This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Structural and magnetic characterization of CeTa7O19 and YbTa7O19 with two-dimensional pseudospin-1/2 triangular lattice

Feihao Pan    Songnan Sun Laboratory for Neutron Scattering and Beijing Key Laboratory of Optoelectronic Functional Materials and MicroNano Devices, Department of Physics, Renmin University of China, Beijing 100872, China Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing, 100872, China    Alexander I. Kolesnikov    Matthew B. Stone Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA    Jiale Huang    Daye Xu    Chenglin Shang    Bingxian Shi    Xuejuan Gui    Zhongcen Sun Laboratory for Neutron Scattering and Beijing Key Laboratory of Optoelectronic Functional Materials and MicroNano Devices, Department of Physics, Renmin University of China, Beijing 100872, China Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing, 100872, China    Jinchen Wang    Juanjuan Liu    Hongxia Zhang    Zhengxin Liu    Peng Cheng [email protected] Laboratory for Neutron Scattering and Beijing Key Laboratory of Optoelectronic Functional Materials and MicroNano Devices, Department of Physics, Renmin University of China, Beijing 100872, China Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing, 100872, China
Abstract

Triangular lattice antiferromagnets are prototypes for frustrated magnetism and may potentially realize novel quantum magnetic states such as a quantum spin liquid ground state. A recent work suggests NdTa7O19 with rare-earth triangular lattice is a quantum spin liquid candidate and highlights the large family of rare-earth heptatantalates as a framework for quantum magnetism investigation. In this paper, we report the structural and magnetic characterization of CeTa7O19 and YbTa7O19. Both compounds are isostructural to NdTa7O19 with no detectable structural disorder. For CeTa7O19, the crystal field energy levels and parameters are determined by inelastic neutron scattering measurements. Based on the crystal field result, the magnetic susceptibility data could be well fitted and explained, which reveals that CeTa7O19 is a highly anisotropic Ising triangular-lattice antiferromagnet (gzg_{z}/gxyg_{xy}\sim3) with very weak exchange interaction (J\sim0.22 K). For YbTa7O19, millimeter sized single crystals could be grown. The anisotropic magnetization and electron spin resonance data show that YbTa7O19 has a contrasting in-plane magnetic anisotropy with gzg_{z}/gxyg_{xy}\sim0.67 similar as that of YbMgGaO4. The above results indicate that CeTa7O19 and YbTa7O19 with pseudospin-1/2 ground states might either be quantum spin liquid candidate materials or find applications in adiabatic demagnetization refrigeration due to the weak exchange interaction.

I Introduction

The geometrically frustrated triangular-lattice antiferromagnets (TLAF) that carry spin-1/2 have attracted great attentions in recent decades. Due to the spin frustration and strong quantum fluctuations, they may host the famous quantum spin liquid state (QSL)[1, 2]. QSLs feature long-range quantum entanglement and support fractionalized excitation. They are also an important material basis for the realization of topological quantum computation in the future. Besides, TLAFs are also proposed to host other exotic quantum states of matter, such as the spin supersolid which may generate a giant magnetocaloric effect and be quite useful in adiabatic demagnetization refrigeration[3, 4].

For Kramer rare-earth (RE) ions such as Ce, Nd and Yb, if they have a well separated ground-state doublet due to the crystal field effect, they can be viewed to carry an effective spin SS=1/2 at low temperatures. In recent years, RE-based TLAFs have become important resources in searching for QSL candidates. The well known examples include the YbMgGaO4 and AYbX2 (A=Cs,K,Na; X=S,O,Se) family of materials[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. However, an unambiguous confirmation of a QSL in these TLAFs is still lacking. There are arguments that many experimental evidences for QSLs such as spin excitation continuum or lack of magnetic order at very low temperature could also be caused by spin glass or random singlet phases[17, 18]. It has been known that sizeable structural disorder may induce mimicry of a QSL[19, 20]. Therefore searching for and characterizing more TLAFs without atomic-site disorder would help to clarify many on-going questions in this research field.

NdTa7O19 is recently proposed as a QSL candidate[21]. In this compound, the Nd3+ form a two-dimensional (2D) triangular lattice without structural disorder. Inelastic neutron scattering (INS) measurements on the crystal-electric-field (CEF) levels confirm its magnetic ground state is characterized by effective spin-1/2 degrees of freedom. Combined with magnetization, electron spin resonance (ESR) and muon spin relaxation spectroscopy results, NdTa7O19 is identified as a rare example with both highly anisotropic Ising-like exchange interactions and QSL features. Thereafter, the synthesis and structure of RETa7O19 (RE= Pr, Sm, Eu, Gd, Dy, Ho) with triangular lattice were reported[22]. However, there are still two possible members in this material family, namely CeTa7O19 and YbTa7O19, whose structural and magnetic properties are still unknown.

Based on this motivation, we have successfully synthesized CeTa7O19 and YbTa7O19. They are found to be isostructural to NdTa7O19 with a disorder-free 2D triangular lattice. Magnetic susceptibility, inelastic neutron scattering and ESR measurements reveal that CeTa7O19 has a strong Ising-like anisotropy with effective spin-1/2 while YbTa7O19 exhibits an in-plane magnetic anisotropy. Both CeTa7O19 and YbTa7O19 have very weak antiferromagnetic interactions, their magnetic properties are discussed with possible connections with a QSL ground state.

