A. Buchdahl, Phys. Rev. 116, 1027 (1959).
  • (45) H. Bondi, Proc. R. Soc. Lond. A 281, 39 (1964).
  • (46) S. Chandrasekhar, Astrophys. J. 140, 417 (1964).
  • (47) H. Heintzmann, W. Hillebrandt, Astron. Astrophys. 38, 51 (1975).
  • (48) W. Hillebrandt, K.O. Steinmetz, Astron. Astrophys. 53, 283 (1976).
  • (49) D. Horvat, S. Ilijic, A. Marunovic, Cla. Qua. Grav. 28, 025009 (2011).
  • (50) D.D. Doneva, S.S. Yazadjiev, Phys. Rev. D 85, 124023 (2012).
  • (51) H.O. Silva, C.F.B. Macedo, E. Berti, L.C.B. Crispino, Cla. Qua. Grav. 32, 145008 (2015).
  • (52) I. Bombaci, Astron. Astrophys. 305, 871 (1996).
  • (53) M.L. Rawls, et al., ApJ, 730, 25 (2011).
  • (54) P. Elebert, M. T. Reynolds, P. J. Callanan, et al., MNRAS, 395, 884 (2009).
  • (55) M. K. Abubekerov, E. A. Antokhina, A. M. Cherepashchuk, V. V. Shimanskii, Astronomy Reports, 52, 379 (2008).
  • (56) T. Guver, F. Ozel, A. Cabrera-Lavers, P. Wroblewski, ApJ, 712, 964 (2010).
  • (57) T. Guver, P. Wroblewski, L. Camarota, F. Ozel, ApJ, 719, 1807 (2010).
  • (58) P.C.C. Freire, et. al., MNRAS, 412, 2763 (2011)
  • (59) P.B. Demorest, T. Pennucci, S.M. Ransom, M.S.E. Roberts, J.W.T. Hessels, Nature, 467, 1081 (2010).
  • (60) F. Ozel, T. Guver, D. Psaltis, ApJ, 693, 1775 (2009).

Appendix

Following are the values of Γi\Gamma_{i}’s,

Γ1=a(1+br2)(2a2r2(3+br2)(1+br2)3)B(2b(1+br2)A+aB)2b(a2r2+(1+br2)4)2\displaystyle\Gamma_{1}=-\frac{a(1+br^{2})(2a^{2}r^{2}-(-3+br^{2})(1+br^{2})^{3})B(-2b(1+br^{2})A+aB)}{2b(a^{2}r^{2}+(1+br^{2})^{4})^{2}}
Γ2=(2a(2a3br2(1+br2)A2ab(1+br2)4(3+5br2)Aa4r2B+a2(3+br2)(1+br2)3B+2b(3+br2)(1+br2)6B))((a2r2+(1+br2)4)2(2b(1+br2)A+aB))\displaystyle\Gamma_{2}=\frac{(2a(2a^{3}br^{2}(1+br^{2})A-2ab(1+br^{2})^{4}(-3+5br^{2})A-a^{4}r^{2}B+a^{2}(-3+br^{2})(1+br^{2})^{3}B+2b(-3+br^{2})(1+br^{2})^{6}B))}{((a^{2}r^{2}+(1+br^{2})^{4})^{2}(-2b(1+br^{2})A+aB))}
