This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

11institutetext: Xing Liu 22institutetext: School of Mathematics and Economics, Bigdata Modeling and Intelligent Computing research institute, Hubei University of Education, Wuhan 430205, People’s Republic of China. 22email: [email protected]

Strong approximation for fractional wave equation forced by fractional Brownian motion with Hurst parameter H(0,12)H\in(0,\frac{1}{2})

Xing Liu
Abstract

We consider the time discretization of fractional stochastic wave equation with Gaussian noise, which is negatively correlated. Major obstacles to design and analyze time discretization of stochastic wave equation come from the approximation of stochastic convolution with respect to fractional Brownian motion. Firstly, we discuss the smoothing properties of stochastic convolution by using integration by parts and covariance function of fractional Brownian motion. Then the regularity estimates of the mild solution of fractional stochastic wave equation are obtained. Next, we design the time discretization of stochastic convolution by integration by parts. Combining stochastic trigonometric method and approximation of stochastic convolution, the time discretization of stochastic wave equation is achieved. We derive the error estimates of the time discretization. Under certain assumptions, the strong convergence rate of the numerical scheme proposed in this paper can reach 12+H\frac{1}{2}+H. Finally, the convergence rate and computational efficiency of the numerical scheme are illustrated by numerical experiments.

Keywords:
time discretization; stochastic convolution; integration by parts; strong convergence rate
MSC:
26A33 65M60 65L20 65C30

1 Introduction

Stochastic partial differential equations (SPDEs) can realistically simulate many phenomena in physical scientific and engineering applications; see BrunedGabriel ; GaoMar ; RyserNig . The theoretical and numerical studies of SPDEs have received much attention Brehier ; BrunedChand ; Jentzen ; Liu1 ; SongZh . While most works of stochastic model in fractional Brownian motion (FBM) are carried out for Hurst parameter H[12,1)H\in[\frac{1}{2},1) (Anh ; Hong ; Kamrani ; LiWang ; Salins ), a FBM with H(0,12)H\in(0,\frac{1}{2}) might be more reasonable to model sequences with intermittency and anti-persistence, such as visual feedback effects in biology Boudrahem and option prices in market practice Bayer ; Gatheral ; Simonsen . Sometimes the stochastic disturbance of the source in PDEs is anti-correlated, and it can be well modeled by the FBM with H(0,12)H\in(0,\frac{1}{2}). In this paper, the following stochastic wave equation (SWE) is considered

du˙(x,t)=Aαu(x,t)dt+f(u(x,t))dt+dBHQ(x,t),(x,t)Ω×[0,T]\mathrm{d}\dot{u}(x,t)=-A^{\alpha}u(x,t)\mathrm{d}t+f\left(u(x,t)\right)\mathrm{d}t+\mathrm{d}B^{Q}_{H}(x,t),\quad(x,t)\in\Omega\times[0,T] (1.1)

with homogenous Dirichlet boundary condition

u(x,0)=u0(x),u˙(x,0)=v0(x),xΩ\displaystyle\begin{split}u(x,0)=u_{0}(x),\ \dot{u}(x,0)=v_{0}(x),\quad x\in\Omega\end{split}

and the initial condition

u(x,t)=0,xΩ×[0,T].\displaystyle\begin{split}u(x,t)=0,\quad x\in\partial\Omega\times[0,T].\end{split}

Here AαA^{\alpha} represents the spectral fractional Laplacian with A=ΔA=-\mathrm{\Delta} and α(0,1)\alpha\in(0,1). The external fluctuation of (1.1) is characterized by FBM BHQ(x,t)B^{Q}_{H}(x,t) with H(0,12)H\in(0,\frac{1}{2}), QQ is a bounded covariance operator. Let Ωd(d=1,2,3)\Omega\subseteq\mathbb{R}^{d}~{}(d=1,2,3) denote a Lispschitz domain.

For H[12,1)H\in[\frac{1}{2},1), the approximation of (1.1) has been well studied. The discrete schemes of WangGan strongly converge with order 1ϵ1-\epsilon in time for arbitrarily small ϵ>0\epsilon>0. By using an explicit stochastic position Verlet scheme Banjai , linear convergence was obtained under certain assumptions. Using Itô isometry, authors of LiuDeng constructed a modified stochastic trigonometric method, which achieved superlinear convergence in time. The computation of SWE with H(0,12)H\in(0,\frac{1}{2}) has so far received little attention. In the case of H(0,12)H\in(0,\frac{1}{2}), the above methods are not suitable for dealing with fractional noise of (1.1), because the stochastic process BHQ(x,t)B^{Q}_{H}(x,t) is less regular in time. The main challenges lie in time discretization of stochastic convolution with respect to FBM and the corresponding error estimate. Furthermore, we noticed that ff usually satisfies Lipschitz continuous condition and linear growth condition in the existing work. In this paper, the linear growth condition is replaced by a weaker condition.

The objective of this paper is to derive an effective numerical scheme of (1.1) in time and establish error estimates. The main process is as follows. Firstly, by combining integration by parts, the covariance function of FBM and trigonometric identity, we establish the regularity of mild solution of (1.1) including space regularity and time Hölder continuity. After that, we adapt the stochastic trigonometric method to discretize the problem (1.1) in time. In order to realize the stochastic trigonometric method, a time discretization of stochastic convolution is designed by integration by parts. Finally, the error estimate of time discretization is derived by using time Hölder continuity of mild solution. In addition, under appropriate conditions of noise the strong convergence rate of order H+12H+\frac{1}{2} is proved by combining integration by parts and covariance function of FBM.

The outline of the rest of this paper is as follows. In section 2, we use a SPDE to define the mild solution of SWE (1.1). We present the regularity estimates of the mild solution in section 3. In section 4, we use integration by parts to reformulate stochastic convolution with respect to FBM into an integral formula, of which it is easy to obtain time discretization of stochastic convolution and corresponding error estimate. Then the discretization of (1.1) in time is designed, and the strong convergence order of discretization is derived. We present numerical experiments to confirm the strong convergence order of our numerical scheme in section 5. At last, some conclusions are given in section 6.

2 Representation of mild solution

In this section, we define the mild solution of SWE (1.1). In addition, in order to obtain regularity estimates of the mild solution, several assumptions are introduced.

First, we introduce the norm space ν\mathbb{H}^{\nu}

ν={u:Ω|Aν2u=(Ω|Aν2u|2dx)12<,ν}.\mathbb{H}^{\nu}=\left\{u:\Omega\to\mathbb{R}\bigg{|}\ \left\|A^{\frac{\nu}{2}}u\right\|=\left(\int_{\Omega}\left|A^{\frac{\nu}{2}}u\right|^{2}\mathrm{d}x\right)^{\frac{1}{2}}<\infty,~{}~{}\nu\in\mathbb{R}\right\}.

Let {ei}i\left\{e_{i}\right\}_{i\in\mathbb{N}} be an orthonormal basis of 0\mathbb{H}^{0}. For u0u\in\mathbb{H}^{0}, we have

u=i=1u,eiei,u=\sum^{\infty}_{i=1}\left\langle u,e_{i}\right\rangle e_{i},

where ,\left\langle\cdot,\cdot\right\rangle denotes the inner product of 0\mathbb{H}^{0}. Then

u2=i=1u,ei2.\|u\|^{2}=\sum^{\infty}_{i=1}\left\langle u,e_{i}\right\rangle^{2}.

As uνu\in\mathbb{H}^{\nu}, using the orthonormal eigenpairs of AA, we have

Aν2u=i=1λiν2u,ϕiϕiA^{\frac{\nu}{2}}u=\sum^{\infty}_{i=1}\lambda_{i}^{\frac{\nu}{2}}\left\langle u,\phi_{i}\right\rangle\phi_{i}

and

Aν2u2=i=1λiνu,ϕi2<.\left\|A^{\frac{\nu}{2}}u\right\|^{2}=\sum^{\infty}_{i=1}\lambda_{i}^{\nu}\left\langle u,\phi_{i}\right\rangle^{2}<\infty.

The BHQ(x,t)B^{Q}_{H}(x,t) in (1.1) is represented as

BHQ(x,t)=i=1qiξHi(t)ϕi(x),B^{Q}_{H}(x,t)=\sum^{\infty}_{i=1}\sqrt{q}_{i}\xi_{H}^{i}(t)\phi_{i}(x),

where {ξHi(t)}i\{\xi_{H}^{i}(t)\}_{i\in\mathbb{N}} are mutually independent real-valued one-dimensional FBM. Its covariance function is given by

E[ξHi(t)ξHi(s)]=12(t2H+s2H|ts|2H),\mathrm{E}\left[\xi_{H}^{i}(t)\xi_{H}^{i}(s)\right]=\frac{1}{2}\left(t^{2H}+s^{2H}-|t-s|^{2H}\right),

for any s,t+s,t\in\mathbb{R}^{+}. As H(0,12)H\in(0,\frac{1}{2}), the increments of FBM are negatively correlated AlosMazet1 . Let u(t)=u(x,t)u(t)=u(x,t) and BHQ(t)=BHQ(x,t)B^{Q}_{H}(t)=B^{Q}_{H}(x,t). Next we consider the mild solution of the following SPDE

d[u(t)u˙(t)]=[0IAα0][u(t)u˙(t)]dt+[0f(u(t))]dt+[0I]dBHQ(t).\mathrm{d}\left[\begin{split}u(t)\\ \dot{u}(t)\end{split}\right]=\left[\begin{split}0~{}~{}~{}~{}~{}I\\ -A^{\alpha}~{}~{}0\end{split}\right]\left[\begin{split}u(t)\\ \dot{u}(t)\end{split}\right]\mathrm{d}t+\left[\begin{split}0~{}~{}~{}~{}\\ f\left(u(t)\right)\end{split}\right]\mathrm{d}t+\left[\begin{split}0\\ I\end{split}\right]\mathrm{d}B^{Q}_{H}(t). (2.1)

For t0t\geq 0, we give the definition of a continuous semigroup (t)\mathscr{L}(t).

(t)=[𝒞(t)Aα2𝒮(t)Aα2𝒮(t)𝒞(t)].\mathscr{L}(t)=\left[\begin{split}\mathscr{C}(t)~{}~{}~{}~{}~{}A^{-\frac{\alpha}{2}}\mathscr{S}(t)\\ -A^{\frac{\alpha}{2}}\mathscr{S}(t)~{}~{}~{}~{}~{}~{}\mathscr{C}(t)\end{split}\right]. (2.2)

Here 𝒞(t)=cos(Aα2t)\mathscr{C}(t)=\cos\left(A^{\frac{\alpha}{2}}t\right) and 𝒮(t)=sin(Aα2t)\mathscr{S}(t)=\sin\left(A^{\frac{\alpha}{2}}t\right). Using the orthonormal eigenpairs of AA, we have the following expansions

cos(Aα2t)u(t)=i=0cos(λiα2t)u(t),ϕiϕi\cos\left(A^{\frac{\alpha}{2}}t\right)u(t)=\sum^{\infty}_{i=0}\cos\left(\lambda_{i}^{\frac{\alpha}{2}}t\right)\left\langle u(t),\phi_{i}\right\rangle\phi_{i}

and

sin(Aα2t)u(t)=i=0sin(λiα2t)u(t),ϕiϕi.\sin\left(A^{\frac{\alpha}{2}}t\right)u(t)=\sum^{\infty}_{i=0}\sin\left(\lambda_{i}^{\frac{\alpha}{2}}t\right)\left\langle u(t),\phi_{i}\right\rangle\phi_{i}.

Then using constant variation method to solve (2.1), we have

[u(t)u˙(t)]=(ts)[u(s)u˙(s)]+st(tr)[0f(u(r))]dr+st(tr)[0I]dBHQ(r).\left[\begin{split}u(t)\\ \dot{u}(t)\end{split}\right]=\mathscr{L}(t-s)\left[\begin{split}u(s)\\ \dot{u}(s)\end{split}\right]+\int^{t}_{s}\mathscr{L}(t-r)\left[\begin{split}0~{}~{}~{}~{}\\ f\left(u(r)\right)\end{split}\right]\mathrm{d}r+\int^{t}_{s}\mathscr{L}(t-r)\left[\begin{split}0\\ I\end{split}\right]\mathrm{d}B^{Q}_{H}(r). (2.3)

Combining (2.2) and the rule of matrix multiplication, (2.3) can be written as

u(t)=𝒞(ts)u(s)+Aα2𝒮(ts)u˙(s)+stAα2𝒮(tr)f(u(r))dr+stAα2𝒮(tr)dBHQ(r),u˙(t)=Aα2𝒮(ts)u(s)+𝒞(ts)u˙(s)+st𝒞(tr)f(u(r))dr+st𝒞(tr)dBHQ(r).\begin{split}u(t)=&\mathscr{C}(t-s)u(s)+A^{-\frac{\alpha}{2}}\mathscr{S}(t-s)\dot{u}(s)\\ &~{}~{}~{}~{}+\int^{t}_{s}A^{-\frac{\alpha}{2}}\mathscr{S}(t-r)f\left(u(r)\right)\mathrm{d}r+\int^{t}_{s}A^{-\frac{\alpha}{2}}\mathscr{S}(t-r)\mathrm{d}B^{Q}_{H}(r),\\ \dot{u}(t)=&-A^{\frac{\alpha}{2}}\mathscr{S}(t-s)u(s)+\mathscr{C}(t-s)\dot{u}(s)\\ &~{}~{}~{}~{}+\int^{t}_{s}\mathscr{C}(t-r)f\left(u(r)\right)\mathrm{d}r+\int^{t}_{s}\mathscr{C}(t-r)\mathrm{d}B^{Q}_{H}(r).\end{split} (2.4)

The mild solution of SWE (1.1) can be defined by (2.4). The regularity of u(t)u(t) relies on smoothing properties of stAα2𝒮(tr)dBHQ(r)\int^{t}_{s}A^{-\frac{\alpha}{2}}\mathscr{S}(t-r)\mathrm{d}B^{Q}_{H}(r) in the space L2(Ω,ν)L^{2}(\Omega,\mathbb{H}^{\nu}). For ν\nu\in\mathbb{R}, we equip this space L2(Ω,ν)L^{2}(\Omega,\mathbb{H}^{\nu}) with the norm

uL2(Ω,ν)=(E[Aν2u2])12.\left\|u\right\|_{L^{2}\left(\Omega,\mathbb{H}^{\nu}\right)}=\left(\mathrm{E}\left[\left\|A^{\frac{\nu}{2}}u\right\|^{2}\right]\right)^{\frac{1}{2}}.

In fact, as 0<ν<120<\nu<\frac{1}{2}, the regularity of u(t)u(t) can also be described by classical fractional Sobolev spaces. Let Wv,2W^{v,2} denote the fractional Sobolev spaces

Wv,2={uU|uWv,2<},W^{v,2}=\left\{u\in U|\ \|u\|_{W^{v,2}}<\infty\right\},

where

uWv,22=u2+ΩΩ|u(x)u(y)|2|xy|d+2νdxdy.\|u\|^{2}_{W^{v,2}}=\left\|u\right\|^{2}+\int_{\Omega}\int_{\Omega}\frac{\left|u(x)-u(y)\right|^{2}}{\left|x-y\right|^{d+2\nu}}\mathrm{d}x\mathrm{d}y.

