This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Study of bottom quark dynamics via non-prompt D0D^{0} and J/ψJ/\psi in Pb+Pb collisions at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02 TeV

Wen-Jing Xing Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China    Shu-Qing Li [email protected] School of Physics and Electronic Engineering, Jining University, Qufu, Shandong, 273155, China    Shanshan Cao [email protected] Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China    Guang-You Qin [email protected] Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOE), Central China Normal University, Wuhan, Hubei, 430079, China
Abstract

We study bottom quark energy loss via the nuclear modification factor (RAAR_{\mathrm{AA}}) and elliptic flow (v2v_{2}) of non-prompt D0D^{0} and J/ψJ/\psi in relativistic heavy-ion collisions at the LHC. The space-time profile of quark-gluon plasma is obtained from the CLVisc hydrodynamics simulation, the dynamical evolution of heavy quarks inside the color deconfined QCD medium is simulated using a linear Boltzmann transport model that combines Yukawa and string potentials of heavy-quark-medium interactions, the hadronization of heavy quarks is performed using a hybrid coalescence-fragmentation model, and the decay of BB mesons is simulated via PYTHIA. Using this numerical framework, we calculate the transverse momentum (pTp_{\mathrm{T}}) dependent RAAR_{\mathrm{AA}} and v2v_{2} of direct DD mesons, BB mesons, and non-prompt D0D^{0} and J/ψJ/\psi from BB meson decay in Pb+Pb collisions at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02 TeV. We find the mass hierarchy of the nuclear modification of prompt DD and BB mesons depends on their pTp_{\mathrm{T}}. Both RAAR_{\mathrm{AA}} and v2v_{2} of heavy flavor particles show strong pTp_{\mathrm{T}} and centrality dependences due to the interplay between parton energy loss, medium geometry and flow, and hadronization of heavy quarks. Non-prompt D0D^{0} and J/ψJ/\psi share similar patterns of RAAR_{\mathrm{AA}} and v2v_{2} to BB mesons except for a pTp_{\mathrm{T}} shift during the decay processes. Therefore, future more precise measurements on non-prompt D0D^{0} and J/ψJ/\psi can help further pin down the bottom quark dynamics inside the quark-gluon plasma.

I Introduction

The quark-gluon plasma (QGP), which consists of deconfined quarks and gluons as predicted by Quantum Chromodynamics (QCD) on the lattice, has been created in relativistic heavy-ion collisions performed at the Relativistic Heavy-Ion Collider (RHIC) and the Large Hadron Collider (LHC) Gyulassy:2004zy ; Muller:2012zq . Extensive studies have shown that the hot and dense QGP produced in these energetic nuclear collisions have two remarkable properties: small shear viscosity to entropy density ratio (or specific viscosity) Romatschke:2017ejr ; Rischke:1995ir ; Heinz:2013th ; Gale:2013da ; Huovinen:2013wma , and high opacity to the propagation of high-energy jet partons Wang:1991xy ; Gyulassy:2003mc ; Majumder:2010qh ; Qin:2015srf ; Blaizot:2015lma ; Cao:2020wlm ; Cao:2022odi .

Heavy quarks (charm and bottom quarks) are important hard probes of the QGP Dong:2019byy ; Andronic:2015wma ; He:2022ywp . They are mostly produced from the hard scatterings in the early stage of heavy-ion collisions, and then probe the entire history of the expanding QGP. During their propagation through the QGP, heavy quarks interact with the medium and lose energy via collisional and radiative processes Cao:2013ita ; Cao:2016gvr ; Xing:2019xae ; Liu:2021dpm . The energy loss of heavy quarks in the QGP can be quantified by the nuclear modification factor RAAR_{\mathrm{AA}}, defined as the ratio of the particle yield in a given centrality class in nucleus-nucleus (AA) collisions (dNAA/dpTdN_{\mathrm{AA}}/dp_{\mathrm{T}}), scaled by the average number of binary nucleon-nucleon collisions (NcollN_{\rm coll}), to the particle yield in proton-proton (pppp) collisions (dNpp/dpTdN_{pp}/dp_{\mathrm{T}}). Experimental measurements have shown that the RAAR_{\mathrm{AA}} of heavy flavor particles produced in Au+Au collisions at RHIC and Pb+Pb collisions at the LHC is significantly below unity at high pTp_{\mathrm{T}}STAR:2014wif ; CMS:2017qjw ; STAR:2018zdy , indicating substantial energy loss of heavy quarks inside the QGP medium due to their interactions with the medium constituents Gossiaux:2006yu ; Qin:2009gw ; Uphoff:2011ad ; Young:2011ug ; Alberico:2011zy ; Fochler:2013epa ; Nahrgang:2013saa ; Djordjevic:2013xoa ; Cao:2015hia ; Das:2015ana ; Song:2015ykw ; Kang:2016ofv ; Prado:2016szr ; Xu:2017obm ; Liu:2017qah ; Rapp:2018qla ; Cao:2018ews ; Li:2018izm ; Ke:2018tsh ; Li:2019wri ; Katz:2019fkc ; Li:2020kax ; Chen:2021uar ; Yang:2023rgb ; Liu:2023rfi .

Another important observable to probe the geometrical and dynamical properties of the QGP is the azimuthal anisotropy of the momentum space distribution of final state (soft and hard) hadrons Ollitrault:1992bk ; STAR:2000ekf ; STAR:2001ksn ; ALICE:2010suc ; ALICE:2011ab , which can be quantified by the Fourier coefficients of the particle distribution dN/dϕdN/d\phi in the azimuthal plane. These anisotropy coefficients can be calculated as vn=cos[n(ϕΦn)]v_{n}=\langle\cos[n(\phi-\Phi_{n})]\rangle, with Φn\Phi_{n} being the nn-th order event plane angle. For example, v2v_{2} is called elliptic flow, which mainly originates from the elliptic shape of the produced QGP matter. Quantum fluctuations of the initial state (or colliding nuclei) can also contribute to the anisotropic flow, especially for odd flow harmonics and in ultra-central collisions Alver:2010gr ; Qin:2010pf . As for heavy quarks, due to their interactions with the anisotropic QGP, the final momentum distributions of heavy quarks and their daughter hadrons are also anisotropic. At high pTp_{\mathrm{T}}, the heavy flavor hadron v2v_{2} is sensitive to the energy loss difference of heavy quarks along different paths through the QGP. At low and intermediate pTp_{\mathrm{T}}, their v2v_{2} is sensitive to the collective flow of the QGP medium, since low pTp_{\mathrm{T}} heavy quarks can pick up the QGP flow either by direct interactions with the medium through diffusive process or by coalescence with thermal light partons inside the medium during hadron formation Moore:2004tg ; He:2011qa ; Xing:2021xwc ; Plumari:2017ntm ; He:2019vgs ; Cho:2019lxb ; Cao:2019iqs ; Zhao:2023nrz . Experimental data have shown that DD mesons have positive v2v_{2} at RHIC and the LHC STAR:2017kkh ; CMS:2017vhp ; ALICE:2017pbx ; ALICE:2020iug , indicating charm quarks can build up significant collective flow through scatterings with an anisotropic QGP medium as well as the hadronization process. The magnitude of the DD meson v2v_{2} is similar to the light flavor hadron v2v_{2} at intermediate pTp_{\mathrm{T}}, indicating the relaxation time of low pTp_{\mathrm{T}} charm quarks might be comparable to or even shorter than the lifetime of the QGP.

