This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Studies of ZZ boson decay into double Υ\Upsilon mesons at the NLO QCD accuracy

Cong Li    Ying-Zhao Jiang    Zhan Sun sunzhan˙[email protected] Department of Physics, Guizhou Minzu University, Guiyang 550025, People’s Republic of China.
Abstract

In this paper, we employ the nonrelativistic QCD factorization to conduct a comprehensive examination of the ZZ boson decay into a pair of Υ\Upsilon mesons, achieving accuracy at the next-to-leading-order (NLO) in αs\alpha_{s}. Our calculations demonstrate that the QED diagrams are indispensable in comparison to the pure QCD diagrams, and the implementation of QCD corrections markedly enhance the QCD results, whereas it substantially diminish the QED results. To ensure consistency with the experimental methodology, we have taken into account the feed-down transitions originating from higher excited states, which exhibit significant relevance. Combining all the contributions, we arrive at the NLO prediction of ZΥ(nS)+Υ(mS)1011\mathcal{B}_{Z\to\Upsilon(nS)+\Upsilon(mS)}\sim 10^{-11}, which is notably lower than the upper limits set by CMS.

pacs:
12.38.Bx, 12.39.Jh, 14.40.Pq

I Introduction

Heavy-quarkonium production in ZZ boson decay has garnered significant interest from both theoretical and experimental physicists over the past decades z decay 1 ; z decay 2 ; z decay 3 ; z decay 4 ; z decay 5 ; z decay 6 ; z decay 7 ; z decay 8 ; z decay 9 ; z decay 10 ; z decay 11 ; z decay 12 ; z decay 13 ; z decay 14 ; z decay 15 ; z decay 16 ; z decay 17 ; z decay 18 ; z decay 19 ; z decay 20 ; z decay 21 ; z decay 22 ; z decay 23 ; z decay 24 ; z decay 25 ; z decay 26 ; z decay 27 ; z decay 28 ; z decay 29 ; z decay 30 ; z decay 31 ; z decay 32 ; z decay 33 ; z decay 34 ; z decay 35 ; z decay 36 ; z decay 37 ; z decay 38 ; z decay 39 ; z decay 40 ; z decay 41 ; z decay 42 ; z decay 43 . In the various decay channels of the ZZ boson into heavy quarkonium, the yield of double J/ψJ/\psi (or Υ\Upsilon) mesons holds a notable advantage due to the unique experimental signature arising from their subsequent decay into four muons, which can distinctly be recognized and analyzed.

In 2019, the CMS Collaboration measured the branching ratio of the ZZ boson decaying to double J/ψJ/\psi CMS:2019wch , denoted as ZJ/ψ+J/ψ<2.2×106\mathcal{B}_{Z\to J/\psi+J/\psi}<2.2\times 10^{-6}. This upper limit was recently updated to be 1.4×1061.4\times 10^{-6} by analyzing a larger sample of data CMS:2022fsq . At leading order (LO) in αs\alpha_{s}, the standard model provides a prediction of ZJ/ψ+J/ψ1012\mathcal{B}_{Z\to J/\psi+J/\psi}\sim 10^{-12} Likhoded:2017jmx , which was upgraded to 101010^{-10} by further evaluating the QED contributions resulting from the virtual-photon effects Gao:2022mwa . Recently, Li etal.et~{}al. suggested that the QCD corrections play a crucial role in enhancing the contributions from QCD diagrams and simultaneously diminishing the contributions from QED diagrams, ultimately maintaining the next-to-leading-order (NLO) results at the order of 101010^{-10} z decay 40 .

In addition to the double J/ψJ/\psi yield, the CMS group has also explored the Z boson decaying into a pair of Υ\Upsilon mesons, thereby establishing upper limits on the branching ratio CMS:2019wch ; CMS:2022fsq

ZΥ(mS)+Υ(nS)3.9×107,\displaystyle\mathcal{B}_{Z\to\Upsilon(mS)+\Upsilon(nS)}\leq 3.9\times 10^{-7},
ZΥ(1S)+Υ(1S)1.8×106.\displaystyle\mathcal{B}_{Z\to\Upsilon(1S)+\Upsilon(1S)}\leq 1.8\times 10^{-6}. (1)

By taking into account both the QCD and QED diagrams, Gao etal.et~{}al. provided an estimation of ZΥ(1S)+Υ(1S)\mathcal{B}_{Z\to\Upsilon(1S)+\Upsilon(1S)} at the LO QCD accuracy Gao:2022mwa . In light of the considerable effect that NLO QCD corrections have on double-charmonia production in ee+e^{-}e^{+} annihilation Zhang:2005cha ; Gong:2007db ; Zhang:2008gp ; Brambilla:2010cs ; Dong:2011fb ; Sun:2018rgx ; Sun:2021tma , it is prudent to investigate whether high-order terms in αs\alpha_{s} could similarly engender a significant boost in the yield of double Υ\Upsilon mesons in ZZ boson decay. To achieve this, in the present work, we will examine the decay of ZZ boson into Υ\Upsilon pair with NLO precision in αs\alpha_{s}, incorporating both QCD and QED diagrams within the nonrelativistic QCD (NRQCD) formalism NRQCD1 . Note that, the measured branching ratio of ZZ boson decay into double Υ\Upsilon mesons includes considerations for feed-down transitions. Consequently, this evaluation will also consider the impact of higher excited states.

It is noteworthy that, the considerable mass of the bb quark typically leads to a more rapidly converging perturbative series in the expansion of αs\alpha_{s} and v2v^{2}, compared to the case of the cc quark. Coupled with the significant production rates of Z bosons at the LHC, the proposed HL-LHC, or the future CEPC CEPC , the yields of double Υ\Upsilon mesons in ZZ decay would offer an excellent laboratory for probing the mechanisms governing heavy quarkonium formation.

The remainder of this paper is structured as follows: Section II provides an outline of the calculation formalism. This is followed by the presentation of phenomenological results and discussions in Section III. Finally, Section IV is dedicated to a summary.

II Calculation formalism

II.1 Theoretical Framework

As previously discussed, the CMS measurements have incorporated feed-down transitions; consequently, our calculations will assess the contributions stemming from higher excited states, including those of the Υ(mS)\Upsilon(mS) and χb(nP)\chi_{b}(nP) mesons. Within the NRQCD framework NRQCD1 ; NRQCD2 , the decay width of ZH1(bb¯)+H2(bb¯)Z\to H_{1}(b\bar{b})+H_{2}(b\bar{b}) can be factorized as

Γ=Γ^Zbb¯[n1]+bb¯[n2]𝒪H1(n1)𝒪H2(n2),\displaystyle\Gamma=\hat{\Gamma}_{Z\to b\bar{b}[n_{1}]+b\bar{b}[n_{2}]}\langle\mathcal{O}^{H_{1}}(n_{1})\rangle\langle\mathcal{O}^{H_{2}}(n_{2})\rangle, (2)

where Γ^Zbb¯[n1]+bb¯[n2]\hat{\Gamma}_{Z\to b\bar{b}[n_{1}]+b\bar{b}[n_{2}]} represents the perturbative calculable short-distance coefficients (SDCs), denoting the production of the intermediate states consisting of bb¯[n1]b\bar{b}[n_{1}] and bb¯[n2]b\bar{b}[n_{2}]. With the restriction to color-singlet contributions, we have n1=3S11n_{1}=^{3}S_{1}^{1} and n2=3S11(orPJ13)n_{2}=^{3}S_{1}^{1}(\textrm{or}~{}^{3}P_{J}^{1}) (J=0,1,2J=0,1,2).111When addressing the feed-down transitions, we exclude the evaluation of Zχb(nP)+χb(nP)Z\to\chi_{b}(nP)+\chi_{b}(n^{\prime}P). This process is anticipated to contribute ZΥ(mS)+Υ(mS)Z\to\Upsilon(mS)+\Upsilon(m^{\prime}S) through a multi-step decay, which involves at least two decay stages. The universal nonperturbative long distant matrix element (LDME) 𝒪H1(2)(n1(2))\langle\mathcal{O}^{H_{1(2)}}(n_{1(2)})\rangle stands for the probabilities of transitions from bb¯[n1(2)]b\bar{b}[n_{1(2)}] into the H1(2)H_{1(2)} meson states.

The Γ^Zbb¯[n1]+bb¯[n2]\hat{\Gamma}_{Z\to b\bar{b}[n_{1}]+b\bar{b}[n_{2}]} can further be expressed as

Γ^Zbb¯[n1]+bb¯[n2]=κ2mZ1NINs||2,\displaystyle\hat{\Gamma}_{Z\to b\bar{b}[n_{1}]+b\bar{b}[n_{2}]}=\frac{\kappa}{2m_{Z}}\frac{1}{N_{I}N_{s}}|\mathcal{M}|^{2}, (3)

where ||2|\mathcal{M}|^{2} is the squared matrix elements, 1/Ns1/N_{s} is the spin average factor of the initial ZZ boson multiplied by the identity factor NIN_{I} of the two final bb¯b\bar{b} states. For bb¯[n1]b\bar{b}[n_{1}] and bb¯[n2]b\bar{b}[n_{2}] representing the same states, NIN_{I} is set to 1/2!1/2!; however, if they are distinct states, NIN_{I} equals 1. The symbol κ\kappa denotes the factor originating from the standard two-body phase space.

Based on the framework used to handle ZJ/ψ+J/ψZ-J/\psi+J/\psi z decay 40 , we include terms up to the α3\alpha^{3} order and achieve NLO accuracy in αs\alpha_{s}. The squared matrix elements specified in Eq. (3) can subsequently be expressed as follows

|(α12αs+α12αs2)+(α32+α32αs)|2\displaystyle\bigg{|}\left(\mathcal{M}_{\alpha^{\frac{1}{2}}\alpha_{s}}+\mathcal{M}_{\alpha^{\frac{1}{2}}\alpha^{2}_{s}}\right)+\left(\mathcal{M}_{\alpha^{\frac{3}{2}}}+\mathcal{M}_{\alpha^{\frac{3}{2}}\alpha_{s}}\right)\bigg{|}^{2} (4)
=\displaystyle= |α12αs|2+2Re(α12αsα12αs2)\displaystyle\big{|}\mathcal{M}_{\alpha^{\frac{1}{2}}\alpha_{s}}\big{|}^{2}+2\textrm{Re}\left(\mathcal{M}^{*}_{\alpha^{\frac{1}{2}}\alpha_{s}}\mathcal{M}_{\alpha^{\frac{1}{2}}\alpha^{2}_{s}}\right)
+2Re(α12αsα32)+2Re(α12αsα32αs+α32α12αs2)\displaystyle+2\textrm{Re}\left(\mathcal{M}^{*}_{\alpha^{\frac{1}{2}}\alpha_{s}}\mathcal{M}_{\alpha^{\frac{3}{2}}}\right)+2\textrm{Re}\left(\mathcal{M}^{*}_{\alpha^{\frac{1}{2}}\alpha_{s}}\mathcal{M}_{\alpha^{\frac{3}{2}}\alpha_{s}}+\mathcal{M}^{*}_{\alpha^{\frac{3}{2}}}\mathcal{M}_{\alpha^{\frac{1}{2}}\alpha^{2}_{s}}\right)
+|α32|2+2Re(α32α32αs)+.\displaystyle+\big{|}\mathcal{M}_{\alpha^{\frac{3}{2}}}\big{|}^{2}+2\textrm{Re}\left(\mathcal{M}^{*}_{\alpha^{\frac{3}{2}}}\mathcal{M}_{\alpha^{\frac{3}{2}}\alpha_{s}}\right)+\cdots.

Accordingly, we decompose the SDCs into three distinct components,

Γ^=Γ^1(0,1)+Γ^2(0,1)+Γ^3(0,1),\displaystyle\hat{\Gamma}=\hat{\Gamma}^{(0,1)}_{1}+\hat{\Gamma}^{(0,1)}_{2}+\hat{\Gamma}^{(0,1)}_{3}, (5)

where

Γ^1(0)\displaystyle\hat{\Gamma}^{(0)}_{1} \displaystyle\propto |α12αs|2,\displaystyle\big{|}\mathcal{M}_{\alpha^{\frac{1}{2}}\alpha_{s}}\big{|}^{2},
Γ^1(1)\displaystyle\hat{\Gamma}^{(1)}_{1} \displaystyle\propto 2Re(α12αsα12αs2),\displaystyle 2\textrm{Re}\left(\mathcal{M}^{*}_{\alpha^{\frac{1}{2}}\alpha_{s}}\mathcal{M}_{\alpha^{\frac{1}{2}}\alpha^{2}_{s}}\right),
Γ^2(0)\displaystyle\hat{\Gamma}^{(0)}_{2} \displaystyle\propto 2Re(α12αsα32),\displaystyle 2\textrm{Re}\left(\mathcal{M}^{*}_{\alpha^{\frac{1}{2}}\alpha_{s}}\mathcal{M}_{\alpha^{\frac{3}{2}}}\right),
Γ^2(1)\displaystyle\hat{\Gamma}^{(1)}_{2} \displaystyle\propto 2Re(α12αsα32αs+α32α12αs2),\displaystyle 2\textrm{Re}\left(\mathcal{M}^{*}_{\alpha^{\frac{1}{2}}\alpha_{s}}\mathcal{M}_{\alpha^{\frac{3}{2}}\alpha_{s}}+\mathcal{M}^{*}_{\alpha^{\frac{3}{2}}}\mathcal{M}_{\alpha^{\frac{1}{2}}\alpha^{2}_{s}}\right),
Γ^3(0)\displaystyle\hat{\Gamma}^{(0)}_{3} \displaystyle\propto |α32|2,\displaystyle\big{|}\mathcal{M}_{\alpha^{\frac{3}{2}}}\big{|}^{2},
Γ^3(1)\displaystyle\hat{\Gamma}^{(1)}_{3} \displaystyle\propto 2Re(α32α32αs).\displaystyle 2\textrm{Re}\left(\mathcal{M}^{*}_{\alpha^{\frac{3}{2}}}\mathcal{M}_{\alpha^{\frac{3}{2}}\alpha_{s}}\right). (6)

The subscripts 1, 2, and 3 represent the order in α\alpha, while the superscript 0(1)0(1) denotes the terms at the LO (or NLO) level in αs\alpha_{s}.

Refer to caption
Figure 1: Representative QCD Feynman diagrams for Zbb¯[3S11]+bb¯[3S11,3PJ1]Z\to b\bar{b}[^{3}S_{1}^{1}]+b\bar{b}[^{3}S_{1}^{1},^{3}P_{J}^{1}]. Diagram (a) (α12αs{\alpha^{\frac{1}{2}}\alpha_{s}} order) is the QCD tree-level diagram. Diagrams (b)-(f) (α12αs2order)({\alpha^{\frac{1}{2}}\alpha^{2}_{s}}~{}\textrm{order}) depict the NLO QCD corrections to (a). Diagram (b) specifically represents the counter-term diagram.
Refer to caption
Figure 2: Representative QED Feynman diagrams for Zbb¯[3S11]+bb¯[3S11,3PJ1]Z\to b\bar{b}[^{3}S_{1}^{1}]+b\bar{b}[^{3}S_{1}^{1},^{3}P_{J}^{1}]. Diagrams (a,b) (α32(\alpha^{\frac{3}{2}} order) are the QCD tree-level diagrams. Diagrams (c)-(k) (α32αs\alpha^{\frac{3}{2}}\alpha_{s} order) depict the NLO QCD corrections to (a,b). Diagrams (c,g) specifically represent the counter-term diagram.

The representative Feynman diagrams of α12αs\mathcal{M}_{\alpha^{\frac{1}{2}}\alpha_{s}}, α12αs2\mathcal{M}_{\alpha^{\frac{1}{2}}\alpha^{2}_{s}}, α32\mathcal{M}_{\alpha^{\frac{3}{2}}}, and α32αs\mathcal{M}_{\alpha^{\frac{3}{2}}\alpha_{s}} are displayed in Figs. 1 and 2. Fig. 1(a) (α12αs\alpha^{\frac{1}{2}}\alpha_{s} order) demonstrates the QCD tree-level diagram (4 diagrams), whereas Figs. 1(b)-(f) elucidate the subsequent QCD NLO corrections, which comprise 56 individual one-loop diagrams and 20 counter-term diagrams. In Figs. 2(a,b) (α32\alpha^{\frac{3}{2}} order) we observe the tree-level diagrams pertinent to QED, encompassing 8 diagrams in total. Furthermore, Figs. 2(c)-(k) depict the high-order corrections in αs\alpha_{s}, including 52 one-loop diagrams and 32 counter-term diagrams.