For 0<ν<120<\nu<\frac{1}{2}, Wv,2W^{v,2} is identical to ν\mathbb{H}^{\nu} McLean , which implies

uL2(Ω,ν)2E[uWv,22]uL2(Ω,ν)2,foruL2(Ω,ν).\left\|u\right\|^{2}_{L^{2}\left(\Omega,\mathbb{H}^{\nu}\right)}\lesssim\mathrm{E}\left[\|u\|^{2}_{W^{v,2}}\right]\lesssim\left\|u\right\|^{2}_{L^{2}\left(\Omega,\mathbb{H}^{\nu}\right)},~{}~{}\mathrm{for}~{}~{}u\in L^{2}\left(\Omega,\mathbb{H}^{\nu}\right). (2.5)

In order to establish the well-posedness of (1.1), we require the stochastic process BHQ(x,t)B^{Q}_{H}(x,t) to satisfy the following assumption.

Assumption 1

The covariance operator QQ be a self adjoint, nonnegative linear operator on 0\mathbb{H}^{0} and Qϕi(x)=qiϕi(x)Q\phi_{i}(x)=q_{i}\phi_{i}(x). Here qiq_{i} is a non-negative real number. For α4Hα2<ρ<α+14Hα2-\frac{\alpha}{4}-\frac{H\alpha}{2}<\rho<\frac{\alpha+1}{4}-\frac{H\alpha}{2}, we assume that AρQ12A^{\rho}Q^{\frac{1}{2}} is a bounded operator on 0\mathbb{H}^{0}, i.e.,

i=1AρQ12ϕi(x)21.\sum_{i=1}^{\infty}\left\|A^{\rho}Q^{\frac{1}{2}}\phi_{i}(x)\right\|^{2}\lesssim 1.
Assumption 2

For t,st,~{}s\in\mathbb{R}, the function f:f:\mathbb{R}\to\mathbb{R} satisfies

|f(t)f(s)||ts||f(t)-f(s)|\lesssim|t-s|

and

|f(0)|1.|f(0)|\lesssim 1.

3 Regularity of the Solution

In this section, we establish the regularity estimates of the mild solution for SWE (1.1).

Before establishing the regularity estimates of (1.1), we introduce the definition of stochastic integral with respect to the FBM with H(0,12)H\in(0,\frac{1}{2}) Bardina .

stg(r)dξH(r)=limδt0j=0n1gj(ξH(tj+1)ξH(tj)),\begin{split}\int^{t}_{s}g(r)\mathrm{d}\xi_{H}(r)&=\lim_{\delta t\to 0}\sum^{n-1}_{j=0}g_{j}\left(\xi_{H}(t_{j+1})-\xi_{H}(t_{j})\right),\end{split}

where δt=max0jn1(tj+1tj)\delta t=\max_{0\leq j\leq n-1}(t_{j+1}-t_{j}), and s=t0<t1<<tn=ts=t_{0}<t_{1}<\dots<t_{n}=t. Then we can get the following integral by using integration by parts.

stg(r)dξH(r)=g(t)ξH(t)g(s)ξH(s)stg(r)ξH(r)dr.\int^{t}_{s}g(r)\mathrm{d}\xi_{H}(r)=g(t)\xi_{H}(t)-g(s)\xi_{H}(s)-\int^{t}_{s}g^{\prime}(r)\xi_{H}(r)\mathrm{d}r. (3.1)

Next, we apply (3.1) and the covariance function of FBM to derive the regularity estimates of stochastic convolution.

Proposition 1

Let κ=α2+Hα+2ρ\kappa=\frac{\alpha}{2}+H\alpha+2\rho and κ>0\kappa>0, assumption 1 holds, then

E[stAκα2𝒮(tr)dBHQ(r)2]+E[stAκα2𝒞(tr)dBHQ(r)2]1.\begin{split}\mathrm{E}\left[\left\|\int^{t}_{s}A^{\frac{\kappa-\alpha}{2}}\mathscr{S}(t-r)\mathrm{d}B^{Q}_{H}(r)\right\|^{2}\right]+\mathrm{E}\left[\left\|\int^{t}_{s}A^{\frac{\kappa-\alpha}{2}}\mathscr{C}(t-r)\mathrm{d}B^{Q}_{H}(r)\right\|^{2}\right]\lesssim 1.\end{split} (3.2)

Furthermore

E[Aα2st𝒮(tr)dBHQ(r)2](ts)min{2κα,2}.\begin{split}\mathrm{E}\left[\left\|A^{\frac{-\alpha}{2}}\int^{t}_{s}\mathscr{S}(t-r)\mathrm{d}B^{Q}_{H}(r)\right\|^{2}\right]\lesssim(t-s)^{\min\left\{\frac{2\kappa}{\alpha},2\right\}}.\end{split} (3.3)
Proof

Term-by-term integration by parts for stAα2𝒮(tr)dBHQ(r)\int^{t}_{s}A^{-\frac{\alpha}{2}}\mathscr{S}(t-r)\mathrm{d}B^{Q}_{H}(r) and st𝒮(tr)dBHQ(r)\int^{t}_{s}\mathscr{S}(t-r)\mathrm{d}B^{Q}_{H}(r) shows that

stAκα2𝒮(tr)dBHQ(r)=Aκα2𝒮(ts)BHQ(s)+stAκ2𝒞(tr)BHQ(r)dr\begin{split}\int^{t}_{s}A^{\frac{\kappa-\alpha}{2}}\mathscr{S}(t-r)\mathrm{d}B^{Q}_{H}(r)=-A^{\frac{\kappa-\alpha}{2}}\mathscr{S}(t-s)B^{Q}_{H}(s)+\int^{t}_{s}A^{\frac{\kappa}{2}}\mathscr{C}(t-r)B^{Q}_{H}(r)\mathrm{d}r\end{split} (3.4)

and

st𝒞(tr)dBHQ(r)=BHQ(t)𝒞(ts)BHQ(s)stAα2𝒮(tr)BHQ(r)dr.\begin{split}\int^{t}_{s}\mathscr{C}(t-r)\mathrm{d}B^{Q}_{H}(r)=B^{Q}_{H}(t)-\mathscr{C}(t-s)B^{Q}_{H}(s)-\int^{t}_{s}A^{\frac{\alpha}{2}}\mathscr{S}(t-r)B^{Q}_{H}(r)\mathrm{d}r.\end{split} (3.5)

Then using (3.4), we get

E[stAκα2𝒮(tr)dBHQ(r)2]E[Aκα2sin(Aα2(ts))BHQ(s)2]+E[stAκ2cos(Aα2(tr))BHQ(r)dr2]=i=1λiκαqisin2(λiα2(ts))s2H+i=1λiκqiststcos(λiα2(tr))cos(λiα2(tr1))r2H+r12H2drdr1i=1λiκqiststcos(λiα2(tr))cos(λiα2(tr1))|rr1|2H2drdr1=i=1λiκαqisin2(λiα2(ts))s2H+i=1λiκα2qisin(λiα2(ts))stcos(λiα2(tr))r2Hdri=1λiκqistsrcos(λiα2(tr))cos(λiα2(tr1))(rr1)2Hdr1dri=1λiκαqis2H+2Hi=1λiκαqisin(λiα2(ts))stsin(λiα2(tr))r2H1dri=1λiκqistsrcos(λiα2(tr))cos(λiα2(tr1))(rr1)2Hdr1dr.\begin{split}&\mathrm{E}\left[\left\|\int^{t}_{s}A^{\frac{\kappa-\alpha}{2}}\mathscr{S}(t-r)\mathrm{d}B^{Q}_{H}(r)\right\|^{2}\right]\\ &\lesssim\mathrm{E}\left[\left\|A^{\frac{\kappa-\alpha}{2}}\sin\left(A^{\frac{\alpha}{2}}(t-s)\right)B^{Q}_{H}(s)\right\|^{2}\right]+\mathrm{E}\left[\left\|\int^{t}_{s}A^{\frac{\kappa}{2}}\cos\left(A^{\frac{\alpha}{2}}(t-r)\right)B^{Q}_{H}(r)\mathrm{d}r\right\|^{2}\right]\\ &=\sum^{\infty}_{i=1}\lambda_{i}^{\kappa-\alpha}q_{i}\sin^{2}\left(\lambda_{i}^{\frac{\alpha}{2}}(t-s)\right)s^{2H}\\ &~{}~{}~{}~{}+\sum^{\infty}_{i=1}\lambda_{i}^{\kappa}q_{i}\int^{t}_{s}\int^{t}_{s}\cos\left(\lambda_{i}^{\frac{\alpha}{2}}(t-r)\right)\cos\left(\lambda_{i}^{\frac{\alpha}{2}}(t-r_{1})\right)\frac{r^{2H}+r_{1}^{2H}}{2}\mathrm{d}r\mathrm{d}r_{1}\\ &~{}~{}~{}~{}-\sum^{\infty}_{i=1}\lambda_{i}^{\kappa}q_{i}\int^{t}_{s}\int^{t}_{s}\cos\left(\lambda_{i}^{\frac{\alpha}{2}}(t-r)\right)\cos\left(\lambda_{i}^{\frac{\alpha}{2}}(t-r_{1})\right)\frac{|r-r_{1}|^{2H}}{2}\mathrm{d}r\mathrm{d}r_{1}\\ &=\sum^{\infty}_{i=1}\lambda_{i}^{\kappa-\alpha}q_{i}\sin^{2}\left(\lambda_{i}^{\frac{\alpha}{2}}(t-s)\right)s^{2H}\\ &~{}~{}~{}~{}+\sum^{\infty}_{i=1}\lambda_{i}^{\kappa-\frac{\alpha}{2}}q_{i}\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t-s)\right)\int^{t}_{s}\cos\left(\lambda_{i}^{\frac{\alpha}{2}}(t-r)\right)r^{2H}\mathrm{d}r\\ &~{}~{}~{}~{}-\sum^{\infty}_{i=1}\lambda_{i}^{\kappa}q_{i}\int^{t}_{s}\int^{r}_{s}\cos\left(\lambda_{i}^{\frac{\alpha}{2}}(t-r)\right)\cos\left(\lambda_{i}^{\frac{\alpha}{2}}(t-r_{1})\right)(r-r_{1})^{2H}\mathrm{d}r_{1}\mathrm{d}r\\ &\lesssim\sum^{\infty}_{i=1}\lambda_{i}^{\kappa-\alpha}q_{i}s^{2H}+2H\sum^{\infty}_{i=1}\lambda_{i}^{\kappa-\alpha}q_{i}\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t-s)\right)\int^{t}_{s}\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t-r)\right)r^{2H-1}\mathrm{d}r\\ &~{}~{}~{}~{}-\sum^{\infty}_{i=1}\lambda_{i}^{\kappa}q_{i}\int^{t}_{s}\int^{r}_{s}\cos\left(\lambda_{i}^{\frac{\alpha}{2}}(t-r)\right)\cos\left(\lambda_{i}^{\frac{\alpha}{2}}(t-r_{1})\right)(r-r_{1})^{2H}\mathrm{d}r_{1}\mathrm{d}r.\end{split} (3.6)

The first inequality is due to thetrigonometric inequality and the covariance function of FBM. The second equality is due to the integration by parts. Similarly, we have

E[stAκα2𝒞(tr)dBHQ(r)2]i=1λiκαqit2H+i=1λiκqiststsin(λiα2(tr))sin(λiα2(tr1))r2H+r12H|rr1|2H2drdr1=i=1λiκαqit2H+i=1λiκα2qi(1cos(λiα2(ts)))stsin(λiα2(tr))r2Hdri=1λiκqistsrsin(λiα2(tr))sin(λiα2(tr1))(rr1)2Hdr1dri=1λiκαqit2Hi=1λiκαqi(1cos(λiα2(ts)))stcos(λiα2(tr))r2H1dri=1λiκqistsrsin(λiα2(tr))sin(λiα2(tr1))(rr1)2Hdr1dr.\begin{split}&\mathrm{E}\left[\left\|\int^{t}_{s}A^{\frac{\kappa-\alpha}{2}}\mathscr{C}(t-r)\mathrm{d}B^{Q}_{H}(r)\right\|^{2}\right]\\ &\lesssim\sum^{\infty}_{i=1}\lambda_{i}^{\kappa-\alpha}q_{i}t^{2H}\\ &~{}~{}~{}~{}+\sum^{\infty}_{i=1}\lambda_{i}^{\kappa}q_{i}\int^{t}_{s}\int^{t}_{s}\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t-r)\right)\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t-r_{1})\right)\frac{r^{2H}+r_{1}^{2H}-|r-r_{1}|^{2H}}{2}\mathrm{d}r\mathrm{d}r_{1}\\ &=\sum^{\infty}_{i=1}\lambda_{i}^{\kappa-\alpha}q_{i}t^{2H}+\sum^{\infty}_{i=1}\lambda_{i}^{\kappa-\frac{\alpha}{2}}q_{i}\left(1-\cos\left(\lambda_{i}^{\frac{\alpha}{2}}(t-s)\right)\right)\int^{t}_{s}\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t-r)\right)r^{2H}\mathrm{d}r\\ &~{}~{}~{}~{}-\sum^{\infty}_{i=1}\lambda_{i}^{\kappa}q_{i}\int^{t}_{s}\int^{r}_{s}\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t-r)\right)\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t-r_{1})\right)(r-r_{1})^{2H}\mathrm{d}r_{1}\mathrm{d}r\\ &\lesssim\sum^{\infty}_{i=1}\lambda_{i}^{\kappa-\alpha}q_{i}t^{2H}-\sum^{\infty}_{i=1}\lambda_{i}^{\kappa-\alpha}q_{i}\left(1-\cos\left(\lambda_{i}^{\frac{\alpha}{2}}(t-s)\right)\right)\int^{t}_{s}\cos\left(\lambda_{i}^{\frac{\alpha}{2}}(t-r)\right)r^{2H-1}\mathrm{d}r\\ &~{}~{}~{}~{}-\sum^{\infty}_{i=1}\lambda_{i}^{\kappa}q_{i}\int^{t}_{s}\int^{r}_{s}\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t-r)\right)\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t-r_{1})\right)(r-r_{1})^{2H}\mathrm{d}r_{1}\mathrm{d}r.\end{split} (3.7)

