This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Study of BPPB\to PP decays in the modified perturbative QCD approach

Sheng Lü [email protected]    Ru-Xuan Wang [email protected]    Mao-Zhi Yang [email protected] School of Physics, Nankai University, Tianjin 300071, People’s Republic of China
Abstract

We study the nonleptonic decays of BPPB\to PP in the modified perturbative QCD approach, where PP stands for pseudoscalar mesons. Transverse momenta of partons and the Sudakov factor are included, which help to suppress the contributions of soft interactions. The wave function of the BB meson obtained from the relativistic potential model is used, and then the contributions in the infrared region cannot be suppressed completely. So a soft cutoff scale and soft form factors are introduced. The contributions with the scale higher than the soft cutoff scale are calculated with perturbative QCD, while the contributions lower than the cutoff scale are replaced by the soft form factors. To explain experimental data, we find that contributions of color-octet operators for the quark-antiquarks in the mesons in the final state need to be considered. The contributions of the color-octet operators are parametrized by a few parameters with the help of SU(3) flavor symmetry and symmetry breaking. These parameters for color-octet contributions are universal for all the non-leptonic decay modes of the BB meson, where the mesons in the final state belong to the same flavor SU(3) nonet. Both the branching ratios and CPCP violations are studied. We find that the theoretical calculation can well explain the experimental data of BB factories.

pacs:
12.38.Bx, 12.39.St, 13.25.Hw

I Introduction

BB meson decays are important for studying the mechanism of electroweak and strong interactions in particle decays. More precision experimental data have been collected by BB factories and LHCb experiments for the last two decades PDG2022 , which greatly helped the development of the theoretical methods for calculating BB decays. One of the difficulties in this area is how to treat the QCD effects in BB decays. Several methods have been developed to calculate the effect of strong interaction in QCD on the bases of the factorization theorem, which are the perturbative QCD (PQCD) approach PQCD1 ; PQCD2 ; PQCD3 , QCD factorization (QCDF) approach QCDf1 ; QCDf2 ; QCDf3 ; QCDf4 , and the soft collinear effective theory SCET1 ; SCET2 ; SCET3 ; SCET4 ; SCET5 ; SCET6 . By confronting theoretical predictions to experimental data, it is found that the predictions for most decay modes of the BB meson are consistent with experimental measurements, which illustrates the successful aspect of these theoretical methods for treating BB decays. But a few serious problems emerged, such as the BππB\to\pi\pi and KπK\pi puzzles, which is when the branching ratio of Bπ0π0B\to\pi^{0}\pi^{0} measured by experiment is several times larger than theoretical predictions, while the theoretical predictions for the other modes of BππB\to\pi\pi decays are approximately consistent with experimental data. For the BKπB\to K\pi decays, the measured direct CPCP asymmetries of B±π0K±B^{\pm}\to\pi^{0}K^{\pm} and B0πK±B^{0}\to\pi^{\mp}K^{\pm} are dramatically different, which apparently deviate from theoretical expectation; see Refs. LiMiSa2005 ; Li-Mishima2011 ; Li-Mishima2014 . The measured branching ratios of BKπB\to K\pi decays are also puzzling from the theoretical point of view BFRS2003 .

Many efforts have been made to solve the BππB\to\pi\pi and KπK\pi puzzles within LiMiSa2005 ; Li-Mishima2011 ; Li-Mishima2014 ; bai2014revi ; bai2014revi ; LLX2016 ; xiao2022 ; cheng-chua2005 ; cheng-chua2009a ; cheng-chua2009b ; CSYL2014 ; chua2018 and beyond Bar2004 ; Bae2005 ; Arn2006 ; Kim2008 ; Bea2018 ; Dat2019 the standard model. Progress has been made in understanding the ππ\pi\pi and KπK\pi puzzles by these efforts. Tensions between experimental data and theoretical calculations are diminished, but other ways investigating such problems are still welcome.

In Refs. Lu-Yang2021 ; lu-yang2023 ; wang-yang2023 , the wave function of the BB meson solved from the QCD-inspired relativistic potential model Yang2012 ; LY2014 ; LY2015 ; SY2017 ; SY2019 is used in the PQCD approach. We find that the long-distance contribution cannot be suppressed by the Sudakov factor effectively with the new BB wave function being used. So a cutoff scale μc\mu_{c} that separates the soft and hard contributions in QCD has been introduced. The contribution with the scale higher than μc\mu_{c} can be calculated with PQCD method, while the contribution with scale lower than μc\mu_{c} should be replaced by soft form factors. By confronting the theoretical calculations to the experimental data on BππB\to\pi\pi and KπK\pi decays, we find that the contributions of the quark-antiquark pairs in color-octet states that form the final mesons in the long-distance region need to be introduced to explain the experimental data. By taking reasonable values for the parameters for the color-octet contributions, the ππ\pi\pi and KπK\pi puzzles can be resolved with the modified PQCD approach.

In this work, we extend our previous works in BππB\to\pi\pi and KπK\pi decays lu-yang2023 ; wang-yang2023 to more decay modes for the BB meson, where two pseudoscalar mesons are included in the final state. Compared with our previous works in Refs. lu-yang2023 ; wang-yang2023 , further progress is made: (1) More decay modes of BPPB\to PP decays are studied in the modified PQCD approach. Both the branching ratios and CPCP asymmetries are calculated and compared with experimental data. (2) The parameters for the color-octet contributions and production form factor are treated by considering SU(3) flavor symmetry and the symmetry breaking. Therefore, these parameters are no longer directly final-state-dependent parameters. They are universal for the mesons in the same SU(3) flavor nonet, which makes our method with prediction power. By selecting reasonable values for these parameters, we find that the theoretical results can be consistent with experimental data.

The paper is organized as follows. The perturbative part including the leading and next-to-leading-order (NLO) contributions in QCD is presented in Sec. II. The soft form factors are introduced and their contributions are calculated in Sec. III. The color-octet contributions are discussed in Sec. IV. Section V is devoted to the analysis of the soft parameters under SU(3) flavor symmetry and its breaking. Section VI is for numerical calculation and discussion. A brief summary is given in the final section.

II The hard amplitude in perturbative QCD

II.1 The effective Hamiltonian

The effective Hamiltonian for charmless hadronic decays of the BB meson induced by the bd(s)b\to d(s) transition is Hamiltanion1996

eff\displaystyle\mathcal{H}_{\mathrm{eff}} =\displaystyle= GF2[VubVuq(C1O1u+C2O2u)\displaystyle\frac{G_{F}}{\sqrt{2}}\bigg{[}V_{ub}V_{uq}^{*}\big{(}C_{1}O_{1}^{u}+C_{2}O_{2}^{u}\big{)} (1)
\displaystyle- VtbVtq(i=310CiOi+C8gO8g)],\displaystyle V_{tb}V_{tq}^{*}\bigg{(}\sum_{i=3}^{10}C_{i}O_{i}+C_{8\textsl{g}}O_{8\textsl{g}}\bigg{)}\bigg{]},

where GF=1.16638×105GeV2G_{F}=1.16638\times 10^{-5}~{}\mathrm{GeV}^{-2} is the Fermi constant, VubVuqV_{ub}V_{uq}^{*} and VtbVtqV_{tb}V_{tq}^{*} are the products of the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements with q=dq=d or ss, CiC_{i}’s the Wilson coefficients, and the operators are

O1u=q¯αγμLuβu¯βγμLbα,\displaystyle O_{1}^{u}=\bar{q}_{\alpha}\gamma^{\mu}Lu_{\beta}\cdot\bar{u}_{\beta}\gamma_{\mu}Lb_{\alpha},
O2u=q¯αγμLuαu¯βγμLbβ,\displaystyle O_{2}^{u}=\bar{q}_{\alpha}\gamma^{\mu}Lu_{\alpha}\cdot\bar{u}_{\beta}\gamma_{\mu}Lb_{\beta},
O3=q¯αγμLbαqq¯βγμLqβ,\displaystyle O_{3}=\bar{q}_{\alpha}\gamma^{\mu}Lb_{\alpha}\cdot\sum_{q^{\prime}}\bar{q}^{\prime}_{\beta}\gamma_{\mu}Lq^{\prime}_{\beta},
O4=q¯αγμLbβqq¯βγμLqα,\displaystyle O_{4}=\bar{q}_{\alpha}\gamma^{\mu}Lb_{\beta}\cdot\sum_{q^{\prime}}\bar{q}^{\prime}_{\beta}\gamma_{\mu}Lq^{\prime}_{\alpha},
O5=q¯αγμLbαqq¯βγμRqβ,\displaystyle O_{5}=\bar{q}_{\alpha}\gamma^{\mu}Lb_{\alpha}\cdot\sum_{q^{\prime}}\bar{q}^{\prime}_{\beta}\gamma_{\mu}Rq^{\prime}_{\beta},
O6=q¯αγμLbβqq¯βγμRqα,\displaystyle O_{6}=\bar{q}_{\alpha}\gamma^{\mu}Lb_{\beta}\cdot\sum_{q^{\prime}}\bar{q}^{\prime}_{\beta}\gamma_{\mu}Rq^{\prime}_{\alpha},
O7=32q¯αγμLbαqeqq¯βγμRqβ,\displaystyle O_{7}=\frac{3}{2}\bar{q}_{\alpha}\gamma^{\mu}Lb_{\alpha}\cdot\sum_{q^{\prime}}e_{q^{\prime}}\bar{q}^{\prime}_{\beta}\gamma_{\mu}Rq^{\prime}_{\beta},
O8=32q¯αγμLbβqeqq¯βγμRqα,\displaystyle O_{8}=\frac{3}{2}\bar{q}_{\alpha}\gamma^{\mu}Lb_{\beta}\cdot\sum_{q^{\prime}}e_{q^{\prime}}\bar{q}^{\prime}_{\beta}\gamma_{\mu}Rq^{\prime}_{\alpha},
O9=32q¯αγμLbαqeqq¯βγμLqβ,\displaystyle O_{9}=\frac{3}{2}\bar{q}_{\alpha}\gamma^{\mu}Lb_{\alpha}\cdot\sum_{q^{\prime}}e_{q^{\prime}}\bar{q}^{\prime}_{\beta}\gamma_{\mu}Lq^{\prime}_{\beta},
O10=32q¯αγμLbβqeqq¯βγμLqα,\displaystyle O_{10}=\frac{3}{2}\bar{q}_{\alpha}\gamma^{\mu}Lb_{\beta}\cdot\sum_{q^{\prime}}e_{q^{\prime}}\bar{q}^{\prime}_{\beta}\gamma_{\mu}Lq^{\prime}_{\alpha},
O8g=gs8π2mbq¯ασμνRTαβabβGμνa,\displaystyle O_{8\textsl{g}}=\frac{g_{s}}{8\pi^{2}}m_{b}\bar{q}_{\alpha}\sigma^{\mu\nu}RT^{a}_{\alpha\beta}b_{\beta}G_{\mu\nu}^{a}, (2)

where α\alpha and β\beta are the color indices, and L=(1γ5)L=(1-\gamma_{5}) and R=(1+γ5)R=(1+\gamma_{5}), which are the left- and right-handed projection operators. The sum relevant to qq^{\prime} runs over all quark flavors being active at mbm_{b} scale, that is q{u,d,s,c,b}q^{\prime}\in\{u,d,s,c,b\}.

II.2 The factorization formula for the decay amplitude and the meson wave functions

The momentum transferred by gluons that are exchanged between quarks is generally large in BB decays because of the large bb quark mass. For the hard dominant region, the decay amplitude of the BB meson can be written in a factorized form. The soft interactions can be absorbed into the meson wave functions. The hard contribution can be calculated perturbatively at quark level. Then the amplitude can be written as

=d3kd3k1d3k2ΦB(k,μ)\displaystyle\mathcal{M}=\int d^{3}k\int d^{3}k_{1}\int d^{3}k_{2}\Phi^{B}(\vec{k},\mu)
×C(μ)H(k,k1,k2,μ)ΦM1(k1,μ)ΦM2(k2,μ),\displaystyle\times C(\mu)H(k,k_{1},k_{2},\mu)\Phi^{M_{1}}(k_{1},\mu)\Phi^{M_{2}}(k_{2},\mu), (3)

where HH stands for the hard amplitude at quark level, ΦB,M1,M2\Phi^{B,M_{1},M_{2}} the meson wave functions, and C(μ)C(\mu) the Wilson coefficients in the decay.

The spinor wave function of the BB meson can be defined by the matrix element 0|q¯(z)β[z,0]b(0)α|B¯\langle 0|\bar{q}(z)_{\beta}[z,0]b(0)_{\alpha}|\bar{B}\rangle as

0|q¯(z)β[z,0]b(0)α|B¯=d3kΦαβB(k)eikz,\langle 0|\bar{q}(z)_{\beta}[z,0]b(0)_{\alpha}|\bar{B}\rangle=\int d^{3}k\Phi^{B}_{\alpha\beta}(\vec{k})e^{-ik\cdot z}, (4)

where ΦαβB\Phi^{B}_{\alpha\beta} in the right-hand side is the spinor wave function of the BB meson, and [z,0][z,0] the path-ordered exponential [z,0]=𝒫exp[igsTa01𝑑αzμAμa(αz)][z,0]={\cal P}\exp[-ig_{s}T^{a}\int_{0}^{1}d\alpha z^{\mu}A_{\mu}^{a}(\alpha z)], which is introduced to keep the gauge invariance of the nonlocal quark-antiquark operator.

The spinor wave function ΦαβB(k)\Phi^{B}_{\alpha\beta}(\vec{k}) in the BB meson rest frame has been derived in Ref. SY2017 by using the BB meson wave function obtained by solving the bound-state equation in the QCD-inspired relativistic potential model in Refs. Yang2012 ; LY2014 ; LY2015 , which is

Φαβ(\displaystyle\Phi_{\alpha\beta}( k\displaystyle\vec{k} )=ifBmB4K(k)\displaystyle)=\frac{-if_{B}m_{B}}{4}K(\vec{k}) (5)
{(EQ+mQ)1+2[(k+2+mq2)+\displaystyle\cdot\Bigg{\{}(E_{Q}+m_{Q})\frac{1+\not{v}}{2}\Bigg{[}\Bigg{(}\frac{k^{+}}{\sqrt{2}}+\frac{m_{q}}{2}\Bigg{)}\not{n}_{+}
+(k2+mq2)kμγμ]γ5\displaystyle+\Bigg{(}\frac{k^{-}}{\sqrt{2}}+\frac{m_{q}}{2}\Bigg{)}\not{n}_{-}-k_{\perp}^{\mu}\gamma_{\mu}\Bigg{]}\gamma^{5}
(Eq+mq)12[(k+2mq2)+\displaystyle-(E_{q}+m_{q})\frac{1-\not{v}}{2}\Bigg{[}\Bigg{(}\frac{k^{+}}{\sqrt{2}}-\frac{m_{q}}{2}\Bigg{)}\not{n}_{+}
+(k2mq2)kμγμ]γ5}αβ,\displaystyle+\Bigg{(}\frac{k^{-}}{\sqrt{2}}-\frac{m_{q}}{2}\Bigg{)}\not{n}_{-}-k_{\perp}^{\mu}\gamma_{\mu}\Bigg{]}\gamma^{5}\Bigg{\}}_{\alpha\beta},

where fBf_{B} is the decay constant of the BB meson, mBm_{B} the BB meson mass, EQE_{Q} and EqE_{q} the energies of the heavy and light quarks respectively, and vv the four-speed of BB meson, i.e., pBμ=mBvμp_{B}^{\mu}=m_{B}v^{\mu}. n±μn_{\pm}^{\mu} are two light-like vectors n±μ=(1,0,0,1)n_{\pm}^{\mu}=(1,0,0,\mp 1), and

k±=Eq±k32,kμ=(0,k1,k2,0).k^{\pm}=\frac{E_{q}\pm k^{3}}{\sqrt{2}},\;\;\;k_{\perp}^{\mu}=(0,k^{1},k^{2},0). (6)

The function K(k)K(\vec{k}) is a quantity proportional to the BB meson wave function

K(k)=2NBΨ0(k)EqEQ(Eq+mq)(EQ+mQ)K(\vec{k})=\frac{2N_{B}\Psi_{0}(\vec{k})}{\sqrt{E_{q}E_{Q}(E_{q}+m_{q})(E_{Q}+m_{Q})}} (7)

and Ψ0(k)\Psi_{0}(\vec{k}) is the BB meson wave function in the rest frame with

Ψ0(k)=a1ea2|k|2+a3|k|+a4\Psi_{0}(\vec{k})=a_{1}e^{a_{2}|\vec{k}|^{2}+a_{3}|\vec{k}|+a_{4}} (8)

where the parameters aia_{i} (i=1,,4i=1,\cdots,4) are SY2017

a1=4.550.30+0.40GeV3/2,a2=0.390.20+0.15GeV2,\displaystyle a_{1}=4.55_{-0.30}^{+0.40}\,\mathrm{GeV}^{-3/2},\quad\;a_{2}=-0.39_{-0.20}^{+0.15}\,\mathrm{GeV}^{-2},
a3=1.55±0.20GeV1,a4=1.100.05+0.10.\displaystyle a_{3}=-1.55\pm 0.20\,\mathrm{GeV}^{-1},\quad a_{4}=-1.10_{-0.05}^{+0.10}. (9)

The light-cone coordinate wave function for pion can be defined by bra1990 ; bal1999

π(pπ)|q¯(y)ρq(0)δ|0\displaystyle\langle\pi(p_{\pi})|\bar{q}(y)_{\rho}q^{\prime}(0)_{\delta}|0\rangle =\displaystyle= 𝑑xd2kqei(xpπyykq)\displaystyle\int dxd^{2}k_{q\perp}e^{i(xp_{\pi}\cdot y-y_{\perp}\cdot k_{q\perp})} (10)
×Φδρπ\displaystyle\times\Phi^{\pi}_{\delta\rho}

and Φδρπ\Phi^{\pi}_{\delta\rho} is the spinor wave function

Φδρπ\displaystyle\Phi^{\pi}_{\delta\rho} =\displaystyle= ifπ4{πγ5ϕπ(x,kq)μπγ5(ϕPπ(x,kq)\displaystyle\frac{if_{\pi}}{4}\Bigg{\{}\not{p}_{\pi}\gamma_{5}\phi_{\pi}(x,k_{q\perp})-\mu_{\pi}\gamma_{5}\Bigg{(}\phi^{\pi}_{P}(x,k_{q\perp}) (11)
σμνpπμyνϕσπ(x,kq)6)}δρ\displaystyle-\sigma_{\mu\nu}p_{\pi}^{\mu}y^{\nu}\frac{\phi^{\pi}_{\sigma}(x,k_{q\perp})}{6}\Bigg{)}\Bigg{\}}_{\delta\rho}

with fπf_{\pi} being the pion decay constant, μπ\mu_{\pi} the chiral parameter, and ϕπ\phi_{\pi}, ϕPπ\phi^{\pi}_{P}, and ϕσπ\phi^{\pi}_{\sigma} are twist-2 and twist-3 distribution functions, respectively. In the momentum space Φδρπ\Phi^{\pi}_{\delta\rho} can be written as bf2001 ; wy2002

Φδρπ\displaystyle\Phi^{\pi}_{\delta\rho} =\displaystyle= ifπ4{πγ5ϕπ(x,kq)μπγ5(ϕPπ(x,kq)\displaystyle\frac{if_{\pi}}{4}\Bigg{\{}\not{p}_{\pi}\gamma_{5}\phi_{\pi}(x,k_{q\perp})-\mu_{\pi}\gamma_{5}\Bigg{(}\phi^{\pi}_{P}(x,k_{q\perp}) (12)
iσμνpπμp¯πνpπp¯πϕσπ(x,kq)6\displaystyle-i\sigma_{\mu\nu}\frac{p_{\pi}^{\mu}\bar{p}_{\pi}^{\nu}}{p_{\pi}\cdot\bar{p}_{\pi}}\frac{\phi^{\prime\pi}_{\sigma}(x,k_{q\perp})}{6}
+iσμνpπμϕσπ(x,kq)6kqν)}δρ\displaystyle+i\sigma_{\mu\nu}p_{\pi}^{\mu}\frac{\phi^{\pi}_{\sigma}(x,k_{q\perp})}{6}\frac{\partial}{\partial k_{q\perp\nu}}\Bigg{)}\Bigg{\}}_{\delta\rho}

where p¯π=(Eπ,pπ)\bar{p}_{\pi}=(E_{\pi},-\vec{p}_{\pi}) with EπE_{\pi} and pπ\vec{p}_{\pi} being the energy and momentum of pion, respectively, and ϕσπ(x,kq)=ϕσπ(x,kq)/x\phi^{\prime\pi}_{\sigma}(x,k_{q\perp})=\partial\phi^{\pi}_{\sigma}(x,k_{q\perp})/\partial x.

The light-cone wave functions for the other light pseudoscalar mesons can be defined similarly as that of pion.

II.3 The scheme for ηη\eta-\eta^{\prime} mixing

The mixing scheme for η\eta and η\eta^{\prime} mesons suggested by Feldmann, Kroll, and Stech in Refs. FKS1 ; FKS2 is considered in this work when calculating processes involving η\eta and η\eta^{\prime} mesons. In this mixing scheme, the physical η\eta and η\eta^{\prime} mesons are written as

(ηη)=U(ϕ)(ηqηs)=(cosϕsinϕsinϕcosϕ)(ηqηs)\left(\begin{array}[]{c}\eta\\ \eta^{\prime}\end{array}\right)=U(\phi)\left(\begin{array}[]{c}\eta_{q}\\ \eta_{s}\end{array}\right)=\left(\begin{array}[]{cc}\cos\phi&-\sin\phi\\ \sin\phi&\cos\phi\end{array}\right)\left(\begin{array}[]{l}\eta_{q}\\ \eta_{s}\end{array}\right) (13)

where ηq=(uu¯+dd¯)/2\eta_{q}=(u\bar{u}+d\bar{d})/\sqrt{2}, ηs=ss¯\eta_{s}=s\bar{s}, and ϕ\phi is the mixing angle. We define the decay constants for the pseudoscalars involving η\eta and η\eta^{\prime} as follows:

0|j5qμ|ηq(p)=ifqpμ,0|j5sμ|ηs(p)=ifspμ\langle 0|j^{q\mu}_{5}|\eta_{q}(p)\rangle=if_{q}p^{\mu},~{}~{}~{}\langle 0|j^{s\mu}_{5}|\eta_{s}(p)\rangle=if_{s}p^{\mu} (14)

where j5qμ=u¯γμγ5u+d¯γμγ5d2j^{q\mu}_{5}=\frac{\bar{u}\gamma^{\mu}\gamma_{5}u+\bar{d}\gamma^{\mu}\gamma_{5}d}{\sqrt{2}} and j5sμ=s¯γμγ5sj^{s\mu}_{5}=\bar{s}\gamma^{\mu}\gamma_{5}s,

0|q¯γμγ5q|η(p)=ifηqpμ,0|j5sμ|η(p)=ifηspμ,0|q¯γμγ5q|η(p)=ifηqpμ,0|j5sμ|η(p)=ifηspμ\begin{array}[]{ll}\langle 0|\bar{q}\gamma^{\mu}\gamma_{5}q|\eta(p)\rangle=if_{\eta}^{q}p^{\mu},&\langle 0|j^{s\mu}_{5}|\eta(p)\rangle=if_{\eta}^{s}p^{\mu},\\ \langle 0|\bar{q}\gamma^{\mu}\gamma_{5}q|\eta^{\prime}(p)\rangle=if_{\eta^{\prime}}^{q}p^{\mu},&\langle 0|j^{s\mu}_{5}|\eta^{\prime}(p)\rangle=if_{\eta^{\prime}}^{s}p^{\mu}\end{array} (15)

where q=uq=u and dd. The relations between the decay constants hold

fηq=fq2cosϕ,fηs=fssinϕ,fηq=fq2sinϕ,fηs=fscosϕ\begin{array}[]{ll}f_{\eta}^{q}=\frac{f_{q}}{\sqrt{2}}\cos\phi,&f_{\eta}^{s}=-f_{s}\sin\phi,\\ &\\ f_{\eta^{\prime}}^{q}=\frac{f_{q}}{\sqrt{2}}\sin\phi,&f_{\eta^{\prime}}^{s}=f_{s}\cos\phi\end{array} (16)

where isospin symmetry is taken into account. The values of these decay constants are FKS1 ; FKS2

fq=(1.07±0.02)fπ,fs=(1.34±0.06)fπ,ϕ=39.3±1.0\begin{gathered}f_{q}=(1.07\pm 0.02)f_{\pi},\quad f_{s}=(1.34\pm 0.06)f_{\pi},\\ \phi=39.3^{\circ}\pm 1.0^{\circ}\end{gathered} (17)

where fπ=0.130GeVf_{\pi}=0.130\;\mathrm{GeV}. The chiral masses for ηq\eta_{q} and ηs\eta_{s} are m0qm_{0}^{q} and m0sm_{0}^{s}, respectively, which replace μπ\mu_{\pi} in Eqs. (11) and (12) when considering the light-cone wave functions of ηq\eta_{q} and ηs\eta_{s}. The values of them are m0q=1.07GeVm_{0}^{q}=1.07\;\mathrm{GeV}, m0s=1.82GeVm_{0}^{s}=1.82\;\mathrm{GeV}, which can be obtained by FKS1 ; FKS2

m0q=12mq(U112fsfqU12),\displaystyle m_{0}^{q}=\frac{1}{2m_{q}}\left(U_{11}-\frac{\sqrt{2}f_{s}}{f_{q}}U_{12}\right), (18)
m0s=12ms(U22fq2fsU21)\displaystyle m_{0}^{s}=\frac{1}{2m_{s}}\left(U_{22}-\frac{f_{q}}{\sqrt{2}f_{s}}U_{21}\right)
U11=\displaystyle U_{11}= mη2cos2ϕ+mη2sin2ϕ,\displaystyle m_{\eta}^{2}\cos^{2}\phi+m_{\eta^{\prime}}^{2}\sin^{2}\phi, (19)
U12=U21\displaystyle U_{12}=U_{21} =(mη2mη2)cosϕsinϕ\displaystyle=\left(m_{\eta^{\prime}}^{2}-m_{\eta}^{2}\right)\cos\phi\sin\phi
U22=\displaystyle U_{22}= mη2sin2ϕ+mη2cos2ϕ\displaystyle m_{\eta}^{2}\sin^{2}\phi+m_{\eta^{\prime}}^{2}\cos^{2}\phi

where mη=0.548GeV,mη=0.958GeVm_{\eta}=0.548\;\mathrm{GeV},\quad m_{\eta^{\prime}}=0.958\;\mathrm{GeV}. And the quarks mass are mq=0.0056GeV,ms=0.137GeVm_{q}=0.0056\mathrm{GeV},\quad m_{s}=0.137\mathrm{GeV}, which are consistent with the input parameters in the work of Ref. Ball-Braun2006 .