II.2 The decay width

According to Eqs. (2) and (3), the decay width can generally be written as

Γi(0,1)=κ2mZ1NINs×ζi×𝒞i(0,1)×𝒪H1(3S11)𝒪H2(3S11,3PJ1),i=1,2,3,\displaystyle\Gamma^{\textrm{(0,1)}}_{i}=\frac{\kappa}{2m_{Z}}\frac{1}{N_{I}N_{s}}\times\zeta_{i}\times\mathcal{C}^{(0,1)}_{i}\times\langle\mathcal{O}^{H_{1}}(^{3}S_{1}^{1})\rangle\langle\mathcal{O}^{H_{2}}(^{3}S_{1}^{1},^{3}P_{J}^{1})\rangle,~{}i=1,2,3, (7)

where κ\kappa is equal to mZ216mb28πmZ\frac{\sqrt{m^{2}_{Z}-16m^{2}_{b}}}{8\pi m_{Z}} and Ns=3N_{s}=3.

For the yield of bb¯[3S11]+bb¯[3S11]b\bar{b}[^{3}S_{1}^{1}]+b\bar{b}[^{3}S_{1}^{1}], the ζi\zeta_{i} takes the following form (eb=13e_{b}=-\frac{1}{3})

ζi\displaystyle\zeta_{i} =\displaystyle= π316mb6sin2θwcos2θweb2(i1)αiαs3i,\displaystyle\frac{\pi^{3}}{16m_{b}^{6}\sin^{2}\theta_{\textrm{w}}\cos^{2}\theta_{\textrm{w}}}e^{2(i-1)}_{b}\alpha^{i}\alpha^{3-i}_{s}, (8)

while for the scenario involving bb¯[3S11]+bb¯[3PJ1]b\bar{b}[^{3}S_{1}^{1}]+b\bar{b}[^{3}P_{J}^{1}],

ζi\displaystyle\zeta_{i} =\displaystyle= π3(4sin2θw3)2144mb6sin2θwcos2θweb2(i1)αiαs3i.\displaystyle\frac{\pi^{3}(4\sin^{2}\theta_{\textrm{w}}-3)^{2}}{144m_{b}^{6}\sin^{2}\theta_{\textrm{w}}\cos^{2}\theta_{\textrm{w}}}e^{2(i-1)}_{b}\alpha^{i}\alpha^{3-i}_{s}. (9)

The LDMEs 𝒪H(3S11,3PJ1)\langle\mathcal{O}^{H}(^{3}S_{1}^{1},^{3}P_{J}^{1})\rangle can be expressed in terms of the wave functions at the origin by utilizing the following formulae

𝒪Υ(nS)(3S11)\displaystyle\langle\mathcal{O}^{\Upsilon(nS)}(^{3}S_{1}^{1})\rangle =\displaystyle= 14π|RnS(0)|2,\displaystyle\frac{1}{4\pi}|R_{nS}(0)|^{2},
𝒪χbJ(mP)(3PJ1)\displaystyle\langle\mathcal{O}^{\chi_{bJ}(mP)}(^{3}P_{J}^{1})\rangle =\displaystyle= 34π|RmP(0)|2.\displaystyle\frac{3}{4\pi}|R^{\prime}_{mP}(0)|^{2}. (10)

II.2.1 LO

The coefficients of 𝒞i(0)\mathcal{C}^{(0)}_{i} derived from the LO processes, as illustrated in Figs. 1(a) and 2(a,b) are free from divergences. In the following, we provide the expressions for various processes (rmZ24mb2r\equiv\frac{m^{2}_{Z}}{4m_{b}^{2}}).

  • 1)

    bb¯[3S11]+bb¯[3S11]b\bar{b}[^{3}S_{1}^{1}]+b\bar{b}[^{3}S_{1}^{1}]

    𝒞1(0)=65536mb2(r210r+24)9r4,\displaystyle\mathcal{C}^{(0)}_{1}=\frac{65536m_{b}^{2}(r^{2}-10r+24)}{9r^{4}},
    𝒞2(0)=16384mb2(3r+2)(r210r+24)3r4,\displaystyle\mathcal{C}^{(0)}_{2}=\frac{16384m_{b}^{2}(3r+2)(r^{2}-10r+24)}{3r^{4}},
    𝒞3(0)=1024mb2(3r+2)2(r210r+24)r4.\displaystyle\mathcal{C}^{(0)}_{3}=\frac{1024m_{b}^{2}(3r+2)^{2}(r^{2}-10r+24)}{r^{4}}. (11)
  • 2)

    bb¯[3S11]+bb¯[3PJ0]b\bar{b}[^{3}S_{1}^{1}]+b\bar{b}[^{3}P_{J}^{0}]

    𝒞1(0)=16384(r4+182r3428r2+152r+144)27r5,\displaystyle\mathcal{C}^{(0)}_{1}=\frac{16384(r^{4}+182r^{3}-428r^{2}+152r+144)}{27r^{5}},
    𝒞2(0)=32768(7r47r359r2+56r+36)9r5,\displaystyle\mathcal{C}^{(0)}_{2}=\frac{32768(7r^{4}-7r^{3}-59r^{2}+56r+36)}{9r^{5}},
    𝒞3(0)=512(9r5+2r4152r316r2+592r+288)3r5.\displaystyle\mathcal{C}^{(0)}_{3}=\frac{512(9r^{5}+2r^{4}-152r^{3}-16r^{2}+592r+288)}{3r^{5}}. (12)
  • 3)

    bb¯[3S11]+bb¯[3PJ1]b\bar{b}[^{3}S_{1}^{1}]+b\bar{b}[^{3}P_{J}^{1}]

    𝒞1(0)=131072(2r312r2+13r+18)9r5,\displaystyle\mathcal{C}^{(0)}_{1}=\frac{131072(2r^{3}-12r^{2}+13r+18)}{9r^{5}},
    𝒞2(0)=16384(19r324r288r72)3r5,\displaystyle\mathcal{C}^{(0)}_{2}=-\frac{16384(19r^{3}-24r^{2}-88r-72)}{3r^{5}},
    𝒞3(0)=1024(9r59r4+34r3+228r2+248r+144)r5.\displaystyle\mathcal{C}^{(0)}_{3}=\frac{1024(9r^{5}-9r^{4}+34r^{3}+228r^{2}+248r+144)}{r^{5}}. (13)
  • 4)

    bb¯[3S11]+bb¯[3PJ2]b\bar{b}[^{3}S_{1}^{1}]+b\bar{b}[^{3}P_{J}^{2}]

    𝒞1(0)=32768(r4+20r3188r2+308r+360)27r5,\displaystyle\mathcal{C}^{(0)}_{1}=\frac{32768(r^{4}+20r^{3}-188r^{2}+308r+360)}{27r^{5}},
    𝒞2(0)=16384(10r437r3104r2+488r+360)9r5,\displaystyle\mathcal{C}^{(0)}_{2}=\frac{16384(10r^{4}-37r^{3}-104r^{2}+488r+360)}{9r^{5}},
    𝒞3(0)=1024(9r5+11r4134r3+140r2+1336r+720)3r5.\displaystyle\mathcal{C}^{(0)}_{3}=\frac{1024(9r^{5}+11r^{4}-134r^{3}+140r^{2}+1336r+720)}{3r^{5}}. (14)

II.2.2 NLO

We utilize the dimensional regularization with D=42ϵD=4-2\epsilon to isolate the ultraviolet (UV) and infrared (IR) divergences. The on-mass-shell (OS) scheme is employed to set the renormalization constants for the bb-quark mass (ZmZ_{m}) and heavy-quark filed (Z2Z_{2}); the minimal-subtraction (MS¯\overline{MS}) scheme is adopted for the QCD-gauge coupling (ZgZ_{g}) and the gluon filed Z3Z_{3}. The renormalization constants are taken as

δZmOS\displaystyle\delta Z_{m}^{OS} =\displaystyle= 3CFαs4πNϵ[1ϵUV+43+2ln2],\displaystyle-3C_{F}\frac{\alpha_{s}}{4\pi}N_{\epsilon}\left[\frac{1}{\epsilon_{\textrm{UV}}}+\frac{4}{3}+2\textrm{ln}{2}\right],
δZ2OS\displaystyle\delta Z_{2}^{OS} =\displaystyle= CFαs4πNϵ[1ϵUV+2ϵIR+4+6ln2],\displaystyle-C_{F}\frac{\alpha_{s}}{4\pi}N_{\epsilon}\left[\frac{1}{\epsilon_{\textrm{UV}}}+\frac{2}{\epsilon_{\textrm{IR}}}+4+6\textrm{ln}{2}\right],
δZ3MS¯\displaystyle\delta Z_{3}^{\overline{MS}} =\displaystyle= αs4π(β02CA)Nϵ[1ϵUV+ln4mb2μr2],\displaystyle\frac{\alpha_{s}}{4\pi}(\beta_{0}-2C_{A})N_{\epsilon}\left[\frac{1}{\epsilon_{\textrm{UV}}}+\textrm{ln}\frac{4m_{b}^{2}}{\mu_{r}^{2}}\right],
δZgMS¯\displaystyle\delta Z_{g}^{\overline{MS}} =\displaystyle= β02αs4πNϵ[1ϵUV+ln4mb2μr2],\displaystyle-\frac{\beta_{0}}{2}\frac{\alpha_{s}}{4\pi}N_{\epsilon}\left[\frac{1}{\epsilon_{\textrm{UV}}}+\textrm{ln}\frac{4m_{b}^{2}}{\mu_{r}^{2}}\right], (15)

where Nϵ=1Γ[1ϵ](4πμr24mb2)ϵN_{\epsilon}=\frac{1}{\Gamma[1-\epsilon]}\left(\frac{4\pi\mu_{r}^{2}}{4m_{b}^{2}}\right)^{\epsilon} is an overall factor, γE\gamma_{E} is the Euler’s constant, and β0=113CA43TFnf\beta_{0}=\frac{11}{3}C_{A}-\frac{4}{3}T_{F}n_{f} is the one-loop coefficient of the β\beta function. nf(=nL+nH)n_{f}(=n_{L}+n_{H}) represents the number of the active-quark flavors; nL(=4)n_{L}(=4) and nH(=1)n_{H}(=1) denote the number of the light- and heavy-quark flavors, respectively.222In our calculations, the cc quark is considered a light quark in comparison to the bb quark; therefore, we assign nl=4n_{l}=4 for the number of light quarks (encompassing u,d,su,d,s, and cc) and nh=1n_{h}=1 for the number of heavy quarks (specifically, the bb quark). In SU(3){\rm SU}(3), the color factors are given by TF=12T_{F}=\frac{1}{2}, CF=43C_{F}=\frac{4}{3}, and CA=3C_{A}=3.

Incorporating the QCD corrections allows us to derive the coefficients for 𝒞i(1)\mathcal{C}^{(1)}_{i}, which can be formulated in a generic manner

𝒞i(0)+𝒞i(1)=𝒞i(0)[1+αsπ(ξiβ0lnμr24mb2+ainL+binH+ci)],\displaystyle\mathcal{C}^{(0)}_{i}+\mathcal{C}^{(1)}_{i}=\mathcal{C}^{(0)}_{i}\left[1+\frac{\alpha_{s}}{\pi}\left(\xi_{i}\beta_{0}\textrm{ln}\frac{\mu_{r}^{2}}{4m_{b}^{2}}+a_{i}n_{L}+b_{i}n_{H}+c_{i}\right)\right], (16)

where ξ1=12\xi_{1}=\frac{1}{2}, ξ2=14\xi_{2}=\frac{1}{4}, and ξ3=0\xi_{3}=0. The coefficients aia_{i}, bib_{i}, and cic_{i} are dependent solely on the variables of rr and mbm_{b}. Their fully analytical expressions can be found in Appendices 33-56.

To generate all the necessary Feynman diagrams and corresponding analytical amplitudes, we use the FeynArts package Hahn:2000kx . We then employ the FeynCalc package Mertig:1990an to handle the traces of the γ\gamma and color matrices, which transforms the hard scattering amplitudes into expressions with loop integrals. When calculating the DD-dimensional γ\gamma traces that incorporate a single γ5\gamma_{5} matrix and involve UV and/or IR divergences, we follow the scheme outlined in Refs. Korner:1991sx ; z decay 4 ; z decay 22 and choose the same starting point (ZZ-vertex) to write down the amplitudes without implementation of cyclicity. Subsequently, we utilize our self-written Mathematica codes that include implementations of Apart Feng:2012iq and FIRE Smirnov:2008iw to reduce these loop integrals to a set of irreducible Master Integrals (MIs). The fully-analytical expressions for these MIs can be found in Appendix 21-32. As a cross check, we simultaneously adopt the LoopTools Hahn:1998yk package to numerically evaluate these MIs, obtaining the same numerical results.

III Phenomenological results

The parameters incorporated into our calculations are defined as follows: mb=4.7±0.1m_{b}=4.7\pm 0.1 GeV, mZ=91.1876m_{Z}=91.1876 GeV, and α=1/128\alpha=1/128. Additionally, we employ the two-loop αs\alpha_{s} running coupling constant in our analysis.

The wave functions in Eq. (10) read Eichten:1995ch

|R1S(0)|2\displaystyle|R_{1S}(0)|^{2} =\displaystyle= 6.477GeV3,|R2S(0)|2=3.234GeV3,\displaystyle 6.477~{}\textrm{GeV}^{3},~{}~{}~{}~{}~{}~{}|R_{2S}(0)|^{2}=3.234~{}\textrm{GeV}^{3},
|R3S(0)|2\displaystyle|R_{3S}(0)|^{2} =\displaystyle= 2.474GeV3,\displaystyle 2.474~{}\textrm{GeV}^{3},
|R1P(0)|2\displaystyle|R^{{}^{\prime}}_{1P}(0)|^{2} =\displaystyle= 1.417GeV5,|R2P(0)|2=1.653GeV5,\displaystyle 1.417~{}\textrm{GeV}^{5},~{}~{}~{}~{}~{}~{}|R^{{}^{\prime}}_{2P}(0)|^{2}=1.653~{}\textrm{GeV}^{5},
|R3P(0)|2\displaystyle|R^{{}^{\prime}}_{3P}(0)|^{2} =\displaystyle= 1.794GeV5.\displaystyle 1.794~{}\textrm{GeV}^{5}. (17)

The branching ratios of diverse excited bottomonium states transitioning to lower energy states are documented in Refs. Br1 ; Br2 ; Br3 ; PDG .