Γ3=2b(a2r2+(1+br2)4)2a(1+br2)(2a2r2(3+br2)(1+br2)3)B(2b(1+br2)A+aB)\displaystyle\Gamma_{3}=-\frac{2b(a^{2}r^{2}+(1+br^{2})^{4})^{2}}{a(1+br^{2})(2a^{2}r^{2}-(-3+br^{2})(1+br^{2})^{3})B(-2b(1+br^{2})A+aB)}
Γ4\displaystyle\Gamma_{4} =(a2r2+(1+br2)4)2(2b(1+br2)AaB)2ab(1+br2)3(2a2r2(3+br2)(1+br2)3)B\displaystyle=\frac{(a^{2}r^{2}+(1+br^{2})^{4})^{2}(2b(1+br^{2})A-aB)}{2ab(1+br^{2})^{3}(2a^{2}r^{2}-(-3+br^{2})(1+br^{2})^{3})B}
+(a2r2+(1+br2)4)2(2b(1+br2)A+aB)2a(1+br2)3(1+3br2)(2ab(1+br2)A+a2B+b(1+br2)3B)\displaystyle+\frac{(a^{2}r^{2}+(1+br^{2})^{4})^{2}(-2b(1+br^{2})A+aB)}{2a(1+br^{2})^{3}(-1+3br^{2})(-2ab(1+br^{2})A+a^{2}B+b(1+br^{2})^{3}B)}
+2(a2r2+(1+br2)4)2(2b(1+br2)AaB)a(2a3br2(1+br2)A+4ab(1+br2)(1+br2)4A+a4r2B+2a2(1+br2)3B+2b(1+br2)7B)\displaystyle+\frac{2(a^{2}r^{2}+(1+br^{2})^{4})^{2}(2b(1+br^{2})A-aB)}{a(-2a^{3}br^{2}(1+br^{2})A+4ab(-1+br^{2})(1+br^{2})^{4}A+a^{4}r^{2}B+2a^{2}(1+br^{2})^{3}B+2b(1+br^{2})^{7}B)}
Γ5=(a2r2+(1+br2)4)4(2b(1+br2)AaB)a2(1+br2)4(2a2r2(3+br2)(1+br2)3)2B2(2b(1+br2)A+aB)\displaystyle\Gamma_{5}=-\frac{(a^{2}r^{2}+(1+br^{2})^{4})^{4}(2b(1+br^{2})A-aB)}{a^{2}(1+br^{2})^{4}(2a^{2}r^{2}-(-3+br^{2})(1+br^{2})^{3})^{2}B^{2}(-2b(1+br^{2})A+aB)}
Γ5=8r(a2r2+(1+br2)4)3(a4r2(1+br2)+b(5+br2)(1+br2)7a2(1+br2)3(2+br2(1+7br2)))a2(1+br2)5(2a2r2(3+br2)(1+br2)3)3B2\displaystyle\Gamma_{5}^{\prime}=-\frac{8r(a^{2}r^{2}+(1+br^{2})^{4})^{3}(a^{4}r^{2}(-1+br^{2})+b(-5+br^{2})(1+br^{2})^{7}-a^{2}(1+br^{2})^{3}(2+br^{2}(-1+7br^{2})))}{a^{2}(1+br^{2})^{5}(2a^{2}r^{2}-(-3+br^{2})(1+br^{2})^{3})^{3}B^{2}}
Γ5′′\displaystyle\Gamma_{5}^{\prime\prime} =(8(a2r2+(1+br2)4)2(2a8r6(3+br2(12+5br2))+b(1+br2)14(15+br2(181+br2(67+7br2)))\displaystyle=(8(a^{2}r^{2}+(1+br^{2})^{4})^{2}(2a^{8}r^{6}(3+br^{2}(-12+5br^{2}))+b(1+br^{2})^{14}(15+br^{2}(181+br^{2}(-67+7br^{2})))
a6r4(1+br2)3(25+br2(93+br2(151+35br2)))2a2(1+br2)10(3+br2(37+br2(71+br2\displaystyle-a^{6}r^{4}(1+br^{2})^{3}(-25+br^{2}(93+br^{2}(-151+35br^{2})))-2a^{2}(1+br^{2})^{10}(-3+br^{2}(-37+br^{2}(-71+br^{2}