II.4 The leading order contribution

The diagrams for the hard amplitude at leading order (LO) in QCD are shown in Fig. 1. Transverse momenta of quarks and gluons are kept in the calculation, and double logarithms as αs(μ)ln2kT/μ\alpha_{s}(\mu)\mbox{ln}^{2}k_{\text{T}}/\mu appear in higher order radiative corrections in QCD, which can be resummed into the Sudakov factor liyu1996-1 ; liyu1996-2 . The double logarithms as αs(μ)ln2x\alpha_{s}(\mu)\mbox{ln}^{2}x can be resummed into the threshold factor lihn2002 , where xx is the momentum fraction of gluons or quarks in the longitudinal direction. Diagrams (a), (b), (g), and (h) in Fig. 1 are factorizable diagrams and (c), (d), (e), and (f) are the nonfactorizable ones. The amplitude contributed by (a) and (b) with the insertion of operators of the (VA)(VA)(V-A)(V-A) current is

Fe\displaystyle F_{e} =i4π2Nc2fBfM1fM2mB𝑑kkxdxu𝑑x01𝑑x10b𝑑bb1𝑑b1(12mB+|k|22x2mB)K(k)(EQ+mQ)\displaystyle=-i\frac{4\pi^{2}}{N_{c}^{2}}f_{B}f_{M_{1}}f_{M_{2}}m_{B}\int dk_{\perp}k_{\perp}\int_{x^{d}}^{x^{u}}dx\int_{0}^{1}dx_{1}\int_{0}^{\infty}bdbb_{1}db_{1}(\frac{1}{2}m_{B}+\frac{|\vec{k}_{\perp}|^{2}}{2x^{2}m_{B}})K(\vec{k})(E_{Q}+m_{Q}) (20)
×J0(kb){αs(μe1)(2mB[Eq(1+x1)+k3(1x1)]ϕM1(x¯1,b1)+2μM1[Eq(12x1)k3]ϕM1P(x¯1,b1)\displaystyle\times J_{0}(k_{\perp}b)\Bigg{\{}\alpha_{s}(\mu_{e}^{1})\Bigg{(}2m_{B}[E_{q}(1+x_{1})+k^{3}(1-x_{1})]\phi_{M_{1}}(\bar{x}_{1},b_{1})+2\mu_{M_{1}}[E_{q}(1-2x_{1})-k^{3}]\phi^{P}_{M_{1}}(\bar{x}_{1},b_{1})
13μM1[Eq(12x1)k3]ϕM1σ(x¯1,b1))he1(x,x1,b,b1)St(x1)exp[SB(μe1)SM1(μe1)]\displaystyle-\frac{1}{3}\mu_{M_{1}}[E_{q}(1-2x_{1})-k^{3}]\phi^{\prime\sigma}_{M_{1}}(\bar{x}_{1},b_{1})\Bigg{)}h_{e}^{1}(x,x_{1},b,b_{1})S_{t}(x_{1})\exp[-S_{B}(\mu_{e}^{1})-S_{M_{1}}(\mu_{e}^{1})]
+αs(μe2)[4μM1(Eqk3)]ϕM1P(x¯1,b1)he2(x,x1,b,b1)St(x)exp[SB(μe2)SM1(μe2)]}\displaystyle+\alpha_{s}(\mu_{e}^{2})[4\mu_{M_{1}}(E_{q}-k^{3})]\phi^{P}_{M_{1}}(\bar{x}_{1},b_{1})h_{e}^{2}(x,x_{1},b,b_{1})S_{t}(x)\exp[-S_{B}(\mu_{e}^{2})-S_{M_{1}}(\mu_{e}^{2})]\Bigg{\}}

where x¯i=1xi\bar{x}_{i}=1-x_{i}, for i=1, 2i=1,\;2. The integral with respect to the momentum fraction xx for the light quark in the BB meson along the light-cone direction is limited from xdx^{d} to xux^{u}, where xu,d=1/2±1/4|k|2/mB2x^{u,d}=1/2\pm\sqrt{1/4-|\vec{k_{\perp}}|^{2}/m_{B}^{2}} Lu-Yang2021 .

Refer to caption
Figure 1: Diagrams contributing to the BM1M2B\rightarrow M_{1}M_{2} decays at leading order in QCD, where the diagrams can be classified into four types: factorizable emission diagrams (a, b), nonfactorizable emission diagrams (c, d), factorizable annihilation diagrams (e, f), and nonfactorizable annihilation diagrams (g, h).

The operators of the (S+P)(SP)(S+P)(S-P) current which comes from the Fierz transformation of the operators of the (VA)(V+A)(V-A)(V+A) current contribute as

FeP\displaystyle F_{e}^{P} =i4π2Nc2fBfM1fM2μM2𝑑kkxdxu𝑑x01𝑑x10b𝑑bb1𝑑b1(12mB+|k|22x2mB)K(k)(EQ+mQ)\displaystyle=-i\frac{4\pi^{2}}{N_{c}^{2}}f_{B}f_{M_{1}}f_{M_{2}}\mu_{M_{2}}\int dk_{\perp}k_{\perp}\int_{x^{d}}^{x^{u}}dx\int_{0}^{1}dx_{1}\int_{0}^{\infty}bdbb_{1}db_{1}(\frac{1}{2}m_{B}+\frac{|\vec{k}_{\perp}|^{2}}{2x^{2}m_{B}})K(\vec{k})(E_{Q}+m_{Q}) (21)
×J0(kb){αs(μe1)(4mB(Eq+k3)ϕM1(x¯1,b1)+4μM1[Eq(x1+2)k3x1]ϕM1P(x¯1,b1)\displaystyle\times J_{0}(k_{\perp}b)\Bigg{\{}\alpha_{s}(\mu_{e}^{1})\Bigg{(}4m_{B}(E_{q}+k^{3})\phi_{M_{1}}(\bar{x}_{1},b_{1})+4\mu_{M_{1}}[E_{q}(x_{1}+2)-k^{3}x_{1}]\phi^{P}_{M_{1}}(\bar{x}_{1},b_{1})
23μM1[k3(x12)Eqx1]ϕM1σ(x¯1,b1))he1(x,x1,b,b1)St(x1)exp[SB(μe1)SM1(μe1)]\displaystyle-\frac{2}{3}\mu_{M_{1}}[k^{3}(x_{1}-2)-E_{q}x_{1}]\phi^{\prime\sigma}_{M_{1}}(\bar{x}_{1},b_{1})\Bigg{)}h_{e}^{1}(x,x_{1},b,b_{1})S_{t}(x_{1})\exp[-S_{B}(\mu_{e}^{1})-S_{M_{1}}(\mu_{e}^{1})]
+αs(μe2)[8μM1(Eqk3)]ϕM1P(x¯1,b1)he2(x,x1,b,b1)St(x)exp[SB(μe2)SM1(μe2)]}.\displaystyle+\alpha_{s}(\mu_{e}^{2})[8\mu_{M_{1}}(E_{q}-k^{3})]\phi^{P}_{M_{1}}(\bar{x}_{1},b_{1})h_{e}^{2}(x,x_{1},b,b_{1})S_{t}(x)\exp[-S_{B}(\mu_{e}^{2})-S_{M_{1}}(\mu_{e}^{2})]\Bigg{\}}.

The contributions of diagrams of Figs. 1 (c) and 1(d) are

Me\displaystyle M_{e} =i4π2Nc2fBfM1fM2mB𝑑kkxdxu𝑑x01𝑑x1𝑑x20b𝑑bb2𝑑b2(12mB+|k|22x2mB)K(k)(EQ+mQ)\displaystyle=-i\frac{4\pi^{2}}{N_{c}^{2}}f_{B}f_{M_{1}}f_{M_{2}}m_{B}\int dk_{\perp}k_{\perp}\int_{x^{d}}^{x^{u}}dx\int_{0}^{1}dx_{1}dx_{2}\int_{0}^{\infty}bdbb_{2}db_{2}(\frac{1}{2}m_{B}+\frac{|\vec{k}_{\perp}|^{2}}{2x^{2}m_{B}})K(\vec{k})(E_{Q}+m_{Q}) (22)
×J0(kb)ϕM2(x¯2,b2){αs(μd2)(2mB(x21)(Eq+k3)ϕM1(x¯1,b)2μM1x1(Eqk3)ϕM1P(x¯1,b)\displaystyle\times J_{0}(k_{\perp}b)\phi_{M_{2}}(\bar{x}_{2},b_{2})\Bigg{\{}\alpha_{s}(\mu_{d}^{2})\Bigg{(}-2m_{B}(x_{2}-1)(E_{q}+k^{3})\phi_{M_{1}}(\bar{x}_{1},b)-2\mu_{M_{1}}x_{1}(E_{q}-k^{3})\phi^{P}_{M_{1}}(\bar{x}_{1},b)
13μM1x1(Eqk3)ϕM1σ(x¯1,b))hd1(x,x1,x2,b,b2)St(x1)exp[SB(μd1)SM1(μd1)SM2(μd1)]\displaystyle-\frac{1}{3}\mu_{M_{1}}x_{1}(E_{q}-k^{3})\phi^{\prime\sigma}_{M_{1}}(\bar{x}_{1},b)\Bigg{)}h_{d}^{1}(x,x_{1},x_{2},b,b_{2})S_{t}(x_{1})\exp[-S_{B}(\mu_{d}^{1})-S_{M_{1}}(\mu_{d}^{1})-S_{M_{2}}(\mu_{d}^{1})]
+αs(μd2)(2mB[Eq(x1+x2)+k3(x2x1)ϕM1(x¯1,b)+2μM1x1(Eq+k3)ϕM1P(x¯1,b)\displaystyle+\alpha_{s}(\mu_{d}^{2})\Bigg{(}-2m_{B}[E_{q}(x_{1}+x_{2})+k^{3}(x_{2}-x_{1})\phi_{M_{1}}(\bar{x}_{1},b)+2\mu_{M_{1}}x_{1}(E_{q}+k^{3})\phi^{P}_{M_{1}}(\bar{x}_{1},b)
13μM1x1(Eq+k3)ϕM1σ(x¯1,b))hd2(x,x1,x2,b,b2)×St(x1)exp[SB(μd2)SM1(μd2)SM2(μd2)]}\displaystyle-\frac{1}{3}\mu_{M_{1}}x_{1}(E_{q}+k^{3})\phi^{\prime\sigma}_{M_{1}}(\bar{x}_{1},b)\Bigg{)}h_{d}^{2}(x,x_{1},x_{2},b,b_{2})\times S_{t}(x_{1})\exp[-S_{B}(\mu_{d}^{2})-S_{M_{1}}(\mu_{d}^{2})-S_{M_{2}}(\mu_{d}^{2})]\Bigg{\}}

for the operators of the (VA)(VA)(V-A)(V-A) current, and

MeP\displaystyle M_{e}^{P} =i4π2Nc2fBfM1fM2mB𝑑kkxdxu𝑑x01𝑑x1𝑑x20b𝑑bb2𝑑b2(12mB+|k|22x2mB)K(k)(EQ+mQ)\displaystyle=-i\frac{4\pi^{2}}{N_{c}^{2}}f_{B}f_{M_{1}}f_{M_{2}}m_{B}\int dk_{\perp}k_{\perp}\int_{x^{d}}^{x^{u}}dx\int_{0}^{1}dx_{1}dx_{2}\int_{0}^{\infty}bdbb_{2}db_{2}(\frac{1}{2}m_{B}+\frac{|\vec{k}_{\perp}|^{2}}{2x^{2}m_{B}})K(\vec{k})(E_{Q}+m_{Q})
×J0(kb)ϕM2(x¯2,b2){αs(μd2)(2mB(Eq(x1x2+1)k3(x1+x21))ϕM1(x¯1,b)\displaystyle\times J_{0}(k_{\perp}b)\phi_{M_{2}}(\bar{x}_{2},b_{2})\Bigg{\{}\alpha_{s}(\mu_{d}^{2})\Bigg{(}-2m_{B}(E_{q}(x_{1}-x_{2}+1)-k^{3}(x_{1}+x_{2}-1))\phi_{M_{1}}(\bar{x}_{1},b)
+2μM1x1(Eq+k3)ϕM1P(x¯1,b)13μM1x1(Eq+k3)ϕM1σ(x¯1,b))hd1(x,x1,x2,b,b2)\displaystyle+2\mu_{M_{1}}x_{1}(E_{q}+k^{3})\phi^{P}_{M_{1}}(\bar{x}_{1},b)-\frac{1}{3}\mu_{M_{1}}x_{1}(E_{q}+k^{3})\phi^{\prime\sigma}_{M_{1}}(\bar{x}_{1},b)\Bigg{)}h_{d}^{1}(x,x_{1},x_{2},b,b_{2})
×St(x1)exp[SB(μd1)SM1(μd1)SM2(μd1)]+αs(μd2)(2mBx2(Eq+k3)ϕM1(x¯1,b)\displaystyle\times S_{t}(x_{1})\exp[-S_{B}(\mu_{d}^{1})-S_{M_{1}}(\mu_{d}^{1})-S_{M_{2}}(\mu_{d}^{1})]+\alpha_{s}(\mu_{d}^{2})\Bigg{(}2m_{B}x_{2}(E_{q}+k^{3})\phi_{M_{1}}(\bar{x}_{1},b)
2μM1x1(Eqk3)ϕM1P(x¯1,b)13μM1x1(Eqk3)ϕM1σ(x¯1,b))hd2(x,x1,x2,b,b2)\displaystyle-2\mu_{M_{1}}x_{1}(E_{q}-k^{3})\phi^{P}_{M_{1}}(\bar{x}_{1},b)-\frac{1}{3}\mu_{M_{1}}x_{1}(E_{q}-k^{3})\phi^{\prime\sigma}_{M_{1}}(\bar{x}_{1},b)\Bigg{)}h_{d}^{2}(x,x_{1},x_{2},b,b_{2})
×St(x1)exp[SB(μd2)SM1(μd2)SM2(μd2)]}\displaystyle\times S_{t}(x_{1})\exp[-S_{B}(\mu_{d}^{2})-S_{M_{1}}(\mu_{d}^{2})-S_{M_{2}}(\mu_{d}^{2})]\Bigg{\}} (23)

for the insertion of Fierz transformed operators of the (S+P)(SP)(S+P)(S-P) current. The following is for the contribution of the operators of the (VA)(V+A)(V-A)(V+A) current

MeR\displaystyle M_{e}^{R} =i4π2Nc2fBfM1fM2𝑑kkxdxu𝑑x01𝑑x1𝑑x20b𝑑bb2𝑑b2(12mB+|k|22x2mB)K(k)(EQ+mQ)\displaystyle=-i\frac{4\pi^{2}}{N_{c}^{2}}f_{B}f_{M_{1}}f_{M_{2}}\int dk_{\perp}k_{\perp}\int_{x^{d}}^{x^{u}}dx\int_{0}^{1}dx_{1}dx_{2}\int_{0}^{\infty}bdbb_{2}db_{2}(\frac{1}{2}m_{B}+\frac{|\vec{k}_{\perp}|^{2}}{2x^{2}m_{B}})K(\vec{k})(E_{Q}+m_{Q}) (24)
×J0(kb){αs(μd2)[13μM2mB(Eq+k3)ϕπ(x¯1,b)((x21)ϕM2σ(x¯2,b2)6(x21)ϕM2P(x¯2,b2))\displaystyle\times J_{0}(k_{\perp}b)\Bigg{\{}\alpha_{s}(\mu_{d}^{2})\Bigg{[}\frac{1}{3}\mu_{M_{2}}m_{B}(E_{q}+k^{3})\phi_{\pi}(\bar{x}_{1},b)\Big{(}(x_{2}-1)\phi^{\prime\sigma}_{M_{2}}(\bar{x}_{2},b_{2})-6(x_{2}-1)\phi^{P}_{M_{2}}(\bar{x}_{2},b_{2})\Big{)}
+13μM1μM2ϕM1P(x¯1,b)([Eq(x1+x21)+k3(x1+x21)]ϕM2σ(x¯2,b2)+6[Eq(x1x2+1)k3(x1\displaystyle+\frac{1}{3}\mu_{M_{1}}\mu_{M_{2}}\phi^{P}_{M_{1}}(\bar{x}_{1},b)\Big{(}[E_{q}(x_{1}+x_{2}-1)+k^{3}(-x_{1}+x_{2}-1)]\phi^{\prime\sigma}_{M_{2}}(\bar{x}_{2},b_{2})+6[E_{q}(x_{1}-x_{2}+1)-k^{3}(x_{1}
+x21)]ϕM2P(x¯2,b2))118μM1μM2ϕπσ(x¯1,b)([Eq(x1x2+1)k3(x1+x21)]\displaystyle+x_{2}-1)]\phi^{P}_{M_{2}}(\bar{x}_{2},b_{2})\Big{)}-\frac{1}{18}\mu_{M_{1}}\mu_{M_{2}}\phi^{\prime\pi}_{\sigma}(\bar{x}_{1},b)\Big{(}[E_{q}(x_{1}-x_{2}+1)-k^{3}(x_{1}+x_{2}-1)]
ϕM2σ(x¯2,b2)+6[Eq(x1+x21)+k3(x1+x21)]ϕM2P(x¯2,b2))]hd1(x,x1,x2,b,b2)\displaystyle\cdot\phi^{\prime\sigma}_{M_{2}}(\bar{x}_{2},b_{2})+6[E_{q}(x_{1}+x_{2}-1)+k^{3}(-x_{1}+x_{2}-1)]\phi^{P}_{M_{2}}(\bar{x}_{2},b_{2})\Big{)}\Bigg{]}h_{d}^{1}(x,x_{1},x_{2},b,b_{2})
×St(x1)exp[SB(μd1)SM1(μd1)SM2(μd1)]+αs(μd2)[13μM2mB(Eq+k3)(x2ϕM2σ(x¯2,b2)\displaystyle\times S_{t}(x_{1})\exp[-S_{B}(\mu_{d}^{1})-S_{M_{1}}(\mu_{d}^{1})-S_{M_{2}}(\mu_{d}^{1})]+\alpha_{s}(\mu_{d}^{2})\Bigg{[}-\frac{1}{3}\mu_{M_{2}}m_{B}(E_{q}+k^{3})\Big{(}x_{2}\phi^{\prime\sigma}_{M_{2}}(\bar{x}_{2},b_{2})
+6x2ϕM2P(x¯2,b2))ϕM1(x¯1,b)+13μM1μM2ϕPM1(x¯1,b)([Eq(x1x2)k3(x1+x2)]ϕM2σ(x¯2,b2)\displaystyle+6x_{2}\phi^{P}_{M_{2}}(\bar{x}_{2},b_{2})\Big{)}\phi_{M_{1}}(\bar{x}_{1},b)+\frac{1}{3}\mu_{M_{1}}\mu_{M_{2}}\phi^{P}_{M_{1}}(\bar{x}_{1},b)\Big{(}[E_{q}(x_{1}-x_{2})-k^{3}(x_{1}+x_{2})]\phi^{\prime\sigma}_{M_{2}}(\bar{x}_{2},b_{2})
+6[Eq(x1+x2)+k3(x2x1)]ϕM2P(x¯2,b2))118μM1μM2ϕσM1(x¯1,b)([Eq(x1+x2)+k3(x2x1)]\displaystyle+6[E_{q}(x_{1}+x_{2})+k^{3}(x_{2}-x_{1})]\phi^{P}_{M_{2}}(\bar{x}_{2},b_{2})\Big{)}-\frac{1}{18}\mu_{M_{1}}\mu_{M_{2}}\phi^{\prime\sigma}_{M_{1}}(\bar{x}_{1},b)\Big{(}[E_{q}(x_{1}+x_{2})+k^{3}(x_{2}-x_{1})]
ϕM2σ(x¯2,b2)+6[Eq(x2x1)+k3(x1+x2)]ϕM2P(x¯2,b2))]hd2(x,x1,x2,b,b2)St(x1)\displaystyle\cdot\phi^{\prime\sigma}_{M_{2}}(\bar{x}_{2},b_{2})+6[E_{q}(x_{2}-x_{1})+k^{3}(x_{1}+x_{2})]\phi^{P}_{M_{2}}(\bar{x}_{2},b_{2})\Big{)}\Bigg{]}h_{d}^{2}(x,x_{1},x_{2},b,b_{2})S_{t}(x_{1})
×exp[SB(μd2)SM1(μd2)SM2(μd2)]}.\displaystyle\times\exp[-S_{B}(\mu_{d}^{2})-S_{M_{1}}(\mu_{d}^{2})-S_{M_{2}}(\mu_{d}^{2})]\Bigg{\}}.

The contributions of Figs. 1 (e) and 1 (f) are

Ma\displaystyle M_{a} =\displaystyle= i4π2Nc2fBfM1fM2𝑑kkxdxu𝑑x01𝑑x1𝑑x20b𝑑bb1𝑑b1(12mB+|k|22x2mB)K(k)(EQ+mQ)\displaystyle-i\frac{4\pi^{2}}{N_{c}^{2}}f_{B}f_{M_{1}}f_{M_{2}}\int dk_{\perp}k_{\perp}\int_{x^{d}}^{x^{u}}dx\int_{0}^{1}dx_{1}dx_{2}\int_{0}^{\infty}bdbb_{1}db_{1}(\frac{1}{2}m_{B}+\frac{|\vec{k}_{\perp}|^{2}}{2x^{2}m_{B}})K(\vec{k})(E_{Q}+m_{Q})
×J0(kb){αs(μf2)[2mB2(x21)(Eq+k3)ϕM1(x¯1,b1)ϕM2(x¯2,b1)+13μM1μM2ϕM1P(x¯1,b1)\displaystyle\times J_{0}(k_{\perp}b)\Bigg{\{}\alpha_{s}(\mu_{f}^{2})\Bigg{[}-2m_{B}^{2}(x_{2}-1)(E_{q}+k^{3})\phi_{M_{1}}(\bar{x}_{1},b_{1})\phi_{M_{2}}(\bar{x}_{2},b_{1})+\frac{1}{3}\mu_{M_{1}}\mu_{M_{2}}\phi^{P}_{M_{1}}(\bar{x}_{1},b_{1})
([Eq(x1+x21)+k3(x1x2+1)]ϕM2σ(x¯2,b1)+6[Eq(x1x2+1)k3(x1+x21)]ϕM2P(x¯2,b1))\displaystyle\cdot\Big{(}[-E_{q}(x_{1}+x_{2}-1)+k^{3}(x_{1}-x_{2}+1)]\phi^{\prime\sigma}_{M_{2}}(\bar{x}_{2},b_{1})+6[E_{q}(x_{1}-x_{2}+1)-k^{3}(x_{1}+x_{2}-1)]\phi^{P}_{M_{2}}(\bar{x}_{2},b_{1})\Big{)}
118μM1μM2ϕM1σ(x¯1,b1)([Eq(x1x2+1)k3(x1+x21)]ϕM2σ(x¯2,b1)6[Eq(x1+x21)+k3(x1\displaystyle-\frac{1}{18}\mu_{M_{1}}\mu_{M_{2}}\phi^{\prime\sigma}_{M_{1}}(\bar{x}_{1},b_{1})\Big{(}[E_{q}(x_{1}-x_{2}+1)-k^{3}(x_{1}+x_{2}-1)]\phi^{\prime\sigma}_{M_{2}}(\bar{x}_{2},b_{1})-6[E_{q}(x_{1}+x_{2}-1)+k^{3}(-x_{1}
+x21)]ϕM2P(x¯2,b1))]hf1(x,x1,x2,b,b1)St(x1)St(x2)exp[SB(μf1)SM1(μf1)SM2(μf1)]\displaystyle+x_{2}-1)]\phi^{P}_{M_{2}}(\bar{x}_{2},b_{1})\Big{)}\Bigg{]}h_{f}^{1}(x,x_{1},x_{2},b,b_{1})S_{t}(x_{1})S_{t}(x_{2})\exp[-S_{B}(\mu_{f}^{1})-S_{M_{1}}(\mu_{f}^{1})-S_{M_{2}}(\mu_{f}^{1})]
+αs(μd2)[2mB2x1(Eqk3)ϕM1(x¯1,b1)ϕM2(x¯2,b1)13μM1μM2ϕM1P(x¯1,b1)([Eq(x1+x21)+k3(x1\displaystyle+\alpha_{s}(\mu_{d}^{2})\Bigg{[}-2m_{B}^{2}x_{1}(E_{q}-k^{3})\phi_{M_{1}}(\bar{x}_{1},b_{1})\phi_{M_{2}}(\bar{x}_{2},b_{1})-\frac{1}{3}\mu_{M_{1}}\mu_{M_{2}}\phi^{P}_{M_{1}}(\bar{x}_{1},b_{1})\Big{(}[E_{q}(x_{1}+x_{2}-1)+k^{3}(-x_{1}
+x2+1)]ϕM2σ(x¯2,b1)+6[Eq(x1x2+3)k3(x1+x21)]ϕM2P(x¯2,b1))+118μM1μM2ϕσM1(x¯1,b1)\displaystyle+x_{2}+1)]\phi^{\prime\sigma}_{M_{2}}(\bar{x}_{2},b_{1})+6[E_{q}(x_{1}-x_{2}+3)-k^{3}(x_{1}+x_{2}-1)]\phi^{P}_{M_{2}}(\bar{x}_{2},b_{1})\Big{)}+\frac{1}{18}\mu_{M_{1}}\mu_{M_{2}}\phi^{\prime\sigma}_{M_{1}}(\bar{x}_{1},b_{1})
([Eq(x1x21)k3(x1+x21)]ϕM2σ(x¯2,b1)+6[Eq(x1+x21)+k3(x1+x23)]ϕM2P(x¯2,b1))]\displaystyle\cdot\Big{(}[E_{q}(x_{1}-x_{2}-1)-k^{3}(x_{1}+x_{2}-1)]\phi^{\prime\sigma}_{M_{2}}(\bar{x}_{2},b_{1})+6[E_{q}(x_{1}+x_{2}-1)+k^{3}(-x_{1}+x_{2}-3)]\phi^{P}_{M_{2}}(\bar{x}_{2},b_{1})\Big{)}\Bigg{]}
×hf2(x,x1,x2,b,b1)exp[SB(μf2)SM1(μf2)SM2(μf2)]}\displaystyle\times h_{f}^{2}(x,x_{1},x_{2},b,b_{1})\exp[-S_{B}(\mu_{f}^{2})-S_{M_{1}}(\mu_{f}^{2})-S_{M_{2}}(\mu_{f}^{2})]\Bigg{\}} (25)