In this work, we focus on bottom quark evolution in relativistic heavy-ion collisions. Due to their even larger mass than charm quarks, bottom quarks provide a unique probe of the QGP properties. First, they suffer much smaller cold nuclear matter effect than charm quarks Kusina:2017gkz , thus offer clean observables to study the hot nuclear matter effect. In addition, bottom quarks provide a better tool to study the “dead cone” effect which strongly depends on the mass-to-energy ratio (mQ/Em_{Q}/E) of heavy quarks Dokshitzer:2001zm ; Armesto:2003jh ; Zhang:2003wk ; Djordjevic:2003zk ; Zhang:2018nie . Therefore, at low to intermediate pTp_{\mathrm{T}}, bottom quarks are expected to experience less diffusion than charm quarks, and thus are harder to reach thermalization with QGP medium Moore:2004tg ; Xing:2021xwc ; Liu:2023rfi . Recently, ALICE, ATLAS and CMS Collaborations have measured the RAAR_{\mathrm{AA}} and v2v_{2} of non-prompt D0D^{0} and J/ψJ/\psi decayed from bottom hadrons CMS:2018bwt ; ALICE:2022tji ; ALICE:2023gjj ; ATLAS:2018xms ; ATLAS:2018hqe ; ATLAS:2020yxw ; ATLAS:2021xtw ; ALICE:2019nuy ; CMS:2023mtk ; ALICE:2023hou . Considering the large uncertainties of the current data directly on BB mesons, these measurements on non-prompt D0D^{0} and J/ψJ/\psi provide an important supplementary opportunity for studying bottom quark interaction with the QGP in relativistic heavy-ion collisions. We will report our study on the RAAR_{\mathrm{AA}} and v2v_{2} of bottom decayed D0D^{0} and J/ψJ/\psi, and compare them to results of prompt DD mesons directly produced from charm quark hadronization, in Pb+Pb collisions at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02 TeV from low to high pTp_{\mathrm{T}} regimes. The rest of this paper will be organized as follows. In Sec. II, we will present our theoretical framework to study heavy quark evolution in relativistic heavy-ion collisions. The numerical results for prompt DD mesons, BB mesons, and non-prompt D0D^{0} and J/ψJ/\psi will be presented and compared to available data at the LHC in Sec. III. Section IV will contain our summary.

II Theoretical framework: LBT-PNP model

In this work, we use our linear Boltzmann transport model that combines perturbative and non-perturbative interactions (LBT-PNP) Xing:2021xwc to simulate heavy quark scatterings through a color-deconfined medium. In the LBT model He:2015pra ; Cao:2017hhk ; Cao:2016gvr , one solves the following Boltzmann equation for the evolution of the phase space distribution of heavy quarks (denoted by “aa”) inside the QGP using the Monte-Carlo method:

Pafa(x,p)=Ea(𝒞el+𝒞inel).\displaystyle P_{a}\cdot\partial f_{a}(x,p)=E_{a}(\mathcal{C}_{\mathrm{el}}+\mathcal{C}_{\mathrm{inel}}). (1)

The right hand side includes the contributions from both elastic and inelastic scatterings between heavy quarks and constituent partons of the medium, as denoted by the collision integrals 𝒞el\mathcal{C}_{\mathrm{el}} and 𝒞inel\mathcal{C}_{\mathrm{inel}}, respectively.

To simulate elastic scatterings between heavy quarks and medium partons, one calculates the scattering rates Γabcd\Gamma_{ab\rightarrow cd} for a binary collision process a+bc+da+b\to c+d using the following formula:

Γabcd\displaystyle\Gamma_{ab\rightarrow cd} (pa,T)=γb2Ead3pb(2π)32Ebd3pc(2π)32Ecd3pd(2π)32Ed\displaystyle(\vec{p}_{a},T)=\frac{\gamma_{b}}{2E_{a}}\int\frac{d^{3}p_{b}}{(2\pi)^{3}2E_{b}}\frac{d^{3}p_{c}}{(2\pi)^{3}2E_{c}}\frac{d^{3}p_{d}}{(2\pi)^{3}2E_{d}}
×\displaystyle\times\, fb(pb,T)[1±fc(pc,T)][1±fd(pd,T)]\displaystyle f_{b}(\vec{p}_{b},T)[1\pm f_{c}(\vec{p}_{c},T)][1\pm f_{d}(\vec{p}_{d},T)]
×\displaystyle\times\, θ(s(ma+μd)2)\displaystyle\theta(s-(m_{a}+\mu_{d})^{2})
×\displaystyle\times\, (2π)4δ(4)(pa+pbpcpd)|abcd|2.\displaystyle(2\pi)^{4}\delta^{(4)}(p_{a}+p_{b}-p_{c}-p_{d})|\mathcal{M}_{ab\rightarrow cd}|^{2}. (2)

In the above equation, γb\gamma_{b} is the degeneracy factor of parton bb, fbf_{b} and fdf_{d} are thermal distributions of the medium partons, 1±f1\pm f is the Bose enhancement or Fermi suppression factor for the final states (neglected for heavy quark cc due to their dilute distribution in this work), and the θ\theta-function accounts for the thermal mass effect on medium partons, where μd\mu_{d} represents the Debye mass. In this calculation, the masses of charm and bottom quarks are taken as Mc=1.27M_{c}=1.27 GeV and Mb=4.19M_{b}=4.19 GeV, and the medium partons are taken to be massless. The key information about the microscopic elastic scattering process is contained in the matrix element abcd\mathcal{M}_{ab\rightarrow cd}.

In the LBT-PNP model Xing:2021xwc , the matrix element abcd\mathcal{M}_{ab\rightarrow cd} for elastic scatterings includes both perturbative and non-perturbative interactions between heavy quarks and medium constituents. More specifically, we use the following parameterized Cornell-type potential for the interaction between a heavy quark and a medium parton,

V(r)=VY(r)+VS(r)=43αsemdrrσemsrms.\displaystyle V(r)=V_{\mathrm{Y}}(r)+V_{\mathrm{S}}(r)=-\frac{4}{3}\alpha_{\mathrm{s}}\frac{e^{-m_{d}r}}{r}-\frac{\sigma e^{-m_{s}r}}{m_{s}}. (3)

One can see that the above potential includes both short-range Yukawa interaction and long-range color confining interaction, the later of which is also called the string term. In these two terms, αs\alpha_{\mathrm{s}} and σ\sigma are the coupling strengths for the Yukawa and string interactions respectively, mdm_{d} and msm_{s} are their corresponding screening masses, which are taken to be temperature dependent as md=a+bTm_{d}=a+bT and ms=as+bsTm_{s}=\sqrt{a_{s}+b_{s}T}. In this work, the values of the parameters αs,σ,a,b,as,bs\alpha_{\mathrm{s}},\sigma,a,b,a_{s},b_{s} are taken from Ref. Xing:2021xwc , which provides a reasonable description of the DD meson observables measured at RHIC and the LHC.

To calculate the matrix element abcd\mathcal{M}_{ab\rightarrow cd}, one takes the Fourier transformation and obtains the above Cornell-type potential in the momentum space as

V(q)=4παsCFmd2+|q|28πσ(ms2+|q|2)2,\displaystyle V(\vec{q})=-\frac{4\pi\alpha_{\mathrm{s}}C_{F}}{m_{d}^{2}+|\vec{q}|^{2}}-\frac{8\pi\sigma}{(m_{s}^{2}+|\vec{q}|^{2})^{2}}, (4)

with q\vec{q} being the momentum exchange between heavy quarks and medium constituents. To calculate the matrix element for two-body processes: QqQqQq\to Qq and QgQgQg\to Qg, in which gluons with momentum q\vec{q} are exchanged, we treat the above in-medium Cornell-type potential as the effective gluon propagator (field). Assuming a scalar interaction vertex for the string term, the scattering amplitude can be written as:

i=\displaystyle i\mathcal{M}=\, Y+S\displaystyle\mathcal{M_{\mathrm{Y}}}+\mathcal{M_{\mathrm{S}}}
=\displaystyle=\, u¯(p)γμu(p)VY(q)u¯(k)γνu(k)\displaystyle\overline{u}(p^{\prime})\gamma^{\mu}u(p)V_{\mathrm{Y}}(\vec{q})\overline{u}(k^{\prime})\gamma^{\nu}u(k)
+u¯(p)u(p)VS(q)u¯(k)u(k).\displaystyle+\overline{u}(p^{\prime})u(p)V_{\mathrm{S}}(\vec{q})\overline{u}(k^{\prime})u(k). (5)