Refer to caption
Figure 1: X-ray diffraction patterns and Rietveld refinement on CeTa7O19 powders. The inset shows the crystal structure of CeTa7O19.
Refer to caption
Figure 2: (a) Temperature-dependent magnetic susceptibility χ\chi(T) of CeTa7O19. (b) Isothermal magnetization M(T) of CeTa7O19 at selected temperatures and the solid lines are corresponding calculated result based on the crystal field parameters obtained from neutron scattering. (c) The Curie-Weiss fit on the high temperature susceptibility data (dotted line) and the crystal field model fit of the susceptibility data (solid line). (d) The Curie-Weiss fit on the susceptibility data below 5 K.

II methods

Polycrystalline CeTa7O19 samples were prepared via the solid-state reaction method. Initially, CeO2 powder and Ta2O5 powder were mixed in a ratio of 1:3.5, thoroughly ground and pressed into a pellet. Subsequently, the mixture was placed in an alumina crucible, heated at 950°C for 7 days in a muffle furnace and finally furnace cooled to room temperature. The product at this stage contains large amount of impurity phases. In order to get phase-pure CeTa7O19 powder, the product was re-ground, pressed and heated at 1000°C in the furnace for 5 days. This procedure was repeated with the heating temperature increased by 50°C in each firing. Then after the final reaction at 1150°C for 5 days, nearly phase-pure CeTa7O19 polycrystalline samples which exhibit a light yellow color could be obtained.

For the growth of YbTa7O19 single crystals, firstly the precursor YbOCl powder needs to be prepared by the solid-state reaction of NH4Cl and Yb2O3 powder, similar as that in preparing DyOCl in our previous work[23]. Then YbOCl, Ta2O5, and Ta were mixed in a molar ratio of 2:1:1, ground and pressed into pellet. The mixture was sealed in a quartz tube and evacuated to a high vacuum of 5.0×\times10-2 Pa. Subsequently, the quartz tube was heated to 950°C at a rate of 50°C/h and maintained at this temperature for 7 days. After furnace cooling to room temperature, the hexagonal plate-like YbTa7O19 single crystals with dark brown color and typical dimensions of 1.5×\times1.5×\times0.1 mm3 could be found from the product.

We should mention that phase-pure polycrystalline YbTa7O19 could not be obtained from direct solid-state reaction method. The impurity phases always exist with large volume fraction. Therefore the data on polycrystalline YbTa7O19 were collected on powders crushed from single crystals. Alternatively, it is found that single crystals of CeTa7O19 could not be grown using similar method described above.

X-ray diffraction (XRD) patterns of the samples were collected from a Bruker D8 Advance X-ray diffractometer using Cu Kα radiation. Magnetization measurements were carried out in Quantum Design MPMS3. Inelastic neutron scattering experiments were performed on the fine-resolution Fermi chopper spectrometer SEQUOIA at the Spallation Neutron Source of Oak Ridge National Laboratory and employed neutrons with incident energies (Ei) of 140 meV[24, 25]. 4.6 g CeTa7O19 and LaTa7O19 powder samples were measured at 6.5 K. The data for non-magnetic analogue LaTa7O19 served as background, which helps us to subtract phonon contributions from the measured spectra.

The ESR measurement of the powder sample was performed on the X-band ESR spectrometer (CIQTEK, EPR-100) with a dry cooling system. The spectra were recorded with the microwave power of 0.2 mW at the frequency of 9.77 GHz, modulation amplitude of 1 Gauss, time constant of 0.1 s.

III Results and discussions

III.1 CeTa7O19

According to the current inorganic crystal structure database (ICSD), CeTa7O19 forms a crystal structure with honeycomb lattice of Ce and there is no record for YbTa7O19. However, as shown in Fig. 1, the Rietveld refinement result on the powder XRD patterns of CeTa7O19 reveals that it is isostructural to NdTa7O19 with Ce3+ ions forming the 2D triangular lattice. The detailed crystallographic data are shown in the Supplemental Material[26]. There is some slight Ta2O5 impurity identified from XRD which would not affect the following physical properties measurements. Within the abab-plane, the nearest Ce-Ce distance is 6.230 Å. This value is close to the nearest Nd-Nd distance 6.224 Å in NdTa7O19[21].

Fig. 2(a) presents the magnetic susceptibility χ(T)\chi(T) data of CeTa7O19. Both the zero-field-cooling and field-cooling data overlaps well and show no signs of any magnetic order down to 1.8 K. From the temperature-dependent inverse susceptibility shown in Fig. 2(c), the data at above 120 K have linear temperature dependence which means that it could be well fitted by the Curie-Weiss (CW) model. The CW fit gives very large values of CW temperature θCW\theta_{CW} and effective moment μeff\mu_{eff} which should be notably affected by the crystal field excitation. Below 120 K, the 1/χ\chi(T) data gradually deviate from the linear temperature dependence. However an additional CW behavior restores below 5 K as shown in Fig. 2(d) and the fit yields θCW\theta_{CW}=-0.22 K and μeff\mu_{eff}=1.44 μB\mu_{B}. For rare-earth compounds with very weak exchange interaction, such low temperature range is usually far above exchange coupling and far below the first CEF excitation. Therefore the CW fitting results on this range may reflect the strength of antiferromagnetic interaction and the pesudospin-1/2 state in CeTa7O19, as in the case of NdTa7O19[21] and Ce2Zr2O7[27]. We will make further discussions after considering the following crystal field results.