for the (VA)(VA)(V-A)(V-A) current, and

MaP\displaystyle M_{a}^{P} =i4π2Nc2fBfM1fM2dkkxdxudx01dx1dx20bdbb1db1(12mB+|k|22x2mB)K(k)(EQ+mQ)\displaystyle=-i\frac{4\pi^{2}}{N_{c}^{2}}f_{B}f_{M_{1}}f_{M_{2}}\int dk_{\perp}k_{\perp}\int_{x^{d}}^{x^{u}}dx\int_{0}^{1}dx_{1}dx_{2}\int_{0}^{\infty}bdbb_{1}db_{1}(\frac{1}{2}m_{B}+\frac{|\vec{k}_{\perp}|^{2}}{2x^{2}m_{B}})K(\vec{k})(E_{Q}+m_{Q}) (26)
×J0(kb){αs(μf2)[2mB2x1(Eqk3)ϕM1(x¯1,b1)ϕM2(x¯2,b1)+13μM1μM2ϕPM1(x¯1,b1)([Eq(x1+x21)\displaystyle\times J_{0}(k_{\perp}b)\Bigg{\{}\alpha_{s}(\mu_{f}^{2})\Bigg{[}2m_{B}^{2}x_{1}(E_{q}-k^{3})\phi_{M_{1}}(\bar{x}_{1},b_{1})\phi_{M_{2}}(\bar{x}_{2},b_{1})+\frac{1}{3}\mu_{M_{1}}\mu_{M_{2}}\phi^{P}_{M_{1}}(\bar{x}_{1},b_{1})\Big{(}[E_{q}(x_{1}+x_{2}-1)
+k3(x1+x21)]ϕσM2(x¯2,b1)+6[Eq(x1x2+1)k3(x1+x21)]ϕPM2(x¯2,b1))\displaystyle+k^{3}(-x_{1}+x_{2}-1)]\phi^{\prime\sigma}_{M_{2}}(\bar{x}_{2},b_{1})+6[E_{q}(x_{1}-x_{2}+1)-k^{3}(x_{1}+x_{2}-1)]\phi^{P}_{M_{2}}(\bar{x}_{2},b_{1})\Big{)}
118μM1μM2ϕσM1(x¯1,b1)([Eq(x1x2+1)k3(x1+x21)]ϕσM2(x¯2,b1)+6[Eq(x1+x21)\displaystyle-\frac{1}{18}\mu_{M_{1}}\mu_{M_{2}}\phi^{\prime\sigma}_{M_{1}}(\bar{x}_{1},b_{1})\Big{(}[E_{q}(x_{1}-x_{2}+1)-k^{3}(x_{1}+x_{2}-1)]\phi^{\prime\sigma}_{M_{2}}(\bar{x}_{2},b_{1})+6[E_{q}(x_{1}+x_{2}-1)
+k3(x1+x21)]ϕPM2(x¯2,b1))]hf1(x,x1,x2,b,b1)St(x1)St(x2)exp[SB(μf1)SM1(μf1)SM2(μf1)]\displaystyle+k^{3}(-x_{1}+x_{2}-1)]\phi^{P}_{M_{2}}(\bar{x}_{2},b_{1})\Big{)}\Bigg{]}h_{f}^{1}(x,x_{1},x_{2},b,b_{1})S_{t}(x_{1})S_{t}(x_{2})\exp[-S_{B}(\mu_{f}^{1})-S_{M_{1}}(\mu_{f}^{1})-S_{M_{2}}(\mu_{f}^{1})]
+αs(μd2)[2mB2(x21)(Eq+k3)ϕM1(x¯1,b1)ϕM2(x¯2,b1)+13μM1μM2ϕPM1(x¯1,b1)\displaystyle+\alpha_{s}(\mu_{d}^{2})\Bigg{[}2m_{B}^{2}(x_{2}-1)(E_{q}+k^{3})\phi_{M_{1}}(\bar{x}_{1},b_{1})\phi_{M_{2}}(\bar{x}_{2},b_{1})+\frac{1}{3}\mu_{M_{1}}\mu_{M_{2}}\phi^{P}_{M_{1}}(\bar{x}_{1},b_{1})
([Eq(x1+x21)+k3(x1+x23)]ϕσM2(x2,b26[Eq(x1x2+3)k3(x1+x21)]ϕPM2(x¯2,b1))\displaystyle\Big{(}[E_{q}(x_{1}+x_{2}-1)+k^{3}(-x_{1}+x_{2}-3)]\phi^{\prime\sigma}_{M_{2}}(x_{2},b_{2}-6[E_{q}(x_{1}-x_{2}+3)-k^{3}(x_{1}+x_{2}-1)]\phi^{P}_{M_{2}}(\bar{x}_{2},b_{1})\Big{)}
+118μM1μM2ϕσM1(x¯1,b1)([Eq(x1x21)k3(x1+x21)]ϕσM2(x¯2,b1)6[Eq(x1+x21)+k3(x1+x2\displaystyle+\frac{1}{18}\mu_{M_{1}}\mu_{M_{2}}\phi^{\prime\sigma}_{M_{1}}(\bar{x}_{1},b_{1})\Big{(}[E_{q}(x_{1}-x_{2}-1)-k^{3}(x_{1}+x_{2}-1)]\phi^{\prime\sigma}_{M_{2}}(\bar{x}_{2},b_{1})-6[E_{q}(x_{1}+x_{2}-1)+k^{3}(-x_{1}+x_{2}
+1)]ϕPM2(x¯2,b1))]hf2(x,x1,x2,b,b1)exp[SB(μf2)SM1(μf2)SM2(μf2)]}\displaystyle+1)]\phi^{P}_{M_{2}}(\bar{x}_{2},b_{1})\Big{)}\Bigg{]}h_{f}^{2}(x,x_{1},x_{2},b,b_{1})\exp[-S_{B}(\mu_{f}^{2})-S_{M_{1}}(\mu_{f}^{2})-S_{M_{2}}(\mu_{f}^{2})]\Bigg{\}}

for the (S+P)(SP)(S+P)(S-P) current,

MaR\displaystyle M_{a}^{R} =i4π2Nc2fBfM1fM2mBdkkxdxudx01dx1dx20bdbb2db2(12mB+|k|22x2mB)K(k)(EQ+mQ)\displaystyle=-i\frac{4\pi^{2}}{N_{c}^{2}}f_{B}f_{M_{1}}f_{M_{2}}m_{B}\int dk_{\perp}k_{\perp}\int_{x^{d}}^{x^{u}}dx\int_{0}^{1}dx_{1}dx_{2}\int_{0}^{\infty}bdbb_{2}db_{2}(\frac{1}{2}m_{B}+\frac{|\vec{k}_{\perp}|^{2}}{2x^{2}m_{B}})K(\vec{k})(E_{Q}+m_{Q}) (27)
×J0(kb)ϕM2(x¯2,b1){αs(μf2)(13μM2(Eqk3)ϕM1(x¯1,b1)(x21)(ϕσM2(x¯2,b1)+6ϕPM2(x¯2,b1))\displaystyle\times J_{0}(k_{\perp}b)\phi_{M_{2}}(\bar{x}_{2},b_{1})\Bigg{\{}\alpha_{s}(\mu_{f}^{2})\Bigg{(}\frac{1}{3}\mu_{M_{2}}(E_{q}-k^{3})\phi_{M_{1}}(\bar{x}_{1},b_{1})(x_{2}-1)\Big{(}\phi^{\prime\sigma}_{M_{2}}(\bar{x}_{2},b_{1})+6\phi^{P}_{M_{2}}(\bar{x}_{2},b_{1})\Big{)}
2x1μM1(Eq+k3)ϕM2(x¯2,b1)ϕPM1(x¯1,b1)+13x1μM1(Eq+k3)ϕM2(x¯2,b1)ϕσM1(x¯1,b1))\displaystyle-2x_{1}\mu_{M_{1}}(E_{q}+k^{3})\phi_{M_{2}}(\bar{x}_{2},b_{1})\phi^{P}_{M_{1}}(\bar{x}_{1},b_{1})+\frac{1}{3}x_{1}\mu_{M_{1}}(E_{q}+k^{3})\phi_{M_{2}}(\bar{x}_{2},b_{1})\phi^{\prime\sigma}_{M_{1}}(\bar{x}_{1},b_{1})\Bigg{)}
×hf1(x,x1,x2,b,b2)St(x1)St(x2)exp[SB(μf1)SM1(μf1)SM2(μf1)]+αs(μf2)(13μM2[Eq(x2+1)\displaystyle\times h_{f}^{1}(x,x_{1},x_{2},b,b_{2})S_{t}(x_{1})S_{t}(x_{2})\exp[-S_{B}(\mu_{f}^{1})-S_{M_{1}}(\mu_{f}^{1})-S_{M_{2}}(\mu_{f}^{1})]+\alpha_{s}(\mu_{f}^{2})\Bigg{(}-\frac{1}{3}\mu_{M_{2}}[E_{q}(x_{2}+1)
+k3(x21)](ϕσM2(x¯2,b1)+6ϕPM2(x¯2,b1))ϕM1(x¯1,b1)2μM1[Eq(x22)k3x2]\displaystyle+k^{3}(x_{2}-1)]\Big{(}\phi^{\prime\sigma}_{M_{2}}(\bar{x}_{2},b_{1})+6\phi^{P}_{M_{2}}(\bar{x}_{2},b_{1})\Big{)}\phi_{M_{1}}(\bar{x}_{1},b_{1})-2\mu_{M_{1}}[E_{q}(x_{2}-2)-k^{3}x_{2}]
ϕM2(x¯2,b1)ϕPM1(x¯1,b1)+13μM1[Eq(x22)k3x2]ϕM2(x¯2,b1)ϕσM1(x¯1,b1))hf2(x,x1,x2,b,b2)\displaystyle\phi_{M_{2}}(\bar{x}_{2},b_{1})\phi^{P}_{M_{1}}(\bar{x}_{1},b_{1})+\frac{1}{3}\mu_{M_{1}}[E_{q}(x_{2}-2)-k^{3}x_{2}]\phi_{M_{2}}(\bar{x}_{2},b_{1})\phi^{\prime\sigma}_{M_{1}}(\bar{x}_{1},b_{1})\Bigg{)}h_{f}^{2}(x,x_{1},x_{2},b,b_{2})
×exp[SB(μf2)SM1(μf2)SM2(μf2)]}\displaystyle\times\exp[-S_{B}(\mu_{f}^{2})-S_{M_{1}}(\mu_{f}^{2})-S_{M_{2}}(\mu_{f}^{2})]\Bigg{\}}

for the (VA)(V+A)(V-A)(V+A) current.

For diagrams (g) and (h) in Fig. 1, the contributions of the operators of (VA)(VA)(V-A)(V-A) always cancel each other if the wave functions of the light mesons are symmetric with respect to the momentum fractions x1x_{1} and x2x_{2}. If it is not the case, there will be small residual contributions. The contributions of diagrams (g) and (h) with the operators (VA)(VA)(V-A)(V-A) are

Fa\displaystyle F_{a} =i8πNc2fBfM1fM201dx1dx20b1db1b2db2{αs(μa1)(mB2(x21)ϕM1(x¯1,b1)ϕM2(x¯2,b2)\displaystyle=-i\frac{8\pi}{N_{c}^{2}}f_{B}f_{M_{1}}f_{M_{2}}\int_{0}^{1}dx_{1}dx_{2}\int_{0}^{\infty}b_{1}db_{1}b_{2}db_{2}\Bigg{\{}\alpha_{s}(\mu_{a}^{1})\Bigg{(}-m_{B}^{2}(x_{2}-1)\phi_{M_{1}}(\bar{x}_{1},b_{1})\phi_{M_{2}}(\bar{x}_{2},b_{2}) (28)
13μM1μM2[x2ϕσM2(x¯2,b2)+6(x22)ϕPM2(x¯2,b2)]ϕPM1(x¯1,b1))ha1(x1,x2,b1,b2)St(x2)exp[SM1(μa1)\displaystyle-\frac{1}{3}\mu_{M_{1}}\mu_{M_{2}}\Bigg{[}x_{2}\phi^{\prime\sigma}_{M_{2}}(\bar{x}_{2},b_{2})+6(x_{2}-2)\phi^{P}_{M_{2}}(\bar{x}_{2},b_{2})\Bigg{]}\phi^{P}_{M_{1}}(\bar{x}_{1},b_{1})\Bigg{)}h_{a}^{1}(x_{1},x_{2},b_{1},b_{2})S_{t}(x_{2})\exp[-S_{M_{1}}(\mu_{a}^{1})
SM2(μa1)]+αs(μa2)(mB2x1ϕM1(x¯1,b1)ϕM2(x¯2,b2)2μM1μM2(x2+1)ϕPM1(x¯1,b1)ϕPM2(x¯2,b2)\displaystyle-S_{M_{2}}(\mu_{a}^{1})]+\alpha_{s}(\mu_{a}^{2})\Bigg{(}-m_{B}^{2}x_{1}\phi_{M_{1}}(\bar{x}_{1},b_{1})\phi_{M_{2}}(\bar{x}_{2},b_{2})-2\mu_{M_{1}}\mu_{M_{2}}(x_{2}+1)\phi^{P}_{M_{1}}(\bar{x}_{1},b_{1})\phi^{P}_{M_{2}}(\bar{x}_{2},b_{2})
+13μM1μM2(x11)ϕσM1(x¯1,b1)ϕPM2(x¯2,b2))ha2(x1,x2,b1,b2)St(x1)exp[SM1(μa2)SM2(μa2)]}.\displaystyle+\frac{1}{3}\mu_{M_{1}}\mu_{M_{2}}(x_{1}-1)\phi^{\prime\sigma}_{M_{1}}(\bar{x}_{1},b_{1})\phi^{P}_{M_{2}}(\bar{x}_{2},b_{2})\Bigg{)}h_{a}^{2}(x_{1},x_{2},b_{1},b_{2})S_{t}(x_{1})\exp[-S_{M_{1}}(\mu_{a}^{2})-S_{M_{2}}(\mu_{a}^{2})]\Bigg{\}}.

The main contributions come from the operators of the (S+P)(SP)(S+P)(S-P) currents. The result is

FaP\displaystyle F_{a}^{P} =i8πNc2χBfM1fM201dx1dx20b1db1b2db2{αs(μa1)(4μM1ϕPM1(x¯1,b1)ϕM2(x¯2,b2)\displaystyle=-i\frac{8\pi}{N_{c}^{2}}\chi_{B}f_{M_{1}}f_{M_{2}}\int_{0}^{1}dx_{1}dx_{2}\int_{0}^{\infty}b_{1}db_{1}b_{2}db_{2}\Bigg{\{}\alpha_{s}(\mu_{a}^{1})\Bigg{(}-4\mu_{M_{1}}\phi^{P}_{M_{1}}(\bar{x}_{1},b_{1})\phi_{M_{2}}(\bar{x}_{2},b_{2}) (29)
13μM2[(x21)ϕσM2(x¯2,b2)6(x21)ϕPM2(x¯2,b2)]ϕM1(x¯1,b1))ha1(x1,x2,b1,b2)St(x2)exp[SM1(μa1)\displaystyle-\frac{1}{3}\mu_{M_{2}}\Bigg{[}(x_{2}-1)\phi^{\prime\sigma}_{M_{2}}(\bar{x}_{2},b_{2})-6(x_{2}-1)\phi^{P}_{M_{2}}(\bar{x}_{2},b_{2})\Bigg{]}\phi_{M_{1}}(\bar{x}_{1},b_{1})\Bigg{)}h_{a}^{1}(x_{1},x_{2},b_{1},b_{2})S_{t}(x_{2})\exp[-S_{M_{1}}(\mu_{a}^{1})
SM2(μa1)]+αs(μa2)(4μM2ϕM1(x¯1,b1)ϕPM2(x¯2,b2)13μM1[x1ϕσM1(x¯1,b1)+6x1ϕPM1(x¯1,b1)]ϕM2(x¯2,b2))\displaystyle-S_{M_{2}}(\mu_{a}^{1})]+\alpha_{s}(\mu_{a}^{2})\Bigg{(}-4\mu_{M_{2}}\phi_{M_{1}}(\bar{x}_{1},b_{1})\phi^{P}_{M_{2}}(\bar{x}_{2},b_{2})-\frac{1}{3}\mu_{M_{1}}\Bigg{[}x_{1}\phi^{\prime\sigma}_{M_{1}}(\bar{x}_{1},b_{1})+6x_{1}\phi^{P}_{M_{1}}(\bar{x}_{1},b_{1})\Bigg{]}\phi_{M_{2}}(\bar{x}_{2},b_{2})\Bigg{)}
×ha2(x1,x2,b1,b2)St(x1)exp[SM1(μa2)SM2(μa2)]},\displaystyle\times h_{a}^{2}(x_{1},x_{2},b_{1},b_{2})S_{t}(x_{1})\exp[-S_{M_{1}}(\mu_{a}^{2})-S_{M_{2}}(\mu_{a}^{2})]\Bigg{\}},

where

χB\displaystyle\chi_{B} =πfBmBdkkxdxudx(12mB+|k|22x2mB)K(k)[(Eq+mq)(EQ+mQ)+(Eq2mq2)].\displaystyle=\pi f_{B}m_{B}\int dk_{\perp}k_{\perp}\int_{x^{d}}^{x^{u}}dx(\frac{1}{2}m_{B}+\frac{|\vec{k}_{\perp}|^{2}}{2x^{2}m_{B}})K(\vec{k})\Bigg{[}(E_{q}+m_{q})(E_{Q}+m_{Q})+(E_{q}^{2}-m_{q}^{2})\Bigg{]}. (30)

In Eqs. (20)\--(29), the Sudakov factors exp[SB(μ)]\exp[-S_{B}(\mu)], exp[SM1(μ)]\exp[-S_{M_{1}}(\mu)] and exp[SM2(μ)]\exp[-S_{M_{2}}(\mu)] are associated with each meson at the relevant energy scale, which are given in the Appendix A. ϕM(x,b)\phi_{M}(x,b), ϕPM(x,b)\phi^{P}_{M}(x,b), and ϕσM(x,b)\phi^{\sigma}_{M}(x,b) are the wave functions of light meson in bb space, with b\vec{b} being the conjugate variable of the transverse momentum k\vec{k}_{\perp}, which can be found in Appendix B. The functions hih_{i}’s are Fourier transformations of the hard amplitudes, which are

he1(x,x1,b,b1)\displaystyle h_{e}^{1}(x,x_{1},b,b_{1}) =\displaystyle= K0(xx1mBb)[θ(bb1)I0(x1mBb1)K0(x1mBb)+θ(b1b)I0(x1mBb)K0(x1mBb1)],\displaystyle K_{0}(\sqrt{xx_{1}}m_{B}b)\Big{[}\theta(b-b_{1})I_{0}(\sqrt{x_{1}}m_{B}b_{1})K_{0}(\sqrt{x_{1}}m_{B}b)+\theta(b_{1}-b)I_{0}(\sqrt{x_{1}}m_{B}b)K_{0}(\sqrt{x_{1}}m_{B}b_{1})\Big{]},
he2(x,x1,b,b1)\displaystyle h_{e}^{2}(x,x_{1},b,b_{1}) =\displaystyle= K0(xx1mBb)[θ(bb1)I0(xmBb1)K0(xmBb)+θ(b1b)I0(xmBb)K0(xmBb1)],\displaystyle K_{0}(\sqrt{xx_{1}}m_{B}b)\Big{[}\theta(b-b_{1})I_{0}(\sqrt{x}m_{B}b_{1})K_{0}(\sqrt{x}m_{B}b)+\theta(b_{1}-b)I_{0}(\sqrt{x}m_{B}b)K_{0}(\sqrt{x}m_{B}b_{1})\Big{]},
hd1(x,x1,x2,b,b2)\displaystyle h_{d}^{1}(x,x_{1},x_{2},b,b_{2}) =\displaystyle= K0(ix1(1x2)mBb2)[θ(b2b)I0(xx1mBb)K0(xx1mBb2)+θ(bb2)I0(xx1mBb2)\displaystyle K_{0}(-i\sqrt{x_{1}(1-x_{2})}m_{B}b_{2})\Big{[}\theta(b_{2}-b)I_{0}(\sqrt{xx_{1}}m_{B}b)K_{0}(\sqrt{xx_{1}}m_{B}b_{2})+\theta(b-b_{2})I_{0}(\sqrt{xx_{1}}m_{B}b_{2}) (33)
×K0(xx1mBb)],\displaystyle\times K_{0}(\sqrt{xx_{1}}m_{B}b)\Big{]},
hd2(x,x1,x2,b,b2)\displaystyle h_{d}^{2}(x,x_{1},x_{2},b,b_{2}) =\displaystyle= K0(ix1x2mBb2)[θ(b2b)I0(xx1mBb)K0(xx1mBb2)+θ(bb2)I0(xx1mBb2)\displaystyle K_{0}(-i\sqrt{x_{1}x_{2}}m_{B}b_{2})\Big{[}\theta(b_{2}-b)I_{0}(\sqrt{xx_{1}}m_{B}b)K_{0}(\sqrt{xx_{1}}m_{B}b_{2})+\theta(b-b_{2})I_{0}(\sqrt{xx_{1}}m_{B}b_{2}) (34)
×K0(xx1mBb)],\displaystyle\times K_{0}(\sqrt{xx_{1}}m_{B}b)\Big{]},
hf1(x1,x2,b,b1)\displaystyle h_{f}^{1}(x_{1},x_{2},b,b_{1}) =\displaystyle= K0(ix1(1x2)mBb)[θ(bb1)I0(ix1(1x2)mBb1)K0(ix1(1x2)mBb)\displaystyle K_{0}(-i\sqrt{x_{1}(1-x_{2})}m_{B}b)\Big{[}\theta(b-b_{1})I_{0}(-i\sqrt{x_{1}(1-x_{2})}m_{B}b_{1})K_{0}(-i\sqrt{x_{1}(1-x_{2})}m_{B}b) (35)
+θ(b1b)I0(ix1(1x2)mBb)K0(ix1(1x2)mBb1)],\displaystyle+\theta(b_{1}-b)I_{0}(-i\sqrt{x_{1}(1-x_{2})}m_{B}b)K_{0}(-i\sqrt{x_{1}(1-x_{2})}m_{B}b_{1})\Big{]},
hf2(x1,x2,b,b1)\displaystyle h_{f}^{2}(x_{1},x_{2},b,b_{1}) =\displaystyle= K0(1x2+x1x2mBb)[θ(bb1)I0(ix1(1x2)mBb1)K0(ix1(1x2)mBb)\displaystyle K_{0}(\sqrt{1-x_{2}+x_{1}x_{2}}m_{B}b)\Big{[}\theta(b-b_{1})I_{0}(-i\sqrt{x_{1}(1-x_{2})}m_{B}b_{1})K_{0}(-i\sqrt{x_{1}(1-x_{2})}m_{B}b) (36)
+θ(b1b)I0(ix1(1x2)mBb)K0(ix1(1x2)mBb1)],\displaystyle+\theta(b_{1}-b)I_{0}(-i\sqrt{x_{1}(1-x_{2})}m_{B}b)K_{0}(-i\sqrt{x_{1}(1-x_{2})}m_{B}b_{1})\Big{]},
ha1(x1,x2,b1,b2)\displaystyle h_{a}^{1}(x_{1},x_{2},b_{1},b_{2}) =\displaystyle= K0(ix1(1x2)mBb1)[θ(b2b1)I0(i1x2mBb1)K0(i1x2mBb2)\displaystyle K_{0}(-i\sqrt{x_{1}(1-x_{2})}m_{B}b_{1})\Big{[}\theta(b_{2}-b_{1})I_{0}(-i\sqrt{1-x_{2}}m_{B}b_{1})K_{0}(-i\sqrt{1-x_{2}}m_{B}b_{2}) (37)
+θ(b1b2)I0(i1x2mBb2)K0(i1x2mBb1)],\displaystyle+\theta(b_{1}-b_{2})I_{0}(-i\sqrt{1-x_{2}}m_{B}b_{2})K_{0}(-i\sqrt{1-x_{2}}m_{B}b_{1})\Big{]},
ha2(x1,x2,b1,b2)\displaystyle h_{a}^{2}(x_{1},x_{2},b_{1},b_{2}) =\displaystyle= K0(ix1(1x2)b1)[θ(b2b1)I0(ix1mBb1)K0(ix1mBb2)+θ(b1b2)\displaystyle K_{0}(-i\sqrt{x_{1}(1-x_{2})}b_{1})\Big{[}\theta(b_{2}-b_{1})I_{0}(-i\sqrt{x_{1}}m_{B}b_{1})K_{0}(-i\sqrt{x_{1}}m_{B}b_{2})+\theta(b_{1}-b_{2}) (38)
I0(ix1mBb2)K0(ix1mBb1)].\displaystyle\cdot I_{0}(-i\sqrt{x_{1}}m_{B}b_{2})K_{0}(-i\sqrt{x_{1}}m_{B}b_{1})\Big{]}.