Here, Y\mathcal{M_{\mathrm{Y}}} and S\mathcal{M_{\mathrm{S}}} represent the matrix elements for the Yukawa and string terms respectively. Note that we still use a vector interaction vertex for the Yukawa term, which can reproduce the leading-order perturbative QCD result (Combridge:1978kx, ). Since the in-medium potential represents the effective gluon propagator, the string term is only included for the tt-channel scattering, i.e., by setting |q|2=t|\vec{q}|^{2}=-t in the above potential. Note that the color information of interaction vertices has been included in the interaction potential. For the QqQqQq\rightarrow Qq scattering process, the final amplitude squared is given by:

|Qq|2\displaystyle|\mathcal{M}_{Qq}|^{2} =64π2αs29(smQ2)2+(mQ2u)2+2mQ2t(tmd2)2\displaystyle=\frac{64\pi^{2}\alpha_{\mathrm{s}}^{2}}{9}\frac{(s-m_{Q}^{2})^{2}+(m_{Q}^{2}-u)^{2}+2m_{Q}^{2}t}{(t-m_{d}^{2})^{2}}
+(8πσ)2Nc21t24mQ2t(tms2)4;\displaystyle+\frac{(8\pi\sigma)^{2}}{N_{c}^{2}-1}\frac{t^{2}-4m_{Q}^{2}t}{(t-m_{s}^{2})^{4}}; (6)

and for the QgQgQg\rightarrow Qg process, we have

|\displaystyle|\mathcal{M} |2Qg={}_{Qg}|^{2}=
64π2αs29(smQ2)(mQ2u)+2mQ2(s+mQ2)(smQ2)2\displaystyle\frac{64\pi^{2}\alpha_{\mathrm{s}}^{2}}{9}\frac{(s-m_{Q}^{2})(m_{Q}^{2}-u)+2m_{Q}^{2}(s+m_{Q}^{2})}{(s-m_{Q}^{2})^{2}}
+\displaystyle+\, 64π2αs29(smQ2)(mQ2u)+2mQ2(u+mQ2)(umQ2)2\displaystyle\frac{64\pi^{2}\alpha_{\mathrm{s}}^{2}}{9}\frac{(s-m_{Q}^{2})(m_{Q}^{2}-u)+2m_{Q}^{2}(u+m_{Q}^{2})}{(u-m_{Q}^{2})^{2}}
+\displaystyle+\, 8π2αs25mQ4+3mQ2t10mQ2u+4t2+5tu+5u2(tmd2)2\displaystyle 8\pi^{2}\alpha_{\mathrm{s}}^{2}\frac{5m_{Q}^{4}+3m_{Q}^{2}t-10m_{Q}^{2}u+4t^{2}+5tu+5u^{2}}{(t-m_{d}^{2})^{2}}
+\displaystyle+\, 8π2αs2(mQ2s)(mQ2u)(tmd2)2\displaystyle 8\pi^{2}\alpha_{\mathrm{s}}^{2}\frac{(m_{Q}^{2}-s)(m_{Q}^{2}-u)}{(t-m_{d}^{2})^{2}}
+\displaystyle+\, 16π2αs23mQ43mQ2smQ2u+s2(smQ2)(tmd2)\displaystyle 16\pi^{2}\alpha_{\mathrm{s}}^{2}\frac{3m_{Q}^{4}-3m_{Q}^{2}s-m_{Q}^{2}u+s^{2}}{(s-m_{Q}^{2})(t-m_{d}^{2})}
+\displaystyle+\, 16π2αs29mQ2(4mQ2t)(smQ2)(mQ2u)\displaystyle\frac{16\pi^{2}\alpha_{\mathrm{s}}^{2}}{9}\frac{m_{Q}^{2}(4m_{Q}^{2}-t)}{(s-m_{Q}^{2})(m_{Q}^{2}-u)}
+\displaystyle+\, 16π2αs23mQ4mQ2s3mQ2u+u2(tmd2)(umQ2)\displaystyle 16\pi^{2}\alpha_{\mathrm{s}}^{2}\frac{3m_{Q}^{4}-m_{Q}^{2}s-3m_{Q}^{2}u+u^{2}}{(t-m_{d}^{2})(u-m_{Q}^{2})}
+\displaystyle+\, CACF(8πσ)2Nc21t24mQ2t(tms2)4,\displaystyle\frac{C_{A}}{C_{F}}\frac{(8\pi\sigma)^{2}}{N_{c}^{2}-1}\frac{t^{2}-4m_{Q}^{2}t}{(t-m_{s}^{2})^{4}}, (7)

with ss, tt, uu being the Mandelstam variables. To obtain the Yukawa parts |Y|2|\mathcal{M_{\mathrm{Y}}}|^{2} in the above two expressions, we calculate |s|2|\mathcal{M}_{s}|^{2}, |u|2|\mathcal{M}_{u}|^{2}, |t|2|\mathcal{M}_{t}|^{2}, and their interference terms |st||\mathcal{M}_{s}\mathcal{M}_{t}^{*}|, |su||\mathcal{M}_{s}\mathcal{M}_{u}^{*}| and |ut||\mathcal{M}_{u}\mathcal{M}_{t}^{*}| separately, and then replace tt by tmd2t-m_{d}^{2} in the denominators. Note that the form of the |Y|2|\mathcal{M_{\mathrm{Y}}}|^{2} part in Eq. (II) appears a little different from the form given by Ref. (Combridge:1978kx, ). This is because the amplitude squared for the QgQgQg\rightarrow Qg scattering process is simplified in Ref. (Combridge:1978kx, ) by extracting a term 16π2αs2(2mQ2+t)/t-16\pi^{2}\alpha_{\mathrm{s}}^{2}(2m_{Q}^{2}+t)/t from both |st||\mathcal{M}_{s}\mathcal{M}_{t}^{*}| and |ut||\mathcal{M}_{u}\mathcal{M}_{t}^{*}|, and then combine them with |t|2|\mathcal{M}_{t}|^{2} to obtain 32π2αs2(smQ2)(mQ2u)/t232\pi^{2}\alpha_{\mathrm{s}}^{2}(s-m_{Q}^{2})(m_{Q}^{2}-u)/t^{2}. If one introduces the Debye screening mass, i.e, replace tt by tmd2t-m_{d}^{2} in the denominators, based on the form in Ref. (Combridge:1978kx, ), as shown in Refs. (Svetitsky:1987gq, ; GolamMustafa:1997id, ; Liu:2016ysz, ), the matrix element would appear different from our Yukawa part in Eq. (II). However, they are the same when mdm_{d} is set as zero.

By summing over all possible scattering channels, one can obtain the total elastic scattering rate for a heavy quark propagating through the QGP according to Eq. (II). For a given time step Δt~\Delta\tilde{t}, the probability for a heavy quark to experience elastic scatterings with the QGP constituents can be calculated as: Pela=1eΓelaΔt~P_{\mathrm{el}}^{a}=1-e^{-\Gamma_{\mathrm{el}}^{a}\Delta\tilde{t}}.