For rare-earth compounds, the experimental determination of CEF levels and parameters is important to understand their magnetism. For CeTa7O19, Ce3+ with JJ=5/2 has an odd number of ff electrons and the CEF potential from oxygen will split them into three Kramers doublets. Therefore at low temperature, two CEF excitations from the ground state to the two excited states are expected to be observed in the inelastic neutron scattering (INS) data. From the INS spectra of CeTa7O19 at 6.5 K in Fig. 3(a), these two excitations can be identified at low-QQ range while the lattice (phonon) excitations dominate in the high-QQ range. After subtracting the spectra of the non-magnetic analogue LaTa7O19, two flat CEF excitation bands are clearly observed as shown in Fig. 3(b). It is known that the CEF excitations are not coupled to propagating modes and do not possess a characteristic dispersion. Their scattering intensities decrease with QQ following the magnetic form factor F(Q)2F(Q)^{2}, which is consistent with experimental result shown in the inset of Fig. 3(c). In Fig. 3(c), the fit on the data summed over 2.5 Å-1\leqslant QQ \leqslant 4.5 Å-1 could confirm the energy of two CEF exciations are located at 42.9 meV and 67.1 meV. Therefore the schematic diagram of the CEF energy levels in CeTa7O19 is presented in Fig. 3(d).

Refer to caption
Figure 3: (a) INS spectra from CeTa7O19 powder sample with an incident neutron energy Ei=140 meV. (b) INS spectrum after subtracting phonon contributions and other background scattering by measuring non-magnetic analogue LaTa7O19. (c) Energy spectrum obtained by integrating the INS data in (b) over the ranges 2.5 Å-1-4.5 Å-1. The solid line is the CEF model fit and the inset shows the QQ-dependent intensity of 43 meV peak agrees well with the magnetic form factor. (d) A scheme of the CEF splitting of the Ce3+ ground multiplet is shown.

The CEF parameters could also be obtained through the fit of INS data. For CeTa7O19, the Ce3+ has a D3vD_{3v} local point-group symmetry. Then the CEF Hamiltonian can be written as HCEF=B20O^20+B40O^40+B43O^43+B60O^60+B63O^63+B66O^66H_{CEF}=B_{2}^{0}\hat{O}_{2}^{0}+B_{4}^{0}\hat{O}_{4}^{0}+B_{4}^{3}\hat{O}_{4}^{3}+B_{6}^{0}\hat{O}_{6}^{0}+B_{6}^{3}\hat{O}_{6}^{3}+B_{6}^{6}\hat{O}_{6}^{6}, where the BlmB_{l}^{m} are the CEF parameters and the O^lm\hat{O}_{l}^{m} are the CEF Stevens equivalent operators. Since Ce3+ has JJ=5/2 and all the sixth-order terms are zero, only three CEF parameters need to be derived from the fit of INS spectra. Using Mantid software[28], the best fit achieves with B20=1.309B_{2}^{0}=-1.309, B40=0.020B_{4}^{0}=-0.020 and B43=3.335B_{4}^{3}=3.335 (unit: meV). Then the eigenstates of the CEF Hamiltonian could be calculated and shown in Table.1 in the |mJ|m_{J}\rangle basis.

|±mJ\left|\pm m_{J}\right\rangle ±ω0\pm\omega_{0} ±ω1\pm\omega_{1} ±ω2\pm\omega_{2}
|±5/2\left|\pm 5/2\right\rangle 0 0 0
|±3/2\left|\pm 3/2\right\rangle 0 1 0
|±1/2\left|\pm 1/2\right\rangle ±\pm0.577 0 0.817
|1/2\left|\mp 1/2\right\rangle 0 0 0
|3/2\left|\mp 3/2\right\rangle 0 0 0
|5/2\left|\mp 5/2\right\rangle 0.817 0 \mp0.577
E(meV) 0 42.9 67.1
Table 1: The CEF eigenstates wave functions given in the |±mJ\left|\pm m_{J}\right\rangle basis and the corresponding energies of three Ce3+ doublets in CeTa7O19.

The CEF parameters determines the rare-earth single-ion magnetic anisotropy. For Ce-based magnetic materials, a large negative value of B20B_{2}^{0} for CeTa7O19 usually leads to the easy cc-axis magnetic anisotropy, while a positive B20B_{2}^{0} value indicates easy-plane magnetic anisotropy as in the case of Ce-based triangular antiferromagnets CeCd3As3[29] and CePtAl4Ge2[30]. Furthermore, the large B43B_{4}^{3} term implies a mixed ground state of |±1/2\left|\pm 1/2\right\rangle and |5/2\left|\mp 5/2\right\rangle. A small value of B40B_{4}^{0} means the first excited CEF level would be a pure |±3/2\left|\pm 3/2\right\rangle state. The expected consistent result has been demonstrated in CeTa7O19 and CeCd3As3[29]. For CePtAl4Ge2[30], its near zero B43B_{4}^{3} term makes all CEF states being pure eigenstates. Meanwhile, the larger absolute value of B20B_{2}^{0} lead to the larger magnetic anisotropy. Based on the CEF parameters, the anisotropy ratio of magnetic susceptibility for CeTa7O19 is χc\chi_{c}:χab\chi_{ab}\sim8.56 (T=1.8 K) using PyCrystalField software [31].