The hard scales for the amplitudes relevant to the diagrams in Fig. 1 are taken as the largest mass scales involved in each diagram which help to suppress the largest logarithmic terms in the higher order corrections. They are

μe1\displaystyle\mu_{e}^{1} =\displaystyle= max(x1mB,xx1mB,1/b,1/b1),\displaystyle\max(\sqrt{x_{1}}m_{B},\sqrt{xx_{1}}m_{B},1/b,1/b_{1}),
μe2\displaystyle\mu_{e}^{2} =\displaystyle= max(xmB,xx1mB,1/b,1/b1),\displaystyle\max(\sqrt{x}m_{B},\sqrt{xx_{1}}m_{B},1/b,1/b_{1}),
μd1\displaystyle\mu_{d}^{1} =\displaystyle= max(xx1mB,x1(1x2)mB,1/b1,1/b2),\displaystyle\max(\sqrt{xx_{1}}m_{B},\sqrt{x_{1}(1-x_{2})}m_{B},1/b_{1},1/b_{2}),
μd2\displaystyle\mu_{d}^{2} =\displaystyle= max(xx1mB,x1x2mB,1/b1,1/b2),\displaystyle\max(\sqrt{xx_{1}}m_{B},\sqrt{x_{1}x_{2}}m_{B},1/b_{1},1/b_{2}),
μf1\displaystyle\mu_{f}^{1} =\displaystyle= max(x1(1x2)mB,1/b1,1/b2),\displaystyle\max(\sqrt{x_{1}(1-x_{2})}m_{B},1/b_{1},1/b_{2}),
μf2\displaystyle\mu_{f}^{2} =\displaystyle= max(x1(1x2)mB,1x2+x1x2mB,\displaystyle\max(\sqrt{x_{1}(1-x_{2})}m_{B},\sqrt{1-x_{2}+x_{1}x_{2}}m_{B},
1/b1,1/b2),\displaystyle\quad\quad 1/b_{1},1/b_{2}),
μa1\displaystyle\mu_{a}^{1} =\displaystyle= max(1x2mB,x1(1x2)mB,1/b1,1/b2),\displaystyle\max(\sqrt{1-x_{2}}m_{B},\sqrt{x_{1}(1-x_{2})}m_{B},1/b_{1},1/b_{2}),
μa2\displaystyle\mu_{a}^{2} =\displaystyle= max(x1mB,x1(1x2)mB,1/b1,1/b2).\displaystyle\max(\sqrt{x_{1}}m_{B},\sqrt{x_{1}(1-x_{2})}m_{B},1/b_{1},1/b_{2}). (39)

The decay amplitudes of the BM1M2B\to M_{1}M_{2} process can be expressed in terms of the matrix elements calculated based on the diagrams shown in Fig. 1, namely, Eqs. (20)\--(29). The results are

(B0¯\displaystyle\mathcal{M}\bar{(B^{0}} π+π)=Fe,ππ[ξud(13C1+C2)ξtd(13C3+C4+13C9+C10)]FPe,ππξtd[13C5+C6+13C7+C8]\displaystyle\rightarrow\pi^{+}\pi^{-})=F_{e,\pi\pi}\Big{[}\xi_{ud}(\frac{1}{3}C_{1}+C_{2})-\xi_{td}(\frac{1}{3}C_{3}+C_{4}+\frac{1}{3}C_{9}+C_{10})\Big{]}-F^{P}_{e,\pi\pi}\xi_{td}\Big{[}\frac{1}{3}C_{5}+C_{6}+\frac{1}{3}C_{7}+C_{8}\Big{]} (40)
+Me,ππ[ξud(13C1)ξtd(13C3+13C9)]+Ma,ππ[ξud(13C2)ξtd(13C3+23C416C9+16C10)]\displaystyle+M_{e,\pi\pi}\Big{[}\xi_{ud}(\frac{1}{3}C_{1})-\xi_{td}(\frac{1}{3}C_{3}+\frac{1}{3}C_{9})\Big{]}+M_{a,\pi\pi}\Big{[}\xi_{ud}(\frac{1}{3}C_{2})-\xi_{td}(\frac{1}{3}C_{3}+\frac{2}{3}C_{4}-\frac{1}{6}C_{9}+\frac{1}{6}C_{10})\Big{]}
+MRa,ππ[ξtd(13C516C7)]+MPa,ππ[ξtd(23C6+16C8)]+FPa,ππ[ξtd(13C5+C616C712C8)],\displaystyle+M^{R}_{a,\pi\pi}\Big{[}-\xi_{td}(\frac{1}{3}C_{5}-\frac{1}{6}C_{7})\Big{]}+M^{P}_{a,\pi\pi}\Big{[}-\xi_{td}(\frac{2}{3}C_{6}+\frac{1}{6}C_{8})\Big{]}+F^{P}_{a,\pi\pi}\Big{[}-\xi_{td}(\frac{1}{3}C_{5}+C_{6}-\frac{1}{6}C_{7}-\frac{1}{2}C_{8})\Big{]},
2(B0¯\displaystyle\sqrt{2}\mathcal{M}(\bar{B^{0}} π0π0)=Fe,ππ[ξud(C1+13C2)ξtd(13C3+C4+32C7+12C853C9C10)]FPe,ππξtd[13C5+C6\displaystyle\rightarrow\pi^{0}\pi^{0})=F_{e,\pi\pi}\Big{[}-\xi_{ud}(C_{1}+\frac{1}{3}C_{2})-\xi_{td}(\frac{1}{3}C_{3}+C_{4}+\frac{3}{2}C_{7}+\frac{1}{2}C_{8}-\frac{5}{3}C_{9}-C_{10})\Big{]}-F^{P}_{e,\pi\pi}\xi_{td}\Big{[}\frac{1}{3}C_{5}+C_{6} (41)
16C712C8]+Me,ππ[ξud(13C2)ξtd(13C316C912C10)]+MPe,ππ[ξtd(12C8)]\displaystyle-\frac{1}{6}C_{7}-\frac{1}{2}C_{8}\Big{]}+M_{e,\pi\pi}\Big{[}-\xi_{ud}(\frac{1}{3}C_{2})-\xi_{td}(\frac{1}{3}C_{3}-\frac{1}{6}C_{9}-\frac{1}{2}C_{10})\Big{]}+M^{P}_{e,\pi\pi}\Big{[}-\xi_{td}(-\frac{1}{2}C_{8})\Big{]}
+Ma,ππ[ξud(13C2)ξtd(13C3+23C416C9+16C10)]+MRa,ππ[ξtd(13C516C7)]\displaystyle+M_{a,\pi\pi}\Big{[}\xi_{ud}(\frac{1}{3}C_{2})-\xi_{td}(\frac{1}{3}C_{3}+\frac{2}{3}C_{4}-\frac{1}{6}C_{9}+\frac{1}{6}C_{10})\Big{]}+M^{R}_{a,\pi\pi}\Big{[}-\xi_{td}(\frac{1}{3}C_{5}-\frac{1}{6}C_{7})\Big{]}
+MPa,ππ[ξtd(23C6+16C8)]+FPa,ππ[ξtd(13C5+C616C712C8)],\displaystyle+M^{P}_{a,\pi\pi}\Big{[}-\xi_{td}(\frac{2}{3}C_{6}+\frac{1}{6}C_{8})\Big{]}+F^{P}_{a,\pi\pi}\Big{[}-\xi_{td}(\frac{1}{3}C_{5}+C_{6}-\frac{1}{6}C_{7}-\frac{1}{2}C_{8})\Big{]},

and

2(B\displaystyle\sqrt{2}\mathcal{M}(B^{-} ππ0)=Fe,ππ[ξud(43C1+43C2)ξtd(2C932C712C8+2C10)]FPe,ππξtd[12C7+32C8]\displaystyle\rightarrow\pi^{-}\pi^{0})=F_{e,\pi\pi}\Big{[}\xi_{ud}(\frac{4}{3}C_{1}+\frac{4}{3}C_{2})-\xi_{td}(2C_{9}-\frac{3}{2}C_{7}-\frac{1}{2}C_{8}+2C_{10})\Big{]}-F^{P}_{e,\pi\pi}\xi_{td}\Big{[}\frac{1}{2}C_{7}+\frac{3}{2}C_{8}\Big{]} (42)
+Me,ππ[ξud(13C1+13C2)ξtd(12C9+12C10)]+MPe,ππ[ξtd(12C8)]\displaystyle+M_{e,\pi\pi}\Big{[}\xi_{ud}(\frac{1}{3}C_{1}+\frac{1}{3}C_{2})-\xi_{td}(\frac{1}{2}C_{9}+\frac{1}{2}C_{10})\Big{]}+M^{P}_{e,\pi\pi}\Big{[}-\xi_{td}(\frac{1}{2}C_{8})\Big{]}
(B\displaystyle\mathcal{M}(B^{-} K0¯π)=ξus[(13C1+C2)Fa,πK+13C1Ma,πK]ξts[(13C3+C416C912C10)Fe,πK\displaystyle\rightarrow\bar{K^{0}}\pi^{-})=\xi_{us}\Big{[}(\frac{1}{3}C_{1}+C_{2})F_{a,\pi K}+\frac{1}{3}C_{1}M_{a,\pi K}\Big{]}-\xi_{ts}\Big{[}(\frac{1}{3}C_{3}+C_{4}-\frac{1}{6}C_{9}-\frac{1}{2}C_{10})F_{e,\pi K}
+(13C5+C616C712C8)FPe,πK+(13C316C9)Me,πK+(13C516C7)MRe,πK\displaystyle+(\frac{1}{3}C_{5}+C_{6}-\frac{1}{6}C_{7}-\frac{1}{2}C_{8})F^{P}_{e,\pi K}+(\frac{1}{3}C_{3}-\frac{1}{6}C_{9})M_{e,\pi K}+(\frac{1}{3}C_{5}-\frac{1}{6}C_{7})M^{R}_{e,\pi K}
+(13C3+C4+13C9+C10)Fa,Kπ+(13C5+C6+13C7+C8)FPa,Kπ+(13C3+13C9)Ma,Kπ+(13C5+13C7)MRa,Kπ]\displaystyle+(\frac{1}{3}C_{3}+C_{4}+\frac{1}{3}C_{9}+C_{10})F_{a,K\pi}+(\frac{1}{3}C_{5}+C_{6}+\frac{1}{3}C_{7}+C_{8})F^{P}_{a,K\pi}+(\frac{1}{3}C_{3}+\frac{1}{3}C_{9})M_{a,K\pi}+(\frac{1}{3}C_{5}+\frac{1}{3}C_{7})M^{R}_{a,K\pi}\Big{]}
2(B\displaystyle\sqrt{2}\mathcal{M}(B^{-} Kπ0)=ξus[(C1+13C2)Fe,Kπ+(13C1+C2)Fe,πK+(13C2)Me,Kπ+(13C1)Me,πK+(C1+13C2)Fa,Kπ\displaystyle\rightarrow K^{-}\pi^{0})=\xi_{us}\Big{[}(C_{1}+\frac{1}{3}C_{2})F_{e,K\pi}+(\frac{1}{3}C_{1}+C_{2})F_{e,\pi K}+(\frac{1}{3}C_{2})M_{e,K\pi}+(\frac{1}{3}C_{1})M_{e,\pi K}+(C_{1}+\frac{1}{3}C_{2})F_{a,K\pi}
+(13C1)Ma,πK]ξts[Fe,πK(13C3+C4+13C9+C10)+32Fe,Kπ(C713C8+C9+13C10)\displaystyle+(\frac{1}{3}C_{1})M_{a,\pi K}\Big{]}-\xi_{ts}\Big{[}F_{e,\pi K}(\frac{1}{3}C_{3}+C_{4}+\frac{1}{3}C_{9}+C_{10})+\frac{3}{2}F_{e,K\pi}(-C_{7}-\frac{1}{3}C_{8}+C_{9}+\frac{1}{3}C_{10})
+FPe,πK(13C5+C6+13C7+C8)+12C10Me,Kπ+12C8MPe,Kπ+(13C3+13C9)Me,πK\displaystyle+F^{P}_{e,\pi K}(\frac{1}{3}C_{5}+C_{6}+\frac{1}{3}C_{7}+C_{8})+\frac{1}{2}C_{10}M_{e,K\pi}+\frac{1}{2}C_{8}M^{P}_{e,K\pi}+(\frac{1}{3}C_{3}+\frac{1}{3}C_{9})M_{e,\pi K}
+(13C5+13C7)MRe,πK+(13C3+C4+13C9+C10)Fa,Kπ+(13C5+C6+13C7+C8)FPa,Kπ\displaystyle+(\frac{1}{3}C_{5}+\frac{1}{3}C_{7})M^{R}_{e,\pi K}+(\frac{1}{3}C_{3}+C_{4}+\frac{1}{3}C_{9}+C_{10})F_{a,K\pi}+(\frac{1}{3}C_{5}+C_{6}+\frac{1}{3}C_{7}+C_{8})F^{P}_{a,K\pi}
+(13C3+13C9)Ma,Kπ+(13C5+13C7)MRa,Kπ],\displaystyle+(\frac{1}{3}C_{3}+\frac{1}{3}C_{9})M_{a,K\pi}+(\frac{1}{3}C_{5}+\frac{1}{3}C_{7})M^{R}_{a,K\pi}\Big{]},
(B0¯\displaystyle\mathcal{M}(\bar{B^{0}} Kπ+)=ξus[(13C1+C2)Fe,πK+13C1Me,πK]ξts[(13C3+C4+13C9+C10)Fe,πK\displaystyle\rightarrow K^{-}\pi^{+})=\xi_{us}\Big{[}(\frac{1}{3}C_{1}+C_{2})F_{e,\pi K}+\frac{1}{3}C_{1}M_{e,\pi K}\Big{]}-\xi_{ts}\Big{[}(\frac{1}{3}C_{3}+C_{4}+\frac{1}{3}C_{9}+C_{10})F_{e,\pi K} (45)
+(13C5+C6+13C7+C8)FPe,πK+(13C3+13C9)Me,πK+(13C5+13C7)MRe,πK\displaystyle+(\frac{1}{3}C_{5}+C_{6}+\frac{1}{3}C_{7}+C_{8})F^{P}_{e,\pi K}+(\frac{1}{3}C_{3}+\frac{1}{3}C_{9})M_{e,\pi K}+(\frac{1}{3}C_{5}+\frac{1}{3}C_{7})M^{R}_{e,\pi K}
+(13C3+C416C912C10)Fa,Kπ+(13C5+C6+13C7+C8)FPa,Kπ\displaystyle+(\frac{1}{3}C_{3}+C_{4}-\frac{1}{6}C_{9}-\frac{1}{2}C_{10})F_{a,K\pi}+(\frac{1}{3}C_{5}+C_{6}+\frac{1}{3}C_{7}+C_{8})F^{P}_{a,K\pi}
+(13C316C9)Ma,Kπ+(13C516C7)MRa,Kπ],\displaystyle+(\frac{1}{3}C_{3}-\frac{1}{6}C_{9})M_{a,K\pi}+(\frac{1}{3}C_{5}-\frac{1}{6}C_{7})M^{R}_{a,K\pi}\Big{]},
2(B0¯\displaystyle-\sqrt{2}\mathcal{M}(\bar{B^{0}} K0¯π0)=ξus[(C1+13C2)Fe,Kπ13C2Me,Kπ]ξts[32(C713C8+C9+13C10)Fe,Kπ\displaystyle\rightarrow\bar{K^{0}}\pi^{0})=\xi_{us}\Big{[}-(C_{1}+\frac{1}{3}C_{2})F_{e,K\pi}-\frac{1}{3}C_{2}M_{e,K\pi}\Big{]}-\xi_{ts}\Big{[}-\frac{3}{2}(-C_{7}-\frac{1}{3}C_{8}+C_{9}+\frac{1}{3}C_{10})F_{e,K\pi} (46)
+(13C3+C416C912C10)Fe,πK+(13C5+C616C712C8)FPe,πK(12C10)Me,Kπ\displaystyle+(\frac{1}{3}C_{3}+C_{4}-\frac{1}{6}C_{9}-\frac{1}{2}C_{10})F_{e,\pi K}+(\frac{1}{3}C_{5}+C_{6}-\frac{1}{6}C_{7}-\frac{1}{2}C_{8})F^{P}_{e,\pi K}-(\frac{1}{2}C_{10})M_{e,K\pi}
+(13C316C9)Me,πK+(13C516C7)MRe,πK(12C8)MPe,Kπ\displaystyle+(\frac{1}{3}C_{3}-\frac{1}{6}C_{9})M_{e,\pi K}+(\frac{1}{3}C_{5}-\frac{1}{6}C_{7})M^{R}_{e,\pi K}-(\frac{1}{2}C_{8})M^{P}_{e,K\pi}
+(13C3+C416C912C10)Fa,Kπ+(13C5+C616C712C8)FPa,Kπ\displaystyle+(\frac{1}{3}C_{3}+C_{4}-\frac{1}{6}C_{9}-\frac{1}{2}C_{10})F_{a,K\pi}+(\frac{1}{3}C_{5}+C_{6}-\frac{1}{6}C_{7}-\frac{1}{2}C_{8})F^{P}_{a,K\pi}
+(13C316C9)Ma,Kπ+(13C516C7)MRa,Kπ],\displaystyle+(\frac{1}{3}C_{3}-\frac{1}{6}C_{9})M_{a,K\pi}+(\frac{1}{3}C_{5}-\frac{1}{6}C_{7})M^{R}_{a,K\pi}\Big{]},
2(B0¯\displaystyle 2\mathcal{M}(\bar{B^{0}} π0ηq)=ξud[(C1+13C2)(Fe,πηq+Fe,ηqπ+Fa,πηq+Fa,ηqπ)+13C2(Me,πηq+Me,ηqπ+Ma,πηq+Ma,ηqπ)]\displaystyle\rightarrow\pi^{0}\eta_{q})=\xi_{ud}\Big{[}(C_{1}+\frac{1}{3}C_{2})(-F_{e,\pi\eta_{q}}+F_{e,\eta_{q}\pi}+F_{a,\pi\eta_{q}}+F_{a,\eta_{q}\pi})+\frac{1}{3}C_{2}(-M_{e,\pi\eta_{q}}+M_{e,\eta_{q}\pi}+M_{a,\pi\eta_{q}}+M_{a,\eta_{q}\pi})\Big{]} (47)
ξtd[(13C3C4+53C9+C10)(Fe,ηqπ+Fa,ηqπ+Fa,πηq)+32(C7+13C8)(Fe,ηqπ+Fa,πηq+Fa,ηqπ)\displaystyle-\xi_{td}\Big{[}(-\frac{1}{3}C_{3}-C_{4}+\frac{5}{3}C_{9}+C_{10})(F_{e,\eta_{q}\pi}+F_{a,\eta_{q}\pi}+F_{a,\pi\eta_{q}})+\frac{3}{2}(C_{7}+\frac{1}{3}C_{8})(-F_{e,\eta_{q}\pi}+F_{a,\pi\eta_{q}}+F_{a,\eta_{q}\pi})
+(13C5C6+16C7+12C8)(FPe,πηq+FPe,ηqπ+FPa,πηq+FPa,ηqπ)+(73C353C413C9+13C10+2C5\displaystyle+(-\frac{1}{3}C_{5}-C_{6}+\frac{1}{6}C_{7}+\frac{1}{2}C_{8})(F^{P}_{e,\pi\eta_{q}}+F^{P}_{e,\eta_{q}\pi}+F^{P}_{a,\pi\eta_{q}}+F^{P}_{a,\eta_{q}\pi})+(-\frac{7}{3}C_{3}-\frac{5}{3}C_{4}-\frac{1}{3}C_{9}+\frac{1}{3}C_{10}+2C_{5}
+23C6+12C7+16C8)Fe,πηq+(13C3+16C9+12C10)(Me,ηqπ+Ma,ηqπ+Ma,πηq)\displaystyle+\frac{2}{3}C_{6}+\frac{1}{2}C_{7}+\frac{1}{6}C_{8})F_{e,\pi\eta_{q}}+(-\frac{1}{3}C_{3}+\frac{1}{6}C_{9}+\frac{1}{2}C_{10})(M_{e,\eta_{q}\pi}+M_{a,\eta_{q}\pi}+M_{a,\pi\eta_{q}})
+(13C5+12C7)(MRe,πηq+MRe,ηqπ+MRa,πηq+MRa,ηqπ)+(12C8)(MPe,ηqπ+MPa,πηq+MPa,ηqπ)\displaystyle+(-\frac{1}{3}C_{5}+\frac{1}{2}C_{7})(M^{R}_{e,\pi\eta_{q}}+M^{R}_{e,\eta_{q}\pi}+M^{R}_{a,\pi\eta_{q}}+M^{R}_{a,\eta_{q}\pi})+(\frac{1}{2}C_{8})(M^{P}_{e,\eta_{q}\pi}+M^{P}_{a,\pi\eta_{q}}+M^{P}_{a,\eta_{q}\pi})
+(13C323C4+12C912C10)Me,πηq+(23C616C8)MPe,πηq]\displaystyle+(-\frac{1}{3}C_{3}-\frac{2}{3}C_{4}+\frac{1}{2}C_{9}-\frac{1}{2}C_{10})M_{e,\pi\eta_{q}}+(-\frac{2}{3}C_{6}-\frac{1}{6}C_{8})M^{P}_{e,\pi\eta_{q}}\Big{]}
2(B0¯\displaystyle\sqrt{2}\mathcal{M}(\bar{B^{0}} π0ηs)=ξtd[(C313C4+12C9+16C10+C5+13C612C716C8)Fe,πηs\displaystyle\rightarrow\pi^{0}\eta_{s})=-\xi_{td}\Big{[}(-C_{3}-\frac{1}{3}C_{4}+\frac{1}{2}C_{9}+\frac{1}{6}C_{10}+C_{5}+\frac{1}{3}C_{6}-\frac{1}{2}C_{7}-\frac{1}{6}C_{8})F_{e,\pi\eta_{s}} (48)
+(13C4+16C10)Me,πηs+(13C6+16C8)MRe,πηs],\displaystyle+(-\frac{1}{3}C_{4}+\frac{1}{6}C_{10})M_{e,\pi\eta_{s}}+(-\frac{1}{3}C_{6}+\frac{1}{6}C_{8})M^{R}_{e,\pi\eta_{s}}\Big{]},
2(B\displaystyle\sqrt{2}\mathcal{M}(B^{-} πηq)=ξud[(13C1+C2)(Fe,ηqπ+Fa,πηq+Fa,ηqπ)+(C1+13C2)Fe,πηq+(13C2)Me,πηq\displaystyle\rightarrow\pi^{-}\eta_{q})=\xi_{ud}\Big{[}(\frac{1}{3}C_{1}+C_{2})(F_{e,\eta_{q}\pi}+F_{a,\pi\eta_{q}}+F_{a,\eta_{q}\pi})+(C_{1}+\frac{1}{3}C_{2})F_{e,\pi\eta_{q}}+(\frac{1}{3}C_{2})M_{e,\pi\eta_{q}} (49)
+(13C1)(Me,ηqπ+Ma,πηq+Ma,ηqπ)]ξtd[(73C3+53C4+13C913C102C5\displaystyle+(\frac{1}{3}C_{1})(M_{e,\eta_{q}\pi}+M_{a,\pi\eta_{q}}+M_{a,\eta_{q}\pi})\Big{]}-\xi_{td}\Big{[}(\frac{7}{3}C_{3}+\frac{5}{3}C_{4}+\frac{1}{3}C_{9}-\frac{1}{3}C_{10}-2C_{5}
23C612C716C8)Fe,πηq+(13C5+C616C712C8)FPe,πηq+(13C3+C4+13C9+C10)Fe,ηqπ\displaystyle-\frac{2}{3}C_{6}-\frac{1}{2}C_{7}-\frac{1}{6}C_{8})F_{e,\pi\eta_{q}}+(\frac{1}{3}C_{5}+C_{6}-\frac{1}{6}C_{7}-\frac{1}{2}C_{8})F^{P}_{e,\pi\eta_{q}}+(\frac{1}{3}C_{3}+C_{4}+\frac{1}{3}C_{9}+C_{10})F_{e,\eta_{q}\pi}
+(13C5+C6+13C7+C8)FPe,ηqπ+(13C3+23C416C9+16C10)Me,πηq+(13C516C7)MRe,πηq\displaystyle+(\frac{1}{3}C_{5}+C_{6}+\frac{1}{3}C_{7}+C_{8})F^{P}_{e,\eta_{q}\pi}+(\frac{1}{3}C_{3}+\frac{2}{3}C_{4}-\frac{1}{6}C_{9}+\frac{1}{6}C_{10})M_{e,\pi\eta_{q}}+(\frac{1}{3}C_{5}-\frac{1}{6}C_{7})M^{R}_{e,\pi\eta_{q}}
+(23C6+16C7)MPe,πηq+(13C3+13C9)Me,ηqπ+(13C5+13C7)MRe,ηqπ\displaystyle+(\frac{2}{3}C_{6}+\frac{1}{6}C_{7})M^{P}_{e,\pi\eta_{q}}+(\frac{1}{3}C_{3}+\frac{1}{3}C_{9})M_{e,\eta_{q}\pi}+(\frac{1}{3}C_{5}+\frac{1}{3}C_{7})M^{R}_{e,\eta_{q}\pi}
+(13C3+C4+13C9+C10)(Fa,πηq+Fa,ηqπ)+(13C5+C6+13C7+C8)(FPa,πηq+FPa,ηqπ)\displaystyle+(\frac{1}{3}C_{3}+C_{4}+\frac{1}{3}C_{9}+C_{10})(F_{a,\pi\eta_{q}}+F_{a,\eta_{q}\pi})+(\frac{1}{3}C_{5}+C_{6}+\frac{1}{3}C_{7}+C_{8})(F^{P}_{a,\pi\eta_{q}}+F^{P}_{a,\eta_{q}\pi})
+(13C3+13C9)(Ma,πηq+Ma,ηqπ)+(13C5+13C7)(MRa,πηq+MRa,ηqπ)],\displaystyle+(\frac{1}{3}C_{3}+\frac{1}{3}C_{9})(M_{a,\pi\eta_{q}}+M_{a,\eta_{q}\pi})+(\frac{1}{3}C_{5}+\frac{1}{3}C_{7})(M^{R}_{a,\pi\eta_{q}}+M^{R}_{a,\eta_{q}\pi})\Big{]},
(B\displaystyle\mathcal{M}(B^{-} πηs)=ξtd[(C313C412C916C10+C5+13C612C716C8)Fe,πηs\displaystyle\rightarrow\pi^{-}\eta_{s})=-\xi_{td}\Big{[}(C_{3}\frac{1}{3}C_{4}-\frac{1}{2}C_{9}-\frac{1}{6}C_{10}+C_{5}+\frac{1}{3}C_{6}-\frac{1}{2}C_{7}-\frac{1}{6}C_{8})F_{e,\pi\eta_{s}} (50)
+(13C416C10)Me,πηs+(13C616C8)MRe,πηs],\displaystyle+(\frac{1}{3}C_{4}-\frac{1}{6}C_{10})M_{e,\pi\eta_{s}}+(\frac{1}{3}C_{6}-\frac{1}{6}C_{8})M^{R}_{e,\pi\eta_{s}}\Big{]},
2(B0¯\displaystyle\sqrt{2}\mathcal{M}(\bar{B^{0}} K0¯ηq)=ξus[(C1+13C2)Fe,Kηq+(13C2)Me,Kηq]ξts[(13C3+C416C912C10)Fe,ηqK\displaystyle\rightarrow\bar{K^{0}}\eta_{q})=\xi_{us}\Big{[}(C_{1}+\frac{1}{3}C_{2})F_{e,K\eta_{q}}+(\frac{1}{3}C_{2})M_{e,K\eta_{q}}\Big{]}-\xi_{ts}\Big{[}(\frac{1}{3}C_{3}+C_{4}-\frac{1}{6}C_{9}-\frac{1}{2}C_{10})F_{e,\eta_{q}K} (51)
+(13C5+C616C712C8)FPe,ηqK+(2C3+23C4+16C9+12C102C5\displaystyle+(\frac{1}{3}C_{5}+C_{6}-\frac{1}{6}C_{7}-\frac{1}{2}C_{8})F^{P}_{e,\eta_{q}K}+(2C_{3}+\frac{2}{3}C_{4}+\frac{1}{6}C_{9}+\frac{1}{2}C_{10}-2C_{5}
23C612C716C8)Fe,Kηq+(13C316C9)Me,ηqK+(13C516C7)MRe,ηqK\displaystyle-\frac{2}{3}C_{6}-\frac{1}{2}C_{7}-\frac{1}{6}C_{8})F_{e,K\eta_{q}}+(\frac{1}{3}C_{3}-\frac{1}{6}C_{9})M_{e,\eta_{q}K}+(\frac{1}{3}C_{5}-\frac{1}{6}C_{7})M^{R}_{e,\eta_{q}K}
+(23C4+16C9)Me,Kηq+(23C6+12C8)MPe,Kηq+(13C3+C416C912C10)Fa,ηqK\displaystyle+(\frac{2}{3}C_{4}+\frac{1}{6}C_{9})M_{e,K\eta_{q}}+(\frac{2}{3}C_{6}+\frac{1}{2}C_{8})M^{P}_{e,K\eta_{q}}+(\frac{1}{3}C_{3}+C_{4}-\frac{1}{6}C_{9}-\frac{1}{2}C_{10})F_{a,\eta_{q}K}
+(13C5+C616C712C8)FPa,ηqK+(13C316C9)Ma,ηqK+(13C516C7)MRa,ηqK],\displaystyle+(\frac{1}{3}C_{5}+C_{6}-\frac{1}{6}C_{7}-\frac{1}{2}C_{8})F^{P}_{a,\eta_{q}K}+(\frac{1}{3}C_{3}-\frac{1}{6}C_{9})M_{a,\eta_{q}K}+(\frac{1}{3}C_{5}-\frac{1}{6}C_{7})M^{R}_{a,\eta_{q}K}\Big{]},
2(B\displaystyle\sqrt{2}\mathcal{M}(B^{-} Kηq)=ξus[(13C1+C2)(Fe,ηqπ+Fa,Kηq)+(13C1+C2)Fe,Kηq+(13C2)Me,Kηq+(13C1)(Me,ηqπ\displaystyle\rightarrow K^{-}\eta_{q})=\xi_{us}\Big{[}(\frac{1}{3}C_{1}+C_{2})(F_{e,\eta_{q}\pi}+F_{a,K\eta_{q}})+(\frac{1}{3}C_{1}+C_{2})F_{e,K\eta_{q}}+(\frac{1}{3}C_{2})M_{e,K\eta_{q}}+(\frac{1}{3}C_{1})(M_{e,\eta_{q}\pi} (52)
+Ma,Kηq)]ξts[(13C3+C4+13C9+C10)Fe,ηqK+(13C5+C6+13C7+13C8)FPe,ηqK\displaystyle+M_{a,K\eta_{q}})\Big{]}-\xi_{ts}\Big{[}(\frac{1}{3}C_{3}+C_{4}+\frac{1}{3}C_{9}+C_{10})F_{e,\eta_{q}K}+(\frac{1}{3}C_{5}+C_{6}+\frac{1}{3}C_{7}+\frac{1}{3}C_{8})F^{P}_{e,\eta_{q}K}
+(2C3+23C4+12C9+16C102C523C612C716C8)Fe,Kηq+(13C3+13C9)Me,ηqK\displaystyle+(2C_{3}+\frac{2}{3}C_{4}+\frac{1}{2}C_{9}+\frac{1}{6}C_{10}-2C_{5}-\frac{2}{3}C_{6}-\frac{1}{2}C_{7}-\frac{1}{6}C_{8})F_{e,K\eta_{q}}+(\frac{1}{3}C_{3}+\frac{1}{3}C_{9})M_{e,\eta_{q}K}
+(13C5+13C7)MRe,ηqK+(23C4+16C10)Me,Kηq+(23C6+16C8)MPe,Kηq+(13C3+C4+13C9+C10)Fa,Kηq\displaystyle+(\frac{1}{3}C_{5}+\frac{1}{3}C_{7})M^{R}_{e,\eta_{q}K}+(\frac{2}{3}C_{4}+\frac{1}{6}C_{10})M_{e,K\eta_{q}}+(\frac{2}{3}C_{6}+\frac{1}{6}C_{8})M^{P}_{e,K\eta_{q}}+(\frac{1}{3}C_{3}+C_{4}+\frac{1}{3}C_{9}+C_{10})F_{a,K\eta_{q}}
+(13C5+C6+13C7+C8)FPa,Kηq+(13C3+13C9)Ma,Kηq+(13C5+13C7)MRa,Kηq],\displaystyle+(\frac{1}{3}C_{5}+C_{6}+\frac{1}{3}C_{7}+C_{8})F^{P}_{a,K\eta_{q}}+(\frac{1}{3}C_{3}+\frac{1}{3}C_{9})M_{a,K\eta_{q}}+(\frac{1}{3}C_{5}+\frac{1}{3}C_{7})M^{R}_{a,K\eta_{q}}\Big{]},
(B0¯\displaystyle\mathcal{M}(\bar{B^{0}} K0¯ηs)=ξts[(43C3+43C423C923C10C513C6+12C7+16C8)Fe,Kηs\displaystyle\rightarrow\bar{K^{0}}\eta_{s})=-\xi_{ts}\Big{[}(\frac{4}{3}C_{3}+\frac{4}{3}C_{4}-\frac{2}{3}C_{9}-\frac{2}{3}C_{10}-C_{5}-\frac{1}{3}C_{6}+\frac{1}{2}C_{7}+\frac{1}{6}C_{8})F_{e,K\eta_{s}} (53)
+(13C5+C616C712C8)FPe,Kηs+(13C3+13C416C916C10)Me,Kηs\displaystyle+(\frac{1}{3}C_{5}+C_{6}-\frac{1}{6}C_{7}-\frac{1}{2}C_{8})F^{P}_{e,K\eta_{s}}+(\frac{1}{3}C_{3}+\frac{1}{3}C_{4}-\frac{1}{6}C_{9}-\frac{1}{6}C_{10})M_{e,K\eta_{s}}
+(13C516C7)MRe,Kηs+(13C616C8)MPe,Kηs+(13C3+C416C912C10)Fa,ηqK\displaystyle+(\frac{1}{3}C_{5}-\frac{1}{6}C_{7})M^{R}_{e,K\eta_{s}}+(\frac{1}{3}C_{6}-\frac{1}{6}C_{8})M^{P}_{e,K\eta_{s}}+(\frac{1}{3}C_{3}+C_{4}-\frac{1}{6}C_{9}-\frac{1}{2}C_{10})F_{a,\eta_{q}K}
+(13C5+C616C712C8)FPa,ηsK+(13C316C9)Ma,ηsK+(13C516C7)MPa,ηsK],\displaystyle+(\frac{1}{3}C_{5}+C_{6}-\frac{1}{6}C_{7}-\frac{1}{2}C_{8})F^{P}_{a,\eta_{s}K}+(\frac{1}{3}C_{3}-\frac{1}{6}C_{9})M_{a,\eta_{s}K}+(\frac{1}{3}C_{5}-\frac{1}{6}C_{7})M^{P}_{a,\eta_{s}K}\Big{]},
(B\displaystyle\mathcal{M}(B^{-} Kηs)=ξus[(13C1+C2)Fa,ηsK+(13C2)Ma,ηsK]ξts[(43C3+43C423C923C10\displaystyle\rightarrow K^{-}\eta_{s})=\xi_{us}\Big{[}(\frac{1}{3}C_{1}+C_{2})F_{a,\eta_{s}K}+(\frac{1}{3}C_{2})M_{a,\eta_{s}K}\Big{]}-\xi_{ts}\Big{[}(\frac{4}{3}C_{3}+\frac{4}{3}C_{4}-\frac{2}{3}C_{9}-\frac{2}{3}C_{10} (54)
C513C6+12C7+16C8)Fe,Kηs+(13C5+C616C712C8)FPe,Kηs\displaystyle-C_{5}-\frac{1}{3}C_{6}+\frac{1}{2}C_{7}+\frac{1}{6}C_{8})F_{e,K\eta_{s}}+(\frac{1}{3}C_{5}+C_{6}-\frac{1}{6}C_{7}-\frac{1}{2}C_{8})F^{P}_{e,K\eta_{s}}
+(13C3+13C416C916C10)Me,Kηs+(13C516C7)MRe,Kηs+(13C616C8)MPe,Kηs\displaystyle+(\frac{1}{3}C_{3}+\frac{1}{3}C_{4}-\frac{1}{6}C_{9}-\frac{1}{6}C_{10})M_{e,K\eta_{s}}+(\frac{1}{3}C_{5}-\frac{1}{6}C_{7})M^{R}_{e,K\eta_{s}}+(\frac{1}{3}C_{6}-\frac{1}{6}C_{8})M^{P}_{e,K\eta_{s}}
+(13C3+C4+13C9+C10)Fa,ηsK+(13C5+C6+13C7+C8)FPa,ηsK\displaystyle+(\frac{1}{3}C_{3}+C_{4}+\frac{1}{3}C_{9}+C_{10})F_{a,\eta_{s}K}+(\frac{1}{3}C_{5}+C_{6}+\frac{1}{3}C_{7}+C_{8})F^{P}_{a,\eta_{s}K}
+(13C3+13C9)Ma,ηsK+(13C5+13C7)MRa,ηsK],\displaystyle+(\frac{1}{3}C_{3}+\frac{1}{3}C_{9})M_{a,\eta_{s}K}+(\frac{1}{3}C_{5}+\frac{1}{3}C_{7})M^{R}_{a,\eta_{s}K}\Big{]},
(B\displaystyle\mathcal{M}(B^{-} KK0)=ξud[(13C1+C2)Fa,KK¯+(13C1)Ma,KK¯]ξtd[(13C3+C416C912C10)Fe,KK¯\displaystyle\rightarrow K^{-}K^{0})=\xi_{ud}\Big{[}(\frac{1}{3}C_{1}+C_{2})F_{a,K\bar{K}}+(\frac{1}{3}C_{1})M_{a,K\bar{K}}\Big{]}-\xi_{td}\Big{[}(\frac{1}{3}C_{3}+C_{4}-\frac{1}{6}C_{9}-\frac{1}{2}C_{10})F_{e,K\bar{K}} (55)
+(13C5+C616C712C8)FPe,KK¯+(13C316C9)Me,KK¯+(13C516C7)MRe,KK¯\displaystyle+(\frac{1}{3}C_{5}+C_{6}-\frac{1}{6}C_{7}-\frac{1}{2}C_{8})F^{P}_{e,K\bar{K}}+(\frac{1}{3}C_{3}-\frac{1}{6}C_{9})M_{e,K\bar{K}}+(\frac{1}{3}C_{5}-\frac{1}{6}C_{7})M^{R}_{e,K\bar{K}}
+(13C3+C4+13C9+C10)Fa,KK¯+(13C5+C6+13C7+C8)FPa,KK¯\displaystyle+(\frac{1}{3}C_{3}+C_{4}+\frac{1}{3}C_{9}+C_{10})F_{a,K\bar{K}}+(\frac{1}{3}C_{5}+C_{6}+\frac{1}{3}C_{7}+C_{8})F^{P}_{a,K\bar{K}}
+(13C3+13C9)Ma,KK¯+(13C5+13C7)MRa,KK¯],\displaystyle+(\frac{1}{3}C_{3}+\frac{1}{3}C_{9})M_{a,K\bar{K}}+(\frac{1}{3}C_{5}+\frac{1}{3}C_{7})M^{R}_{a,K\bar{K}}\Big{]},
(B0¯\displaystyle\mathcal{M}(\bar{B^{0}} K+K)=ξud[(C1+13C2)Fa,KK¯+(13C2)Ma,KK¯]ξtd[(2C3+23C4+12C9+16C10\displaystyle\rightarrow K^{+}K^{-})=\xi_{ud}\Big{[}(C_{1}+\frac{1}{3}C_{2})F_{a,K\bar{K}}+(\frac{1}{3}C_{2})M_{a,K\bar{K}}\Big{]}-\xi_{td}\Big{[}(2C_{3}+\frac{2}{3}C_{4}+\frac{1}{2}C_{9}+\frac{1}{6}C_{10}
+2C5+23C6+12C7+16C8)Fe,KK¯+(23C4+16C10)Ma,KK¯+(23C6+16C8)MPa,KK¯],\displaystyle+2C_{5}+\frac{2}{3}C_{6}+\frac{1}{2}C_{7}+\frac{1}{6}C_{8})F_{e,K\bar{K}}+(\frac{2}{3}C_{4}+\frac{1}{6}C_{10})M_{a,K\bar{K}}+(\frac{2}{3}C_{6}+\frac{1}{6}C_{8})M^{P}_{a,K\bar{K}}\Big{]},
2(B0¯\displaystyle\sqrt{2}\mathcal{M}(\bar{B^{0}} K0¯K0)=ξtd[(13C3+C416C912C10)Fe,KK¯+(13C5+C616C712C8)FPe,KK¯\displaystyle\rightarrow\bar{K^{0}}K^{0})=-\xi_{td}\Big{[}(\frac{1}{3}C_{3}+C_{4}-\frac{1}{6}C_{9}-\frac{1}{2}C_{10})F_{e,K\bar{K}}+(\frac{1}{3}C_{5}+C_{6}-\frac{1}{6}C_{7}-\frac{1}{2}C_{8})F^{P}_{e,K\bar{K}}
+(13C316C9)Me,KK¯+(13C516C7)MRe,KK¯+(73C3+53C476C956C10+2C5\displaystyle+(\frac{1}{3}C_{3}-\frac{1}{6}C_{9})M_{e,K\bar{K}}+(\frac{1}{3}C_{5}-\frac{1}{6}C_{7})M^{R}_{e,K\bar{K}}+(\frac{7}{3}C_{3}+\frac{5}{3}C_{4}-\frac{7}{6}C_{9}-\frac{5}{6}C_{10}+2C_{5}
+23C6C713C8)Fa,KK¯+(13C5+C616C712C8)FPa,KK¯\displaystyle+\frac{2}{3}C_{6}-C_{7}-\frac{1}{3}C_{8})F_{a,K\bar{K}}+(\frac{1}{3}C_{5}+C_{6}-\frac{1}{6}C_{7}-\frac{1}{2}C_{8})F^{P}_{a,K\bar{K}}
+(13C3+23C416C913C10)Ma,KK¯+(13C516C7)MRa,KK¯+(23C613C8)MPa,KK¯],\displaystyle+(\frac{1}{3}C_{3}+\frac{2}{3}C_{4}-\frac{1}{6}C_{9}-\frac{1}{3}C_{10})M_{a,K\bar{K}}+(\frac{1}{3}C_{5}-\frac{1}{6}C_{7})M^{R}_{a,K\bar{K}}+(\frac{2}{3}C_{6}-\frac{1}{3}C_{8})M^{P}_{a,K\bar{K}}\Big{]},

