This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

YITP-SB-2024-21 KEK-TH-2656

Strings and membranes from 𝒜{\cal A}-theory five brane

Machiko Hatsuda111Email: [email protected] Ondřej Hulík William D. Linch Warren D. Siegel
Di Wang
Yu-Ping Wang
Abstract

The 𝒜{\cal A}-theory takes U-duality symmetry as a guiding principle, with the SL(5) U-duality symmetry being described as the world-volume theory of a 5-brane. Furthermore, by unifying the 6-dimensional world-volume Lorentz symmetry with the SL(5) spacetime symmetry, it extends to SL(6) U-duality symmetry. The SL(5) spacetime vielbein fields and the 5-brane world-volume vielbein fields are mixed under the SL(6) U-duality transformation. We demonstrate that consistent sectionings of the SL(6) 𝒜{\cal A}5-brane world-volume Lagrangian yield Lagrangians of the 𝒯{\cal T}-string with O(D,D) T-duality symmetry, the conventional string, the {\cal M}5-brane with GL(4) duality symmetry, and the non-perturbative M2-brane in supergravity theory. The GL(4) covariant Lagrangian of the {\cal M}5-brane derived in this manner is a new, perturbatively quantizable theory.

1 Introduction

1.1 An overview of 𝒜{\cal A}-theory formalism

Superstring theory is a strong candidate for a unified theory that describes the four fundamental forces in a unified framework. However, as it stands, there is not a single unified theory but six different theories: five superstring theories and M-theory. These six theories are interconnected through S-duality and T-duality, forming a single chain that creates a hexagon. Each of these six theories is described on distinct branes, complementarily expressing the unique characteristics of superstring theory. The question is what kind of theory could provide a unified description of these six theories.

S-duality and T-duality are unified under U-duality, which is determined by the group-theoretic inclusiveness of duality symmetries. Specifically, the S-duality symmetry GL(D+1) (an extension of spacetime diffeomorphism by GL(2) ) and the T-duality symmetry O(D,D) are encompassed within the U-duality symmetry represented by the exceptional group ED+1. The U-duality symmetry should comprehensively relate the six superstring theories. Therefore, the theory that unifies these six theories is expected to exhibit covariance under U-duality. We term a theory explicitly possessing such U-duality as ”𝒜{\cal A}-theory,” and we aim to establish a perturbative formulation of this theory to discuss its quantum aspects, see for a review [1].

In 1995, Witten proposed M-theory as a theory related to IIA superstring theory through S-duality (Witten). The low-energy limit of this theory is 11-dimensional supergravity. The diffeomorphism symmetry of this spacetime is GL(11), combining the 10-dimensional spacetime of the original string theory and the S-duality symmetry SL(2). We refer to a worldvolume theory explicitly exhibiting GL(D+1) symmetry as {\cal M}-theory. In 1996, Vafa proposed F-theory as a theory related to IIB superstring theory through S-duality [2]. For a review, see, for example [3].

In 1993, Siegel proposed a string theory guided by the T-duality symmetry O(D,D) [4, 5, 6]. This framework employs the idea of doubling spacetime coordinates, where the 2D-dimensional spacetime coordinates are treated as vectors in the O(D,D) representation[7]. The geometry generated by the O(D,D) covariant current algebra is the stringy gravity theory with BB-field, where gauge fields are parameters of the coset O(D,D) over the doubled Lorentz group. We refer to this as 𝒯{\cal T}-theory and the T-duality covariant string as 𝒯{\cal T}-string. Later, Hull, Zwiebach, and Hohm proposed a theory of O(D,D) covariant background fields, known as Double Field Theory (DFT) [8, 9]. This is the low-energy gravitational theory of 𝒯{\cal T}-string theory. To consistently reduce the doubled 2D-dimensional spacetime coordinates to the physical D-dimensional spacetime, the section condition was employed, which is the Virasoro constraint 𝒮{\cal S}=0. For reviews, see [10, 11]. Since IIA and IIB superstring theories are related by T-duality, 𝒯{\cal T}-string theory was constructed [12, 13, 14, 15, 16]. All bosonic component fields represent supersymmetrized O(D,D) (the doubled non-degenerated super-Poincare group) while fermions represent only O(D-1,1)2. To incorporate S-duality the exceptional group U-duality symmetry is necessary. The exceptional group ED+1 relates to the D-dimensional subgroup of the doubled non-degenerated super-Poincare group.

Siegel, Linch and Polacek subsequently proposed brane theories guided by the U-duality symmetry ( ED+1 ) [12, 17, 18]. Since the representation of exceptional groups varies with dimension, the theory is labeled by the spacetime dimension DD when reduced to string theory. This is called D=D=D 𝒜{\cal A}-theory. According to the classification of Lie algebras, removing a specific node in the Dynkin diagram of ED+1 reduces it to the GL(D+1) Dynkin diagram. This corresponds to reducing the spacetime dimensions of 𝒜{\cal A}-theory using the Virasoro constraint, recovering the aforementioned {\cal M}-theory. Conversely, removing another node in the ED+1 Dynkin diagram reduces it to the O(D,D) Dynkin diagram. This corresponds to reducing the spacetime dimensions of 𝒜{\cal A}-theory using the Gauss law constraint 𝒰{\cal U}=0, recovering the aforementioned 𝒯{\cal T}-theory. 𝒜{\cal A}-theory is described by branes covariant under the exceptional group. Both the spacetime coordinates and world-volume coordinates of the branes are representations of the exceptional group, ensuring that the brane current algebra is covariant under the exceptional group. Moreover, a perturbative Lagrangian describing these branes on their worldvolume has been constructed. In the previous papers [17, 18, 24, 25, 26, 27, 28, 29, 30, 19, 20, 21, 22, 28, 23] we refer these models as “F-theory”, but we renamed our “F-theory” to 𝒜{\cal A}-theory since our latest paper [1] as a generalization of F-theory for all dimensions with all duality symmetries.

Exceptional Field Theory (EFT) applies DFT concepts to exceptional groups [31, 35, 36, 37, 38, 39, 40, 41, 42, 32, 33, 34]. The symmetry of exceptional groups was initially discovered as a partial dimensional symmetry of background fields in 11-dimensional supergravity [43, 44]. Active research continues on expressing exceptional groups through brane current algebra [45, 46, 47, 48, 49, 50, 51, 52].

This paper focuses on the 5-brane that describes D=3 𝒜{\cal A}-theory with SL(5) U-duality symmetry. We clarify how the usual string, and 𝒯{\cal T}-string and membrane of 11-dimensional supergravity (M2) emerge. Specifically, we derive the Lagrangians for the conventional non-perturbative M2-brane, the O(D,D)-covariant 𝒯{\cal T}-string, and the conventional string from the 𝒜{\cal A}-theory 5-brane (𝒜{\cal A}5) Lagrangian.

1.2 Summary

In this paper we focus on the SL(5) U-duality symmetry and clarify the relation between the 𝒜{\cal A}-theory five brane (𝒜{\cal A}5-brane) and conventional branes. The 𝒜{\cal A}5-brane is a 5-brane with manifest SL(5) U-duality symmetry and it is described by the perturbative Lagrangian with the SL(5) two rank anti-symmetric tensor coordinate [1]. The 𝒜{\cal A}5 theory forms the apex, allowing a diamond-shaped contour to be drawn, with the 𝒯{\cal T}-string with O(3,3) T-duality symmetry, {\cal M}5-brane with GL(4) duality symmetry, and SString with GL(3) symmetry as the vertices of the diamond diagram. In this paper we present the sectioning procedure along the diamond contour. In addition to this we present reducing procedures from the 𝒯{\cal T}-string Lagrangian to the conventional string Lagrangian and from the {\cal M}5-brane Lagrangian to the conventional non-perturbative M2-brane Lagrangian [53]. We generalize the dimensional reduction of S-duality for the 11-dimensional supergravity to the type IIA supergravity [54] to T-duality in subsection 1.3. For S-duality, λstring1/λstring\lambda_{\rm string}\leftrightarrow 1/\lambda_{\rm string}, the dimensional reduction is achieved by taking the λstring1\lambda_{\rm string}\ll 1 limit in the metric. For T-duality, R/αα/RR/\sqrt{\alpha^{\prime}}\leftrightarrow\sqrt{\alpha^{\prime}}/{R} with the string length lstring=αl_{\rm string}=\sqrt{\alpha^{\prime}}, the dimensional reduction is achieved by taking the RαR\gg\sqrt{\alpha^{\prime}} in the metric, so that the O(D,D) spacetime for the 𝒯{\cal T}-string reduces to the D-dimensional spacetime for the conventional string. We also propose the perturbative {\cal M}5-brane Lagrangian in the supergravity background obtained from 𝒜{\cal A}5-brane (6.95).

In section 2 the relation among 𝒜{\cal A}5-brane, {\cal M}5-brane, 𝒯{\cal T}-string and SString theories is explained by diamond diagrams based on duality symmetries. The diamond diagram is a contour in the U-duality plane which is spanned by two parameters, the string coupling and the scale based on the string length. The branes are described by the field strengths where the spacetime coordinate has the gauge symmetry generated by the Gauß law constraint. These field strengths and gauge parameters as well as the world-volume coordinate and the spacetime coordinate are representations of duality symmetries. The world-volume diffeomorphism is generated by the Virasoro constraints 𝒮=0{\cal S}=0. Dimensions to reduce are determined by solving the Virasoro constraints 𝒮=0{\cal S}=0 for spacetime and by solving the Gauß law constraints 𝒰=0{\cal U}=0 for world-volume.

In section 3 both the SL(5) and the SL(6) covariant Lagrangians of the 𝒜{\cal A}5-brane are given, where the SL(6) manifests the 5-brane world-volume Lorentz symmetry. The SL(6) vielbein includes both the SL(5) spacetime vielbein and the 6-dimensional world-volume vielbein, so the spacetime and world-volume are mixed under the new duality symmetry SL(6). The SL(6) formulation is useful to reduce to other branes: Since the string world-sheet directions and the spacetime directions are direct sum, the SL(6) vielbein is in a block diagonal form as shown in subsection 5.1. On the other hand, the brane world-volume directions share the spacetime directions unlike the string as shown in subsection 6.1.

In section 4 we begin by the O(D,D) string Hamiltonian, and apply the double zweibein method [55, 56] to obtain the 𝒯{\cal T}-string Lagrangian. Then reducing procedure from the O(D,D) 𝒯{\cal T}-string Lagrangian to the conventional string Lagrangian in D dimensions is presented analogously to subsection 1.3. We show that the Wess-Zumino term can be obtained by adding a total derivative term.

In section 5 we begin by the 𝒜{\cal A}5-brane Lagrangian and present the reduction procedure to 𝒯{\cal T}-string Lagrangian. We rewrite the O(D,D) background gauge field in the SL(4) tensor index such a way that the SL(4) tensor coordinate of the 𝒯{\cal T}-string couples. Then we apply the procedure given by section 4 to obtain the conventional SString Lagrangian.

In section 6 we begin by the SL(6) covariant 𝒜{\cal A}5-brane Lagrangian to lead the new perturbative {\cal M}5-brane Lagrangian. We further reduce to the conventional M2-brane Lagrangian. The Nambu-Goto Lagrangian is obtained by the gauge choice of the world-volume vielbein, while the Wess-Zumino term is obtained by adding the total derivative term.

1.3 Dimensional reduction procedure

In [54] it has been pointed out that under an S-duality transformation between the 10-dimensional type IIA theory and the 11-dimensional supergravity theory, the structure of the supersymmetry algebra remains invariant, though the meaning of the central charge changes. The global superalgebra with supercharges QQ, QQ^{\prime} of different chiralities, 10 dimensional momenta PP and the central charge WW is given as {Q,Q}P{Q,Q}\left\{Q,Q\right\}\sim P\sim\left\{Q^{\prime},Q^{\prime}\right\}, {Qα,Qβ˙}δαα˙W\left\{Q_{\alpha},Q^{\prime}_{\dot{\beta}}\right\}\sim\delta_{\alpha\dot{\alpha}}W. The central charge WW is recognized as the D0-brane Ramond-Ramond (RR) charge in 10 dimensions and as the 11-th dimensional momentum in 11 dimensions. The 11-dimensional spacetime reduces into the 10-dimensional spacetime in the weak coupling limit e2ϕ1e^{2\phi}\ll 1,

ds112=gmn[10]dxmdxn+e2ϕ(dyAmdxm)2reductiondimensionalds102=gmn[10]dxmdxn\displaystyle ds^{2}_{11}=g^{[10]}_{mn}dx^{m}dx^{n}+e^{2\phi}(dy-A_{m}dx^{m})^{2}~{}\xrightarrow[\rm reduction]{\rm dimensional}~{}ds^{2}_{10}=g^{[10]}_{mn}dx^{m}dx^{n} (1.1)

with the 11-th dimensional coordinate yy and the string coupling λstring=e3ϕ/2\lambda_{\rm string}=e^{3\phi/2}. The 11-dimensional momentum WW is maintained as the D0-brane charge in the 10-dimeniosnal IIA theory after the dimensional reduction.

This is generalized to T-duality. We compare the superalgebra for the 2D-dimensional 𝒯{\cal T}-string with manifest T-duality and the type II superalgebra for the conventional string in D dimensions. The global type II superalgebra with two supercharges QQ, QQ^{\prime} and the D-dimensional momentum PP is given as {Q,Q}(P+P~)\left\{Q,Q\right\}\sim(P+\tilde{P}) and {Q,Q}(PP~)\left\{Q^{\prime},Q^{\prime}\right\}\sim(P-\tilde{P}) with the central charge P~\tilde{P}. It is recognized as the NS-NS charge in D dimensions, while the extra D dimensional momenta in 2D dimensions. If we restore α\alpha^{\prime} in the momentum and the winding mode constituting O(D,D) vector (pm,1ασxm)(p_{m},~{}\frac{1}{\alpha^{\prime}}\partial_{\sigma}x^{m}) \to (pm,1αp~m)(p_{m},~{}\frac{1}{\alpha^{\prime}}\tilde{p}^{m}), then their canonical conjugates are written as (xm,αym)(x^{m},~{}\alpha^{\prime}y_{m}). In the small scale RαR\ll\sqrt{\alpha^{\prime}} the winding modes become massless and easily excited, while in the large scale RαR\gg\sqrt{\alpha^{\prime}} the winding mode gets heavy so only the momentum modes are excited. Manifest T-duality is broken by considering the particular background in such a way that the 2D-dimensional spacetime reduces into the D-dimensional spacetime in the RαR\gg\sqrt{\alpha^{\prime}} limit

ds2D2=gmndxmdxn+α(dymdxlBlm)2gmn(dyndxkBkn)\displaystyle ds^{2}_{\rm 2D}=g_{mn}dx^{m}dx^{n}+\alpha^{\prime}{}^{2}(dy_{m}-dx^{l}B_{lm})g^{mn}(dy_{n}-dx^{k}B_{kn})
reductiondimensionaldsD2=gmndxmdxn.\displaystyle\xrightarrow[\rm reduction]{\rm dimensional}~{}ds^{2}_{\rm D}=g_{mn}dx^{m}dx^{n}~{}~{}~{}. (1.2)

Here ymy_{m} is the extra D-dimensional coordinate and BmnB_{mn} is the NS-NS gauge field. The extra D-dimensional momentum is maintained as the NS-NS charge after the dimensional reduction.

This dimensional reduction procedure corresponds to the gauge fixing of the dimensional reduction constraint which is the first class constraint in Hamiltonian formulation. The dimensional reduction constraint and the gauge fixing to reduce the conventional string are discussed in [57] for a flat space case. The dimensional reduction constraint is the yy component of the symmetry generator,  ~y=0\tilde{\hbox{\,\Large$\triangleright$}}_{y}=0. The gauge fixing condition σy=0\partial_{\sigma}y=0 reduce the set of conventional string operators, the physical momentum Px0{P}_{x}\neq 0 and left/right covariant derivatives  =Px±σx\hbox{\,\Large$\triangleright$}=P_{x}\pm\partial_{\sigma}x. In Lagrangian formulation the momentum is replaced by PX=L/X˙P_{X}=\partial L/\partial\dot{X}. It is generalized to brane case, then the dimensional reduction constraint turns out to be the Virasoro constraint in which one of the momenta is replaced by the 0-mode [18], i.e. for zero-mode momenta px,pyp_{x},~{}p_{y} and momenta including both the 0-mode and the non-0-modes Px,PyP_{x},~{}P_{y} , the dimensional reduction constraint  ~y=0\tilde{\hbox{\,\Large$\triangleright$}}_{y}=0 is also written as pyPx+pxPy=0p_{y}\cdot P_{x}+p_{x}\cdot P_{y}=0 \to Py=0P_{y}=0.

Although the equation of motion derived from the doubled Lagrangian with using the selfduality condition coincides with the equation of motion derived from the original Lagrangian, the selfduality condition makes the doubled Lagrangian vanish [58]. The selfduality condition μx=ϵμννy\partial_{\mu}{x}=\epsilon_{\mu\nu}\partial^{\nu}y reduces the Lagrangian of the O(D,D) 𝒯{\cal T}-string in flat space to 0 as

L\displaystyle L =\displaystyle= 12(x˙2x2+y˙2y2)selfduality0.\displaystyle\frac{1}{2}\left(\dot{x}^{2}-x^{\prime 2}+\dot{y}^{2}-y^{\prime 2}\right)~{}\xrightarrow{\rm selfduality}~{}0~{}~{}~{}.

It is also mentioned that the naive section y=0y=0 the 𝒯{\cal T}-string Lagrangian in curved background does not reduce to the expected string Lagrangian in curved background as

L\displaystyle L =\displaystyle= 12(+xm+ym)(gmnBmlglkBknBmlglngmlBlngmn)(xnyn)\displaystyle\frac{1}{2}\left(\partial_{+}x^{m}~{}~{}\partial_{+}y_{m}\right)\left(\begin{array}[]{cc}g_{mn}-B_{ml}g^{lk}B_{kn}&-B_{ml}g^{ln}\\ g^{ml}B_{ln}&g^{mn}\end{array}\right)\left(\begin{array}[]{c}\partial_{-}x^{n}\\ \partial_{-}y_{n}\end{array}\right)
y=012+xm(gmnBmlglkBkn)xn.\displaystyle~{}\xrightarrow{y=0}~{}\frac{1}{2}\partial_{+}x^{m}(g_{mn}-B_{ml}g^{lk}B_{kn})\partial_{-}x^{n}~{}~{}~{}.

The followings are also noted. Integrating out (dy+)2(dy+\cdots)^{2} is possible for the constant background, but for general non-constant background cases the dydy-path integral of exp[(dy+)g(dy+)]exp[-\int(dy+\cdots)g(dy+\cdots)] produces the Jacobian factor g\sqrt{g} in the path integral measure, which effectively produces the additional term in the action. Using the equation of motion is possible for the constant background again, but it does not reduce to the conventional string Lagrangian for the non-constant background g(x,y),B(x,y)g(x,y),~{}B(x,y). Imposing two conditions +y+xB=0\partial_{+}y-\partial_{+}xB=0 and yxB=0\partial_{-}y-\partial_{-}xB=0 is not consistent, since the integrability condition is not satisfied for the curved background [+,]y0[\partial_{+},\partial_{-}]y\neq 0 for non-constant background. Studies to refine the reduction of conventional string Lagrangians have yielded several interesting approaches [58, 59, 60, 61, 48, 62].

Instead we propose the reducing procedure from 𝒯{\cal T}-string Lagrangian to the conventional SString Lagrangian: (1) adding the total derivative term μ(ϵμνxmνym){-}\partial_{\mu}(\epsilon^{\mu\nu}x^{m}\partial_{\nu}y_{m}) to derive the Wess-Zumino term, then (2) the dimensional reduction (1.2) as

L\displaystyle L =\displaystyle= 12(+xm+ym)(gmnBmlglkBknBmlglngmlBlngmn)(xnyn)μ(ϵμνxmνym)\displaystyle\frac{1}{2}\left(\partial_{+}x^{m}~{}~{}\partial_{+}y_{m}\right)\left(\begin{array}[]{cc}g_{mn}-B_{ml}g^{lk}B_{kn}&-B_{ml}g^{ln}\\ g^{ml}B_{ln}&g^{mn}\end{array}\right)\left(\begin{array}[]{c}\partial_{-}x^{n}\\ \partial_{-}y_{n}\end{array}\right){-}\partial_{\mu}(\epsilon^{\mu\nu}x^{m}\partial_{\nu}y_{m}) (1.13)
reduction(1.2)dimensional+xm(gmn+Bmn)xn.\displaystyle~{}\xrightarrow[\rm reduction~{}(1.2)]{\rm dimensional}~{}\partial_{+}x^{m}(g_{mn}+B_{mn})\partial_{-}x^{n}~{}~{}~{}.

This is the expected string Lagrangian up to the normalization factor two which can be absorbed by the Lagrange multiplier. The section conditions of spacetime fields Φ(x,y)\Phi(x,y) are consistent with the Lagrangian where the section y=0y=0 can be chosen as Φ(x)\Phi(x).

This procedure is similar to the usual dimensional reduction where the reduction is done in the local flat Lorentz coordinate. i.e. Suppose that we have a line element dxAdxMEMAdx^{A}\equiv dx^{M}E_{M}{}^{A}. We decompose the doubled coordinate dxAdx^{A} into dxadx^{a} and dyady_{a} in the local Lorenz frame, and then discard (dya)2(dy_{a})^{2}. Since the metric (η^\hat{\eta}-tensor) in local flat spacetime is already diagonal, in practice we can just apply this reduction by deleting certain blocks of η^\hat{\eta}-tensor similar to (1.2).


The main purpose of this paper is to perform this reduction for various specific cases. But in general, the reduction procedure could be schematically summarized as follows.

  1. 1.

    We start with the current algebra with extended coordinates (both momentum and winding modes have their conjugate coordinates). The Hamiltonian is just the sum of selfdual and anti-selfdual constraints H=g+g~~+sm𝒮m+s~m𝒮~m+Ym𝒰mH=g{\cal H}+\tilde{g}\tilde{\mathcal{H}}+s_{m}{\cal S}^{m}+\tilde{s}_{m}\tilde{{\cal S}}^{m}+Y^{m}{\cal U}_{m}, where ,~{\cal H},\tilde{{\cal H}} are the Hamiltonian constraints (and its dual counterpart), 𝒮m,𝒮~m{\cal S}^{m},\tilde{{\cal S}}^{m} are the Virasoro constraints. 𝒰m{\cal U}_{m} is the Gauß law constraint which only exits for brane Hamiltonians.

  2. 2.