From the above CEF results, several conclusions about the magnetism of CeTa7O19 could be drawn. Firstly, the first excited CEF doublet lies at a very large energy gap 42.9 meV above the ground state, therefore CeTa7O19 can be considered an effective spin-1/2 system below room temperature. Secondly, the negative second-order CEF parameter means that CeTa7O19 possesses an easy-axis single-ion magnetic anisotropy along the cc-axis. Thirdly, the knowledge on the CEF ground state allows us to determine the corresponding gg-factor anisotropy using the equations below:

gz=2gJ|±ω0|Jz|±ω0|=2.57,\displaystyle g_{z}=2g_{J}\left|\left\langle\pm\omega_{0}\left|J_{z}\right|\pm\omega_{0}\right\rangle\right|=2.57, (1)
gxy=gJ|±ω0|J±|ω0|=0.86\displaystyle g_{xy}=g_{J}\left|\left\langle\pm\omega_{0}\left|J_{\pm}\right|\mp\omega_{0}\right\rangle\right|=0.86

where zz and xyxy denote directions along the cc-axis and parallel to the abab-plane, respectively.

We further performed the electron spin resonance (ESR) measurements on CeTa7O19 to check the anisotropic gg-factors. The well-resolved Ce ESR line is shown in Fig. 4. Through simulating the ESR spectra of CeTa7O19 using EasySpin[32], an open-source MATLAB toolbox, two g-factor eigenvalues with g1g_{1}=2.12 and g2g_{2}=0.96 could be obtained. Considering the calculated gg-factors from CEF analysis, g1g_{1} and g2g_{2} correspond well with gzg_{z} and gxyg_{xy} respectively, since these values are in fairly agreement besides a maximum difference of 18% possibly caused by experimental errors.

Refer to caption
Figure 4: The ESR spectrum measured at 9.77 GHz and 6 K on CeTa7O19 powder samples. The solid line is the Lorentzian fit to the corresponding ESR signals.
Refer to caption
Figure 5: (a) The XRD patterns from the abab-plane of a YbTa7O19 single crystal. The inset shows a single crystal imaged by a scanning electron microscope. (b) XRD patterns of powders (crushed from single crystals) and the Rietveld refinement result.

The reliability of the CEF model obtained from the INS experiment could be further confirmed by simulating the magnetization data. As shown in Fig. 2(b) and (c), the simulated χ\chi(T) and M(H) curves based on non-interacting CEF model agree well with the experimental data. The deviation in the M(H) data at 1.8 K might be due to the exchange interaction which is not considered in the non-interacting CEF model. Furthermore, according to the gg-factors obtained from CEF analysis, the gg-factor of the powder sample should be gpwd.=gz2/3+2gxy2/3=1.64g_{pwd.}=\sqrt{g_{z}^{2}/3+2g_{xy}^{2}/3}=1.64. Then based on the corresponding effective spin JeffJ_{eff}=1/2 model, the effective moment and saturation moment for CeTa7O19 powder sample should be μeff=J(J+1)gpwd.μB=1.42μB\mu_{eff}=\sqrt{J(J+1)}g_{pwd.}\mu_{B}=1.42~{}\mu_{B} and μsat=Jgpwd.μB=0.82μB\mu_{sat}=Jg_{pwd.}\mu_{B}=0.82~{}\mu_{B}. These two values achieve a good agreement with the effective moment derived from the CW fit on the low temperature susceptibility data [inset of Fig. 2(d)] and the saturation moment deduced from M(H) data at 1.8 K [Fig. 2(b)]. This consistency strongly suggests the CW temperature θCW\theta_{CW}=-0.22 K obtained from the low temperature CW fit could also be a good estimation on the strength of antiferromagnetic interaction in CeTa7O19. Future higher resolution lower energy inelastic neutron scattering measurements could be used to probe fluctuations at this energy scale.

Refer to caption
Figure 6: (a) The CW fit result on the low temperature magnetic susceptibility data under H\parallelab. Similar fit result along H\parallelc is shown in (b). (c,d) Isothermal magnetization along H\parallelab and H\parallelc at selected temperatures.
Refer to caption
Figure 7: The ESR spectrum measured at 9.76 GHz and 6 K on YbTa7O19 powder samples. The solid line is the Lorentzian fit to the corresponding ESR signals.

Next, we could make a comparison of the magnetic properties between CeTa7O19 and previously reported NdTa7O19. Firstly the two compounds have a similar Ising-like cc-axis magnetic anisotropy. Then based on the gg-factors from CEF analysis and using the same calculation method considering an Ising-like spin Hamiltonian as in the report of NdTa7O19[21], we could estimate the exchange anisotropy Jz/Jxy=gz2/gxy2=9J_{z}/J_{xy}=g_{z}^{2}/g_{xy}^{2}=9, which is also highly anisotropic. Secondly, the estimated strength of antiferromagnetic exchange interaction in CeTa7O19 is 0.22 K which is only half of that in NdTa7O19 (0.46 K). Although the antiferromagnetic interaction is weak, theoretically, the perfect 2D triangular lattice and the exchange anisotropy close to the Ising limit in CeTa7O19 may also potentially serve to realize a QSL state[33, 34, 35, 36]. Further experimental characterization in ultra-low temperatures is needed for a final conclusion.

III.2 YbTa7O19

Based on some early reports on the single crystal growth of RETa7O19[37, 38, 39, 40], we managed to grow YbTa7O19 single crystals with a modified condition as described in the METHODS section. As shown in the inset of Fig. 5(a), the single crystal of YbTa7O19 has a hexagonal shape and a typical 2D layered feature. From both the XRD on the abab-plane and the powder XRD refinement on the powders which are crushed from single crystals, YbTa7O19 could be confirmed to have the same crystal structure as CeTa7O19. The nearest Yb-Yb distance in the 2D triangular lattice is 6.202 Å. Detailed crystallographic data are presented in the Supplemental Material[26].