(211+34br2))))+a4r2(1+br2)6(31+3br2(23+br2(125+br2(13+122br2))))))/\displaystyle(-211+34br^{2}))))+a^{4}r^{2}(1+br^{2})^{6}(31+3br^{2}(-23+br^{2}(125+br^{2}(-13+122br^{2}))))))/
(a2(1+br2)6(2a2r2+(3+br2)(1+br2)3)4B2)\displaystyle(a^{2}(1+br^{2})^{6}(-2a^{2}r^{2}+(-3+br^{2})(1+br^{2})^{3})^{4}B^{2})
Γ6=(a2r2+(1+br2)4)3(2b(1+br2)AaB)(2b(1+br2)A+aB)4a2(1+br2)2(1+3br2)2(2ab(1+br2)A+a2B+b(1+br2)3B)2\displaystyle\Gamma_{6}=\frac{(a^{2}r^{2}+(1+br^{2})^{4})^{3}(2b(1+br^{2})A-aB)(-2b(1+br^{2})A+aB)}{4a^{2}(1+br^{2})^{2}(-1+3br^{2})^{2}(-2ab(1+br^{2})A+a^{2}B+b(1+br^{2})^{3}B)^{2}}
Γ6\displaystyle\Gamma_{6}^{\prime} =(r(a2r2+(1+br2)4)2(48b4(1+br2)(1+br2)9A2B6a5b(3+br2+b2r4+3b3r6)AB2+a6(3+br2(2+3br2))B3\displaystyle=(r(a^{2}r^{2}+(1+br^{2})^{4})^{2}(-48b^{4}(-1+br^{2})(1+br^{2})^{9}A^{2}B-6a^{5}b(3+br^{2}+b^{2}r^{4}+3b^{3}r^{6})AB^{2}+a^{6}(3+br^{2}(-2+3br^{2}))B^{3}
+a4b(1+br2)2B(12b(3+br2(2+3br2))A2(1+br2)(1+br2)(19+3br2)B2)+4ab3(1+br2)7A(16b(2+3br2)A2\displaystyle+a^{4}b(1+br^{2})^{2}B(12b(3+br^{2}(-2+3br^{2}))A^{2}-(-1+br^{2})(1+br^{2})(19+3br^{2})B^{2})+4ab^{3}(1+br^{2})^{7}A(16b(-2+3br^{2})A^{2}
+(1+br2)(11+9br2)B2)+4b2(a+abr2)3A(2b(3+br2(2+3br2))A2+(1+br2)(27+br2(19+18br2))B2)\displaystyle+(1+br^{2})(-11+9br^{2})B^{2})+4b^{2}(a+abr^{2})^{3}A(-2b(3+br^{2}(-2+3br^{2}))A^{2}+(1+br^{2})(-27+br^{2}(19+18br^{2}))B^{2})
+2a2b2(1+br2)5B(6b(17+br2(10+19br2))A2(5+3br2)(B+br2B)2)))/(2a2(1+br2)3(1+3br2)3\displaystyle+2a^{2}b^{2}(1+br^{2})^{5}B(-6b(-17+br^{2}(10+19br^{2}))A^{2}-(-5+3br^{2})(B+br^{2}B)^{2})))/(2a^{2}(1+br^{2})^{3}(-1+3br^{2})^{3}
(2ab(1+br2)A+a2B+b(1+br2)3B)3)\displaystyle(-2ab(1+br^{2})A+a^{2}B+b(1+br^{2})^{3}B)^{3})
Γ6′′\displaystyle\Gamma_{6}^{\prime\prime} =(((a2r2+(1+br2)4)(48b5(1+br2)16(1+br2(23+br2(37+21br2)))A2B28a9br2(1+br2)(15+\displaystyle=-(((a^{2}r^{2}+(1+br^{2})^{4})(48b^{5}(1+br^{2})^{16}(1+br^{2}(23+br^{2}(-37+21br^{2})))A^{2}B^{2}-8a^{9}br^{2}(1+br^{2})(15+