    We find the Lagrangian by the Legendre transformation of the above Hamiltonian HH. This has been done in previous papers for various theories [1]. Schematically, it can be written as L=ΦJSDη^JSD¯+ΛJSD¯η^JSD¯+L=\Phi J_{\textrm{SD}}\cdot\hat{\eta}\cdot J_{\overline{\textrm{SD}}}+\Lambda\cdot J_{\overline{\textrm{SD}}}\cdot\hat{\eta}\cdot J_{\overline{\textrm{SD}}}+\cdots, where JSD/SD¯AJ^{A}_{\textrm{SD}/\overline{\textrm{SD}}} are the selfdual and anti-selfdual currents. They are coupled with vielbein, and thus they have flat indices. Φ\Phi and Λ\Lambda are Lagrange multipliers which are functions of g,sm,g~,s~mg,s^{m},\tilde{g},\tilde{s}^{m}. One can gauge fix Λ=0\Lambda=0 by the suitable choice of original parameters.

  3. 3.

    Separate coordinates and currents into the physical part and the auxiliary part as XMxm,yμX^{M}\rightarrow x^{m},y^{\mu}, and JAJa,JαJ^{A}\rightarrow J^{a},J^{\alpha} where xmx^{m} is the physical coordinate whatever string/brane we want to maintain and yμy^{\mu} is the auxiliary coordinate. Then perform the dimensional reduction (1.2).

  4. 4.

    The reduced Lagrangian L=Jaη^abSDJbSD¯L{}^{\prime}=J^{a}{}_{\textrm{SD}}\hat{\eta}_{ab}J^{b}{}_{\overline{\textrm{SD}}} could be explicitly shown to be to the string/brane action we want, but without the Wess-Zumino term. We found that adding a total derivative term to the Lagrangian gives the Wess-Zumino term

    L+Total derivative=Jaη^abSDJb+SD¯J~SDαη^αβJ~β+SD¯LWZ.L{}+\textrm{Total derivative}=J^{a}{}_{\textrm{SD}}\hat{\eta}_{ab}J^{b}{}_{\overline{\textrm{SD}}}+\tilde{J}^{\alpha}_{\textrm{SD}}\hat{\eta}_{\alpha\beta}\tilde{J}^{\beta}{}_{\overline{\textrm{SD}}}+L_{\textrm{WZ}}.

    The current J~α\tilde{J}^{\alpha}{} is modified after adding the total derivative, then it eventually would be reduced by the dimensional reduction (1.2). This is how we get the Wess-Zumino term.

2 Theories with manifest duality symmetries and sectionings

2.1 Diamond diagrams

The duality web of GG-symmetry of 𝒜{\cal A}-theory is represented by a diamond diagram as studied in [18] in (2.19). The GG-symmetry of the coset group G/HG/H is duality symmetry. The coset parameter is the gauge field of the duality covariant geometry including the spacetime veilbein field, the NS-NS and R-R gauge fields of the superstring theory.

The relation of these duality groups is explained by the Dynkin diagrams [1]. Removing one node from the Dynkin diagram of ED+1(D+1) reduces to the one of GL(D+1) or O(D,D) depending of the position of the removed node. Further removing one node from the Dynkin diagram of GL(D+1) or O(D,D) reduces to the one of GL(D).

𝒜theoryED+1(D+1)/HDbispinortheoryGL(D+1)/SO(D)D+1𝒯theoryO(D,D)/SO(D)22DStheoryGL(D)/SO(D)D\displaystyle\begin{array}[]{c}\begin{array}[]{c}\cal{A}\mathchar 45\relax\rm{theory}\\ \rm{E}_{{D}+1({D}+1)}/\rm{H}_{{D}}\\ \rm{bispinor}\end{array}\\ ~{}\swarrow\quad\quad\quad\quad\quad\quad\quad\quad\searrow{}\\ \begin{array}[]{c}\cal{M}\mathchar 45\relax\rm{theory}\\ \rm{GL}(D+1)/\rm{SO}(D)\\ {D}+1\end{array}\quad\quad\quad\begin{array}[]{c}\cal{T}\mathchar 45\relax\rm{theory}\\ \rm{O}(D,D)/\rm{SO}(D)^{2}\\ 2{D}\end{array}\\ ~{}\searrow\quad\quad\quad\quad\quad\quad\quad\quad\swarrow{}\\ \begin{array}[]{c}\rm{S}\mathchar 45\relax\rm{theory}\\ \rm{GL}(D)/\rm{SO}(D)\\ {D}\end{array}\end{array} (2.18)
(2.19)
Figure1:GsymmetriesofD=Dtheoriesandspacetimedimensions\displaystyle{\rm{Figure~{}1:}}~{}G\mathchar 45\relax{\rm symmetries~{}of}~{}{\rm{D}}={D}~{}\rm{theories~{}and~{}spacetime~{}dimensions}

In this paper we focus on D=3 case where the GG-symmetry is SL(5) and the diamond diagram becomes Fig.2 in (2.40). This SL(5) duality symmetry is enlarged to SL(6) for the (5+1)-dimensional world-volume covariance in Lagrangian [1]. We named this enlarged symmetry “AA-symmetry”. This 𝒜{\cal A}-theory unifies the spacetime and the world-volume, in a sense that the coset parameter of A/LA/L=SL(6)/GL(4) includes not only the spacetime vielbein field but also the world-volume vielbein field.

𝒜theoryA/L=SL(6)/GL(4)15G/H=SL(5)/SO(5)10theoryG/H=GL(4)/SO(4)4𝒯theoryG/H=O(3,3)/SO(3)23+3StheoryG/H=GL(3)/SO(3)3\displaystyle\begin{array}[]{c}\begin{array}[]{c}\cal{A}\mathchar 45\relax\rm{theory}\\ {A/L}={\rm{SL}(6)}/{\rm{GL}(4)}\\ 15\\ {G/H}={\rm{SL}(5)}/{\rm{SO}(5)}\\ 10\end{array}\\ ~{}\swarrow\quad\quad\quad\quad\quad\quad\quad\quad\searrow{}\\ \begin{array}[]{c}\cal{M}\mathchar 45\relax\rm{theory}\\ {G/H}={\rm{GL}(4)}/{\rm{SO}(4)}\\ 4\end{array}\quad\quad\quad\begin{array}[]{c}\cal{T}\mathchar 45\relax\rm{theory}\\ {G/H}={\rm{O}(3,3)}/{\rm{SO}(3)^{2}}\\ 3+3\end{array}\\ ~{}\searrow\quad\quad\quad\quad\quad\quad\quad\quad\swarrow{}\\ \begin{array}[]{c}\rm{S}\mathchar 45\relax\rm{theory}\\ {G/H}={\rm{GL}(3)}/{\rm{SO}(3)}\\ 3\end{array}\end{array} (2.39)
(2.40)
Figure2:AandGsymmetriesofD=3theoriesandspacetimedimensions\displaystyle{\rm{Figure}}~{}2:{A}\mathchar 45\relax~{}{\rm{and}}~{}G\mathchar 45\relax{\rm symmetries~{}of~{}D=3}~{}{\rm theories~{}and~{}spacetime~{}dimensions}

It is denoted that we use H=H=SO(DD) instead of SO(D1D-1) for simplicity, so the Wick rotation is necessary for realizing the time component in this section and other places.

2.2 Representations

The duality covariant theories are described by the spacetime coordinate and the world-volume coordinate which are representations of the duality symmetries, A{A}-symmetry or GG-symmetry. Then the world-volume dimension is determined by the duality group. The Gauß law constraint generates the gauge symmetry of the duality covariant spacetime, therefore the brane current becomes the field strength.

The D=3 ,𝒯,S{\cal M,~{}T},~{}S-theories are obtained from the D=3 𝒜{\cal A}-theory [17, 22]. We list representations of duality groups as below; the world-volume derivative m\partial^{m}, the gauge parameter λm\lambda^{m}, the spacetime coordinate XMX^{M}, and the field strength (the current) FM=ηMNmmXNF_{M}=\eta_{MNm}\partial^{m}X^{N} ( Jμ=MμXMJ_{\mu}{}^{M}=\partial_{\mu}X^{M}, μ=(τ,σ)\mu=(\tau,\sigma)). ηMNm\eta_{MNm} is the GG-symmetry invariant tensor which enters the current algebra.

TheoriesGroupsWorldvolumesGaugesλSpacetimesXFieldstrengthsF𝒜theory661520SL(6)m^,m^=0,,5λm^Xm^n^Fm^n^p^𝒜theory15151051010SL(5)0,m,m=1,,5λ0,λmXmn,YmFτ,mnFσmntheory14(5)144146GL(4)0,m¯,m¯=1,,4λ0,λm¯xm¯,YFτ,m¯Fσm¯n¯𝒯theory110333333O(3,3)0,σ,m¯=1,2,3xm¯,ym¯n¯Jτ,m¯Jσ;m¯n¯Jτ,m¯Jσ,m¯Stheory110333GL(3)0,σ,m¯=1,2,3xm¯Jτ,m¯Jσm¯n¯\displaystyle{\begin{array}[]{|c|c|c|c|c|c|}\hline\cr\begin{array}[]{c}{\rm Theories}\\ {\rm Groups}\end{array}&\begin{array}[]{c}{\rm World}\mathchar 45\relax{\rm volumes}\\ \partial\end{array}&\begin{array}[]{c}{\rm Gauges}\\ \lambda\end{array}&\begin{array}[]{c}{\rm Spacetimes}\\ X\end{array}&\begin{array}[]{c}{\rm Field~{}strengths}\\ F\end{array}\\ \hline\cr\hline\cr{\cal A}\mathchar 45\relax{\rm theory}&6&6&15&20\\ {\rm SL}(6)&\partial^{\hat{m}},~{}_{\hat{m}=0,\cdots,5}&\lambda^{\hat{m}}&X^{\hat{m}\hat{n}}&F^{\hat{m}\hat{n}\hat{p}}\\ \hline\cr{\cal A}\mathchar 45\relax{\rm theory}&1\oplus 5&1\oplus 5&10\oplus 5&10\oplus 10^{\prime}\\ {\rm SL}(5)&\partial^{0},\partial^{m},~{}_{m=1,\cdots,5}&\lambda^{0},\lambda^{m}&X^{mn},Y^{m}&F_{\tau}{}^{mn},F_{\sigma}{}_{mn}\\ \hline\cr{\cal M}\mathchar 45\relax{\rm theory}&1\oplus 4(5)&1\oplus 4&4\oplus 1&4\oplus 6\\ {\rm GL}(4)&\partial^{0},\partial^{\underline{m}},~{}_{\underline{m}=1,\cdots,4}&\lambda^{0},\lambda^{\underline{m}}&x^{\underline{m}},Y&F_{\tau}{}^{\underline{m}},F_{\sigma}{}_{\underline{m}\underline{n}}\\ \hline\cr{\cal T}\mathchar 45\relax{\rm theory}&1\oplus 1&0&3\oplus 3^{\prime}&3\oplus 3\oplus 3^{\prime}\oplus 3^{\prime}\\ {\rm O}(3,3)&\partial^{0},\partial^{\sigma},~{}_{\bar{m}=1,2,3}&&x^{\bar{m}},y^{\bar{m}\bar{n}}&J_{\tau}{}^{\bar{m}},J_{\sigma}{}_{\bar{m}\bar{n}};J_{\tau}{}^{\bar{m}},J_{\sigma}{}_{\bar{m}},\\ \hline\cr S\mathchar 45\relax{\rm theory}&1\oplus 1&0&3&3\oplus 3\\ {\rm GL}(3)&\partial^{0},\partial^{\sigma},~{}_{\bar{m}=1,2,3}&&x^{\bar{m}}&J_{\tau}{}^{\bar{m}},J_{\sigma}{}_{\bar{m}\bar{n}}\\ \hline\cr\end{array}} (2.62)
(2.63)

The world-volume dimension of {\cal M}-theory is still 151\oplus 5 where four dimensions are embedded in the 4 spacetime xm¯x^{\underline{m}} and one dimension is embedded in the internal space, so we denote as 14(5)1\oplus 4(5).

The field strengths and currents together with the gauge transformations are given concretely as follows.

  1. 1.

    𝒜{\cal A}5-brane field strengths

    1. (a)

      World-volume covariant 𝒜{\cal A}5-brane field strength

      The SL(6) AA-symmetry covariant 𝒜{\cal A}-theory is described by a 5-brane with the manifest SL(6) new duality symmetry which manifests 6-dimensional world-volume Lorentz symmetry, namely world-volume covariant 𝒜{\cal A}5-brane.

      Fm^n^p^=12[m^Xn^p^],δλXm^n^=[m^λn^],m^=0,1,,5\displaystyle F^{\hat{m}\hat{n}\hat{p}}=\frac{1}{2}\partial^{[\hat{m}}X^{\hat{n}\hat{p}]}~{}~{},~{}~{}\delta_{\lambda}X^{\hat{m}\hat{n}}=\partial^{[\hat{m}}\lambda^{\hat{n}]}~{}~{},~{}~{}\hat{m}=0,1,\cdots,5 (2.64)
    2. (b)

      𝒜{\cal A}5-brane field strength

      The SL(5) GG-symmetry covariant 𝒜{\cal A}-theory is described by a 5-brane with manifest SL(5) U-duality symmetry, namely 𝒜{\cal A}5-brane.

      {Fτ=mnX˙mn[mYn]Fσ=;m1m212ϵm1m5m3Xm4m5m=1,,5,{δλXmn=[mλn]δλYm=λ˙mmλ0\displaystyle{\left\{\begin{array}[]{l}F_{\tau}{}^{mn}=\dot{X}^{mn}-\partial^{[m}Y^{n]}\\ F_{\sigma}{}_{;m_{1}m_{2}}=\frac{1}{2}\epsilon_{m_{1}\cdots m_{5}}\partial^{m_{3}}X^{m_{4}m_{5}}\\ m=1,\cdots,5\end{array}\right.,~{}\left\{\begin{array}[]{l}\delta_{\lambda}X^{mn}=\partial^{[m}\lambda^{n]}\\ \delta_{\lambda}Y^{m}=\dot{\lambda}^{m}-\partial^{m}\lambda^{0}\end{array}\right.} (2.70)
  2. 2.

    {\cal M}5-brane field strength

    The GL(4) {\cal M}-theory is described by a 5-brane with the manifest GL(4) duality symmetry, namely {\cal M}5-brane. We focus only on 4-dimensional subspace of the 5-dimensional world-volume which is embedded in the 4-dimensional spacetime. Physical currents are as follows.

    {Fτ=m¯x˙m¯+m¯YFσ=;m¯1m¯2ϵm¯1m¯4m¯3xm¯4m¯=1,,4,{δλxm¯=m¯λδλY=λ˙\displaystyle{\left\{\begin{array}[]{l}F_{\tau}{}^{\underline{m}}=\dot{x}^{\underline{m}}+\partial^{\underline{m}}Y\\ F_{\sigma}{}_{;\underline{m}_{1}\underline{m}_{2}}=-\epsilon_{\underline{m}_{1}\cdots\underline{m}_{4}}\partial^{\underline{m}_{3}}x^{\underline{m}_{4}}\\ \underline{m}=1,\cdots,4\end{array}\right.,~{}\left\{\begin{array}[]{l}\delta_{\lambda}x^{\underline{m}}=\partial^{\underline{m}}\lambda\\ \delta_{\lambda}Y=-\dot{\lambda}\end{array}\right.} (2.76)

    The following currents are auxiliary written by auxiliary coordinates ymn¯y^{\underline{mn}}, Ym¯Y^{\underline{m}}.

    {Fτ=m¯n¯y˙m¯n¯[m¯Yn¯]Fσ=;m¯112ϵm¯1m¯4m¯2ym¯3m¯4,{δλym¯n¯=[m¯λn¯]δλYm¯=λ˙m¯δλλm¯=m¯λ\displaystyle{\left\{\begin{array}[]{l}F_{\tau}{}^{\underline{m}\underline{n}}=\dot{y}^{\underline{m}\underline{n}}-\partial^{[\underline{m}}Y^{\underline{n}]}\\ F_{\sigma}{}_{;\underline{m}_{1}}=\frac{1}{2}\epsilon_{\underline{m}_{1}\cdots\underline{m}_{4}}\partial^{\underline{m}_{2}}y^{\underline{m}_{3}\underline{m}_{4}}\end{array}\right.,~{}\left\{\begin{array}[]{l}\delta_{\lambda}y^{\underline{m}\underline{n}}=\partial^{[\underline{m}}\lambda^{\underline{n}]}\\ \delta_{\lambda}Y^{\underline{m}}=\dot{\lambda}^{\underline{m}}\\ \delta_{\lambda}\lambda^{\underline{m}}=\partial^{\underline{m}}{\lambda}\end{array}\right.} (2.82)

    These currents constitute the SL(5) AA-symmetry together with (2.76), and they are used to lead the non-perturbative M2-brane Lagrangian.

  3. 3.

    𝒯{\cal T}-string currents

    The O(3,3) 𝒯{\cal T}-theory is described by a string with the manifest O(3,3) T-duality symmetry, namely 𝒯{\cal T}-string.

    {Jτ=m¯1m¯2X˙m¯1m¯2Jσ=m¯1m¯212ϵm¯1m¯4σXm¯3m¯4\displaystyle{\left\{\begin{array}[]{l}J_{\tau}{}^{\underline{m}_{1}\underline{m}_{2}}=\dot{X}^{\underline{m}_{1}\underline{m}_{2}}\\ J_{\sigma}{}_{\underline{m}_{1}\underline{m}_{2}}=\frac{1}{2}\epsilon_{\underline{m}_{1}\cdots\underline{m}_{4}}\partial_{\sigma}X^{\underline{m}_{3}\underline{m}_{4}}\end{array}\right.} (2.85)

    It is convenient to represent in terms of xm¯x^{\bar{m}} and ym¯=12ϵm¯n¯l¯yn¯l¯y_{\bar{m}}=\frac{1}{2}\epsilon_{\bar{m}\bar{n}\bar{l}}y^{\bar{n}\bar{l}}.

    {Jτ=m¯x˙m¯Jσ=m¯1m¯2ϵm¯1m¯2m¯3σxm¯3Jτ=m¯1m¯2y˙m¯1m¯2Jσ=m¯112ϵm¯1m¯2m¯3σym¯2m¯3m¯=1,2,3\displaystyle{\left\{\begin{array}[]{l}J_{\tau}{}^{\bar{m}}=\dot{x}^{\bar{m}}\\ J_{\sigma}{}_{\bar{m}_{1}\bar{m}_{2}}=-\epsilon_{\bar{m}_{1}\bar{m}_{2}\bar{m}_{3}}\partial_{\sigma}x^{\bar{m}_{3}}\\ J_{\tau}{}^{\bar{m}_{1}\bar{m}_{2}}=\dot{y}^{\bar{m}_{1}\bar{m}_{2}}\\ J_{\sigma}{}_{\bar{m}_{1}}=\frac{1}{2}\epsilon_{\bar{m}_{1}\bar{m}_{2}\bar{m}_{3}}\partial_{\sigma}y^{\bar{m}_{2}\bar{m}_{3}}\\ \bar{m}=1,2,3\end{array}\right.} (2.91)
  4. 4.

    SS-tring currents

    The GL(3) SS-theory is described by a string with the manifest GL(3) spacetime diffeomorphism symmetry, namely a 3-dimensional string.

    {Jτ=m¯x˙m¯Jσ=m¯1m¯2ϵm¯1m¯2m¯3σxm¯3\displaystyle{\left\{\begin{array}[]{l}J_{\tau}{}^{\bar{m}}=\dot{x}^{\bar{m}}\\ J_{\sigma}{}_{\bar{m}_{1}\bar{m}_{2}}=-\epsilon_{\bar{m}_{1}\bar{m}_{2}\bar{m}_{3}}\partial_{\sigma}x^{\bar{m}_{3}}\end{array}\right.} (2.94)

Some minus signs come from the mere notation ϵ1234=1=ϵ4123\epsilon_{1234}=1=-\epsilon_{4123}. It is denoted that these currents are flat currents, and in later sections flat current symbols F{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{F}} or J{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{J}} will be used to distinguish from curved background currents.



2.3 Constraints and sectionings

The theories in Hamiltonian formulation are constructed by the current algebra with manifest duality symmetries [17]. The Spacetime translation is generated by the covariant derivative  M(σ)\hbox{\,\Large$\triangleright$}_{M}(\sigma). The pp-brane current algebra with GG-symmetry covariance is given by

[ M(σ), N(σ)]\displaystyle\left[\hbox{\,\Large$\triangleright$}_{M}(\sigma),\hbox{\,\Large$\triangleright$}_{N}(\sigma^{\prime})\right] =\displaystyle= 2ifMN LL(σ)δ(σσ)+2iηMNmmδ(p)(σσ).\displaystyle 2if_{MN}{}^{L}\hbox{\,\Large$\triangleright$}_{L}(\sigma)\delta(\sigma-\sigma^{\prime})+2i\eta_{MNm}\partial^{m}\delta^{(p)}(\sigma-\sigma^{\prime})~{}~{}~{}. (2.95)

Branes are governed by the brane Virasoro constraints 𝒮m=12 MηMNm N=0{\cal S}^{m}=\frac{1}{2}\hbox{\,\Large$\triangleright$}_{M}\eta^{MNm}\hbox{\,\Large$\triangleright$}_{N}=0 and =12 Mη^MN N=0{\cal H}=\frac{1}{2}\hbox{\,\Large$\triangleright$}_{M}\hat{\eta}^{MN}\hbox{\,\Large$\triangleright$}_{N}=0 together with the Gauß law constraints 𝒰m=0{\cal U}_{m}=0 which is required by the closure of the Virasoro algebra. η^MN\hat{\eta}^{MN} is the HH-invariant metric. Theories are related by sectionings; The Virasoro constraint 𝒮m=0{\cal S}^{m}=0 gives the section conditions to reduce the spacetime dimensions, and the Gauß law constraint 𝒰m=0{\cal U}_{m}=0 is used to reduce the world-volume dimension as Fig.3 in (2.113).