Next, we present the anisotropic magnetization data on the YbTa7O19 single crystal in Fig. 6. YbTa7O19 also does not show any sign of magnetic order down to 1.8 K. Similar as that of CeTa7O19 and NdTa7O19, a CW behavior of magnetic susceptibility is re-established at low temperatures below 5 K. Therefore, we use the CW model to fit the low temperature susceptibility data and the results are contrasting for magnetic field along HabH\parallel ab (θCW\theta_{CW}=0.0004 K, μeff\mu_{eff}=3.32μB\mu_{B}) and HcH\parallel c (θCW\theta_{CW}=-0.41 K, μeff\mu_{eff}=2.17μB\mu_{B}), as shown in Fig. 6(a) and (b). Furthermore, the anisotropic isothermal magnetization data directly reveal that YbTa7O19 has an easy abab-plane magnetic anisotropy with μsat.ab1.91μB\mu^{ab}_{sat.}\sim 1.91\mu_{B} and μsat.c1.29μB\mu^{c}_{sat.}\sim 1.29\mu_{B} at 1.8 K, in contrast to cc-axis anisotropy in CeTa7O19 and NdTa7O19, but similar as the anisotropy in YbMgGaO4[5]. Therefore a quantum XY-model may be expected for YbTa7O19 at low temperatures and possibly a topological phase transition following the so-called Berezinskii-Kosterlitz-Thouless scenario is also expected.

In order to obtain the anisotropic gg-factors, the ESR measurement on YbTa7O19 powder was performed and the result is presented in Fig. 7. From the same fitting method described above, two gg-factors with g1g_{1}=3.45 and g2g_{2}=2.30 are derived. Based on the magnetic anisotropy determined from magnetization, g1g_{1} and g2g_{2} should be gxyg_{xy} (parallel to the abab-plane) and gzg_{z} (perpendicular to the abab-plane) respectively. Since Yb3+ ion contains an odd number of electrons, the effective spin may also be described by a ground state Kramers doublet. Based on this pesudospin-1/2 assumption and the gg-factors from ESR, we could calculate the effective and saturated moment for YbTa7O19. The results are μeffab\mu^{ab}_{eff}=2.99μB\mu_{B}, μeffc\mu^{c}_{eff}=1.99μB\mu_{B}, μsat.ab=1.73μB\mu^{ab}_{sat.}=1.73\mu_{B} and μsat.c=1.15μB\mu^{c}_{sat.}=1.15\mu_{B}. These values are consistent with that obtained from magnetization data in Fig. 6, which suggests YbTa7O19 can also be considered an effective spin-1/2 system.

In Fig. 6(b), the CW temperature θCW\theta_{CW}=-0.41 K by fitting χc\chi_{c} suggests YbTa7O19 has an antiferromagnetic interaction strength comparable to NdTa7O19[21]. However, same fit on χab\chi_{ab} yields a near zero value. The measurement on another crystal exhibits roughly the same contrasting values. The interpretation on this result may need the determination of CEF parameters through INS experiment, which is currently unavailable due to the lack of large amount of phase-pure YbTa7O19 powders. Additionally, the ESR line width of YbTa7O19 (\sim0.08 T) at 6 K is comparable with that of triangular antiferromagnets NaYbS2[41] and KYbO2[42], but much larger than that of CeTa7O19 (\sim0.02 T), which might suggest that the former compounds have stronger exchange interactions. However, there are many other factors which may broaden the ESR line width and not related to exchange interaction. Further ESR studies on the dilute magnetic doped crystal of RETa7O19 may give deep insights on the exchange interaction in this family of materials[43].

IV Conclusions

In summary, we have synthesized geometrically frustrated 2D TLAFs CeTa7O19 and YbTa7O19. We find that these materials exhibit no structural disorder. For CeTa7O19, the CEF excitations and parameters are determined from INS experiment. Combined with the magnetic susceptibility analysis, CeTa7O19 is identified as an effective spin-1/2 system with Ising-like magnetic anisotropy (gzg_{z}/gxyg_{xy}\sim3) and weak antiferromagnetic exchange interaction (JJ\sim0.22 K). For YbTa7O19, its easy-plane magnetic anisotropy is directly identified by magnetization measurements on single crystal. Combined with ESR data analysis, the low temperature magnetic properties of YbTa7O19 agree well with the expectation from a ground state Kramer doublet with effective spin-1/2.

Although our initial structural and magnetic characterization of CeTa7O19 and YbTa7O19 shows that they could be considered as QSL candidate materials, it should be noted that their antiferromagnetic exchange interaction is much weaker than that of YbMgGaO4 and AYbX2, which usually have JJ values of several kelvins. The reason should be the large distance between nearest RE-ions in the triangular lattice. As a result, it may be quite challenging for experimental characterizing the possible QSL state. On the other hand, the quite small JJ in RETa7O19 means that their magnetic moments should be easily aligned by external magnetic field, causing a reduction of entropy. Therefore, both CeTa7O19 and YbTa7O19 could attract research interests as materials used in adiabatic demagnetization refrigeration[44].

Acknowledgement

This work was supported by the National Natural Science Foundation of China (No. 12074426, No. 12474148), the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (Grants No. 22XNKJ40). A portion of this research used resources at the Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory. The beam time was allocated to SEQUOIA spectrometer on proposal number IPTS-30317.1.