Table 1: SDCs (in unit: 101210^{-12} GeV5\textrm{GeV}^{-5}) corresponding to the process Zbb¯[3S11]+bb¯[3S11]Z\to b\bar{b}[^{3}S_{1}^{1}]+b\bar{b}[^{3}S_{1}^{1}] with mb=4.7m_{b}=4.7 GeV and μr=mZ2\mu_{r}=\frac{m_{Z}}{2}. Γ^totalLO\hat{\Gamma}^{\textrm{LO}}_{\textrm{total}} incorporates the individual contributions of Γ^1(0)\hat{\Gamma}_{1}^{(0)}, Γ^2(0)\hat{\Gamma}_{2}^{(0)}, and Γ^3(0)\hat{\Gamma}_{3}^{(0)}, while Γ^totalNLO\hat{\Gamma}^{\textrm{NLO}}_{\textrm{total}} refers to the combined sum of the contributions of Γ^1,2,3(0,1)\hat{\Gamma}_{1,2,3}^{(0,1)}.
Γ^1(0)\hat{\Gamma}^{(0)}_{1} Γ^1(1)\hat{\Gamma}^{(1)}_{1} Γ^2(0)\hat{\Gamma}^{(0)}_{2} Γ^2(1)\hat{\Gamma}^{(1)}_{2} Γ^3(0)\hat{\Gamma}^{(0)}_{3} Γ^3(1)\hat{\Gamma}^{(1)}_{3} Γ^totalLO\hat{\Gamma}^{\textrm{LO}}_{\textrm{total}} Γ^totalNLO\hat{\Gamma}^{\textrm{NLO}}_{\textrm{total}}
165.2165.2 244.9244.9 229.4229.4 134.4134.4 79.6779.67 24.79-24.79 474.3474.3 828.8828.8
Table 2: SDCs (in unit: 101210^{-12} GeV7\textrm{GeV}^{-7}) corresponding to the process Zbb¯[3S11]+bb¯[3PJ1]Z\to b\bar{b}[^{3}S_{1}^{1}]+b\bar{b}[^{3}P_{J}^{1}] with mb=4.7m_{b}=4.7 GeV and μr=mZ2\mu_{r}=\frac{m_{Z}}{2}. Γ^totalLO\hat{\Gamma}^{\textrm{LO}}_{\textrm{total}} incorporates the individual contributions of Γ^1(0)\hat{\Gamma}_{1}^{(0)}, Γ^2(0)\hat{\Gamma}_{2}^{(0)}, and Γ^3(0)\hat{\Gamma}_{3}^{(0)}, while Γ^totalNLO\hat{\Gamma}^{\textrm{NLO}}_{\textrm{total}} refers to the combined sum of the contributions of Γ^1,2,3(0,1)\hat{\Gamma}_{1,2,3}^{(0,1)}.
Γ^1(0)\hat{\Gamma}^{(0)}_{1} Γ^1(1)\hat{\Gamma}^{(1)}_{1} Γ^2(0)\hat{\Gamma}^{(0)}_{2} Γ^2(1)\hat{\Gamma}^{(1)}_{2} Γ^3(0)\hat{\Gamma}^{(0)}_{3} Γ^3(1)\hat{\Gamma}^{(1)}_{3} Γ^totalLO\hat{\Gamma}^{\textrm{LO}}_{\textrm{total}} Γ^totalNLO\hat{\Gamma}^{\textrm{NLO}}_{\textrm{total}}
J=0J=0 92.1292.12 81.4281.42 8.6318.631 3.3583.358 0.3230.323 0.070-0.070 101.1101.1 185.8185.8
J=1J=1 15.2615.26 10.8410.84 0.373-0.373 2.2822.282 1.9161.916 0.499-0.499 16.8016.80 29.4229.42
J=2J=2 76.0876.08 15.6115.61 5.9855.985 0.700-0.700 0.6520.652 0.413-0.413 82.7282.72 97.2197.21

Before proceeding further, let us first scrutinize the SDCs. Inspecting the data in Tables 1 and 2, we find

  • 1)

    In the production of double bb¯[3S11]b\bar{b}[^{3}S_{1}^{1}] states, considering the LO level in αs\alpha_{s}, the inclusion of Γ^2,3(0)\hat{\Gamma}_{2,3}^{(0)} enhances the pure QCD results, denoted as Γ^1(0)\hat{\Gamma}_{1}^{(0)}, by approximately a factor of 2. When QCD corrections are incorporated, the QCD results are further augmented by about 1.5 times, as indicated by the ratio Γ^1(1)/Γ^1(0)\hat{\Gamma}_{1}^{(1)}/\hat{\Gamma}_{1}^{(0)}. However, high-order terms in αs\alpha_{s} significantly reduce the QED results, with (Γ^3(1)+Γ^3(0))/Γ^3(0)(\hat{\Gamma}_{3}^{(1)}+\hat{\Gamma}_{3}^{(0)})/\hat{\Gamma}_{3}^{(0)} being approximately 70%70\%. Due to the interference between QCD and QED results, Γ^2(0)\hat{\Gamma}_{2}^{(0)} experience a 40%40\% enhancement when QCD corrections are considered, as reflected in the ratio Γ^2(1)/Γ^2(0)\hat{\Gamma}_{2}^{(1)}/\hat{\Gamma}_{2}^{(0)}.

  • 2)

    Regarding the bb¯[3S11]b\bar{b}[^{3}S_{1}^{1}] yield associated with bb¯[3PJ1]b\bar{b}[^{3}P_{J}^{1}], the LO SDCs Γ^2,3(0)\hat{\Gamma}_{2,3}^{(0)} amplify Γ^1(0)\hat{\Gamma}_{1}^{(0)} by approximately ten percents. With the inclusion of QCD corrections, Γ^1(1)\hat{\Gamma}_{1}^{(1)} significantly enhances the Γ^1(0)\hat{\Gamma}_{1}^{(0)} for the bb¯[3P0,11]b\bar{b}[^{3}P_{0,1}^{1}] process; however, the enhancement is milder for bb¯[3P21]b\bar{b}[^{3}P_{2}^{1}]. In terms of QED processes, Γ^3(1)\hat{\Gamma}_{3}^{(1)} slightly diminishes the LO SDC Γ^3(0)\hat{\Gamma}_{3}^{(0)} for bb¯[3P0,11]b\bar{b}[^{3}P_{0,1}^{1}], while it substantially reduces that for bb¯[3P21]b\bar{b}[^{3}P_{2}^{1}]. Consequently, due to the combined influence of enhancement and reduction effects, the QCD corrections (Γ^2(1)\hat{\Gamma}_{2}^{(1)}) have a substantial impact on Γ^2(0)\hat{\Gamma}_{2}^{(0)} corresponding to bb¯[3P0,11]b\bar{b}[^{3}P_{0,1}^{1}], whereas the effect is more moderate for bb¯[3P21]b\bar{b}[^{3}P_{2}^{1}].

The ratio Γ^totalNLO/Γ^totalLO\hat{\Gamma}^{\textrm{NLO}}_{\textrm{total}}/\hat{\Gamma}^{\textrm{LO}}_{\textrm{total}} in Tables 1 and 2 suggests that QCD corrections can substantially enhance the LO results, underscoring the importance of our newly-calculated higher order terms in αs\alpha_{s}.

Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 3: SDCs corresponding to Zbb¯[3S11]+bb¯[3S11,3PJ1]Z\to b\bar{b}[^{3}S_{1}^{1}]+b\bar{b}[^{3}S_{1}^{1},^{3}P_{J}^{1}] with respect to the renormalization scale μr\mu_{r}. The bb-quark mass is fixed at mb=4.7m_{b}=4.7 GeV. Γ^total\hat{\Gamma}_{\textrm{total}} denotes the collected sum of the contributions of Γ^1,2,3(0,1)\hat{\Gamma}_{1,2,3}^{(0,1)}.

To illustrate the relative importance of the QCD and QED contributions, along with their interference effects, we plot Γ^0,1,2\hat{\Gamma}_{0,1,2} as a function of the renormalization scale in Fig. 3.

Table 3: Decay widths of ZΥ(mS)+Υ(nS)Z\to\Upsilon(mS)+\Upsilon(nS) (in unit: 101210^{-12}GeV) with mb=4.7m_{b}=4.7 GeV and μr=mZ/2\mu_{r}=m_{Z}/2. The subscripts “dir” and “fd” denote direct-production processes and feed-down effects, respectively. All predictions are composed of contributions from Γ1,2,3(0,1)\Gamma_{1,2,3}^{(0,1)}.
Γdir\Gamma_{\textrm{dir}} Γfd\Gamma_{\textrm{fd}} Γtotal\Gamma_{\textrm{total}} theo{\mathcal{B}}_{\textrm{theo}} exp\mathcal{B}_{\textrm{exp}} CMS:2022fsq
1S+1S1S+1S 110.1110.1 43.5843.58 153.7153.7 6.158×10116.158\times 10^{-11} <1.8×106<1.8\times 10^{-6}
1S+2S1S+2S 109.9109.9 29.1629.16 139.1139.1 5.575×10115.575\times 10^{-11}
1S+3S1S+3S 84.1084.10 17.7817.78 101.9101.9 4.083×10114.083\times 10^{-11}
2S+2S2S+2S 27.4527.45 7.3297.329 34.7834.78 1.394×10111.394\times 10^{-11} <3.9×107<3.9\times 10^{-7}
2S+3S2S+3S 41.9941.99 5.0005.000 46.9946.99 1.883×10111.883\times 10^{-11}
3S+3S3S+3S 16.0616.06 0.8380.838 16.9016.90 6.773×10126.773\times 10^{-12}

In Table 3, we confront our predictions with the CMS measurements. The subscripts “dir” and “fd” signify direct-production processes and feed-down effects, respectively. The ratio Γfd/Γdir\Gamma_{\textrm{fd}}/\Gamma_{\textrm{dir}} reveals that the feed-down contributions from the transitions of excited bottomonium states are crucial for ZZ boson decay into a pair of Υ\Upsilon mesons. For example, in the case of Υ(1S)+Υ(1S)\Upsilon(1S)+\Upsilon(1S), feed-down contributions constitute approximately 30%30\% of the total results. Comparisons with experimental data indicate that the NLO predictions derived from the NRQCD framework are markedly below the upper threshold set by CMS.

Finally, we examine the uncertainties in our predictions resulting from variations in the bb-quark mass mbm_{b} and the renormalization scale μr\mu_{r}.

ZΥ(1S)+Υ(1S)\displaystyle\mathcal{B}_{Z\to\Upsilon(1S)+\Upsilon(1S)} =\displaystyle= (6.1580.2360.767+0.254+2.868)×1011,\displaystyle(6.158^{+0.254+2.868}_{-0.236-0.767})\times 10^{-11},
ZΥ(1S)+Υ(2S)\displaystyle\mathcal{B}_{Z\to\Upsilon(1S)+\Upsilon(2S)} =\displaystyle= (5.5750.2160.695+0.233+2.586)×1011,\displaystyle(5.575^{+0.233+2.586}_{-0.216-0.695})\times 10^{-11},
ZΥ(1S)+Υ(3S)\displaystyle\mathcal{B}_{Z\to\Upsilon(1S)+\Upsilon(3S)} =\displaystyle= (4.0830.1560.509+0.168+1.905)×1011,\displaystyle(4.083^{+0.168+1.905}_{-0.156-0.509})\times 10^{-11},
ZΥ(2S)+Υ(2S)\displaystyle\mathcal{B}_{Z\to\Upsilon(2S)+\Upsilon(2S)} =\displaystyle= (1.3940.0540.174+0.059+0.647)×1011,\displaystyle(1.394^{+0.059+0.647}_{-0.054-0.174})\times 10^{-11},
ZΥ(2S)+Υ(3S)\displaystyle\mathcal{B}_{Z\to\Upsilon(2S)+\Upsilon(3S)} =\displaystyle= (1.8830.0730.235+0.078+0.877)×1011,\displaystyle(1.883^{+0.078+0.877}_{-0.073-0.235})\times 10^{-11},
ZΥ(3S)+Υ(3S)\displaystyle\mathcal{B}_{Z\to\Upsilon(3S)+\Upsilon(3S)} =\displaystyle= (6.7730.2580.844+0.277+3.173)×1012,\displaystyle(6.773^{+0.277+3.173}_{-0.258-0.844})\times 10^{-12}, (18)

where the uncertainties listed in the first column stem from fluctuations in the value of mbm_{b} between 4.64.6 to 4.84.8 GeV, centered around 4.7 GeV, whereas those in the second column result from adjustments to μr\mu_{r} ranging from 2mb2m_{b} to mZm_{Z} around mZ/2m_{Z}/2. The above results suggest that a 0.1 GeV variation in mbm_{b} around 4.7 GeV lead to a modest change in predictions; however, adjusting μr\mu_{r} from 2mb2m_{b} to mZm_{Z}, particularly around mZ/2m_{Z}/2, significantly affects the predictions.

Note that, in ZZ boson decay into double Υ\Upsilon, besides the color-singlet processes of interest, color-octet (CO) processes are also possible. The primary CO contributions are derived from the process Zbb¯[3S18]+gZ\to b\bar{b}[^{3}S_{1}^{8}]+g^{*}, followed by gbb¯[3S18]g^{*}\to b\bar{b}[^{3}S_{1}^{8}]. Given the ratio of 𝒪H(3S18)𝒪H(3S11)103\frac{\langle{\mathcal{O}}^{H}(^{3}S_{1}^{8})\rangle}{\langle{\mathcal{O}}^{H}(^{3}S_{1}^{1})\rangle}\sim 10^{-3} Br3 , the branching ratio ZΥ(1S)+Υ(1S)\mathcal{B}_{Z\to\Upsilon(1S)+\Upsilon(1S)} due to CO contributions are estimated to be 101410^{-14}. Moreover, considering that experiments account for feed down from higher excited states, the semi-inclusive production of double Υ\Upsilon mesons in ZZ boson decay, such as contributions from bb(or b¯\bar{b}) quark fragmentation into Υ\Upsilon, should be considered. Utilizing the fragmentation function from Ref. z decay 4 , the branching ratio ZΥ(1S)+Υ(1S)+X\mathcal{B}_{Z\to\Upsilon(1S)+\Upsilon(1S)+X} is predicted to be 1011\sim 10^{-11}, which is comparable with the results in Eq. (18).

IV Summary

In this paper, we carry out a comprehensive study of ZΥ(mS)+Υ(nS)Z\to\Upsilon(mS)+\Upsilon(nS) utilizing the NRQCD framework at the QCD NLO accuracy. The LO results indicate that the contributions from QED diagrams significantly enhance those from the QCD processes. The QCD corrections substantially amplify the QCD results, while concurrently reducing the QED results. Additionally, we discover that the transitions involving higher excited states of bottomonium mesons exert an indispensable influence. Taking into account both the QCD and QED contributions, we estimate the branching ratio for ZΥ(mS)+Υ(nS)\mathcal{B}_{Z\to\Upsilon(mS)+\Upsilon(nS)} to be on the order of 101110^{-11}. This value is significantly lower than the upper limit established by CMS and aligns with experimental observations.

Appendix A

In this section, we present the expressions for the NLO coefficients aia_{i}, bib_{i}, and cic_{i} in Eq. (16) which are formulated as a superposition of the MIs \mathcal{I}. The coefficients related to the Zbb¯[3S11]+bb¯[3S11]Z\to b\bar{b}[^{3}S_{1}^{1}]+b\bar{b}[^{3}S_{1}^{1}] process can be obtained by substituting mcm_{c} in Eqs. (A1)-(A3) of Ref. z decay 40 with mbm_{b}. In the following, we only provide the expressions of aia_{i}, bib_{i}, and cic_{i} pertaining to the Zbb¯[3S11]+bb¯[3PJ1]Z\to b\bar{b}[^{3}S_{1}^{1}]+b\bar{b}[^{3}P_{J}^{1}] process.

A.1 Master Integrals

To start, we introduce the following definitions and showcase the finite (ϵ0\epsilon^{0}-order) terms of the MIs that are involved (rmZ24mb2r\equiv\frac{m^{2}_{Z}}{4m_{b}^{2}}):

a=r,b=r1,c=r4,d=2r+1,\displaystyle a=\sqrt{r},~{}b=\sqrt{r-1},~{}c=\sqrt{r-4},~{}d=2r+1,
f=r+ac4,g=rac4,h=rg+2ac,\displaystyle f=r+ac-4,~{}g=r-ac-4,~{}h=rg+2ac,
j=rf2ac,j1=(r4)ab,j2=(2r)bc.\displaystyle j=rf-2ac,~{}j_{1}=(r-4)ab,~{}j_{2}=(2-r)bc. (19)

There is only one 1-point scalar integral,

1\displaystyle\mathcal{I}_{1} =\displaystyle= λμr4DdDkk2mb2=mb2[12ln(mb)],\displaystyle\frac{\lambda}{\mu_{r}^{4-D}}\int{\frac{d^{D}k}{k^{2}-m_{b}^{2}}}=m_{b}^{2}\left[1-2\ln(m_{b})\right], (20)

where kk denotes the loop momentum, λ=μr4DiπD2γΓ\lambda=\frac{\mu_{r}^{4-D}}{i\pi^{\frac{D}{2}}\gamma_{\Gamma}} with γΓ=Γ2(1ϵ)Γ(1+ϵ)Γ(12ϵ)\gamma_{\Gamma}=\frac{\Gamma^{2}(1-\epsilon)\Gamma(1+\epsilon)}{\Gamma(1-2\epsilon)}.
There are five 2-point scalar integrals,

2(1)\displaystyle\mathcal{I}^{(1)}_{2} =\displaystyle= λμr4DdDkk2[(k+2p1+p22)2mb2]=22ln(mb)2rd[ln(2r)iπ],\displaystyle\frac{\lambda}{\mu_{r}^{4-D}}\int{\frac{d^{D}k}{k^{2}[(k+\frac{2p_{1}+p_{2}}{2})^{2}-m_{b}^{2}]}}=2-2\ln{(m_{b})}-\frac{2r}{d}\left[\ln{(2r)}-i\pi\right], (21)
2(2)\displaystyle\mathcal{I}^{(2)}_{2} =\displaystyle= λμr4DdDkk2(kp1+p22)2=2ln(mb2r)+iπ,\displaystyle\frac{\lambda}{\mu_{r}^{4-D}}\int{\frac{d^{D}k}{k^{2}(k-\frac{p_{1}+p_{2}}{2})^{2}}}=2-\ln{({m_{b}}^{2}r)}+i\pi, (22)
2(3)\displaystyle\mathcal{I}^{(3)}_{2} =\displaystyle= λμr4DdDk(k2mb2)[(k+p1+p22)2mb2]=ca[ln(4r(f+4)2)+iπ]+2[1ln(mb)],\displaystyle\frac{\lambda}{\mu_{r}^{4-D}}\int\frac{d^{D}k}{(k^{2}-m_{b}^{2})[(k+\frac{p_{1}+p_{2}}{2})^{2}-m_{b}^{2}]}=\frac{c}{a}\left[\ln{\left(\frac{4r}{(f+4)^{2}}\right)}+i\pi\right]+2\left[1-\ln{(m_{b})}\right],
2(4)\displaystyle\mathcal{I}^{(4)}_{2} =\displaystyle= λμr4DdDk(k2mb2)[(k+p1+p2)2mb2]=ba[ln(2ab+d2)+iπ]+2[1ln(mb)],\displaystyle\frac{\lambda}{\mu_{r}^{4-D}}\int\frac{d^{D}k}{(k^{2}-m_{b}^{2})[(k+p_{1}+p_{2})^{2}-m_{b}^{2}]}=\frac{b}{a}\left[\ln{(-2ab+d-2)}+i\pi\right]+2\left[1-\ln{(m_{b})}\right],
2(5)\displaystyle\mathcal{I}^{(5)}_{2} =\displaystyle= λμ4DdDkk2(kp1)2=ln(4mb2)+iπ+2,\displaystyle\frac{\lambda}{\mu^{4-D}}\int\frac{d^{D}k}{k^{2}(k-p_{1})^{2}}=-\ln{\left(4m_{b}^{2}\right)}+i\pi+2, (25)