Combining (3.6) and (3.7) leads to

E[stAκα2𝒮(tr)dBHQ(r)2]+E[stAκα2𝒞(tr)dBHQ(r)2]i=1λiκαqit2Hi=1λiκqistsrcos(λiα2(tr))cos(λiα2(tr1))(rr1)2Hdr1dri=1λiκqistsrsin(λiα2(tr))sin(λiα2(tr1))(rr1)2Hdr1dri=1λiκαqit2Hi=1λiκqistsrcos(λiα2(rr1))(rr1)2Hdr1dr=i=1λiκαqit2Hi=1λiκα2qistsin(λiα2(rs))(rs)2Hdr+2Hi=1λiκα2qistsrsin(λiα2(rr1))(rr1)2H1dr1dri=1λiκαqit2H+i=1λiκαqicos(λiα2(ts))(ts)2H2Hi=1λiκαqistcos(λiα2(rs))(rs)2H1dr+2Hi=1λiκα2qist0sin(λiα2l)l2H1dldr2Hi=1λiκα2qistrssin(λiα2l)l2H1dldri=1λiκαqit2H+2Hi=1λiκα2qistλiHαΓ(2H)sin(Hα)dr2Hi=1λiκαqistcos(λiα2(rs))(rs)2H1dr2H(2H1)i=1λiκαqistrscos(λiα2l)l2H2dldri=1λiκα2Hαqi=i=1AρQ12ϕi(x)21.\begin{split}&\mathrm{E}\left[\left\|\int^{t}_{s}A^{\frac{\kappa-\alpha}{2}}\mathscr{S}(t-r)\mathrm{d}B^{Q}_{H}(r)\right\|^{2}\right]+\mathrm{E}\left[\left\|\int^{t}_{s}A^{\frac{\kappa-\alpha}{2}}\mathscr{C}(t-r)\mathrm{d}B^{Q}_{H}(r)\right\|^{2}\right]\\ &\lesssim\sum^{\infty}_{i=1}\lambda_{i}^{\kappa-\alpha}q_{i}t^{2H}\\ &~{}~{}~{}~{}-\sum^{\infty}_{i=1}\lambda_{i}^{\kappa}q_{i}\int^{t}_{s}\int^{r}_{s}\cos\left(\lambda_{i}^{\frac{\alpha}{2}}(t-r)\right)\cos\left(\lambda_{i}^{\frac{\alpha}{2}}(t-r_{1})\right)(r-r_{1})^{2H}\mathrm{d}r_{1}\mathrm{d}r\\ &~{}~{}~{}~{}-\sum^{\infty}_{i=1}\lambda_{i}^{\kappa}q_{i}\int^{t}_{s}\int^{r}_{s}\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t-r)\right)\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t-r_{1})\right)(r-r_{1})^{2H}\mathrm{d}r_{1}\mathrm{d}r\\ &\lesssim\sum^{\infty}_{i=1}\lambda_{i}^{\kappa-\alpha}q_{i}t^{2H}-\sum^{\infty}_{i=1}\lambda_{i}^{\kappa}q_{i}\int^{t}_{s}\int^{r}_{s}\cos\left(\lambda_{i}^{\frac{\alpha}{2}}(r-r_{1})\right)(r-r_{1})^{2H}\mathrm{d}r_{1}\mathrm{d}r\\ &=\sum^{\infty}_{i=1}\lambda_{i}^{\kappa-\alpha}q_{i}t^{2H}-\sum^{\infty}_{i=1}\lambda_{i}^{\kappa-\frac{\alpha}{2}}q_{i}\int^{t}_{s}\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(r-s)\right)(r-s)^{2H}\mathrm{d}r\\ &~{}~{}~{}~{}+2H\sum^{\infty}_{i=1}\lambda_{i}^{\kappa-\frac{\alpha}{2}}q_{i}\int^{t}_{s}\int^{r}_{s}\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(r-r_{1})\right)(r-r_{1})^{2H-1}\mathrm{d}r_{1}\mathrm{d}r\\ &\lesssim\sum^{\infty}_{i=1}\lambda_{i}^{\kappa-\alpha}q_{i}t^{2H}+\sum^{\infty}_{i=1}\lambda_{i}^{\kappa-\alpha}q_{i}\cos\left(\lambda_{i}^{\frac{\alpha}{2}}(t-s)\right)(t-s)^{2H}\\ &~{}~{}~{}~{}-2H\sum^{\infty}_{i=1}\lambda_{i}^{\kappa-\alpha}q_{i}\int^{t}_{s}\cos\left(\lambda_{i}^{\frac{\alpha}{2}}(r-s)\right)(r-s)^{2H-1}\mathrm{d}r\\ &~{}~{}~{}~{}+2H\sum^{\infty}_{i=1}\lambda_{i}^{\kappa-\frac{\alpha}{2}}q_{i}\int^{t}_{s}\int^{\infty}_{0}\sin\left(\lambda_{i}^{\frac{\alpha}{2}}l\right)l^{2H-1}\mathrm{d}l\mathrm{d}r\\ &~{}~{}~{}~{}-2H\sum^{\infty}_{i=1}\lambda_{i}^{\kappa-\frac{\alpha}{2}}q_{i}\int^{t}_{s}\int^{\infty}_{r-s}\sin\left(\lambda_{i}^{\frac{\alpha}{2}}l\right)l^{2H-1}\mathrm{d}l\mathrm{d}r\\ &\lesssim\sum^{\infty}_{i=1}\lambda_{i}^{\kappa-\alpha}q_{i}t^{2H}+2H\sum^{\infty}_{i=1}\lambda_{i}^{\kappa-\frac{\alpha}{2}}q_{i}\int^{t}_{s}\lambda_{i}^{-H\alpha}\Gamma(2H)\sin(H\alpha)\mathrm{d}r\\ &~{}~{}~{}~{}-2H\sum^{\infty}_{i=1}\lambda_{i}^{\kappa-\alpha}q_{i}\int^{t}_{s}\cos\left(\lambda_{i}^{\frac{\alpha}{2}}(r-s)\right)(r-s)^{2H-1}\mathrm{d}r\\ &~{}~{}~{}~{}-2H(2H-1)\sum^{\infty}_{i=1}\lambda_{i}^{\kappa-\alpha}q_{i}\int^{t}_{s}\int^{\infty}_{r-s}\cos\left(\lambda_{i}^{\frac{\alpha}{2}}l\right)l^{2H-2}\mathrm{d}l\mathrm{d}r\\ &\lesssim\sum^{\infty}_{i=1}\lambda_{i}^{\kappa-\frac{\alpha}{2}-H\alpha}q_{i}\\ &=\sum_{i=1}^{\infty}\left\|A^{\rho}Q^{\frac{1}{2}}\phi_{i}(x)\right\|^{2}\\ &\lesssim 1.\end{split}

In the fourth inequality, we use the following equation. Thanks to assumption 1, we arrive at the last inequality.

0sin(al)lθ1dl=Γ(θ)aθsin(θπ2),\int^{\infty}_{0}\sin\left(al\right)l^{\theta-1}\mathrm{d}l=\frac{\Gamma(\theta)}{a^{\theta}}\sin(\frac{\theta\pi}{2}),

where 0<θ<10<\theta<1, a>0a>0.

Next, we turn to the Hölder regularity estimates of stochastic convolution. For 0<κHα0<\kappa\leq H\alpha, we obtain the following estimates by using (3.6).

E[stAα2𝒮(tr)dBHQ(r)2]i=1λiαqisin2(λiα2(ts))s2H+i=1λiα2qisin(λiα2(ts))stcos(λiα2(tr))r2Hdri=1qistsrcos(λiα2(tr))cos(λiα2(tr1))(rr1)2Hdr1dr2i=1λiαqisin2(λiα2(ts))s2H+2Hi=1λiαqisin(λiα2(ts))stsin(λiα2(tr))r2H1dr2Hi=1λiα2qistsrsin(λiα2(tr))cos(λiα2(tr1))(rr1)2H1dr1dr(ts)2καi=1λiκαqi+i=1λiαqi(λiα2(ts))καst(λiα2(tr))καr2H1dr+2Hi=1λiαqistsin(λiα2(tr))(sin(λiα2(ts))sin(λiα2(tr)))(rs)2H1dr+2H(2H1)i=1λiαqistsrsin(λiα2(tr))×(sin(λiα2(tr1))sin(λiα2(tr)))(rr1)2H2dr1dr(ts)2καi=1λiκαqi+i=1λiαqistsr(λiα2(rr1))2κ+α2Hαα(rr1)2H2dr1dr(ts)2καi=1AρQ12ϕi(x)2.\begin{split}&\mathrm{E}\left[\left\|\int^{t}_{s}A^{\frac{-\alpha}{2}}\mathscr{S}(t-r)\mathrm{d}B^{Q}_{H}(r)\right\|^{2}\right]\\ &\lesssim\sum^{\infty}_{i=1}\lambda_{i}^{-\alpha}q_{i}\sin^{2}\left(\lambda_{i}^{\frac{\alpha}{2}}(t-s)\right)s^{2H}\\ &~{}~{}~{}~{}+\sum^{\infty}_{i=1}\lambda_{i}^{-\frac{\alpha}{2}}q_{i}\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t-s)\right)\int^{t}_{s}\cos\left(\lambda_{i}^{\frac{\alpha}{2}}(t-r)\right)r^{2H}\mathrm{d}r\\ &~{}~{}~{}~{}-\sum^{\infty}_{i=1}q_{i}\int^{t}_{s}\int^{r}_{s}\cos\left(\lambda_{i}^{\frac{\alpha}{2}}(t-r)\right)\cos\left(\lambda_{i}^{\frac{\alpha}{2}}(t-r_{1})\right)(r-r_{1})^{2H}\mathrm{d}r_{1}\mathrm{d}r\\ &\lesssim 2\sum^{\infty}_{i=1}\lambda_{i}^{-\alpha}q_{i}\sin^{2}\left(\lambda_{i}^{\frac{\alpha}{2}}(t-s)\right)s^{2H}\\ &~{}~{}~{}~{}+2H\sum^{\infty}_{i=1}\lambda_{i}^{-\alpha}q_{i}\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t-s)\right)\int^{t}_{s}\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t-r)\right)r^{2H-1}\mathrm{d}r\\ &~{}~{}~{}~{}-2H\sum^{\infty}_{i=1}\lambda_{i}^{-\frac{\alpha}{2}}q_{i}\int^{t}_{s}\int^{r}_{s}\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t-r)\right)\cos\left(\lambda_{i}^{\frac{\alpha}{2}}(t-r_{1})\right)(r-r_{1})^{2H-1}\mathrm{d}r_{1}\mathrm{d}r\\ &\lesssim(t-s)^{\frac{2\kappa}{\alpha}}\sum^{\infty}_{i=1}\lambda_{i}^{\kappa-\alpha}q_{i}+\sum^{\infty}_{i=1}\lambda_{i}^{-\alpha}q_{i}\left(\lambda_{i}^{\frac{\alpha}{2}}(t-s)\right)^{\frac{\kappa}{\alpha}}\int^{t}_{s}\left(\lambda_{i}^{\frac{\alpha}{2}}(t-r)\right)^{\frac{\kappa}{\alpha}}r^{2H-1}\mathrm{d}r\\ &~{}~{}~{}~{}+2H\sum^{\infty}_{i=1}\lambda_{i}^{-\alpha}q_{i}\int^{t}_{s}\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t-r)\right)\left(\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t-s)\right)-\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t-r)\right)\right)(r-s)^{2H-1}\mathrm{d}r\\ &~{}~{}~{}~{}+2H(2H-1)\sum^{\infty}_{i=1}\lambda_{i}^{-\alpha}q_{i}\int^{t}_{s}\int^{r}_{s}\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t-r)\right)\\ &~{}~{}~{}~{}\times\left(\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t-r_{1})\right)-\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t-r)\right)\right)(r-r_{1})^{2H-2}\mathrm{d}r_{1}\mathrm{d}r\\ &\lesssim(t-s)^{\frac{2\kappa}{\alpha}}\sum^{\infty}_{i=1}\lambda_{i}^{\kappa-\alpha}q_{i}+\sum^{\infty}_{i=1}\lambda_{i}^{-\alpha}q_{i}\int^{t}_{s}\int^{r}_{s}\left(\lambda_{i}^{\frac{\alpha}{2}}(r-r_{1})\right)^{\frac{2\kappa+\alpha-2H\alpha}{\alpha}}(r-r_{1})^{2H-2}\mathrm{d}r_{1}\mathrm{d}r\\ &\lesssim(t-s)^{\frac{2\kappa}{\alpha}}\sum_{i=1}^{\infty}\left\|A^{\rho}Q^{\frac{1}{2}}\phi_{i}(x)\right\|^{2}.\end{split}

As κ>Hα\kappa>H\alpha, similarly, we have

E[stAα2𝒮(tr)dBHQ(r)2](ts)min{2κα,2}i=1λiκαqi+i=1λiαqi(λiα2(ts))min{2κα,2}str2H1dr+i=1λiαqi(λiα2(ts))min{2κα,2}st(rs)2H1dr+i=1λiαqistsr(λiα2(tr))min{2κ2Hαα,1}(λiα2(rr1))(rr1)2H2dr1dr(ts)min{2κα,2}i=1AρQ12ϕi(x)2.\begin{split}&\mathrm{E}\left[\left\|\int^{t}_{s}A^{\frac{-\alpha}{2}}\mathscr{S}(t-r)\mathrm{d}B^{Q}_{H}(r)\right\|^{2}\right]\\ &\lesssim(t-s)^{\min\{\frac{2\kappa}{\alpha},2\}}\sum^{\infty}_{i=1}\lambda_{i}^{\kappa-\alpha}q_{i}+\sum^{\infty}_{i=1}\lambda_{i}^{-\alpha}q_{i}\left(\lambda_{i}^{\frac{\alpha}{2}}(t-s)\right)^{\min\{\frac{2\kappa}{\alpha},2\}}\int^{t}_{s}r^{2H-1}\mathrm{d}r\\ &~{}~{}~{}~{}+\sum^{\infty}_{i=1}\lambda_{i}^{-\alpha}q_{i}\left(\lambda_{i}^{\frac{\alpha}{2}}(t-s)\right)^{\min\{\frac{2\kappa}{\alpha},2\}}\int^{t}_{s}(r-s)^{2H-1}\mathrm{d}r\\ &~{}~{}~{}~{}+\sum^{\infty}_{i=1}\lambda_{i}^{-\alpha}q_{i}\int^{t}_{s}\int^{r}_{s}\left(\lambda_{i}^{\frac{\alpha}{2}}(t-r)\right)^{\min\{\frac{2\kappa-2H\alpha}{\alpha},1\}}\left(\lambda_{i}^{\frac{\alpha}{2}}(r-r_{1})\right)(r-r_{1})^{2H-2}\mathrm{d}r_{1}\mathrm{d}r\\ &\lesssim(t-s)^{\min\{\frac{2\kappa}{\alpha},2\}}\sum_{i=1}^{\infty}\left\|A^{\rho}Q^{\frac{1}{2}}\phi_{i}(x)\right\|^{2}.\end{split}
Remark 3.1

When BHQ(x,t)=i=1ξHi(t)ϕi(x)B^{Q}_{H}(x,t)=\sum^{\infty}_{i=1}\xi_{H}^{i}(t)\phi_{i}(x), α+2Hα>d\alpha+2H\alpha>d and 0<κ<d2+α2+Hα0<\kappa<-\frac{d}{2}+\frac{\alpha}{2}+H\alpha, using the above steps, we still obtain inequalities (3.2) and (3.3).

We derive the regularity estimates of (1.1) from (2.4) and Proposition 1.