br2(8+br2(94+3br2(16+9br2))))AB3+a10r2(15+br2(8+br2(94+3br2(16+9br2))))B4\displaystyle br^{2}(-8+br^{2}(94+3br^{2}(-16+9br^{2}))))AB^{3}+a^{10}r^{2}(15+br^{2}(-8+br^{2}(94+3br^{2}(-16+9br^{2}))))B^{4}
+4ab4(1+br2)14AB(8b(7+25br2(7+3br2(5+3br2)))A2(1+br2)(11+3br2(7993br2+45b2r4))B2)\displaystyle+4ab^{4}(1+br^{2})^{14}AB(-8b(7+25br^{2}(7+3br^{2}(-5+3br^{2})))A^{2}-(1+br^{2})(11+3br^{2}(79-93br^{2}+45b^{2}r^{4}))B^{2})
+4a3b3(1+br2)10AB(4b(35+br2(1100+3br2(618+br2(28+561br2))))A2(1+br2)(43+br2(1042+\displaystyle+4a^{3}b^{3}(1+br^{2})^{10}AB(-4b(35+br^{2}(1100+3br^{2}(-618+br^{2}(-28+561br^{2}))))A^{2}-(1+br^{2})(43+br^{2}(1042+
br2(700546br2+513b2r4)))B2)+4a7b(1+br2)3AB(8b2r2(15+br2(8+br2(94+\displaystyle br^{2}(-700-546br^{2}+513b^{2}r^{4})))B^{2})+4a^{7}b(1+br^{2})^{3}AB(-8b^{2}r^{2}(15+br^{2}(-8+br^{2}(94+
3br2(16+9br2))))A2(1+br2)(6+br2(355+3br2(4+br2(98+39br2(2+3br2)))))B2)+4a5b2\displaystyle 3br^{2}(-16+9br^{2}))))A^{2}-(1+br^{2})(6+br^{2}(355+3br^{2}(4+br^{2}(98+39br^{2}(-2+3br^{2})))))B^{2})+4a^{5}b^{2}
(1+br2)6AB(4b(6+br2(325+br2(106+3br2(56+br2(8+105br2)))))A2(1+br2)(41+br2(1376+\displaystyle(1+br^{2})^{6}AB(-4b(6+br^{2}(325+br^{2}(106+3br^{2}(-56+br^{2}(-8+105br^{2})))))A^{2}-(1+br^{2})(41+br^{2}(1376+
br2(871+9br2(31+15br2(6+5br2)))))B2)+a8(B+br2B)2(24b2r2(15+br2(8+br2(94+3br2\displaystyle br^{2}(-871+9br^{2}(-31+15br^{2}(6+5br^{2})))))B^{2})+a^{8}(B+br^{2}B)^{2}(24b^{2}r^{2}(15+br^{2}(-8+br^{2}(94+3br^{2}
(16+9br2))))A2+(1+br2)(3+br2(185+br2(24+br2(280+3br2(49+45br2)))))B2)+2a2b3(1+br2)12\displaystyle(-16+9br^{2}))))A^{2}+(1+br^{2})(3+br^{2}(185+br^{2}(-24+br^{2}(280+3br^{2}(-49+45br^{2})))))B^{2})+2a^{2}b^{3}(1+br^{2})^{12}
(64b2(2+br2(59+3br2(56+45br2)))A4+2b(85+br2(2152+3br2(650480br2+603b2r4)))\displaystyle(64b^{2}(2+br^{2}(59+3br^{2}(-56+45br^{2})))A^{4}+2b(85+br^{2}(2152+3br^{2}(-650-480br^{2}+603b^{2}r^{4})))