For inelastic scatterings between heavy quarks and the QGP, the scattering rate at a given time t~\tilde{t} can be obtained as follows:

Γinela(Ea,T,t~)=𝑑x𝑑l2dNgadxdl2dt~.\displaystyle\Gamma_{\mathrm{inel}}^{a}(E_{a},T,\tilde{t})=\int dxdl_{\bot}^{2}\frac{dN_{g}^{a}}{dxdl_{\bot}^{2}d\tilde{t}}. (8)

In this study, we take the higher-twist energy loss formalism Guo:2000nz ; Majumder:2009ge ; Zhang:2003wk ; Zhang:2018nie for the gluon emission spectrum off a heavy quark inside a dense nuclear medium,

dNgadxdl2dt~=2CAαsPa(x)l4q^aπ(l2+x2ma2)4sin2(t~t~i2τf).\displaystyle\frac{dN_{g}^{a}}{dxdl_{\bot}^{2}d\tilde{t}}=\frac{2C_{A}\alpha_{\mathrm{s}}P_{a}(x)l_{\bot}^{4}\hat{q}_{a}}{\pi(l_{\bot}^{2}+x^{2}m_{a}^{2})^{4}}\sin^{2}\left(\frac{\tilde{t}-\tilde{t}_{i}}{2\tau_{f}}\right). (9)

In the above two equations, EaE_{a} and mam_{a} are the energy and mass of heavy quarks, xx and ll_{\perp} represent the energy fraction and the transverse momentum of the radiated gluon with respect to the parent heavy quark, and Pa(x)P_{a}(x) is the vacuum splitting function. The jet transport coefficient q^a\hat{q}_{a} represents the average transverse momentum squared exchanged between heavy quarks and the medium constituents per unit time during the elastic scattering process. Inside the sine function, t~t~i\tilde{t}-\tilde{t}_{i} is the time accumulated from the previous emission time (t~i\tilde{t}_{i}), and τf=2Eax(1x)/(l2+x2ma2)\tau_{f}=2E_{a}x(1-x)/(l_{\bot}^{2}+x^{2}m_{a}^{2}) denotes the formation time of gluon emission. Based on the above formula, the probability for a heavy quark to experience inelastic scatterings with the QGP constituents during a time step Δt~\Delta\tilde{t} can be calculated as: Pinela=1eΓinelaΔt~P_{\mathrm{inel}}^{a}=1-e^{-\Gamma_{\mathrm{inel}}^{a}\Delta\tilde{t}}.

To include both elastic and inelastic scatterings between heavy quarks and the QGP medium, the total scattering rate can be obtained as: Γtot=Γel+Γinel\Gamma_{\mathrm{tot}}=\Gamma_{\mathrm{el}}+\Gamma_{\mathrm{inel}}. In terms of the total scattering probability, one may write out the following expression:

Ptota=1eΓtotΔt=Pela+PinelaPelaPinela,\displaystyle P_{\mathrm{tot}}^{a}=1-e^{-\Gamma_{\mathrm{tot}}\Delta t}=P_{\mathrm{el}}^{a}+P_{\mathrm{inel}}^{a}-P_{\mathrm{el}}^{a}P_{\mathrm{inel}}^{a}, (10)

where Pela(1Pinela)P_{\mathrm{el}}^{a}(1-P_{\mathrm{inel}}^{a}) can be understood as the pure elastic scattering probability, and PinelaP_{\mathrm{inel}}^{a} is the inelastic scattering probability. Following our earlier work Cao:2017hhk ; Xing:2019xae ; Xing:2021xwc , we use different values of the coupling strength αs\alpha_{\mathrm{s}} for different interaction vertices in our calculation of elastic and inelastic scatterings. For a vertex connecting to the propagating heavy quarks, we take αs=4π/[9ln(2ET/Λ2)]\alpha_{\mathrm{s}}=4\pi/[9\mathrm{ln}(2ET/\Lambda^{2})] with Λ=0.2\Lambda=0.2 GeV; for a vertex connecting to the medium partons, we use the same value as in the interaction potential V(r)V(r).

Refer to caption
Refer to caption
Figure 1: (Color online) RAAR_{\mathrm{AA}} and v2v_{2} of the prompt D0D^{0} mesons as functions of pTp_{\mathrm{T}} in 0-10%, 30-50% and 60-80% Pb+Pb collisions at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02 TeV, compared to the ALICE and CMS data for 0-10% and 30-50% centralities ALICE:2021rxa ; CMS:2017qjw ; ALICE:2020iug ; CMS:2020bnz .

To evolve heavy quarks through a realistic medium, we utilize the (3+1)-dimensional viscous hydrodynamic model CLVisc Pang:2012he ; Pang:2018zzo ; Wu:2018cpc ; Wu:2021fjf to simulate the dynamical evolution of the QGP fireball produced in relativistic heavy-ion collisions at the LHC. In the present study, we apply smooth hydrodynamic profiles for investigating heavy quarks, whose specific shear viscosity is taken to be η/s=0.16\eta/s=0.16 for the QGP produced in Pb+Pb collision at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02 TeV. The initial energy density distribution of the QGP is obtained from the Glauber model, which is also used to obtain the initial spatial distribution of heavy quarks. The momentum distribution of heavy quarks is initialized using the fixed-order-next-to-leading-log (FONLL) calculation Cacciari:2001td ; Cacciari:2012ny ; Cacciari:2015fta , where the parton distribution functions are taken from CT14NLO Dulat:2015mca , and the nuclear shadowing effect is taken from EPPS16 Eskola:2016oht at the next-to-leading-order. After their production, heavy quarks are assumed to stream freely before starting interaction with the QGP at the initial proper time of hydrodynamic evolution (τ0=0.6\tau_{0}=0.6 fm/cc). Interaction between heavy quarks and the QGP ceases when heavy quarks reach the QGP boundary, the hypersurface with Tc=165T_{\rm c}=165 MeV in this work, on which they are converted into heavy flavor hadrons via a hybrid fragmentation-coalescence model Cao:2019iqs . The decay of BB mesons into non-prompt D0D^{0} and J/ψJ/\psi is simulated by Pythia Sjostrand:2006za .

Refer to caption
Refer to caption
Figure 2: (Color online) RAAR_{\mathrm{AA}} and v2v_{2} of BB mesons as functions of pTp_{\mathrm{T}} in 0-10%, 30-50% and 60-80% Pb+Pb collisions at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02 TeV.
Refer to caption
Refer to caption
Figure 3: (Color online) RAAR_{\mathrm{AA}} and v2v_{2} of non-prompt D0D^{0} as functions of pTp_{\mathrm{T}} in 0-10%, 30-50% and 60-80% Pb+Pb collisions at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02 TeV, compared to the ALICE data for 0-10% and 30-50% centralities ALICE:2022tji ; ALICE:2023gjj ; CMS:2022vfn .
Refer to caption
Refer to caption
Figure 4: (Color online) RAAR_{\mathrm{AA}} (0-80% centrality) and v2v_{2} (10-60% centrality) of non-prompt J/ΨJ/\Psi as functions of pTp_{\mathrm{T}} in Pb+Pb collisions at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02 TeV, compared to the ATLAS and CMS data ATLAS:2018hqe ; CMS:2023mtk .
Refer to caption
Refer to caption
Figure 5: (Color online) RAAR_{\mathrm{AA}} and v2v_{2} of non-prompt J/ΨJ/\Psi as functions of pTp_{\mathrm{T}} in 0-10%, 30-50% and 60-80% Pb+Pb collisions at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02 TeV, compared to the ALICE, ATLAS and CMS data for various centralities ATLAS:2018hqe ; ALICE:2023hou ; CMS:2023mtk ; ATLAS:2018xms .
Refer to caption
Refer to caption
Figure 6: (Color online) RAAR_{\mathrm{AA}} (0-10% centrality) and v2v_{2} (30-50% centrality) of prompt D0D^{0}, BB, non-prompt D0D^{0} and non-prompt J/ΨJ/\Psi as functions of pTp_{\mathrm{T}} in Pb+Pb collisions at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02 TeV, compared to the available ALICE, ATLAS and CMS data ALICE:2021rxa ; CMS:2017qjw ; ALICE:2022tji ; ATLAS:2018hqe ; ALICE:2023hou ; ALICE:2020iug ; CMS:2020bnz ; ALICE:2023gjj ; CMS:2022vfn ; CMS:2023mtk ; ATLAS:2018xms .
Refer to caption
Refer to caption
Figure 7: (Color online) RAAR_{\mathrm{AA}} of prompt D0D^{0}, BB, non-prompt D0D^{0} and non-prompt J/ΨJ/\Psi, integrated over 1.5<pT<101.5<p_{\mathrm{T}}<10 GeV (left panel) and 9<pT<409<p_{\mathrm{T}}<40 GeV (right panel), as functions of the participant nucleon number in Pb+Pb collisions at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02 TeV, compared to the available ALICE and ATLAS data ALICE:2023hou ; ATLAS:2018hqe .
Refer to caption
Refer to caption
Figure 8: (Color online) v2v_{2} of prompt D0D^{0}, BB, non-prompt D0D^{0} and non-prompt J/ΨJ/\Psi, integrated over 1.5<pT<101.5<p_{\mathrm{T}}<10 GeV (left panel) and 6.5<pT<506.5<p_{\mathrm{T}}<50 GeV (right panel), as functions of the participant nucleon number in Pb+Pb collisions at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02 TeV, compared to the available CMS data CMS:2023mtk .