where ξud=VubVud\xi_{ud}=V_{ub}V_{ud}^{*}, ξtd=VtbVtd,ξus=VubVus\xi_{td}=V_{tb}V_{td}^{*},\xi_{us}=V_{ub}V_{us}^{*}, ξts=VtbVts\xi_{ts}=V_{tb}V_{ts}^{*}, the subscript of Fe,πKF_{e,\pi K} means the pion is M1M_{1} and the kaon is the external emitted meson M2M_{2} in Fig. 1(a). The decay width is expressed as

Γ(Bf)=GF2mB3128π|(Bf)|2.\Gamma(B\rightarrow f)=\frac{G_{F}^{2}m_{B}^{3}}{128\pi}|\mathcal{M}(B\rightarrow f)|^{2}. (58)

II.5 Next-to-leading-order corrections

Several very important NLO contributions to the BPPB\rightarrow PP decays are considered in this work. They are the vertex corrections, the quark loops, and the magnetic penguins, which have been calculated in the PQCD approach in Ref. LiMiSa2005 . The NLO corrections can be included by modifying the combinations of the Wilson coefficients defined below

a1(μ)=C2(μ)+C1(μ)Nc,\displaystyle a_{1}(\mu)=C_{2}(\mu)+\frac{C_{1}(\mu)}{N_{c}},
a2(μ)=C1(μ)+C2(μ)Nc,\displaystyle a_{2}(\mu)=C_{1}(\mu)+\frac{C_{2}(\mu)}{N_{c}},
ai(μ)=Ci(μ)+Ci±1(μ)Nc,i=310\displaystyle a_{i}(\mu)=C_{i}(\mu)+\frac{C_{i\pm 1}(\mu)}{N_{c}},~{}~{}i=3-10 (59)

where the plus (minus) sign is for the case when ii is odd (even).

II.5.1 Vertex correction

The contributions of vertex corrections to the Wilson coefficients are QCDf1 ; QCDf2 ; QCDf3 ; LiMiSa2005

a1(μ)a1(μ)+αs(μ)4πCFC1(μ)NcV1,\displaystyle a_{1}(\mu)\rightarrow a_{1}(\mu)+\frac{\alpha_{s}(\mu)}{4\pi}C_{F}\frac{C_{1}(\mu)}{N_{c}}V_{1},
a2(μ)a2(μ)+αs(μ)4πCFC2(μ)NcV2,\displaystyle a_{2}(\mu)\rightarrow a_{2}(\mu)+\frac{\alpha_{s}(\mu)}{4\pi}C_{F}\frac{C_{2}(\mu)}{N_{c}}V_{2}, (60)
ai(μ)ai(μ)+αs(μ)4πCFCi±1(μ)NcVi,i=310,\displaystyle a_{i}(\mu)\rightarrow a_{i}(\mu)+\frac{\alpha_{s}(\mu)}{4\pi}C_{F}\frac{C_{i\pm 1}(\mu)}{N_{c}}V_{i},i=3-10,

In the naive dimensional regularization (NDR) scheme the function ViV_{i} is given by QCDf1 ; QCDf2 ; QCDf3

Vi={12lnmbμ18+01dxϕM(x)g(x),fori=14,9,10,12lnmbμ+601dxϕM(x)g(1x),fori=5,7,6+01dxϕPM(x)h(1x),fori=6,8V_{i}=\left\{\begin{aligned} &12\ln\frac{m_{b}}{\mu}-18+\int_{0}^{1}dx\phi_{M}(x)g(x),&\mathrm{for}\;i=1-4,9,10,\\ -&12\ln\frac{m_{b}}{\mu}+6-\int_{0}^{1}dx\phi_{M}(x)g(1-x),&\mathrm{for}\;i=5,7,\\ -&6+\int_{0}^{1}dx\phi_{P}^{M}(x)h(1-x),&\mathrm{for}\;i=6,8\end{aligned}\right. (61)

where ϕM(x)\phi_{M}(x) and ϕPM(x)\phi^{P}_{M}(x) are the distribution amplitudes of twist 2 and 3 for the emitted meson, respectively. The hard kernels g(x)g(x) and h(x)h(x) are

g(x)=3(12x1xlnxiπ)+[2Li2(x)ln2x2lnx1x(3+2iπ)lnx(x1x)],g(x)=3\left(\frac{1-2x}{1-x}\ln x-i\pi\right)+\left[2\mathrm{Li}_{2}(x)-\ln^{2}x-\frac{2\ln x}{1-x}-(3+2i\pi)\ln x-(x\leftrightarrow 1-x)\right], (62)
h(x)=2Li2(x)ln2x(1+2iπ)lnx(x1x).h(x)=2\mathrm{Li}_{2}(x)-\ln^{2}x-(1+2i\pi)\ln x-(x\leftrightarrow 1-x). (63)

II.5.2 The quark-loop contributions

For the bd(s)b\rightarrow d(s) transition, the effective Hamiltonian contributed by the virtual quark loops is LiMiSa2005

eff=\displaystyle\mathcal{H}_{\mathrm{eff}}= \displaystyle- q=u,c,tqGF2VqbVqd(s)αs(μ)2πC(q)(μ,l2)\displaystyle\sum_{q=u,c,t}\sum_{q^{\prime}}\frac{G_{F}}{\sqrt{2}}V_{qb}V_{qd(s)}^{*}\frac{\alpha_{s}(\mu)}{2\pi}C^{(q)}(\mu,l^{2}) (64)
×\displaystyle\times (d¯(s¯)γρ(1γ5)Tab)(q¯γρTaq),\displaystyle(\bar{d}(\bar{s})\gamma_{\rho}(1-\gamma_{5})T^{a}b)(\bar{q}^{\prime}\gamma^{\rho}T^{a}q^{\prime}),

where the function C(q)(μ,l2)C^{(q)}(\mu,l^{2}) is

C(q)(μ,l2)=[G(q)(μ,l2)23]C2(μ)C^{(q)}(\mu,l^{2})=\left[G^{(q)}(\mu,l^{2})-\frac{2}{3}\right]C_{2}(\mu) (65)

for q=u,cq=u,c, while for q=tq=t, the function is

C(t)(μ,l2)=\displaystyle C^{(t)}(\mu,l^{2})= [G(d)(μ,l2)23]C3(μ)\displaystyle\left[G^{(d)}(\mu,l^{2})-\frac{2}{3}\right]C_{3}(\mu)
+\displaystyle+ q=u,d,s,cG(q)(μ,l2)[C4(μ)+C6(μ)].\displaystyle\sum_{q^{\prime\prime}=u,d,s,c}G^{(q^{\prime\prime})}(\mu,l^{2})\left[C_{4}(\mu)+C_{6}(\mu)\right].

The function GG in Eqs. (65) and (II.5.2) is

G(q)(μ,l2)=401dxx(1x)lnmq2x(1x)l2iεμ2,G^{(q)}(\mu,l^{2})=-4\int_{0}^{1}dxx(1-x)\ln\frac{m_{q}^{2}-x(1-x)l^{2}-i\varepsilon}{\mu^{2}}, (67)

where mqm_{q} is the quark mass for q=u,d,s,cq=u,d,s,c.

The topology of the quark-loop contribution to the effective Hamiltonian is just the same as that of the penguin diagram, so its contribution can be absorbed into the Wilson coefficients a4,a6a_{4},a_{6}

a4,6(μ)a4,6(μ)+αs(μ)9πq=u,c,tVqbVqdVtbVtdC(q)(μ,l2).a_{4,6}(\mu)\rightarrow a_{4,6}(\mu)+\frac{\alpha_{s}(\mu)}{9\pi}\sum_{q=u,c,t}\frac{V_{qb}V_{qd}^{*}}{V_{tb}V_{td}^{*}}C^{(q)}(\mu,\left<l^{2}\right>). (68)

l2\left<l^{2}\right> in Eq. (68) is the mean value of the momentum squared of the virtual gluon connecting the virtual quark loop and the final quark-antiquark pair. l2=mb2/4\left<l^{2}\right>=m_{b}^{2}/4 can be taken in the numerical analysis as a reasonable value in BB decays.

II.5.3 Magnetic penguins

The effective Hamiltonian of the magnetic penguin for the weak bd(s)gb\rightarrow d(s)\textsl{g} transition is

eff=GF2VtbVtd(s)C8gO8g,\mathcal{H}_{\mathrm{eff}}=-\frac{G_{F}}{\sqrt{2}}V_{tb}V_{td(s)}^{*}C_{8\textsl{g}}O_{8\textsl{g}}, (69)

where the magnetic-penguin operator is

O8g=g8π2mbd¯i(s¯i)σμν(1+γ5)TijaGaμνbj.O_{8\textsl{g}}=\frac{g}{8\pi^{2}}m_{b}\bar{d}_{i}(\bar{s}_{i})\sigma_{\mu\nu}(1+\gamma_{5})T_{ij}^{a}G^{a\mu\nu}b_{j}. (70)

The contribution of the Hamiltonian in Eq. (69) can be absorbed into the relevant Wilson coefficients LiMiSa2005

a4,6(μ)a4,6(μ)αs(μ)9π2mBl2C8geff(μ),a_{4,6}(\mu)\rightarrow a_{4,6}(\mu)-\frac{\alpha_{s}(\mu)}{9\pi}\frac{2m_{B}}{\sqrt{\left<l^{2}\right>}}C_{8\textsl{g}}^{\mathrm{eff}}(\mu), (71)

where the effective coefficient C8geff=C8g+C5C_{8\textsl{g}}^{\mathrm{eff}}=C_{8\textsl{g}}+C_{5} Hamiltanion1996 .

II.5.4 Spectator hard-scattering mechanism with ggη(η)g*g*\rightarrow\eta(\eta^{\prime})

There is the contribution of the spectator hard-scattering mechanism (SHSM) for processes of η(η)\eta(\eta^{\prime}) production through the transition of ggη(η)g*g*\rightarrow\eta(\eta^{\prime}) DKY1998 ; AKS1998 ; DuY1998 ; MutaY2000 ; YY2001 . It may significantly enhance the branching ratios of BB decays involving η(η)\eta(\eta^{\prime}) in the final states. In this work we incorporate this mechanism in the calculation of the amplitude for the processes with η\eta or η\eta^{\prime} in the final state. The difference from the previous works is that the transverse momenta of the quarks and gluons are included in the calculations, both in the effective transition of ggη(η)g*g*\rightarrow\eta(\eta^{\prime}) and the spectator hard scattering. The diagrams for the ggη(η)g*g*\rightarrow\eta(\eta^{\prime}) transition are depicted in Fig. 2.

Refer to caption
Figure 2: The Feynman diagrams for the effective interaction of ggη(η)g*g*\rightarrow\eta(\eta^{\prime}) transition, where diagrams (a) and (b) represent two distinct structures.
Refer to caption
Figure 3: The Feynman diagrams for the spectator hard-scattering contribution to BMη()B\rightarrow M\eta^{(\prime)} decays, with diagrams (a) and (b) depicting contributions from the magnetic-penguin operator and the quark-loop process, respectively. The solid dots stand for the effective vertex of ggη(η)g*g*\rightarrow\eta(\eta^{\prime}) transition as shown in Fig. 2.

The SHSM includes two types of contributions. One is induced by the magnetic-penguin operator, while the other arises from the quark-loops process. The diagrams are shown in Fig. 3.

The amplitude for the contribution of the magnetic-penguin operator [Fig. 3 (a)] is

O8g\displaystyle\mathcal{M}_{O_{8g}} =VtqVtbC8geff(μ)(2fuη()+fsη())O8g,\displaystyle=-V^{*}_{tq}V_{tb}C_{8\textsl{g}}^{\mathrm{eff}}(\mu)(2f^{u}_{\eta^{(^{\prime})}}+f^{s}_{\eta^{(^{\prime})}})\mathcal{F}_{O_{8g}}, (72)

where

O8g\displaystyle\mathcal{F}_{O_{8g}} =imB3Nc3fBfM1dkkxdxudx01dx1dx2\displaystyle=-i\frac{m_{B}^{3}}{N_{c}^{3}}f_{B}f_{M_{1}}\int dk_{\perp}k_{\perp}\int_{x^{d}}^{x^{u}}dx\int_{0}^{1}dx_{1}dx_{2} (73)
0bdbb2db202πdθ01du(12mB+|k|22x2mB)\displaystyle\int_{0}^{\infty}bdbb_{2}db_{2}\int_{0}^{2\pi}d\theta\int_{0}^{1}du(\frac{1}{2}m_{B}+\frac{|\vec{k}_{\perp}|^{2}}{2x^{2}m_{B}})
×K(k)(EQ+mQ)J0(kb){αs2(μ1)x1\displaystyle\times K(\vec{k})(E_{Q}+m_{Q})J_{0}(k_{\perp}b)\Bigg{\{}\alpha_{s}^{2}(\mu_{1})x_{1}
×ϕηq(s)(x¯2,b2)(mB[Eqk3]ϕM1(x¯1,b)\displaystyle\times\phi_{\eta_{q(s)}}(\bar{x}_{2},b_{2})\Bigg{(}m_{B}[E_{q}-k^{3}]\phi_{M_{1}}(\bar{x}_{1},b)
+μM1[Eq(x11)k3(x1+1)]ϕPM1(x¯1,b)\displaystyle+\mu_{M_{1}}[E_{q}(x_{1}-1)-k^{3}(x_{1}+1)]\phi^{P}_{M_{1}}(\bar{x}_{1},b)
+16μM1[Eq(1+x1)+k3(1x1)]ϕσM1(x¯1,b))\displaystyle+\frac{1}{6}\mu_{M_{1}}[E_{q}(1+x_{1})+k^{3}(1-x_{1})]\phi^{\prime\sigma}_{M_{1}}(\bar{x}_{1},b)\Bigg{)}
×h1(x,x1,x2,b,b2,θ,u)St(x1)\displaystyle\times h_{1}(x,x_{1},x_{2},b,b_{2},\theta,u)S_{t}(x_{1})
×exp[SB(μ1)SM1(μ1)SM2(μ1)]}.\displaystyle\times\exp[-S_{B}(\mu_{1})-S_{M_{1}}(\mu_{1})-S_{M_{2}}(\mu_{1})]\Bigg{\}}.