References

  • Zhou et al. [2017] Y. Zhou, K. Kanoda, and T.-K. Ng, Quantum spin liquid states, Rev. Mod. Phys. 89, 025003 (2017).
  • Broholm et al. [2020] C. Broholm, R. J. Cava, S. A. Kivelson, D. G. Nocera, M. R. Norman, and T. Senthil, Quantum spin liquids, Science 367, eaay0668 (2020).
  • Xiang et al. [2024] J. Xiang, C. Zhang, Y. Gao, W. Schmidt, K. Schmalzl, C.-W. Wang, B. Li, N. Xi, X.-Y. Liu, H. Jin, G. Li, J. Shen, Z. Chen, Y. Qi, Y. Wan, W. Jin, W. Li, P. Sun, and G. Su, Giant magnetocaloric effect in spin supersolid candidate Na2BaCo(PO4)2Nature 625, 270 (2024).
  • Sheng et al. [2022] J. Sheng, L. Wang, A. Candini, W. Jiang, L. Huang, B. Xi, J. Zhao, H. Ge, N. Zhao, Y. Fu, J. Ren, J. Yang, P. Miao, X. Tong, D. Yu, S. Wang, Q. Liu, M. Kofu, R. Mole, G. Biasiol, D. Yu, I. A. Zaliznyak, J.-W. Mei, and L. Wu, Two-dimensional quantum universality in the spin-1/2 triangular-lattice quantum antiferromagnet Na2BaCo(PO4)2Proc. Natl. Acad. Sci. U.S.A. 119, e2211193119 (2022).
  • Li et al. [2015] Y. Li, G. Chen, W. Tong, L. Pi, J. Liu, Z. Yang, X. Wang, and Q. Zhang, Rare-Earth Triangular Lattice Spin Liquid: A Single-Crystal Study of YbMgGaO4Phys. Rev. Lett. 115, 167203 (2015).
  • Liu et al. [2018] W. Liu, Z. Zhang, J. Ji, Y. Liu, J. Li, X. Wang, H. Lei, G. Chen, and Q. Zhang, Rare-Earth Chalcogenides: A Large Family of Triangular Lattice Spin Liquid Candidates, Chinese Physics Letters 35, 117501 (2018).
  • Ranjith et al. [2019a] K. M. Ranjith, D. Dmytriieva, S. Khim, J. Sichelschmidt, S. Luther, D. Ehlers, H. Yasuoka, J. Wosnitza, A. A. Tsirlin, H. Kühne, and M. Baenitz, Field-induced instability of the quantum spin liquid ground state in the Jeff=12{J}_{\mathrm{eff}}=\frac{1}{2} triangular-lattice compound NaYbO2Phys. Rev. B 99, 180401 (2019a).
  • Bordelon et al. [2019] M. M. Bordelon, E. Kenney, C. Liu, T. Hogan, L. Posthuma, M. Kavand, Y. Lyu, M. Sherwin, N. P. Butch, C. Brown, M. J. Graf, L. Balents, and S. D. Wilson, Field-tunable quantum disordered ground state in the triangular-lattice antiferromagnet NaYbO2Nature Physics 15, 1058 (2019).
  • Ding et al. [2019] L. Ding, P. Manuel, S. Bachus, F. Grußler, P. Gegenwart, J. Singleton, R. D. Johnson, H. C. Walker, D. T. Adroja, A. D. Hillier, and A. A. Tsirlin, Gapless spin-liquid state in the structurally disorder-free triangular antiferromagnet NaYbO2Phys. Rev. B 100, 144432 (2019).
  • Baenitz et al. [2018] M. Baenitz, P. Schlender, J. Sichelschmidt, Y. A. Onykiienko, Z. Zangeneh, K. M. Ranjith, R. Sarkar, L. Hozoi, H. C. Walker, J.-C. Orain, H. Yasuoka, J. Van Den Brink, H. H. Klauss, D. S. Inosov, and T. Doert, NaYbS2{\mathrm{NaYbS}}_{2}: A planar spin-12\frac{1}{2} triangular-lattice magnet and putative spin liquid, Phys. Rev. B 98, 220409 (2018).
  • Ranjith et al. [2019b] K. M. Ranjith, S. Luther, T. Reimann, B. Schmidt, P. Schlender, J. Sichelschmidt, H. Yasuoka, A. M. Strydom, Y. Skourski, J. Wosnitza, H. Kühne, T. Doert, and M. Baenitz, Anisotropic field-induced ordering in the triangular-lattice quantum spin liquid NaYbSe2{\mathrm{NaYbSe}}_{2}Phys. Rev. B 100, 224417 (2019b).
  • Zhang et al. [2021a] Z. Zhang, X. Ma, J. Li, G. Wang, D. T. Adroja, T. P. Perring, W. Liu, F. Jin, J. Ji, Y. Wang, Y. Kamiya, X. Wang, J. Ma, and Q. Zhang, Crystalline electric field excitations in the quantum spin liquid candidate NaYbSe2{\mathrm{NaYbSe}}_{2}Phys. Rev. B 103, 035144 (2021a).
  • Zhang et al. [2021b] Z. Zhang, J. Li, W. Liu, Z. Zhang, J. Ji, F. Jin, R. Chen, J. Wang, X. Wang, J. Ma, and Q. Zhang, Effective magnetic Hamiltonian at finite temperatures for rare-earth chalcogenides, Phys. Rev. B 103, 184419 (2021b).
  • Dai et al. [2021] P.-L. Dai, G. Zhang, Y. Xie, C. Duan, Y. Gao, Z. Zhu, E. Feng, Z. Tao, C.-L. Huang, H. Cao, A. Podlesnyak, G. E. Granroth, M. S. Everett, J. C. Neuefeind, D. Voneshen, S. Wang, G. Tan, E. Morosan, X. Wang, H.-Q. Lin, L. Shu, G. Chen, Y. Guo, X. Lu, and P. Dai, Spinon Fermi Surface Spin Liquid in a Triangular Lattice Antiferromagnet NaYbSe2{\mathrm{NaYbSe}}_{2}Phys. Rev. X 11, 021044 (2021).