III Numerical results

In this section, we present our numerical results on the nuclear modification factor (RAAR_{\mathrm{AA}}) and elliptic flow coefficient (v2v_{2}) of non-prompt D0D^{0} and J/ψJ/\psi in Pb+Pb collisions at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02 TeV at the LHC.

Before showing results for non-prompt D0D^{0} and J/ψJ/\psi, we first show in Fig. 1 the RAAR_{\mathrm{AA}} and v2v_{2} of prompt D0D^{0} mesons as functions of transverse momentum pTp_{\mathrm{T}} in Pb+Pb collisions at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02 TeV for three different centrality classes: central (0-10%), mid-central (30-50%) and peripheral (60-80%) collisions. The ALICE and CMS data on 0-10% and 30-50% centralities are shown for comparison. Our model can provide a reasonable description of the LHC data on the D0D^{0} meson RAAR_{\mathrm{AA}} and v2v_{2}. One can see that both RAAR_{\mathrm{AA}} and v2v_{2} show strong centrality dependence. From central to mid-central to peripheral collisions, the quenching of the prompt DD mesons decreases (RAAR_{\mathrm{AA}} becomes larger at large pTp_{\mathrm{T}}) due to the decreasing system size, whereas the prompt DD meson v2v_{2} first increases due to the increasing eccentricity of QGP medium, and then decreases due to the decreasing energy loss through a smaller system. Meanwhile, both RAAR_{\mathrm{AA}} and v2v_{2} show strong pTp_{\mathrm{T}} dependence. The prompt DD meson RAAR_{\mathrm{AA}} first exhibits a bump structure at low pTp_{\mathrm{T}} and then increases with pTp_{\mathrm{T}} at high pTp_{\mathrm{T}}, whereas the prompt DD meson v2v_{2} first increases and then decreases. These structures originate from the combined effect of heavy quark spectrum, energy loss and hadronization, together with the QGP flow. At large pTp_{\mathrm{T}}, the quenching of prompt DD mesons mainly comes from charm quark energy loss inside the QGP, and the v2v_{2} of prompt DD mesons mainly results from the anisotropic energy loss along different directions through a geometrically asymmetric medium. The decreasing fractional energy loss and the flatter pTp_{\mathrm{T}} spectrum of charm quarks at high pTp_{\mathrm{T}} lead to the increasing RAAR_{\mathrm{AA}} and decreasing v2v_{2} of prompt DD mesons with pTp_{\mathrm{T}}. At low to intermediate pTp_{\mathrm{T}}, the strong non-perturbative interactions can quickly drive heavy quarks towards thermal equilibrium with the QGP, and therefore the motion of heavy quarks are strongly affected by the QGP flow. In addition, the coalescence between heavy quarks and the medium partons dominates the heavy flavor hadron formation at low to intermediate pTp_{\mathrm{T}}, which further enhances the QGP flow effect on the prompt DD meson spectrum. These lead to the flow bump of the prompt DD meson RAAR_{\mathrm{AA}}, and the increasing DD meson v2v_{2} at low pTp_{\mathrm{T}}, similar to the behaviors of light flavor hadron RAAR_{\mathrm{AA}} and v2v_{2} observed at low pTp_{\mathrm{T}}.

Figure 2 shows our prediction for the RAAR_{\mathrm{AA}} and v2v_{2} of BB mesons as functions of pTp_{\mathrm{T}} in Pb+Pb collisions at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02 TeV for 0-10%, 30-50% and 60-80% centrality classes. Here, results for BB mesons include contributions from B+B^{+} and BB^{-} in our simulation. Similar to previous results for prompt DD mesons, the BB meson RAAR_{\mathrm{AA}} and v2v_{2} also show strong centrality dependence. Moving from central to mid-central to peripheral collisions, the quenching of BB mesons becomes weaker due to the decreasing system size, while the BB meson v2v_{2} first increases and then decreases due to the combined effect of medium eccentricity and size. For the same centrality class, the BB meson RAAR_{\mathrm{AA}} is larger than the prompt DD meson RAAR_{\mathrm{AA}} at low pTp_{\mathrm{T}}, while the former is comparable to the latter or even slightly smaller than the latter at high pTp_{\mathrm{T}}. This is due to the non-trivial mass hierarchy of quark energy loss within our LBT-PNP model, as discussed in an earlier study Dang:2023tmb : bb-quarks lose less energy than cc-quarks at low pTp_{\mathrm{T}} due to the “dead cone effect” in the gluon emission process, while the former may lose more energy than the latter at high pTp_{\mathrm{T}} due to the string interaction implemented in our model. Within the same centrality class, the v2v_{2} of BB mesons is smaller than that of prompt DD mesons at low pTp_{\mathrm{T}}. At high pTp_{\mathrm{T}}, they are both small.

To further study the quenching and flow of BB mesons, Recently, ALICE, ATLAS and CMS Collaborations have measured the RAAR_{\mathrm{AA}} and v2v_{2} of non-prompt D0D^{0} and J/ψJ/\psi, decayed from bottom hadrons CMS:2018bwt ; ALICE:2022tji ; ALICE:2023gjj ; ATLAS:2018xms ; ATLAS:2018hqe ; CMS:2023mtk ; ALICE:2023hou . In Fig. 3, we show the RAAR_{\mathrm{AA}} and v2v_{2} for non-prompt D0D^{0} as functions of pTp_{\mathrm{T}} in central (0-10%), mid-central (30-50%) and peripheral (60-80%) Pb+Pb collisions at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02 TeV, compared to the ALICE and CMS data for 0-10% and 30-50% centralities. One can see that our model provides a reasonable description of the non-prompt D0D^{0} meson RAAR_{\mathrm{AA}} and v2v_{2} at high pTp_{\mathrm{T}}. At low pTp_{\mathrm{T}}, our model underestimates both RAAR_{\mathrm{AA}} and v2v_{2}, which may result from deficiencies in evaluating non-perturbative processes at low pTp_{\mathrm{T}}, including the initial heavy quark spectra, string interactions between heavy quarks and the QGP, and hadronization of heavy quarks. Similar to prompt DD and BB mesons, the RAAR_{\mathrm{AA}} and v2v_{2} of non-prompt D0D^{0} mesons here also show strong dependence on centrality. In the same centrality class, the RAAR_{\mathrm{AA}} and v2v_{2} of non-prompt D0D^{0} show similar behaviors as those of BB mesons, except for some pTp_{\mathrm{T}} shift during the decay from BB mesons to DD mesons.

In Fig. 4, we show the RAAR_{\mathrm{AA}} of non-prompt J/ψJ/\psi as a function of pTp_{\mathrm{T}} in 0-80% Pb+Pb collisions at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02 TeV and the v2v_{2} of non-prompt J/ψJ/\psi in 10-60% collisions. Our model provides a good description of the corresponding ATLAS data on RAAR_{\mathrm{AA}} and the CMS data on v2v_{2} of non-prompt J/ψJ/\psi. Both the RAAR_{\mathrm{AA}} and v2v_{2} results here are obtained from averaging over a large interval of centrality. They do not show a strong dependence on pTp_{\mathrm{T}}.