There are seven 3-point scalar integrals,

3(1)\displaystyle\mathcal{I}^{(1)}_{3}
=λμr4DdDkk2[(k+p22)2mb2][(k+2p1+p22)2mb2]\displaystyle=\frac{\lambda}{\mu_{r}^{4-D}}\int\frac{d^{D}k}{k^{2}[(k+\frac{p_{2}}{2})^{2}-m_{b}^{2}][(k+\frac{2p_{1}+p_{2}}{2})^{2}-m_{b}^{2}]}
=12acmb2{ln(2)ln((3(g+4)+h)2d(g+h+4)2)+[ln(r)iπ]ln(d(g+3)2)+4Li2(ca)+Li2(2(ac+j)d)\displaystyle=\frac{1}{2acm_{b}^{2}}\left\{{\ln(2)\ln\left(\frac{(3(g+4)+h)^{2}}{d(g+h+4)^{2}}\right)+\left[\ln(r)-i\pi\right]\ln\left(\frac{d}{(g+3)^{2}}\right)+4\textrm{Li}_{2}\left(\frac{c}{a}\right)+\textrm{Li}_{2}\left(-\frac{2(ac+j)}{d}\right)}\right.
Li2(c2ach)Li2(c+aga)2Li2(ca)},\displaystyle\left.{-\textrm{Li}_{2}\left(\frac{c^{2}}{ac-h}\right)-\textrm{Li}_{2}\left(-\frac{c+ag}{a}\right)-2\textrm{Li}_{2}\left(-\frac{c}{a}\right)}\right\}, (26)
3(2)\displaystyle\mathcal{I}^{(2)}_{3}
=λμr4DdDkk2[(kp22)2mb2](k+p1+p22)2\displaystyle=\frac{\lambda}{\mu_{r}^{4-D}}\int\frac{d^{D}k}{k^{2}[(k-\frac{p_{2}}{2})^{2}-m_{b}^{2}](k+\frac{p_{1}+p_{2}}{2})^{2}}
=1acmb2{ln(2)ln(d(f+4)2(3rac)2)+[ln(r)iπ)]ln(4dr(3rac)2)+Li2(2(ac+j)d)+2Li2(ca)\displaystyle=\frac{1}{acm_{b}^{2}}\left\{{\ln(2)\ln\left(\frac{d(f+4)^{2}}{(3r-ac)^{2}}\right)+\left[\ln(r)-i\pi)\right]\ln\left(\frac{4dr}{(3r-ac)^{2}}\right)+\textrm{Li}_{2}\left(-\frac{2(ac+j)}{d}\right)+2\textrm{Li}_{2}\left(\frac{c}{a}\right)}\right.
+Li2(g2)Li2(f2)Li2(c2ach)Li2(c+aga)},\displaystyle\left.{+\textrm{Li}_{2}\left(-\frac{g}{2}\right)-\textrm{Li}_{2}\left(-\frac{f}{2}\right)-\textrm{Li}_{2}\left(\frac{c^{2}}{ac-h}\right)-\textrm{Li}_{2}\left(-\frac{c+ag}{a}\right)}\right\}, (27)
3(3)\displaystyle\mathcal{I}^{(3)}_{3} =\displaystyle= λμr4DdDkk2[(k+p12)2mb2](k+p1+p22)2\displaystyle\frac{\lambda}{\mu_{r}^{4-D}}\int\frac{d^{D}k}{k^{2}[(k+\frac{p_{1}}{2})^{2}-m_{b}^{2}](k+\frac{p_{1}+p_{2}}{2})^{2}}
=\displaystyle= 1acmb2{[ln(r)iπ]ln((f+4)24r)+2Li2(ca)2Li2(ca)Li2(g2)+Li2(f2)},\displaystyle\frac{1}{acm_{b}^{2}}\left\{\left[\ln(r)-i\pi\right]\ln\left(\frac{(f+4)^{2}}{4r}\right)+2\textrm{Li}_{2}\left(\frac{c}{a}\right)-2\textrm{Li}_{2}\left(-\frac{c}{a}\right)-\textrm{Li}_{2}\left(-\frac{g}{2}\right)+\textrm{Li}_{2}\left(-\frac{f}{2}\right)\right\},
3(4)\displaystyle\mathcal{I}^{(4)}_{3}
=λμr4DdDkk2[(k+2p1+p22)2mb2](k+p1+p22)2\displaystyle=\frac{\lambda}{\mu_{r}^{4-D}}\int\frac{d^{D}k}{k^{2}[(k+\frac{2p_{1}+p_{2}}{2})^{2}-m_{b}^{2}](k+\frac{p_{1}+p_{2}}{2})^{2}}
=1acmb2{ln(2)ln(d(g+3)2)+[ln(r)iπ)]ln(g+62g+6)+Li2(g2)Li2(f2)2Li2(ca)\displaystyle=\frac{1}{acm_{b}^{2}}\left\{{\ln(2)\ln\left(\frac{d}{(g+3)^{2}}\right)+\left[\ln(r)-i\pi)\right]\ln\left(\frac{g+6}{2g+6}\right)+\textrm{Li}_{2}\left(-\frac{g}{2}\right)-\textrm{Li}_{2}\left(-\frac{f}{2}\right)-2\textrm{Li}_{2}\left(-\frac{c}{a}\right)}\right.
Li2(2ac2hd)+Li2(hacdr)+Li2(caf)},\displaystyle\left.{-\textrm{Li}_{2}\left(\frac{2ac-2h}{d}\right)+\textrm{Li}_{2}\left(\frac{h-ac}{dr}\right)+\textrm{Li}_{2}\left(\frac{c}{a}-f\right)}\right\}, (29)
3(5)\displaystyle\mathcal{I}^{(5)}_{3}
=λμr4DdDkk2[(kp12)2mb2][(k+p1+2p22)2mb2]\displaystyle=\frac{\lambda}{\mu_{r}^{4-D}}\int\frac{d^{D}k}{k^{2}[(k-\frac{p_{1}}{2})^{2}-m_{b}^{2}][(k+\frac{p_{1}+2p_{2}}{2})^{2}-m_{b}^{2}]}
=12acmb2{[ln((rab)2r)+iπ]ln(br(2b3c)+jj1br(2b+3c)+j+j1)+[ln(2r)iπ]ln((g+3)2d)\displaystyle=\frac{1}{2acm_{b}^{2}}\left\{{\left[\ln\left(\frac{(r-ab)^{2}}{r}\right)+i\pi\right]\ln\left(\frac{br(2b-3c)+j-j_{1}}{br(2b+3c)+j+j_{1}}\right)+\left[\ln(2r)-i\pi\right]\ln\left(\frac{(g+3)^{2}}{d}\right)}\right.
Li2(2(ac+j)d)Li2(c2h+j1+j2r)Li2(c2+h+j1+j2r)+Li2(c2j+j1j2r)\displaystyle\left.{{-\textrm{Li}_{2}\left(-\frac{2(ac+j)}{d}\right)-\textrm{Li}_{2}\left(\frac{c^{2}-h+j_{1}+j_{2}}{r}\right)-\textrm{Li}_{2}\left(-\frac{-c^{2}+h+j_{1}+j_{2}}{r}\right)+\textrm{Li}_{2}\left(\frac{c^{2}-j+j_{1}-j_{2}}{r}\right)}}\right.
2Li2(ca)+Li2(c2jj1+j2r)+Li2(c2ach)+Li2(c+aga)},\displaystyle\left.{-2\textrm{Li}_{2}\left(-\frac{c}{a}\right)+\textrm{Li}_{2}\left(\frac{c^{2}-j-j_{1}+j_{2}}{r}\right)+{\textrm{Li}_{2}\left(\frac{c^{2}}{ac-h}\right)+\textrm{Li}_{2}\left(-\frac{c+ag}{a}\right)}}\right\},
(30)
3(6)\displaystyle\mathcal{I}^{(6)}_{3}
=λμr4DdDkk2[(k+p22)2mb2][(k+p1+2p22)2mb2]\displaystyle=\frac{\lambda}{\mu_{r}^{4-D}}\int\frac{d^{D}k}{k^{2}[(k+\frac{p_{2}}{2})^{2}-m_{b}^{2}][(k+\frac{p_{1}+2p_{2}}{2})^{2}-m_{b}^{2}]}
=1acmb2{ln(2)ln((f+4)4(3(2rac)+h)4(g+6)(4(rac)+h))+ln(r)ln(dr(d+f+3)2)iπln(16d(g+6)2r)\displaystyle=\frac{1}{acm_{b}^{2}}\left\{{\ln(2)\ln\left(\frac{(f+4)^{4}\left(3(2r-ac)+h\right)}{4(g+6)\left(4(r-ac)+h\right)}\right)+\ln(r)\ln\left(\frac{dr}{(d+f+3)^{2}}\right)-i\pi\ln\left(\frac{16d}{(g+6)^{2}r}\right)}\right.
+Li2(g8)+Li2(4ac+j2d)Li2(4ach4r)+2Li2(c2a)+Li2(f2r)Li2(f8)Li2(g2r)\displaystyle\left.{+\textrm{Li}_{2}\left(-\frac{g}{8}\right)+\textrm{Li}_{2}\left(-\frac{4ac+j}{2d}\right)-\textrm{Li}_{2}\left(\frac{4ac-h}{4r}\right)+2\textrm{Li}_{2}\left(\frac{c}{2a}\right)+\textrm{Li}_{2}\left(\frac{f}{2r}\right)-\textrm{Li}_{2}\left(-\frac{f}{8}\right)-\textrm{Li}_{2}\left(\frac{g}{2r}\right)}\right.
Li2(c24ach)},\displaystyle\left.{-\textrm{Li}_{2}\left(\frac{c^{2}}{4ac-h}\right)}\right\}, (31)
3(7)=λμ4DdDkk2[(k+p12)2mb2](kp2)2\displaystyle\mathcal{I}^{(7)}_{3}=\frac{\lambda}{\mu^{4-D}}\int\frac{d^{D}k}{k^{2}[(k+\frac{p_{1}}{2})^{2}-m_{b}^{2}](k-p2)^{2}}
=12acmb2{ln(2)ln(64d(f+4)4(g+6)2)+ln(r)ln(d(f+4)4[(g+6)r]2)+iπln((g+6)24d)+Li2(h2)\displaystyle=\frac{1}{2acm_{b}^{2}}\left\{{\ln(2)\ln\left(\frac{64d}{(f+4)^{4}(g+6)^{2}}\right)+\ln(r)\ln\left(\frac{d(f+4)^{4}}{[(g+6)r]^{2}}\right)+i\pi\ln\left(\frac{(g+6)^{2}}{4d}\right)+\textrm{Li}_{2}\left(-\frac{h}{2}\right)}\right.
+2Li2(ac2)Li2(jr2ac4d)+Li2(2acrjr22d)Li2(2acfr2)Li2(2ac+hr4)}.\displaystyle\left.{+2\textrm{Li}_{2}\left(\frac{ac}{2}\right)-\textrm{Li}_{2}\left(\frac{jr-2ac}{4d}\right)+\textrm{Li}_{2}\left(\frac{2acr-jr^{2}}{2d}\right)-\textrm{Li}_{2}\left(\frac{2ac-fr}{2}\right)-\textrm{Li}_{2}\left(-\frac{2ac+hr}{4}\right)}\right\}.
(32)

A.2 NLO coefficients

A.2.1 bb¯[3S11]+bb¯[3PJ0]b\bar{b}[^{3}S_{1}^{1}]+b\bar{b}[^{3}P_{J}^{0}]