A2B2+(1+br2)2(5+br2(101+3br2(23+9br2)))B4)+a4b2(1+br2)8(16b2(1+br2)(3+br2\displaystyle A^{2}B^{2}+(1+br^{2})^{2}(5+br^{2}(101+3br^{2}(-23+9br^{2})))B^{4})+a^{4}b^{2}(1+br^{2})^{8}(16b^{2}(1+br^{2})(3+br^{2}
(149+3br2(77+45br2)))A4+4b(114+br2(3773+br2(2344+3br2(1310+9br2(154+127br2)))))A2B2\displaystyle(149+3br^{2}(-77+45br^{2})))A^{4}+4b(114+br^{2}(3773+br^{2}(-2344+3br^{2}(-1310+9br^{2}(154+127br^{2})))))A^{2}B^{2}
+(1+br2)2(29+br2(660+br2(242+3br2(100+63br2))))B4)+a6b(1+br2)4(16b3r2(15+br2\displaystyle+(1+br^{2})^{2}(29+br^{2}(660+br^{2}(-242+3br^{2}(-100+63br^{2}))))B^{4})+a^{6}b(1+br^{2})^{4}(16b^{3}r^{2}(15+br^{2}
(8+br2(94+3br2(16+9br2))))A4+8b(1+br2)(9+br2(510+br2(95+3br2(25+br2(68+177br2)))))\displaystyle(-8+br^{2}(94+3br^{2}(-16+9br^{2}))))A^{4}+8b(1+br^{2})(9+br^{2}(510+br^{2}(95+3br^{2}(25+br^{2}(-68+177br^{2})))))
A2B2+(1+br2)2(22+br2(745+3br2(174+br2(21260br2+81b2r4))))B4)))/(2a2(13br2)4\displaystyle A^{2}B^{2}+(1+br^{2})^{2}(22+br^{2}(745+3br^{2}(-174+br^{2}(212-60br^{2}+81b^{2}r^{4}))))B^{4})))/(2a^{2}(1-3br^{2})^{4}
(1+br2)4(2ab(1+br2)A+a2B+b(1+br2)3B)4))\displaystyle(1+br^{2})^{4}(-2ab(1+br^{2})A+a^{2}B+b(1+br^{2})^{3}B)^{4}))
Γ7=(a2r2+(1+br2)4)4(2b(1+br2)AaB)(2b(1+br2)A+aB)a2r2(2a3br2(1+br2)A+4ab(1+br2)(1+br2)4A+a4r2B+2a2(1+br2)3B+2b(1+br2)7B)2\displaystyle\Gamma_{7}=\frac{(a^{2}r^{2}+(1+br^{2})^{4})^{4}(2b(1+br^{2})A-aB)(-2b(1+br^{2})A+aB)}{a^{2}r^{2}(-2a^{3}br^{2}(1+br^{2})A+4ab(-1+br^{2})(1+br^{2})^{4}A+a^{4}r^{2}B+2a^{2}(1+br^{2})^{3}B+2b(1+br^{2})^{7}B)^{2}}
Γ7\displaystyle\Gamma_{7}^{\prime} =(2(a2r2+(1+br2)4)3(8b3(1+br2)12(1+3br2)A2B+6a7br4(1+br2)AB2a8r4B3+2a2b(1+br2)8B(12b\displaystyle=(2(a^{2}r^{2}+(1+br^{2})^{4})^{3}(-8b^{3}(1+br^{2})^{12}(-1+3br^{2})A^{2}B+6a^{7}br^{4}(1+br^{2})AB^{2}-a^{8}r^{4}B^{3}+2a^{2}b(1+br^{2})^{8}B(12b
(1+br2(12+7br2))A2(1+br2)(B+br2B)2)+8ab2(1+br2)9A(2b(1+br2(12+7br2))A2+(1+2br2)(B+\displaystyle(1+br^{2}(-12+7br^{2}))A^{2}-(-1+br^{2})(B+br^{2}B)^{2})+8ab^{2}(1+br^{2})^{9}A(-2b(1+br^{2}(-12+7br^{2}))A^{2}+(-1+2br^{2})(B+