Theorem 3.1

Suppose u0L2(Ω,κ)<\left\|u_{0}\right\|_{L^{2}\left(\Omega,\mathbb{H}^{\kappa}\right)}<\infty, v0L2(Ω,κα)<\left\|v_{0}\right\|_{L^{2}\left(\Omega,\mathbb{H}^{\kappa-\alpha}\right)}<\infty, κ=α2+Hα+2ρ\kappa=\frac{\alpha}{2}+H\alpha+2\rho and 0<κ<α+120<\kappa<\alpha+\frac{1}{2}, assumptions 1 and 2 hold. Then

u(t)L2(Ω,κ)+u˙(t)L2(Ω,κα)1+u0L2(Ω,κ)+v0L2(Ω,κα)\left\|u(t)\right\|_{L^{2}(\Omega,\mathbb{H}^{\kappa})}+\left\|\dot{u}(t)\right\|_{L^{2}(\Omega,\mathbb{H}^{\kappa-\alpha})}\lesssim 1+\left\|u_{0}\right\|_{L^{2}\left(\Omega,\mathbb{H}^{\kappa}\right)}+\left\|v_{0}\right\|_{L^{2}\left(\Omega,\mathbb{H}^{\kappa-\alpha}\right)}

and

u(t)u(s)L2(Ω,0)(ts)min{κα,1}(u0L2(Ω,κ)+v0L2(Ω,κα)+1).\begin{split}&\left\|u(t)-u(s)\right\|_{L^{2}(\Omega,\mathbb{H}^{0})}\\ &\lesssim(t-s)^{\min\left\{\frac{\kappa}{\alpha},1\right\}}\left(\left\|u_{0}\right\|_{L^{2}\left(\Omega,\mathbb{H}^{\kappa}\right)}+\left\|v_{0}\right\|_{L^{2}\left(\Omega,\mathbb{H}^{\kappa-\alpha}\right)}+1\right).\end{split}
Proof

We observe the regularity of u(t)u(t) in the space L2(Ω,ν)L^{2}(\Omega,\mathbb{H}^{\nu}). First, we obtain the following inequality by using assumption 2.

E[f(u(t))f(0)2]E[u(t)2],\begin{split}\mathrm{E}\left[\left\|f\left(u(t)\right)-f\left(0\right)\right\|^{2}\right]\lesssim\mathrm{E}\left[\left\|u(t)\right\|^{2}\right],\end{split}

which implies

E[f(u(t))2]E[u(t)2]+1.\begin{split}\mathrm{E}\left[\left\|f\left(u(t)\right)\right\|^{2}\right]\lesssim\mathrm{E}\left[\left\|u(t)\right\|^{2}\right]+1.\end{split} (3.8)

Using (2.4) leads to

E[Aκ2u(t)2]E[Aκ2𝒞(t)u02]+E[Aκα2𝒮(t)v02]+E[0tAκα2𝒮(tr)f(u(r))dr2]+E[0tAκα2𝒮(tr)dBHQ(r)2]E[Aκ2u02]+E[Aκα2v02]+0tE[Aκα2f(u(r))2]dr+E[0tAκα2𝒮(tr)dBHQ(r)2]\begin{split}\mathrm{E}\left[\left\|A^{\frac{\kappa}{2}}u(t)\right\|^{2}\right]&\lesssim\mathrm{E}\left[\left\|A^{\frac{\kappa}{2}}\mathscr{C}(t)u_{0}\right\|^{2}\right]+\mathrm{E}\left[\left\|A^{\frac{\kappa-\alpha}{2}}\mathscr{S}(t)v_{0}\right\|^{2}\right]\\ &~{}~{}~{}~{}+\mathrm{E}\left[\left\|\int^{t}_{0}A^{\frac{\kappa-\alpha}{2}}\mathscr{S}(t-r)f\left(u(r)\right)\mathrm{d}r\right\|^{2}\right]\\ &~{}~{}~{}~{}+\mathrm{E}\left[\left\|\int^{t}_{0}A^{\frac{\kappa-\alpha}{2}}\mathscr{S}(t-r)\mathrm{d}B^{Q}_{H}(r)\right\|^{2}\right]\\ &\lesssim\mathrm{E}\left[\left\|A^{\frac{\kappa}{2}}u_{0}\right\|^{2}\right]+\mathrm{E}\left[\left\|A^{\frac{\kappa-\alpha}{2}}v_{0}\right\|^{2}\right]\\ &~{}~{}~{}~{}+\int^{t}_{0}\mathrm{E}\left[\left\|A^{\frac{\kappa-\alpha}{2}}f\left(u(r)\right)\right\|^{2}\right]\mathrm{d}r\\ &~{}~{}~{}~{}+\mathrm{E}\left[\left\|\int^{t}_{0}A^{\frac{\kappa-\alpha}{2}}\mathscr{S}(t-r)\mathrm{d}B^{Q}_{H}(r)\right\|^{2}\right]\end{split}

and

E[Aκα2u˙(t)2]E[Aκ2u02]+E[Aκα2v02]+0tE[Aκα2f(u(r))2]dr+E[0tAκα2𝒞(tr)dBHQ(r)2].\begin{split}\mathrm{E}\left[\left\|A^{\frac{\kappa-\alpha}{2}}\dot{u}(t)\right\|^{2}\right]\lesssim&\mathrm{E}\left[\left\|A^{\frac{\kappa}{2}}u_{0}\right\|^{2}\right]+\mathrm{E}\left[\left\|A^{\frac{\kappa-\alpha}{2}}v_{0}\right\|^{2}\right]+\int^{t}_{0}\mathrm{E}\left[\left\|A^{\frac{\kappa-\alpha}{2}}f\left(u(r)\right)\right\|^{2}\right]\mathrm{d}r\\ &~{}~{}~{}~{}+\mathrm{E}\left[\left\|\int^{t}_{0}A^{\frac{\kappa-\alpha}{2}}\mathscr{C}(t-r)\mathrm{d}B^{Q}_{H}(r)\right\|^{2}\right].\end{split}

Then

E[Aκ2u(t)2]+E[Aκα2u˙(t)2]E[Aκ2u02]+E[Aκα2(t)v02]+0tE[Aκα2f(u(r))2]dr+E[0tAκα2𝒮(tr)dBHQ(r)2]+E[0tAκα2𝒞(tr)dBHQ(r)2].\begin{split}&\mathrm{E}\left[\left\|A^{\frac{\kappa}{2}}u(t)\right\|^{2}\right]+\mathrm{E}\left[\left\|A^{\frac{\kappa-\alpha}{2}}\dot{u}(t)\right\|^{2}\right]\\ &\lesssim\mathrm{E}\left[\left\|A^{\frac{\kappa}{2}}u_{0}\right\|^{2}\right]+\mathrm{E}\left[\left\|A^{\frac{\kappa-\alpha}{2}}(t)v_{0}\right\|^{2}\right]+\int^{t}_{0}\mathrm{E}\left[\left\|A^{\frac{\kappa-\alpha}{2}}f\left(u(r)\right)\right\|^{2}\right]\mathrm{d}r\\ &~{}~{}~{}~{}+\mathrm{E}\left[\left\|\int^{t}_{0}A^{\frac{\kappa-\alpha}{2}}\mathscr{S}(t-r)\mathrm{d}B^{Q}_{H}(r)\right\|^{2}\right]+\mathrm{E}\left[\left\|\int^{t}_{0}A^{\frac{\kappa-\alpha}{2}}\mathscr{C}(t-r)\mathrm{d}B^{Q}_{H}(r)\right\|^{2}\right].\end{split}

Proposition 1 implies

E[Aκ2u(t)2]+E[Aκα2u˙(t)2]E[Aκ2u02]+E[Aκα2(t)v02]+0tE[Aκα2f(u(r))2]dr+1.\begin{split}&\mathrm{E}\left[\left\|A^{\frac{\kappa}{2}}u(t)\right\|^{2}\right]+\mathrm{E}\left[\left\|A^{\frac{\kappa-\alpha}{2}}\dot{u}(t)\right\|^{2}\right]\\ &\lesssim\mathrm{E}\left[\left\|A^{\frac{\kappa}{2}}u_{0}\right\|^{2}\right]+\mathrm{E}\left[\left\|A^{\frac{\kappa-\alpha}{2}}(t)v_{0}\right\|^{2}\right]+\int^{t}_{0}\mathrm{E}\left[\left\|A^{\frac{\kappa-\alpha}{2}}f\left(u(r)\right)\right\|^{2}\right]\mathrm{d}r+1.\end{split} (3.9)

Second, we need to discuss the estimate of (3.9) in different cases. As 0<κα0<\kappa\leq\alpha, we have

E[0tAκα2f(u(r))2]drE[0tf(u(r))2]dr.\mathrm{E}\left[\int^{t}_{0}\left\|A^{\frac{\kappa-\alpha}{2}}f\left(u(r)\right)\right\|^{2}\right]\mathrm{d}r\lesssim\mathrm{E}\left[\int^{t}_{0}\left\|f\left(u(r)\right)\right\|^{2}\right]\mathrm{d}r. (3.10)

Substituting (3.8) into (3.10), we have

0tE[Aκα2f(u(r))2]dr0tE[u(r)2]dr+10tE[Aκ2u(r)2]dr+1.\begin{split}\int^{t}_{0}\mathrm{E}\left[\left\|A^{\frac{\kappa-\alpha}{2}}f\left(u(r)\right)\right\|^{2}\right]\mathrm{d}r&\lesssim\int^{t}_{0}\mathrm{E}\left[\left\|u(r)\right\|^{2}\right]\mathrm{d}r+1\\ &\lesssim\int^{t}_{0}\mathrm{E}\left[\left\|A^{\frac{\kappa}{2}}u(r)\right\|^{2}\right]\mathrm{d}r+1.\end{split} (3.11)

For α<κ<α+12\alpha<\kappa<\alpha+\frac{1}{2}, due to assumption 2 and (2.5), the following inequality is easily derived.

0tE[Aκα2f(u(x,r))2]dr0tE[f(u(x,r))Wκα,22]dr=0tE[f(u(x,r))2+ΩΩ|f(u(x,r))f(u(y,r))|2|xy|d+2κ2αdxdy]dr0tE[u(x,r)2+ΩΩ|u(x,r)u(y,r)|2|xy|d+2κ2αdxdy]dr+1=0tE[u(x,r)Wκα,22]dr+10tE[Aκα2u(x,r)2]dr+10tE[Aκ2u(x,r)2]dr+1.\begin{split}&\int^{t}_{0}\mathrm{E}\left[\left\|A^{\frac{\kappa-\alpha}{2}}f\left(u(x,r)\right)\right\|^{2}\right]\mathrm{d}r\\ &\lesssim\int^{t}_{0}\mathrm{E}\left[\left\|f\left(u(x,r)\right)\right\|_{W^{\kappa-\alpha,2}}^{2}\right]\mathrm{d}r\\ &=\int^{t}_{0}\mathrm{E}\left[\left\|f\left(u(x,r)\right)\right\|^{2}+\int_{\Omega}\int_{\Omega}\frac{\left|f\left(u(x,r)\right)-f\left(u(y,r)\right)\right|^{2}}{\left|x-y\right|^{d+2\kappa-2\alpha}}\mathrm{d}x\mathrm{d}y\right]\mathrm{d}r\\ &\lesssim\int^{t}_{0}\mathrm{E}\left[\left\|u(x,r)\right\|^{2}+\int_{\Omega}\int_{\Omega}\frac{\left|u(x,r)-u(y,r)\right|^{2}}{\left|x-y\right|^{d+2\kappa-2\alpha}}\mathrm{d}x\mathrm{d}y\right]\mathrm{d}r+1\\ &=\int^{t}_{0}\mathrm{E}\left[\left\|u(x,r)\right\|^{2}_{W^{\kappa-\alpha,2}}\right]\mathrm{d}r+1\\ &\lesssim\int^{t}_{0}\mathrm{E}\left[\left\|A^{\frac{\kappa-\alpha}{2}}u(x,r)\right\|^{2}\right]\mathrm{d}r+1\\ &\lesssim\int^{t}_{0}\mathrm{E}\left[\left\|A^{\frac{\kappa}{2}}u(x,r)\right\|^{2}\right]\mathrm{d}r+1.\end{split} (3.12)

By combining (3.9)-(3.12), we deduce that

E[Aκ2u(t)2]+E[Aκα2u˙(t)2]E[Aκ2u02]+E[Aκα2(t)v02]+0tE[Aκ2u(r)2]dr+1.\begin{split}&\mathrm{E}\left[\left\|A^{\frac{\kappa}{2}}u(t)\right\|^{2}\right]+\mathrm{E}\left[\left\|A^{\frac{\kappa-\alpha}{2}}\dot{u}(t)\right\|^{2}\right]\\ &\lesssim\mathrm{E}\left[\left\|A^{\frac{\kappa}{2}}u_{0}\right\|^{2}\right]+\mathrm{E}\left[\left\|A^{\frac{\kappa-\alpha}{2}}(t)v_{0}\right\|^{2}\right]+\int^{t}_{0}\mathrm{E}\left[\left\|A^{\frac{\kappa}{2}}u(r)\right\|^{2}\right]\mathrm{d}r+1.\end{split} (3.13)

Then using the Gronwall inequality, the following equation is obtained

E[Aκ2u(t)2]E[Aκ2u02]+E[Aκα2v02]+1.\begin{split}\mathrm{E}\left[\left\|A^{\frac{\kappa}{2}}u(t)\right\|^{2}\right]&\lesssim\mathrm{E}\left[\left\|A^{\frac{\kappa}{2}}u_{0}\right\|^{2}\right]+\mathrm{E}\left[\left\|A^{\frac{\kappa-\alpha}{2}}v_{0}\right\|^{2}\right]+1.\end{split} (3.14)

Finally, combining (3.13) and (3.14), we deduce that

E[Aκ2u(t)2]+E[Aκα2u˙(t)2]E[Aκ2u02]+E[Aκα2(t)v02]+1.\begin{split}&\mathrm{E}\left[\left\|A^{\frac{\kappa}{2}}u(t)\right\|^{2}\right]+\mathrm{E}\left[\left\|A^{\frac{\kappa-\alpha}{2}}\dot{u}(t)\right\|^{2}\right]\\ &\lesssim\mathrm{E}\left[\left\|A^{\frac{\kappa}{2}}u_{0}\right\|^{2}\right]+\mathrm{E}\left[\left\|A^{\frac{\kappa-\alpha}{2}}(t)v_{0}\right\|^{2}\right]+1.\end{split} (3.15)

Now, we present the Hölder regularity estimates of u(t)u(t). Using (2.4) and Proposition 1 yields