a1\displaystyle a_{1} =\displaystyle= 132(2)2(r425r3146r2+176r+72)9(r4+182r3428r2+152r+144)23ln(2mb),\displaystyle-\frac{1}{3}{\mathcal{I}^{(2)}_{2}}-\frac{2(r^{4}-25r^{3}-146r^{2}+176r+72)}{9(r^{4}+182r^{3}-428r^{2}+152r+144)}-\frac{2}{3}\ln(2m_{b}), (33)
b1\displaystyle b_{1} =\displaystyle= 2(r4+176r3716r2+440r+288)3mb2r(r4+182r3428r2+152r+144)1r5+184r476r31280r2+1024r+5763r(r4+182r3428r2+152r+144)2(3)\displaystyle\frac{2(r^{4}+176r^{3}-716r^{2}+440r+288)}{3m_{b}^{2}r(r^{4}+182r^{3}-428r^{2}+152r+144)}{\mathcal{I}_{1}}-\frac{r^{5}+184r^{4}-76r^{3}-1280r^{2}+1024r+576}{3r(r^{4}+182r^{3}-428r^{2}+152r+144)}{\mathcal{I}^{(3)}_{2}} (34)
2(r513r4+814r32404r2+1176r+864)9r(r4+182r3428r2+152r+144)2ln(2mb)3,\displaystyle-\frac{2(r^{5}-13r^{4}+814r^{3}-2404r^{2}+1176r+864)}{9r(r^{4}+182r^{3}-428r^{2}+152r+144)}-\frac{2\ln(2m_{b})}{3},
c1\displaystyle c_{1} =\displaystyle= 120r7+19848r6103058r5+54543r4+96834r316648r232352r57609mb2r(r4)(2r+1)(r4+182r3428r2+152r+144)1\displaystyle\frac{120r^{7}+19848r^{6}-103058r^{5}+54543r^{4}+96834r^{3}-16648r^{2}-32352r-5760}{9m_{b}^{2}r(r-4)(2r+1)(r^{4}+182r^{3}-428r^{2}+152r+144)}\mathcal{I}_{1}
+5796r614278r521720r4+16167r3+32542r2+14136r+20169r(2r+1)(r4+182r3428r2+152r+144)2(1)\displaystyle+\frac{5796r^{6}-14278r^{5}-21720r^{4}+16167r^{3}+32542r^{2}+14136r+2016}{9r(2r+1)(r^{4}+182r^{3}-428r^{2}+152r+144)}\mathcal{I}^{(1)}_{2}
+1407r4+16354r325036r2+2136r+62649(r4+182r3428r2+152r+144)2(2)\displaystyle+\frac{-1407r^{4}+16354r^{3}-25036r^{2}+2136r+6264}{9(r^{4}+182r^{3}-428r^{2}+152r+144)}\mathcal{I}^{(2)}_{2}
+7r5+1408r48952r3+27008r220608r499218(r4)(r4+182r3428r2+152r+144)2(3)\displaystyle+\frac{7r^{5}+1408r^{4}-8952r^{3}+27008r^{2}-20608r-4992}{18(r-4)(r^{4}+182r^{3}-428r^{2}+152r+144)}\mathcal{I}^{(3)}_{2}
1469r4+2814r316728r2+11440r+47049(r4+182r3428r2+152r+144)2(4)\displaystyle-\frac{1469r^{4}+2814r^{3}-16728r^{2}+11440r+4704}{9(r^{4}+182r^{3}-428r^{2}+152r+144)}\mathcal{I}^{(4)}_{2}
+2mb2r(r4+60r3684r2+640r+240)3(r4+182r3428r2+152r+144)3(1)\displaystyle+\frac{2m_{b}^{2}r(r^{4}+60r^{3}-684r^{2}+640r+240)}{3(r^{4}+182r^{3}-428r^{2}+152r+144)}\mathcal{I}^{(1)}_{3}
+mb2(21r5+208r42137r3+2010r2+2444r624)12(r4+182r3428r2+152r+144)3(2)\displaystyle+\frac{m_{b}^{2}(-21r^{5}+208r^{4}-2137r^{3}+2010r^{2}+2444r-624)}{12(r^{4}+182r^{3}-428r^{2}+152r+144)}\mathcal{I}^{(2)}_{3}
mb2(r5658r4+708r3+924r2816r288)3(r4+182r3428r2+152r+144)3(3)\displaystyle-\frac{m_{b}^{2}(r^{5}-658r^{4}+708r^{3}+924r^{2}-816r-288)}{3(r^{4}+182r^{3}-428r^{2}+152r+144)}\mathcal{I}^{(3)}_{3}
+mb2(r5480r43239r3+6838r21868r528)12(r4+182r3428r2+152r+144)3(4)\displaystyle+\frac{m_{b}^{2}(r^{5}-480r^{4}-3239r^{3}+6838r^{2}-1868r-528)}{12(r^{4}+182r^{3}-428r^{2}+152r+144)}\mathcal{I}^{(4)}_{3}
2mb2(4r6+1208r56399r4+10840r36148r2720r+1344)3(r2)(r4+182r3428r2+152r+144)3(5)\displaystyle-\frac{2m_{b}^{2}(4r^{6}+1208r^{5}-6399r^{4}+10840r^{3}-6148r^{2}-720r+1344)}{3(r-2)(r^{4}+182r^{3}-428r^{2}+152r+144)}\mathcal{I}^{(5)}_{3}
+2mb2(3r5+96r4406r3+860r2528r288)3(r4+182r3428r2+152r+144)3(6)\displaystyle+\frac{2m_{b}^{2}(3r^{5}+96r^{4}-406r^{3}+860r^{2}-528r-288)}{3(r^{4}+182r^{3}-428r^{2}+152r+144)}\mathcal{I}^{(6)}_{3}
24mb2r2(5r22r6)(r2)(r4+182r3428r2+152r+144)3(7)\displaystyle-\frac{24m_{b}^{2}r^{2}(5r^{2}-2r-6)}{(r-2)(r^{4}+182r^{3}-428r^{2}+152r+144)}\mathcal{I}^{(7)}_{3}
+(19r5+3512r47204r3+200r2+3968r+768)r5+182r4428r3+152r2+144rln(mb)\displaystyle+\frac{(19r^{5}+3512r^{4}-7204r^{3}+200r^{2}+3968r+768)}{r^{5}+182r^{4}-428r^{3}+152r^{2}+144r}\ln(m_{b})
+25r612935r5+80893r4118558r326064r2+85824r+218889(r4)r(r4+182r3428r2+152r+144)+11ln(2),\displaystyle+\frac{-25r^{6}-12935r^{5}+80893r^{4}-118558r^{3}-26064r^{2}+85824r+21888}{9(r-4)r(r^{4}+182r^{3}-428r^{2}+152r+144)}+11\ln(2),
a2\displaystyle a_{2} =\displaystyle= 162(2)+7r4+38r3+16r2424r14472(7r47r359r2+56r+36)ln(2mb)3,\displaystyle-\frac{1}{6}{\mathcal{I}^{(2)}_{2}}+\frac{7r^{4}+38r^{3}+16r^{2}-424r-144}{72(7r^{4}-7r^{3}-59r^{2}+56r+36)}-\frac{\ln(2m_{b})}{3}, (36)
b2\displaystyle b_{2} =\displaystyle= 14r435r3136r2+292r+1446mb2r(7r47r359r2+56r+36)17r5+7r494r380r2+328r+1446r(7r47r359r2+56r+36)2(3)\displaystyle\frac{14r^{4}-35r^{3}-136r^{2}+292r+144}{6m_{b}^{2}r(7r^{4}-7r^{3}-59r^{2}+56r+36)}{\mathcal{I}_{1}}-\frac{7r^{5}+7r^{4}-94r^{3}-80r^{2}+328r+144}{6r(7r^{4}-7r^{3}-59r^{2}+56r+36)}{\mathcal{I}^{(3)}_{2}} (37)
+7r5256r4+328r3+2288r23216r172872r(7r47r359r2+56r+36)ln(2mb)3,\displaystyle+\frac{7r^{5}-256r^{4}+328r^{3}+2288r^{2}-3216r-1728}{72r(7r^{4}-7r^{3}-59r^{2}+56r+36)}-\frac{\ln(2m_{b})}{3},
c2=\displaystyle c_{2}=
21672r869156r7219454r6+398155r5+899784r446124r3616672r2309120r43776144(r4)r(2rmb+mb)2(7r47r359r2+56r+36)1\displaystyle\frac{21672r^{8}-69156r^{7}-219454r^{6}+398155r^{5}+899784r^{4}-46124r^{3}-616672r^{2}-309120r-43776}{144(r-4)r(2rm_{b}+m_{b})^{2}(7r^{4}-7r^{3}-59r^{2}+56r+36)}\mathcal{I}_{1}
+3840r8+34740r7143528r628915r5+327531r4+350456r3+158500r2+33648r+2880144r(2r+1)2(7r47r359r2+56r+36)2(1)\displaystyle+\frac{3840r^{8}+34740r^{7}-143528r^{6}-28915r^{5}+327531r^{4}+350456r^{3}+158500r^{2}+33648r+2880}{144r(2r+1)^{2}(7r^{4}-7r^{3}-59r^{2}+56r+36)}\mathcal{I}^{(1)}_{2}
+240r5+714r4+13853r344450r2+13812r+1317672(7r47r359r2+56r+36)2(2)\displaystyle+\frac{-240r^{5}+714r^{4}+13853r^{3}-44450r^{2}+13812r+13176}{72(7r^{4}-7r^{3}-59r^{2}+56r+36)}\mathcal{I}^{(2)}_{2}
+56r51915r4+13254r330968r2+15472r+873636(r4)(7r47r359r2+56r+36)2(3)\displaystyle+\frac{56r^{5}-1915r^{4}+13254r^{3}-30968r^{2}+15472r+8736}{36(r-4)(7r^{4}-7r^{3}-59r^{2}+56r+36)}\mathcal{I}^{(3)}_{2}
120r5+1991r44392r31320r2+6016r+254436(7r47r359r2+56r+36)2(4)\displaystyle-\frac{120r^{5}+1991r^{4}-4392r^{3}-1320r^{2}+6016r+2544}{36(7r^{4}-7r^{3}-59r^{2}+56r+36)}\mathcal{I}^{(4)}_{2}
+r(2r4207r3+213r2+242r+12)mb23(7r47r359r2+56r+36)3(1)\displaystyle+\frac{r(2r^{4}-207r^{3}+213r^{2}+242r+12)m_{b}^{2}}{3(7r^{4}-7r^{3}-59r^{2}+56r+36)}\mathcal{I}^{(1)}_{3}
+(21r57333r4+22129r313620r2140r+4368)mb296(7r47r359r2+56r+36)3(2)\displaystyle+\frac{(21r^{5}-7333r^{4}+22129r^{3}-13620r^{2}-140r+4368)m_{b}^{2}}{96(7r^{4}-7r^{3}-59r^{2}+56r+36)}\mathcal{I}^{(2)}_{3}
+(100r5+965r45556r3+7692r21680r2016)mb224(7r47r359r2+56r+36)3(3)\displaystyle+\frac{(100r^{5}+965r^{4}-5556r^{3}+7692r^{2}-1680r-2016)m_{b}^{2}}{24(7r^{4}-7r^{3}-59r^{2}+56r+36)}\mathcal{I}^{(3)}_{3}
(13r53993r4+1633r3+12124r211084r3696)mb296(7r47r359r2+56r+36)3(4)\displaystyle-\frac{(13r^{5}-3993r^{4}+1633r^{3}+12124r^{2}-11084r-3696)m_{b}^{2}}{96(7r^{4}-7r^{3}-59r^{2}+56r+36)}\mathcal{I}^{(4)}_{3}
(628r61309r54890r4+14188r35944r24704r+1920)mb224(r2)(7r47r359r2+56r+36)3(5)\displaystyle-\frac{(628r^{6}-1309r^{5}-4890r^{4}+14188r^{3}-5944r^{2}-4704r+1920)m_{b}^{2}}{24(r-2)(7r^{4}-7r^{3}-59r^{2}+56r+36)}\mathcal{I}^{(5)}_{3}
+(15r5171r4+2044r36236r2+3552r+2016)mb212(7r47r359r2+56r+36)3(6)\displaystyle+\frac{(15r^{5}-171r^{4}+2044r^{3}-6236r^{2}+3552r+2016)m_{b}^{2}}{12(7r^{4}-7r^{3}-59r^{2}+56r+36)}\mathcal{I}^{(6)}_{3}
3r2(3r3+2r220r24)mb24(r2)(7r47r359r2+56r+36)3(7)\displaystyle-\frac{3r^{2}(3r^{3}+2r^{2}-20r-24)m_{b}^{2}}{4(r-2)(7r^{4}-7r^{3}-59r^{2}+56r+36)}\mathcal{I}^{(7)}_{3}
+759r5708r46736r3+3312r2+7312r+15368r(7r47r359r2+56r+36)ln(mb)\displaystyle+\frac{759r^{5}-708r^{4}-6736r^{3}+3312r^{2}+7312r+1536}{8r(7r^{4}-7r^{3}-59r^{2}+56r+36)}\ln(m_{b})
+16562r7+78949r6+154533r5887080r410228r3+1040208r2+535104r+66816144(r4)r(2r+1)(7r47r359r2+56r+36)\displaystyle+\frac{-16562r^{7}+78949r^{6}+154533r^{5}-887080r^{4}-10228r^{3}+1040208r^{2}+535104r+66816}{144(r-4)r(2r+1)(7r^{4}-7r^{3}-59r^{2}+56r+36)}
+112ln(2),\displaystyle+\frac{11}{2}\ln(2), (38)
a3\displaystyle a_{3} =\displaystyle= b3=0,\displaystyle b_{3}=0, (39)
c3\displaystyle c_{3}
=19(r4)r(2rmb+mb)2(9r5+2r4152r316r2+592r+288)\displaystyle=\frac{\mathcal{I}_{1}}{9(r-4)r(2rm_{b}+m_{b})^{2}(9r^{5}+2r^{4}-152r^{3}-16r^{2}+592r+288)}
×(1512r9+3216r831716r7+29233r6+208412r5+192816r4374944r3\displaystyle\times(1512r^{9}+3216r^{8}-31716r^{7}+29233r^{6}+208412r^{5}+192816r^{4}-374944r^{3}
536912r2231744r32256)\displaystyle-536912r^{2}-231744r-32256)
+4(1446r81323r710786r6+27874r5+53997r4+26482r3+2900r21320r288)9r(2r+1)2(9r5+2r4152r316r2+592r+288)2(1)\displaystyle+\frac{4(1446r^{8}-1323r^{7}-10786r^{6}+27874r^{5}+53997r^{4}+26482r^{3}+2900r^{2}-1320r-288)}{9r(2r+1)^{2}(9r^{5}+2r^{4}-152r^{3}-16r^{2}+592r+288)}\mathcal{I}^{(1)}_{2}
8(60r5429r470r3+3868r23000r1728)9(9r5+2r4152r316r2+592r+288)2(2)\displaystyle-\frac{8(60r^{5}-429r^{4}-70r^{3}+3868r^{2}-3000r-1728)}{9(9r^{5}+2r^{4}-152r^{3}-16r^{2}+592r+288)}\mathcal{I}^{(2)}_{2}
64(17r5103r4+51r3+850r21640r624)9(r4)(9r5+2r4152r316r2+592r+288)2(3)\displaystyle-\frac{64(17r^{5}-103r^{4}+51r^{3}+850r^{2}-1640r-624)}{9(r-4)(9r^{5}+2r^{4}-152r^{3}-16r^{2}+592r+288)}\mathcal{I}^{(3)}_{2}
4(255r58r41272r3+1392r2784r+192)9(9r5+2r4152r316r2+592r+288)2(4)\displaystyle-\frac{4(255r^{5}-8r^{4}-1272r^{3}+1392r^{2}-784r+192)}{9(9r^{5}+2r^{4}-152r^{3}-16r^{2}+592r+288)}\mathcal{I}^{(4)}_{2}
8r(55r424r3480r256r+96)mb23(9r5+2r4152r316r2+592r+288)3(1)\displaystyle-\frac{8r(55r^{4}-24r^{3}-480r^{2}-56r+96)m_{b}^{2}}{3(9r^{5}+2r^{4}-152r^{3}-16r^{2}+592r+288)}\mathcal{I}^{(1)}_{3}
(273r5484r42138r3+3408r256r1248)mb23(9r5+2r4152r316r2+592r+288)3(2)\displaystyle-\frac{(273r^{5}-484r^{4}-2138r^{3}+3408r^{2}-56r-1248)m_{b}^{2}}{3(9r^{5}+2r^{4}-152r^{3}-16r^{2}+592r+288)}\mathcal{I}^{(2)}_{3}
+2(155r5530r4528r3+4728r23792r2304)mb23(9r5+2r4152r316r2+592r+288)3(3)\displaystyle+\frac{2(155r^{5}-530r^{4}-528r^{3}+4728r^{2}-3792r-2304)m_{b}^{2}}{3(9r^{5}+2r^{4}-152r^{3}-16r^{2}+592r+288)}\mathcal{I}^{(3)}_{3}
+4(86r5+117r4805r3892r2+1916r+528)mb23(9r5+2r4152r316r2+592r+288)3(4)\displaystyle+\frac{4(86r^{5}+117r^{4}-805r^{3}-892r^{2}+1916r+528)m_{b}^{2}}{3(9r^{5}+2r^{4}-152r^{3}-16r^{2}+592r+288)}\mathcal{I}^{(4)}_{3}
4(18r6+85r532r4772r3+272r2+1344r+192)mb224(r2)(3(9r5+2r4152r316r2+592r+288)3(5)\displaystyle-\frac{4(18r^{6}+85r^{5}-32r^{4}-772r^{3}+272r^{2}+1344r+192)m_{b}^{2}}{24(r-2)(3(9r^{5}+2r^{4}-152r^{3}-16r^{2}+592r+288)}\mathcal{I}^{(5)}_{3}
32(3r542r4+20r3+320r2672r288)mb23(9r5+2r4152r316r2+592r+288)3(6)\displaystyle-\frac{32(3r^{5}-42r^{4}+20r^{3}+320r^{2}-672r-288)m_{b}^{2}}{3(9r^{5}+2r^{4}-152r^{3}-16r^{2}+592r+288)}\mathcal{I}^{(6)}_{3}
+2(36r67r5668r4168r3+2608r2+3344r+768)r(9r5+2r4152r316r2+592r+288)ln(mb)\displaystyle+\frac{2(36r^{6}-7r^{5}-668r^{4}-168r^{3}+2608r^{2}+3344r+768)}{r(9r^{5}+2r^{4}-152r^{3}-16r^{2}+592r+288)}\ln(m_{b})
+1404r8+5174r7+34583r6121380r5207200r4+497824r3+727440r2+265536r+230409(r4)r(2r+1)(9r5+2r4152r316r2+592r+288).\displaystyle+\frac{-1404r^{8}+5174r^{7}+34583r^{6}-121380r^{5}-207200r^{4}+497824r^{3}+727440r^{2}+265536r+23040}{9(r-4)r(2r+1)(9r^{5}+2r^{4}-152r^{3}-16r^{2}+592r+288)}.