  • Zhang et al. [2022] Z. Zhang, J. Li, M. Xie, W. Zhuo, D. T. Adroja, P. J. Baker, T. G. Perring, A. Zhang, F. Jin, J. Ji, X. Wang, J. Ma, and Q. Zhang, Low-energy spin dynamics of the quantum spin liquid candidate NaYbSe2{\mathrm{NaYbSe}}_{2}Phys. Rev. B 106, 085115 (2022).
  • Wu et al. [2022] J. Wu, J. Li, Z. Zhang, C. Liu, Y. H. Gao, E. Feng, G. Deng, Q. Ren, Z. Wang, R. Chen, J. Embs, F. Zhu, Q. Huang, Z. Xiang, L. Chen, Y. Wu, E. S. Choi, Z. Qu, L. Li, J. Wang, H. Zhou, Y. Su, X. Wang, G. Chen, Q. Zhang, and J. Ma, Magnetic field effects on the quantum spin liquid behaviors of NaYbS2{\mathrm{NaYbS}}_{2}Quantum Frontiers 1, 13 (2022).
  • Zhang et al. [2019] S. Zhang, H. J. Changlani, K. W. Plumb, O. Tchernyshyov, and R. Moessner, Dynamical Structure Factor of the Three-Dimensional Quantum Spin Liquid Candidate NaCaNi2F7{\mathrm{NaCaNi}}_{2}{\mathrm{F}}_{7}Phys. Rev. Lett. 122, 167203 (2019).
  • Zhu et al. [2017] Z. Zhu, P. A. Maksimov, S. R. White, and A. L. Chernyshev, Disorder-Induced Mimicry of a Spin Liquid in YbMgGaO4{\mathrm{YbMgGaO}}_{4}Phys. Rev. Lett. 119, 157201 (2017).
  • Kimchi et al. [2018] I. Kimchi, A. Nahum, and T. Senthil, Valence Bonds in Random Quantum Magnets: Theory and Application to YbMgGaO4{\mathrm{YbMgGaO}}_{4}Phys. Rev. X 8, 031028 (2018).
  • Ma et al. [2018] Z. Ma, J. Wang, Z.-Y. Dong, J. Zhang, S. Li, S.-H. Zheng, Y. Yu, W. Wang, L. Che, K. Ran, S. Bao, Z. Cai, P. Čermák, A. Schneidewind, S. Yano, J. S. Gardner, X. Lu, S.-L. Yu, J.-M. Liu, S. Li, J.-X. Li, and J. Wen, Spin-Glass Ground State in a Triangular-Lattice Compound YbZnGaO4{\mathrm{YbZnGaO}}_{4}Phys. Rev. Lett. 120, 087201 (2018).
  • Arh et al. [2022] T. Arh, B. Sana, M. Pregelj, P. Khuntia, Z. Jagličić, M. D. Le, P. K. Biswas, P. Manuel, L. Mangin-Thro, A. Ozarowski, and A. Zorko, The Ising triangular-lattice antiferromagnet neodymium heptatantalate as a quantum spin liquid candidate, Nature Materials 21, 416 (2022).
  • Wang et al. [2023] L. Wang, Z. Ouyang, T. Xiao, Z. Li, and Z. Tian, Synthesis, structure and magnetism of RTa7O19 (R = Pr, Sm, Eu, Gd, Dy, Ho) with perfect triangular lattice, Journal of Alloys and Compounds 937, 168390 (2023).
  • Tian et al. [2021] C. Tian, F. Pan, L. Wang, D. Ye, J. Sheng, J. Wang, J. Liu, J. Huang, H. Zhang, D. Xu, J. Qin, L. Hao, Y. Xia, H. Li, X. Tong, L. Wu, J.-H. Chen, S. Jia, P. Cheng, J. Yang, and Y. Zheng, DyOCl: A rare-earth based two-dimensional van der Waals material with strong magnetic anisotropy, Phys. Rev. B 104, 214410 (2021).
  • Granroth et al. [2010] G. E. Granroth, A. I. Kolesnikov, T. E. Sherline, J. P. Clancy, K. A. Ross, J. P. C. Ruff, B. D. Gaulin, and S. E. Nagler, SEQUOIA: A Newly Operating Chopper Spectrometer at the SNS, Journal of Physics: Conference Series 251, 012058 (2010).
  • Stone et al. [2014] M. B. Stone, J. L. Niedziela, D. L. Abernathy, L. DeBeer-Schmitt, G. Ehlers, O. Garlea, G. E. Granroth, M. Graves-Brook, A. I. Kolesnikov, A. Podlesnyak, and B. Winn, A comparison of four direct geometry time-of-flight spectrometers at the Spallation Neutron Source, Review of Scientific Instruments 85, 045113 (2014).
  • [26] See Supplemental Material at [URL will be inserted by publisher] for the Rietveld refinement result of CeTa7O19 and YbTa7O19.
  • Gao et al. [2019] B. Gao, T. Chen, D. W. Tam, C.-L. Huang, K. Sasmal, D. T. Adroja, F. Ye, H. Cao, G. Sala, M. B. Stone, C. Baines, J. A. T. Verezhak, H. Hu, J.-H. Chung, X. Xu, S.-W. Cheong, M. Nallaiyan, S. Spagna, M. B. Maple, A. H. Nevidomskyy, E. Morosan, G. Chen, and P. Dai, Experimental signatures of a three-dimensional quantum spin liquid in effective spin-1/2 Ce2Zr2O7 pyrochlore, Nature Physics 15, 1052 (2019).