𝒜5brane10dim.spacetime𝒮𝒰5brane4dim.spacetime𝒯string3+3dim.spacetime𝒰𝒮String3dim.spacetime\displaystyle\begin{array}[]{c}\begin{array}[]{c}{\cal A}5\mathchar 45\relax\rm{brane}\\ 10\mathchar 45\relax\rm{dim.~{}spacetime}\end{array}\\ \\ {\cal S}~{}\swarrow\quad\quad\quad\quad\quad\quad\quad\quad\searrow~{}{\cal U}\\ \\ \begin{array}[]{c}{\cal M}5\mathchar 45\relax\rm{brane}\\ 4\mathchar 45\relax\rm{dim.~{}spacetime}\end{array}\quad\quad\quad\begin{array}[]{c}{\cal T}\mathchar 45\relax\rm{string}\\ 3+3\mathchar 45\relax\rm{dim.~{}spacetime}\end{array}\\ \\ {\cal U}~{}\searrow\quad\quad\quad\quad\quad\quad\quad\quad\swarrow~{}{\cal S}\\ \\ \begin{array}[]{c}S\rm{tring}\\ 3\mathchar 45\relax\rm{dim.~{}spacetime}\end{array}\end{array} (2.113)
(2.114)
Figure3:DiamonddiagramofSectioningsofbranesofD=3theories\displaystyle\rm{Figure}~{}3:{\rm Diamond~{}diagram~{}of~{}Sectionings~{}of}~{}{branes~{}of~{}D=3}~{}{\rm theories}

The spacetime covariant derivatives, constraints and section conditions are given [17, 22] in Fig.3 (2.113) concretely as follows.

  1. 1.

    𝒜{\cal A}5-brane in 10-dimensional spacetime

    The 10-dimensional spacetime is described by the two rank anti-symmetric tensor covariant derivative  m1m2\hbox{\,\Large$\triangleright$}_{m_{1}m_{2}} as

     m1m2\displaystyle\hbox{\,\Large$\triangleright$}_{m_{1}m_{2}} =\displaystyle= Pm1m2+12ϵm1m5m3Xm4m5\displaystyle P_{m_{1}m_{2}}+\frac{1}{2}\epsilon_{m_{1}\cdots m_{5}}\partial^{m_{3}}X^{m_{4}m_{5}} (2.115)

    where PmnP_{mn} is canonical conjugate of XmnX^{mn} with [Pmn(σ),Xlk(σ)]=1iδm[lδnk]δ(5)(σσ)[P_{mn}(\sigma),X^{lk}(\sigma^{\prime})]=\frac{1}{i}\delta_{m}^{[l}\delta_{n}^{k]}\delta^{(5)}(\sigma-\sigma^{\prime}) with m=1,,5m=1,\cdots,5.

    The SL(5) covariant current algebra of 𝒜{\cal A}5-brane is given by

    [ m1m2(σ), m3m4(σ)]\displaystyle\left[\hbox{\,\Large$\triangleright$}_{{m}_{1}{m}_{2}}(\sigma),\hbox{\,\Large$\triangleright$}_{{m}_{3}{m}_{4}}(\sigma^{\prime})\right] =\displaystyle= 2iϵm1m5m5δ(5)(σσ).\displaystyle 2i\epsilon_{{m}_{1}\cdots{m}_{5}}\partial^{m_{5}}\delta^{(5)}(\sigma-\sigma^{\prime})~{}~{}~{}. (2.116)

    The 5-dimensional world-volume diffeomorphism is generated by the Virasoro constraints 𝒮m=0{\cal S}^{m}=0 while the world-volume time diffeomorphism is generated by =0{\cal H}=0. The Gauß law constraint 𝒰m=0{\cal U}_{m}=0 generates the gauge symmetry of the spacetime coordinate. These constraints are given by [1] as:

    {𝒮m=116 m1m2ϵmm1m4 m3m4=0=116 m1m2δm1[n1δn2]m2 n1n2=0𝒰m=n mn=0\displaystyle{\left\{\begin{array}[]{ccl}{\cal S}^{m}&=&\frac{1}{16}\hbox{\,\Large$\triangleright$}_{m_{1}m_{2}}\epsilon^{mm_{1}\cdots m_{4}}\hbox{\,\Large$\triangleright$}_{m_{3}m_{4}}=0\\ {\cal H}&=&\frac{1}{16}\hbox{\,\Large$\triangleright$}_{m_{1}m_{2}}\delta^{m_{1}[n_{1}}\delta^{n_{2}]m_{2}}\hbox{\,\Large$\triangleright$}_{n_{1}n_{2}}=0\\ {\cal U}_{m}&=&\partial^{n}\hbox{\,\Large$\triangleright$}_{mn}=0\end{array}\right.} (2.120)

    The SL(5) covariant constraints 𝒮m=0{\cal S}^{m}=0 and 𝒰m=0{\cal U}_{m}=0 are background independent. These constraints are used as the dimensional reduction and section condition by replacing the spacetime momentum PM(σ)P_{M}(\sigma) with the derivative of the 0-mode of the spacetime coordinate X0MX_{0}^{M}.

    Virasoro:𝒮mGaußlaw:𝒰mdimensionalreductionϵmm1m4Pm1m2(σ)X0m3m4Pmn(σ)σnsectionconditionϵmm1m4X0m1m2X0m3m4σnX0mn\displaystyle{\begin{array}[]{|l|c|c|}\hline\cr&{\rm Virasoro}:~{}{\cal S}^{m}&{\rm Gau\ss{}~{}law}:~{}{\cal U}_{m}\\ \hline\cr\begin{array}[]{l}{\rm dimensional}~{}{\rm reduction}\end{array}&\displaystyle\epsilon^{mm_{1}\cdots m_{4}}P_{m_{1}m_{2}}(\sigma)\frac{\partial}{\partial X^{m_{3}m_{4}}_{0}}&P_{mn}(\sigma)\displaystyle\frac{\partial}{\partial\sigma_{n}}\\ \hline\cr\begin{array}[]{l}{\rm section}~{}{\rm condition}\end{array}&\displaystyle\epsilon^{mm_{1}\cdots m_{4}}\frac{\partial}{\partial X^{m_{1}m_{2}}_{0}}\frac{\partial}{\partial X^{m_{3}m_{4}}_{0}}&\displaystyle\frac{\partial}{\partial\sigma_{n}}\frac{\partial}{\partial X^{mn}_{0}}\\ \hline\cr\end{array}} (2.126)

    These operators act on fields Φ(X)\Phi(X) and Ψ(X)\Psi(X) as

    X0MX0NΦ(X0)=0=X0MΦ(X0)X0NΨ(X0)\displaystyle\displaystyle\frac{\partial}{\partial X^{M}_{0}}\frac{\partial}{\partial X^{N}_{0}}\Phi(X_{0})~{}=~{}0~{}=~{}\frac{\partial}{\partial X^{M}_{0}}\Phi(X_{0})\frac{\partial}{\partial X^{N}_{0}}\Psi(X_{0})
    σnXMΦ(σ,X(σ))=0=σnΦ(σ,X(σ))XMΨ(σ,X(σ))\displaystyle\displaystyle\frac{\partial}{\partial\sigma_{n}}\frac{\partial}{\partial X^{M}}\Phi(\sigma,X(\sigma))~{}=~{}0~{}=~{}\frac{\partial}{\partial\sigma_{n}}\Phi(\sigma,X(\sigma))\frac{\partial}{\partial X^{M}}\Psi(\sigma,X(\sigma))~{}~{}~{} (2.127)

    where fields may be functions on σ\sigma as Φ(σ,X(σ))\Phi(\sigma,X(\sigma)) and Ψ(σ,X(σ))\Psi(\sigma,X(\sigma)).


  2. 2.

    {\cal M}5-brane in 4-dimensional spacetime

    The dimensional reduction of the spacetime is obtained by solving the Virasoro constraint in (2.126) as

    Pm¯n¯(σ)=0,m¯=1,,4ϵmm1m4X0m1m2Pm3m4(σ)=0.\displaystyle P_{\underline{m}\underline{n}}(\sigma)=0~{}~{},~{}~{}{\underline{m}=1,\cdots,4}~{}~{}\Rightarrow~{}\displaystyle\epsilon^{mm_{1}\cdots m_{4}}\frac{\partial}{\partial X^{m_{1}m_{2}}_{0}}P_{m_{3}m_{4}}(\sigma)=0~{}~{}~{}. (2.128)

    This condition makes Xm¯1m¯2=ym¯1m¯2X^{\underline{m}_{1}\underline{m}_{2}}=y^{\underline{m}_{1}\underline{m}_{2}} to be non-dynamical and reduced dimensionally. The remaining spacetime is 4 dimensions P5m¯=pm¯0P_{5\underline{m}}=p_{\underline{m}}\neq 0.

    The 4-dimensional spacetime is described by the covariant derivative  m¯\hbox{\,\Large$\triangleright$}_{\underline{m}}. The 6-dimensional covariant derivative  m¯n¯\hbox{\,\Large$\triangleright$}_{\underline{m}\underline{n}} is maintained to construct SL(5) current algebra

    { m¯=pm¯ m¯1m¯2=ϵm¯1m¯4m¯3xm¯4\displaystyle{\left\{\begin{array}[]{ccl}\hbox{\,\Large$\triangleright$}_{\underline{m}}&=&p_{\underline{m}}\\ \hbox{\,\Large$\triangleright$}_{\underline{m}_{1}\underline{m}_{2}}&=&-\epsilon_{\underline{m}_{1}\cdots\underline{m}_{4}}\partial^{\underline{m}_{3}}x^{\underline{m}_{4}}\end{array}\right.} (2.131)

    with X5m¯=xm¯X^{5\underline{m}}=x^{\underline{m}} and P5m¯=pm¯P_{5\underline{m}}=p_{\underline{m}} which is not confused with the 0-mode momentum.

    The SL(5) current algebra of {\cal M}5-brane is

    {[ m¯(σ), n¯(σ)]=0[ m¯1(σ), m¯2m¯3(σ)]=2iϵm¯1m¯4m4¯δ(5)(σσ)[ m¯1m¯2(σ), m¯3m¯4(σ)]=0,\displaystyle{\left\{\begin{array}[]{ccl}\left[\hbox{\,\Large$\triangleright$}_{\underline{m}}(\sigma),\hbox{\,\Large$\triangleright$}_{\underline{n}}(\sigma^{\prime})\right]&=&0\\ \left[\hbox{\,\Large$\triangleright$}_{\underline{m}_{1}}(\sigma),\hbox{\,\Large$\triangleright$}_{\underline{m}_{2}\underline{m}_{3}}(\sigma^{\prime})\right]&=&2i\epsilon_{\underline{m}_{1}\cdots\underline{m}_{4}}\partial^{\underline{m_{4}}}\delta^{(5)}(\sigma-\sigma^{\prime})\\ \left[\hbox{\,\Large$\triangleright$}_{\underline{m}_{1}\underline{m}_{2}}(\sigma),\hbox{\,\Large$\triangleright$}_{\underline{m}_{3}\underline{m}_{4}}(\sigma^{\prime})\right]&=&0\end{array}\right.~{}~{}~{},} (2.135)

    where the last algebra forces to 5=0\partial^{5}=0.

    The Virasoro operators of {\cal M}5-brane are

    {𝒮m¯=12[m¯xn¯]pn¯𝒮5=14ϵm¯1m¯4(m¯1xm¯2)(m¯3xm¯4)=14pm¯η^m¯n¯pn¯+116([m¯1xm¯2])η^m¯1[n¯1η^n¯2]m¯2([n¯1xn¯2])𝒰5=n¯pn¯.\displaystyle{\left\{\begin{array}[]{ccl}{\cal S}^{\underline{m}}&=&\frac{1}{2}\partial^{[\underline{m}}x^{\underline{n}]}p_{\underline{n}}\\ {\cal S}^{5}&=&\frac{1}{4}\epsilon_{\underline{m}_{1}\cdots\underline{m}_{4}}(\partial^{\underline{m}_{1}}x^{\underline{m}_{2}})(\partial^{\underline{m}_{3}}x^{\underline{m}_{4}})\\ {\cal H}&=&\frac{1}{4}p_{\underline{m}}\hat{\eta}^{\underline{m}\underline{n}}p_{\underline{n}}+\frac{1}{16}(\partial^{[\underline{m}_{1}}x^{\underline{m}_{2}]})\hat{\eta}_{\underline{m}_{1}[\underline{n}_{1}}\hat{\eta}_{\underline{n}_{2}]\underline{m}_{2}}(\partial^{[\underline{n}_{1}}x^{\underline{n}_{2}]})\\ {\cal U}_{5}&=&\partial^{\underline{n}}p_{\underline{n}}\end{array}\right.}~{}~{}~{}. (2.140)

    These constraints lead to the following dimensional reductions and section conditions.

    Virasoro:𝒮m¯Gaußlaw:𝒰mdimensionalreduction12pm¯(σ)([m¯xn¯])pm¯(σ)m¯sectionconditionnonem¯x0m¯\displaystyle{\begin{array}[]{|l|c|c|}\hline\cr&{\rm Virasoro}:~{}{\cal S}^{\underline{m}}&{\rm Gau\ss{}~{}law}:~{}{\cal U}_{m}\\ \hline\cr{\rm dimensional}~{}{\rm reduction}&\frac{1}{2}p_{\underline{m}}(\sigma)(\partial^{[\underline{m}}x^{\underline{n}]})&p_{\underline{m}}(\sigma)\partial^{\underline{m}}\\ \hline\cr{\rm section}~{}{\rm condition}&{\rm none}&\displaystyle\partial^{\underline{m}}\frac{\partial}{\partial x^{\underline{m}}_{0}}\\ \hline\cr\end{array}} (2.144)

  3. 3.

    𝒯{\cal T}-string in 6-dimensional spacetime

    The dimensional reduction condition of the world-volume is obtained by solving the Gauß law constraint in (2.126) as

    n¯=0,Pm¯(σ)=0nPmn(σ)=0.\displaystyle\partial^{\underline{n}}=0~{},~{}P_{\underline{m}}(\sigma)=0~{}~{}~{}\Rightarrow~{}\partial^{n}P_{mn}(\sigma)=0~{}~{}~{}. (2.145)

    These conditions make 5=σ0\partial^{5}=\frac{\partial}{\partial\sigma}\neq 0 and Xm¯X^{\underline{m}} to be non-dynamical (constant). The remaining spacetime is 6 dimensional Pm¯n¯=pm¯n¯0P_{\underline{m}\underline{n}}=p_{\underline{m}\underline{n}}\neq 0.

    The 6-dimensional spacetime is described by the covariant derivative  m¯n¯\hbox{\,\Large$\triangleright$}_{\underline{m}\underline{n}}. The 4-dimensional covariant derivative vanishes  m¯=0\hbox{\,\Large$\triangleright$}_{\underline{m}}=0

     m¯1m¯2\displaystyle\hbox{\,\Large$\triangleright$}_{\underline{m}_{1}\underline{m}_{2}} =\displaystyle= pm¯1m¯2+12ϵm¯1m¯45xm¯3m¯4\displaystyle p_{\underline{m}_{1}\underline{m}_{2}}+\frac{1}{2}\epsilon_{\underline{m}_{1}\cdots\underline{m}_{4}}\partial^{5}x^{\underline{m}_{3}\underline{m}_{4}} (2.146)

    with Xm¯n¯=xm¯n¯X^{\underline{m}\underline{n}}=x^{\underline{m}\underline{n}}.

    The O(3,3) current algebra of 𝒯{\cal T}-string is

    [ m¯1m¯2(σ), m¯3m¯4(σ)]\displaystyle\left[\hbox{\,\Large$\triangleright$}_{\underline{m}_{1}\underline{m}_{2}}(\sigma),\hbox{\,\Large$\triangleright$}_{\underline{m}_{3}\underline{m}_{4}}(\sigma^{\prime})\right] =\displaystyle= 2iϵm¯1m¯45δ(σσ).\displaystyle 2i\epsilon_{\underline{m}_{1}\cdots\underline{m}_{4}}\partial^{5}\delta(\sigma-\sigma^{\prime})~{}~{}~{}.

    The Virasoro operators of 𝒯{\cal T}-string are

    {𝒮5=116 m¯1m¯2ϵm¯1m¯4 m¯3m¯4=116 m¯1m¯2η^m¯1[n¯1η^n¯2]m¯2 n¯1n¯2\displaystyle{\left\{\begin{array}[]{ccl}{\cal S}^{5}&=&\frac{1}{16}\hbox{\,\Large$\triangleright$}_{\underline{m}_{1}\underline{m}_{2}}\epsilon^{\underline{m}_{1}\cdots\underline{m}_{4}}\hbox{\,\Large$\triangleright$}_{\underline{m}_{3}\underline{m}_{4}}\\ {\cal H}&=&\frac{1}{16}\hbox{\,\Large$\triangleright$}_{\underline{m}_{1}\underline{m}_{2}}\hat{\eta}^{\underline{m}_{1}[\underline{n}_{1}}\hat{\eta}^{\underline{n}_{2}]\underline{m}_{2}}\hbox{\,\Large$\triangleright$}_{\underline{n}_{1}\underline{n}_{2}}\end{array}\right.} (2.149)

    with 𝒮m¯=0=𝒰m{\cal S}^{\underline{m}}=0={\cal U}_{m}.

    The Virasoro constraint 𝒮5=0{\cal S}^{5}=0 lead to the following dimensional reduction and the section condition.

    Virasoro:𝒮m¯Gaußlaw:𝒰mdimensionalreductionpm¯1m¯2(σ)ϵm¯1m¯4x0m¯3m¯4nonesectionconditionx0m¯1m¯2ϵm¯1m¯4x0m¯3m¯4none\displaystyle{\begin{array}[]{|l|c|c|}\hline\cr&{\rm Virasoro}:~{}{\cal S}^{\underline{m}}&{\rm Gau\ss{}~{}law}:~{}{\cal U}_{m}\\ \hline\cr{\rm dimensional}~{}{\rm reduction}&p_{\underline{m}_{1}\underline{m}_{2}}(\sigma)\epsilon^{\underline{m}_{1}\cdots\underline{m}_{4}}\displaystyle\frac{\partial}{\partial x^{\underline{m}_{3}\underline{m}_{4}}_{0}}&{\rm none}\\ \hline\cr{\rm section}~{}{\rm condition}&\displaystyle\frac{\partial}{\partial x^{\underline{m}_{1}\underline{m}_{2}}_{0}}\epsilon^{\underline{m}_{1}\cdots\underline{m}_{4}}\frac{\partial}{\partial x^{\underline{m}_{3}\underline{m}_{4}}_{0}}&{\rm none}\\ \hline\cr\end{array}} (2.153)

  4. 4.

    SString in 3-dimensional spacetime

    1. (a)

      From 𝒯{\cal T}-string to SString

      The dimensional reduction of the spacetime is obtained by solving the Virasoro constraint in (2.153) as

      Pm¯n¯(σ)=0,m¯=1,2,3Pm¯1m¯2(σ)ϵm¯1m¯4x0m¯3m¯4=0.\displaystyle P_{\bar{m}\bar{n}}(\sigma)=0~{}~{},~{}~{}{\bar{m}=1,2,3}~{}~{}\Rightarrow~{}P_{\underline{m}_{1}\underline{m}_{2}}(\sigma)\epsilon^{\underline{m}_{1}\cdots\underline{m}_{4}}\displaystyle\frac{\partial}{\partial x^{\underline{m}_{3}\underline{m}_{4}}_{0}}=0~{}~{}~{}~{}. (2.154)

      This condition makes Xm¯1m¯2=ym¯1m¯2X^{\bar{m}_{1}\bar{m}_{2}}=y^{\bar{m}_{1}\bar{m}_{2}} to be non-dynamical (constant). The remaining spacetime is 3 dimensions P4m¯=pm¯0P_{4\bar{m}}=p_{\bar{m}}\neq 0.

    2. (b)

      From 5{\cal M}5-brane to SString

      The dimensional reduction condition of the world-volume is obtained by solving the Gauß law constraint in (2.144) as

      n¯=0,P4(σ)=0Pm¯m¯=0.\displaystyle\partial^{\bar{n}}=0~{},~{}P_{4}(\sigma)=0~{}~{}~{}\Rightarrow~{}P_{\underline{m}}\partial^{\underline{m}}=0~{}~{}~{}. (2.155)

      In the 4-dimensional spacetime 5\partial^{5} is considered to be 0. These conditions make 4=σ=σ0\partial^{4}=\frac{\partial}{\partial\sigma}=\partial_{\sigma}\neq 0 and X54X^{54} to be non-dynamical (constant). The remaining spacetime is 3 dimensions P4m¯=pm¯0P_{4\bar{m}}=p_{\bar{m}}\neq 0.

    The 3-dimensional spacetime is described by the covariant derivative  4m¯\hbox{\,\Large$\triangleright$}_{4\bar{m}}. The 3-dimensional covariant derivative vanishes  m¯1m¯2\hbox{\,\Large$\triangleright$}_{\bar{m}_{1}\bar{m}_{2}}

    { m¯=pm¯ m¯1m¯2=ϵm¯1m¯2m¯σxm¯\displaystyle{\left\{\begin{array}[]{ccl}\hbox{\,\Large$\triangleright$}_{\bar{m}}&=&p_{\bar{m}}\\ \hbox{\,\Large$\triangleright$}_{\bar{m}_{1}\bar{m}_{2}}&=&\epsilon_{\bar{m}_{1}\bar{m}_{2}\bar{m}}\partial_{\sigma}x^{\bar{m}}\end{array}\right.} (2.158)

    with X4m¯=xm¯X^{4\bar{m}}=x^{\bar{m}} and σ5=σ\sigma^{5}=\sigma via 𝒯{\cal T}-string and X5m¯=xm¯X^{5\bar{m}}=x^{\bar{m}} and σ4=σ\sigma^{4}=\sigma via 5{\cal M}5-brane.