A.2.2 bb¯[3S11]+bb¯[3P11]b\bar{b}[^{3}S_{1}^{1}]+b\bar{b}[^{3}P_{1}^{1}]

a1\displaystyle a_{1} =\displaystyle= 132(2)2r315r2+16r+3618(2r312r2+13r+18)2ln(2mb)3,\displaystyle-\frac{1}{3}{\mathcal{I}^{(2)}_{2}}-\frac{2r^{3}-15r^{2}+16r+36}{18(2r^{3}-12r^{2}+13r+18)}-\frac{2\ln(2m_{b})}{3}, (41)
b1\displaystyle b_{1} =\displaystyle= 4(r39r2+14r+18)3mb2r(2r312r2+13r+18)12r48r323r2+74r+723r(2r312r2+13r+18)2(3)\displaystyle\frac{4(r^{3}-9r^{2}+14r+18)}{3m_{b}^{2}r(2r^{3}-12r^{2}+13r+18)}{\mathcal{I}_{1}}-\frac{2r^{4}-8r^{3}-23r^{2}+74r+72}{3r(2r^{3}-12r^{2}+13r+18)}{\mathcal{I}^{(3)}_{2}} (42)
2r4+45r3290r2+264r+43218r(2r312r2+13r+18)2ln(2mb)3,\displaystyle-\frac{2r^{4}+45r^{3}-290r^{2}+264r+432}{18r(2r^{3}-12r^{2}+13r+18)}-\frac{2\ln(2m_{b})}{3},
c1\displaystyle c_{1} =\displaystyle= (784r7+4412r63080r59905r4+5302r3+13190r2+6456r+960)12(r4)r(2r312r2+13r+18)(2mbr+mb)21\displaystyle-\frac{(-784r^{7}+4412r^{6}-3080r^{5}-9905r^{4}+5302r^{3}+13190r^{2}+6456r+960)}{12(r-4)r(2r^{3}-12r^{2}+13r+18)(2m_{b}r+m_{b})^{2}}\mathcal{I}_{1}
+64r72592r6+396r5+12116r4+16867r3+10206r2+2930r+33612r(2r+1)2(2r312r2+13r+18)2(1)\displaystyle+\frac{64r^{7}-2592r^{6}+396r^{5}+12116r^{4}+16867r^{3}+10206r^{2}+2930r+336}{12r(2r+1)^{2}(2r^{3}-12r^{2}+13r+18)}\mathcal{I}^{(1)}_{2}
+4r4+323r3877r2134r+52212r372r2+78r+1082(2)\displaystyle+\frac{-4r^{4}+323r^{3}-877r^{2}-134r+522}{12r^{3}-72r^{2}+78r+108}\mathcal{I}^{(2)}_{2}
+19r4291r3+1227r21180r62418(r4)(2r312r2+13r+18)2(3)\displaystyle+\frac{19r^{4}-291r^{3}+1227r^{2}-1180r-624}{18(r-4)(2r^{3}-12r^{2}+13r+18)}\mathcal{I}^{(3)}_{2}
+12r4+74r3+473r22020r117618(2r312r2+13r+18)2(4)\displaystyle+\frac{-12r^{4}+74r^{3}+473r^{2}-2020r-1176}{18(2r^{3}-12r^{2}+13r+18)}\mathcal{I}^{(4)}_{2}
+2mb2r(4r323r2+41r+30)6r336r2+39r+543(1)\displaystyle+\frac{2m_{b}^{2}r(4r^{3}-23r^{2}+41r+30)}{6r^{3}-36r^{2}+39r+54}\mathcal{I}^{(1)}_{3}
mb2(280r4+450r3449r21040r+312)48(2r312r2+13r+18)3(2)\displaystyle-\frac{m_{b}^{2}(280r^{4}+450r^{3}-449r^{2}-1040r+312)}{48(2r^{3}-12r^{2}+13r+18)}\mathcal{I}^{(2)}_{3}
+mb2(34r4135r3129r2+276r+144)12(2r312r2+13r+18)3(3)\displaystyle+\frac{m_{b}^{2}(34r^{4}-135r^{3}-129r^{2}+276r+144)}{12(2r^{3}-12r^{2}+13r+18)}\mathcal{I}^{(3)}_{3}
mb2(408r41010r32523r2+512r+264)48(2r312r2+13r+18)3(4)\displaystyle-\frac{m_{b}^{2}(408r^{4}-1010r^{3}-2523r^{2}+512r+264)}{48(2r^{3}-12r^{2}+13r+18)}\mathcal{I}^{(4)}_{3}
mb2(22r4247r3+635r2+146r336)6(2r312r2+13r+18)3(5)\displaystyle-\frac{m_{b}^{2}(22r^{4}-247r^{3}+635r^{2}+146r-336)}{6(2r^{3}-12r^{2}+13r+18)}\mathcal{I}^{(5)}_{3}
mb2(10r425r3162r2+168r+144)6(2r312r2+13r+18)3(6)\displaystyle-\frac{m_{b}^{2}(10r^{4}-25r^{3}-162r^{2}+168r+144)}{6(2r^{3}-12r^{2}+13r+18)}\mathcal{I}^{(6)}_{3}
+40r4223r3+171r2+444r+962r412r3+13r2+18rln(mb)\displaystyle+\frac{40r^{4}-223r^{3}+171r^{2}+444r+96}{2r^{4}-12r^{3}+13r^{2}+18r}\ln(m_{b})
+598r6+6783r519185r45999r3+40917r2+29940r+547218(r4)r(2r+1)(2r312r2+13r+18)+11ln(2),\displaystyle+\frac{-598r^{6}+6783r^{5}-19185r^{4}-5999r^{3}+40917r^{2}+29940r+5472}{18(r-4)r(2r+1)(2r^{3}-12r^{2}+13r+18)}+11\ln(2),
a2\displaystyle a_{2} =\displaystyle= 162(2)+5r3+24r2+68r+7218(19r324r288r72)ln(2mb)3,\displaystyle-\frac{1}{6}{\mathcal{I}^{(2)}_{2}}+\frac{-5r^{3}+24r^{2}+68r+72}{18(19r^{3}-24r^{2}-88r-72)}-\frac{\ln(2m_{b})}{3}, (44)
b2\displaystyle b_{2} =\displaystyle= r(r(19r72)184)1443mb2r(r(r(19r24)88)72)119r4+14r3232r2440r2886r(19r324r288r72)2(3)\displaystyle\frac{r(r(19r-72)-184)-144}{3m_{b}^{2}r(r(r(19r-24)-88)-72)}{\mathcal{I}_{1}}-\frac{19r^{4}+14r^{3}-232r^{2}-440r-288}{6r(19r^{3}-24r^{2}-88r-72)}{\mathcal{I}^{(3)}_{2}} (45)
+5r4234r3+212r2+960r+86418r(19r324r288r72)ln(2mb)3,\displaystyle+\frac{-5r^{4}-234r^{3}+212r^{2}+960r+864}{18r(19r^{3}-24r^{2}-88r-72)}-\frac{\ln(2m_{b})}{3},
c2\displaystyle c_{2}
=116r8+2088r712033r66098r5+10386r4+72762r3+94260r2+45360r+729612(r4)r(19r324r288r72)(2mbr+mb)21\displaystyle=\frac{116r^{8}+2088r^{7}-12033r^{6}-6098r^{5}+10386r^{4}+72762r^{3}+94260r^{2}+45360r+7296}{12(r-4)r(19r^{3}-24r^{2}-88r-72)(2m_{b}r+m_{b})^{2}}\mathcal{I}_{1}
128r8+332r73272r6+31989r5+76948r4+67272r3+28738r2+5900r+48012r(2r+1)2(19r324r288r72)2(1)\displaystyle-\frac{128r^{8}+332r^{7}-3272r^{6}+31989r^{5}+76948r^{4}+67272r^{3}+28738r^{2}+5900r+480}{12r(2r+1)^{2}(19r^{3}-24r^{2}-88r-72)}\mathcal{I}^{(1)}_{2}
+16r5+113r4838r35202r2+1820r+439212(19r3+24r2+88r+72)2(2)\displaystyle+\frac{-16r^{5}+113r^{4}-838r^{3}-5202r^{2}+1820r+4392}{12(-19r^{3}+24r^{2}+88r+72)}\mathcal{I}^{(2)}_{2}
9r5607r4+4602r317004r2+15664r+1747236(r4)(19r324r288r72)2(3)\displaystyle-\frac{9r^{5}-607r^{4}+4602r^{3}-17004r^{2}+15664r+17472}{36(r-4)(19r^{3}-24r^{2}-88r-72)}\mathcal{I}^{(3)}_{2}
+24r5+207r41346r3+6268r2+6448r+254418(19r324r288r72)2(4)\displaystyle+\frac{24r^{5}+207r^{4}-1346r^{3}+6268r^{2}+6448r+2544}{18(19r^{3}-24r^{2}-88r-72)}\mathcal{I}^{(4)}_{2}
2mb2r(3r462r3+121r2+131r+12)3(19r324r288r72)3(1)\displaystyle-\frac{2m_{b}^{2}r(3r^{4}-62r^{3}+121r^{2}+131r+12)}{3(19r^{3}-24r^{2}-88r-72)}\mathcal{I}^{(1)}_{3}
+mb(492r5+2098r44215r3+2314r2+184r4368)48(19r324r288r72)3(2)\displaystyle+\frac{m_{b}(492r^{5}+2098r^{4}-4215r^{3}+2314r^{2}+184r-4368)}{48(19r^{3}-24r^{2}-88r-72)}\mathcal{I}^{(2)}_{3}
mb(18r5119r41203r3+2922r2480r2016)12(19r324r288r72)3(3)\displaystyle-\frac{m_{b}(18r^{5}-119r^{4}-1203r^{3}+2922r^{2}-480r-2016)}{12(19r^{3}-24r^{2}-88r-72)}\mathcal{I}^{(3)}_{3}
636r5+1578r4+6869r32382r2+5176r+369648(19r324r288r72)3(4)\displaystyle-\frac{636r^{5}+1578r^{4}+6869r^{3}-2382r^{2}+5176r+3696}{48(19r^{3}-24r^{2}-88r-72)}\mathcal{I}^{(4)}_{3}
+mb(54r5458r4+1745r3+728r2+788r480)6(19r324r288r72)3(5)\displaystyle+\frac{m_{b}(54r^{5}-458r^{4}+1745r^{3}+728r^{2}+788r-480)}{6(19r^{3}-24r^{2}-88r-72)}\mathcal{I}^{(5)}_{3}
mb(6r5+41r4+460r31764r2+2208r+2016)6(19r324r288r72)3(6)\displaystyle-\frac{m_{b}(6r^{5}+41r^{4}+460r^{3}-1764r^{2}+2208r+2016)}{6(19r^{3}-24r^{2}-88r-72)}\mathcal{I}^{(6)}_{3}
+539r4+442r3+2656r2+3240r+76838r4+48r3+176r2+144rln(mb)\displaystyle+\frac{-539r^{4}+442r^{3}+2656r^{2}+3240r+768}{-38r^{4}+48r^{3}+176r^{2}+144r}\ln(m_{b})
468r7+20074r670839r5100506r4+248630r3+519516r2+256080r+3340836(r4)r(2r+1)(19r324r288r72)+112ln(2),\displaystyle-\frac{-468r^{7}+20074r^{6}-70839r^{5}-100506r^{4}+248630r^{3}+519516r^{2}+256080r+33408}{36(r-4)r(2r+1)(19r^{3}-24r^{2}-88r-72)}+\frac{11}{2}\ln(2),
(46)
a3\displaystyle a_{3} =\displaystyle= b3=0,\displaystyle b_{3}=0, (47)
c3\displaystyle c_{3}
=648r91628r8200r75270r629735r558006r489032r379760r234176r53763(r4)r(2rmb+mb)2(9r59r4+34r3+228r2+248r+144)1\displaystyle=-\frac{648r^{9}-1628r^{8}-200r^{7}-5270r^{6}-29735r^{5}-58006r^{4}-89032r^{3}-79760r^{2}-34176r-5376}{3(r-4)r(2rm_{b}+m_{b})^{2}(9r^{5}-9r^{4}+34r^{3}+228r^{2}+248r+144)}\mathcal{I}_{1}
+2(28r81626r7+1334r6+14055r5+19662r4+11099r3+2300r2196r96)3r(2r+1)2(9r59r4+34r3+228r2+248r+144)2(1)\displaystyle+\frac{2(28r^{8}-1626r^{7}+1334r^{6}+14055r^{5}+19662r^{4}+11099r^{3}+2300r^{2}-196r-96)}{3r(2r+1)^{2}(9r^{5}-9r^{4}+34r^{3}+228r^{2}+248r+144)}\mathcal{I}^{(1)}_{2}
4(4r593r4+276r3+140r2616r576)3(9r59r4+34r3+228r2+248r+144)2(2)\displaystyle-\frac{4(4r^{5}-93r^{4}+276r^{3}+140r^{2}-616r-576)}{3(9r^{5}-9r^{4}+34r^{3}+228r^{2}+248r+144)}\mathcal{I}^{(2)}_{2}
+8(9r5+269r41230r3+1068r2+3952r+2496)9(r4)(9r59r4+34r3+228r2+248r+144)2(3)\displaystyle+\frac{8(-9r^{5}+269r^{4}-1230r^{3}+1068r^{2}+3952r+2496)}{9(r-4)(9r^{5}-9r^{4}+34r^{3}+228r^{2}+248r+144)}\mathcal{I}^{(3)}_{2}
4(39r5219r4+1102r3+1960r2+664r+96)9(9r59r4+34r3+228r2+248r+144)2(4)\displaystyle-\frac{4(39r^{5}-219r^{4}+1102r^{3}+1960r^{2}+664r+96)}{9(9r^{5}-9r^{4}+34r^{3}+228r^{2}+248r+144)}\mathcal{I}^{(4)}_{2}
4r(57r449r3127r2+10r+96)mb23(9r59r4+34r3+228r2+248r+144)3(1)\displaystyle-\frac{4r(57r^{4}-49r^{3}-127r^{2}+10r+96)m_{b}^{2}}{3(9r^{5}-9r^{4}+34r^{3}+228r^{2}+248r+144)}\mathcal{I}^{(1)}_{3}
+2(6r5+71r4174r3226r2+68r+624)mb23(9r59r4+34r3+228r2+248r+144)3(2)\displaystyle+\frac{2(6r^{5}+71r^{4}-174r^{3}-226r^{2}+68r+624)m_{b}^{2}}{3(9r^{5}-9r^{4}+34r^{3}+228r^{2}+248r+144)}\mathcal{I}^{(2)}_{3}
+2(36r5161r4+546r3+294r21164r1152)mb23(9r59r4+34r3+228r2+248r+144)3(3)\displaystyle+\frac{2(36r^{5}-161r^{4}+546r^{3}+294r^{2}-1164r-1152)m_{b}^{2}}{3(9r^{5}-9r^{4}+34r^{3}+228r^{2}+248r+144)}\mathcal{I}^{(3)}_{3}
4(21r572r4+80r3+12r2536r264)mb23(9r59r4+34r3+228r2+248r+144)3(4)\displaystyle-\frac{4(21r^{5}-72r^{4}+80r^{3}+12r^{2}-536r-264)m_{b}^{2}}{3(9r^{5}-9r^{4}+34r^{3}+228r^{2}+248r+144)}\mathcal{I}^{(4)}_{3}
4(18r645r5+271r4+476r3+188r2+464r+96)mb23(9r59r4+34r3+228r2+248r+144)3(5)\displaystyle-\frac{4(18r^{6}-45r^{5}+271r^{4}+476r^{3}+188r^{2}+464r+96)m_{b}^{2}}{3(9r^{5}-9r^{4}+34r^{3}+228r^{2}+248r+144)}\mathcal{I}^{(5)}_{3}
16(6r511r4+50r3144r2480r288)mb23(9r59r4+34r3+228r2+248r+144)3(6)\displaystyle-\frac{16(6r^{5}-11r^{4}+50r^{3}-144r^{2}-480r-288)m_{b}^{2}}{3(9r^{5}-9r^{4}+34r^{3}+228r^{2}+248r+144)}\mathcal{I}^{(6)}_{3}
+72r672r5+222r4+2200r3+3440r2+2928r+7689r69r5+34r4+228r3+248r2+144rln(mb)\displaystyle+\frac{72r^{6}-72r^{5}+222r^{4}+2200r^{3}+3440r^{2}+2928r+768}{9r^{6}-9r^{5}+34r^{4}+228r^{3}+248r^{2}+144r}\ln(m_{b})
+1944r8+10224r79718r662979r5+122574r4+343096r3+350880r2+131136r+115209(r4)r(2r+1)(9r59r4+34r3+228r2+248r+144).\displaystyle+\frac{-1944r^{8}+10224r^{7}-9718r^{6}-62979r^{5}+122574r^{4}+343096r^{3}+350880r^{2}+131136r+11520}{9(r-4)r(2r+1)(9r^{5}-9r^{4}+34r^{3}+228r^{2}+248r+144)}.
(48)