br2B)2)+2(a+abr2)4B(2b2r2(9+br2(8+63br2))A2+(1+br2)(1+11br2)(B+br2B)2)+4a3b(1+br2)5A\displaystyle br^{2}B)^{2})+2(a+abr^{2})^{4}B(-2b^{2}r^{2}(9+br^{2}(8+63br^{2}))A^{2}+(-1+br^{2})(-1+11br^{2})(B+br^{2}B)^{2})+4a^{3}b(1+br^{2})^{5}A
(2b2r2(3+br2(2+23br2))A2(3+br2(36+25br2))(B+br2B)2)a6(r+br3)2B(3B2+br2(12bA2+(4+13b\displaystyle(2b^{2}r^{2}(3+br^{2}(2+23br^{2}))A^{2}-(3+br^{2}(-36+25br^{2}))(B+br^{2}B)^{2})-a^{6}(r+br^{3})^{2}B(3B^{2}+br^{2}(12bA^{2}+(4+13b
r2)B2))+2a5br2(1+br2)3A(9B2+br2(4bA2+(10+53br2)B2))))/(a2r3(2a3br2(1+br2)A+4ab(1+br2)\displaystyle r^{2})B^{2}))+2a^{5}br^{2}(1+br^{2})^{3}A(9B^{2}+br^{2}(4bA^{2}+(10+53br^{2})B^{2}))))/(a^{2}r^{3}(-2a^{3}br^{2}(1+br^{2})A+4ab(-1+br^{2})
(1+br2)4A+a4r2B+2a2(1+br2)3B+2b(1+br2)7B)3)\displaystyle(1+br^{2})^{4}A+a^{4}r^{2}B+2a^{2}(1+br^{2})^{3}B+2b(1+br^{2})^{7}B)^{3})
Γ7′′\displaystyle\Gamma_{7}^{\prime\prime} =(2(a2r2+(1+br2)4)2(48b4(1+br2)22(1+br2(2+5br2))A2B2+8a13br8(1+br2)AB3a14r8B4+2a12r6(1+br2)\displaystyle=(2(a^{2}r^{2}+(1+br^{2})^{4})^{2}(-48b^{4}(1+br^{2})^{22}(1+br^{2}(-2+5br^{2}))A^{2}B^{2}+8a^{13}br^{8}(1+br^{2})AB^{3}-a^{14}r^{8}B^{4}+2a^{12}r^{6}(1+br^{2})
B2(12b2r2(1+br2)A2(3+br2(7+5br2(7+11br2)))B2)+8a9b(r+br3)4AB(4b2r2(6+br2(11+3br2(38+67br2)))\displaystyle B^{2}(-12b^{2}r^{2}(1+br^{2})A^{2}-(3+br^{2}(7+5br^{2}(7+11br^{2})))B^{2})+8a^{9}b(r+br^{3})^{4}AB(4b^{2}r^{2}(6+br^{2}(11+3br^{2}(38+67br^{2})))
A2+(1+br2)(17+br2(16+br2(564+br2(270+257br2))))B2)+4a8br4(1+br2)5(8b3r2(3+br2(5+br2(61\displaystyle A^{2}+(1+br^{2})(17+br^{2}(16+br^{2}(564+br^{2}(270+257br^{2}))))B^{2})+4a^{8}br^{4}(1+br^{2})^{5}(-8b^{3}r^{2}(3+br^{2}(5+br^{2}(61
+107br2)))A42b(1+br2)(51+br2(36+br2(1942+3br2(348+533br2))))A2B2+(1+br2)3(37+br2(48+br2(85\displaystyle+107br^{2})))A^{4}-2b(1+br^{2})(51+br^{2}(36+br^{2}(1942+3br^{2}(348+533br^{2}))))A^{2}B^{2}+(1+br^{2})^{3}(-37+br^{2}(-48+br^{2}(-85