E[u(t)u(s)2]E[𝒞(ts)u(s)u(s)2]+E[Aα2𝒮(ts)u˙(s)2]+E[stAα2𝒮(tr)f(u(r))dr2]+E[stAα2𝒮(tr)dBHQ(r)2]E[(Aα2(ts))min{κα,1}u(s)2]+E[Aα2(Aα2(ts))min{κα,1}u˙(s)2]+E[stf(u(r))dr2]+(ts)min{2κα,2}.\begin{split}\mathrm{E}\left[\left\|u(t)-u(s)\right\|^{2}\right]&\lesssim\mathrm{E}\left[\left\|\mathscr{C}(t-s)u(s)-u(s)\right\|^{2}\right]+\mathrm{E}\left[\left\|A^{-\frac{\alpha}{2}}\mathscr{S}(t-s)\dot{u}(s)\right\|^{2}\right]\\ &~{}~{}~{}~{}+\mathrm{E}\left[\left\|\int^{t}_{s}A^{-\frac{\alpha}{2}}\mathscr{S}(t-r)f\left(u(r)\right)\mathrm{d}r\right\|^{2}\right]\\ &~{}~{}~{}~{}+\mathrm{E}\left[\left\|\int^{t}_{s}A^{-\frac{\alpha}{2}}\mathscr{S}(t-r)\mathrm{d}B^{Q}_{H}(r)\right\|^{2}\right]\\ &\lesssim\mathrm{E}\left[\left\|\left(A^{\frac{\alpha}{2}}(t-s)\right)^{\min\{\frac{\kappa}{\alpha},1\}}u(s)\right\|^{2}\right]\\ &~{}~{}~{}~{}+\mathrm{E}\left[\left\|A^{-\frac{\alpha}{2}}\left(A^{\frac{\alpha}{2}}(t-s)\right)^{\min\{\frac{\kappa}{\alpha},1\}}\dot{u}(s)\right\|^{2}\right]\\ &~{}~{}~{}~{}+\mathrm{E}\left[\left\|\int^{t}_{s}f\left(u(r)\right)\mathrm{d}r\right\|^{2}\right]+(t-s)^{\min\left\{\frac{2\kappa}{\alpha},2\right\}}.\end{split} (3.16)

Employing (3.15) and Cauchy-Schwarz-Buniakowsky inequality, we obtain

E[u(t)u(s)2](ts)min{2κα,2}(E[Aκ2u02]+E[Aκα2(t)v02]+1)+(ts)stE[f(u(r))2]dr+(ts)min{2κα,2}(ts)min{2κα,2}(E[Aκ2u02]+E[Aκα2(t)v02]+1).\begin{split}\mathrm{E}\left[\left\|u(t)-u(s)\right\|^{2}\right]&\lesssim\left(t-s\right)^{\min\{\frac{2\kappa}{\alpha},2\}}\left(\mathrm{E}\left[\left\|A^{\frac{\kappa}{2}}u_{0}\right\|^{2}\right]+\mathrm{E}\left[\left\|A^{\frac{\kappa-\alpha}{2}}(t)v_{0}\right\|^{2}\right]+1\right)\\ &~{}~{}~{}~{}+\left(t-s\right)\int^{t}_{s}\mathrm{E}\left[\left\|f\left(u(r)\right)\right\|^{2}\right]\mathrm{d}r+(t-s)^{\min\left\{\frac{2\kappa}{\alpha},2\right\}}\\ &\lesssim\left(t-s\right)^{\min\{\frac{2\kappa}{\alpha},2\}}\left(\mathrm{E}\left[\left\|A^{\frac{\kappa}{2}}u_{0}\right\|^{2}\right]+\mathrm{E}\left[\left\|A^{\frac{\kappa-\alpha}{2}}(t)v_{0}\right\|^{2}\right]+1\right).\end{split} (3.17)

4 Temporal discretization

We solve (1.1) numerically by discretizing (2.3). To begin, we establish a method for approximating stochastic convolution in (2.3). We define each subinterval (tj,tj+1]\left(t_{j},t_{j+1}\right], and set tj=jτt_{j}=j\tau for j=0,1,2,,Tτ1j=0,1,2,\cdots,\frac{T}{\tau}-1. Using the stochastic trigonometric method get the following equation

[uj+1u¯j+1]=[𝒞(τ)Aα2𝒮(τ)Aα2𝒮(τ)𝒞(τ)][uju¯j]+τ[Aα2𝒮(τ)f(uj)𝒞(τ)f(uj)]+[tjtj+1Aα2𝒮(tj+1r)dBHQ(r)tjtj+1𝒞(tj+1r)dBHQ(r)].\begin{split}\left[\begin{split}u_{j+1}\\ \bar{u}_{j+1}\end{split}\right]&=\left[\begin{split}\mathscr{C}\left(\tau\right)~{}~{}~{}~{}A^{-\frac{\alpha}{2}}\mathscr{S}\left(\tau\right)\\ -A^{\frac{\alpha}{2}}\mathscr{S}\left(\tau\right)~{}~{}~{}~{}\mathscr{C}\left(\tau\right)\end{split}\right]\left[\begin{split}u_{j}\\ \bar{u}_{j}\end{split}\right]+\tau\left[\begin{split}A^{-\frac{\alpha}{2}}\mathscr{S}\left(\tau\right)f\left(u_{j}\right)\\ \mathscr{C}\left(\tau\right)f\left(u_{j}\right)\end{split}\right]\\ &+\left[\begin{split}&\int^{t_{j+1}}_{t_{j}}A^{-\frac{\alpha}{2}}\mathscr{S}\left(t_{j+1}-r\right)\mathrm{d}B^{Q}_{H}(r)\\ &\int^{t_{j+1}}_{t_{j}}\mathscr{C}\left(t_{j+1}-r\right)\mathrm{d}B^{Q}_{H}(r)\\ \end{split}\right].\end{split}

In order to obtain the error analysis of temporal discretization, we will approximate stochastic convolution using the following method. Again using integration by parts, we get

tjtj+1Aα2𝒮(tj+1r)dBHQ(r)=Aα2𝒮(tj+1tj)BHQ(tj)+tjtj+1𝒞(Aα2(tj+1r))BHQ(r)dr.\begin{split}\int^{t_{j+1}}_{t_{j}}A^{-\frac{\alpha}{2}}\mathscr{S}\left(t_{j+1}-r\right)\mathrm{d}B^{Q}_{H}(r)&=-A^{-\frac{\alpha}{2}}\mathscr{S}\left(t_{j+1}-t_{j}\right)B^{Q}_{H}(t_{j})\\ &~{}~{}~{}~{}+\int^{t_{j+1}}_{t_{j}}\mathscr{C}\left(A^{\frac{\alpha}{2}}(t_{j+1}-r)\right)B^{Q}_{H}(r)\mathrm{d}r.\end{split} (4.1)

Using (4.1) yields the approximation of tjtj+1Aα2𝒮(tj+1r)dBHQ(r)\int^{t_{j+1}}_{t_{j}}A^{-\frac{\alpha}{2}}\mathscr{S}\left(t_{j+1}-r\right)\mathrm{d}B^{Q}_{H}(r)

Aα2𝒮(tj+1tj)BHQ(tj)+tjtj+1𝒞(tj+1r)BHQ(tj)dr.\begin{split}&-A^{-\frac{\alpha}{2}}\mathscr{S}\left(t_{j+1}-t_{j}\right)B^{Q}_{H}(t_{j})+\int^{t_{j+1}}_{t_{j}}\mathscr{C}\left(t_{j+1}-r\right)B^{Q}_{H}(t_{j})\mathrm{d}r.\\ \end{split}

Using a similar method, we approximate tjtj+1𝒞(tj+1r)dBHQ(r)\int^{t_{j+1}}_{t_{j}}\mathscr{C}\left(t_{j+1}-r\right)\mathrm{d}B^{Q}_{H}(r).

BHQ(tj+1)𝒞(tj+1tj)BHQ(tj)tjtj+1Aα2𝒮(tj+1r)BHQ(tj)dr.\begin{split}&B^{Q}_{H}(t_{j+1})-\mathscr{C}\left(t_{j+1}-t_{j}\right)B^{Q}_{H}(t_{j})-\int^{t_{j+1}}_{t_{j}}A^{\frac{\alpha}{2}}\mathscr{S}\left(t_{j+1}-r\right)B^{Q}_{H}(t_{j})\mathrm{d}r.\\ \end{split}

The above approximation makes numerical simulations of stochastic convolution easy to implement. Then we get a discretization of (2.1)

[uj+1u¯j+1]=[𝒞(τ)Aα2𝒮(τ)Aα2𝒮(τ)𝒞(τ)][uju¯j]+τ[Aα2𝒮(τ)f(uj)𝒞(τ)f(uj)]+[Aα2𝒮(τ)BHQ(tj)+tjtj+1𝒞(tj+1r)BHQ(tj)drBHQ(tj+1)𝒞(τ)BHQ(tj)tjtj+1Aα2𝒮(tj+1r)BHQ(tj)dr].\begin{split}\left[\begin{split}u_{j+1}\\ \bar{u}_{j+1}\end{split}\right]&=\left[\begin{split}\mathscr{C}\left(\tau\right)~{}~{}~{}~{}A^{-\frac{\alpha}{2}}\mathscr{S}\left(\tau\right)\\ -A^{\frac{\alpha}{2}}\mathscr{S}\left(\tau\right)~{}~{}~{}~{}\mathscr{C}\left(\tau\right)\end{split}\right]\left[\begin{split}u_{j}\\ \bar{u}_{j}\end{split}\right]+\tau\left[\begin{split}A^{-\frac{\alpha}{2}}\mathscr{S}\left(\tau\right)f\left(u_{j}\right)\\ \mathscr{C}\left(\tau\right)f\left(u_{j}\right)\end{split}\right]\\ &+\left[\begin{split}&-A^{-\frac{\alpha}{2}}\mathscr{S}\left(\tau\right)B^{Q}_{H}(t_{j})+\int^{t_{j+1}}_{t_{j}}\mathscr{C}\left(t_{j+1}-r\right)B^{Q}_{H}(t_{j})\mathrm{d}r\\ &B^{Q}_{H}(t_{j+1})-\mathscr{C}\left(\tau\right)B^{Q}_{H}(t_{j})-\int^{t_{j+1}}_{t_{j}}A^{\frac{\alpha}{2}}\mathscr{S}\left(t_{j+1}-r\right)B^{Q}_{H}(t_{j})\mathrm{d}r\\ \end{split}\right].\end{split} (4.2)

The following equation is obtained by applying trigonometric identities.

[𝒞(τ)Aα2𝒮(τ)Aα2𝒮(τ)𝒞(τ)]n=[𝒞(tn)Aα2𝒮(tn)Aα2𝒮(tn)𝒞(tn)]\left[\begin{split}\mathscr{C}\left(\tau\right)~{}~{}~{}~{}A^{-\frac{\alpha}{2}}\mathscr{S}\left(\tau\right)\\ -A^{\frac{\alpha}{2}}\mathscr{S}\left(\tau\right)~{}~{}~{}~{}\mathscr{C}\left(\tau\right)\end{split}\right]^{n}=\left[\begin{split}\mathscr{C}\left(t_{n}\right)~{}~{}~{}~{}A^{-\frac{\alpha}{2}}\mathscr{S}\left(t_{n}\right)\\ -A^{\frac{\alpha}{2}}\mathscr{S}\left(t_{n}\right)~{}~{}~{}~{}\mathscr{C}\left(t_{n}\right)\end{split}\right]

and

[𝒞(τ)Aα2𝒮(τ)Aα2𝒮(τ)𝒞(τ)]i[Aα2𝒮(τ)𝒞(τ)]=[Aα2𝒮(ti+1)𝒞(ti+1)].\left[\begin{split}\mathscr{C}\left(\tau\right)~{}~{}~{}~{}A^{-\frac{\alpha}{2}}\mathscr{S}\left(\tau\right)\\ -A^{\frac{\alpha}{2}}\mathscr{S}\left(\tau\right)~{}~{}~{}~{}\mathscr{C}\left(\tau\right)\end{split}\right]^{i}\left[\begin{split}A^{-\frac{\alpha}{2}}\mathscr{S}\left(\tau\right)\\ \mathscr{C}\left(\tau\right)\end{split}\right]=\left[\begin{split}A^{-\frac{\alpha}{2}}\mathscr{S}\left(t_{i+1}\right)\\ \mathscr{C}\left(t_{i+1}\right)\end{split}\right].

Then using recursion form of (4.2), we get

un+1=𝒞(tn+1)u0+Aα2𝒮(tn+1)v0+j=0nτAα2𝒮(Aα2(tn+1tj))f(uj)+j=0ntjtj+1𝒞(tn+1r)BHQ(tj)dr\begin{split}u_{n+1}&=\mathscr{C}\left(t_{n+1}\right)u_{0}+A^{-\frac{\alpha}{2}}\mathscr{S}\left(t_{n+1}\right)v_{0}+\sum^{n}_{j=0}\tau A^{-\frac{\alpha}{2}}\mathscr{S}\left(A^{\frac{\alpha}{2}}(t_{n+1}-t_{j})\right)f\left(u_{j}\right)\\ &~{}~{}~{}~{}+\sum^{n}_{j=0}\int^{t_{j+1}}_{t_{j}}\mathscr{C}\left(t_{n+1}-r\right)B^{Q}_{H}(t_{j})\mathrm{d}r\end{split} (4.3)

and

u¯n+1=Aα2𝒮(tn+1)u0+𝒞(tn+1)v0+j=0nτ𝒞(Aα2(tn+1tj))f(uj)+BHQ(tn+1)j=0ntjtj+1Aα2𝒮(tn+1r)BHQ(tj)dr.\begin{split}\bar{u}_{n+1}&=-A^{\frac{\alpha}{2}}\mathscr{S}\left(t_{n+1}\right)u_{0}+\mathscr{C}\left(t_{n+1}\right)v_{0}+\sum^{n}_{j=0}\tau\mathscr{C}\left(A^{\frac{\alpha}{2}}(t_{n+1}-t_{j})\right)f\left(u_{j}\right)\\ &~{}~{}~{}~{}+B^{Q}_{H}(t_{n+1})-\sum^{n}_{j=0}\int^{t_{j+1}}_{t_{j}}A^{\frac{\alpha}{2}}\mathscr{S}\left(t_{n+1}-r\right)B^{Q}_{H}(t_{j})\mathrm{d}r.\end{split} (4.4)

Let en+1=u(tn+1)un+1e_{n+1}=u(t_{n+1})-u_{n+1}. Combining (2.4) and (4.3), we have

en+1=j=0ntjtj+1Aα2(𝒮(tn+1s)f(u(s))𝒮(tn+1tj)f(uj))ds+j=0ntjtj+1𝒞(tn+1s)(BHQ(s)BHQ(tj))ds.\begin{split}e_{n+1}&=\sum^{n}_{j=0}\int^{t_{j+1}}_{t_{j}}A^{-\frac{\alpha}{2}}\left(\mathscr{S}\left(t_{n+1}-s\right)f\left(u(s)\right)-\mathscr{S}\left(t_{n+1}-t_{j}\right)f\left(u_{j}\right)\right)\mathrm{d}s\\ &~{}~{}~{}~{}+\sum^{n}_{j=0}\int^{t_{j+1}}_{t_{j}}\mathscr{C}\left(t_{n+1}-s\right)\left(B^{Q}_{H}(s)-B^{Q}_{H}(t_{j})\right)\mathrm{d}s.\end{split} (4.5)
Proposition 2

Let κ=α2+Hα+2ρ\kappa=\frac{\alpha}{2}+H\alpha+2\rho and κ>0\kappa>0, assumption 1 is satisfied, we have

E[j=0j=n1tjtj+1𝒞(tns)(BHQ(s)BHQ(tj))dr2]{τ2κα,0<κα2+Hα,τ2H+1,κ>α2+Hα.\begin{split}&\mathrm{E}\left[\left\|\sum^{j=n-1}_{j=0}\int^{t_{j+1}}_{t_{j}}\mathscr{C}\left(t_{n}-s\right)\left(B^{Q}_{H}(s)-B^{Q}_{H}(t_{j})\right)\mathrm{d}r\right\|^{2}\right]\\ &\lesssim\left\{\begin{split}\tau^{\frac{2\kappa}{\alpha}},\quad&0<\kappa\leq\frac{\alpha}{2}+H\alpha,\\ \tau^{2H+1},\quad&\kappa>\frac{\alpha}{2}+H\alpha.\end{split}\right.\end{split}
Proof

Thanks to the orthonormal basis {ϕi(x)}i\left\{\phi_{i}(x)\right\}_{i\in\mathbb{N}}, the following equation holds.