In order to investigate the centrality dependence of quenching and flow of non-prompt J/ψJ/\psi, we present in Fig. 5 the RAAR_{\mathrm{AA}} and v2v_{2} of non-prompt J/ψJ/\psi as functions of pTp_{\mathrm{T}} in central (0-10%), mid-central (30-50%) and peripheral (60-80%) Pb+Pb collisions at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02 TeV, compared to the available data from the ALICE, ATLAS and CMS collaborations. One can see that our model provides a reasonable description of the corresponding data within comparable centrality bins. Similar to previous results of prompt DD mesons, BB mesons and non-prompt D0D^{0}, the RAAR_{\mathrm{AA}} and v2v_{2} of non-prompt J/ψJ/\psi show strong centrality dependence.

In Fig. 6, we directly compare the quenching and flow between different species of heavy flavor particles presented above, left panel for the RAAR_{\mathrm{AA}} of prompt DD, BB, non-prompt D0D^{0} and non-prompt J/ψJ/\psi in central (0-10%) Pb+Pb collisions at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02 TeV, and right panel for their v2v_{2} in mid-central (30-50%) collisions, in comparison to the available ALICE, ATLAS and CMS data. As discussed earlier, the RAAR_{\mathrm{AA}} of direct DD mesons is smaller than that of BB mesons at low pTp_{\mathrm{T}}, while the inverse order is seen at high pTp_{\mathrm{T}}. This is because of the opposite mass dependences of quark energy loss at low pTp_{\mathrm{T}} and high pTp_{\mathrm{T}} within our LBT-PNP model. In mid-central collisions, the v2v_{2} of direct DD mesons appear larger than that of BB mesons. The RAAR_{\mathrm{AA}} of non-prompt D0D^{0} and non-prompt J/ψJ/\psi are smaller than that of BB mesons at low pTp_{\mathrm{T}}, but larger at high pTp_{\mathrm{T}}, due to the pTp_{\mathrm{T}} shift during the decay of BB mesons. The v2v_{2} of non-prompt D0D^{0} and non-prompt J/ψJ/\psi are smaller than that of BB mesons at low pTp_{\mathrm{T}}, but comparable at high pTp_{\mathrm{T}}. No apparent difference in RAAR_{\mathrm{AA}} and v2v_{2} is observed between non-prompt D0D^{0} and non-prompt J/ψJ/\psi due to their similar decay functions from BB mesons.

In Fig. 7, we compare the pTp_{\mathrm{T}}-integrated RAAR_{\mathrm{AA}} between prompt D0D^{0}, BB, non-prompt D0D^{0} and non-prompt J/ψJ/\psi in Pb+Pb collisions at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02 TeV, left panel for 1.5<pT<101.5<p_{\mathrm{T}}<10 GeV and right panel for 9<pT<409<p_{\mathrm{T}}<40 GeV. At higher pTp_{\mathrm{T}} region (right panel), a clear participant number (NpartN_{\mathrm{part}}), or centrality, dependence of RAAR_{\mathrm{AA}} can be seen for these heavy flavor particles: stronger energy loss of heavy quarks in more central collisions (larger NpartN_{\mathrm{part}}) leads to smaller RAAR_{\mathrm{AA}}. This trend is not apparent at low pTp_{\mathrm{T}} (left panel), where in addition to parton energy loss, the hadronization process and the QGP flow also significantly affect the final state hadron spectra. Within the pTp_{\mathrm{T}} range we explore here, the RAAR_{\mathrm{AA}} of direct DD mesons is smaller than that of BB mesons. No obvious difference is observed between BB mesons, non-prompt D0D^{0} and non-prompt J/ψJ/\psi in these pTp_{\mathrm{T}}-integrated RAAR_{\mathrm{AA}}. Since our current model underestimates the heavy flavor RAAR_{\mathrm{AA}} at low pTp_{\mathrm{T}}, as shown in previous pTp_{\mathrm{T}}-dependent RAAR_{\mathrm{AA}} results, our result on the pTp_{\mathrm{T}}-integrated RAAR_{\mathrm{AA}} of non-prompt J/ψJ/\psi here is also lower than the available data from the ALICE and ATLAS collaborations. The agreement becomes better as the pTp_{\mathrm{T}} range becomes higher.

In the end, we compare in Fig. 8 the pTp_{\mathrm{T}}-integrated v2v_{2} between prompt D0D^{0}, BB, non-prompt D0D^{0} and non-prompt J/ψJ/\psi in Pb+Pb collisions at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02 TeV, left panel for 1.5<pT<101.5<p_{\mathrm{T}}<10 GeV and right panel for 6.5<pT<506.5<p_{\mathrm{T}}<50 GeV. Moving from central to mid-central to peripheral collisions, or as NpartN_{\mathrm{part}} becomes smaller, the elliptic flow coefficients first increase and then decrease due to the combined effect of medium eccentricity and medium size. At low pTp_{\mathrm{T}}, the prompt D0D^{0} mesons have much larger v2v_{2} than BB mesons, non-prompt D0D^{0} and non-prompt J/ψJ/\psi. This difference becomes smaller at higher pTp_{\mathrm{T}}. Compared to the available data from the CMS collaboration, our model provides a reasonable description of the v2v_{2} of non-prompt J/ψJ/\psi.

IV Summary

Within the linear Boltzmann transport model that includes both string and Yukawa types of interactions between heavy quarks and the QGP, we study the dynamics of bottom quarks in Pb+Pb collisions at sNN=5.02\sqrt{s_{\mathrm{NN}}}=5.02 TeV at the LHC via the nuclear modification factors and elliptic flow coefficients of BB mesons, bottom decayed D0D^{0} and J/ψJ/\psi. Compared to direct DD mesons, BB mesons show larger RAAR_{\mathrm{AA}} at low pTp_{\mathrm{T}} but slightly smaller RAAR_{\mathrm{AA}} at high pTp_{\mathrm{T}}, indicating weaker energy loss of heavier quarks at low pTp_{\mathrm{T}} but a possible inverse order at high pTp_{\mathrm{T}} within our LBT-PNP model. Both RAAR_{\mathrm{AA}} and v2v_{2} of DD and BB mesons show strong pTp_{\mathrm{T}} and centrality dependences. At high pTp_{\mathrm{T}}, the heavy meson RAAR_{\mathrm{AA}} increases with pTp_{\mathrm{T}} due to the decreasing fractional energy loss and the flatter pTp_{\mathrm{T}} spectra of heavy quarks at higher pTp_{\mathrm{T}}. A bump structure of RAAR_{\mathrm{AA}} can be observed at low pTp_{\mathrm{T}}, resulting from the QGP flow effect and the coalescence process of heavy quark hadronization. The heavy meson v2v_{2} is driven by the anisotropic QGP flow at low pTp_{\mathrm{T}}, while driven by anisotropic energy loss through different directions at high pTp_{\mathrm{T}}, and therefore, first increases and then decreases as pTp_{\mathrm{T}} becomes larger. From central to mid-central to peripheral collisions, the heavy meson RAAR_{\mathrm{AA}} becomes larger due to weaker energy loss through a smaller QGP system. On the other hand, their v2v_{2} first increases due to larger medium eccentricity, and then decreases due to smaller medium size. Non-prompt D0D^{0} and non-prompt J/ψJ/\psi show very similar RAAR_{\mathrm{AA}} and v2v_{2} to BB mesons, except for a shift towards the lower pTp_{\mathrm{T}} region. Compared to the available ALICE, ATLAS and CMS data, our model provides a reasonable description of the nuclear modification factors and elliptic flow coefficients of prompt DD mesons, non-prompt D0D^{0} and non-prompt J/ψJ/\psi, except for some deviation at low pTp_{\mathrm{T}} due to possible inaccurate description of initial spectrum of heavy quarks, their interaction with the QGP and their hadronization process in this non-perturbative region. Therefore, studying non-prompt D0D^{0} and J/ψJ/\psi provides a supplementary way for better understanding heavy quark dynamics in relativistic heavy-ion collisions.