    The GL(3) current algebra becomes

    [ m¯1(σ), m¯2m¯3(σ)]\displaystyle\left[\hbox{\,\Large$\triangleright$}_{\bar{m}_{1}}(\sigma),\hbox{\,\Large$\triangleright$}_{\bar{m}_{2}\bar{m}_{3}}(\sigma^{\prime})\right] =\displaystyle= iϵm¯1m¯2m¯3σδ(σσ).\displaystyle i\epsilon_{\bar{m}_{1}\bar{m}_{2}\bar{m}_{3}}\partial_{\sigma}\delta(\sigma-\sigma^{\prime})~{}~{}~{}. (2.159)

    This is equivalent to the O(D,D) current algebra which is given by  M=( m¯, m¯)\hbox{\,\Large$\triangleright$}_{M}=(\hbox{\,\Large$\triangleright$}_{\bar{m}},~{}\hbox{\,\Large$\triangleright$}^{\bar{m}}) with  m¯=12ϵm¯m¯1m¯2 m¯1m¯2\hbox{\,\Large$\triangleright$}^{\bar{m}}=\frac{1}{2}\epsilon^{\bar{m}\bar{m}_{1}\bar{m}_{2}}\hbox{\,\Large$\triangleright$}_{\bar{m}_{1}\bar{m}_{2}} and the O(D,D) invariant metric ηMN=ϵm¯1m¯2m¯3\eta_{MN}=\epsilon_{\bar{m}_{1}\bar{m}_{2}\bar{m}_{3}} as

    [ M(σ), N(σ)]\displaystyle\left[\hbox{\,\Large$\triangleright$}_{M}(\sigma),\hbox{\,\Large$\triangleright$}_{N}(\sigma^{\prime})\right] =\displaystyle= iηMNσδ(σσ).\displaystyle i\eta_{MN}\partial_{\sigma}\delta(\sigma-\sigma^{\prime})~{}~{}~{}. (2.160)

    The Virasoro operators become

    {𝒮=pm¯σxm¯=12 MηMN N=12pm¯η^m¯n¯pn¯+12σxm¯η^m¯n¯σxn¯=12 Mη^MN N\displaystyle{\left\{\begin{array}[]{ccl}{\cal S}&=&p_{\bar{m}}\partial_{\sigma}x^{\bar{m}}~{}=~{}\frac{1}{2}\hbox{\,\Large$\triangleright$}_{M}\eta^{MN}\hbox{\,\Large$\triangleright$}_{N}\\ {\cal H}&=&\frac{1}{2}p_{\bar{m}}\hat{\eta}^{\bar{m}\bar{n}}p_{\bar{n}}+\frac{1}{2}\partial_{\sigma}x^{\bar{m}}\hat{\eta}_{\bar{m}\bar{n}}\partial_{\sigma}x^{\bar{n}}~{}=~{}\frac{1}{2}\hbox{\,\Large$\triangleright$}_{M}\hat{\eta}^{MN}\hbox{\,\Large$\triangleright$}_{N}\end{array}\right.} (2.163)

    with the double Lorentz invariant metric η^MN\hat{\eta}^{MN}. There is no further conditions of the Virasoro and the Gauß law constraints; 𝒮m¯=0=𝒰m{\cal S}^{\underline{m}}=0={\cal U}_{m}.



3 𝒜{\cal A}5-brane Lagrangians

3.1 𝒜{\cal A}5-brane Lagrangian with SL(5) U-duality symmetry

The SL(5) U-duality symmetry is manifestly realized by the 𝒜{\cal A}5-brane. The spacetime background is described by the vielbein which is a SL(5)/SO(5) coset element EmaE_{m}{}^{a} satisfying

Em1Em2a1Em3a2Em4a3Em5a4ϵa1a2a3a4a5a5=ϵm1m2m3m4m5\displaystyle E_{{m}_{1}}{}^{{a}_{1}}E_{{m}_{2}}{}^{{a}_{2}}E_{{m}_{3}}{}^{{a}_{3}}E_{{m}_{4}}{}^{{a}_{4}}E_{{m}_{5}}{}^{{a}_{5}}\epsilon_{{a}_{1}{a}_{2}{a}_{3}{a}_{4}{a}_{5}}=\epsilon_{{m}_{1}{m}_{2}{m}_{3}{m}_{4}{m}_{5}} (3.1)

with m,a=1,,5{m},{a}=1,\cdots,5. The background metrices with tensor indices are

Gmn\displaystyle G_{{m}{n}} =\displaystyle= Emη^abaEnb\displaystyle E_{{m}}{}^{{a}}\hat{\eta}_{{a}{b}}E_{{n}}{}^{{b}}
Gm1m2;n1n2\displaystyle G_{{m}_{1}{m}_{2};{n}_{1}{n}_{2}} =\displaystyle= Em1Em2a1η^a1[b1a2η^b2]a2En1En2b1.b2\displaystyle E_{m_{1}}{}^{{a}_{1}}E_{m_{2}}{}^{{a}_{2}}\hat{\eta}_{{a}_{1}[{b}_{1}}\hat{\eta}_{{b}_{2}]{a}_{2}}E_{n_{1}}{}^{{b}_{1}}E_{n_{2}}{}^{{b}_{2}}~{}~{}~{}. (3.2)

The selfdual and anti-selfdual currents in a flat background FSD/SD¯mn{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{F}}_{{\rm SD}/\overline{\rm SD}}{}^{mn} and in a curved background FSD/SD¯abF_{{\rm SD}/\overline{\rm SD}}{}^{ab} in terms of (2.70) are given as

{FSD=m1m2Fτm1m212ϵm1m5sm3Fσ;m4m5+gη^m1n1η^m2n2Fσ;n1n2FSD¯=m1m2Fτm1m212ϵm1m5sm3Fσ;m4m5gη^m1n1η^m2n2Fσ;n1n2\displaystyle{\left\{\begin{array}[]{l}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{F}}_{\rm SD}{}^{m_{1}m_{2}}=F_{\tau}^{m_{1}m_{2}}-\frac{1}{2}\epsilon^{m_{1}\cdots m_{5}}s_{m_{3}}F_{\sigma;m_{4}m_{5}}+g\hat{\eta}^{m_{1}n_{1}}\hat{\eta}^{m_{2}n_{2}}F_{\sigma;n_{1}n_{2}}\\ {\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{F}}_{\overline{\rm SD}}{}^{m_{1}m_{2}}=F_{\tau}^{m_{1}m_{2}}-\frac{1}{2}\epsilon^{m_{1}\cdots m_{5}}s_{m_{3}}F_{\sigma;m_{4}m_{5}}-g\hat{\eta}^{m_{1}n_{1}}\hat{\eta}^{m_{2}n_{2}}F_{\sigma;n_{1}n_{2}}\end{array}\right.}~{}~{}~{} (3.5)
FSD/SD¯=a1a2FSD/SD¯Em1m1m2Em2a1a2\displaystyle F_{{\rm SD}/\overline{\rm SD}}{}^{a_{1}a_{2}}={\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{F}}_{{\rm SD}/\overline{\rm SD}}{}^{m_{1}m_{2}}E_{m_{1}}{}^{a_{1}}E_{m_{2}}{}^{a_{2}}~{}~{}~{} (3.6)

where η^mn\hat{\eta}^{mn} becomes GmnG^{mn} in a curved background. gg and sms_{m} are 5-brane world-volume vielbein fields which are introduced as Lagrange multipliers of Virasoro constraints.

The Lagrangian of the 𝒜{\cal A}5-brane LSL(5)L_{\rm SL(5)} is given [1] as

ISL(5)\displaystyle I_{\rm SL(5)} =\displaystyle= 𝑑τd5σLSL(5)\displaystyle\displaystyle\int d\tau d^{5}\sigma~{}L_{\rm SL(5)}
LSL(5)\displaystyle L_{\rm SL(5)} =\displaystyle= 12ϕFSDFSD¯abab+12ϕ¯(FSD¯)ab2\displaystyle\frac{1}{2}\phi F_{\rm SD}{}^{ab}F_{\overline{\rm SD}ab}+\frac{1}{2}\bar{\phi}(F_{\overline{\rm SD}}{}^{ab})^{2} (3.7)
+12λabFSD¯FSD¯acbc14ϵa1a5λa1FSD¯FSD¯a2a3a4a5\displaystyle+\frac{1}{2}\lambda_{ab}F_{\overline{\rm SD}}{}^{ac}F_{\overline{\rm SD}}{}^{b}{}_{c}-\frac{1}{4}\epsilon_{a_{1}\cdots a_{5}}\lambda^{a_{1}}F_{\overline{\rm SD}}{}^{a_{2}a_{3}}F_{\overline{\rm SD}}{}^{a_{4}a_{5}}
=\displaystyle= ϕ4FSDGm1m2;m3m4m1m2FSD¯+m3m4ϕ¯8FSD¯Gm1m2;m3m4m1m2FSD¯m3m4\displaystyle\frac{\phi}{4}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{F}}_{\rm SD}{}^{m_{1}m_{2}}G_{m_{1}m_{2};m_{3}m_{4}}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{F}}_{\overline{\rm SD}}{}^{m_{3}m_{4}}+\frac{\bar{\phi}}{8}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{F}}_{\overline{\rm SD}}{}^{m_{1}m_{2}}G_{m_{1}m_{2};m_{3}m_{4}}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{F}}_{\overline{\rm SD}}{}^{m_{3}m_{4}}
+12λmnFSD¯Gl1l2ml1FSD¯+nl218ϵm1m5λFSD¯m1FSD¯m2m3m4m5\displaystyle+\frac{1}{2}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{\lambda}}_{mn}F_{\overline{\rm SD}}{}^{ml_{1}}G_{l_{1}l_{2}}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{F}}_{\overline{\rm SD}}{}^{nl_{2}}+\frac{1}{8}\epsilon_{m_{1}\cdots m_{5}}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{\lambda}}{}^{m_{1}}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{F}}_{\overline{\rm SD}}{}^{m_{2}m_{3}}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{F}}_{\overline{\rm SD}}{}^{m_{4}m_{5}}~{}~{}~{}

with symmetric traceless tensors λm^n^\lambda_{\hat{m}\hat{n}}’s.


3.2 World-volume covariant 𝒜{\cal A}5-brane Lagrangian with SL(6) duality symmetry

The GG=SL(5) U-duality symmetry is enlarged to AA=SL(6) by cooperating the 6-dimensional world-volume Lorentz covariance. The SL(6)/SO(6) coset parameter includes not only the target space vielbein SL(5)/SO(5) but also 6 components of the world-volume vielbein. The background vielbein Em^a^E_{\hat{m}}{}^{\hat{a}}\in SL(6)/SO(6) satisfies

Em^1Em^2a^1Em^3a^2Em^4a^3Em^5a^4Em^6a^5ϵa^1a^2a^3a^4a^5a^6a^6=ϵm^1m^2m^3m^4m^5m^6\displaystyle E_{\hat{m}_{1}}{}^{\hat{a}_{1}}E_{\hat{m}_{2}}{}^{\hat{a}_{2}}E_{\hat{m}_{3}}{}^{\hat{a}_{3}}E_{\hat{m}_{4}}{}^{\hat{a}_{4}}E_{\hat{m}_{5}}{}^{\hat{a}_{5}}E_{\hat{m}_{6}}{}^{\hat{a}_{6}}\epsilon_{\hat{a}_{1}\hat{a}_{2}\hat{a}_{3}\hat{a}_{4}\hat{a}_{5}\hat{a}_{6}}=\epsilon_{\hat{m}_{1}\hat{m}_{2}\hat{m}_{3}\hat{m}_{4}\hat{m}_{5}\hat{m}_{6}} (3.8)

with m^,a^=0,1,,5\hat{m},\hat{a}=0,1,\cdots,5.

This SL(6) covariant vielbein (3.8) includes the 5-brane world-volume vielbein fields gg and sms_{m} as

Em^a^\displaystyle E_{\hat{m}}{}^{\hat{a}} =\displaystyle= (E00^E0aEm0^Ema)=(1g0smgEma)\displaystyle{\left(\begin{array}[]{cc}E_{0}{}^{\hat{0}}&E_{0}{}^{a}\\ E_{m}{}^{\hat{0}}&E_{m}{}^{a}\end{array}\right)=\left(\begin{array}[]{cc}\displaystyle\frac{1}{g}&0\\ -\displaystyle\frac{s_{m}}{g}&E_{m}{}^{a}\end{array}\right)}~{}~{}~{} (3.13)

with m^=(0,m)\hat{m}=(0,m), a^=(0^,a)\hat{a}=(\hat{0},a) and m,a=1,5m,a=1\cdots,5. It is denoted that the EmaE_{m}{}^{a} component of SL(6) vielbein (3.8) is different from the SL(5) vielbein EmaE_{m}{}^{a} in (3.13) up to the determinant factor. The number of degrees of freedom of the SL(6) vielbein is sum of the spacetime vielbein and the world-volume vielbein as

(621)6×52=((521)5×42)+6.\displaystyle(6^{2}-1)-\frac{6\times 5}{2}=\left((5^{2}-1)-\frac{5\times 4}{2}\right)+6~{}~{}~{}. (3.14)

This is generalized for a pp-brane of 𝒜{\cal A}-theory symmetry with A/LA/L coset as

dimAL=dimGH+(p+1).\displaystyle{\rm dim}~{}\displaystyle\frac{A}{L}={\rm dim}~{}\displaystyle\frac{G}{H}+(p+1)~{}~{}~{}. (3.15)

The SL(6) covariant field strengths are given by a simple form; the one in a flat background Fm^n^l^{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{F}}{}^{\hat{m}\hat{n}\hat{l}} ( the same as (2.64) ) and the one in a curved background Fa^b^c^{F}{}^{\hat{a}\hat{b}\hat{c}} as

F=m^n^l^12[m^Xn^l^],F=a^b^c^FEm^m^n^l^En^a^El^b^.c^\displaystyle{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{F}}{}^{\hat{m}\hat{n}\hat{l}}=\frac{1}{2}\partial^{[\hat{m}}X^{\hat{n}\hat{l}]}~{}~{},~{}~{}{F}{}^{\hat{a}\hat{b}\hat{c}}={\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{F}}{}^{\hat{m}\hat{n}\hat{l}}E_{\hat{m}}{}^{\hat{a}}E_{\hat{n}}{}^{\hat{b}}E_{\hat{l}}{}^{\hat{c}}~{}~{}~{}. (3.16)

The selfdual and the anti-selfdual field strength (3.5) and (3.6) are written in terms of the SL(6) current (3.16) with 0^=τ\partial^{\hat{0}}=\partial_{\tau} and ϵ0^12345=1\epsilon^{\hat{0}12345}=1 as

FSD/SD¯a1a2\displaystyle F_{{\rm SD}/\overline{\rm SD}}{}^{{a}_{1}{a}_{2}} =\displaystyle= g(F0^a1a2±16ϵ0^a1a2Fa3a4a5a3a4a5).\displaystyle g\left(F^{\hat{0}{a}_{1}{a}_{2}}\pm\frac{1}{6}\epsilon^{\hat{0}{a}_{1}{a}_{2}}{}_{a_{3}a_{4}a_{5}}F^{a_{3}{a}_{4}{a}_{5}}\right)~{}~{}~{}. (3.17)

Then the 𝒜{\cal A}5-brane Lagrangian (3.7) is rewritten in terms of the SL(6) covariant field strength (3.16). The world-volume covariant 𝒜{\cal A}5-brane Lagrangian LSL(6)L_{\rm SL(6)} is given [1] as

ISL(6)\displaystyle I_{\rm SL(6)} =\displaystyle= d6σLSL(6)\displaystyle\displaystyle\int d^{6}\sigma~{}L_{\rm SL(6)}
LSL(6)\displaystyle L_{\rm SL(6)} =\displaystyle= 112ΦFa^1a^2a^3Fa^1a^2a^3+12Λa^b^Fa^c^1c^2Fb^+c^1c^2112ϵa^1a^6Λ~b^Fa^2a^3a^4a^1Fa^5a^6b^\displaystyle-\frac{1}{12}\Phi F^{\hat{a}_{1}\hat{a}_{2}\hat{a}_{3}}F_{\hat{a}_{1}\hat{a}_{2}\hat{a}_{3}}+\frac{1}{2}\Lambda_{\hat{a}\hat{b}}F^{\hat{a}\hat{c}_{1}\hat{c}_{2}}F^{\hat{b}}{}_{\hat{c}_{1}\hat{c}_{2}}+\frac{1}{12}\epsilon_{\hat{a}_{1}\cdots\hat{a}_{6}}\tilde{\Lambda}_{\hat{b}}{}^{\hat{a}_{1}}F^{\hat{a}_{2}\hat{a}_{3}\hat{a}_{4}}F^{\hat{a}_{5}\hat{a}_{6}\hat{b}}
=\displaystyle= 172ΦFGm^1m^2m^3;m^4m^5m^6m^1m^2m^3F+m^4m^5m^618ΛFm^n^Gl^1l^2;l^3l^4m^l^1l^2Fn^l^3l^4\displaystyle-\frac{1}{72}\Phi{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{F}}{}^{\hat{m}_{1}\hat{m}_{2}\hat{m}_{3}}G_{\hat{m}_{1}\hat{m}_{2}\hat{m}_{3};\hat{m}_{4}\hat{m}_{5}\hat{m}_{6}}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{F}}{}^{\hat{m}_{4}\hat{m}_{5}\hat{m}_{6}}+\frac{1}{8}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{\Lambda}}{}_{\hat{m}\hat{n}}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{F}}{}^{\hat{m}\hat{l}_{1}\hat{l}_{2}}G_{\hat{l}_{1}\hat{l}_{2};\hat{l}_{3}\hat{l}_{4}}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{F}}{}^{\hat{n}\hat{l}_{3}\hat{l}_{4}}
+112ϵm^1m^6Λ~Fn^m^1Fm^2m^3m^4m^5m^6n^\displaystyle+\frac{1}{12}\epsilon_{\hat{m}_{1}\cdots\hat{m}_{6}}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{\tilde{\Lambda}}}{}_{\hat{n}}{}^{\hat{m}_{1}}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{F}}{}^{\hat{m}_{2}\hat{m}_{3}\hat{m}_{4}}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{F}}{}^{\hat{m}_{5}\hat{m}_{6}\hat{n}}

where Φ\Phi, Λa^b^\Lambda_{\hat{a}\hat{b}} are Lagrange multipliers with symmetric traceless tensors Λa^b^\Lambda_{\hat{a}\hat{b}}’s. The background metrices with tensor indices are

Gm^1m^2;n^1n^2\displaystyle G_{\hat{m}_{1}\hat{m}_{2};\hat{n}_{1}\hat{n}_{2}} =\displaystyle= Em^1Em^2a^1η^a^1[b^1a^2η^b^2]a^2En^1En^2b^1b^2\displaystyle E_{\hat{m}_{1}}{}^{\hat{a}_{1}}E_{\hat{m}_{2}}{}^{\hat{a}_{2}}\hat{\eta}_{\hat{a}_{1}[\hat{b}_{1}}\hat{\eta}_{\hat{b}_{2}]\hat{a}_{2}}E_{\hat{n}_{1}}{}^{\hat{b}_{1}}E_{\hat{n}_{2}}{}^{\hat{b}_{2}}
Gm^1m^2m^3;n^1n^2n^3\displaystyle G_{\hat{m}_{1}\hat{m}_{2}\hat{m}_{3};\hat{n}_{1}\hat{n}_{2}\hat{n}_{3}} =\displaystyle= Em^1Em^2a^1Em^3a^2η^a^1[b^1a^3η^b^2|a^2|η^b^3]a^3En^1En^2b^1En^3b^2.b^3\displaystyle E_{\hat{m}_{1}}{}^{\hat{a}_{1}}E_{\hat{m}_{2}}{}^{\hat{a}_{2}}E_{\hat{m}_{3}}{}^{\hat{a}_{3}}\hat{\eta}_{\hat{a}_{1}[\hat{b}_{1}}\hat{\eta}_{\hat{b}_{2}|\hat{a}_{2}|}\hat{\eta}_{\hat{b}_{3}]\hat{a}_{3}}E_{\hat{n}_{1}}{}^{\hat{b}_{1}}E_{\hat{n}_{2}}{}^{\hat{b}_{2}}E_{\hat{n}_{3}}{}^{\hat{b}_{3}}~{}~{}~{}. (3.19)

4 Lagrangian of D-dimensional SString from O(D,D) 𝒯{\cal T}-string

In this section we derive the O(D,D) 𝒯{\cal T}-string Lagrangian from the O(D,D) Hamiltonian by the double zweibein method [55, 56]. Then the reduction procedure from the O(D,D) 𝒯{\cal T}-string Lagrangian to the conventional string Lagrangian is presented.


4.1 O(D,D) 𝒯{\cal T}-string

We begin with the sigma model string Lagrangian

I\displaystyle I =\displaystyle= d2σL\displaystyle\displaystyle\int d^{2}\sigma~{}L
L\displaystyle L =\displaystyle= 12μxm(hhμνgmn+ϵμνBmn)νxn\displaystyle-\frac{1}{2}\partial_{\mu}x^{m}(\sqrt{-h}h^{\mu\nu}g_{mn}+\epsilon^{\mu\nu}B_{mn})\partial_{\nu}x^{n}~{}~{}~{} (4.1)

with μ=(τ,σ)\mu=(\tau,~{}\sigma). In the conformal gauge the Lagrangian becomes

L\displaystyle L =\displaystyle= 12(x˙mgmnx˙nxmgmnxn)x˙mBmnxn\displaystyle\frac{1}{2}(\dot{x}^{m}g_{mn}\dot{x}^{n}-x^{\prime m}g_{mn}x^{\prime n})-\dot{x}^{m}B_{mn}x^{\prime n} (4.8)
=\displaystyle= 12(x˙mxm)(gmnBmnBmngmn)(1001)(x˙nxn)\displaystyle\frac{1}{2}(\dot{x}^{m}~{}x^{\prime m})\left(\begin{array}[]{cc}g_{mn}&B_{mn}\\ B_{mn}&g_{mn}\end{array}\right)\left(\begin{array}[]{cc}1&0\\ 0&-1\end{array}\right)\left(\begin{array}[]{c}\dot{x}^{n}\\ x^{\prime n}\end{array}\right)
=\displaystyle= 12+xm(gmn+Bmn)xn,\displaystyle\frac{1}{2}\partial_{+}x^{m}(g_{mn}+B_{mn})\partial_{-}x^{n}~{}~{}~{}, (4.9)

with x˙=τx\dot{x}=\partial_{\tau}x, x=σx{x}^{\prime}=\partial_{\sigma}x and ±x=x˙±x\partial_{\pm}x=\dot{x}\pm x^{\prime}.

The Hamiltonian is given by the Legendre transformation where the canonical momentum of xmx^{m} is given by pm=L/x˙mp_{m}={\partial L}/{\partial\dot{x}^{m}},

H\displaystyle H =\displaystyle= pmx˙mL\displaystyle p_{m}\dot{x}^{m}-L
=\displaystyle= 12(pmxm)(gmngmlBlnBmlglngmnBmlglkBkn)(pnxn)\displaystyle\frac{1}{2}(p_{m}~{}x^{\prime m})\left(\begin{array}[]{cc}g^{mn}&g^{ml}B_{ln}\\ -B_{ml}g^{ln}&g_{mn}-B_{ml}g^{lk}B_{kn}\end{array}\right)\left(\begin{array}[]{c}p_{n}\\ x^{\prime n}\end{array}\right)
=\displaystyle= 12{(pmxlBlm)gmn(pn+Bnkxk)+xmgmnxn}.\displaystyle\frac{1}{2}\{(p_{m}-x^{\prime l}B_{lm})g^{mn}(p_{n}+B_{nk}x^{\prime k})+x^{\prime m}g_{mn}x^{\prime n}\}~{}~{}.