The contribution of the second type [Fig. 3 (b)] is

ql=f=u,c,tVfqVfbC(f)(μ,l2)(2fuη()+fsη())ql\mathcal{M}_{ql}=\sum_{f=u,c,t}V^{*}_{fq}V_{fb}C^{(f)}(\mu,l^{2})(2f^{u}_{\eta^{(^{\prime})}}+f^{s}_{\eta^{(^{\prime})}})\mathcal{F}_{ql} (74)

where

ql\displaystyle\mathcal{F}_{ql} =i2mBNc3fBfM1dkkxdxudx01dx1dx2\displaystyle=-i\frac{2m_{B}}{N_{c}^{3}}f_{B}f_{M_{1}}\int dk_{\perp}k_{\perp}\int_{x^{d}}^{x^{u}}dx\int_{0}^{1}dx_{1}dx_{2}
0bdbb2db2(12mB+|k|22x2mB)K(k)(EQ+mQ)\displaystyle\int_{0}^{\infty}bdbb_{2}db_{2}(\frac{1}{2}m_{B}+\frac{|\vec{k}_{\perp}|^{2}}{2x^{2}m_{B}})K(\vec{k})(E_{Q}+m_{Q})
×J0(kb)αs2(μ1)x1ϕηq(s)(x¯2,b2)(12mB(Eqk3)\displaystyle\times J_{0}(k_{\perp}b)\alpha_{s}^{2}(\mu_{1})x_{1}\phi_{\eta_{q(s)}}(\bar{x}_{2},b_{2})\Bigg{(}\frac{1}{2}m_{B}(E_{q}-k^{3})
×ϕM1(x¯1,b)μM1k3ϕPM1(x¯1,b)+16μM1Eq\displaystyle\times\phi_{M_{1}}(\bar{x}_{1},b)-\mu_{M_{1}}k^{3}\phi^{P}_{M_{1}}(\bar{x}_{1},b)+\frac{1}{6}\mu_{M_{1}}E_{q}
×ϕσM1(x¯1,b))hd2(x,x1,x2,b,b2)St(x1)\displaystyle\times\phi^{\prime\sigma}_{M_{1}}(\bar{x}_{1},b)\Bigg{)}h_{d}^{2}(x,x_{1},x_{2},b,b_{2})S_{t}(x_{1})
×exp[SB(μ1)SM1(μ1)SM1(μ1)].\displaystyle\times\exp[-S_{B}(\mu_{1})-S_{M_{1}}(\mu_{1})-S_{M_{1}}(\mu_{1})]. (75)

In Eqs. (73) and (II.5.4), the function h1(x,x1,x2,b,b2,θ,u)h_{1}(x,x_{1},x_{2},b,b_{2},\theta,u) and the scale μ1\mu_{1} are

h1(x,x1,x2,b,b2,θ,u)={b2+b22+2bb2cos(θ)2(xu)x1mBK1(b2+b22+2bb2cos(θ)(xu)x1mB)K0(ix1x2mBb2),foru<x,ib2+b22+2bb2cos(θ)2(ux)x1mBK1(ib2+b22+2bb2cos(θ)(ux)x1mB)K0(ix1x2mBb2),foru>x,h_{1}(x,x_{1},x_{2},b,b_{2},\theta,u)=\left\{\begin{aligned} \frac{\sqrt{b^{2}+b_{2}^{2}+2bb_{2}\cos(\theta)}}{2\sqrt{(x-u)x_{1}}m_{B}}&K_{-1}(\sqrt{b^{2}+b_{2}^{2}+2bb_{2}\cos(\theta)}\sqrt{(x-u)x_{1}}m_{B})&\\ \cdot&K_{0}(-i\sqrt{x_{1}x_{2}}m_{B}b_{2}),&\mathrm{for}\;u<x,\\ &&\\ i\frac{\sqrt{b^{2}+b_{2}^{2}+2bb_{2}\cos(\theta)}}{2\sqrt{(u-x)x_{1}}m_{B}}&K_{-1}(-i\sqrt{b^{2}+b_{2}^{2}+2bb_{2}\cos(\theta)}\sqrt{(u-x)x_{1}}m_{B})&\\ \cdot&K_{0}(-i\sqrt{x_{1}x_{2}}m_{B}b_{2}),&\mathrm{for}\;u>x,\end{aligned}\right. (76)
μ1=max(x1mB,x1x2mB,1/b,1/b2)\mu_{1}=\max(\sqrt{x_{1}}m_{B},\sqrt{x_{1}x_{2}}m_{B},1/b,1/b_{2}) (77)

III The Contribution of Soft Form Factors

As studied in Refs. Lu-Yang2021 ; lu-yang2023 ; wang-yang2023 , large soft contributions still exist in diagrams (a), (b), (g), and (h) in Fig. 1 as the BB meson wave function solved from the relativistic potential model being used. To keep the perturbative calculation reliable, a cutoff scale μc\mu_{c} needs to be introduced. For contributions with scale μ>μc\mu>\mu_{c}, they can be calculated by the perturbative QCD method, while the contributions with scale μ<μc\mu<\mu_{c} are replaced by two kinds of soft form factors, the soft BMBM transition form factor and the M1M2M_{1}M_{2} production form factor, where MM, M1M_{1}, and M2M_{2} denote mesons in the final state of BB decays. In general, the critical cutoff scale can be taken as μc=1GeV\mu_{c}=1\;\mathrm{GeV}. As μc\mu_{c} slightly varied around 1 GeV, the physical results of branching ratios and CPCP violations are not changed much lu-yang2023 ; wang-yang2023 . For Figs. 1(c) and 1(d), contributions are still dominated by the perturbative contribution with αs/π<0.2\alpha_{s}/\pi<0.2. In general, the contributions of nonfactorizable annihilation diagrams (e) and (f) in Fig. 1 are very small. Therefore, for decay modes where the contributions of nonfactorizable annihilation diagrams are small, no soft contributions need to be introduced for them.

The total BMBM transition form factor can be separated into two parts

F0BM=h0BM+ξBM,F_{0}^{BM}=h_{0}^{BM}+\xi^{BM}, (78)

where h0BMh_{0}^{BM} is the hard BMBM transition form factor, which is contributed by hard interaction, and ξBM\xi^{BM} the soft part of the transition form factor. Including the contributions of the soft transition form factor, the amplitude relevant to diagrams (a) and (b) in Fig. 1 is changed as

\displaystyle\mathcal{M}\rightarrow\mathcal{M} \displaystyle- 2ifπC(μc)VCKMξBM\displaystyle 2if_{\pi}C(\mu_{c})V_{\mathrm{CKM}}\cdot\xi^{BM} (79)
\displaystyle- 4iμMmBfMC(μc)VCKMξBM,\displaystyle 4i\frac{\mu_{M}}{m_{B}}f_{M}C^{\prime}(\mu_{c})V_{\mathrm{CKM}}\cdot\xi^{BM},

where C(μc)C(\mu_{c}) and C(μc)C^{\prime}(\mu_{c}) are the relevant Wilson coefficients for the operators of (VA)(VA)(V-A)(V-A) and (S+P)(SP)(S+P)(S-P) at the critical cutoff scale μc\mu_{c}, respectively.

The soft contributions stemming from the factorizable annihilation diagrams (g) and (h) in Fig.1 can be absorbed into the soft production form factor of M1M2M_{1}M_{2}. The soft M1M2M_{1}M_{2} production form factor can be defined by the matrix element of the scalar current as

M1M2|S|0=12μM1μM2F+M1M2(q2),\langle M_{1}M_{2}|S|0\rangle=-\dfrac{1}{2}\sqrt{\mu_{M_{1}}\mu_{M_{2}}}F_{+}^{M_{1}M_{2}}(q^{2}), (80)

where μM=mM2/(mq1+mq2)\mu_{M}=m_{M}^{2}/(m_{q_{1}}+m_{q_{2}}) is the chiral parameter for the charged meson, M=M1M=M_{1} or M2M_{2}, and q1,2q_{1,2} the quark-antiquark in the meson M1M_{1} or M2M_{2}. The form factor F+ππF_{+}^{\pi\pi} can also be separated into two parts, the hard and soft parts

F+M1M2=hM1M2+ξM1M2,F_{+}^{M_{1}M_{2}}=h^{M_{1}M_{2}}+\xi^{M_{1}M_{2}}, (81)

where hM1M2h^{M_{1}M_{2}} is the hard production form factor for M1M2M_{1}M_{2}, and ξM1M2\xi^{M_{1}M_{2}} the soft part of the form factor. The soft form factor contributes to the amplitude as

+2μM1μM2mB20|SP|BC(μc)VCKMξM1M2,\mathcal{M}\rightarrow\mathcal{M}+\frac{2\sqrt{\mu_{M_{1}}\mu_{M_{2}}}}{m_{B}^{2}}\langle 0|S-P|B\rangle C(\mu_{c})V_{\mathrm{CKM}}\xi^{M_{1}M_{2}}, (82)

where 0|SP|B=iχB\langle 0|S-P|B\rangle=-i\chi_{B}, and χB\chi_{B} can be found in Eq. (30).

IV color-octet contribution

The contributions of color-octet quark-antiquark pair in the final state are usually dropped in the theoretical calculation if the quark-antiquark pair finally forms one meson in the decay process, because mesons should be in color singlet. However, the contributions of the diagrams in Fig. 1 with the quark-antiquark pair in the final state being in color octet may not be zero. In principle, the quark-antiquark pairs in the final state of Fig. 1 can be produced in color-octet states after short-distance interaction. As the color-octet quark pairs move away from each other to the hadron scale, they can finally be changed into color-singlet states by exchanging soft gluons. Therefore the color-octet quark-antiquark pairs can contribute to the decay process of the BB meson. This mechanism has been introduced by us to solve the ππ\pi\pi and KπK\pi puzzles in BB decays recently lu-yang2023 ; wang-yang2023 . In this work we extend this mechanism to more decay modes with two pseudoscalar mesons in the final state.

The details of the calculation of the color-octet contribution have been given in Ref. wang-yang2023 . Here we briefly present the main steps in this paper. To consider the color-octet contributions, we need to consider the case that the quark-antiquark pairs in Fig. 1 that finally form the mesons in the final state are in nonsinglet state. Then one can separate the contributions of the color-octet state from the color-singlet state by analyzing the color factors appearing in each diagram in Fig. 1. Figure 4 is an example for the treatment of the color factors, where the insertion of the operator (b¯iqi)(q¯jqj)(\bar{b}_{i}q_{i})(\bar{q}^{\prime}_{j}q^{\prime}_{j}) is considered. Operators with other color structures can be considered similarly. The color factor for Fig. 4 (a) becomes

ijklTkiaTila=jklCFδlk=jkljCFδlkδjj=jkljCF(1Ncδljδjk+2TljaTjka),\begin{split}\sum_{ijkl}T_{ki}^{a}T_{il}^{a}&=\sum_{jkl}C_{F}\delta_{lk}=\sum_{jklj^{\prime}}C_{F}\delta_{lk}\delta_{jj^{\prime}}\\ &=\sum_{jklj^{\prime}}C_{F}\left(\dfrac{1}{N_{c}}\delta_{lj^{\prime}}\delta_{jk}+2T_{lj^{\prime}}^{a}T_{jk}^{a}\right),\end{split} (83)

and the color factor for Fig. 4 (b) is

ijklTljaTkia=ijkl[12Ncδljδki+12δliδkj]=ijkl[12Nc(1Ncδliδkj+2TlibTkjb)+12δliδkj]=ijkl(CFNcδliδkj1NcTlibTkjb),\begin{split}&\sum_{ijkl}T_{lj}^{a}T_{ki}^{a}=\sum_{ijkl}\left[-\dfrac{1}{2N_{c}}\delta_{lj}\delta_{ki}+\dfrac{1}{2}\delta_{li}\delta_{kj}\right]\\ &\quad=\sum_{ijkl}\left[-\dfrac{1}{2N_{c}}\left(\dfrac{1}{N_{c}}\delta_{li}\delta_{kj}+2T_{li}^{b}T_{kj}^{b}\right)+\dfrac{1}{2}\delta_{li}\delta_{kj}\right]\\ &\quad=\sum_{ijkl}\left(\dfrac{C_{F}}{N_{c}}\delta_{li}\delta_{kj}-\dfrac{1}{N_{c}}T_{li}^{b}T_{kj}^{b}\right),\end{split} (84)

where the first terms with two delta functions in Eqs. (83) and (84) correspond to the color-singlet contributions, which give MeM_{e} and MePM_{e}^{P} for the nonfactorizable diagrams in Fig. 1, and the second terms with SU(3)c generators give the color-octet contributions. The parameters that describe the nonperturbative effects where the color-octet quark-antiquark pairs are changed to color-singlet states by exchanging soft gluons need to be introduced. In numerical analysis we find that two parameters Y8FY^{8}_{F} and Y8MY^{8}_{M} are needed to explain the experimental data. Y8FY^{8}_{F} and Y8MY^{8}_{M} correspond to factorizable and nonfactorizable diagrams in Fig. 1, respectively. For diagrams (a) and (b) in Fig. 4, the result is

Y8Me(P,R)8,Y^{8}_{M}\mathcal{M}_{e}^{(P,R)8}, (85)

where

e(P,R)82Nc2e(P,R)cNcCFe(P,R)d.\mathcal{M}_{e}^{(P,R)8}\equiv 2N_{c}^{2}\mathcal{M}_{e}^{(P,R)c}-\dfrac{N_{c}}{C_{F}}\mathcal{M}_{e}^{(P,R)d}. (86)

The symbols with and without the superscript PP denote the results for (S+P)(SP)(S+P)(S-P) and (VA)(VA)(V-A)(V-A) operators, respectively.

Refer to caption
Figure 4: Two nonfactorizable diagrams with an operator insertion of (b¯iqi)(q¯jqj)(\bar{b}_{i}q_{i})(\bar{q}^{\prime}_{j}q^{\prime}_{j}), where the explicit type of the current is omitted. The quark-antiquark pairs in the final state are in nonsinglet color states. The symbols ii, jj, jj^{\prime}, kk, and ll are color indices. (a) is for the diagram where the gluon connecting the antiquark line in the upper emitted meson and the light quark line between BB meson and the other light meson, and (b) for the gluon connecting the light quark line in the upper emitted meson and the light quark line between BB and the lower emitted meson.

The color-octet contributions for the other diagrams in Fig. 1 with all kinds of operator insertions are

Y8FFe(P)8,Y8Me(P,R)8,Y8Ma(P,R)8,Y8FFa(P)8,Y^{8}_{F}F_{e}^{(P)8},\;Y^{8}_{M}\mathcal{M}_{e}^{(P,R)\prime 8},\;Y^{8}_{M}\mathcal{M}_{a}^{(P,R)8},\;Y^{8}_{F}F_{a}^{(P)8}, (87)

where

Fe(P)82Nc2Fe(P)aNcCFFe(P)b,e(P,R)8Nc2CFe(P,R),a(P,R)8NcCFa(P,R)Fa(P)8Nc2CFFa(P).\begin{split}&F_{e}^{(P)8}\equiv 2N_{c}^{2}F_{e}^{(P)a}-\dfrac{N_{c}}{C_{F}}F_{e}^{(P)b},\\ &\mathcal{M}_{e}^{(P,R)\prime 8}\equiv\dfrac{N_{c}^{2}}{C_{F}}\mathcal{M}_{e}^{(P,R)},\ \mathcal{M}_{a}^{(P,R)8}\equiv-\dfrac{N_{c}}{C_{F}}\mathcal{M}_{a}^{(P,R)}\\ &F_{a}^{(P)8}\equiv-\dfrac{N_{c}^{2}}{C_{F}}F_{a}^{(P)}.\end{split} (88)

The quantities Fe(P)aF_{e}^{(P)a}, Fe(P)bF_{e}^{(P)b}, e(P,R)c\mathcal{M}_{e}^{(P,R)c}, e(P,R)d\mathcal{M}_{e}^{(P,R)d}, a(P,R)\mathcal{M}_{a}^{(P,R)}, and Fa(P)F_{a}^{(P)} are the convolution functions corresponding to diagrams (a)\--(h) in Fig. 1 by using the PQCD approach, where the distribution functions of the quark-antiquarks in color-octet states are assumed to be the same as the color-singlet states.

V Analysis of the Soft Parameters Under SU(3) Flavor Symmetry and Its Breaking

V.1 The color-octet parameters Y8F,MY^{8}_{F,M}

The color-octet parameters Y8FY^{8}_{F} and Y8MY^{8}_{M} are long-distance parameters, which may depend on the different mesons in the final state, such as ππ\pi\pi, πK\pi K and πη\pi\eta final states, etc. These parameters for different final states can be related by SU(3) flavor symmetry and the symmetry-breaking effect.

In the limit of SU(3) symmetry, light pseudoscalar mesons can be composed into a nonet Hexg2014 ; Hexg2020

M\displaystyle M =\displaystyle= (π02+η86+η13π+K+ππ02+η86+η13K0KK0¯2η86+η13)\displaystyle\left(\begin{array}[]{ccc}\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta_{8}}{\sqrt{6}}+\frac{\eta_{1}}{\sqrt{3}}&\pi^{+}&K^{+}\\ \pi^{-}&-\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta_{8}}{\sqrt{6}}+\frac{\eta_{1}}{\sqrt{3}}&K^{0}\\ K^{-}&\bar{{K}^{0}}&-\frac{2\eta_{8}}{\sqrt{6}}+\frac{\eta_{1}}{\sqrt{3}}\end{array}\right) (92)
=\displaystyle= (π0+ηq2π+K+ππ0+ηq2K0KK0¯ηs)\displaystyle\left(\begin{array}[]{ccc}\frac{\pi^{0}+\eta_{q}}{\sqrt{2}}&\pi^{+}&K^{+}\\ \pi^{-}&\frac{-\pi^{0}+\eta_{q}}{\sqrt{2}}&K^{0}\\ K^{-}&\bar{{K}^{0}}&\eta_{s}\end{array}\right) (96)

where the mixing of the flavor octet and singlet is considered and included in the nonet.

The color-octet parameters Y8FY^{8}_{F} and Y8MY^{8}_{M} describe the effect of two color-octet quark-antiquark pairs M81M_{8}^{1} and M82M_{8}^{2} scattering into color-singlet states M11M_{1}^{1} and M12M_{1}^{2} by long-distance QCD interactions, where M8,11,2M_{8,1}^{1,2} denote the first and second mesons in color-octet and singlet states which can be one of the matrix elements in Eq. (96). For the scattering of M81M82M11M12M_{8}^{1}M_{8}^{2}\rightarrow M_{1}^{1}M_{1}^{2}, the effective Hamiltonian under SU(3) flavor symmetry can be written as

H0=c0(M81)ij(M82)kl(M11)ji(M12)lkH_{0}=c_{0}(M_{8}^{1})^{i}_{j}(M_{8}^{2})^{k}_{l}\cdot(M_{1}^{1\dagger})^{j}_{i}(M_{1}^{2\dagger})^{l}_{k} (97)

where c0c_{0} is the effective coupling describing the scattering.

The SU(3) symmetry-breaking effect is caused by the large mass of ss quark which is apparently different from that of uu and dd quarks. A diagonal matrix WW is used to describe the SU(3) symmetry-breaking effect Hexg2014 ; Hexg2020 ; Wangrm2023 ,

W=(Wji)=(000000001).W=\left(W_{j}^{i}\right)=\left(\begin{array}[]{ccc}0&0&0\\ 0&0&0\\ 0&0&1\end{array}\right). (98)

The leading order SU(3) symmetry-breaking terms are

H11=c11(Wij(M81)jm(M11)mi)((M82)kl(M12)lk)\displaystyle H^{1}_{1}=c^{1}_{1}\left(W^{i}_{j}(M_{8}^{1})^{j}_{m}(M_{1}^{1\dagger})^{m}_{i}\right)\left((M_{8}^{2})^{k}_{l}(M_{1}^{2\dagger})^{l}_{k}\right)
H21=c21((M81)ijWjm(M11)mi)((M82)kl(M12)lk)\displaystyle H^{2}_{1}=c^{2}_{1}\left((M_{8}^{1})^{i}_{j}W^{j}_{m}(M_{1}^{1\dagger})^{m}_{i}\right)\left((M_{8}^{2})^{k}_{l}(M_{1}^{2\dagger})^{l}_{k}\right) (99)

where all the nonequivalent possibilities of putting the matrix WW in the SU(3) symmetric effective Hamiltonian should be considered. Note ((M81)ij(M11)jmWmi)=(Wij(M81)jm(M11)mi)\left((M_{8}^{1})^{i}_{j}(M_{1}^{1\dagger})^{j}_{m}W^{m}_{i}\right)=\left(W^{i}_{j}(M_{8}^{1})^{j}_{m}(M_{1}^{1\dagger})^{m}_{i}\right), and putting WW in the term ((M82)kl(M12)lk)\left((M_{8}^{2})^{k}_{l}(M_{1}^{2\dagger})^{l}_{k}\right) is finally the same as that putting WW in ((M81)ij(M11)ji)\left((M_{8}^{1})^{i}_{j}(M_{1}^{1\dagger})^{j}_{i}\right). So there are only two different ways for putting WW in the effective Hamiltonian at leading order of SU(3) symmetry breaking given in Eq. (V.1). And c11c^{1}_{1} and c21c^{2}_{1} are the parameters for the leading-order SU(3) breaking effect.

Substitute the matrix MM in Eq. (96) into M81M_{8}^{1} and M11M_{1}^{1}, one can obtain

(Wij(M81)jm(M11)mi)\displaystyle\left(W^{i}_{j}(M_{8}^{1})^{j}_{m}(M_{1}^{1\dagger})^{m}_{i}\right)
=(K¯01)(K¯08)+(K1)K8+ηs1ηs8,\displaystyle=(\bar{K}^{0}_{1})^{\dagger}(\bar{K}^{0}_{8})+(K^{-}_{1})^{\dagger}K^{-}_{8}+\eta_{s1}^{\dagger}\eta_{s8}, (100)
((M81)ijWjm(M11)mi)\displaystyle\left((M_{8}^{1})^{i}_{j}W^{j}_{m}(M_{1}^{1\dagger})^{m}_{i}\right)
=(K01)K08+(K+1)K+8+ηs1ηs8.\displaystyle=(K^{0}_{1})^{\dagger}K^{0}_{8}+(K^{+}_{1})^{\dagger}K^{+}_{8}+\eta_{s1}^{\dagger}\eta_{s8}. (101)

The above results show that Eqs. (100) and (101) are CPCP conjugate terms. CPCP symmetry in strong interaction requires c11=c21c^{1}_{1}=c^{2}_{1} .

The SU(3) symmetry-breaking terms at next-to-leading order should be

H12=c12(Wij(M81)jm(M11)mi)(Wkl(M82)ln(M12)nk),\displaystyle H^{1}_{2}=c^{1}_{2}\left(W^{i}_{j}(M_{8}^{1})^{j}_{m}(M_{1}^{1\dagger})^{m}_{i}\right)\left(W^{k}_{l}(M_{8}^{2})^{l}_{n}(M_{1}^{2\dagger})^{n}_{k}\right),
H22=c22(Wij(M81)jm(M11)mi)((M82)klWln(M12)nk),\displaystyle H^{2}_{2}=c^{2}_{2}\left(W^{i}_{j}(M_{8}^{1})^{j}_{m}(M_{1}^{1\dagger})^{m}_{i}\right)\left((M_{8}^{2})^{k}_{l}W^{l}_{n}(M_{1}^{2\dagger})^{n}_{k}\right),
H32=c32((M81)ijWjm(M11)mi)((M82)klWln(M12)nk),\displaystyle H^{3}_{2}=c^{3}_{2}\left((M_{8}^{1})^{i}_{j}W^{j}_{m}(M_{1}^{1\dagger})^{m}_{i}\right)\left((M_{8}^{2})^{k}_{l}W^{l}_{n}(M_{1}^{2\dagger})^{n}_{k}\right),
H42=c42(Wij(M81)jmWmn(M11)ni)((M82)kl(M12)lk).\displaystyle H^{4}_{2}=c^{4}_{2}\left(W^{i}_{j}(M_{8}^{1})^{j}_{m}W^{m}_{n}(M_{1}^{1\dagger})^{n}_{i}\right)\left((M_{8}^{2})^{k}_{l}(M_{1}^{2\dagger})^{l}_{k}\right).

Similarly, CPCP symmetry requires c12=c32c^{1}_{2}=c^{3}_{2}.

Based on the analysis of SU(3) flavor symmetry, we can express the color-octet parameters Y8FY^{8}_{F} and Y8MY^{8}_{M} in terms of the SU(3) symmetry and symmetry-breaking parameters c0c_{0}, c11c^{1}_{1}, c12c^{1}_{2}, c22c^{2}_{2}, and c42c^{4}_{2}. An extra superscript aa or bb should be added to these parameter cc’s to sign the difference between Y8FY^{8}_{F} and Y8MY^{8}_{M}, where aa is for Y8FY^{8}_{F}, and bb for Y8MY^{8}_{M}. The results for different decay modes are given in Table 1.

Table 1: The coefficients of LO and NLO SU(3) symmetry-breaking parameters for different final states, where Rjia(b)=cjia(b)/c0a(b)R_{j}^{ia(b)}=c_{j}^{ia(b)}/c_{0}^{a(b)}, ij=1,2,4i\;j=1,2,4.
           Y8FY^{8}_{F}            Y8MY^{8}_{M}
           ππ(ηq)\pi\pi(\eta_{q})            c0ac_{0}^{a}            c0bc_{0}^{b}
           Kπ(ηq)K\pi(\eta_{q})            c0a(1+12R11a)c_{0}^{a}(1+\frac{1}{2}R_{1}^{1a})            c0b(1+12R11b)c_{0}^{b}(1+\frac{1}{2}R_{1}^{1b})
           πηs\pi\eta_{s}            c0a(1+R11a+12R24a)c_{0}^{a}(1+R_{1}^{1a}+\frac{1}{2}R_{2}^{4a})            c0a(1+R11a+12R24a)c_{0}^{a}(1+R_{1}^{1a}+\frac{1}{2}R_{2}^{4a})
           KηsK\eta_{s}            c0a(1+32R11a+R21a+12R22a+12R24a)c_{0}^{a}(1+\frac{3}{2}R_{1}^{1a}+R_{2}^{1a}+\frac{1}{2}R_{2}^{2a}+\frac{1}{2}R_{2}^{4a})            c0b(1+32R11b+R21b+12R22b+12R24b)c_{0}^{b}(1+\frac{3}{2}R_{1}^{1b}+R_{2}^{1b}+\frac{1}{2}R_{2}^{2b}+\frac{1}{2}R_{2}^{4b})
           KK¯K\bar{K}            c0a(1+R11a+12R22a)c_{0}^{a}(1+R_{1}^{1a}+\frac{1}{2}R_{2}^{2a})            c0b(1+R11b+12R22b)c_{0}^{b}(1+R_{1}^{1b}+\frac{1}{2}R_{2}^{2b})

V.2 The Production Form Factors Defined By The Matrix Element M1M2|S|0\langle M_{1}M_{2}|S|0\rangle

The production form factor is defined by the matrix element induced by the scalar current in Eq. (80). The effective Hamiltonian for the matrix element of the scalar current in the limit of SU(3) symmetry can be written as

H0=c0cMijMjkSkiH_{0}=c_{0}^{c}M^{i}_{j}M^{j}_{k}S^{k}_{i} (103)

where MijM^{i}_{j} and MjkM^{j}_{k} are the meson states given in the SU(3) symmetric pseudoscalar nonet in Eq. (96), i,j,k=1,2,3i,j,k=1,2,3, and Ski=q¯iqkS^{k}_{i}=\bar{q}_{i}q^{\prime}_{k}, the scalar current composed of quark fields. The quark fields are denoted as q1(q1)=uq_{1}(q^{\prime}_{1})=u, q2(q2)=dq_{2}(q^{\prime}_{2})=d, and q3(q3)=sq_{3}(q^{\prime}_{3})=s.