A.2.3 bb¯[3S11]+bb¯[3P21]b\bar{b}[^{3}S_{1}^{1}]+b\bar{b}[^{3}P_{2}^{1}]

a1\displaystyle a_{1} =\displaystyle= 132(2)2(r4+11r3131r2+224r+180)9(r4+20r3188r2+308r+360)2ln(2mb)3,\displaystyle-\frac{1}{3}{\mathcal{I}^{(2)}_{2}}-\frac{2(r^{4}+11r^{3}-131r^{2}+224r+180)}{9(r^{4}+20r^{3}-188r^{2}+308r+360)}-\frac{2\ln(2m_{b})}{3}, (49)
b1\displaystyle b_{1} =\displaystyle= 2(r4+14r3296r2+776r+720)3mb2r(r4+20r3188r2+308r+360)1r5+22r4160r3284r2+1912r+14403r(r4+20r3188r2+308r+360)2(3)\displaystyle\frac{2(r^{4}+14r^{3}-296r^{2}+776r+720)}{3m_{b}^{2}r(r^{4}+20r^{3}-188r^{2}+308r+360)}{\mathcal{I}_{1}}-\frac{r^{5}+22r^{4}-160r^{3}-284r^{2}+1912r+1440}{3r(r^{4}+20r^{3}-188r^{2}+308r+360)}{\mathcal{I}^{(3)}_{2}} (50)
2(r5+23r4+73r31366r2+1968r+2160)9r(r4+20r3188r2+308r+360)2ln(2mb)3,\displaystyle-\frac{2(r^{5}+23r^{4}+73r^{3}-1366r^{2}+1968r+2160)}{9r(r^{4}+20r^{3}-188r^{2}+308r+360)}-\frac{2\ln(2m_{b})}{3},
c1\displaystyle c_{1}
=204r8+1812r757877r6+146122r5+217023r4115334r3239518r2104568r144009(r4)r(2rmb+mb)2(r4+20r3188r2+308r+360)1\displaystyle=\frac{204r^{8}+1812r^{7}-57877r^{6}+146122r^{5}+217023r^{4}-115334r^{3}-239518r^{2}-104568r-14400}{9(r-4)r(2rm_{b}+m_{b})^{2}(r^{4}+20r^{3}-188r^{2}+308r+360)}\mathcal{I}_{1}
+1248r7+6628r6+127916r5+289545r4+290345r3+156466r2+43890r+50409r(2r+1)2(r4+20r3188r2+308r+3602(1)\displaystyle+\frac{1248r^{7}+6628r^{6}+127916r^{5}+289545r^{4}+290345r^{3}+156466r^{2}+43890r+5040}{9r(2r+1)^{2}(r^{4}+20r^{3}-188r^{2}+308r+360}\mathcal{I}^{(1)}_{2}
+123r4+868r328744r22868r+156609(r4+20r3188r2+308r+360)2(2)\displaystyle+\frac{-123r^{4}+868r^{3}-28744r^{2}-2868r+15660}{9(r^{4}+20r^{3}-188r^{2}+308r+360)}\mathcal{I}^{(2)}_{2}
101r5+146r42496r3260r2+1936r+1248018(r4)(r4+20r3188r2+308r+360)2(3)\displaystyle-\frac{101r^{5}+146r^{4}-2496r^{3}-260r^{2}+1936r+12480}{18(r-4)(r^{4}+20r^{3}-188r^{2}+308r+360)}\mathcal{I}^{(3)}_{2}
113r4+798r3+5286r2+17944r+117609(r4+20r3188r2+308r+360)2(4)\displaystyle-\frac{113r^{4}+798r^{3}+5286r^{2}+17944r+11760}{9(r^{4}+20r^{3}-188r^{2}+308r+360)}\mathcal{I}^{(4)}_{2}
+r(r3+14r278r72)r4+20r3188r2+308r+3602(5)\displaystyle+\frac{r(r^{3}+14r^{2}-78r-72)}{r^{4}+20r^{3}-188r^{2}+308r+360}\mathcal{I}^{(5)}_{2}
+2r(r4+24r3306r2+340r+600)mb23(r4+20r3188r2+308r+360)3(1)\displaystyle+\frac{2r(r^{4}+24r^{3}-306r^{2}+340r+600)m_{b}^{2}}{3(r^{4}+20r^{3}-188r^{2}+308r+360)}\mathcal{I}^{(1)}_{3}
(21r5+1115r4+1003r33945r22324r+1560)mb212(r4+20r3188r2+308r+360)3(2)\displaystyle-\frac{(21r^{5}+1115r^{4}+1003r^{3}-3945r^{2}-2324r+1560)m_{b}^{2}}{12(r^{4}+20r^{3}-188r^{2}+308r+360)}\mathcal{I}^{(2)}_{3}
(r5109r4+498r3+369r2996r720)mb23(r4+20r3188r2+308r+360)3(3)\displaystyle-\frac{(r^{5}-109r^{4}+498r^{3}+369r^{2}-996r-720)m_{b}^{2}}{3(r^{4}+20r^{3}-188r^{2}+308r+360)}\mathcal{I}^{(3)}_{3}
+(r5+1251r4+14599r3+9475r2+700r1320)mb212(r4+20r3188r2+308r+360)3(4)\displaystyle+\frac{(r^{5}+1251r^{4}+14599r^{3}+9475r^{2}+700r-1320)m_{b}^{2}}{12(r^{4}+20r^{3}-188r^{2}+308r+360)}\mathcal{I}^{(4)}_{3}
2(4r6+209r51014r4+4477r35416r23468r+3360)mb23(r2)(r4+20r3188r2+308r+360)3(5)\displaystyle-\frac{2(4r^{6}+209r^{5}-1014r^{4}+4477r^{3}-5416r^{2}-3468r+3360)m_{b}^{2}}{3(r-2)(r^{4}+20r^{3}-188r^{2}+308r+360)}\mathcal{I}^{(5)}_{3}
+2(3r5+45r425r3+230r2600r720)mb23(r4+20r3188r2+308r+360)3(6)\displaystyle+\frac{2(3r^{5}+45r^{4}-25r^{3}+230r^{2}-600r-720)m_{b}^{2}}{3(r^{4}+20r^{3}-188r^{2}+308r+360)}\mathcal{I}^{(6)}_{3}
72(r4)r(r+1)mb2(r2)(r4+20r3188r2+308r+360)3(7)\displaystyle-\frac{72(r-4)r(r+1)m_{b}^{2}}{(r-2)(r^{4}+20r^{3}-188r^{2}+308r+360)}\mathcal{I}^{(7)}_{3}
+19r5+416r43664r3+4940r2+9296r+1920r5+20r4188r3+308r2+360rln(mb)\displaystyle+\frac{19r^{5}+416r^{4}-3664r^{3}+4940r^{2}+9296r+1920}{r^{5}+20r^{4}-188r^{3}+308r^{2}+360r}\ln(m_{b})
+104r73176r6+29871r5103006r4+32774r3+441486r2+306648r+547209(r4)r(2r+1)(r4+20r3188r2+308r+360)\displaystyle+\frac{-104r^{7}-3176r^{6}+29871r^{5}-103006r^{4}+32774r^{3}+441486r^{2}+306648r+54720}{9(r-4)r(2r+1)(r^{4}+20r^{3}-188r^{2}+308r+360)}
+11ln(2).\displaystyle+11\ln(2). (51)
a2\displaystyle a_{2} =\displaystyle= 162(2)+11r4+65r3+148r2628r36018(10r437r3104r2+488r+360)ln(2mb)3,\displaystyle-\frac{1}{6}{\mathcal{I}^{(2)}_{2}}+\frac{-11r^{4}+65r^{3}+148r^{2}-628r-360}{18(10r^{4}-37r^{3}-104r^{2}+488r+360)}-\frac{\ln(2m_{b})}{3}, (52)
b2\displaystyle b_{2} =\displaystyle= 10r479r368r2+1136r+7203mb2r(10r437r3104r2+488r+360)110r517r4262r3+352r2+2632r+14406r(10r437r3104r2+488r+360)2(3)\displaystyle\frac{10r^{4}-79r^{3}-68r^{2}+1136r+720}{3m_{b}^{2}r(10r^{4}-37r^{3}-104r^{2}+488r+360)}{\mathcal{I}_{1}}-\frac{10r^{5}-17r^{4}-262r^{3}+352r^{2}+2632r+1440}{6r(10r^{4}-37r^{3}-104r^{2}+488r+360)}{\mathcal{I}^{(3)}_{2}} (53)
11r5+121r4730r31724r2+6096r+432018r(10r437r3104r2+488r+360)ln(2mb)3,\displaystyle-\frac{11r^{5}+121r^{4}-730r^{3}-1724r^{2}+6096r+4320}{18r(10r^{4}-37r^{3}-104r^{2}+488r+360)}-\frac{\ln(2m_{b})}{3},
c2\displaystyle c_{2}
=3096r824996r730164r6+323237r5+146433r4521269r3663026r2317208r5472018(r4)r(2rmb+mb)2(10r437r3104r2+488r+3601\displaystyle=\frac{3096r^{8}-24996r^{7}-30164r^{6}+323237r^{5}+146433r^{4}-521269r^{3}-663026r^{2}-317208r-54720}{18(r-4)r(2rm_{b}+m_{b})^{2}(10r^{4}-37r^{3}-104r^{2}+488r+360}\mathcal{I}_{1}
+1536r8+17268r7+111220r6+635537r5+1298688r4+1176860r3+526618r2+107484r+720036r(2r+1)2(10r437r3104r2+488r+360\displaystyle+\frac{1536r^{8}+17268r^{7}+111220r^{6}+635537r^{5}+1298688r^{4}+1176860r^{3}+526618r^{2}+107484r+7200}{36r(2r+1)^{2}(10r^{4}-37r^{3}-104r^{2}+488r+360}
×2(1)192r5+1041r4+12656r3+93670r218084r6588036(10r437r3104r2+488r+360)2(2)\displaystyle\times\mathcal{I}^{(1)}_{2}-\frac{192r^{5}+1041r^{4}+12656r^{3}+93670r^{2}-18084r-65880}{36(10r^{4}-37r^{3}-104r^{2}+488r+360)}\mathcal{I}^{(2)}_{2}
+289r5193r4+9762r336644r2+65680r+8736036(r4)(10r437r3104r2+488r+360)2(3)\displaystyle+\frac{-289r^{5}-193r^{4}+9762r^{3}-36644r^{2}+65680r+87360}{36(r-4)(10r^{4}-37r^{3}-104r^{2}+488r+360)}\mathcal{I}^{(3)}_{2}
48r5+401r4+2466r3+11496r2+23680r+63609(10r437r3104r2+488r+360)2(4)\displaystyle-\frac{48r^{5}+401r^{4}+2466r^{3}+11496r^{2}+23680r+6360}{9(10r^{4}-37r^{3}-104r^{2}+488r+360)}\mathcal{I}^{(4)}_{2}
+r(2r38r257r36)10r437r3104r2+488r+3602(5)\displaystyle+\frac{r(2r^{3}-8r^{2}-57r-36)}{10r^{4}-37r^{3}-104r^{2}+488r+360}\mathcal{I}^{(5)}_{2}
+2r(4r4189r3+48r2+247r+60)mb23(10r437r3104r2+488r+360)3(1)\displaystyle+\frac{2r(4r^{4}-189r^{3}+48r^{2}+247r+60)m_{b}^{2}}{3(10r^{4}-37r^{3}-104r^{2}+488r+360)}\mathcal{I}^{(1)}_{3}
(822r5+4154r412011r3+14334r213424r21840)mb248(10r437r3104r2+488r+360)3(2)\displaystyle-\frac{(822r^{5}+4154r^{4}-12011r^{3}+14334r^{2}-13424r-21840)m_{b}^{2}}{48(10r^{4}-37r^{3}-104r^{2}+488r+360)}\mathcal{I}^{(2)}_{3}
+(56r5+427r44071r3+8370r2+384r10080)mb212(10r437r3104r2+488r+360)3(3)\displaystyle+\frac{(56r^{5}+427r^{4}-4071r^{3}+8370r^{2}+384r-10080)m_{b}^{2}}{12(10r^{4}-37r^{3}-104r^{2}+488r+360)}\mathcal{I}^{(3)}_{3}
+(1414r5+12714r4+50113r3+13030r24208r+18480)mb248(10r437r3104r2+488r+360)3(4)\displaystyle+\frac{(1414r^{5}+12714r^{4}+50113r^{3}+13030r^{2}-4208r+18480)m_{b}^{2}}{48(10r^{4}-37r^{3}-104r^{2}+488r+360)}\mathcal{I}^{(4)}_{3}
(340r6796r5+3933r4+6358r328252r2+1224r+4800)mb26(r2)(10r437r3104r2+488r+360)3(5)\displaystyle-\frac{(340r^{6}-796r^{5}+3933r^{4}+6358r^{3}-28252r^{2}+1224r+4800)m_{b}^{2}}{6(r-2)(10r^{4}-37r^{3}-104r^{2}+488r+360)}\mathcal{I}^{(5)}_{3}
+(30r5+21r4+1760r33004r2+7680r+10080)mb26(10r437r3104r2+488r+360)3(6)\displaystyle+\frac{(30r^{5}+21r^{4}+1760r^{3}-3004r^{2}+7680r+10080)m_{b}^{2}}{6(10r^{4}-37r^{3}-104r^{2}+488r+360)}\mathcal{I}^{(6)}_{3}
18r(r310r8)mb2(r2)(10r437r3104r2+488r+360)3(7)\displaystyle-\frac{18r(r^{3}-10r-8)m_{b}^{2}}{(r-2)(10r^{4}-37r^{3}-104r^{2}+488r+360)}\mathcal{I}^{(7)}_{3}
+291r5915r44006r3+13632r2+17032r+384020r574r4208r3+976r2+720rln(mb)\displaystyle+\frac{291r^{5}-915r^{4}-4006r^{3}+13632r^{2}+17032r+3840}{20r^{5}-74r^{4}-208r^{3}+976r^{2}+720r}\ln(m_{b})
+7688r7+41692r6+62841r5824998r4+799850r3+2723892r2+1386288r+16704036(r4)r(2r+1)(10r437r3104r2+488r+360)\displaystyle+\frac{-7688r^{7}+41692r^{6}+62841r^{5}-824998r^{4}+799850r^{3}+2723892r^{2}+1386288r+167040}{36(r-4)r(2r+1)(10r^{4}-37r^{3}-104r^{2}+488r+360)}
+112ln(2),\displaystyle+\frac{11}{2}\ln(2), (54)
a3\displaystyle a_{3} =\displaystyle= b3=0,\displaystyle b_{3}=0, (55)
c3\displaystyle c_{3}
=19(r4)r(2rmb+mb)2(9r5+11r4134r3+140r2+1336r+720)\displaystyle=-\frac{1}{9(r-4)r(2rm_{b}+m_{b})^{2}(9r^{5}+11r^{4}-134r^{3}+140r^{2}+1336r+720)}
×(1512r91032r8+32016r711119r6117845r5+317166r4+933424r3+943568r2\displaystyle\times(-1512r^{9}-1032r^{8}+32016r^{7}-11119r^{6}-117845r^{5}+317166r^{4}+933424r^{3}+943568r^{2}
+451200r+80640)1\displaystyle+451200r+80640)\mathcal{I}_{1}
+2(444r8+4470r7+24088r6+165809r5+332502r4+265415r3+89104r2+6612r1440)9r(2r+1)2(9r5+11r4134r3+140r2+1336r+720)2(1)\displaystyle+\frac{2(444r^{8}+4470r^{7}+24088r^{6}+165809r^{5}+332502r^{4}+265415r^{3}+89104r^{2}+6612r-1440)}{9r(2r+1)^{2}(9r^{5}+11r^{4}-134r^{3}+140r^{2}+1336r+720)}\mathcal{I}^{(1)}_{2}
4(48r5105r4+952r3+7196r26360r8640)9(9r5+11r4134r3+140r2+1336r+720)2(2)\displaystyle-\frac{4(48r^{5}-105r^{4}+952r^{3}+7196r^{2}-6360r-8640)}{9(9r^{5}+11r^{4}-134r^{3}+140r^{2}+1336r+720)}\mathcal{I}^{(2)}_{2}
8(55r5281r4+462r3+2516r215472r12480)9(r4)(9r5+11r4134r3+140r2+1336r+720)2(3)\displaystyle-\frac{8(55r^{5}-281r^{4}+462r^{3}+2516r^{2}-15472r-12480)}{9(r-4)(9r^{5}+11r^{4}-134r^{3}+140r^{2}+1336r+720)}\mathcal{I}^{(3)}_{2}
4(21r5+619r4+2706r3+10896r2+12008r+480)9(9r5+11r4134r3+140r2+1336r+720)2(4)\displaystyle-\frac{4(21r^{5}+619r^{4}+2706r^{3}+10896r^{2}+12008r+480)}{9(9r^{5}+11r^{4}-134r^{3}+140r^{2}+1336r+720)}\mathcal{I}^{(4)}_{2}
4r(110r4+249r3339r2+386r+480)mb23(9r5+11r4134r3+140r2+1336r+720)3(1)\displaystyle-\frac{4r(110r^{4}+249r^{3}-339r^{2}+386r+480)m_{b}^{2}}{3(9r^{5}+11r^{4}-134r^{3}+140r^{2}+1336r+720)}\mathcal{I}^{(1)}_{3}
2(57r5367r4608r3+3210r22852r3120)mb23(9r5+11r4134r3+140r2+1336r+720)3(2)\displaystyle-\frac{2(57r^{5}-367r^{4}-608r^{3}+3210r^{2}-2852r-3120)m_{b}^{2}}{3(9r^{5}+11r^{4}-134r^{3}+140r^{2}+1336r+720)}\mathcal{I}^{(2)}_{3}
+2(83r5125r4336r3+4554r24044r5760)mb23(9r5+11r4134r3+140r2+1336r+720)3(3)\displaystyle+\frac{2(83r^{5}-125r^{4}-336r^{3}+4554r^{2}-4044r-5760)m_{b}^{2}}{3(9r^{5}+11r^{4}-134r^{3}+140r^{2}+1336r+720)}\mathcal{I}^{(3)}_{3}
+8(7r5+93r4+376r3347r2+196r+660)mb23(9r5+11r4134r3+140r2+1336r+720)3(4)\displaystyle+\frac{8(7r^{5}+93r^{4}+376r^{3}-347r^{2}+196r+660)m_{b}^{2}}{3(9r^{5}+11r^{4}-134r^{3}+140r^{2}+1336r+720)}\mathcal{I}^{(4)}_{3}
4(18r6+103r5+247r4+2660r3+2348r2720r+480)mb23(9r5+11r4134r3+140r2+1336r+720)3(5)\displaystyle-\frac{4(18r^{6}+103r^{5}+247r^{4}+2660r^{3}+2348r^{2}-720r+480)m_{b}^{2}}{3(9r^{5}+11r^{4}-134r^{3}+140r^{2}+1336r+720)}\mathcal{I}^{(5)}_{3}
16(6r551r480r3+28r21920r1440)mb23(9r5+11r4134r3+140r2+1336r+720)3(6)\displaystyle-\frac{16(6r^{5}-51r^{4}-80r^{3}+28r^{2}-1920r-1440)m_{b}^{2}}{3(9r^{5}+11r^{4}-134r^{3}+140r^{2}+1336r+720)}\mathcal{I}^{(6)}_{3}
+2(36r6+101r5731r460r3+7432r2+7736r+1920)r(9r5+11r4134r3+140r2+1336r+720)ln(mb)\displaystyle+\frac{2(36r^{6}+101r^{5}-731r^{4}-60r^{3}+7432r^{2}+7736r+1920)}{r(9r^{5}+11r^{4}-134r^{3}+140r^{2}+1336r+720)}\ln(m_{b})
+2052r8+4274r7+57269r6136869r5528734r4+1033984r3+1897728r2+747072r+576009(r4)r(2r+1)(9r5+11r4134r3+140r2+1336r+720).\displaystyle+\frac{-2052r^{8}+4274r^{7}+57269r^{6}-136869r^{5}-528734r^{4}+1033984r^{3}+1897728r^{2}+747072r+57600}{9(r-4)r(2r+1)(9r^{5}+11r^{4}-134r^{3}+140r^{2}+1336r+720)}.
(56)
Acknowledgements.
This work is supported by the Natural Science Foundation of China under the Grant No. 12065006.