Acknowledgments

This work is supported in part by the National Natural Science Foundation of China (NSFC) under Grant Nos. 12225503, 11890710, 11890711, 11935007, 12175122 and 2021-867. W.-J. X. is supported in part by China Postdoctoral Science Foundation under Grant No. 2023M742099. Some of the calculations were performed in the Nuclear Science Computing Center at Central China Normal University (NSC3), Wuhan, Hubei, China.

References

  • [1] M. Gyulassy and L. McLerran, Nucl. Phys. A 750, 30 (2005), arXiv:nucl-th/0405013.
  • [2] B. Muller, J. Schukraft, and B. Wyslouch, Ann. Rev. Nucl. Part. Sci. 62, 361 (2012), arXiv:1202.3233.
  • [3] P. Romatschke and U. Romatschke, Relativistic Fluid Dynamics In and Out of Equilibrium, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2019), arXiv:1712.05815.
  • [4] D. H. Rischke, S. Bernard, and J. A. Maruhn, Nucl. Phys. A 595, 346 (1995), arXiv:nucl-th/9504018.
  • [5] U. Heinz and R. Snellings, Ann. Rev. Nucl. Part. Sci. 63, 123 (2013), arXiv:1301.2826.
  • [6] C. Gale, S. Jeon, and B. Schenke, Int. J. Mod. Phys. A 28, 1340011 (2013), arXiv:1301.5893.
  • [7] P. Huovinen, Int. J. Mod. Phys. E 22, 1330029 (2013), arXiv:1311.1849.
  • [8] X.-N. Wang and M. Gyulassy, Phys. Rev. Lett. 68, 1480 (1992).
  • [9] M. Gyulassy, I. Vitev, X.-N. Wang, and B.-W. Zhang, (2003), arXiv:nucl-th/0302077.
  • [10] A. Majumder and M. Van Leeuwen, Prog. Part. Nucl. Phys. 66, 41 (2011), arXiv:1002.2206.
  • [11] G.-Y. Qin and X.-N. Wang, Int. J. Mod. Phys. E24, 1530014 (2015), arXiv:1511.00790.
  • [12] J.-P. Blaizot and Y. Mehtar-Tani, Int. J. Mod. Phys. E 24, 1530012 (2015), arXiv:1503.05958.
  • [13] S. Cao and X.-N. Wang, Rept. Prog. Phys. 84, 024301 (2021), arXiv:2002.04028.
  • [14] S. Cao and G.-Y. Qin, Ann. Rev. Nucl. Part. Sci. 73, 205 (2023), arXiv:2211.16821.
  • [15] X. Dong, Y.-J. Lee, and R. Rapp, Ann. Rev. Nucl. Part. Sci. 69, 417 (2019), arXiv:1903.07709.
  • [16] A. Andronic et al., Eur. Phys. J. C76, 107 (2016), arXiv:1506.03981.
  • [17] M. He, H. van Hees, and R. Rapp, Prog. Part. Nucl. Phys. 130, 104020 (2023), arXiv:2204.09299.
  • [18] S. Cao, G.-Y. Qin, and S. A. Bass, Phys. Rev. C88, 044907 (2013), arXiv:1308.0617.
  • [19] S. Cao, T. Luo, G.-Y. Qin, and X.-N. Wang, Phys. Rev. C 94, 014909 (2016), arXiv:1605.06447.
  • [20] W.-J. Xing, S. Cao, G.-Y. Qin, and H. Xing, Phys. Lett. B 805, 135424 (2020), arXiv:1906.00413.
  • [21] F.-L. Liu et al., (2021), arXiv:2107.11713.
  • [22] STAR, L. Adamczyk et al., Phys. Rev. Lett. 113, 142301 (2014), arXiv:1404.6185, [Erratum: Phys.Rev.Lett. 121, 229901 (2018)].
  • [23] CMS, A. M. Sirunyan et al., Phys. Lett. B 782, 474 (2018), arXiv:1708.04962.
  • [24] STAR, J. Adam et al., Phys. Rev. C 99, 034908 (2019), arXiv:1812.10224.
  • [25] P. B. Gossiaux, V. Guiho, and J. Aichelin, J. Phys. G 32, S359 (2006).
  • [26] G.-Y. Qin and A. Majumder, Phys. Rev. Lett. 105, 262301 (2010), arXiv:0910.3016.
  • [27] J. Uphoff, O. Fochler, Z. Xu, and C. Greiner, Phys. Rev. C84, 024908 (2011), arXiv:1104.2295.
  • [28] C. Young, B. Schenke, S. Jeon, and C. Gale, Phys. Rev. C86, 034905 (2012), arXiv:1111.0647.
  • [29] W. Alberico et al., Eur. Phys. J. C71, 1666 (2011), arXiv:1101.6008.
  • [30] O. Fochler, J. Uphoff, Z. Xu, and C. Greiner, Phys. Rev. D88, 014018 (2013), arXiv:1302.5250.
  • [31] M. Nahrgang, J. Aichelin, P. B. Gossiaux, and K. Werner, Phys. Rev. C90, 024907 (2014), arXiv:1305.3823.
  • [32] M. Djordjevic and M. Djordjevic, Phys. Lett. B 734, 286 (2014), arXiv:1307.4098.
  • [33] S. Cao, G.-Y. Qin, and S. A. Bass, Phys. Rev. C92, 024907 (2015), arXiv:1505.01413.
  • [34] S. K. Das, F. Scardina, S. Plumari, and V. Greco, Phys. Lett. B 747, 260 (2015), arXiv:1502.03757.
  • [35] T. Song, H. Berrehrah, D. Cabrera, W. Cassing, and E. Bratkovskaya, Phys. Rev. C 93, 034906 (2016), arXiv:1512.00891.
  • [36] Z.-B. Kang, F. Ringer, and I. Vitev, JHEP 03, 146 (2017), arXiv:1610.02043.
  • [37] C. A. G. Prado et al., Phys. Rev. C96, 064903 (2017), arXiv:1611.02965.
  • [38] Y. Xu, J. E. Bernhard, S. A. Bass, M. Nahrgang, and S. Cao, Phys. Rev. C 97, 014907 (2018), arXiv:1710.00807.
  • [39] S. Y. F. Liu and R. Rapp, Phys. Rev. C97, 034918 (2018), arXiv:1711.03282.
  • [40] A. Beraudo et al., Nucl. Phys. A979, 21 (2018), arXiv:1803.03824.
  • [41] S. Cao et al., Phys. Rev. C99, 054907 (2019), arXiv:1809.07894.
  • [42] S. Li, C. Wang, X. Yuan, and S. Feng, Phys. Rev. C98, 014909 (2018), arXiv:1803.01508.
  • [43] W. Ke, Y. Xu, and S. A. Bass, Phys. Rev. C 98, 064901 (2018), arXiv:1806.08848.
  • [44] S. Li, C. Wang, R. Wan, and J. Liao, Phys. Rev. C 99, 054909 (2019), arXiv:1901.04600.
  • [45] R. Katz, C. A. Prado, J. Noronha-Hostler, J. Noronha, and A. A. Suaide, (2019), arXiv:1906.10768.
  • [46] S.-Q. Li, W.-J. Xing, F.-L. Liu, S. Cao, and G.-Y. Qin, Chin. Phys. C 44, 114101 (2020), arXiv:2005.03330.
  • [47] B. Chen, L. Wen, and Y. Liu, Phys. Lett. B 834, 137448 (2022), arXiv:2111.08490.
  • [48] M. Yang et al., Phys. Rev. C 107, 054917 (2023), arXiv:2302.06179.
  • [49] F.-L. Liu, X.-Y. Wu, S. Cao, G.-Y. Qin, and X.-N. Wang, (2023), arXiv:2304.08787.