E[j=0j=n1tjtj+1𝒞(tns)(BHQ(s)BHQ(tj))dr2]=i=1qij=0j=n1tjtj+1tjtj+1cos(λiα2(tns))cos(λiα2(tnr))×E[(ξHi(s)ξHi(tj))(ξHi(r)ξHi(tj))]dsdr+2i=1qij=1j=n1k=0k=j1tjtj+1tktk+1cos(λiα2(tns))cos(λiα2(tnr))×E[(ξHi(s)ξHi(tj))(ξHi(r)ξHi(tk))]dsdr=J1+J2.\begin{split}&\mathrm{E}\left[\left\|\sum^{j=n-1}_{j=0}\int^{t_{j+1}}_{t_{j}}\mathscr{C}\left(t_{n}-s\right)\left(B^{Q}_{H}(s)-B^{Q}_{H}(t_{j})\right)\mathrm{d}r\right\|^{2}\right]\\ &=\sum^{\infty}_{i=1}q_{i}\sum^{j=n-1}_{j=0}\int^{t_{j+1}}_{t_{j}}\int^{t_{j+1}}_{t_{j}}\cos\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-s)\right)\cos\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-r)\right)\\ &~{}~{}~{}~{}\times\mathrm{E}\left[\left(\xi_{H}^{i}(s)-\xi_{H}^{i}(t_{j})\right)\left(\xi_{H}^{i}(r)-\xi_{H}^{i}(t_{j})\right)\right]\mathrm{d}s\mathrm{d}r\\ &~{}~{}~{}~{}+2\sum^{\infty}_{i=1}q_{i}\sum^{j=n-1}_{j=1}\sum^{k=j-1}_{k=0}\int^{t_{j+1}}_{t_{j}}\int^{t_{k+1}}_{t_{k}}\cos\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-s)\right)\cos\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-r)\right)\\ &~{}~{}~{}~{}\times\mathrm{E}\left[\left(\xi_{H}^{i}(s)-\xi_{H}^{i}(t_{j})\right)\left(\xi_{H}^{i}(r)-\xi_{H}^{i}(t_{k})\right)\right]\mathrm{d}s\mathrm{d}r\\ &=J_{1}+J_{2}.\end{split}

For 0<κHα0<\kappa\leq H\alpha, we give the following estimates of J1J_{1} and J2J_{2} by using the covariance function of FBM.

J1=i=1qij=0j=n1tjtj+1tjtj+1cos(λiα2(tns))cos(λiα2(tnr))×|rtj|2H+|stj|2H|sr|2H2dsdr=i=1qij=0j=n1tjtj+1tjscos(λiα2(tns))cos(λiα2(tnr))(sr)2Hdsdr+i=1qij=0j=n1tjtj+1tjtj+1cos(λiα2(tns))cos(λiα2(tnr))(stj)2Hdsdr=J11+J12.\begin{split}J_{1}&=\sum^{\infty}_{i=1}q_{i}\sum^{j=n-1}_{j=0}\int^{t_{j+1}}_{t_{j}}\int^{t_{j+1}}_{t_{j}}\cos\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-s)\right)\cos\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-r)\right)\\ &~{}~{}~{}~{}\times\frac{|r-t_{j}|^{2H}+|s-t_{j}|^{2H}-|s-r|^{2H}}{2}\mathrm{d}s\mathrm{d}r\\ &=-\sum^{\infty}_{i=1}q_{i}\sum^{j=n-1}_{j=0}\int^{t_{j+1}}_{t_{j}}\int^{s}_{t_{j}}\cos\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-s)\right)\cos\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-r)\right)(s-r)^{2H}\mathrm{d}s\mathrm{d}r\\ &~{}~{}~{}~{}+\sum^{\infty}_{i=1}q_{i}\sum^{j=n-1}_{j=0}\int^{t_{j+1}}_{t_{j}}\int^{t_{j+1}}_{t_{j}}\cos\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-s)\right)\cos\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-r)\right)(s-t_{j})^{2H}\mathrm{d}s\mathrm{d}r\\ &=J_{11}+J_{12}.\end{split}

By integration by parts, we have

J11=i=1λiα2qij=0j=n1tjtj+1cos(λiα2(tns))×(sin(λiα2(tnr))sin(λiα2(tntj)))(sr)2Hds|r=tjs+2Hi=1λiα2qij=0j=n1tjtj+1tjscos(λiα2(tns))×(sin(λiα2(tnr))sin(λiα2(tntj)))(sr)2H1dsdr=2Hi=1λiαqij=0j=n1tjtj+1(sin(λiα2(tntj+1))sin(λiα2(tnr)))×(sin(λiα2(tnr))sin(λiα2(tntj)))(tj+1r)2H1dr+2H(2H1)i=1λiαqij=0j=n1tjtj+1tjs(sin(λiα2(tns))sin(λiα2(tnr)))×(sin(λiα2(tnr))sin(λiα2(tntj)))(sr)2H2dsdri=1λiαqij=0j=n1tjtj+1(λiα2(tj+1r))2κ+α2Hαα(tj+1r)2H1dr+i=1λiαqij=0j=n1tjtj+1tjs(λiα2(sr))2κ+α2Hαα(sr)2H2dsdrτ2H1i=1λiαqi(λiα2τ)2κ+α2Hαα+i=1λiκα2Hαqij=0j=n1tjtj+1tjs(sr)2κα1dsdrτ2καAρQ12ϕi(x)2\begin{split}J_{11}&=\sum^{\infty}_{i=1}\lambda_{i}^{-\frac{\alpha}{2}}q_{i}\sum^{j=n-1}_{j=0}\int^{t_{j+1}}_{t_{j}}\cos\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-s)\right)\\ &~{}~{}~{}~{}\times\left(\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-r)\right)-\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-t_{j})\right)\right)(s-r)^{2H}\mathrm{d}s\bigg{|}^{s}_{r=t_{j}}\\ &~{}~{}~{}~{}+2H\sum^{\infty}_{i=1}\lambda_{i}^{-\frac{\alpha}{2}}q_{i}\sum^{j=n-1}_{j=0}\int^{t_{j+1}}_{t_{j}}\int^{s}_{t_{j}}\cos\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-s)\right)\\ &~{}~{}~{}~{}\times\left(\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-r)\right)-\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-t_{j})\right)\right)(s-r)^{2H-1}\mathrm{d}s\mathrm{d}r\\ &=-2H\sum^{\infty}_{i=1}\lambda_{i}^{-\alpha}q_{i}\sum^{j=n-1}_{j=0}\int^{t_{j+1}}_{t_{j}}\left(\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-t_{j+1})\right)-\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-r)\right)\right)\\ &~{}~{}~{}~{}\times\left(\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-r)\right)-\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-t_{j})\right)\right)(t_{j+1}-r)^{2H-1}\mathrm{d}r\\ &~{}~{}~{}~{}+2H(2H-1)\sum^{\infty}_{i=1}\lambda_{i}^{-\alpha}q_{i}\sum^{j=n-1}_{j=0}\int^{t_{j+1}}_{t_{j}}\int^{s}_{t_{j}}\left(\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-s)\right)-\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-r)\right)\right)\\ &~{}~{}~{}~{}\times\left(\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-r)\right)-\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-t_{j})\right)\right)(s-r)^{2H-2}\mathrm{d}s\mathrm{d}r\\ &\lesssim\sum^{\infty}_{i=1}\lambda_{i}^{-\alpha}q_{i}\sum^{j=n-1}_{j=0}\int^{t_{j+1}}_{t_{j}}\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{j+1}-r)\right)^{\frac{2\kappa+\alpha-2H\alpha}{\alpha}}(t_{j+1}-r)^{2H-1}\mathrm{d}r\\ &~{}~{}~{}~{}+\sum^{\infty}_{i=1}\lambda_{i}^{-\alpha}q_{i}\sum^{j=n-1}_{j=0}\int^{t_{j+1}}_{t_{j}}\int^{s}_{t_{j}}\left(\lambda_{i}^{\frac{\alpha}{2}}(s-r)\right)^{\frac{2\kappa+\alpha-2H\alpha}{\alpha}}(s-r)^{2H-2}\mathrm{d}s\mathrm{d}r\\ &\lesssim\tau^{2H-1}\sum^{\infty}_{i=1}\lambda_{i}^{-\alpha}q_{i}\left(\lambda_{i}^{\frac{\alpha}{2}}\tau\right)^{\frac{2\kappa+\alpha-2H\alpha}{\alpha}}+\sum^{\infty}_{i=1}\lambda_{i}^{\kappa-\frac{\alpha}{2}-H\alpha}q_{i}\sum^{j=n-1}_{j=0}\int^{t_{j+1}}_{t_{j}}\int^{s}_{t_{j}}(s-r)^{\frac{2\kappa}{\alpha}-1}\mathrm{d}s\mathrm{d}r\\ &\lesssim\tau^{\frac{2\kappa}{\alpha}}\left\|A^{\rho}Q^{\frac{1}{2}}\phi_{i}(x)\right\|^{2}\end{split}

and

J12=i=1qij=0j=n1tjtj+1tjtj+1cos(λiα2(tns))cos(λiα2(tnr))(stj)2Hdsdr=2Hi=1λiαqij=0j=n1tjtj+1(sin(λiα2(tns))sin(λiα2(tntj+1)))(stj)2H1ds×(sin(λiα2(tntj))sin(λiα2(tntj+1)))i=1λiαqij=0j=n1tjtj+1(λiα2(tj+1s))2κ+α2Hαα(stj)2H1dsτ2καi=1AρQ12ϕi(x)2.\begin{split}J_{12}&=\sum^{\infty}_{i=1}q_{i}\sum^{j=n-1}_{j=0}\int^{t_{j+1}}_{t_{j}}\int^{t_{j+1}}_{t_{j}}\cos\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-s)\right)\cos\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-r)\right)(s-t_{j})^{2H}\mathrm{d}s\mathrm{d}r\\ &=2H\sum^{\infty}_{i=1}\lambda_{i}^{-\alpha}q_{i}\sum^{j=n-1}_{j=0}\int^{t_{j+1}}_{t_{j}}\left(\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-s)\right)-\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-t_{j+1})\right)\right)(s-t_{j})^{2H-1}\mathrm{d}s\\ &~{}~{}~{}~{}\times\left(\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-t_{j})\right)-\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-t_{j+1})\right)\right)\\ &\lesssim\sum^{\infty}_{i=1}\lambda_{i}^{-\alpha}q_{i}\sum^{j=n-1}_{j=0}\int^{t_{j+1}}_{t_{j}}\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{j+1}-s)\right)^{\frac{2\kappa+\alpha-2H\alpha}{\alpha}}(s-t_{j})^{2H-1}\mathrm{d}s\\ &\lesssim\tau^{\frac{2\kappa}{\alpha}}\sum^{\infty}_{i=1}\left\|A^{\rho}Q^{\frac{1}{2}}\phi_{i}(x)\right\|^{2}.\end{split}

For J2J_{2}, using the fact k<jk<j, we have tkrtjst_{k}\leq r\leq t_{j}\leq s. Similar to the estimates of J11J_{11} and J12J_{12}, we have