The leading-order symmetry-breaking terms are

H11\displaystyle H_{1}^{1} =\displaystyle= c11cWilMljMjkSki,\displaystyle c_{1}^{1c}W^{i}_{l}M^{l}_{j}M^{j}_{k}S^{k}_{i},
H12\displaystyle H_{1}^{2} =\displaystyle= c12cMijWjlMlkSki,\displaystyle c_{1}^{2c}M^{i}_{j}W^{j}_{l}M^{l}_{k}S^{k}_{i}, (104)
H13\displaystyle H_{1}^{3} =\displaystyle= c13cMijMjkWklSli.\displaystyle c_{1}^{3c}M^{i}_{j}M^{j}_{k}W^{k}_{l}S^{l}_{i}.

CPCP conservation of strong interaction leads to c11c=c13cc_{1}^{1c}=c_{1}^{3c}.

The second order symmetry-breaking terms are

H21\displaystyle H_{2}^{1} =\displaystyle= c21cWijMjlWlmMmkSki,\displaystyle c_{2}^{1c}W^{i}_{j}M^{j}_{l}W^{l}_{m}M^{m}_{k}S^{k}_{i},
H22\displaystyle H_{2}^{2} =\displaystyle= c22cWijMjlMlmWmkSki,\displaystyle c_{2}^{2c}W^{i}_{j}M^{j}_{l}M^{l}_{m}W^{m}_{k}S^{k}_{i}, (105)
H23\displaystyle H_{2}^{3} =\displaystyle= c23cMijWjlMlmWmkSki.\displaystyle c_{2}^{3c}M^{i}_{j}W^{j}_{l}M^{l}_{m}W^{m}_{k}S^{k}_{i}.

CPCP symmetry requires c21c=c23cc_{2}^{1c}=c_{2}^{3c}.

Substituting the SU(3) symmetry nonet and symmetry-breaking matrices MM and WW into Eqs. (103), (V.2), and (V.2), one can get the expressions of the production form factors in terms of the symmetry and symmetry-breaking parameters. The results are collected in Table 2. The soft part of the production form factor can be obtained by using Eq. (81), where the hard part can be calculated perturbatively.

Table 2: The coefficients of LO and NLO SU(3) symmetry-breaking parameters for production form factors with different final states, where Rjic=cjic/c0cR_{j}^{ic}=c_{j}^{ic}/c_{0}^{c}, ij=1,2,3,4i\;j=1,2,3,4.
           μM1μM2F+M1M2\sqrt{\mu_{M_{1}}\mu_{M_{2}}}F_{+}^{M_{1}M_{2}}
           ππ(ηq)\pi\pi(\eta_{q})            c0cc_{0}^{c}
           Kπ(ηq)K\pi(\eta_{q})            c0c(1+R11c)c_{0}^{c}(1+R_{1}^{1c})
           πηs\pi\eta_{s}            0
           KηsK\eta_{s}            c0c(1+R11c+R12c+R21c)c_{0}^{c}(1+R_{1}^{1c}+R_{1}^{2c}+R_{2}^{1c})
           KK¯K\bar{K}            c0c(1+R12c)c_{0}^{c}(1+R_{1}^{2c})

VI Numerical analysis and discussion

In numerical calculations, the input parameters involve the nonperturbative parameters, including the soft BMBM transition form factor ξBM\xi^{BM}, soft M1M2M_{1}M_{2} production form factor ξM1M2\xi^{M_{1}M_{2}}, and the color-octet parameters Y8F,Y8MY^{8}_{F},Y^{8}_{M}, except for the parameters in BB and light meson wave functions. The color-octet parameters are expressed as the SU(3) flavor symmetry and symmetry-breaking parameters. Among these, the determination of the soft BMBM transition form factor requires a combined analysis of perturbative calculations and experimental data from BB meson semileptonic decays. The other parameters will be obtained by fitting the branching ratios and direct CPCP violation of BM1M2B\rightarrow M_{1}M_{2} decays.

The hard part of the BMBM transition form factors can be obtained by calculating diagrams (a) and (b) in Fig. 1 where the contribution for the emitted meson M2M_{2} is excluded. The results we obtain are

h+Bπ=0.23±0.01,\displaystyle h_{+}^{B\pi}=0.23\pm 0.01,
h+BK=0.29±0.02,\displaystyle h_{+}^{BK}=0.29\pm 0.02, (106)
h+Bηq=0.17±0.01,\displaystyle h_{+}^{B\eta_{q}}=0.17\pm 0.01,

where the cutoff scale μc=1GeV\mu_{c}=1\;\mbox{GeV} is used. The scale for the hard contribution is μ>μc\mu>\mu_{c}.

Based on the experimental data of BB meson semileptonic decays and nonperturbative methods such as light-cone sum rules and lattice QCD (LQCD) Bailey2016 ; PBD2023 ; ball2005new , we can extract the total BMBM transition form factors

F+Bπ=0.27±0.02,\displaystyle F_{+}^{B\pi}=0.27\pm 0.02,
F+BK=0.33±0.04,\displaystyle F_{+}^{BK}=0.33\pm 0.04, (107)
F+Bηq=0.23±0.03.\displaystyle F_{+}^{B\eta_{q}}=0.23\pm 0.03.

For the form factors of F+BπF_{+}^{B\pi} and F+BηqF_{+}^{B\eta_{q}}, the values in the above equations can be used to calculate the branching ratios of the relevant semileptonic decays, and with which the results consistent with experimental data in PDG PDG2022 can be obtained. The value of F+BKF_{+}^{BK} is the averaged results of LQCD calculations Bailey2016 ; PBD2023 .

According to Eq. (78), the soft part of the BMBM transition form factors are

ξBπ=0.04±0.01,\displaystyle\xi^{B\pi}=0.04\pm 0.01,
ξBK=0.04±0.02,\displaystyle\xi^{BK}=0.04\pm 0.02, (108)
ξBηq=0.06±0.02.\displaystyle\xi^{B\eta_{q}}=0.06\pm 0.02.
Table 3: Branching ratio ( ×106\times 10^{-6}) and direct CPCP violation with NLO contributions for decay modes of ππ\pi\pi, KπK\pi, and KK¯K\bar{K} final states.
LONLOWC\mathrm{LO_{NLOWC}} NLO NLO+soft Data
Br(B0π+πB^{0}\rightarrow\pi^{+}\pi^{-}) 3.90 4.82 5.14±0.69+0.16+0.280.250.245.14\pm 0.69^{+0.16+0.28}_{-0.25-0.24} 5.12±0.195.12\pm 0.19
Br(B+π+π0B^{+}\rightarrow\pi^{+}\pi^{0}) 3.59 3.24 5.63±0.53+0.12+0.190.230.205.63\pm 0.53^{+0.12+0.19}_{-0.23-0.20} 5.5±0.45.5\pm 0.4
Br(B0π0π0B^{0}\rightarrow\pi^{0}\pi^{0}) 0.36 0.12 1.41±0.35+0.04+0.120.060.171.41\pm 0.35^{+0.04+0.12}_{-0.06-0.17} 1.59±0.261.59\pm 0.26
Br(B+K0π+B^{+}\rightarrow K^{0}\pi^{+}) 13.4 13.8 24.4±3.9+0.6+0.90.90.824.4\pm 3.9^{+0.6+0.9}_{-0.9-0.8} 23.7±0.823.7\pm 0.8
Br(B+K+π0B^{+}\rightarrow K^{+}\pi^{0}) 9.0 8.4 12.7±1.8+0.3+0.30.50.312.7\pm 1.8^{+0.3+0.3}_{-0.5-0.3} 12.9±0.512.9\pm 0.5
Br(B0K+πB^{0}\rightarrow K^{+}\pi^{-}) 13.7 13.2 21.6±3.6+0.5+0.70.70.621.6\pm 3.6^{+0.5+0.7}_{-0.7-0.6} 19.6±0.519.6\pm 0.5
Br(B0K0π0B^{0}\rightarrow K^{0}\pi^{0}) 4.9 5.2 10.1±1.9+0.3+0.50.40.310.1\pm 1.9^{+0.3+0.5}_{-0.4-0.3} 9.9±0.59.9\pm 0.5
Br(B+K+K¯0B^{+}\rightarrow K^{+}\bar{K}^{0}) 0.92 0.66 1.26±0.44+0.03+0.090.050.061.26\pm 0.44^{+0.03+0.09}_{-0.05-0.06} 1.31±0.171.31\pm 0.17
Br(B0K0K¯0B^{0}\rightarrow K^{0}\bar{K}^{0}) 0.98 0.68 1.34±0.48+0.04+0.110.050.081.34\pm 0.48^{+0.04+0.11}_{-0.05-0.08} 1.21±0.161.21\pm 0.16
Br(B0K+KB^{0}\rightarrow K^{+}K^{-}) 0.034 0.034 0.052±0.013+0.003+0.0080.0020.0040.052\pm 0.013^{+0.003+0.008}_{-0.002-0.004} 0.078±0.0150.078\pm 0.015
ACPA_{CP}(B0π+πB^{0}\rightarrow\pi^{+}\pi^{-}) 0.27 0.16 0.31±0.03+0.01+0.040.000.040.31\pm 0.03^{+0.01+0.04}_{-0.00-0.04} 0.32±0.040.32\pm 0.04
ACPA_{CP}(B+π+π0B^{+}\rightarrow\pi^{+}\pi^{0}) 0.00 0.00 0.0006±0.0010+0.0001+0.00010.00000.00010.0006\pm 0.0010^{+0.0001+0.0001}_{-0.0000-0.0001} 0.03±0.040.03\pm 0.04
ACPA_{CP}(B0π0π0B^{0}\rightarrow\pi^{0}\pi^{0}) -0.60 0.30 0.45±0.06+0.01+0.070.010.050.45\pm 0.06^{+0.01+0.07}_{-0.01-0.05} 0.33±0.220.33\pm 0.22
ACPA_{CP}(B+K0π+B^{+}\rightarrow K^{0}\pi^{+}) -0.004 0.010 0.0106±0.0011+0.0002+0.00090.00010.00100.0106\pm 0.0011^{+0.0002+0.0009}_{-0.0001-0.0010} 0.017±0.016-0.017\pm 0.016
ACPA_{CP}(B+K+π0B^{+}\rightarrow K^{+}\pi^{0}) -0.15 -0.039 0.067±0.027+0.001+0.0130.0010.0140.067\pm 0.027^{+0.001+0.013}_{-0.001-0.014} 0.037±0.0210.037\pm 0.021
ACPA_{CP}(B0K+πB^{0}\rightarrow K^{+}\pi^{-}) -0.175 -0.107 0.080±0.028+0.002+0.0180.0030.017-0.080\pm 0.028^{+0.002+0.018}_{-0.003-0.017} 0.083±0.004-0.083\pm 0.004
ACPA_{CP}(B0K0π0B^{0}\rightarrow K^{0}\pi^{0}) 0.018 -0.036 0.13±0.04+0.01+0.010.000.01-0.13\pm 0.04^{+0.01+0.01}_{-0.00-0.01} 0.00±0.130.00\pm 0.13
ACPA_{CP}(B+K+K¯0B^{+}\rightarrow K^{+}\bar{K}^{0}) 0.07 0.12 0.02±0.04+0.00+0.030.010.02-0.02\pm 0.04^{+0.00+0.03}_{-0.01-0.02} 0.04±0.0140.04\pm 0.014
ACPA_{CP}(B0K0K¯0B^{0}\rightarrow K^{0}\bar{K}^{0}) 0.00 0.05 0.04±0.04+0.00+0.010.000.01-0.04\pm 0.04^{+0.00+0.01}_{-0.00-0.01} 0.58+0.730.66-0.58^{+0.73}_{-0.66}
ACPA_{CP}(B0K+KB^{0}\rightarrow K^{+}K^{-}) 0.001 0.26 0.30±0.11+0.03+0.100.060.11-0.30\pm 0.11^{+0.03+0.10}_{-0.06-0.11} -
Table 4: Branching ratio (×106\times 10^{-6}) and direct CPCP violation with NLO contributions with decay modes involving η\eta and η\eta^{\prime} mesons.
LONLOWC\mathrm{LO_{NLOWC}} NLO NLO+gg NLO+soft Data
Br(B0π0ηB^{0}\rightarrow\pi^{0}\eta) 0.09 0.18 0.19 0.42±0.07+0.01+0.020.010.020.42\pm 0.07^{+0.01+0.02}_{-0.01-0.02} 0.41±0.170.41\pm 0.17
Br(B+π+ηB^{+}\rightarrow\pi^{+}\eta) 0.97 1.49 1.52 4.51±0.71+0.09+0.100.110.094.51\pm 0.71^{+0.09+0.10}_{-0.11-0.09} 4.02±0.274.02\pm 0.27
Br(B0π0ηB^{0}\rightarrow\pi^{0}\eta^{{}^{\prime}}) 0.04 0.14 0.16 0.85±0.16+0.01+0.030.010.030.85\pm 0.16^{+0.01+0.03}_{-0.01-0.03} 1.2±0.61.2\pm 0.6
Br(B+π+ηB^{+}\rightarrow\pi^{+}\eta^{{}^{\prime}}) 0.50 0.60 0.74 3.25±0.48+0.03+0.080.050.083.25\pm 0.48^{+0.03+0.08}_{-0.05-0.08} 2.7±0.92.7\pm 0.9
Br(B0K0ηB^{0}\rightarrow K^{0}\eta) 3.29 3.76 3.69 1.29±0.51+0.08+0.110.100.111.29\pm 0.51^{+0.08+0.11}_{-0.10-0.11} 1.230.24+0.271.23_{-0.24}^{+0.27}
Br(B+K+ηB^{+}\rightarrow K^{+}\eta) 3.68 4.51 4.45 2.06±0.85+0.10+0.140.140.142.06\pm 0.85^{+0.10+0.14}_{-0.14-0.14} 2.4±0.42.4\pm 0.4
Br(B0K0ηB^{0}\rightarrow K^{0}\eta^{{}^{\prime}}) 22.4 30.4 32.6 66.6±21.8+1.2+4.31.44.166.6\pm 21.8^{+1.2+4.3}_{-1.4-4.1} 66±466\pm 4
Br(B+K+ηB^{+}\rightarrow K^{+}\eta^{{}^{\prime}}) 24.8 33.6 36.0 70.0±23.2+1.2+5.01.54.770.0\pm 23.2^{+1.2+5.0}_{-1.5-4.7} 70.4±2.570.4\pm 2.5
ACPA_{CP}(B0π0ηB^{0}\rightarrow\pi^{0}\eta) 0.42 -0.06 -0.07 0.98±0.03+0.01+0.020.010.02-0.98\pm 0.03^{+0.01+0.02}_{-0.01-0.02} -
ACPA_{CP}(B+π+ηB^{+}\rightarrow\pi^{+}\eta) 0.40 0.08 0.06 0.12±0.11+0.01+0.040.010.04-0.12\pm 0.11^{+0.01+0.04}_{-0.01-0.04} 0.14±0.07-0.14\pm 0.07
ACPA_{CP}(B0π0ηB^{0}\rightarrow\pi^{0}\eta^{{}^{\prime}}) 0.43 0.02 -0.04 0.42±0.07+0.01+0.060.010.06-0.42\pm 0.07^{+0.01+0.06}_{-0.01-0.06} -
ACPA_{CP}(B+π+ηB^{+}\rightarrow\pi^{+}\eta^{{}^{\prime}}) 0.51 0.47 0.36 0.02±0.11+0.01+0.040.010.030.02\pm 0.11^{+0.01+0.04}_{-0.01-0.03} 0.06±0.160.06\pm 0.16
ACPA_{CP}(B0K0ηB^{0}\rightarrow K^{0}\eta) -0.001 -0.05 -0.05 0.31±0.16+0.02+0.030.010.03-0.31\pm 0.16^{+0.02+0.03}_{-0.01-0.03} -
ACPA_{CP}(B+K+ηB^{+}\rightarrow K^{+}\eta) 0.05 -0.05 -0.06 0.30±0.20+0.01+0.040.010.04-0.30\pm 0.20^{+0.01+0.04}_{-0.01-0.04} 0.37±0.08-0.37\pm 0.08
ACPA_{CP}(B0K0ηB^{0}\rightarrow K^{0}\eta^{{}^{\prime}}) -0.005 0.02 0.02 0.04±0.02+0.00+0.000.000.000.04\pm 0.02^{+0.00+0.00}_{-0.00-0.00} 0.06±0.040.06\pm 0.04
ACPA_{CP}(B+K+ηB^{+}\rightarrow K^{+}\eta^{{}^{\prime}}) -0.06 -0.03 -0.02 0.003±0.016+0.001+0.0030.0010.003-0.003\pm 0.016^{+0.001+0.003}_{-0.001-0.003} 0.004±0.0110.004\pm 0.011

For the color-octet parameters and the meson pair production form factors, they cannot be calculated perturbatively in QCD because of their nonperturbative property. These parameters are treated as phenomenological parameters in this work, which can be constrained by experimental data. There are plenty of experimental data on the branching ratios and CPCP violations for BPPB\to PP decays up to now PDG2022 , which can be used to determine these nonperturbative parameters. The color-octet parameters and the meson pair production form factors can be expressed in terms of SU(3) symmetry and symmetry-breaking parameters, which are given in Tables 1 and 2. We find the fitted numerical results for these parameters that can well explain the experimental data are

c0a=(0.182±0.015)Exp[(0.60±0.02)πi],\displaystyle c_{0}^{a}=(0.182\pm 0.015)\mathrm{Exp}[(-0.60\pm 0.02)\pi i],
R11a=(0.89±0.03)Exp[(0.76±0.02)πi],\displaystyle R_{1}^{1a}=(0.89\pm 0.03)\mathrm{Exp}[(-0.76\pm 0.02)\pi i],
R21a=(0.33±0.03)Exp[(0.52±0.06)πi],\displaystyle R_{2}^{1a}=(0.33\pm 0.03)\mathrm{Exp}[(0.52\pm 0.06)\pi i], (109)
R22a=(0.45±0.04)Exp[(0.14±0.08)πi],\displaystyle R_{2}^{2a}=(0.45\pm 0.04)\mathrm{Exp}[(0.14\pm 0.08)\pi i],
R24a=(0.29±0.03)Exp[(0.47±0.08)πi].\displaystyle R_{2}^{4a}=(0.29\pm 0.03)\mathrm{Exp}[(-0.47\pm 0.08)\pi i].
c0b=(0.084±0.008)Exp[(0.57±0.02)πi],\displaystyle c_{0}^{b}=(0.084\pm 0.008)\mathrm{Exp}[(-0.57\pm 0.02)\pi i],
R11b=(0.87±0.02)Exp[(0.34±0.02)πi],\displaystyle R_{1}^{1b}=(0.87\pm 0.02)\mathrm{Exp}[(0.34\pm 0.02)\pi i],
R21b=(0.37±0.04)Exp[(0.57±0.11)πi],\displaystyle R_{2}^{1b}=(0.37\pm 0.04)\mathrm{Exp}[(-0.57\pm 0.11)\pi i], (110)
R22b=(0.26±0.03)Exp[(0.36±0.08)πi],\displaystyle R_{2}^{2b}=(0.26\pm 0.03)\mathrm{Exp}[(-0.36\pm 0.08)\pi i],
R24b=(0.37±0.03)Exp[(0.28±0.14)πi].\displaystyle R_{2}^{4b}=(0.37\pm 0.03)\mathrm{Exp}[(0.28\pm 0.14)\pi i].
c0c=(0.56±0.04)Exp[(0.68±0.02)πi],\displaystyle c_{0}^{c}=(0.56\pm 0.04)\mathrm{Exp}[(-0.68\pm 0.02)\pi i],
R11c=(0.32±0.02)Exp[(0.72±0.07)πi],\displaystyle R_{1}^{1c}=(0.32\pm 0.02)\mathrm{Exp}[(0.72\pm 0.07)\pi i],
R12c=(0.57±0.07)Exp[(0.92±0.08)πi],\displaystyle R_{1}^{2c}=(0.57\pm 0.07)\mathrm{Exp}[(0.92\pm 0.08)\pi i], (111)
R21c=(0.44±0.03)Exp[(0.43±0.10)πi].\displaystyle R_{2}^{1c}=(0.44\pm 0.03)\mathrm{Exp}[(-0.43\pm 0.10)\pi i].

The comparison of the theoretical results about the branching ratios and CPCP violations with experimental data is presented in Tables 3 and 4, where the column “LONLOWC\mathrm{LO_{NLOWC}}” shows the leading-order contributions in QCD but with NLO Wilson coefficients being used, the column “NLO” shows the main NLO contribution in QCD with the NLO Wilson coefficient used, “NLO+gggg” shows the NLO contribution in QCD plus the contribution of ggη()g^{*}g^{*}\eta^{(\prime)} effective coupling, and ”NLO+soft” shows both the contributions of NLO in QCD, the soft form factors and the color-octet contributions included, where the first errors are caused by the uncertainties of soft form factors and color-octet parameters, the second and third errors are caused by the uncertainties of the parameters in the wave functions of BB and light mesons, respectively. The difference between NLO and LONLOWC\mathrm{LO_{NLOWC}} shows the NLO corrections. Tables 3 and 4 show that the NLO corrections to branching ratios are at most up to 10% to 20% for tree-level non-color-suppressed decays. For most decay modes, the NLO corrections are only at the order of a few percent. Only for the few decay modes where the tree-level contributions are suppressed, are the NLO contributions relatively large. The contribution of the ggη()g^{*}g^{*}\eta^{(\prime)} effective coupling is generally small (see Table 4). Only after including the contributions of the soft form factors and color-octet contributions, can the theoretical results be consistent with experimental data. Tables 3 and 4 show that our results are all in good agreement with the data for both branching ratios and CPCP violations. Therefore, the ππ\pi\pi and KπK\pi puzzles are solved in a systematic way.

It is pointed out in Ref. Li-Mishima2006 that the experimental data of BρρB\to\rho\rho decays have seriously constrained the possibility of resolving the BππB\to\pi\pi puzzle in the theoretical approaches, such as the PQCD and QCDF approaches, which are based on the factorization theorem in QCD. The predictions of NLO PQCD for the branching ratios of B0ρρ±B^{0}\to\rho^{\mp}\rho^{\pm} and B±ρ±ρ0B^{\pm}\to\rho^{\pm}\rho^{0} are consistent with experimental data, and the branching ratio of B0ρ0ρ0B^{0}\to\rho^{0}\rho^{0} has been close to the experimental upper limit, while the prediction for the branching ratio of B0π0π0B^{0}\to\pi^{0}\pi^{0} is still much smaller than experimental data. The QCDF with the inclusion of the NLO jet function from the soft-collinear effective theory, however, can enhance the branching of B0π0π0B^{0}\to\pi^{0}\pi^{0} sufficiently. it exceeds the upper limit of the branching ratio for B0ρ0ρ0B^{0}\to\rho^{0}\rho^{0} decay mode Li-Mishima2006 . Then a question is whether the present approach in this work can predict the branching ratio of B0ρ0ρ0B^{0}\to\rho^{0}\rho^{0} in accord with the experimental upper limit while resolving the puzzles of BππB\to\pi\pi and KπK\pi decays simultaneously. In the approaches based on the factorization theorem, the meson wave functions are universal, and the short-distance contributions, such as the vertex corrections, the quark loop, and the magnetic penguin are similar for different final states in the decay modes. Therefore, the constraint from the data of the branching ratio of B0ρ0ρ0B^{0}\to\rho^{0}\rho^{0} decay is serious. In the present approach, the introduction of the soft cutoff scale and the inclusion of the contributions of the soft form factors, and especially the color-octet contributions, changed the contribution structure of PQCD in the earlier stage. The color-octet contribution can be final-state dependent, because it is essentially long-distance contribution. In the present work for BPPB\to PP decays, we find a set of universal parameters for the color-octet contributions for the final mesons within one SU(3) nonet by considering the SU(3) flavor symmetry and its symmetry breaking. For BPVB\to PV and VVVV decays, where VV stands for vector meson, the parameters for the color-octet contributions may be slightly different from that for PPPP final states. It may depend on the SU(3) flavor nonet of vector mesons. The serious constraint from the experimental upper limit for the branching ratio of the B0ρ0ρ0B^{0}\to\rho^{0}\rho^{0} decay can be evaded by different long-distance interactions. It is indeed interesting to see if our present approach can predict if the branching ratios and CPCP violations are consistent with experimental data with the nonperturbative inputs in the reasonable parameter space. As a preliminary investigation, we tried some values for soft parameters for BρρB\to\rho\rho decays to check what the output for the branching ratios and CPCP violations are for these decays. Table 5 is for the results of the branching ratios and CPCP violations for BρρB\to\rho\rho decays with the color-octet parameters Y8F=0.196Exp(0.453πi)Y^{8}_{F}=0.196{\rm Exp}(-0.453\pi i) and Y8M=0.201Exp(0.367πi)Y^{8}_{M}=0.201{\rm Exp}(-0.367\pi i), and the production form factor F+ρρ=0.290Exp(0.826πi)F_{+}^{\rho\rho}=0.290{\rm Exp}(-0.826\pi i). It shows that both the branching ratios and CPCP violations for BρρB\to\rho\rho decays are consistent with experimental data. The soft parameters used here can be compared with that used for BPPB\to PP decays. Table 6 is for the soft parameters for each decay mode of BPPB\to PP decays, which are obtained by using Eqs. (109)\--(111) and Tables 1 and 2. From Table 6, we can see that the soft parameters Y8F,MY^{8}_{F,M} and F+ρρF_{+}^{\rho\rho} used for BρρB\to\rho\rho decays are within the range of the relevant parameters for BPPB\to PP decays. Therefore, it is convincing that the present approach can explain the experimental data of BρρB\to\rho\rho simultaneously. The detailed study for these decays will be given elsewhere in the near future.