  • [50] J.-Y. Ollitrault, Phys. Rev. D 46, 229 (1992).
  • [51] STAR, K. H. Ackermann et al., Phys. Rev. Lett. 86, 402 (2001), arXiv:nucl-ex/0009011.
  • [52] STAR, C. Adler et al., Phys. Rev. Lett. 87, 182301 (2001), arXiv:nucl-ex/0107003.
  • [53] ALICE, K. Aamodt et al., Phys. Rev. Lett. 105, 252302 (2010), arXiv:1011.3914.
  • [54] ALICE, K. Aamodt et al., Phys. Rev. Lett. 107, 032301 (2011), arXiv:1105.3865.
  • [55] B. Alver and G. Roland, Phys. Rev. C81, 054905 (2010), arXiv:1003.0194.
  • [56] G.-Y. Qin, H. Petersen, S. A. Bass, and B. Muller, Phys. Rev. C82, 064903 (2010), arXiv:1009.1847.
  • [57] G. D. Moore and D. Teaney, Phys. Rev. C71, 064904 (2005), hep-ph/0412346.
  • [58] M. He, R. J. Fries, and R. Rapp, Phys. Rev. C 86, 014903 (2012), arXiv:1106.6006.
  • [59] W.-J. Xing, G.-Y. Qin, and S. Cao, Phys. Lett. B 838, 137733 (2023), arXiv:2112.15062.
  • [60] S. Plumari, V. Minissale, S. K. Das, G. Coci, and V. Greco, Eur. Phys. J. C78, 348 (2018), arXiv:1712.00730.
  • [61] M. He and R. Rapp, Phys. Rev. Lett. 124, 042301 (2020), arXiv:1905.09216.
  • [62] S. Cho, K.-J. Sun, C. M. Ko, S. H. Lee, and Y. Oh, Phys. Rev. C 101, 024909 (2020), arXiv:1905.09774.
  • [63] S. Cao et al., Phys. Lett. B 807, 135561 (2020), arXiv:1911.00456.
  • [64] J. Zhao et al., (2023), arXiv:2311.10621.
  • [65] STAR, L. Adamczyk et al., Phys. Rev. Lett. 118, 212301 (2017), arXiv:1701.06060.
  • [66] CMS, A. M. Sirunyan et al., Phys. Rev. Lett. 120, 202301 (2018), arXiv:1708.03497.
  • [67] ALICE, S. Acharya et al., Phys. Rev. Lett. 120, 102301 (2018), arXiv:1707.01005.
  • [68] ALICE, S. Acharya et al., Phys. Lett. B 813, 136054 (2021), arXiv:2005.11131.
  • [69] A. Kusina, J.-P. Lansberg, I. Schienbein, and H.-S. Shao, Phys. Rev. Lett. 121, 052004 (2018), arXiv:1712.07024.
  • [70] Y. L. Dokshitzer and D. E. Kharzeev, Phys. Lett. B 519, 199 (2001), arXiv:hep-ph/0106202.
  • [71] N. Armesto, C. A. Salgado, and U. A. Wiedemann, Phys. Rev. D 69, 114003 (2004), arXiv:hep-ph/0312106.
  • [72] B.-W. Zhang, E. Wang, and X.-N. Wang, Phys. Rev. Lett. 93, 072301 (2004), arXiv:nucl-th/0309040.
  • [73] M. Djordjevic and M. Gyulassy, Nucl. Phys. A733, 265 (2004), arXiv:nucl-th/0310076.
  • [74] L. Zhang, D.-F. Hou, and G.-Y. Qin, Phys. Rev. C100, 034907 (2019), arXiv:1812.11048.
  • [75] CMS, A. M. Sirunyan et al., Phys. Rev. Lett. 123, 022001 (2019), arXiv:1810.11102.
  • [76] ALICE, S. Acharya et al., JHEP 12, 126 (2022), arXiv:2202.00815.
  • [77] ALICE, S. Acharya et al., Eur. Phys. J. C 83, 1123 (2023), arXiv:2307.14084.
  • [78] ATLAS, M. Aaboud et al., Eur. Phys. J. C 78, 784 (2018), arXiv:1807.05198.
  • [79] ATLAS, M. Aaboud et al., Eur. Phys. J. C 78, 762 (2018), arXiv:1805.04077.
  • [80] ATLAS, G. Aad et al., Phys. Lett. B 807, 135595 (2020), arXiv:2003.03565.
  • [81] ATLAS, G. Aad et al., Phys. Lett. B 829, 137077 (2022), arXiv:2109.00411.
  • [82] ALICE, S. Acharya et al., Phys. Lett. B 804, 135377 (2020), arXiv:1910.09110.
  • [83] CMS, A. Tumasyan et al., JHEP 10, 115 (2023), arXiv:2305.16928.
  • [84] ALICE, S. Acharya et al., JHEP 02, 066 (2024), arXiv:2308.16125.
  • [85] Y. He, T. Luo, X.-N. Wang, and Y. Zhu, Phys. Rev. C91, 054908 (2015), arXiv:1503.03313.
  • [86] S. Cao, T. Luo, G.-Y. Qin, and X.-N. Wang, Phys. Lett. B777, 255 (2018), arXiv:1703.00822.
  • [87] B. Combridge, Nucl. Phys. B151, 429 (1979).
  • [88] B. Svetitsky, Phys. Rev. D37, 2484 (1988).
  • [89] M. Mustafa, D. Pal, and D. Kumar Srivastava, Phys. Rev. C57, 889 (1998), arXiv:nucl-th/9706001.
  • [90] S. Y. F. Liu and R. Rapp, Eur. Phys. J. A 56, 44 (2020), arXiv:1612.09138.
  • [91] X.-F. Guo and X.-N. Wang, Phys. Rev. Lett. 85, 3591 (2000), arXiv:hep-ph/0005044.
  • [92] A. Majumder, Phys. Rev. D85, 014023 (2012), arXiv:0912.2987.
  • [93] L. Pang, Q. Wang, and X.-N. Wang, Phys. Rev. C86, 024911 (2012), arXiv:1205.5019.
  • [94] L.-G. Pang, H. Petersen, and X.-N. Wang, Phys. Rev. C 97, 064918 (2018), arXiv:1802.04449.
  • [95] X.-Y. Wu, L.-G. Pang, G.-Y. Qin, and X.-N. Wang, Phys. Rev. C 98, 024913 (2018), arXiv:1805.03762.
  • [96] X.-Y. Wu, G.-Y. Qin, L.-G. Pang, and X.-N. Wang, Phys. Rev. C 105, 034909 (2022), arXiv:2107.04949.
  • [97] M. Cacciari, S. Frixione, and P. Nason, JHEP 03, 006 (2001), arXiv:hep-ph/0102134.
  • [98] M. Cacciari et al., JHEP 10, 137 (2012), arXiv:1205.6344.
  • [99] M. Cacciari, M. L. Mangano, and P. Nason, Eur. Phys. J. C75, 610 (2015), arXiv:1507.06197.
  • [100] S. Dulat et al., Phys. Rev. D93, 033006 (2016), arXiv:1506.07443.
  • [101] K. J. Eskola, P. Paakkinen, H. Paukkunen, and C. A. Salgado, Eur. Phys. J. C77, 163 (2017), arXiv:1612.05741.
  • [102] T. Sjostrand, S. Mrenna, and P. Z. Skands, JHEP 0605, 026 (2006), arXiv:hep-ph/0603175.
  • [103] ALICE, S. Acharya et al., JHEP 01, 174 (2022), arXiv:2110.09420.
  • [104] CMS, A. M. Sirunyan et al., Phys. Lett. B 816, 136253 (2021), arXiv:2009.12628.
  • [105] CMS, A. Tumasyan et al., Phys. Lett. B 850, 138389 (2024), arXiv:2212.01636.
  • [106] Y. Dang, W.-J. Xing, S. Cao, and G.-Y. Qin, (2023), arXiv:2307.14808.