The background field is the O(D,D) matrix GMNG^{MN} written in terms of the vielbein EAME_{A}{}^{M} as EAMhAEBBgNNME_{A}{}^{M}\to h_{A}{}^{B}~{}E_{B}{}^{N}{}g_{N}{}^{M}, hh\inSO(D-1,1) and gg\in O(D,D)

EAηMNMEB=NηAB.\displaystyle E_{A}{}^{M}\eta_{MN}E_{B}{}^{N}=\eta_{AB}~{}~{}~{}. (4.15)

The background metric GMNG^{MN} in the string Hamiltonian (4.1) is given as

GMN\displaystyle G^{MN} =\displaystyle= (gmngmlBlnBmlglngmnBmlglkBkn)=EAη^ABMEBN\displaystyle\left(\begin{array}[]{cc}g^{mn}&g^{ml}B_{ln}\\ -B_{ml}g^{ln}&g_{mn}-B_{ml}g^{lk}B_{kn}\end{array}\right)~{}=~{}E_{A}{}^{M}\hat{\eta}^{AB}E_{B}{}^{N}~{}~{} (4.18)
EAM\displaystyle E_{A}{}^{M} =\displaystyle= (eameaBlml0ema),\displaystyle\left(\begin{array}[]{cc}e_{a}{}^{m}&e_{a}{}^{l}B_{lm}\\ 0&e_{m}{}^{a}\end{array}\right)~{}~{}~{}, (4.21)

while its inverse is given by

GMN\displaystyle G_{MN} =\displaystyle= (gmnBmlglkBknBmlglngmlBlngmn)=EMη^ABAENB\displaystyle\left(\begin{array}[]{cc}g_{mn}-B_{ml}g^{lk}B_{kn}&-B_{ml}g^{ln}\\ g^{ml}B_{ln}&g^{mn}\end{array}\right)~{}=~{}E_{M}{}^{A}\hat{\eta}_{AB}E_{N}{}^{B}~{}~{}~{} (4.24)
EMA\displaystyle E_{M}{}^{A} =\displaystyle= (emaBmleal0eam).\displaystyle\left(\begin{array}[]{cc}e_{m}{}^{a}&-B_{ml}e_{a}{}^{l}\\ 0&e_{a}{}^{m}\end{array}\right)~{}~{}~{}. (4.27)

This O(D,D) background metric is utilized in the Lagrangian with manifest O(D,D) T-duality symmetry.

The O(D,D) covariant space is constructed in such a way that the O(D,D) covariant derivative  M(σ)\hbox{\,\Large$\triangleright$}_{M}(\sigma) algebra satisfies the same algebra of  M=(pm,xm)\hbox{\,\Large$\triangleright$}_{M}=(p_{m},x^{\prime m}) up to the normalization

[ M(σ), N(σ)]\displaystyle[\hbox{\,\Large$\triangleright$}_{M}(\sigma),\hbox{\,\Large$\triangleright$}_{N}(\sigma^{\prime})] =\displaystyle= 2iηMNσδ(σσ),ηMN=(δmnδnm).\displaystyle 2i\eta_{MN}\partial_{\sigma}\delta(\sigma-\sigma^{\prime})~{}~{},~{}~{}\eta_{MN}=\left(\begin{array}[]{cc}&\delta_{m}^{n}\\ \delta_{n}^{m}&\end{array}\right)~{}~{}~{}. (4.30)

The covariant derivative  M\hbox{\,\Large$\triangleright$}_{M} is realized in terms of the doubled coordinate XMX^{M} and PMP_{M} with [PM(σ),XN(σ)]=iδMNδ(σσ)[P_{M}(\sigma),X^{N}(\sigma^{\prime})]=-i\delta_{M}^{N}\delta(\sigma-\sigma^{\prime}) as

 M=PM+σXNηNM,\displaystyle{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{\hbox{\,\Large$\triangleright$}}}_{M}~{}=~{}P_{M}+\partial_{\sigma}X^{N}\eta_{NM}~{}~{}~{}, (4.31)

which is left moving current in the doubled space. The right moving current is also introduced as

 ~M=PMσXNηNM\displaystyle\tilde{\hbox{\,\Large$\triangleright$}}_{M}~{}=~{}P_{M}-\partial_{\sigma}X^{N}\eta_{NM}~{}~{}~{} (4.32)

which satisfies the same current algebra (4.30) with opposite sign. The number of canonical variables of the doubled space are 4D, while the physical one is 2D. The 2D equations  ~M=0\tilde{\hbox{\,\Large$\triangleright$}}_{M}=0 is the usual selfduality condition to suppress 2D unphysical degrees of freedom, so we call  ~M\tilde{\hbox{\,\Large$\triangleright$}}_{M} “anti-selfdual current”. Another current  M{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{\hbox{\,\Large$\triangleright$}}}_{M} is selfdual current.

There are two sets of Virasoro constraints written in terms of the selfdual current and the anti-selfdual current

{=14 Mη^MN N𝒮=14 MηMN N,{~=14 ~Mη^MN ~N𝒮~=14 ~MηMN ~N.\displaystyle\left\{\begin{array}[]{ccl}{\cal H}&=&\frac{1}{4}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{\hbox{\,\Large$\triangleright$}}}_{M}\hat{\eta}^{MN}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{\hbox{\,\Large$\triangleright$}}}_{N}\\ {\cal S}&=&\frac{1}{4}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{\hbox{\,\Large$\triangleright$}}}_{M}\eta^{MN}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{\hbox{\,\Large$\triangleright$}}}_{N}\end{array}\right.~{}~{},~{}~{}\left\{\begin{array}[]{ccl}\tilde{\cal H}&=&\frac{1}{4}\tilde{\hbox{\,\Large$\triangleright$}}_{M}\hat{\eta}^{MN}\tilde{\hbox{\,\Large$\triangleright$}}_{N}\\ \tilde{\cal S}&=&\frac{1}{4}\tilde{\hbox{\,\Large$\triangleright$}}_{M}\eta^{MN}\tilde{\hbox{\,\Large$\triangleright$}}_{N}\end{array}\right.~{}~{}. (4.37)

{\cal H} and 𝒮{\cal S} satisfy the Virasoro algebra

[𝒮(σ),𝒮(σ)}]\displaystyle[{\cal S}(\sigma),{\cal S}(\sigma^{\prime})\}] =\displaystyle= i{𝒮(σ)+𝒮(σ)}σδ(σσ)\displaystyle i\{{\cal S}(\sigma)+{\cal S}(\sigma^{\prime})\}\partial_{\sigma}\delta(\sigma-\sigma^{\prime})
[𝒮(σ),(σ)}]\displaystyle\left[{\cal S}(\sigma),{\cal H}(\sigma^{\prime})\}\right] =\displaystyle= i{(σ)+(σ)}σδ(σσ)\displaystyle i\{{\cal H}(\sigma)+{\cal H}(\sigma^{\prime})\}\partial_{\sigma}\delta(\sigma-\sigma^{\prime}) (4.38)
[(σ),(σ)}]\displaystyle\left[{\cal H}(\sigma),{\cal H}(\sigma^{\prime})\}\right] =\displaystyle= i{𝒮(σ)+𝒮(σ)}σδ(σσ),\displaystyle i\{{\cal S}(\sigma)+{\cal S}(\sigma^{\prime})\}\partial_{\sigma}\delta(\sigma-\sigma^{\prime})~{}~{}~{},

while ~\tilde{\cal H} and 𝒮~\tilde{\cal S} satisfy the same Virasoro algebra with opposite signs on the right hand side.

As seen in the Hamiltonian in curved background (4.1) currents  M\hbox{\,\Large$\triangleright$}_{M} coupled to the vielbein as

 A=EA MM, ~A=EA ~MM.\displaystyle\hbox{\,\Large$\triangleright$}_{A}=E_{A}{}^{M}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{\hbox{\,\Large$\triangleright$}}}_{M}~{}~{},~{}~{}\tilde{\hbox{\,\Large$\triangleright$}}_{A}=E_{A}{}^{M}\tilde{\hbox{\,\Large$\triangleright$}}_{M}~{}~{}~{}. (4.39)

In curved background the Virasoro constraints become

{=14 Aη^AB B=14 MGMN N𝒮=14 AηAB B=14 MηMN N,{~=14 ~Aη^AB ~B=14 ~MGMN ~N𝒮~=14 ~AηAB ~B=14 ~MηMN ~N.\displaystyle\left\{\begin{array}[]{ccl}{\cal H}&=&\frac{1}{4}{\hbox{\,\Large$\triangleright$}}_{A}\hat{\eta}^{AB}{\hbox{\,\Large$\triangleright$}}_{B}=\frac{1}{4}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{\hbox{\,\Large$\triangleright$}}}_{M}G^{MN}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{\hbox{\,\Large$\triangleright$}}}_{N}\\ {\cal S}&=&\frac{1}{4}{\hbox{\,\Large$\triangleright$}}_{A}\eta^{AB}{\hbox{\,\Large$\triangleright$}}_{B}=\frac{1}{4}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{\hbox{\,\Large$\triangleright$}}}_{M}\eta^{MN}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{\hbox{\,\Large$\triangleright$}}}_{N}\end{array}\right.~{}~{},~{}~{}\left\{\begin{array}[]{ccl}\tilde{\cal H}&=&\frac{1}{4}\tilde{\hbox{\,\Large$\triangleright$}}_{A}\hat{\eta}^{AB}\tilde{\hbox{\,\Large$\triangleright$}}_{B}=\frac{1}{4}\tilde{\hbox{\,\Large$\triangleright$}}_{M}G^{MN}\tilde{\hbox{\,\Large$\triangleright$}}_{N}\\ \tilde{\cal S}&=&\frac{1}{4}\tilde{\hbox{\,\Large$\triangleright$}}_{A}\eta^{AB}\tilde{\hbox{\,\Large$\triangleright$}}_{B}=\frac{1}{4}\tilde{\hbox{\,\Large$\triangleright$}}_{M}\eta^{MN}\tilde{\hbox{\,\Large$\triangleright$}}_{N}\end{array}\right.~{}. (4.44)

The O(D,D) covariant Hamiltonian is given by the sum of all these Virasoro constraints with Lagrange multipliers which are doubled zweibeins [55]

H\displaystyle H =\displaystyle= g+s𝒮+g~~+s~𝒮~\displaystyle g{\cal H}+s{\cal S}+\tilde{g}\tilde{\cal H}+\tilde{s}\tilde{\cal S} (4.45)
=\displaystyle= 12[PAMABPB+2PANACηCBXB+XAηACMCDηDBXB]\displaystyle\frac{1}{2}\left[P_{A}M^{AB}P_{B}+2P_{A}N^{AC}\eta_{CB}X^{\prime B}+X^{\prime A}\eta_{AC}M^{CD}\eta_{DB}X^{\prime B}\right]

with PA=PMEAMP_{A}=P_{M}E_{A}{}^{M} and XAXMEMAX^{\prime A}\equiv X^{\prime M}E_{M}{}^{A}. We used the fact that the covariant derivatives are rewritten as  A=PA+XBηBA\hbox{\,\Large$\triangleright$}_{A}=P_{A}+X^{\prime B}\eta_{BA} and  ~A=PAXBηBA\tilde{\hbox{\,\Large$\triangleright$}}_{A}=P_{A}-X^{\prime B}\eta_{BA} by the orthogonal condition (4.15). Matrices MABM^{AB} and NABN^{AB} are given as

MAB\displaystyle M^{AB} =\displaystyle= g+g~2η^AB+s+s~2ηAB\displaystyle\frac{g+\tilde{g}}{2}\hat{\eta}^{AB}+\frac{s+\tilde{s}}{2}\eta^{AB}
NAB\displaystyle N^{AB} =\displaystyle= gg~2η^AB+ss~2ηAB,\displaystyle\frac{g-\tilde{g}}{2}\hat{\eta}^{AB}+\frac{s-\tilde{s}}{2}\eta^{AB}~{}~{}~{}, (4.46)

with the inverse of MABM^{AB} as

M1AB\displaystyle M^{-1}{}_{AB} =\displaystyle= 2(g+g~)2(s+s~)2{(g+g~)η^AB(s+s~)ηAB}.\displaystyle\frac{2}{(g+\tilde{g})^{2}-(s+\tilde{s})^{2}}\left\{(g+\tilde{g})\hat{\eta}_{AB}-(s+\tilde{s})\eta_{AB}\right\}~{}~{}~{}. (4.47)

The Legendre transformation of the Hamiltonian (4.45) with (4.46) leads to the following Lagrangian

L\displaystyle L =\displaystyle= PMX˙MH=12J+M1AJABB\displaystyle P_{M}\dot{X}^{M}-H~{}=~{}\frac{1}{2}J_{+}{}^{A}M^{-1}{}_{AB}J_{-}{}^{B} (4.50)
{J+A=X˙A+(g~η^AB+s~ηAB)ηBCXCJA=X˙A(gη^AB+sηAB)ηBCXC\displaystyle\left\{\begin{array}[]{ccl}J_{+}{}^{A}&=&\dot{X}^{A}+(\tilde{g}\hat{\eta}^{AB}+\tilde{s}\eta^{AB})\eta_{BC}X^{\prime C}\\ J_{-}{}^{A}&=&\dot{X}^{A}-({g}\hat{\eta}^{AB}+{s}\eta^{AB})\eta_{BC}X^{\prime C}\end{array}\right.

with X˙AX˙MEMA\dot{X}^{A}\equiv\dot{X}^{M}E_{M}{}^{A}.

The Lagrangian in (4.50) can be written in terms of the selfdual current and the anti-selfdual current which is equal to JJ_{-} in (4.50). The selfdual and anti-selfdual currents are given by

{JSDA=(X˙AsXA)+gη^ABηBCXCJSD¯A=(X˙AsXA)gη^ABηBCXC.\displaystyle\left\{\begin{array}[]{ccl}J_{\rm SD}{}^{A}&=&(\dot{X}^{A}-sX^{\prime A})+{g}\hat{\eta}^{AB}\eta_{BC}X^{\prime C}\\ J_{\overline{\rm SD}}{}^{A}&=&(\dot{X}^{A}-sX^{\prime A})-{g}\hat{\eta}^{AB}\eta_{BC}X^{\prime C}\end{array}\right.~{}~{}~{}. (4.53)

The selfdual and anti-selfdual currents in the flat background, JSD/SD¯=MJSD/SD¯EAAMJ_{\rm SD/\overline{SD}}{}^{M}=J_{\rm SD/\overline{SD}}{}^{A}E_{A}{}^{M}, are written as

{JSDM=(X˙MsXM)+gη^MNηNLXLJSD¯M=(X˙MsXM)gη^MNηNLXL.\displaystyle\left\{\begin{array}[]{ccl}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{J}}_{\rm SD}{}^{M}&=&(\dot{X}^{M}-sX^{\prime M})+{g}\hat{\eta}^{MN}\eta_{NL}X^{\prime L}\\ {\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{J}}_{\overline{\rm SD}}{}^{M}&=&(\dot{X}^{M}-sX^{\prime M})-{g}\hat{\eta}^{MN}\eta_{NL}X^{\prime L}\end{array}\right.~{}~{}~{}. (4.56)

It is denoted that η^MN\hat{\eta}^{MN} becomes GMNG^{MN} in a curved background. The resultant O(D,D) covariant Lagrangian for a 𝒯{\cal T}-string is given [55] as

I\displaystyle I =\displaystyle= 𝑑τ𝑑σL\displaystyle\displaystyle\int d\tau d\sigma~{}L
L\displaystyle L =\displaystyle= ϕJSDη^ABAJSD¯+Bϕ¯JSD¯η^ABAJSD¯+Bϕ~JSD¯ηABAJSD¯B\displaystyle\phi J_{\rm SD}{}^{A}\hat{\eta}_{AB}J_{\overline{\rm SD}}{}^{B}+\bar{\phi}J_{\overline{\rm SD}}{}^{A}\hat{\eta}_{AB}J_{\overline{\rm SD}}{}^{B}+\tilde{\phi}J_{\overline{\rm SD}}{}^{A}{\eta}_{AB}J_{\overline{\rm SD}}{}^{B} (4.57)
=\displaystyle= ϕJSDGMNMJSD¯+Nϕ¯JSD¯GMNMJSD¯+Nϕ~JSD¯ηMNMJSD¯.N\displaystyle\phi{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{J}}_{\rm SD}{}^{M}G_{MN}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{J}}_{\overline{\rm SD}}{}^{N}+\bar{\phi}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{J}}_{\overline{\rm SD}}{}^{M}G_{MN}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{J}}_{\overline{\rm SD}}{}^{N}+\tilde{\phi}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{J}}_{\overline{\rm SD}}{}^{M}{\eta}_{MN}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{J}}_{\overline{\rm SD}}{}^{N}~{}~{}~{}.

The first term is the kinetic term, while the rest are constraints that are squares of the anti-selfdual currents. The Lagrange multipliers ϕ\phi, ϕ¯\bar{\phi} and ϕ~\tilde{\phi} are related to the doubled zweibeins as

{ϕ=12gϕ¯=12g[(g+g~)2(s+s~)2]{(s+s~)2+g2g~2}ϕ~=s+s~(g+g~)2(s+s~)2\displaystyle\left\{\begin{array}[]{ccl}\phi&=&\displaystyle\frac{1}{2g}\\ \bar{\phi}&=&\displaystyle\frac{1}{2g[(g+\tilde{g})^{2}-(s+\tilde{s})^{2}]}\left\{(s+\tilde{s})^{2}+g^{2}-\tilde{g}^{2}\right\}\\ \tilde{\phi}&=&-\displaystyle\frac{s+\tilde{s}}{(g+\tilde{g})^{2}-(s+\tilde{s})^{2}}\end{array}\right. (4.61)

4.2 String from O(D,D) 𝒯{\cal T}-string

We break the O(D,D) T-duality symmetry of 𝒯{\cal T}-string into the GL(D) symmetry of the usual string. The background gauge field of 𝒯{\cal T}-string is O(D,D)/O(D-1,1)2 coset parameter which includes the D-dimensional metric gmng_{mn} and BmnB_{mn} field, while the background gauge field of a string is GL(D)/SO(D-1,1) coset parameter which includes only gmng_{mn}. In this subsection we use the coordinate XM=(xm,ym)X^{M}=(x^{m},~{}y_{m}) with off-diagonal ηMN\eta_{MN} to describe 𝒯{\cal T}-string, while the left/right moving coordinate with diagonal ηMN=(𝟏,𝟏)\eta_{MN}=({\bf 1},-{\bf 1}) was used in the reference [55]. The Weyl/Lorentz gauge of the zweibein [55] is given as

ε±=μ(ε+τε+σετεσ)=(1gs1gs).\displaystyle\varepsilon_{\pm}{}^{\mu}=\left(\begin{array}[]{cc}\varepsilon_{+}{}^{\tau}&\varepsilon_{+}{}^{\sigma}\\ \varepsilon_{-}{}^{\tau}&\varepsilon_{-}{}^{\sigma}\end{array}\right)=\left(\begin{array}[]{cc}1&g-s\\ 1&-g-s\end{array}\right)~{}~{}~{}~{}. (4.66)

The left/right moving modes with the zweibein is ε±Xε±μμX\varepsilon_{\pm}X\equiv\varepsilon_{\pm}{}^{\mu}\partial_{\mu}X. The selfdual and anti-selfdual currents (4.56) are expressed as

{JSD/SD¯m=x˙msxm±gη^mnyn=ετxm±gη^mnεσynJSD/SD¯;m=y˙msym±gη^mnxn=ετym±gη^mnεσxn.\displaystyle\left\{\begin{array}[]{lcl}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{J}}_{{\rm SD}/\overline{\rm SD}}{}^{{m}}&=&\dot{x}^{{m}}-sx^{\prime{m}}\pm g\hat{\eta}^{{m}{n}}y^{\prime}_{{n}}~{}=~{}\varepsilon_{\tau}x^{{m}}\pm g\hat{\eta}^{{m}{n}}\varepsilon_{\sigma}y_{{n}}\\ {\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{J}}_{{\rm SD}/\overline{\rm SD}}{}_{;{m}}&=&\dot{y}_{{m}}-sy^{\prime}_{{m}}\pm g\hat{\eta}_{{m}{n}}x^{\prime{n}}~{}=~{}\varepsilon_{\tau}y_{{m}}\pm g\hat{\eta}_{{m}{n}}\varepsilon_{\sigma}x^{{n}}\end{array}\right.~{}~{}~{}. (4.69)

with

εμXεμννX,εμ=ν(εττετσεστεσσ)=(1s01)\displaystyle\varepsilon_{\mu}X\equiv\varepsilon_{\mu}{}^{\nu}\partial_{\nu}X~{}~{},~{}~{}\varepsilon_{\mu}{}^{\nu}=\left(\begin{array}[]{cc}\varepsilon_{\tau}{}^{\tau}&\varepsilon_{\tau}{}^{\sigma}\\ \varepsilon_{\sigma}{}^{\tau}&\varepsilon_{\sigma}{}^{\sigma}\end{array}\right)=\left(\begin{array}[]{cc}1&-s\\ 0&1\end{array}\right) (4.74)

The condition of vanishing the anti-selfdual current in s=0s=0 and g=1g=1 gauge leads to the selfduality constraint in flat space as μy=ϵμννx\partial_{\mu}{y}=\epsilon_{\mu\nu}\partial^{\nu}x with τ=τ\partial^{\tau}=-\partial_{\tau}. In the gauge ϕ=12g\phi=\frac{1}{2g} and ϕ¯=0=ϕ~\bar{\phi}=0=\tilde{\phi}, corresponding to g=g~g=\tilde{g} and s+s~=0s+\tilde{s}=0, the O(D,D) covariant Lagrangian (4.57) is written as

12gJSDη^ABAJSD¯B\displaystyle\displaystyle\frac{1}{2g}~{}J_{\rm SD}{}^{A}\hat{\eta}_{AB}J_{\overline{\rm SD}}{}^{B}
=12g(X˙sX)Aη^AB(X˙sX)Bg2XCηCDη^DAη^ABη^BFηFGXG\displaystyle~{}~{}~{}=~{}\displaystyle\frac{1}{2g}(\dot{X}-sX^{\prime})^{A}\hat{\eta}_{AB}(\dot{X}-sX^{\prime})^{B}-\displaystyle\frac{g}{2}X^{\prime C}\eta_{CD}\hat{\eta}^{DA}\hat{\eta}_{AB}\hat{\eta}^{BF}\eta_{FG}X^{\prime G}
=12g(X˙sX)MEMη^ABAEN(X˙sX)NBg2XMηMLEAη^ABLEBηKNKXN\displaystyle~{}~{}~{}=~{}\displaystyle\frac{1}{2g}(\dot{X}-sX^{\prime})^{M}E_{M}{}^{A}\hat{\eta}_{AB}E_{N}{}^{B}(\dot{X}-sX^{\prime})^{N}-\displaystyle\frac{g}{2}X^{\prime M}\eta_{ML}E_{A}{}^{L}\hat{\eta}^{AB}E_{B}{}^{K}\eta_{KN}X^{\prime N}
=12gε+XMGMNεXN\displaystyle~{}~{}~{}=~{}\displaystyle\frac{1}{2g}~{}\varepsilon_{+}X^{M}~{}G_{MN}~{}\varepsilon_{-}X^{N}
=12gε+XMEMη^ABAENεBXN.\displaystyle~{}~{}~{}=~{}\displaystyle\frac{1}{2g}~{}\varepsilon_{+}X^{M}E_{M}{}^{A}~{}\hat{\eta}_{AB}~{}E_{N}{}^{B}\varepsilon_{-}X^{N}~{}~{}~{}. (4.75)