+358br2)))B4)+a10r4(1+br2)3(16b4r4(1+br2)A416b2r2(9+br2(18+7br2(22+39br2)))A2B2+(1\displaystyle+358br^{2})))B^{4})+a^{10}r^{4}(1+br^{2})^{3}(-16b^{4}r^{4}(1+br^{2})A^{4}-16b^{2}r^{2}(9+br^{2}(18+7br^{2}(22+39br^{2})))A^{2}B^{2}+(1
+br2)(17+br2(20+br2(462+br2(92+31br2))))B4)+16ab3(1+br2)19AB(4b(3+br2(21+br2(4329br2)))\displaystyle+br^{2})(-17+br^{2}(-20+br^{2}(-462+br^{2}(-92+31br^{2}))))B^{4})+16ab^{3}(1+br^{2})^{19}AB(4b(3+br^{2}(-21+br^{2}(43-29br^{2})))
A2+3(1+br2(1+2br2))(B+br2B)2)+8b2r4(a+abr2)7AB(4b(17+br2(8+br2(712+br2(356+755br2))))\displaystyle A^{2}+3(1+br^{2}(-1+2br^{2}))(B+br^{2}B)^{2})+8b^{2}r^{4}(a+abr^{2})^{7}AB(4b(17+br^{2}(8+br^{2}(712+br^{2}(356+755br^{2}))))
A2(1+br2)(145+br2(448+1367br2))(B+br2B)2)+16a3b2(1+br2)15AB(12b(2+br2(23+br2(186+br2(195\displaystyle A^{2}-(-1+br^{2})(145+br^{2}(448+1367br^{2}))(B+br^{2}B)^{2})+16a^{3}b^{2}(1+br^{2})^{15}AB(12b(2+br^{2}(-23+br^{2}(186+br^{2}(-195
+58br2))))A2+(9+br2(51+br2(3+br2)))(B+br2B)2)+16a5b(1+br2)11AB(2b3r4(139+br2(455+br2(1381\displaystyle+58br^{2}))))A^{2}+(9+br^{2}(-51+br^{2}(-3+br^{2})))(B+br^{2}B)^{2})+16a^{5}b(1+br^{2})^{11}AB(2b^{3}r^{4}(139+br^{2}(455+br^{2}(1381
983br2)))A2+(6+br2(63+br2(511+br2(853+231br2))))(B+br2B)2)4a2b2(1+br2)16(16b2(3+br2(36\displaystyle-983br^{2})))A^{2}+(6+br^{2}(-63+br^{2}(511+br^{2}(-853+231br^{2}))))(B+br^{2}B)^{2})-4a^{2}b^{2}(1+br^{2})^{16}(16b^{2}(3+br^{2}(-36
+br2(290+br2(300+91br2))))A424b(1+br2)2(3+br2(19+br2(21+13br2)))A2B2+(3+b2r4)(B\displaystyle+br^{2}(290+br^{2}(-300+91br^{2}))))A^{4}-24b(1+br^{2})^{2}(-3+br^{2}(19+br^{2}(-21+13br^{2})))A^{2}B^{2}+(3+b^{2}r^{4})(B
+br2B)4)+8a4b(1+br2)12(16b4r4(17+br2(62+br2(173+112br2)))A42b(1+br2)2(18+br2(198+br2\displaystyle+br^{2}B)^{4})+8a^{4}b(1+br^{2})^{12}(16b^{4}r^{4}(-17+br^{2}(-62+br^{2}(-173+112br^{2})))A^{4}-2b(1+br^{2})^{2}(18+br^{2}(-198+br^{2}