J2=i=1qij=1j=n1k=0k=j1tjtj+1tktk+1cos(λiα2(tns))cos(λiα2(tnr))×[(sr)2H+(stk)2H+(tjr)2H(tjtk)2H]dsdr=i=1qij=1j=n1k=0k=j1tjtj+1tktk+1cos(λiα2(tns))cos(λiα2(tnr))×[2Htkr(sr1)2H1dr12Htkr(tjr1)2H1dr1]dsdr=2Hi=1qij=1j=n1k=0k=j1tjtj+1r1tk+1cos(λiα2(tns))cos(λiα2(tnr))×[tktk+1(sr1)2H1dr1tktk+1(tjr1)2H1dr1]dsdr=2Hi=1qiλiα2j=1j=n1k=0k=j1tjtj+1(sin(λiα2(tnr1))sin(λiα2(tntk+1)))×cos(λiα2(tns))[tktk+1(sr1)2H1dr1tktk+1(tjr1)2H1dr1]ds=2Hi=1qiλiαj=1j=n1k=0k=j1tjtj+1tktk+1(sin(λiα2(tnr1))sin(λiα2(tntk+1)))×(sin(λiα2(tns))sin(λiα2(tntj+1)))(2H1)(sr1)2H2dr1dsτ2κα+12Hi=1λiκα2Hαqij=1j=n1k=0k=j1tjtj+1tktk+1(sr1)2H2dr1ds=τ2κα+12Hi=1λiκα2Hαqij=1j=n1tjtj+10tj(sr1)2H2dr1dsτ2καi=1AρQ12ϕi(x)2.\begin{split}J_{2}&=\sum^{\infty}_{i=1}q_{i}\sum^{j=n-1}_{j=1}\sum^{k=j-1}_{k=0}\int^{t_{j+1}}_{t_{j}}\int^{t_{k+1}}_{t_{k}}\cos\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-s)\right)\cos\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-r)\right)\\ &~{}~{}~{}~{}\times\left[-(s-r)^{2H}+(s-t_{k})^{2H}+(t_{j}-r)^{2H}-(t_{j}-t_{k})^{2H}\right]\mathrm{d}s\mathrm{d}r\\ &=\sum^{\infty}_{i=1}q_{i}\sum^{j=n-1}_{j=1}\sum^{k=j-1}_{k=0}\int^{t_{j+1}}_{t_{j}}\int^{t_{k+1}}_{t_{k}}\cos\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-s)\right)\cos\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-r)\right)\\ &~{}~{}~{}~{}\times\left[2H\int^{r}_{t_{k}}(s-r_{1})^{2H-1}\mathrm{d}r_{1}-2H\int^{r}_{t_{k}}(t_{j}-r_{1})^{2H-1}\mathrm{d}r_{1}\right]\mathrm{d}s\mathrm{d}r\\ &=2H\sum^{\infty}_{i=1}q_{i}\sum^{j=n-1}_{j=1}\sum^{k=j-1}_{k=0}\int^{t_{j+1}}_{t_{j}}\int^{t_{k+1}}_{r_{1}}\cos\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-s)\right)\cos\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-r)\right)\\ &~{}~{}~{}~{}\times\left[\int^{t_{k+1}}_{t_{k}}(s-r_{1})^{2H-1}\mathrm{d}r_{1}-\int^{t_{k+1}}_{t_{k}}(t_{j}-r_{1})^{2H-1}\mathrm{d}r_{1}\right]\mathrm{d}s\mathrm{d}r\\ &=2H\sum^{\infty}_{i=1}q_{i}\lambda_{i}^{-\frac{\alpha}{2}}\sum^{j=n-1}_{j=1}\sum^{k=j-1}_{k=0}\int^{t_{j+1}}_{t_{j}}\left(\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-r_{1})\right)-\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-t_{k+1})\right)\right)\\ &~{}~{}~{}~{}\times\cos\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-s)\right)\left[\int^{t_{k+1}}_{t_{k}}(s-r_{1})^{2H-1}\mathrm{d}r_{1}-\int^{t_{k+1}}_{t_{k}}(t_{j}-r_{1})^{2H-1}\mathrm{d}r_{1}\right]\mathrm{d}s\\ &=2H\sum^{\infty}_{i=1}q_{i}\lambda_{i}^{-\alpha}\sum^{j=n-1}_{j=1}\sum^{k=j-1}_{k=0}\int^{t_{j+1}}_{t_{j}}\int^{t_{k+1}}_{t_{k}}\left(\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-r_{1})\right)-\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-t_{k+1})\right)\right)\\ &~{}~{}~{}~{}\times\left(\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-s)\right)-\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-t_{j+1})\right)\right)(2H-1)(s-r_{1})^{2H-2}\mathrm{d}r_{1}\mathrm{d}s\\ &\lesssim\tau^{\frac{2\kappa}{\alpha}+1-2H}\sum^{\infty}_{i=1}\lambda_{i}^{\kappa-\frac{\alpha}{2}-H\alpha}q_{i}\sum^{j=n-1}_{j=1}\sum^{k=j-1}_{k=0}\int^{t_{j+1}}_{t_{j}}\int^{t_{k+1}}_{t_{k}}(s-r_{1})^{2H-2}\mathrm{d}r_{1}\mathrm{d}s\\ &=\tau^{\frac{2\kappa}{\alpha}+1-2H}\sum^{\infty}_{i=1}\lambda_{i}^{\kappa-\frac{\alpha}{2}-H\alpha}q_{i}\sum^{j=n-1}_{j=1}\int^{t_{j+1}}_{t_{j}}\int^{t_{j}}_{0}(s-r_{1})^{2H-2}\mathrm{d}r_{1}\mathrm{d}s\\ &\lesssim\tau^{\frac{2\kappa}{\alpha}}\sum^{\infty}_{i=1}\left\|A^{\rho}Q^{\frac{1}{2}}\phi_{i}(x)\right\|^{2}.\end{split}

For κ>Hα\kappa>H\alpha, similar to the above estimates, we have

J1=2Hi=1λiαqij=0j=n1tjtj+1(sin(λiα2(tntj+1))sin(λiα2(tnr)))×(sin(λiα2(tnr))sin(λiα2(tntj)))(sr)2H1dr+2H(2H1)i=1λiαqij=0j=n1tjtj+1tjs(sin(λiα2(tns))sin(λiα2(tnr)))×(sin(λiα2(tnr))sin(λiα2(tntj)))(sr)2H2dsdr+2Hi=1λiαqij=0j=n1tjtj+1(sin(λiα2(tns))sin(λiα2(tntj+1)))(stj)2H1ds×(sin(λiα2(tntj))sin(λiα2(tntj+1)))i=1λiαqij=0j=n1tjtj+1(λiα2(tj+1r))min{2κ2Hαα,1}(λiα2(rtj))(sr)2H1dr+i=1λiαqij=0j=n1tjtj+1tjs(λiα2(sr))(λiα2(rtj))min{2κ2Hαα,1}(sr)2H2dsdr+i=1λiαqij=0j=n1tjtj+1(λiα2(tj+1s))min{2κ2Hαα,1}(stj)2H1ds(λiα2τ)τmin{2κα,1+2H}i=1AρQ12ϕi(x)2\begin{split}J_{1}&=-2H\sum^{\infty}_{i=1}\lambda_{i}^{-\alpha}q_{i}\sum^{j=n-1}_{j=0}\int^{t_{j+1}}_{t_{j}}\left(\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-t_{j+1})\right)-\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-r)\right)\right)\\ &~{}~{}~{}~{}\times\left(\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-r)\right)-\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-t_{j})\right)\right)(s-r)^{2H-1}\mathrm{d}r\\ &~{}~{}~{}~{}+2H(2H-1)\sum^{\infty}_{i=1}\lambda_{i}^{-\alpha}q_{i}\sum^{j=n-1}_{j=0}\int^{t_{j+1}}_{t_{j}}\int^{s}_{t_{j}}\left(\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-s)\right)-\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-r)\right)\right)\\ &~{}~{}~{}~{}\times\left(\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-r)\right)-\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-t_{j})\right)\right)(s-r)^{2H-2}\mathrm{d}s\mathrm{d}r\\ &~{}~{}~{}~{}+2H\sum^{\infty}_{i=1}\lambda_{i}^{-\alpha}q_{i}\sum^{j=n-1}_{j=0}\int^{t_{j+1}}_{t_{j}}\left(\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-s)\right)-\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-t_{j+1})\right)\right)(s-t_{j})^{2H-1}\mathrm{d}s\\ &~{}~{}~{}~{}\times\left(\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-t_{j})\right)-\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-t_{j+1})\right)\right)\\ &\lesssim\sum^{\infty}_{i=1}\lambda_{i}^{-\alpha}q_{i}\sum^{j=n-1}_{j=0}\int^{t_{j+1}}_{t_{j}}\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{j+1}-r)\right)^{\min\{\frac{2\kappa-2H\alpha}{\alpha},1\}}\left(\lambda_{i}^{\frac{\alpha}{2}}(r-t_{j})\right)(s-r)^{2H-1}\mathrm{d}r\\ &~{}~{}~{}~{}+\sum^{\infty}_{i=1}\lambda_{i}^{-\alpha}q_{i}\sum^{j=n-1}_{j=0}\int^{t_{j+1}}_{t_{j}}\int^{s}_{t_{j}}\left(\lambda_{i}^{\frac{\alpha}{2}}(s-r)\right)\left(\lambda_{i}^{\frac{\alpha}{2}}(r-t_{j})\right)^{\min\{\frac{2\kappa-2H\alpha}{\alpha},1\}}(s-r)^{2H-2}\mathrm{d}s\mathrm{d}r\\ &~{}~{}~{}~{}+\sum^{\infty}_{i=1}\lambda_{i}^{-\alpha}q_{i}\sum^{j=n-1}_{j=0}\int^{t_{j+1}}_{t_{j}}\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{j+1}-s)\right)^{\min\{\frac{2\kappa-2H\alpha}{\alpha},1\}}(s-t_{j})^{2H-1}\mathrm{d}s\left(\lambda_{i}^{\frac{\alpha}{2}}\tau\right)\\ &\lesssim\tau^{\min\{\frac{2\kappa}{\alpha},1+2H\}}\sum^{\infty}_{i=1}\left\|A^{\rho}Q^{\frac{1}{2}}\phi_{i}(x)\right\|^{2}\end{split}

and

J2=2Hi=1qiλiαj=1j=n1k=0k=j1tjtj+1tktk+1(sin(λiα2(tnr1))sin(λiα2(tntk+1)))×(sin(λiα2(tns))sin(λiα2(tntj+1)))(2H1)(sr1)2H2dr1dsi=1qiλiαj=1j=n1k=0k=j1tjtj+1tktk+1(λiα2(tk+1r1))min{2κ2Hαα,1}×(λiα2(tj+1s))(sr1)2H2dr1dsτmin{2κ2Hαα,1}+1i=1λiκα2Hαqij=1j=n1tjtj+10tj(sr1)2H2dr1dsτmin{2κα,1+2H}i=1AρQ12ϕi(x)2.\begin{split}J_{2}&=2H\sum^{\infty}_{i=1}q_{i}\lambda_{i}^{-\alpha}\sum^{j=n-1}_{j=1}\sum^{k=j-1}_{k=0}\int^{t_{j+1}}_{t_{j}}\int^{t_{k+1}}_{t_{k}}\left(\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-r_{1})\right)-\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-t_{k+1})\right)\right)\\ &~{}~{}~{}~{}\times\left(\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-s)\right)-\sin\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{n}-t_{j+1})\right)\right)(2H-1)(s-r_{1})^{2H-2}\mathrm{d}r_{1}\mathrm{d}s\\ &\lesssim\sum^{\infty}_{i=1}q_{i}\lambda_{i}^{-\alpha}\sum^{j=n-1}_{j=1}\sum^{k=j-1}_{k=0}\int^{t_{j+1}}_{t_{j}}\int^{t_{k+1}}_{t_{k}}\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{k+1}-r_{1})\right)^{\min\{\frac{2\kappa-2H\alpha}{\alpha},1\}}\\ &~{}~{}~{}~{}\times\left(\lambda_{i}^{\frac{\alpha}{2}}(t_{j+1}-s)\right)(s-r_{1})^{2H-2}\mathrm{d}r_{1}\mathrm{d}s\\ &\lesssim\tau^{\min\{\frac{2\kappa-2H\alpha}{\alpha},1\}+1}\sum^{\infty}_{i=1}\lambda_{i}^{\kappa-\frac{\alpha}{2}-H\alpha}q_{i}\sum^{j=n-1}_{j=1}\int^{t_{j+1}}_{t_{j}}\int^{t_{j}}_{0}(s-r_{1})^{2H-2}\mathrm{d}r_{1}\mathrm{d}s\\ &\lesssim\tau^{\min\{\frac{2\kappa}{\alpha},1+2H\}}\sum^{\infty}_{i=1}\left\|A^{\rho}Q^{\frac{1}{2}}\phi_{i}(x)\right\|^{2}.\end{split}

The proof of Proposition 2 is completed by combining the preceding estimates.

Last, let’s consider the strong error estimates of the numerical approximation of scheme (4.2). We obtain the following inequalities by using triangle inequality, Theorem 3.1 and Proposition 2.

Theorem 4.1

Let κ=α2+Hα+2ρ\kappa=\frac{\alpha}{2}+H\alpha+2\rho, 0<κ<α+120<\kappa<\alpha+\frac{1}{2}, u0L2(Ω,κ)<\left\|u_{0}\right\|_{L^{2}\left(\Omega,\mathbb{H}^{\kappa}\right)}<\infty, v0L2(Ω,κα)<\left\|v_{0}\right\|_{L^{2}\left(\Omega,\mathbb{H}^{\kappa-\alpha}\right)}<\infty, assumptions 1-2 hold, and ene_{n} is shown in (4.5), then

enL2(Ω,0){τκα(u0L2(Ω,κ)+v0L2(Ω,κα)),0<κα2+Hα,τH+12(u0L2(Ω,κ)+v0L2(Ω,κα)),α2+Hα<κ<α+12.\left\|e_{n}\right\|_{L^{2}\left(\Omega,\mathbb{H}^{0}\right)}\lesssim\left\{\begin{split}\tau^{\frac{\kappa}{\alpha}}\left(\left\|u_{0}\right\|_{L^{2}\left(\Omega,\mathbb{H}^{\kappa}\right)}+\left\|v_{0}\right\|_{L^{2}\left(\Omega,\mathbb{H}^{\kappa-\alpha}\right)}\right),\quad&0<\kappa\leq\frac{\alpha}{2}+H\alpha,\\ \tau^{H+\frac{1}{2}}\left(\left\|u_{0}\right\|_{L^{2}\left(\Omega,\mathbb{H}^{\kappa}\right)}+\left\|v_{0}\right\|_{L^{2}\left(\Omega,\mathbb{H}^{\kappa-\alpha}\right)}\right),\quad&\frac{\alpha}{2}+H\alpha<\kappa<\alpha+\frac{1}{2}.\end{split}\right.
Proof

The above estimate follows from the Hölder regularity estimates of u(t)u(t), Proposition 2. From (4.5), we have