The orthogonality condition is used in the second equality, ηMLGLKηKN=GMN\eta_{ML}G^{LK}\eta_{KN}=G_{MN}, so EMηABA=ηMNEBNE_{M}{}^{A}\eta_{AB}=\eta_{MN}E_{B}{}^{N}, is used in the last equality. In terms of xm,ymx^{m},y_{m} coordinates it is given by

12gJSDη^ABAJSD¯B\displaystyle\displaystyle\frac{1}{2g}~{}J_{\rm SD}{}^{A}\hat{\eta}_{AB}J_{\overline{\rm SD}}{}^{B}
=12g(ε+xmε+ym)(gmnBmlglkBknBmlglngmlBlngmn)(εxnεyn)\displaystyle~{}~{}~{}=~{}\displaystyle\frac{1}{2g}~{}(\varepsilon_{+}x^{m}~{}\varepsilon_{+}y_{m})\left(\begin{array}[]{cc}g_{mn}-B_{ml}g^{lk}B_{kn}&-B_{ml}g^{ln}\\ g^{ml}B_{ln}&g^{mn}\end{array}\right)\left(\begin{array}[]{c}\varepsilon_{-}x^{n}\\ \varepsilon_{-}y_{n}\end{array}\right) (4.80)
=12g(ε+xmε+ym)(emaBmleal0eam)(ηab00ηab)(enb0Bnkebkebn)(εxnεyn)\displaystyle~{}~{}~{}=~{}\displaystyle\frac{1}{2g}~{}(\varepsilon_{+}x^{m}~{}\varepsilon_{+}y_{m})\left(\begin{array}[]{cc}e_{m}{}^{a}&-B_{ml}e_{a}{}^{l}\\ 0&e_{a}{}^{m}\end{array}\right)\left(\begin{array}[]{cc}\eta_{ab}&0\\ 0&\eta^{ab}\end{array}\right)\left(\begin{array}[]{cc}e_{n}{}^{b}&0\\ -B_{nk}e_{b}{}^{k}&e_{b}{}^{n}\end{array}\right)\left(\begin{array}[]{c}\varepsilon_{-}x^{n}\\ \varepsilon_{-}y_{n}\end{array}\right) (4.89)
=12g[ε+xmgmnεxn+(ε+ymε+xlBlm)gmn(εyn+Bnkεxk)]\displaystyle~{}~{}~{}=~{}\displaystyle\frac{1}{2g}~{}\left[\varepsilon_{+}x^{m}g_{mn}\varepsilon_{-}x^{n}+(\varepsilon_{+}y_{m}-\varepsilon_{+}x^{l}B_{lm})g^{mn}(\varepsilon_{-}y_{n}+B_{nk}\varepsilon_{-}x^{k})\right]

We break the O(D,D) symmetry into the GL(D) symmetry by the dimensional reduction (1.2). The resultant Lagrangian is the kinetic term of the usual string with the zweibein field;

L0\displaystyle L_{0} =\displaystyle= 12gε+xmgmnεxn\displaystyle\displaystyle\frac{1}{2g}~{}\varepsilon_{+}x^{m}~{}g_{mn}~{}\varepsilon_{-}x^{n}~{}~{}~{} (4.90)

In order to obtain the Wess-Zumino term we add the total derivative term

μ(ϵμνxmνym)=x˙yxy˙=12g(ε+xεyε+yεx)\displaystyle\partial_{\mu}(\epsilon^{\mu\nu}x^{m}\partial_{\nu}y_{m})=\dot{x}y^{\prime}-x^{\prime}\dot{y}=-\frac{1}{2g}(\varepsilon_{+}x~{}\varepsilon_{-}y-\varepsilon_{+}y~{}\varepsilon_{-}x) (4.91)

to the O(D,D) Lagrangian L{L} (4.80)

12gJSDη^ABAJSD¯Bμ(ϵμνxmνym)\displaystyle\frac{1}{2g}J_{\rm SD}{}^{A}\hat{\eta}_{AB}J_{\overline{\rm SD}}{}^{B}-\partial_{\mu}(\epsilon^{\mu\nu}x^{m}\partial_{\nu}y_{m}) (4.92)
=12g{ε+xmgmnεnx\displaystyle~{}~{}~{}=\frac{1}{2g}\left\{\varepsilon_{+}x^{m}g_{mn}\varepsilon_{-}^{n}x\right.
+(ε+ymε+xlBlmε+xlglm)gmn(εyn+Bnkεxk+gnkεxk)\displaystyle~{}~{}~{}~{}~{}\left.+(\varepsilon_{+}y_{m}-\varepsilon_{+}x^{l}B_{lm}-\varepsilon_{+}x^{l}g_{lm})g^{mn}(\varepsilon_{-}y_{n}+B_{nk}\varepsilon_{-}x^{k}+g_{nk}\varepsilon_{-}x^{k})\right.
+ε+xmgmnεxn+2ε+xmBmnεxn}\displaystyle~{}~{}~{}~{}~{}\left.+\varepsilon_{+}x^{m}g_{mn}\varepsilon_{-}x^{n}+2\varepsilon_{+}x^{m}B_{mn}\varepsilon_{-}x^{n}\right\}~{}~{}~{}

By the dimensional reduction (1.2) the Lagrangian with the total derivative term reduces into the string Lagrangian in curved background with the Wess-Zumino term as the curved world-sheet version of (4.9),

L0+LWZ\displaystyle L_{0}+L_{\rm WZ} =\displaystyle= 1gε+xm(gmn+Bmn)εxn.\displaystyle\frac{1}{g}~{}\varepsilon_{+}x^{m}(g_{mn}+B_{mn})\varepsilon_{-}x^{n}~{}~{}~{}. (4.93)

The zweibeins in (4.93) and (4.1) are related as

g=2hh00,s=h01h00.\displaystyle g=-\displaystyle\frac{2}{\sqrt{-h}h^{00}}~{}~{},~{}~{}s=-\displaystyle\frac{h^{01}}{h^{00}}~{}~{}~{}. (4.94)

5 Lagrangians of String via 𝒯{\cal T}-string from 𝒜{\cal A}5-brane

In this section we derive the 𝒯{\cal T}-string Lagrangian from the 𝒜{\cal A}5-brane Lagrangian. The obtained 𝒯{\cal T}-string Lagrangian is described by the SL(4) two rank anti-symmetric tensor coordinate coupled to the string background. Then the reduction procedure from the 𝒯{\cal T}-string Lagrangian to the conventional string Lagrangian is presented.


5.1 𝒯{\cal T}-string from 𝒜{\cal A}5-brane

The O(3,3) 𝒯{\cal T}-string from 𝒜{\cal A}5-brane is described by the SL(4) two rank anti-symmetric tensor coordinate Xmn¯=(xm¯,ym¯n¯)X^{\underline{mn}}=(x^{\bar{m}},~{}y^{\bar{m}\bar{n}}) with m¯=1,,4\underline{m}=1,\cdots,4 and  m¯=1,2,3\bar{m}=1,2,3 as listed in (2.63). The SL(6) two rank tensor coordinate is decomposed as SL(6) \to SL(5) \to SL(4) as Xm^n^=(X0n=Yn,Xmn)X^{\hat{m}\hat{n}}=(X^{0n}=Y^{n},~{}X^{mn}) \to Xmn=(X5n¯=Ym¯,Xm¯n¯)X^{{m}{n}}=(X^{5\underline{n}}=Y^{\underline{m}},~{}X^{\underline{m}\underline{n}}) \to Xm¯n¯=(X4m¯=xm¯,Xm¯n¯=ym¯n¯)X^{\underline{m}\underline{n}}=(X^{4\bar{m}}=x^{\bar{m}},~{}X^{\bar{m}\bar{n}}=y^{\bar{m}\bar{n}}) with m^=0,1,,5\hat{m}=0,1,\cdots,5 and m=1,,5m=1,\cdots,5. The 6-dimensional world-volume derivative is reduced into the string world-sheet derivatives as m^=(0=τ,5=σ,m¯=0)\partial^{\hat{m}}=(\partial^{0}=\partial_{\tau},~{}\partial^{5}=\partial_{\sigma},~{}\partial^{\underline{m}}=0). The SL(6) field strength for the 𝒯{\cal T}-string has the following components

F=0mn¯τXmn¯,F=5mn¯σXmn¯,F=05m¯0=F.mnl¯\displaystyle{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{F}}{}^{0\underline{mn}}~{}=~{}\partial_{\tau}X^{\underline{mn}}~{},~{}~{}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{F}}{}^{5\underline{mn}}~{}=~{}\partial_{\sigma}X^{\underline{mn}}~{}~{},~{}~{}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{F}}{}^{05\underline{m}}~{}=~{}0~{}=~{}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{F}}{}^{\underline{mnl}}~{}~{}~{}. (5.1)

The SL(6) vielbein for the 𝒯{\cal T}-string has a block diagonal form as

Em^a^\displaystyle E_{\hat{m}}{}^{\hat{a}} =\displaystyle= (E00^E05^E0a¯E50^E55^E5a¯Em¯0^Em¯5^Em¯a¯)=(1g00sg1000g1/4Em¯a¯).\displaystyle{\left(\begin{array}[]{ccc}E_{0}{}^{\hat{0}}&E_{0}{}^{\hat{5}}&E_{0}{}^{\underline{a}}\\ E_{5}{}^{\hat{0}}&E_{5}{}^{\hat{5}}&E_{5}{}^{\underline{a}}\\ E_{\underline{m}}{}^{\hat{0}}&E_{\underline{m}}{}^{\hat{5}}&E_{\underline{m}}{}^{\underline{a}}\end{array}\right)=\left(\begin{array}[]{ccc}\displaystyle\frac{1}{g}&0&0\\ -\displaystyle\frac{s}{g}&1&0\\ ~{}~{}0{}{}&~{}~{}0{}{}&g^{1/4}E_{\underline{m}}{}^{\underline{a}}\end{array}\right)}~{}~{}~{}. (5.8)

The selfdual and the anti-selfdual currents are the following combinations of the SL(6) field strengths in (5.1) with (3.16) as

JSD/SD¯a¯1a¯2\displaystyle{J}_{{\rm SD}/\overline{\rm SD}}{}^{\underline{a}_{1}\underline{a}_{2}} =\displaystyle= g(F0^a¯1a¯2±12ϵ0^a¯1a¯2F5^a¯3a¯45a¯3a¯4).\displaystyle g\left(F^{\hat{0}\underline{a}_{1}\underline{a}_{2}}\pm\frac{1}{2}\epsilon^{\hat{0}\underline{a}_{1}\underline{a}_{2}}{}_{5\underline{a}_{3}\underline{a}_{4}}F^{\hat{5}\underline{a}_{3}\underline{a}_{4}}\right)~{}~{}~{}. (5.9)

The zweibein fields gg and ss are part of the SL(6) vielbein (5.8) in the new SL(6) duality symmetry formulation in (3.16), contrast to that the world-volume vielbein fields are separated from the SL(4) spacetime vielbein Em¯a¯E_{\underline{m}}{}^{\underline{a}} in the SL(5) formulation in (3.5) and (3.6) as

JSD/SD¯a¯1a¯2\displaystyle{J}_{{\rm SD}/\overline{\rm SD}}{}^{\underline{a}_{1}\underline{a}_{2}} =\displaystyle= JSD/SD¯Em¯1m¯1m¯2Em¯2a¯1a¯2\displaystyle{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{J}}_{{\rm SD}/\overline{\rm SD}}{}^{\underline{m}_{1}\underline{m}_{2}}E_{\underline{m}_{1}}{}^{\underline{a}_{1}}E_{\underline{m}_{2}}{}^{\underline{a}_{2}}
JSD/SD¯m¯1m¯2\displaystyle{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{J}}_{{\rm SD}/\overline{\rm SD}}{}^{\underline{m}_{1}\underline{m}_{2}} =\displaystyle= ετXm¯1m¯2±12η^m¯1n¯1η^m¯2n¯2(ϵn¯1n¯4)εσXn¯3n¯4\displaystyle\varepsilon_{\tau}{X}^{\underline{m}_{1}\underline{m}_{2}}\pm\frac{1}{2}\hat{\eta}^{\underline{m}_{1}\underline{n}_{1}}\hat{\eta}^{\underline{m}_{2}\underline{n}_{2}}(-\epsilon_{\underline{n}_{1}\cdots\underline{n}_{4}})\varepsilon_{\sigma}X^{\underline{n}_{3}\underline{n}_{4}}~{}~{}~{} (5.10)

with (4.66). The minus sign in the last equation is caused from ϵm¯1m¯2m¯3xm¯3=ϵm¯1m¯24m¯3X4m¯3\epsilon_{\bar{m}_{1}\bar{m}_{2}\bar{m}_{3}}x^{\bar{m}_{3}}=-\epsilon_{\bar{m}_{1}\bar{m}_{2}4\bar{m}_{3}}X^{4\bar{m}_{3}}. The O(3,3) invariant metric ηMN\eta_{MN} becomes SL(4) invariant metric ϵm¯1m¯4\epsilon_{\underline{m}_{1}\cdots\underline{m}_{4}}. The current in (5.10) is written in terms of xm¯x^{\bar{m}} and ym¯n¯y^{\bar{m}\bar{n}} as

{JSD/SD¯4m¯=x˙m¯sxm¯±g12ϵm¯yn¯1n¯2n¯1n¯2=ετxm^±12ϵm^εσn^1n^2yn^1n^2JSD/SD¯m¯1m¯2=y˙m¯1m¯2sym¯1m¯2±gϵm¯1m¯2xn¯n¯=ετym^1m^2±ϵm^1m^2εσn^xn^\displaystyle\left\{\begin{array}[]{lcl}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{J}}_{{\rm SD}/\overline{\rm SD}}{}^{4\bar{m}}&=&\dot{x}^{\bar{m}}-sx^{\prime\bar{m}}\pm g\frac{1}{2}\epsilon^{\bar{m}}{}_{\bar{n}_{1}\bar{n}_{2}}y^{\prime\bar{n}_{1}\bar{n}_{2}}~{}=~{}\varepsilon_{\tau}x^{\hat{m}}\pm\frac{1}{2}\epsilon^{\hat{m}}{}_{\hat{n}_{1}\hat{n}_{2}}\varepsilon_{\sigma}y^{\hat{n}_{1}\hat{n}_{2}}\\ {\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{J}}_{{\rm SD}/\overline{\rm SD}}{}^{\bar{m}_{1}\bar{m}_{2}}&=&\dot{y}^{\bar{m}_{1}\bar{m}_{2}}-sy^{\prime\bar{m}_{1}\bar{m}_{2}}\pm g\epsilon^{\bar{m}_{1}\bar{m}_{2}}{}_{\bar{n}}x^{\prime\bar{n}}~{}=~{}\varepsilon_{\tau}y^{\hat{m}_{1}\hat{m}_{2}}\pm\epsilon^{\hat{m}_{1}\hat{m}_{2}}{}_{\hat{n}}\varepsilon_{\sigma}x^{\hat{n}}\end{array}\right.~{}~{}~{} (5.13)

which is related to the O(D,D) vector currents (4.69) with ym¯n¯ϵm¯n¯l¯yl¯y^{\bar{m}\bar{n}}\equiv\epsilon^{\bar{m}\bar{n}\bar{l}}y_{\bar{l}}.

In order to obtain the usual 3-dimensional string Lagrangian we express the spacetime vielbein Em¯a¯E_{\underline{m}}{}^{\underline{a}} \in SL(4)/SO(4) in terms of the 3-dimensional metric gm¯n¯g_{\bar{m}\bar{n}} and the Bm¯n¯B_{\bar{m}\bar{n}} field. The O(3,3) vector index contraction and the SL(4) tensor index contraction are assumed to be equal up to the normalization as

dXMEMA\displaystyle dX^{M}E_{M}{}^{A} =\displaystyle= dxm¯Em¯+Adym¯Em¯;A=dX4x¯E4m¯+A12dXm¯n¯Em¯n¯=A12dXm¯n¯Em¯n¯.A\displaystyle dx^{\bar{m}}E_{\bar{m}}{}^{A}+dy_{\bar{m}}E^{\bar{m};A}=dX^{4\bar{x}}E_{4\bar{m}}{}^{A}+\frac{1}{2}dX^{\bar{m}\bar{n}}E_{\bar{m}\bar{n}}{}^{A}=\frac{1}{2}dX^{\underline{m}\underline{n}}E_{\underline{m}\underline{n}}{}^{A}~{}~{}~{}.

We rewrite the O(D,D) vielbein in (4.24) in terms of tensor indices for D=3 case as

EMA\displaystyle E_{M}{}^{A} =\displaystyle= (em¯a¯Bm¯l¯eb¯ϵa¯1a¯2b¯l¯0ϵm¯1m¯2m¯eb¯ϵa¯1a¯2b¯m¯)\displaystyle\left(\begin{array}[]{cc}e_{\bar{m}}{}^{\bar{a}}&-B_{\bar{m}\bar{l}}e_{\bar{b}}{}^{\bar{l}}\epsilon^{\bar{a}_{1}\bar{a}_{2}\bar{b}}\\ 0&\epsilon_{\bar{m}_{1}\bar{m}_{2}\bar{m}}e_{\bar{b}}{}^{\bar{m}}\epsilon^{\bar{a}_{1}\bar{a}_{2}\bar{b}}\end{array}\right)~{} (5.17)
=\displaystyle= c(E4m¯4a¯E4m¯a¯1a¯2Em¯1m¯24a¯Em¯1m¯2a¯1a¯2)=cEm¯1m¯2=a¯1a¯2cE[m¯1Em¯2]a¯1a¯2\displaystyle c\left(\begin{array}[]{cc}E_{4\bar{m}}{}^{4\bar{a}}&E_{4\bar{m}}{}^{\bar{a}_{1}\bar{a}_{2}}\\ E_{\bar{m}_{1}\bar{m}_{2}}{}^{4\bar{a}}&E_{\bar{m}_{1}\bar{m}_{2}}{}^{\bar{a}_{1}\bar{a}_{2}}\end{array}\right)~{}=~{}cE_{\underline{m}_{1}\underline{m}_{2}}{}^{\underline{a}_{1}\underline{a}_{2}}~{}=~{}cE_{[\underline{m}_{1}}{}^{\underline{a}_{1}}E_{\underline{m}_{2}]}{}^{\underline{a}_{2}}~{}~{} (5.20)

with a normalization factor cc. The vielbein with the tensor indices can be written as the product of the one with the vector indices

Em¯a¯\displaystyle E_{\underline{m}}{}^{\underline{a}} =\displaystyle= (E44E4a¯Em¯4Em¯a¯)=𝐞1/4(1B~n¯en¯a¯0em¯a¯)\displaystyle\left(\begin{array}[]{cc}E_{4}{}^{4}&E_{4}{}^{\bar{a}}\\ E_{\bar{m}}{}^{4}&E_{\bar{m}}{}^{\bar{a}}\end{array}\right)~{}=~{}{\bf e}^{-1/4}\left(\begin{array}[]{cc}1&-\tilde{B}^{\bar{n}}e_{\bar{n}}{}^{\bar{a}}\\ 0&e_{\bar{m}}{}^{\bar{a}}\end{array}\right)~{}~{}
B~m¯=12ϵm¯n¯l¯Bn¯l¯,𝐞=detem¯.a¯\displaystyle\tilde{B}^{\bar{m}}=\frac{1}{2}\epsilon^{\bar{m}\bar{n}\bar{l}}B_{\bar{n}\bar{l}}~{}~{},~{}~{}{\bf e}={\rm det}~{}e_{\bar{m}}{}^{\bar{a}}~{}~{}~{}.

The background gauge field in the tensor index is now

GMN\displaystyle G_{MN} =\displaystyle= Gm¯1m¯2;n¯1n¯2=122Em¯1m¯2η^a¯1[b¯1a¯1a¯2η^b¯2]a¯2En¯1n¯2b¯1b¯2\displaystyle G_{\underline{m}_{1}\underline{m}_{2};\underline{n}_{1}\underline{n}_{2}}~{}=~{}\frac{1}{2^{2}}E_{\underline{m}_{1}\underline{m}_{2}}{}^{\underline{a}_{1}\underline{a}_{2}}\hat{\eta}_{\underline{a}_{1}[\underline{b}_{1}}\hat{\eta}_{\underline{b}_{2}]\underline{a}_{2}}E_{\underline{n}_{1}\underline{n}_{2}}{}^{\underline{b}_{1}\underline{b}_{2}} (5.28)
=\displaystyle= (Gm¯n¯Gm¯;n¯1n¯2Gm¯1m¯2;n¯Gm¯1m¯2;n¯1n¯2)\displaystyle\left(\begin{array}[]{cc}G_{\bar{m}\bar{n}}&G_{\bar{m};\bar{n}_{1}\bar{n}_{2}}\\ G_{\bar{m}_{1}\bar{m}_{2};\bar{n}}&G_{\bar{m}_{1}\bar{m}_{2};\bar{n}_{1}\bar{n}_{2}}\end{array}\right)
=\displaystyle= 𝐞1(gm¯n¯B~p¯gm¯[p¯gn¯]q¯B~q¯gm¯[n¯1gn¯2]l¯B~l¯B~p¯gp¯[m¯1gm¯2]n¯gm¯1[n¯1gn¯2]m¯2)\displaystyle{\bf e}^{-1}\left(\begin{array}[]{cc}g_{\bar{m}\bar{n}}-\tilde{B}^{\bar{p}}g_{\bar{m}[\bar{p}}g_{\bar{n}]\bar{q}}\tilde{B}^{\bar{q}}&g_{\bar{m}[\bar{n}_{1}}g_{\bar{n}_{2}]\bar{l}}\tilde{B}^{\bar{l}}\\ -\tilde{B}^{\bar{p}}g_{\bar{p}[\bar{m}_{1}}g_{\bar{m}_{2}]\bar{n}}&g_{\bar{m}_{1}[\bar{n}_{1}}g_{\bar{n}_{2}]\bar{m}_{2}}\end{array}\right) (5.31)

where metric of the stability group is denoted as η^m¯n¯\hat{\eta}_{\underline{m}\underline{n}} to distinguish from ηMN\eta_{MN}.