Table 5: Branching ratio (×106\times 10^{-6}) and direct CPCP violation of BρρB\to\rho\rho decays with soft parameters F+ρρ=0.290Exp(0.826πi)F_{+}^{\rho\rho}=0.290{\rm Exp}(-0.826\pi i), Y8F=0.196Exp(0.453πi)Y^{8}_{F}=0.196{\rm Exp}(-0.453\pi i), and Y8M=0.201Exp(0.367πi)Y^{8}_{M}=0.201{\rm Exp}(-0.367\pi i).
LONLOWC\mathrm{LO_{NLOWC}} NLO NLO+soft Data
Br(B+ρ+ρ0B^{+}\to\rho^{+}\rho^{0}) 6.96.9 6.26.2 22.222.2 24.0±1.924.0\pm 1.9
Br(B0ρ+ρB^{0}\to\rho^{+}\rho^{-}) 9.89.8 11.111.1 27.727.7 27.7±1.927.7\pm 1.9
Br(B0ρ0ρ0B^{0}\to\rho^{0}\rho^{0}) 0.310.31 0.070.07 1.081.08 0.96±0.150.96\pm 0.15
ACP(B+ρ+ρ0)A_{CP}(B^{+}\to\rho^{+}\rho^{0}) 0.000.00 0.000.00 0.000.00 0.05±0.05-0.05\pm 0.05
ACP(B0ρ+ρ)A_{CP}(B^{0}\to\rho^{+}\rho^{-}) 0.03-0.03 0.08-0.08 0.09-0.09 0.00±0.090.00\pm 0.09
ACP(B0ρ0ρ0)A_{CP}(B^{0}\to\rho^{0}\rho^{0}) 0.210.21 0.790.79 0.600.60 0.2±0.9-0.2\pm 0.9
Table 6: The soft parameters of different decay modes of BPPB\to PP decays.
      Y8FY^{8}_{F}       Y8MY^{8}_{M}       F+M1M2F_{+}^{M_{1}M_{2}}
      ππ(ηq)\pi\pi(\eta_{q})       0.182 e0.60πie^{-0.60\pi i}       0.085 e0.57piie^{-0.57pii}       0.319e0.68πie^{-0.68\pi i}
      Kπ(ηq)K\pi(\eta_{q})       0.135e0.74πie^{-0.74\pi i}       0.108e0.48πie^{-0.48\pi i}       0.265e0.58πie^{-0.58\pi i}
      πηs\pi\eta_{s}       0.154e0.96πie^{-0.96\pi i}       0.151e0.40πie^{-0.40\pi i}       0
      KηsK\eta_{s}       0.124e0.99πie^{0.99\pi i}       0.162e0.43πie^{-0.43\pi i}       0.107e0.71πie^{-0.71\pi i}
      KK¯K\bar{K}       0.139e0.84πie^{-0.84\pi i}       0.137e0.44πie^{-0.44\pi i}       0.149e0.58πie^{-0.58\pi i}

VII Summary

We study BPPB\to PP decays in the modified PQCD approach, where the wave function of BB meson obtained by solving the wave equation in the QCD inspired relativistic potential model is used. A critical soft momentum cutoff scale μc\mu_{c} is introduced. For the contributions with the scale μ>μc\mu>\mu_{c}, the decay amplitudes are calculated with the PQCD approach. For the contributions in the region of lower scale μ<μc\mu<\mu_{c}, soft form factors are introduced. The soft contributions are absorbed into these soft form factors. In addition, the color-octet states for the final mesons are considered. The color-octet contributions are included, which are essentially of long-distance property. With these soft contributions included, the branching ratios and CPCP violations are calculated. By selecting reasonable values for the input parameters, the results of our theoretical calculation for all the BPPB\to PP decay modes are consistent with experimental data.

Acknowledgements.
This work is supported in part by the National Natural Science Foundation of China under Contracts No. 12275139 and No. 11875168.

Appendix A SUDAKOV FACTOR AND ULTRAVIOLET LOGARITHMS IN QCD

The threshold factor St(x)S_{t}(x) can be parametrized as lihn2002

St(x)=21+2cΓ(3/2+c)πΓ(1+c)[x(1x)]c,S_{t}(x)=\frac{2^{1+2c}\Gamma(3/2+c)}{\sqrt{\pi}\Gamma(1+c)}[x(1-x)]^{c}, (112)

with c=0.3c=0.3.

The exponentials exp[SB(μ)]\exp[-S_{B}(\mu)], exp[SM1(μ)]\exp[-S_{M_{1}}(\mu)], and exp[SM2(μ)]\exp[-S_{M_{2}}(\mu)] are the Sudakov factor and the relevant single ultraviolet logarithms associated with the heavy and light mesons. The exponents are

SB(μ)=s(x,b,mB)1β1lnln(μ/ΛQCD)ln(1/(bΛQCD))S_{B}(\mu)=s(x,b,m_{B})-\frac{1}{\beta_{1}}\ln\frac{\ln(\mu/\Lambda_{\mbox{QCD}})}{\ln(1/(b\Lambda_{\mbox{QCD}}))} (113)
SM1(μ)\displaystyle S_{M_{1}}(\mu) =\displaystyle= s(x1,b1,mB)+s(1x1,b1,mB)\displaystyle s(x_{1},b_{1},m_{B})+s(1-x_{1},b_{1},m_{B}) (114)
1β1lnln(μ/ΛQCD)ln(1/(b1ΛQCD))\displaystyle\;\;-\frac{1}{\beta_{1}}\ln\frac{\ln(\mu/\Lambda_{\mbox{QCD}})}{\ln(1/(b_{1}\Lambda_{\mbox{QCD}}))}
SM2(μ)\displaystyle S_{M_{2}}(\mu) =\displaystyle= s(x2,b2,mB)+s(1x2,b2,mB)\displaystyle s(x_{2},b_{2},m_{B})+s(1-x_{2},b_{2},m_{B}) (115)
1β1lnln(μ/ΛQCD)ln(1/(b2ΛQCD))\displaystyle\;\;-\frac{1}{\beta_{1}}\ln\frac{\ln(\mu/\Lambda_{\mbox{QCD}})}{\ln(1/(b_{2}\Lambda_{\mbox{QCD}}))}

The exponent S(x,b,Q)S(x,b,Q) up to next-to-leading order in QCD is Li1995

s(x,b,Q)=A(1)2β1q^ln(q^b^)A(1)2β1(q^b^)+A(2)4β12(q^b^1)[A(2)4β12A(1)4β1ln(e2γE12)]ln(q^b^)\displaystyle s(x,b,Q)=\frac{A^{(1)}}{2\beta_{1}}\hat{q}\ln\left(\frac{\hat{q}}{\hat{b}}\right)-\frac{A^{(1)}}{2\beta_{1}}\left(\hat{q}-\hat{b}\right)+\frac{A^{(2)}}{4\beta_{1}^{2}}\left(\frac{\hat{q}}{\hat{b}}-1\right)-\left[\frac{A^{(2)}}{4\beta_{1}^{2}}-\frac{A^{(1)}}{4\beta_{1}}\ln\left(\frac{e^{2\gamma_{E}-1}}{2}\right)\right]\ln\left(\frac{\hat{q}}{\hat{b}}\right)
+A(1)β24β13q^[ln(2q^)+1q^ln(2b^)+1b^]+A(1)β28β13[ln2(2q^)ln2(2b^)]\displaystyle+\frac{A^{(1)}\beta_{2}}{4\beta_{1}^{3}}\hat{q}\left[\frac{\ln(2\hat{q})+1}{\hat{q}}-\frac{\ln(2\hat{b})+1}{\hat{b}}\right]+\frac{A^{(1)}\beta_{2}}{8\beta_{1}^{3}}\left[\ln^{2}(2\hat{q})-\ln^{2}(2\hat{b})\right]
+A(1)β28β13ln(e2γE12)[ln(2q^)+1q^ln(2b^)+1b^]A(1)β216β14[2ln(2q^)+3q^2ln(2b^)+3b^]\displaystyle+\frac{A^{(1)}\beta_{2}}{8\beta_{1}^{3}}\ln\left(\frac{e^{2\gamma_{E}-1}}{2}\right)\left[\frac{\ln(2\hat{q})+1}{\hat{q}}-\frac{\ln(2\hat{b})+1}{\hat{b}}\right]-\frac{A^{(1)}\beta_{2}}{16\beta_{1}^{4}}\left[\frac{2\ln(2\hat{q})+3}{\hat{q}}-\frac{2\ln(2\hat{b})+3}{\hat{b}}\right]
A(1)β216β14q^b^b^2[2ln(2b^)+1]+A(2)β22432β16q^b^b^3[9ln2(2b^)+6ln(2b^)+2]\displaystyle-\frac{A^{(1)}\beta_{2}}{16\beta_{1}^{4}}\frac{\hat{q}-\hat{b}}{\hat{b}^{2}}\left[2\ln(2\hat{b})+1\right]+\frac{A^{(2)}\beta_{2}^{2}}{432\beta_{1}^{6}}\frac{\hat{q}-\hat{b}}{\hat{b}^{3}}\left[9\ln^{2}(2\hat{b})+6\ln(2\hat{b})+2\right]
+A(2)β221728β16[18ln2(2q^)+30ln(2q^)+19q^218ln2(2b^)+30ln(2b^)+19b^2]\displaystyle+\frac{A^{(2)}\beta_{2}^{2}}{1728\beta_{1}^{6}}\left[\frac{18\ln^{2}(2\hat{q})+30\ln(2\hat{q})+19}{\hat{q}^{2}}-\frac{18\ln^{2}(2\hat{b})+30\ln(2\hat{b})+19}{\hat{b}^{2}}\right] (116)

where q^\hat{q} and b^\hat{b} are defined by

q^ln(xQ/(2ΛQCD)),b^ln(1/bΛQCD){\hat{q}}\equiv{\rm ln}\left(xQ/(\sqrt{2}\Lambda_{QCD})\right),~{}{\hat{b}}\equiv{\rm ln}(1/b\Lambda_{QCD}) (117)

The coefficients βi\beta_{i} and A(i)A^{(i)} are

β1=332nf12,β2=15319nf24,A(1)=43,\displaystyle\beta_{1}=\frac{33-2n_{f}}{12}\;,\;\;\;\beta_{2}=\frac{153-19n_{f}}{24}\;,A^{(1)}=\frac{4}{3}\;,
A(2)=679π231027nf+83β1ln(eγE2)\displaystyle A^{(2)}=\frac{67}{9}-\frac{\pi^{2}}{3}-\frac{10}{27}n_{f}+\frac{8}{3}\beta_{1}\ln\left(\frac{e^{\gamma_{E}}}{2}\right)\; (118)

and γE\gamma_{E} is the Euler constant.

Appendix B LIGHT MESON DISTRIBUTION AMPLITUDES

The transverse-momentum-dependent light meson distribution amplitudes are ϕM(x,kq)\phi_{M}(x,k_{q\perp}), ϕPM(x,kq)\phi_{P}^{M}(x,k_{q\perp}), and ϕσM(x,kq)\phi_{\sigma}^{M}(x,k_{q\perp}), where MM represents pion, kaon, or ηq,s\eta_{q,s} mesons. The transverse-momentum dependence is assumed to be a Gaussian form and appears as a factorized part from the longitudinal wave functions. Transformed into bb space, the distribution amplitudes can be written as wy2002

ϕ(x,b)=ϕ(x)exp(b24β2).\phi(x,b)=\phi(x)\exp\left(-\frac{b^{2}}{4\beta^{2}}\right). (119)

Here, we denote the bb-space distribution amplitudes as ϕM(x,b)\phi_{M}(x,b), ϕPM(x,b)\phi_{P}^{M}(x,b), and ϕσM(x,b)\phi_{\sigma}^{M}(x,b). As discussed previously in Ref. wang-yang2023 (see also Refs. wy2002 and JK93 ), we adopt β=4.0GeV1\beta=4.0\;\mathrm{GeV}^{-1} for the wave functions of pion, kaon, and ηq,s\eta_{q,s} mesons. The expressions for the twist-2 and twist-3 distribution amplitudes are given by Ball-Braun2006

ϕM(x)=6x(1x)[1+a1MC13/2(t)+a2MC23/2(t)],\phi_{M}(x)=6x(1-x)\biggl{[}1+a_{1}^{M}C_{1}^{3/2}(t)+a_{2}^{M}C_{2}^{3/2}(t)\biggr{]}, (120)
ϕPM(x)=1+a0PM+a1PMC11/2(t)+a2PMC21/2(t)+a3PMC31/2(t)+a4PMC41/2(t)+b1PMln(x)+b2PMln(1x),\begin{split}\phi_{P}^{M}(x)&=1+a_{0P}^{M}+a_{1P}^{M}C_{1}^{1/2}(t)+a_{2P}^{M}C_{2}^{1/2}(t)\\ &\quad+a_{3P}^{M}C_{3}^{1/2}(t)+a_{4P}^{M}C_{4}^{1/2}(t)\\ &\quad+b_{1P}^{M}\ln(x)+b_{2P}^{M}\ln(1-x),\\ \end{split} (121)
ϕσM(x)=6x(1x)[1+a0σM+a1σMC13/2(t)+a2σMC23/2(t)+a3σMC33/2(t)]+9x(1x)[b1σMln(x)+b2σMln(1x)],\begin{split}\phi_{\sigma}^{M}(x)&=6x(1-x)\biggl{[}1+a_{0\sigma}^{M}+a_{1\sigma}^{M}C_{1}^{3/2}(t)\\ &\quad+a_{2\sigma}^{M}C_{2}^{3/2}(t)+a_{3\sigma}^{M}C_{3}^{3/2}(t)\biggr{]}\\ &\quad+9x(1-x)\biggl{[}b_{1\sigma}^{M}\ln(x)+b_{2\sigma}^{M}\ln(1-x)\biggr{]},\\ \end{split} (122)

where tt is defined as t=2x1t=2x-1. These CC functions are Gegenbauer polynomials. The coefficients appearing in Eqs. (120)–(122), with ai(P,σ)Ma_{i(P,\sigma)}^{M} for i=1,2,3,4i=1,2,3,4 and bj(P,σ)Mb_{j(P,\sigma)}^{M} for j=1,2j=1,2, have the following values:

a1π=0,a2π=0.25±0.15,a0Pπ=0.048±0.017,a2Pπ=0.62±0.21,a4Pπ=0.089±0.071,a1Pπ=a3Pπ=0,b1Pπ=b2Pπ=0.024±0.009,a0σπ=0.034±0.014,a2σπ=0.12±0.05,a1σπ=a3σπ=0,b1σπ=b2σπ=0.016±0.006,\begin{split}&a_{1}^{\pi}=0,\quad a_{2}^{\pi}=0.25\pm 0.15,\\ &a_{0P}^{\pi}=0.048\pm 0.017,\quad a_{2P}^{\pi}=0.62\pm 0.21,\\ &a_{4P}^{\pi}=0.089\pm 0.071,\quad a_{1P}^{\pi}=a_{3P}^{\pi}=0,\\ &b_{1P}^{\pi}=b_{2P}^{\pi}=0.024\pm 0.009,\\ &a_{0\sigma}^{\pi}=0.034\pm 0.014,\quad a_{2\sigma}^{\pi}=0.12\pm 0.05,\\ &a_{1\sigma}^{\pi}=a_{3\sigma}^{\pi}=0,\quad b_{1\sigma}^{\pi}=b_{2\sigma}^{\pi}=0.016\pm 0.006,\\ \end{split} (123)

for the pion,

a1K=0.06±0.03,a2K=0.25±0.15,\displaystyle a_{1}^{K}=0.06\pm 0.03,\quad a_{2}^{K}=0.25\pm 0.15,
a0PK=0.59±0.24,a1PK=0.52±0.32,\displaystyle a_{0P}^{K}=0.59\pm 0.24,\quad a_{1P}^{K}=-0.52\pm 0.32,
a2PK=0.79±0.36,a3PK=0.18±0.20,\displaystyle a_{2P}^{K}=0.79\pm 0.36,\quad a_{3P}^{K}=0.18\pm 0.20,
a4PK=0.06±0.05,\displaystyle a_{4P}^{K}=0.06\pm 0.05,
b1PK=0.54±0.23,b2PK=0.05±0.02,\displaystyle b_{1P}^{K}=0.54\pm 0.23,\quad b_{2P}^{K}=0.05\pm 0.02,
a0σK=0.41±0.20,a1σK=0.12±0.09,\displaystyle a_{0\sigma}^{K}=0.41\pm 0.20,\quad a_{1\sigma}^{K}=-0.12\pm 0.09,
a2σK=0.12±0.06,a3σK=0.03±0.02,\displaystyle a_{2\sigma}^{K}=0.12\pm 0.06,\quad a_{3\sigma}^{K}=0.03\pm 0.02,
b1σK=0.36±0.15,b2σK=0.03±0.01,\displaystyle b_{1\sigma}^{K}=0.36\pm 0.15,\quad b_{2\sigma}^{K}=0.03\pm 0.01, (124)

for the kaon,

a1ηq=0,a2ηq=0.25±0.15,\displaystyle a_{1}^{\eta_{q}}=0,\quad a_{2}^{\eta_{q}}=0.25\pm 0.15,
a0Pηq=0.079±0.028,a2Pηq=0.95±0.33,\displaystyle a_{0P}^{\eta_{q}}=0.079\pm 0.028,\quad a_{2P}^{\eta_{q}}=0.95\pm 0.33,
a4Pηq=0.14±0.11,a1Pηq=a3Pηq=0,\displaystyle a_{4P}^{\eta_{q}}=0.14\pm 0.11,\quad a_{1P}^{\eta_{q}}=a_{3P}^{\eta_{q}}=0,
b1Pηq=b2Pηq=0.039±0.014,\displaystyle b_{1P}^{\eta_{q}}=b_{2P}^{\eta_{q}}=0.039\pm 0.014,
a0σηq=0.055±0.024,a2σηq=0.18±0.07,\displaystyle a_{0\sigma}^{\eta_{q}}=0.055\pm 0.024,\quad a_{2\sigma}^{\eta_{q}}=0.18\pm 0.07,
a1σηq=a3σηq=0,b1σηq=b2σηq=0.026±0.009,\displaystyle a_{1\sigma}^{\eta_{q}}=a_{3\sigma}^{\eta_{q}}=0,\quad b_{1\sigma}^{\eta_{q}}=b_{2\sigma}^{\eta_{q}}=0.026\pm 0.009,

for the ηq\eta_{q} meson, and

a1ηs=0,a2ηs=0.25±0.15,a0Pηs=1.13±0.41,a2Pηs=0.99±0.48,a4Pηs=0.06±0.05,a1Pηs=a3Pηs=0,b1Pηs=b2Pηs=0.56±0.20,\begin{split}&a_{1}^{\eta_{s}}=0,\quad a_{2}^{\eta_{s}}=0.25\pm 0.15,\\ &a_{0P}^{\eta_{s}}=1.13\pm 0.41,\quad a_{2P}^{\eta_{s}}=0.99\pm 0.48,\\ &a_{4P}^{\eta_{s}}=0.06\pm 0.05,\quad a_{1P}^{\eta_{s}}=a_{3P}^{\eta_{s}}=0,\\ &b_{1P}^{\eta_{s}}=b_{2P}^{\eta_{s}}=0.56\pm 0.20,\\ \end{split} (126)
a0σηs=0.79±0.34,a2σηs=0.14±0.07,a1σηs=a3σηs=0,b1σηs=b2σηs=0.38±0.14,\begin{split}&a_{0\sigma}^{\eta_{s}}=0.79\pm 0.34,\quad a_{2\sigma}^{\eta_{s}}=0.14\pm 0.07,\\ &a_{1\sigma}^{\eta_{s}}=a_{3\sigma}^{\eta_{s}}=0,\quad b_{1\sigma}^{\eta_{s}}=b_{2\sigma}^{\eta_{s}}=0.38\pm 0.14,\\ \end{split} (127)

for the ηs\eta_{s} meson. The parameters listed above are all determined at the renormalization scale of μ=1.0GeV\mu=1.0~{}\mathrm{GeV}. It is worth noting that, considering the similarity in quark composition between ηq,s\eta_{q,s} meson and pion, we employ the same expressions for ηq,s\eta_{q,s} meson parameters as for the pion, with appropriate substitutions made only for parts involving meson masses, quark masses, and decay constants. The Gegenbauer polynomials are given by

C11/2(t)=t,C21/2(t)=12(3t21),C31/2(t)=t2(5t23),C41/2(t)=18(35t430t2+3),\begin{split}&C_{1}^{1/2}(t)=t,\\ &C_{2}^{1/2}(t)=\frac{1}{2}\left(3t^{2}-1\right),\\ &C_{3}^{1/2}(t)=\frac{t}{2}\left(5t^{2}-3\right),\\ &C_{4}^{1/2}(t)=\frac{1}{8}\left(35t^{4}-30t^{2}+3\right),\\ \end{split} (128)

and

C13/2(t)=3t,C23/2(t)=32(5t21),C33/2(t)=52t(7t23),C43/2(t)=158(21t414t2+1).\begin{split}&C_{1}^{3/2}(t)=3t,\\ &C_{2}^{3/2}(t)=\frac{3}{2}\left(5t^{2}-1\right),\\ &C_{3}^{3/2}(t)=\frac{5}{2}t\left(7t^{2}-3\right),\\ &C_{4}^{3/2}(t)=\frac{15}{8}\left(21t^{4}-14t^{2}+1\right).\\ \end{split} (129)

References

  • (1) R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022).
  • (2) Y. Y. Keum, H. N. Li, and A. I. Sanda, Phys. Lett. B 504, 6 (2001).
  • (3) Y. Y. Keum, H. N. Li, and A. I. Sanda, Phys. Rev. D 63, 054008 (2001).
  • (4) C. D. Lü, K. Ukai, and M. Z. Yang, Phys. Rev. D 63, 074009 (2001).
  • (5) M. Beneke, G. Buchalla, M. Neubert, and C.T. Sachrajda, Phys. Rev. Lett. 83, 1914 (1999).
  • (6) M. Beneke, G. Buchalla, M. Neubert, and C.T. Sachrajda, Nucl. Phys. B591, 313 (2000).
  • (7) M. Beneke, G. Buchalla, M. Neubert, and C.T. Sachrajda, Nucl. Phys. B606, 245 (2001).
  • (8) M. Beneke and M. Neubert, Nucl. Phys. B675, 333 (2003).
  • (9) C.W. Bauer, S. Fleming, and M. Luke, Phys. Rev. D 63, 014006 (2000).
  • (10) C.W. Bauer, S. Fleming, D. Pirjol, and I.W. Stewart, Phys. Rev. D 63, 114020 (2001).
  • (11) C.W. Bauer and I.W. Stewart, Phys. Lett. B 516, 134 (2001).
  • (12) C.W. Bauer, D. Pirjol, and I.W. Stewart, Phys. Rev. Lett. 87, 201806 (2001).
  • (13) C.W. Bauer, D. Pirjol, and I.W. Stewart, Phys. Rev. D 65, 054022 (2002).
  • (14) C.W. Bauer, S. Fleming, Dan Pirjol, I.Z. Rothstein, and I.W. Stewart, Phys. Rev. D 66, 014017 (2002).
  • (15) H.N. Li, S. Mishima, and A.I. Sanda, Phys. Rev. D 72, 114005 (2005).
  • (16) H.N. Li and S. Mishima, Phys. Rev. D 83, 034023 (2011).
  • (17) H.N. Li and S. Mishima, Phys. Rev. D 90, 074018 (2014).
  • (18) A.J. Buras, R. Fleischer, S. Recksiegel, and F. Schwab, Eur. Phys. J. C 32, 45 (2003).
  • (19) W. Bai, M. Liu, Y.Y. Fan, W.F. Wang, S. Cheng, and Z.J. Xiao, Chin. Phys. C 38, 033101 (2014).
  • (20) X. Liu, H.N. Li, and Z.J. Xiao, Phys. Rev. D 93, 014024 (2016).
  • (21) J. Chai, S. Cheng, Y. H. Ju, D. C. Yan, C. D. L, and Z. J. Xiao, Chin. Phys. C 46, 123103 (2022).
  • (22) H. Y. Cheng, C. K. Chua, and A. Soni, Phys. Rev. D 71, 014030 (2005).
  • (23) H. Y. Cheng and C. K. Chua, Phys. Rev. D 80, 074031 (2009).
  • (24) H. Y. Cheng and C. K. Chua, Phys. Rev. D 80, 114008 (2009).
  • (25) Q. Chang, J. Sun, Y. Yang, and X. Li, Phys. Rev. D 90, 054019 (2014).
  • (26) C. K. Chua, Phys. Rev. D 97, 093004 (2018).
  • (27) V. Barger, C.W. Chiang, P. Langacker, and H.S. Lee, Phys.Lett. B 598, 218 (2004).
  • (28) S. Baek, P. Hamel, D. London, A. Datta, and D.A. Suprun, Phys. Rev. D 71, 057502 (2005).
  • (29) R. Arnowitt, B. Dutta, B. Hu, and S. Oh, Phys. Lett. B 633, 748 (2006).
  • (30) C. Kim, S. Oh, and Y.W. Yoon, Phys. Lett. B 665, 231 (2008).
  • (31) N.B. Beaudry, A. Datta, D. London, A. Rashed, and J.S. Roux, J. High Energy Phys. 01 01, (2018) 074.
  • (32) A. Datta, J. Waite, and D. Sachdeva, Phys. Rev. D 100, 055015 (2019).
  • (33) S. Lü and M.Z. Yang, Nucl. Phys. B972, 115550 (2021).
  • (34) S. Lü and M.Z. Yang, Phys. Rev. D 107, 013004 (2023).
  • (35) R.X. Wang and M.Z. Yang, Phys. Rev. D 108, 013003 (2023).
  • (36) M.Z. Yang, Eur. Phys. J. C 72, 1880 (2012).
  • (37) J.B. Liu and M.Z. Yang, J. High Energy Phys. 07, (2014) 106.
  • (38) J.B. Liu and M.Z. Yang, Phys. Rev. D 91, 094004 (2015)
  • (39) H.K. Sun and M.Z. Yang, Phys. Rev. D 95, 113001 (2017).
  • (40) H.K. Sun and M.Z. Yang, Phys. Rev. D 99, 093002 (2019).
  • (41) G. Buchalla, A.J. Buras, and M.E. Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996).
  • (42) V.M. Braun and I.E. Filyanov, Z. Phys. C 48, 239 (1990).
  • (43) P. Ball, J. High Energy Phys. 01, (1999) 010.
  • (44) M. Beneke and T. Feldmann, Nucl. Phys. B592, 3 (2001).
  • (45) Z.T. Wei and M.Z. Yang, Nucl. Phys. B 642, 263 (2002).
  • (46) Th. Feldmann, P. Kroll, and B. Stech, Phys. Rev. D 58, 114006 (1998).
  • (47) Th. Feldmann, P. Kroll, and B. Stech, Phys. Lett. B 449, 339 (1999).
  • (48) P. Ball, V.M. Braun, and A. Lenz, J. High Energy Phys. 05, (2006) 004.
  • (49) H.N. Li and H.L. Yu, Phys. Rev. D 53, 2480 (1996).
  • (50) H.N. Li and H.L. Yu, Phys. Rev. D 53, 4970 (1996).
  • (51) H.N. Li, Phys. Rev. D 66, 094010 (2002).
  • (52) D.S. Du, C.S. Kim, and Y.D. Yang, Phys. Lett. B 426, 133 (1998).
  • (53) M.R. Ahmady, E. Kou, and A. Sugamoto, Phys. Rev. D 58, 014015 (1998).
  • (54) D.S. Du and M.Z. Yang,Phys. Rev. D 57, 5332 (1998).
  • (55) T. Muta and M.Z. Yang,Phys. Rev. D 61, 054007 (2000).
  • (56) M.Z. Yang and Y.D. Yang,Nucl. Phys. B609, 469 (2001).
  • (57) D. Xu, G.N. Li, and X.G. He, Int. J. Mod. Phys. A 29, 1450011 (2014).
  • (58) X.G. He, Y.J. Shi, and W. Wang, Eur. Phys. J. C 80, 359 (2020).
  • (59) R.M. Wang, Y.X. Liu, M.Y. Wan, C. Hua, J.H. Sheng, and Y.G. Xu, Nucl. Phys. B995, 116349 (2023).
  • (60) J.A. Bailey, A. Bazavov, C. Bernard, C.M. Bouchard, C. DeTar, D. Du etet alal, Phys. Rev. D 93, 025026 (2016).
  • (61) W.G. Parrott, C. Bouchard, and C.T.H. Davies, Phys. Rev. D 107, 014510 (2023).
  • (62) P. Ball and R. Zwicky, Phys. Rev. D 71, 014015 (2005).
  • (63) H.N. Li and S. Mishima, Phys. Rev. D 73, 114014 (2006).
  • (64) H.N. Li, Phys. Rev. D 52, 3958 (1995).
  • (65) R. Kakob and P. Kroll, Phys. Lett. B 315, 463 (1993).