  • Arnold et al. [2014] O. Arnold, J. Bilheux, J. Borreguero, A. Buts, S. Campbell, L. Chapon, M. Doucet, N. Draper, R. Ferraz Leal, M. Gigg, V. Lynch, A. Markvardsen, D. Mikkelson, R. Mikkelson, R. Miller, K. Palmen, P. Parker, G. Passos, T. Perring, P. Peterson, S. Ren, M. Reuter, A. Savici, J. Taylor, R. Taylor, R. Tolchenov, W. Zhou, and J. Zikovsky, Mantid-Data analysis and visualization package for neutron scattering and μ\muSR experiments, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 764, 156 (2014).
  • Uzoh et al. [2023] O. P. Uzoh, S. Kim, and E. Mun, Influence of crystalline electric field on the magnetic properties of CeCd3X3 (X = P, As), Phys. Rev. Materials 7, 013402 (2023).
  • Shin et al. [2020] S. Shin, V. Pomjakushin, L. Keller, P. F. S. Rosa, U. Stuhr, C. Niedermayer, R. Sibille, S. Toth, J. Kim, H. Jang, S.-K. Son, H.-O. Lee, T. Shang, M. Medarde, E. D. Bauer, M. Kenzelmann, and T. Park, Magnetic structure and crystalline electric field effects in the triangular antiferromagnet CePtAl4Ge2Phys. Rev. B 101, 224421 (2020).
  • Scheie [2021] A. Scheie, PyCrystalField : software for calculation, analysis and fitting of crystal electric field Hamiltonians, Journal of Applied Crystallography 54, 356 (2021).
  • Stoll and Schweiger [2006] S. Stoll and A. Schweiger, EasySpin, a comprehensive software package for spectral simulation and analysis in EPR, Journal of Magnetic Resonance 178, 42 (2006).
  • Yunoki and Sorella [2006] S. Yunoki and S. Sorella, Two spin liquid phases in the spatially anisotropic triangular Heisenberg model, Phys. Rev. B 74, 014408 (2006).
  • Yamamoto et al. [2014] D. Yamamoto, G. Marmorini, and I. Danshita, Quantum Phase Diagram of the Triangular-Lattice XXZ Model in a Magnetic Field, Phys. Rev. Lett. 112, 127203 (2014).
  • Maksimov et al. [2019] P. A. Maksimov, Z. Zhu, S. R. White, and A. L. Chernyshev, Anisotropic-Exchange Magnets on a Triangular Lattice: Spin Waves, Accidental Degeneracies, and Dual Spin Liquids, Phys. Rev. X 9, 021017 (2019).
  • Fazekas and Anderson [1974] P. Fazekas and P. W. Anderson, On the ground state properties of the anisotropic triangular antiferromagnet, Philosophical Magazine 30, 423 (1974).
  • Schaffrath and Gruehn [1990] U. Schaffrath and R. Gruehn, Zum chemischen Transport von Verbindungen des Typs LnTa7O19 (Ln = La-Nd) mit einer Bemerkung zur Strukturverfeinerung von NdTa7O19Zeitschrift für anorganische und allgemeine Chemie 588, 43 (1990).
  • Cavalli et al. [2001] E. Cavalli, L. Leonyuk, and N. Leonyuk, Flux growth and optical spectra of NdTa7O19 crystals, Journal of Crystal Growth 224, 67 (2001).
  • Volkova et al. [2004] E. Volkova, A. Alekseev, and N. Leonyuk, Crystallization of neodymium heptatantalate from molybdate based flux systems, Journal of Crystal Growth 270, 145 (2004).
  • Guo et al. [1996] G. C. Guo, J. N. Zhuang, Y. G. Wang, J. T. Chen, H. H. Zhuang, J. S. Huang, and Q. E. Zhang, Dysprosium Tantalum Oxide, DyTa7O19Acta Crystallographica Section C Crystal Structure Communications 52, 5 (1996).
  • Sichelschmidt et al. [2019] J. Sichelschmidt, P. Schlender, B. Schmidt, M. Baenitz, and T. Doert, Electron spin resonance on the spin-1/2 triangular magnet NaYbS2Journal of Physics: Condensed Matter 31, 205601 (2019).
  • Grußler et al. [2023] F. Grußler, M. Hemmida, S. Bachus, Y. Skourski, H.-A. Krug Von Nidda, P. Gegenwart, and A. A. Tsirlin, Role of alkaline metal in the rare-earth triangular antiferromagnet KYbO2Phys. Rev. B 107, 224416 (2023).
  • Zhuo et al. [2024] W. Zhuo, Z. Zhang, M. Xie, A. Zhang, J. Ji, F. Jin, and Q. Zhang, Magnetism of NaYbS2: From finite temperatures to ground state, Science China Physics, Mechanics & Astronomy 67, 107411 (2024).
  • Tokiwa et al. [2021] Y. Tokiwa, S. Bachus, K. Kavita, A. Jesche, A. A. Tsirlin, and P. Gegenwart, Frustrated magnet for adiabatic demagnetization cooling to milli-Kelvin temperatures, Communications Materials 2, 42 (2021).