The 𝒯{\cal T}-string Lagrangian is obtained from the world-volume covariant 𝒜{\cal A}5-Lagrangian (LABEL:ALagwithSL6)

I\displaystyle I =\displaystyle= d2σL\displaystyle\displaystyle\int d^{2}\sigma~{}L
L\displaystyle L =\displaystyle= Φ2((F0^a¯1a¯2)2+(F5^a¯1a¯2)2)+12Λ0^5^F0^a¯1a¯2F5^a¯1a¯2\displaystyle\frac{\Phi}{2}\left(-(F^{\hat{0}\underline{a}_{1}\underline{a}_{2}})^{2}+(F^{\hat{5}\underline{a}_{1}\underline{a}_{2}})^{2}\right)+\frac{1}{2}\Lambda_{\hat{0}\hat{5}}F^{\hat{0}\underline{a}_{1}\underline{a}_{2}}F^{\hat{5}}{}_{\underline{a}_{1}\underline{a}_{2}} (5.32)
+12Λa¯b¯Fa¯0^c¯Fb¯+0^c¯12Λa¯b¯Fa¯5^c¯Fb¯5^c¯\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}+\frac{1}{2}\Lambda_{\underline{a}\underline{b}}F^{\underline{a}\hat{0}\underline{c}}F^{\underline{b}}{}_{\hat{0}\underline{c}}+\frac{1}{2}\Lambda_{\underline{a}\underline{b}}F^{\underline{a}\hat{5}\underline{c}}F^{\underline{b}}{}_{\hat{5}\underline{c}}
+ϵ0^5^a¯1a¯44(Λ~0^F5^a¯1a¯20^F0^a¯3a¯4+Λ~5^F5^a¯1a¯20^F5^a¯3a¯4\displaystyle+\frac{\epsilon_{\hat{0}\hat{5}\underline{a}_{1}\cdots\underline{a}_{4}}}{4}\left(\tilde{\Lambda}_{\hat{0}}{}^{\hat{0}}F^{\hat{5}\underline{a}_{1}\underline{a}_{2}}F^{\hat{0}\underline{a}_{3}\underline{a}_{4}}+\tilde{\Lambda}_{\hat{5}}{}^{\hat{0}}F^{\hat{5}\underline{a}_{1}\underline{a}_{2}}F^{\hat{5}\underline{a}_{3}\underline{a}_{4}}\right.
Λ~0^F0^a¯1a¯25^F0^a¯3a¯4Λ~5^F0^a¯1a¯25^F5^a¯3a¯4)\displaystyle\left.~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}-\tilde{\Lambda}_{\hat{0}}{}^{\hat{5}}F^{\hat{0}\underline{a}_{1}\underline{a}_{2}}F^{\hat{0}\underline{a}_{3}\underline{a}_{4}}-\tilde{\Lambda}_{\hat{5}}{}^{\hat{5}}F^{\hat{0}\underline{a}_{1}\underline{a}_{2}}F^{\hat{5}\underline{a}_{3}\underline{a}_{4}}\right)

with η0^0^=1\eta^{\hat{0}\hat{0}}=-1 and η5^5^=1\eta^{\hat{5}\hat{5}}=1. Although currents are written as field strengths, there is no gauge symmetry of the coordinate δXm¯n¯\delta X^{\underline{m}\underline{n}}. The 𝒯{\cal T}-string Lagrangian in the SL(4) tensor coordinate is given by

L\displaystyle L =\displaystyle= ϕ122JSDη^a¯1[b¯1a¯1a¯2η^b¯2]a¯2JSD¯+b¯1b¯2ϕ¯122JSD¯η^a¯1[b¯1a¯1a¯2η^b¯2]a¯2JSD¯b¯1b¯2\displaystyle\phi\frac{1}{2^{2}}J_{\rm SD}{}^{\underline{a}_{1}\underline{a}_{2}}\hat{\eta}_{\underline{a}_{1}[\underline{b}_{1}}\hat{\eta}_{\underline{b}_{2}]\underline{a}_{2}}J_{\overline{\rm SD}}{}^{\underline{b}_{1}\underline{b}_{2}}+\bar{\phi}\frac{1}{2^{2}}J_{\overline{\rm SD}}{}^{\underline{a}_{1}\underline{a}_{2}}\hat{\eta}_{\underline{a}_{1}[\underline{b}_{1}}\hat{\eta}_{\underline{b}_{2}]\underline{a}_{2}}J_{\overline{\rm SD}}{}^{\underline{b}_{1}\underline{b}_{2}} (5.33)
+ϕ~122JSD¯ϵa¯1a¯4a¯1a¯2JSD¯a¯3a¯4\displaystyle+\tilde{\phi}\frac{1}{2^{2}}J_{\overline{\rm SD}}{}^{\underline{a}_{1}\underline{a}_{2}}{\epsilon}_{\underline{a}_{1}\cdots\underline{a}_{4}}J_{\overline{\rm SD}}{}^{\underline{a}_{3}\underline{a}_{4}}
=\displaystyle= ϕ122JSDGm¯1m¯2;n¯1n¯2m¯1m¯2JSD¯+n¯1n¯2ϕ¯122JSD¯Gm¯1m¯2;n¯1n¯2m¯1m¯2JSD¯n¯1n¯2\displaystyle\phi\frac{1}{2^{2}}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{J}}_{\rm SD}{}^{\underline{m}_{1}\underline{m}_{2}}G_{{\underline{m}_{1}\underline{m}_{2}};{\underline{n}_{1}\underline{n}_{2}}}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{J}}_{\overline{\rm SD}}{}^{\underline{n}_{1}\underline{n}_{2}}+\bar{\phi}\frac{1}{2^{2}}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{J}}_{\overline{\rm SD}}{}^{\underline{m}_{1}\underline{m}_{2}}G_{{\underline{m}_{1}\underline{m}_{2}};{\underline{n}_{1}\underline{n}_{2}}}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{J}}_{\overline{\rm SD}}{}^{\underline{n}_{1}\underline{n}_{2}}
+ϕ~122JSD¯ϵm¯1m¯4m¯1m¯2JSD¯m¯3m¯4\displaystyle+\tilde{\phi}\frac{1}{2^{2}}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{J}}_{\overline{\rm SD}}{}^{\underline{m}_{1}\underline{m}_{2}}{\epsilon}_{\underline{m}_{1}\cdots\underline{m}_{4}}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{J}}_{\overline{\rm SD}}{}^{\underline{m}_{3}\underline{m}_{4}}~{}~{}~{}

with the background metric Gm¯1m¯2;n¯1n¯2G_{\underline{m}_{1}\underline{m}_{2};\underline{n}_{1}\underline{n}_{2}} in (5.31).

The 𝒯{\cal T}-string Lagrangian in the gauge Φ=g2𝐞\Phi=g^{2}{\bf e} and Λa^b^=0=Λ~a^b^\Lambda_{\hat{a}\hat{b}}=0=\tilde{\Lambda}_{\hat{a}}{}^{\hat{b}} as

L\displaystyle L =\displaystyle= g2𝐞2((F0^a¯1a¯2)2(F5^a¯1a¯2)2).\displaystyle-\frac{g^{2}{\bf e}}{2}\left((F^{\hat{0}\underline{a}_{1}\underline{a}_{2}})^{2}-(F^{\hat{5}\underline{a}_{1}\underline{a}_{2}})^{2}\right)~{}~{}~{}. (5.34)

The SL(4) covariant Lagrangian (5.33) in the gauge ϕ=12g\phi=\frac{1}{2g} and ϕ¯=0=ϕ~\bar{\phi}=0=\tilde{\phi} is given as

L\displaystyle L =\displaystyle= 12gJSDη^ABAJSD¯B\displaystyle\displaystyle\frac{1}{2g}~{}J_{\rm SD}{}^{A}\hat{\eta}_{AB}J_{\overline{\rm SD}}{}^{B} (5.39)
=\displaystyle= 123gε+Xm¯1m¯2Gm¯1m¯2;n¯1n¯2εXn¯1n¯2\displaystyle\displaystyle\frac{1}{2^{3}g}~{}\varepsilon_{+}X^{\underline{m}_{1}\underline{m}_{2}}~{}G_{\underline{m}_{1}\underline{m}_{2};\underline{n}_{1}\underline{n}_{2}}~{}\varepsilon_{-}X^{\underline{n}_{1}\underline{n}_{2}}
=\displaystyle= 12g(ε+xm¯ε+ym¯1m¯2)(gm¯n¯B~p¯gm¯[p¯gn¯]q¯B~q¯gm¯[n¯1gn¯2]l¯B~l¯B~p¯gp¯[m¯1gm¯2]n¯gm¯1[n¯1gn¯2]m¯2)(εxm¯εym¯1m¯2).\displaystyle\displaystyle\frac{1}{2g}~{}(\varepsilon_{+}x^{\bar{m}}~{}\varepsilon_{+}y^{\bar{m}_{1}\bar{m}_{2}})\left(\begin{array}[]{cc}g_{\bar{m}\bar{n}}-\tilde{B}^{\bar{p}}g_{\bar{m}[\bar{p}}g_{\bar{n}]\bar{q}}\tilde{B}^{\bar{q}}&g_{\bar{m}[\bar{n}_{1}}g_{\bar{n}_{2}]\bar{l}}\tilde{B}^{\bar{l}}\\ -\tilde{B}^{\bar{p}}g_{\bar{p}[\bar{m}_{1}}g_{\bar{m}_{2}]\bar{n}}&g_{\bar{m}_{1}[\bar{n}_{1}}g_{\bar{n}_{2}]\bar{m}_{2}}\end{array}\right)\left(\begin{array}[]{c}\varepsilon_{-}x^{\bar{m}}\\ \varepsilon_{-}y^{\bar{m}_{1}\bar{m}_{2}}\end{array}\right)~{}~{}~{}.

5.2 S{S}tring from 𝒯{\cal T}-string

We break SL(4) symmetry of 𝒯{\cal T}-string into GL(3) for the usual string, where the reduction of the spacetime coordinate is performed as Xm¯n¯=(X4m¯,Xm¯n¯)=(xm¯,ym¯n¯)X^{\underline{m}\underline{n}}=(X^{4\bar{m}},X^{\bar{m}\bar{n}})=(x^{\bar{m}},y^{\bar{m}\bar{n}}) \to xm¯x^{\bar{m}}. We repeat the same procedure of subsection 4.2. The SL(4) Lagrangian (LABEL:SL4kineticxy) is rewritten analogously to (4.75)

12gJSDη^ABAJSD¯B\displaystyle\displaystyle\frac{1}{2g}~{}J_{\rm SD}{}^{A}\hat{\eta}_{AB}J_{\overline{\rm SD}}{}^{B}
=12gε+xm¯gm¯n¯εxn¯\displaystyle~{}~{}~{}=~{}\displaystyle\frac{1}{2g}\varepsilon_{+}x^{\bar{m}}g_{\bar{m}\bar{n}}\varepsilon_{-}x^{\bar{n}}
+123g(ε+ym¯1m¯2ε+x[m¯1B~m¯2])gm¯1[n¯1gn¯2]m¯2(εyn¯1n¯2+B~[n¯1εxn¯2])\displaystyle~{}~{}~{}~{}~{}+\frac{1}{2^{3}g}(\varepsilon_{+}y^{\bar{m}_{1}\bar{m}_{2}}-\varepsilon_{+}x^{[\bar{m}_{1}}\tilde{B}^{\bar{m}_{2}}])g_{\bar{m}_{1}[\bar{n}_{1}}g_{\bar{n}_{2}]\bar{m}_{2}}(\varepsilon_{-}y^{\bar{n}_{1}\bar{n}_{2}}+\tilde{B}^{[\bar{n}_{1}}\varepsilon_{-}x^{\bar{n}_{2}]}) (5.41)

By the dimensional reduction (1.2) the Lagrangian (LABEL:SL4kineticxy) reduces to the kinetic term of the string (4.90).

The total derivative term which is added to obtain the Wess-Zumino term (4.91) becomes

122g(ε+xm¯1εym¯2m¯3εxm¯1ε+ym¯2m¯3)ϵm¯1m¯2m¯3\displaystyle-\frac{1}{2^{2}g}(\varepsilon_{+}x^{\bar{m}_{1}}\varepsilon_{-}y^{\bar{m}_{2}\bar{m}_{3}}-\varepsilon_{-}x^{\bar{m}_{1}}\varepsilon_{+}y^{\bar{m}_{2}\bar{m}_{3}})\epsilon_{\bar{m}_{1}\bar{m}_{2}\bar{m}_{3}}
=12μ(ϵμνxm¯1νym¯2m¯3ϵm¯1m¯2m¯3)\displaystyle~{}~{}~{}=~{}-\frac{1}{2}\partial_{\mu}(\epsilon^{\mu\nu}x^{\bar{m}_{1}}\partial_{\nu}y^{\bar{m}_{2}\bar{m}_{3}}\epsilon_{\bar{m}_{1}\bar{m}_{2}\bar{m}_{3}})
=122μ(ϵμνXm¯1m¯2νXm¯3m¯4ϵm¯1m¯4).\displaystyle~{}~{}~{}=~{}\frac{1}{2^{2}}\partial_{\mu}(\epsilon^{\mu\nu}X^{\underline{m}_{1}\underline{m}_{2}}\partial_{\nu}X^{\underline{m}_{3}\underline{m}_{4}}\epsilon_{\underline{m}_{1}\cdots\underline{m}_{4}})~{}~{}~{}. (5.42)

Adding this term to the SL(4) Lagrangian (LABEL:SL4kineticxy)

12gJSDη^ABAJSD¯+B122μ(ϵμνXm¯1m¯2νXm¯3m¯4ϵm¯1m¯4)\displaystyle\frac{1}{2g}J_{\rm SD}{}^{A}\hat{\eta}_{AB}J_{\overline{\rm SD}}{}^{B}+\frac{1}{2^{2}}\partial_{\mu}(\epsilon^{\mu\nu}X^{\underline{m}_{1}\underline{m}_{2}}\partial_{\nu}X^{\underline{m}_{3}\underline{m}_{4}}\epsilon_{\underline{m}_{1}\cdots\underline{m}_{4}}) (5.43)
=12g{ε+xm¯gm¯n¯εxn¯\displaystyle~{}~{}~{}=\frac{1}{2g}\left\{\varepsilon_{+}x^{\bar{m}}g_{\bar{m}\bar{n}}\varepsilon_{-}x^{\bar{n}}\right.
+122(ε+ym¯1m¯2ε+x[m¯1B~m¯2]+ε+xl¯3ϵl¯1l¯2l¯3gl¯1m¯1gl¯2m¯2)gm¯1[n¯1gn¯2]m¯2\displaystyle~{}~{}~{}~{}~{}\left.+\frac{1}{2^{2}}(\varepsilon_{+}y^{\bar{m}_{1}\bar{m}_{2}}-\varepsilon_{+}x^{[\bar{m}_{1}}\tilde{B}^{\bar{m}_{2}]}+\varepsilon_{+}x^{\bar{l}_{3}}\epsilon_{\bar{l}_{1}\bar{l}_{2}\bar{l}_{3}}g^{\bar{l}_{1}\bar{m}_{1}}g^{\bar{l}_{2}\bar{m}_{2}})g_{\bar{m}_{1}[\bar{n}_{1}}g_{\bar{n}_{2}]\bar{m}_{2}}\right.
×(εyn¯1n¯2+B~[n¯1εxn¯2]gn¯1k¯1gn¯2k¯2ϵk¯1k¯2k¯3εxk¯3)\displaystyle~{}~{}~{}~{}~{}~{}\left.~{}\times(\varepsilon_{-}y^{\bar{n}_{1}\bar{n}_{2}}+\tilde{B}^{[\bar{n}_{1}}\varepsilon_{-}x^{\bar{n}_{2}]}-g^{\bar{n}_{1}\bar{k}_{1}}g^{\bar{n}_{2}\bar{k}_{2}}\epsilon_{\bar{k}_{1}\bar{k}_{2}\bar{k}_{3}}\varepsilon_{-}x^{\bar{k}_{3}})\right.
+ε+xm¯gm¯n¯εxn¯+2ε+xm¯Bm¯n¯εxn¯}\displaystyle~{}~{}~{}~{}~{}~{}~{}\left.+\varepsilon_{+}x^{\bar{m}}g_{\bar{m}\bar{n}}\varepsilon_{-}x^{\bar{n}}+2\varepsilon_{+}x^{\bar{m}}B_{\bar{m}\bar{n}}\varepsilon_{-}x^{\bar{n}}\right\}~{}~{}~{}

After the dimensional reduction (1.2), the Lagrangian with the total derivative term reduces into the usual string Lagrangian with the Wess-Zumino term (4.93),

L0+LWZ\displaystyle L_{0}+L_{\rm WZ} =\displaystyle= 1gε+xm¯(gm¯n¯+Bm¯n¯)εxn¯.\displaystyle\frac{1}{g}~{}\varepsilon_{+}x^{\bar{m}}(g_{\bar{m}\bar{n}}+B_{\bar{m}\bar{n}})\varepsilon_{-}x^{\bar{n}}~{}~{}~{}.

6 Lagrangians of M2-brane via {\cal M}5-brane from 𝒜{\cal A}5-brane


6.1 {\cal M}5-brane from 𝒜{\cal A}5-brane

The GL(4) {\cal M}5-brane from 𝒜{\cal A}5-brane is described by the GL(4) vector coordinate X5m¯=xm¯X^{5\underline{m}}=x^{\underline{m}} [17] as listed in (2.63). The SL(6) two rank tensor coordinate is decomposed as SL(6) \to SL(5) \to GL(4) as Xm^n^=(X0n=Yn,Xmn)X^{\hat{m}\hat{n}}=(X^{0n}=Y^{n},~{}X^{mn}) \to Xmn=(X5n¯=xm¯,Xm¯n¯=ym¯n¯)X^{{m}{n}}=(X^{5\underline{n}}=x^{\underline{m}},~{}X^{\underline{m}\underline{n}}=y^{\underline{m}\underline{n}}) and Ym=(Y5=Y,Ym¯)Y^{m}=(Y^{5}=Y,~{}Y^{\underline{m}}). The 6-dimensional world-volume derivative is reduced into the 5-brane world-sheet derivatives as m^=(0=τ,5=0,m¯=σ)m¯\partial^{\hat{m}}=(\partial^{0}=\partial_{\tau},~{}\partial^{5}=0,~{}\partial^{\underline{m}}=\partial_{\sigma}{}^{\underline{m}}). The SL(6) field strength for the {\cal M}5-brane has the following components

{F05m¯=τxm¯+m¯YF5mn¯=[m¯xn¯]F0mn¯=τym¯n¯[m¯Yn¯]Fmnl¯=12[m¯yn¯l¯]\displaystyle{\left\{\begin{array}[]{ccl}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{F}}{}^{05\underline{m}}&=&\partial_{\tau}x^{\underline{m}}+\partial^{\underline{m}}Y\\ {\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{F}}{}^{5\underline{mn}}&=&-\partial^{[\underline{m}}x^{\underline{n}]}\\ {\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{F}}{}^{0\underline{mn}}&=&\partial_{\tau}y^{\underline{m}\underline{n}}-\partial^{[\underline{m}}Y^{\underline{n}]}\\ {\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{F}}{}^{\underline{mnl}}&=&\frac{1}{2}\partial^{[\underline{m}}y^{\underline{n}\underline{l}]}\end{array}\right.}~{}~{}~{} (6.5)

where the auxiliary coordinates ym¯n¯y^{\underline{m}\underline{n}} and YmY^{m} are preserved to begin with the SL(5) AA-symmetric {\cal M}-theory Lagrangian [22].