References

  • (1) B. Guberina, J. H. Kuhn, R. D. Peccei and R. Ruckl, Rare Decays of the Z0, Nucl. Phys. B 174 (1980), 317-334.
  • (2) W. Y. Keung, Off Resonance Production of Heavy Vector Quarkonium States in e+ee^{+}e^{-} Annihilation, Phys. Rev. D 23 (1981), 2072.
  • (3) V. D. Barger, K. m. Cheung and W. Y. Keung, Z BOSON DECAYS TO HEAVY QUARKONIUM, Phys. Rev. D 41 (1990), 1541.
  • (4) E. Braaten, K. m. Cheung and T. C. Yuan, Z0 decay into charmonium via charm quark fragmentation, Phys. Rev. D 48 (1993), 4230-4235.
  • (5) S. Fleming, Electromagnetic production of quarkonium in Z0 decay, Phys. Rev. D 48, R1914-R1916 (1993).
  • (6) G. Alexander et al. [OPAL], Prompt Jψ\psi production in hadronic Z0 decays, Phys. Lett. B 384 (1996), 343-352.
  • (7) P. Abreu et al. [DELPHI], Search for promptly produced heavy quarkonium states in hadronic Z decays, Z. Phys. C 69 (1996), 575-584.
  • (8) K. m. Cheung, W. Y. Keung and T. C. Yuan, Color octet quarkonium production at the ZZ pole, Phys. Rev. Lett. 76 (1996), 877-880.
  • (9) P. L. Cho, Prompt upsilon and psi production at LEP, Phys. Lett. B 368 (1996), 171-178.
  • (10) S. Baek, P. Ko, J. Lee and H. S. Song, Color octet heavy quarkonium productions in Z0 decays at LEP, Phys. Lett. B 389 (1996), 609-615.
  • (11) P. Ernstrom, L. Lonnblad and M. Vanttinen, Evolution effects in Z0Z^{0} fragmentation into charmonium, Z. Phys. C 76 (1997), 515-521.
  • (12) E. M. Gregores, F. Halzen and O. J. P. Eboli, Prompt charmonium production in Z decays, Phys. Lett. B 395 (1997), 113-117.
  • (13) C. f. Qiao, F. Yuan and K. T. Chao, A Crucial test for color octet production mechanism in Z0Z^{0} decays, Phys. Rev. D 55 (1997), 4001-4004.
  • (14) S. Baek, P. Ko, J. Lee and H. S. Song, Color octet mechanism and J/ψJ/\psi polarization at LEP, Phys. Rev. D 55 (1997), 6839-6843.
  • (15) M. Acciarri et al. [L3], Inclusive J/ψJ/\psi, ψ\psi^{\prime} and chi(cc) production in hadronic ZZ decays, Phys. Lett. B 407 (1997), 351-360.
  • (16) M. Acciarri et al. [L3], Heavy quarkonium production in ZZ decays, Phys. Lett. B 453 (1999), 94-106.
  • (17) C. G. Boyd, A. K. Leibovich and I. Z. Rothstein, J / psi production at LEP: Revisited and resummed, Phys. Rev. D 59 (1999), 054016.
  • (18) M. Acciarri et al. [L3], Heavy quarkonium production in ZZ decays, Phys. Lett. B 453 (1999), 94-106.
  • (19) R. Li and J. X. Wang, The next-to-leading-order QCD correction to inclusive J/ψ(Υ)J/\psi(\Upsilon) production in Z0Z^{0} decay, Phys. Rev. D 82 (2010), 054006.
  • (20) L. C. Deng, X. G. Wu, Z. Yang, Z. Y. Fang and Q. L. Liao, Z0Z_{0} Boson Decays to Bc()B^{(*)}_{c} Meson and Its Uncertainties, Eur. Phys. J. C 70 (2010), 113-124.
  • (21) Z. Yang, X. G. Wu, L. C. Deng, J. W. Zhang and G. Chen, Production of the PP-Wave Excited BcB_{c}-States through the Z0Z^{0} Boson Decays, Eur. Phys. J. C 71 (2011), 1563.
  • (22) C. F. Qiao, L. P. Sun and R. L. Zhu, The NLO QCD Corrections to BcB_{c} Meson Production in Z0Z^{0} Decays, JHEP 08 (2011), 131.
  • (23) T. C. Huang and F. Petriello, Rare exclusive decays of the Z-boson revisited, Phys. Rev. D 92 (2015) no.1, 014007.
  • (24) J. Jiang, L. B. Chen and C. F. Qiao, QCD NLO corrections to inclusive BcB_{c}^{*} production in Z0Z^{0} decays, Phys. Rev. D 91 (2015) no.3, 034033.
  • (25) Q. L. Liao, Y. Yu, Y. Deng, G. Y. Xie and G. C. Wang, Excited heavy quarkonium production via Z0 decays at a high luminosity collider, Phys. Rev. D 91 (2015) no.11, 114030.
  • (26) G. Aad et al. [ATLAS], Search for Higgs and ZZ Boson Decays to J/ψγJ/\psi\gamma and Υ(nS)γ\Upsilon(nS)\gamma with the ATLAS Detector, Phys. Rev. Lett. 114 (2015) no.12, 121801.
  • (27) Y. Grossman, M. König and M. Neubert, Exclusive Radiative Decays of W and Z Bosons in QCD Factorization, JHEP 04 (2015), 101.
  • (28) G. T. Bodwin, H. S. Chung, J. H. Ee and J. Lee, ZZ-boson decays to a vector quarkonium plus a photon, Phys. Rev. D 97 (2018) no.1, 016009.
  • (29) A. K. Likhoded and A. V. Luchinsky, Double Charmonia Production in Exclusive ZZ Boson Decays, Mod. Phys. Lett. A 33 (2018) no.14, 1850078.
  • (30) M. Aaboud et al. [ATLAS], Searches for exclusive Higgs and ZZ boson decays into J/ψγJ/\psi\gamma, ψ(2S)γ\psi(2S)\gamma, and Υ(nS)γ\Upsilon(nS)\gamma at s=13\sqrt{s}=13 TeV with the ATLAS detector, Phys. Lett. B 786 (2018), 134-155.
  • (31) Z. Sun and H. F. Zhang, Next-to-leading-order QCD corrections to the decay of ZZ boson into χc(χb)\chi_{c}(\chi_{b}), Phys. Rev. D 99 (2019) no.9, 094009.
  • (32) J. P. Lansberg, New Observables in Inclusive Production of Quarkonia, Phys. Rept. 889 (2020), 1-106.
  • (33) A. M. Sirunyan et al. [CMS], Search for rare decays of Z and Higgs bosons to J/ψ/\psi and a photon in proton-proton collisions at s=\sqrt{s}= 13 TeV, Eur. Phys. J. C 79 (2019) no.2, 94.
  • (34) Z. Sun, The studies on ZΥ(1S)+g+gZ\rightarrow\Upsilon(1S)+g+g at the next-to-leading-order QCD accuracy, Eur. Phys. J. C 80 (2020) no.4, 311.
  • (35) Z. Sun and H. F. Zhang, Comprehensive studies of Υ(1S)\Upsilon(1S) inclusive production in Z boson decay, JHEP 06 (2021), 152.
  • (36) Z. Sun, X. Luo and Y. Z. Jiang, Impact of Zηc,b+g+gZ\to\eta_{c,b}+g+g on the inclusive ηc,b\eta_{c,b} meson yield in Z-boson decay, Phys. Rev. D 106 (2022) no.3, 034001.
  • (37) X. C. Zheng, X. G. Wu, X. J. Zhan, H. Zhou and H. T. Li, Next-to-leading order QCD corrections to ZηQ+Q+Q¯Z\to\eta_{Q}+Q+\bar{Q}, Phys. Rev. D 106 (2022) no.9, 094008.
  • (38) W. L. Sang, D. S. Yang and Y. D. Zhang, Z boson radiative decays to a P-wave quarkonium at NNLO and LL accuracy, Phys. Rev. D 106 (2022) no.9, 094023.
  • (39) W. L. Sang, D. S. Yang and Y. D. Zhang, Z-boson radiative decays to an S-wave quarkonium at NNLO and NLL accuracy, Phys. Rev. D 108 (2023) no.1, 014021.
  • (40) C. Li, Z. Sun and G. Y. Zhang, “Analysis of double-J/ψ\psi production in Z decay at next-to-leading-order QCD accuracy,” JHEP 10 (2023), 120.
  • (41) D. d’Enterria and V. Le, Rare and exclusive few-body decays of the Higgs, Z, W bosons, and the top quark, [arXiv:2312.11211 [hep-ph]].
  • (42) G. Y. Wang, X. G. Wu, X. C. Zheng, J. Yan and J. W. Zhang, Improved analysis of double J/ψJ/\psi production in Z-boson decay, Eur. Phys. J. C 84 (2024) no.5, 544.
  • (43) G. Y. Wang, X. C. Zheng, X. G. Wu and G. Z. Xu, Z-boson decays into S-wave quarkonium plus a photon up to 𝒪(αsv2)\mathcal{O}(\alpha_{s}v^{2}) corrections, Phys. Rev. D 109 (2024) no.7, 074004.
  • (44) A. M. Sirunyan et al. [CMS], Search for Higgs and Z boson decays to J/ψ\psi or Y pairs in the four-muon final state in proton-proton collisions at s=13TeV, Phys. Lett. B 797 (2019), 134811.
  • (45) A. Tumasyan et al. [CMS], Search for Higgs boson decays into Z and J/ψ\psi and for Higgs and Z boson decays into J/ψ\psi or Y pairs in pp collisions at s=13 TeV, Phys. Lett. B 842 (2023), 137534.
  • (46) A. K. Likhoded and A. V. Luchinsky, Double Charmonia Production in Exclusive ZZ Boson Decays, Mod. Phys. Lett. A 33 (2018) no.14, 1850078.
  • (47) D. N. Gao and X. Gong, Note on rare Z-boson decays to double heavy quarkonia*, Chin. Phys. C 47 (2023) no.4, 043106.
  • (48) Y. J. Zhang, Y. j. Gao and K. T. Chao, Next-to-leading order QCD correction to e+ e- —>> J / psi + eta(c) at s**(1/2) = 10.6-GeV, Phys. Rev. Lett. 96 (2006), 092001.
  • (49) B. Gong and J. X. Wang, QCD corrections to J/ψJ/\psi plus ηc\eta_{c} production in e+ee^{+}e^{-} annihilation at S(1/2)S^{(1/2)} = 10.6-GeV, Phys. Rev. D 77 (2008), 054028.
  • (50) Y. J. Zhang, Y. Q. Ma and K. T. Chao, Factorization and NLO QCD correction in e+eJ/ψ(ψ(2S))+χc0e^{+}e^{-}\to J/\psi(\psi(2S))+\chi_{c0} at B Factories, Phys. Rev. D 78 (2008), 054006.
  • (51) N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt, G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell and V. Papadimitriou, et al. Heavy Quarkonium: Progress, Puzzles, and Opportunities, Eur. Phys. J. C 71 (2011), 1534.
  • (52) H. R. Dong, F. Feng and Y. Jia, O(αs)O(\alpha_{s}) corrections to J/ψ+χcJJ/\psi+\chi_{cJ} production at BB factories, JHEP 10 (2011), 141, [erratum: JHEP 02 (2013), 089].
  • (53) Z. Sun, X. G. Wu, Y. Ma and S. J. Brodsky, Exclusive production of J/ψ+ηcJ/\psi+\eta_{c} at the BB factories Belle and Babar using the principle of maximum conformality, Phys. Rev. D 98 (2018) no.9, 094001.
  • (54) Z. Sun, Next-to-leading-order study of J/ψJ/\psi angular distributions in e+eJ/ψ+ηc,χcJe^{+}e^{-}\to J/\psi+\eta_{c},\chi_{cJ} at s10.6\sqrt{s}\approx 10.6GeV, JHEP 09 (2021), 073.
  • (55) G. T. Bodwin, E. Braaten and G. P. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev. D 51 (1995), 1125-1171, [erratum: Phys. Rev. D 55 (1997), 5853].
  • (56) J. B. Guimarães da Costa et al. [CEPC Study Group], CEPC Conceptual Design Report: Volume 2 - Physics & Detector, [arXiv:1811.10545 [hep-ex]].
  • (57) A. Petrelli, M. Cacciari, M. Greco, F. Maltoni and M. L. Mangano, NLO production and decay of quarkonium, Nucl. Phys. B 514 (1998), 245-309.
  • (58) T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001), 418-431 .
  • (59) R. Mertig, M. Bohm and A. Denner, FEYN CALC: Computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun. 64 (1991), 345-359.
  • (60) J. G. Korner, D. Kreimer and K. Schilcher, A Practicable gamma(5) scheme in dimensional regularization, Z. Phys. C 54 (1992), 503-512.
  • (61) F. Feng, 𝙰𝚙𝚊𝚛𝚝\tt{Apart}: A Generalized Mathematica Apart Function, Comput. Phys. Commun. 183 (2012), 2158-2164.
  • (62) A. V. Smirnov, Algorithm FIRE – Feynman Integral REduction, JHEP 10 (2008), 107.
  • (63) T. Hahn and M. Perez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999), 153-165.
  • (64) E. J. Eichten and C. Quigg, Quarkonium wave functions at the origin, Phys. Rev. D 52 (1995), 1726-1728.
  • (65) B. Gong, L. P. Wan, J. X. Wang and H. F. Zhang, Complete next-to-leading-order study on the yield and polarization of Υ(1S,2S,3S)\Upsilon(1S,2S,3S) at the Tevatron and LHC, Phys. Rev. Lett. 112 (2014) no.3, 032001.
  • (66) H. Han, Y. Q. Ma, C. Meng, H. S. Shao, Y. J. Zhang and K. T. Chao, Υ(nS)\Upsilon(nS) and χb(nP)\chi_{b}(nP) production at hadron colliders in nonrelativistic QCD, Phys. Rev. D 94 (2016) no.1, 014028.
  • (67) Y. Feng, B. Gong, L. P. Wan and J. X. Wang, An updated study of Υ\Upsilon production and polarization at the Tevatron and LHC, Chin. Phys. C 39 (2015) no.12, 123102.
  • (68) P. A. Zyla et al. [Particle Data Group], Review of Particle Physics, PTEP 2020 (2020) no.8, 083C01.