(1605+br2(1988+543br2))))A2B2(3+br2(15+br2(23+19br2)))(B+br2B)4)+4a6(1+br2)8(4b4r4(17+\displaystyle(1605+br^{2}(-1988+543br^{2}))))A^{2}B^{2}-(3+br^{2}(-15+br^{2}(-23+19br^{2})))(B+br^{2}B)^{4})+4a^{6}(1+br^{2})^{8}(-4b^{4}r^{4}(17+
br2(4+br2(758+324br2+897b2r4)))A4+4b3r4(1+br2)2(213+br2(586+3br2(623+584br2)))A2B2(3\displaystyle br^{2}(4+br^{2}(758+324br^{2}+897b^{2}r^{4})))A^{4}+4b^{3}r^{4}(1+br^{2})^{2}(-213+br^{2}(-586+3br^{2}(-623+584br^{2})))A^{2}B^{2}-(3
+br2(30+br2(243+4br2(147+50br2))))(B+br2B)4)+8a11br6(1+br2)2AB(6B2+br2(4b(1+br2)A2+\displaystyle+br^{2}(-30+br^{2}(243+4br^{2}(-147+50br^{2}))))(B+br^{2}B)^{4})+8a^{11}br^{6}(1+br^{2})^{2}AB(6B^{2}+br^{2}(4b(1+br^{2})A^{2}+
(13+br2(88+153br2))B2))))/(a2r4(2a3br2(1+br2)A+4ab(1+br2)(1+br2)4A+a4r2B+2a2(1+br2)3B\displaystyle(13+br^{2}(88+153br^{2}))B^{2}))))/(a^{2}r^{4}(-2a^{3}br^{2}(1+br^{2})A+4ab(-1+br^{2})(1+br^{2})^{4}A+a^{4}r^{2}B+2a^{2}(1+br^{2})^{3}B
+2b(1+br2)7B)4)\displaystyle+2b(1+br^{2})^{7}B)^{4})
Γ8=2a(1+3br2)(2ab(1+br2)A+a2B+b(1+br2)3B)(1+br2)(a2r2+(1+br2)4)(2b(1+br2)AaB)\displaystyle\Gamma_{8}=\frac{2a(-1+3br^{2})(-2ab(1+br^{2})A+a^{2}B+b(1+br^{2})^{3}B)}{(1+br^{2})(a^{2}r^{2}+(1+br^{2})^{4})(2b(1+br^{2})A-aB)}
Γ9=(1+br2)(a2r2+(1+br2)4)(2b(1+br2)AaB)2a(1+3br2)(2ab(1+br2)A+a2B+b(1+br2)3B)\displaystyle\Gamma_{9}=\frac{(1+br^{2})(a^{2}r^{2}+(1+br^{2})^{4})(2b(1+br^{2})A-aB)}{2a(-1+3br^{2})(-2ab(1+br^{2})A+a^{2}B+b(1+br^{2})^{3}B)}
Γ10=ar2(2a3br2(1+br2)A+4ab(1+br2)(1+br2)4A+a4r2B+2a2(1+br2)3B+2b(1+br2)7B)(a2r2+(1+br2)4)2(2b(1+br2)A+aB)\displaystyle\Gamma_{10}=\frac{ar^{2}(-2a^{3}br^{2}(1+br^{2})A+4ab(-1+br^{2})(1+br^{2})^{4}A+a^{4}r^{2}B+2a^{2}(1+br^{2})^{3}B+2b(1+br^{2})^{7}B)}{(a^{2}r^{2}+(1+br^{2})^{4})^{2}(-2b(1+br^{2})A+aB)}
Γ11=(a2r2+(1+br2)4)2(2b(1+br2)A+aB)ar2(2a3br2(1+br2)A+4ab(1+br2)(1+br2)4A+a4r2B+2a2(1+br2)3B+2b(1+br2)7B)\displaystyle\Gamma_{11}=\frac{(a^{2}r^{2}+(1+br^{2})^{4})^{2}(-2b(1+br^{2})A+aB)}{ar^{2}(-2a^{3}br^{2}(1+br^{2})A+4ab(-1+br^{2})(1+br^{2})^{4}A+a^{4}r^{2}B+2a^{2}(1+br^{2})^{3}B+2b(1+br^{2})^{7}B)}