enL2(Ω,0)j=0n1tjtj+1Aα2(𝒮(tns)f(u(s))𝒮(tntj)f(uj))dsL2(Ω,0)+j=0n1tjtj+1𝒞(tns)(BHQ(s)BHQ(tj))dsL2(Ω,0)j=0n1tjtj+1Aα2(𝒮(tns)f(u(s))𝒮(tns)f(u(tj)))L2(Ω,0)ds+j=0n1tjtj+1Aα2(𝒮(tns)f(u(tj))𝒮(tntj)f(u(tj)))L2(Ω,0)ds+j=0n1tjtj+1Aα2𝒮(tntj)(f(u(tj))f(uj))L2(Ω,0)ds+τmin{κα,H+12}j=0n1tjtj+1u(s)u(tj)L2(Ω,0)ds+τj=0n1tjtj+1f(u(tj))L2(Ω,0)ds+j=0n1tjtj+1u(tj)ujL2(Ω,0)ds+τmin{κα,H+12}τmin{κα,1}(u0L2(Ω,κ)+v0L2(Ω,κα)+1)+τ(u0L2(Ω,κ)+v0L2(Ω,κα)+1)+j=0n1tjtj+1ejL2(Ω,0)ds+τmin{κα,H+12}τmin{κα,H+12}(u0L2(Ω,κ)+v0L2(Ω,κα)+1)+τj=0n1ejL2(Ω,0).\begin{split}\left\|e_{n}\right\|_{L^{2}\left(\Omega,\mathbb{H}^{0}\right)}&\lesssim\left\|\sum^{n-1}_{j=0}\int^{t_{j+1}}_{t_{j}}A^{-\frac{\alpha}{2}}\left(\mathscr{S}\left(t_{n}-s\right)f\left(u(s)\right)-\mathscr{S}\left(t_{n}-t_{j}\right)f\left(u_{j}\right)\right)\mathrm{d}s\right\|_{L^{2}\left(\Omega,\mathbb{H}^{0}\right)}\\ &~{}~{}~{}~{}+\left\|\sum^{n-1}_{j=0}\int^{t_{j+1}}_{t_{j}}\mathscr{C}\left(t_{n}-s\right)\left(B^{Q}_{H}(s)-B^{Q}_{H}(t_{j})\right)\mathrm{d}s\right\|_{L^{2}\left(\Omega,\mathbb{H}^{0}\right)}\\ &\lesssim\sum^{n-1}_{j=0}\int^{t_{j+1}}_{t_{j}}\left\|A^{-\frac{\alpha}{2}}\left(\mathscr{S}\left(t_{n}-s\right)f\left(u(s)\right)-\mathscr{S}\left(t_{n}-s\right)f\left(u(t_{j})\right)\right)\right\|_{L^{2}\left(\Omega,\mathbb{H}^{0}\right)}\mathrm{d}s\\ &~{}~{}~{}~{}+\sum^{n-1}_{j=0}\int^{t_{j+1}}_{t_{j}}\left\|A^{-\frac{\alpha}{2}}\left(\mathscr{S}\left(t_{n}-s\right)f\left(u(t_{j})\right)-\mathscr{S}\left(t_{n}-t_{j}\right)f\left(u(t_{j})\right)\right)\right\|_{L^{2}\left(\Omega,\mathbb{H}^{0}\right)}\mathrm{d}s\\ &~{}~{}~{}~{}+\sum^{n-1}_{j=0}\int^{t_{j+1}}_{t_{j}}\left\|A^{-\frac{\alpha}{2}}\mathscr{S}\left(t_{n}-t_{j}\right)\left(f\left(u(t_{j})\right)-f\left(u_{j}\right)\right)\right\|_{L^{2}\left(\Omega,\mathbb{H}^{0}\right)}\mathrm{d}s\\ &~{}~{}~{}~{}+\tau^{\min\{\frac{\kappa}{\alpha},H+\frac{1}{2}\}}\\ &\lesssim\sum^{n-1}_{j=0}\int^{t_{j+1}}_{t_{j}}\left\|u(s)-u(t_{j})\right\|_{L^{2}\left(\Omega,\mathbb{H}^{0}\right)}\mathrm{d}s+\tau\sum^{n-1}_{j=0}\int^{t_{j+1}}_{t_{j}}\left\|f\left(u(t_{j})\right)\right\|_{L^{2}\left(\Omega,\mathbb{H}^{0}\right)}\mathrm{d}s\\ &~{}~{}~{}~{}+\sum^{n-1}_{j=0}\int^{t_{j+1}}_{t_{j}}\left\|u(t_{j})-u_{j}\right\|_{L^{2}\left(\Omega,\mathbb{H}^{0}\right)}\mathrm{d}s+\tau^{\min\{\frac{\kappa}{\alpha},H+\frac{1}{2}\}}\\ &\lesssim\tau^{\min\left\{\frac{\kappa}{\alpha},1\right\}}\left(\left\|u_{0}\right\|_{L^{2}\left(\Omega,\mathbb{H}^{\kappa}\right)}+\left\|v_{0}\right\|_{L^{2}\left(\Omega,\mathbb{H}^{\kappa-\alpha}\right)}+1\right)\\ &~{}~{}~{}~{}+\tau\left(\left\|u_{0}\right\|_{L^{2}\left(\Omega,\mathbb{H}^{\kappa}\right)}+\left\|v_{0}\right\|_{L^{2}\left(\Omega,\mathbb{H}^{\kappa-\alpha}\right)}+1\right)\\ &~{}~{}~{}~{}+\sum^{n-1}_{j=0}\int^{t_{j+1}}_{t_{j}}\left\|e_{j}\right\|_{L^{2}\left(\Omega,\mathbb{H}^{0}\right)}\mathrm{d}s+\tau^{\min\left\{\frac{\kappa}{\alpha},H+\frac{1}{2}\right\}}\\ &\lesssim\tau^{\min\left\{\frac{\kappa}{\alpha},H+\frac{1}{2}\right\}}\left(\left\|u_{0}\right\|_{L^{2}\left(\Omega,\mathbb{H}^{\kappa}\right)}+\left\|v_{0}\right\|_{L^{2}\left(\Omega,\mathbb{H}^{\kappa-\alpha}\right)}+1\right)+\tau\sum^{n-1}_{j=0}\left\|e_{j}\right\|_{L^{2}\left(\Omega,\mathbb{H}^{0}\right)}.\end{split}

In the second inequality, we use triangle inequality and Proposition 2. According to Theorem 3.1, we arrive at the fourth inequality. Then using the discrete Gronwall inequality leads to

enL2(Ω,0)τmin{κα,H+12}(u0L2(Ω,κ)+v0L2(Ω,κα)+1).\begin{split}\left\|e_{n}\right\|_{L^{2}\left(\Omega,\mathbb{H}^{0}\right)}&\lesssim\tau^{\min\left\{\frac{\kappa}{\alpha},H+\frac{1}{2}\right\}}\left(\left\|u_{0}\right\|_{L^{2}\left(\Omega,\mathbb{H}^{\kappa}\right)}+\left\|v_{0}\right\|_{L^{2}\left(\Omega,\mathbb{H}^{\kappa-\alpha}\right)}+1\right).\end{split}
Remark 4.1

In fact, the numerical method (4.2) is still effective when H[12,1)H\in[\frac{1}{2},1) and κ=α+2ρ\kappa=\alpha+2\rho. For 0<κ<α0<\kappa<\alpha, the proposed scheme (4.2) possesses the strong convergence order κα\frac{\kappa}{\alpha}. As ακ<α+12\alpha\leq\kappa<\alpha+\frac{1}{2}, the strong convergence order of the scheme (4.2) can reach 11.

5 Numerical Experiments

Using scheme (4.2), we solve (5.1) to illustrate the convergence rates in Theorem 4.1 and investigate the effect of the parameters ρ\rho and HH on the convergence.

{du˙(x,t)+Aαu(x,t)dt=(cos(u(x,t))+u(x,t))dt+dBHQ(x,t),in(0,1)×(0,T],u(x,0)=24sin(πx),v(x,0)=22sin(3πx),in(0,1),u(0,t)=u(1,t)=0.\left\{\begin{array}[]{ll}\mathrm{d}\dot{u}(x,t)+A^{\alpha}u(x,t)\mathrm{d}t=\left(\cos(u(x,t))+u(x,t)\right)\mathrm{d}t+\mathrm{d}B^{Q}_{H}(x,t),&\quad\mathrm{in}\ (0,1)\times(0,T],\\ u(x,0)=\frac{\sqrt{2}}{4}\sin(\pi x),v(x,0)=\frac{\sqrt{2}}{2}\sin(3\pi x),&\quad\mathrm{in}\ (0,1),\\ u(0,t)=u(1,t)=0.\end{array}\right. (5.1)

We use the Ckolesky method to generate the trajectories of FBM. Let unu_{n} denote the discrete solution at time tn=nτt_{n}=n\tau with fixed time step size τ=TN\tau=\frac{T}{N}. The following formula is used to calculates the strong convergence rates in time:

convergence rate=ln(E[uNu2N2]/E[u2Nu4N2])ln2.\displaystyle\textrm{convergence rate}=\frac{\ln\left(\sqrt{\mathrm{E}\left[\left\|u_{N}-u_{2N}\right\|^{2}\right]}\bigg{/}\sqrt{\mathrm{E}\left[\left\|u_{2N}-u_{4N}\right\|^{2}\right]}\right)}{\ln 2}.

We apply a Monte Carlo method with 20002000 trajectories to approximate the expectation of stochastic process. The space discretization of (5.1) follows from the spectral Galerkin method with first 18001800 orthonormal bases, which ensures that the time error is the dominant one.

Table 1: Time convergence rates with H=0.4H=0.4, T=0.2T=0.2 and α=0.8\alpha=0.8
NN κ=0.32\kappa=0.32 Rate κ=0.52\kappa=0.52 Rate κ=0.72\kappa=0.72 Rate
4 0.557e-02 2.301e-02 1.204e-02
8 0.418e-02 0.414 1.457e-02 0.659 6.668e-03 0.853
16 0.313e-02 0.417 9.215e-03 0.661 3.635e-03 0.875

First, we consider the case of 0<κα2+Hα0<\kappa\leq\frac{\alpha}{2}+H\alpha. Then the theoretical convergence rate is κα\frac{\kappa}{\alpha}. To observe this convergence order, we choose N=4,8,16,32N=4,~{}8,~{}16,~{}32 to approximate solutions u(x,T)u(x,T). Table 1 presents the rates of convergence of the time discretization for varying κ\kappa with the fixed parameters α=0.75\alpha=0.75 and H=0.4H=0.4. When qi=λi0.05,λi0.15,λi0.25\sqrt{q_{i}}=\lambda_{i}^{-0.05},~{}\lambda_{i}^{-0.15}~{},\lambda_{i}^{-0.25}, κ\kappa is 0.320.32, 0.520.52 and 0.720.72, respectively. Then the corresponding theoretical convergence rates are 0.4,0.65,0.90.4,~{}0.65,~{}0.9, respectively. Numerical results indicate the strong convergence rate is approximately that given in Theorem 4.1.

Table 2: Time convergence rates with α=0.25\alpha=0.25, T=0.2T=0.2 and κ=α2+Hα+0.3\kappa=\frac{\alpha}{2}+H\alpha+0.3
NN H=0.1H=0.1 Rate H=0.25H=0.25 Rate H=0.4H=0.4 Rate
4 2.004e-02 1.166e-02 7.262e-03
8 1.311e-02 0.612 6.697e-03 0.800 3.704e-03 0.971
16 8.631e-03 0.603 3.882e-03 0.787 1.950e-03 0.926

Next, we investigate the convergence order for α2+Hα<κ<α+12\frac{\alpha}{2}+H\alpha<\kappa<\alpha+\frac{1}{2}. Table 2 displays the temporal convergence rates for three different noise intensity parameters H=0.1,0.25,0.4H=0.1,~{}0.25,~{}0.4 with fixed qi=λi0.4\sqrt{q_{i}}=\lambda_{i}^{-0.4}. Numerical experiments show that as HH decreases, convergence rate increases. This observation completely supports our theoretical result in Theorem 4.1.

6 Conclusion

In this paper, we developed an efficient time discretization method for solving a SWE forced by FMB with Hurst parameter H(0,12)H\in(0,\frac{1}{2}). For H(0,12)H\in(0,\frac{1}{2}), we show the strong convergence of this method with uniform time step τ\tau, where the error is of order O(τH+min{κα12,12})O\left(\tau^{H+\min\left\{\frac{\kappa}{\alpha}-\frac{1}{2},\frac{1}{2}\right\}}\right). In the case 0<κα2+Hα0<\kappa\leq\frac{\alpha}{2}+H\alpha, the strong convergence rate of the scheme (4.2) is equal to Hölder continuity index of u(t)u(t). As α2+Hα<κ<α+12\frac{\alpha}{2}+H\alpha<\kappa<\alpha+\frac{1}{2}, our method strongly converges with order H+12H+\frac{1}{2}, which is smaller than Hölder continuity index of u(t)u(t), because the strong convergence is limited by the approximation error of stochastic convolution. In future work, we plan to study the optimal strong convergence order of time discretization for (1.1) when H(0,12)H\in(0,\frac{1}{2}) and α2+Hα<κ<α+12\frac{\alpha}{2}+H\alpha<\kappa<\alpha+\frac{1}{2}.

Acknowledgments

This work was supported by the Foundation of Hubei Provincial Department of Education (No. B2021255).

References

  • [1] E. Alòs, O. Mazet, and D. Nualart. Stochastic calculus with respect to fractional brownian motion with hurst parameter lesser than 12\frac{1}{2}. Stochastic Process. Appl., 86:121–139, 2000.
  • [2] V.V. Anh, P. Broadbridge, A. Olenko, and Y.G. Wang. On approximation for fractional stochastic partial differential equations on the sphere. Stoch. Env. Res. Risk. A, 32:2585–2603, 2018.
  • [3] L. Banjai, G. Lord, and J. Molla. Strong convergence of a verlet integrator for the semilinear stochastic wave equation. SIAM J. Numer. Anal., 59:1976–2003, 2021.
  • [4] X. Bardina and M. Jolis. Multiple fractional integral with hurst parameter less than 12\frac{1}{2}. Stochastic Process. Appl., 116:463–479, 2006.
  • [5] C. Bayer, P. Friz, and J. Gatheral. Pricing under rough volatility. Quant. Finance, 16:887–904, 2016.
  • [6] S. Boudrahem and P.R.. Rougier. Relation between postural control assessment with eyes open and centre of pressure visual feedback effects in healthy individuals. Exp. Brain Res., 195:145–152, 2021.
  • [7] C.E. Bréhier and X. Wang. On parareal algorithms for semilinear parabolic stochastic pdes. SIAM J. Numer. Anal., 58:254–278, 2020.
  • [8] Y. Bruned, A. Chandra, I. Chevyrev, and M. Hairer. Renormalising spdes in regularity structures. J. Eur. Math. Soc., 23:869–947, 2021.
  • [9] Y. Bruned, F. Gabriel, M. Hairer, and L. Zambotti. Geometric stochastic heat equations. J. Amer. Math. Soc., 35:1–80, 2022.
  • [10] Y. Gao, J.L. Marzuola, J.C. Mattingly, and K.A. Newhall. Nonlocal stochastic-partial-differential-equation limits of spatially correlated noise-driven spin systems derived to sample a canonical distribution. Phys. Rev. E, 102:052112, 2020.
  • [11] J. Gatheral, T. Jaisson, and M. Rosenbaum. Volatility is rough. Quant. Finance, 18:933–949, 2018.
  • [12] J. Hong, X. Wang, and L. Zhang. Parareal exponential θ\theta-scheme for longtime simulation of stochastic schrodinger equations with weak damping. SIAM J. Sci. Comput., 41:B1155–B1177, 2019.
  • [13] A. Jentzen and P. Pusˇ\check{\mathrm{s}}nik. Strong convergence rates for an explicit numerical approximation method for stochastic evolution equations with non-globally lipschitz continuous nonlinearities. IMA J. Numer. Anal., 40:1005–1050, 2020.
  • [14] M. Kamrani and N. Jamshidi. Implicit euler approximation of stochastic evolution equations with fractional brownian motion. Commun Nonlinear Sci., 44:1–10, 2017.
  • [15] Y. J. Li, Y. J. Wang, and W.H. Deng. Galerkin finite element approximations for stochastic space-time fractional wave equations. SIAM J. Numer. Anal., 55:3173–3202, 2017.
  • [16] X. Liu. High-accuracy time discretization of stochastic fractional diffusion equation. J. Sci. Comput., 90:1–24, 2022.
  • [17] X. Liu and W.H. Deng. Higher order approximation for stochastic space fractional wave equation forced by an additive space-time gaussian noise. J. Sci. Comput., 87:1–29, 2021.
  • [18] W. McLean. Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge, UK, 2000.
  • [19] M.D. Ryser, N. Nigam, and P.F. Tupper. On the well-posedness of the stochastic allen–cahn equation in two dimensions. J. Comput. Phys., 231:2537–2550, 2012.
  • [20] M. Salins and L. Setayeshgar. Uniform large deviations for a class of burgers-type stochastic partial differential equations in any space dimension. Potential Anal., pages 1–21, 2021.
  • [21] I. Simonsen. Measuring anti-correlations in the nordic electricity spot market by wavelets. Physica A, 322:597–606, 2003.
  • [22] J. Song, X. Song, and Q. Zhang. Nonlinear feynman-kac formulas for stochastic partial differential equations with space-time noise. SIAM J. Math. Anal., 51:955–990, 2019.
  • [23] X. Wang, S. Gan, and J. Tang. Higher order strong approximations of semilinear stochastic wave equation with additive space-time white noise. SIAM J. Sci. Comput., 36:A2611–A2632, 2014.