The SL(6) vielbein for the {\cal M}5-brane with SL(5) AA-symmetry is given by

Em^a^\displaystyle E_{\hat{m}}{}^{\hat{a}} =\displaystyle= (E00^E0aEm0^Ema)=(1g0smgg1/5Ema).\displaystyle{\left(\begin{array}[]{cc}E_{0}{}^{\hat{0}}&E_{0}{}^{{a}}\\ E_{m}{}^{\hat{0}}&E_{m}{}^{a}\end{array}\right)=\left(\begin{array}[]{cc}\displaystyle\frac{1}{g}&0\\ -\displaystyle\frac{s_{m}}{g}&g^{1/5}E_{m}{}^{a}\end{array}\right)}~{}~{}~{}. (6.10)

It is stressed that the world-volume vielbein fields gg, sms_{m} and the spacetime vielbein EmaE_{m}{}^{a} cannot be in block diagonal form unlike 𝒯{\cal T}-string case (5.8). The selfdual and anti-selfdual currents in curved background given by (3.6) based on (3.5) are the following combination of the SL(6) field strengths in (6.5) with (3.16) as

FSD/SD¯a1a2\displaystyle{F}_{{\rm SD}/\overline{\rm SD}}{}^{{a}_{1}{a}_{2}} =\displaystyle= g(F0^a1a2±13!ϵ0^a1a2Fa3a4a5a3a4a5).\displaystyle g\left(F^{\hat{0}{a}_{1}{a}_{2}}\pm\frac{1}{3!}\epsilon^{\hat{0}{a}_{1}{a}_{2}}{}_{{a}_{3}{a}_{4}a_{5}}F^{{a}_{3}{a}_{4}a_{5}}\right)~{}~{}~{}. (6.11)

The GL(4) covariant selfdual and anti-selfdual currents in flat space are derived from the ones of SL(5) (3.5) given in [1] as

{FSD/SD¯m¯=Fτm¯12ϵm¯n¯1n¯2n¯3sn¯1Fσ;n¯2n¯3±gη^m¯n¯Fσ;n¯=ετxm¯±gη^m¯n¯(εσy)n¯FSD/SD¯m¯1m¯2=Fτ+m¯1m¯2ϵm¯1m¯4sm¯3Fσ;m¯412ϵm¯1m¯4s5Fσ;m¯3m¯4±gη^m¯1n¯1η^m¯2n¯2Fσ;n¯1n¯2=ετym¯1m¯2±gη^m¯1n¯1η^m¯2n¯2(εσx)n¯1n¯2\displaystyle\left\{\begin{array}[]{lcl}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{F}}_{{\rm SD}/\overline{\rm SD}}{}^{\underline{m}}&=&{F}_{\tau}{}^{\underline{m}}-\frac{1}{2}\epsilon^{\underline{m}\underline{n}_{1}\underline{n}_{2}\underline{n}_{3}}s_{\underline{n}_{1}}{F}_{\sigma;\underline{n}_{2}\underline{n}_{3}}\pm g\hat{\eta}^{\underline{m}\underline{n}}{F}_{\sigma;\underline{n}}\\ &=&\varepsilon_{\tau}{}x^{\underline{m}}\pm g\hat{\eta}^{\underline{m}\underline{n}}(\varepsilon_{\sigma}y)_{\underline{n}}\\ {\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{F}}_{{\rm SD}/\overline{\rm SD}}{}^{\underline{m}_{1}\underline{m}_{2}}&=&{F}_{\tau}{}^{\underline{m}_{1}\underline{m}_{2}}+\epsilon^{\underline{m}_{1}\cdots\underline{m}_{4}}s_{\underline{m}_{3}}{F}_{\sigma;\underline{m}_{4}}-\frac{1}{2}\epsilon^{\underline{m}_{1}\cdots\underline{m}_{4}}s_{5}F_{\sigma;\underline{m}_{3}\underline{m}_{4}}\pm g\hat{\eta}^{\underline{m}_{1}\underline{n}_{1}}\hat{\eta}^{\underline{m}_{2}\underline{n}_{2}}{F}_{\sigma;\underline{n}_{1}\underline{n}_{2}}\\ &=&\varepsilon_{\tau}{}y^{\underline{m}_{1}\underline{m}_{2}}\pm g\hat{\eta}^{\underline{m}_{1}\underline{n}_{1}}\hat{\eta}^{\underline{m}_{2}\underline{n}_{2}}(\varepsilon_{\sigma}x)_{\underline{n}_{1}\underline{n}_{2}}\end{array}\right. (6.16)

where η^mn\hat{\eta}^{mn} becomes GmnG^{mn} in a curved background. The brane world-volume derivatives are given as a generalization of the world-sheet zweibein dependence in (4.66) as

{ετxm¯Fτm¯12ϵm¯n¯1n¯2n¯3sn¯1Fσ;n¯2n¯3=x˙m¯+m¯Y+sn¯[m¯xn¯]ετym¯1m¯2Fτ+m¯1m¯2ϵm¯1m¯4sm¯3Fσ;m¯4=y˙m¯1m¯2[m¯1Ym¯2]+12sm¯3[m¯1ym¯2m¯3]+s5[m¯1xm¯2]\displaystyle\left\{\begin{array}[]{lcl}\varepsilon_{\tau}{}x^{\underline{m}}&\equiv&{F}_{\tau}{}^{\underline{m}}-\frac{1}{2}\epsilon^{\underline{m}\underline{n}_{1}\underline{n}_{2}\underline{n}_{3}}s_{\underline{n}_{1}}{F}_{\sigma;\underline{n}_{2}\underline{n}_{3}}\\ &=&\dot{x}^{\underline{m}}+\partial^{\underline{m}}Y+s_{\underline{n}}\partial^{[\underline{m}}x^{\underline{n}]}\\ \varepsilon_{\tau}{}y^{\underline{m}_{1}\underline{m}_{2}}&\equiv&{F}_{\tau}{}^{\underline{m}_{1}\underline{m}_{2}}+\epsilon^{\underline{m}_{1}\cdots\underline{m}_{4}}s_{\underline{m}_{3}}{F}_{\sigma;\underline{m}_{4}}\\ &=&\dot{y}^{\underline{m}_{1}\underline{m}_{2}}-\partial^{[\underline{m}_{1}}Y^{\underline{m}_{2}]}+\frac{1}{2}s_{\underline{m}_{3}}\partial^{[\underline{m}_{1}}y^{\underline{m}_{2}\underline{m}_{3}]}{+s_{5}\partial^{[\underline{m}_{1}}x^{\underline{m}_{2}]}}\end{array}\right.~{} (6.21)
{(εσy)m¯Fσ;m¯=12ϵm¯n¯1n¯2n¯3n¯1yn¯2n¯3(εσx)m¯1m¯2Fσ;m¯1m¯2=ϵm¯1m¯4m¯3xm¯4.\displaystyle\left\{\begin{array}[]{lcl}(\varepsilon_{\sigma}y)_{\underline{m}}&\equiv&{F}_{\sigma;\underline{m}}\\ &=&\frac{1}{2}\epsilon_{\underline{m}\underline{n}_{1}\underline{n}_{2}\underline{n}_{3}}\partial^{\underline{n}_{1}}y^{\underline{n}_{2}\underline{n}_{3}}\\ (\varepsilon_{\sigma}x)_{\underline{m}_{1}\underline{m}_{2}}&\equiv&{F}_{\sigma;\underline{m}_{1}\underline{m}_{2}}\\ &=&-\epsilon_{\underline{m}_{1}\cdots\underline{m}_{4}}\partial^{\underline{m}_{3}}x^{\underline{m}_{4}}\end{array}\right.~{}~{}~{}. (6.26)

The 11-dimensional supergravity background includes the gravitational metric gmng_{mn} and the three form gauge field CmnlC_{mnl}. We focus on the 4-dimensional subspace of the 11-dimensional space, where the background fields are gm¯n¯g_{\underline{m}\underline{n}} and Cm¯n¯l¯C_{\underline{m}\underline{n}\underline{l}} whose number of degrees of freedom is 10+4=1410+4=14. The dimension of the coset SL(5)/SO(5) is also 2410=1424-10=14. The vector vielbein EmaE_{m}{}^{a}\in SL(5)/SO(5) with GL(4) indices where m=(5,m¯)m=(5,\underline{m}) and m¯=1,,4\underline{m}=1,\cdots,4 is given by [63]

Ema\displaystyle E_{m}{}^{a} =\displaystyle= (E55E5a¯Em¯5Em¯a¯)=(𝐞3/5𝐞2/5C~n¯en¯a¯0𝐞2/5em¯a¯)\displaystyle\left(\begin{array}[]{cc}E_{5}{}^{5}&E_{5}{}^{\underline{a}}\\ E_{\underline{m}}{}^{5}&E_{\underline{m}}{}^{\underline{a}}\end{array}\right)~{}=~{}\left(\begin{array}[]{cc}{\bf e}^{3/5}&{\bf e}^{-2/5}\tilde{C}^{\underline{n}}e_{\underline{n}}{}^{\underline{a}}\\ 0&{\bf e}^{-2/5}e_{\underline{m}}{}^{\underline{a}}\end{array}\right) (6.32)
C~m¯=13!ϵm¯m¯1m¯2m¯3Cm¯1m¯2m¯3,𝐞=detem¯a¯\displaystyle\tilde{C}^{\bar{m}}=\frac{1}{3!}\epsilon^{\underline{m}\underline{m}_{1}\underline{m}_{2}\underline{m}_{3}}C_{\underline{m}_{1}\underline{m}_{2}\underline{m}_{3}}~{}~{},~{}~{}{\bf e}=\det e_{\underline{m}}{}^{\underline{a}}~{}~{}~{}

with detEm=a1=ϵm1m5Em1Em2a1Em3a2Em4a3Em5a4=a5ϵa1a5\det E_{m}{}^{a}=1=\epsilon^{m_{1}\cdots m_{5}}E_{m_{1}}{}^{a_{1}}E_{m_{2}}{}^{a_{2}}E_{m_{3}}{}^{a_{3}}E_{m_{4}}{}^{a_{4}}E_{m_{5}}{}^{a_{5}}=\epsilon^{a_{1}\cdots a_{5}}. The tensor vielbein is the product of the vector vielbein (6.32) as

Em1m2a1a2\displaystyle E_{{m}_{1}{m}_{2}}{}^{{a}_{1}{a}_{2}} =\displaystyle= E[m1Em2]a1a2\displaystyle E_{[{m}_{1}}{}^{{a}_{1}}E_{{m}_{2}]}{}^{{a}_{2}} (6.37)
=\displaystyle= (E5m¯5a¯E5m¯a¯1a¯2Em¯1m¯25a¯Em¯1m¯2a¯1a¯2)=(𝐞1/5em¯a¯𝐞4/5C~n¯em¯en¯[a¯1a¯2]0𝐞4/5em¯1em¯2[a¯1a¯2]).\displaystyle\left(\begin{array}[]{cc}E_{5\underline{m}}{}^{5\underline{a}}&E_{5\underline{m}}{}^{\underline{a}_{1}\underline{a}_{2}}\\ E_{\underline{m}_{1}\underline{m}_{2}}{}^{5\underline{a}}&E_{\underline{m}_{1}\underline{m}_{2}}{}^{\underline{a}_{1}\underline{a}_{2}}\end{array}\right)~{}=~{}\left(\begin{array}[]{cc}{\bf e}^{1/5}e_{\underline{m}}{}^{\underline{a}}&-{\bf e}^{-4/5}\tilde{C}^{\underline{n}}e_{\underline{m}}{}^{[\underline{a}_{1}}e_{\underline{n}}{}^{\underline{a}_{2}]}\\ 0&{\bf e}^{-4/5}e_{\underline{m}_{1}}{}^{[\underline{a}_{1}}e_{\underline{m}_{2}}{}^{\underline{a}_{2}]}\end{array}\right)~{}~{}~{}.

The background gauge field in tensor index is now

GMN\displaystyle G_{MN} =\displaystyle= Gm1m2;n1n2=122Em1m2η^a1[b1a1a2η^b2]a2En1n2b1b2\displaystyle G_{{m}_{1}{m}_{2};{n}_{1}{n}_{2}}~{}=~{}\frac{1}{2^{2}}E_{{m}_{1}{m}_{2}}{}^{{a}_{1}{a}_{2}}\hat{\eta}_{{a}_{1}[{b}_{1}}\hat{\eta}_{{b}_{2}]{a}_{2}}E_{{n}_{1}{n}_{2}}{}^{{b}_{1}{b}_{2}} (6.41)
=\displaystyle= (Gm¯n¯Gm¯;n¯1n¯2Gm¯1m¯2;n¯Gm¯1m¯2;n¯1n¯2)\displaystyle\left(\begin{array}[]{cc}G_{\underline{m}\underline{n}}&G_{\underline{m};\underline{n}_{1}\underline{n}_{2}}\\ G_{\underline{m}_{1}\underline{m}_{2};\underline{n}}&G_{\underline{m}_{1}\underline{m}_{2};\underline{n}_{1}\underline{n}_{2}}\end{array}\right)
=\displaystyle= 𝐞8/5(𝐞2gm¯n¯C~p¯gm¯[p¯gn¯]q¯C~q¯C~l¯gl¯[n¯1gn¯2]m¯gp¯[m¯1gm¯2]n¯C~p¯gm¯1[n¯1gn¯2]m¯2)\displaystyle{\bf e}^{-8/5}\left(\begin{array}[]{cc}{\bf e}^{2}g_{\underline{m}\underline{n}}-\tilde{C}^{\underline{p}}g_{\underline{m}[\underline{p}}g_{\underline{n}]\underline{q}}\tilde{C}^{\underline{q}}&\tilde{C}^{\underline{l}}g_{\underline{l}[\underline{n}_{1}}g_{\underline{n}_{2}]\underline{m}}\\ g_{\underline{p}[\underline{m}_{1}}g_{\underline{m}_{2}]\underline{n}}\tilde{C}^{\underline{p}}&g_{\underline{m}_{1}[\underline{n}_{1}}g_{\underline{n}_{2}]\underline{m}_{2}}\end{array}\right) (6.44)
=\displaystyle= 𝐞2/5(gm¯n¯000)+𝐞8/5(C~p¯gm¯[p¯gn¯]q¯C~q¯C~l¯gl¯[n¯1gn¯2]m¯gp¯[m¯1gm¯2]n¯C~p¯gm¯1[n¯1gn¯2]m¯2).\displaystyle{\bf e}^{2/5}\left(\begin{array}[]{cc}g_{\underline{m}\underline{n}}&0\\ 0&0\end{array}\right)+{\bf e}^{-8/5}\left(\begin{array}[]{cc}-\tilde{C}^{\underline{p}}g_{\underline{m}[\underline{p}}g_{\underline{n}]\underline{q}}\tilde{C}^{\underline{q}}&\tilde{C}^{\underline{l}}g_{\underline{l}[\underline{n}_{1}}g_{\underline{n}_{2}]\underline{m}}\\ g_{\underline{p}[\underline{m}_{1}}g_{\underline{m}_{2}]\underline{n}}\tilde{C}^{\underline{p}}&g_{\underline{m}_{1}[\underline{n}_{1}}g_{\underline{n}_{2}]\underline{m}_{2}}\end{array}\right)~{}~{}~{}. (6.49)

Inverse of these background gauge fields are given by [63]

Eam\displaystyle E_{a}{}^{m} =\displaystyle= (E55E5m¯Ea¯5Ea¯m¯)=(𝐞3/5𝐞3/5C~m¯0𝐞2/5ea¯m¯)\displaystyle\left(\begin{array}[]{cc}E_{5}{}^{5}&E_{5}{}^{\underline{m}}\\ E_{\underline{a}}{}^{5}&E_{\underline{a}}{}^{\underline{m}}\end{array}\right)~{}=~{}\left(\begin{array}[]{cc}{\bf e}^{-3/5}&{\bf e}^{-3/5}\tilde{C}^{\underline{m}}\\ 0&{\bf e}^{2/5}e_{\underline{a}}{}^{\underline{m}}\end{array}\right) (6.54)
Ea1a2m1m2\displaystyle E_{{a}_{1}{a}_{2}}{}^{{m}_{1}{m}_{2}} =\displaystyle= E[a1Ea2]m1m2\displaystyle E_{[{a}_{1}}{}^{{m}_{1}}E_{{a}_{2}]}{}^{{m}_{2}} (6.59)
=\displaystyle= (E5a¯5m¯E5a¯m¯1m¯2Ea¯1a¯25m¯Ea¯1a¯2m¯1m¯2)=(ea¯m¯C~[m¯1ea¯[m¯2]0𝐞ea¯1ea¯2[m¯1m¯2])\displaystyle\left(\begin{array}[]{cc}E_{5\underline{a}}{}^{5\underline{m}}&E_{5\underline{a}}{}^{\underline{m}_{1}\underline{m}_{2}}\\ E_{\underline{a}_{1}\underline{a}_{2}}{}^{5\underline{m}}&E_{\underline{a}_{1}\underline{a}_{2}}{}^{\underline{m}_{1}\underline{m}_{2}}\end{array}\right)~{}=~{}\left(\begin{array}[]{cc}e_{\underline{a}}{}^{\underline{m}}&-\tilde{C}^{[\underline{m}_{1}}e_{\underline{a}}{}^{[\underline{m}_{2}]}\\ 0&{\bf e}e_{\underline{a}_{1}}{}^{[\underline{m}_{1}}e_{\underline{a}_{2}}{}^{\underline{m}_{2}]}\end{array}\right)~{}~{}
GMN\displaystyle G^{MN} =\displaystyle= Gm1m2;n1n2=122Ea1a2η^a1[b1m1m2η^b2]a2Eb1b2n1n2\displaystyle G^{{m}_{1}{m}_{2};{n}_{1}{n}_{2}}~{}=~{}\frac{1}{2^{2}}E_{{a}_{1}{a}_{2}}{}^{{m}_{1}{m}_{2}}\hat{\eta}^{{a}_{1}[{b}_{1}}\hat{\eta}^{{b}_{2}]{a}_{2}}E_{{b}_{1}{b}_{2}}{}^{{n}_{1}{n}_{2}} (6.62)
=\displaystyle= (Gm¯n¯Gm¯;n¯1n¯2Gm¯1m¯2;n¯Gm¯1m¯2;n¯1n¯2)\displaystyle\left(\begin{array}[]{cc}G^{\underline{m}\underline{n}}&G^{\underline{m};\underline{n}_{1}\underline{n}_{2}}\\ G^{\underline{m}_{1}\underline{m}_{2};\underline{n}}&G^{\underline{m}_{1}\underline{m}_{2};\underline{n}_{1}\underline{n}_{2}}\end{array}\right)
=\displaystyle= 𝐞2/5(gm¯n¯gm¯[n¯1C~n¯2]C~[m¯1gm¯2]n¯𝐞2gm¯1[n¯1gn¯2]m¯2+C~[m¯1gm¯2][n¯1C~n¯2])\displaystyle{\bf e}^{2/5}\left(\begin{array}[]{cc}g^{\underline{m}\underline{n}}&g^{\underline{m}[\underline{n}_{1}}\tilde{C}^{\underline{n}_{2}]}\\ -\tilde{C}^{[\underline{m}_{1}}g^{\underline{m}_{2}]\underline{n}}&{\bf e}^{2}g^{\underline{m}_{1}[\underline{n}_{1}}g^{\underline{n}_{2}]\underline{m}_{2}}+\tilde{C}^{[\underline{m}_{1}}g^{\underline{m}_{2}][\underline{n}_{1}}\tilde{C}^{\underline{n}_{2}]}\end{array}\right) (6.65)
=\displaystyle= 𝐞8/5(000gm¯1[n¯1gn¯2]m¯2)+𝐞2/5(gm¯n¯gm¯[n¯1C~n¯2]C~[m¯1gm¯2]n¯C~[m¯1gm¯2][n¯1C~n¯2]).\displaystyle{\bf e}^{8/5}\left(\begin{array}[]{cc}0&0\\ 0&g^{\underline{m}_{1}[\underline{n}_{1}}g^{\underline{n}_{2}]\underline{m}_{2}}\end{array}\right)+{\bf e}^{-2/5}\left(\begin{array}[]{cc}g^{\underline{m}\underline{n}}&g^{\underline{m}[\underline{n}_{1}}\tilde{C}^{\underline{n}_{2}]}\\ -\tilde{C}^{[\underline{m}_{1}}g^{\underline{m}_{2}]\underline{n}}&\tilde{C}^{[\underline{m}_{1}}g^{\underline{m}_{2}][\underline{n}_{1}}\tilde{C}^{\underline{n}_{2}]}\end{array}\right)~{}~{}~{}. (6.70)

The {\cal M}5-brane Lagrangian is given by the SL(5) covariant Lagrangian (3.7) with replacing GL(4) indices as

L\displaystyle L =\displaystyle= 12ϕ(FSDFSD¯a¯a¯+12FSDFSD¯a¯b¯a¯b¯)+12ϕ¯((FSD¯)a¯2+12(FSD¯)a¯b¯2)\displaystyle\frac{1}{2}\phi\left(F_{\rm SD}{}^{\underline{a}}F_{\overline{\rm SD}\underline{a}}+\frac{1}{2}F_{\rm SD}{}^{\underline{a}\underline{b}}F_{\overline{\rm SD}\underline{a}\underline{b}}\right)+\frac{1}{2}\bar{\phi}\left((F_{\overline{\rm SD}}{}^{\underline{a}})^{2}+\frac{1}{2}(F_{\overline{\rm SD}}{}^{\underline{a}\underline{b}})^{2}\right) (6.71)
+12λFSD¯FSD¯c¯+c¯λa¯FSD¯FSD¯a¯c¯+c¯12λa¯b¯(FSD¯FSD¯a¯+b¯FSD¯FSD¯a¯c¯)b¯c¯\displaystyle+\frac{1}{2}\lambda F_{\overline{\rm SD}}{}^{\underline{c}}F_{\overline{\rm SD}}{}_{\underline{c}}+\lambda_{\underline{a}}F_{\overline{\rm SD}}{}^{\underline{a}\underline{c}}F_{\overline{\rm SD}}{}_{\underline{c}}+\frac{1}{2}\lambda_{\underline{a}\underline{b}}\left(F_{\overline{\rm SD}}{}^{\underline{a}}F_{\overline{\rm SD}}{}^{\underline{b}}{}+F_{\overline{\rm SD}}{}^{\underline{a}\underline{c}}F_{\overline{\rm SD}}{}^{\underline{b}}{}_{\underline{c}}\right)
ϵa¯1a¯4(18λ5FSD¯FSD¯a¯1a¯2a¯3a¯412λa¯1FSD¯FSD¯a¯2a¯3)a¯4.\displaystyle-\epsilon_{\underline{a}_{1}\cdots\underline{a}_{4}}\left(\frac{1}{8}\lambda^{5}F_{\overline{\rm SD}}{}^{\underline{a}_{1}\underline{a}_{2}}F_{\overline{\rm SD}}{}^{\underline{a}_{3}\underline{a}_{4}}-\frac{1}{2}\lambda^{\underline{a}_{1}}F_{\overline{\rm SD}}{}^{\underline{a}_{2}\underline{a}_{3}}F_{\overline{\rm SD}}{}^{\underline{a}_{4}}\right)~{}~{}~{}.

The Lagrangian in terms of the curved currents FSD/SD¯abF_{\rm SD/\overline{\rm SD}}^{ab} is simpler than the one in terms of the flat currents FSD/SD¯mn{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{F}}_{\rm SD/\overline{\rm SD}}{}^{mn}. The concrete expression of the Lagrangian of the {\cal M}5-brane in a curved background (6.71) is given as follows. We begin by the SL(5) covariant Lagrangian (3.7) in the gauge ϕ=12g\phi=\frac{1}{2g} and ϕ¯=0=λ\bar{\phi}=0=\lambda’s

12gFSDη^ABAFSD¯B\displaystyle\displaystyle\frac{1}{2g}~{}{F}_{\rm SD}{}^{A}\hat{\eta}_{AB}F_{\overline{\rm SD}}{}^{B}
=18gFSDGm1m2;n1n2m1m2FSD¯n1n2\displaystyle~{}=~{}\displaystyle\frac{1}{8g}~{}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{F}}_{\rm SD}{}^{m_{1}m_{2}}G_{{m}_{1}{m}_{2};{n}_{1}{n}_{2}}{\buildrel\mkern 2.5mu\raise-1.00006pt\hbox{$\scriptstyle\circ$}\mkern-2.5mu\over{F}}_{\overline{\rm SD}}{}^{n_{1}n_{2}}
=18gετXm1m2Gm1m2;n1n2ετXn1n2g8FσGm1m2;n1n2m1m2Fσn1n2\displaystyle~{}=~{}\displaystyle\frac{1}{8g}\varepsilon_{\tau}{}X^{m_{1}m_{2}}G_{{m}_{1}{m}_{2};{n}_{1}{n}_{2}}\varepsilon_{\tau}{}X^{n_{1}n_{2}}-\displaystyle\frac{g}{8}F_{\sigma}{}_{m_{1}m_{2}}G^{{m}_{1}{m}_{2};{n}_{1}{n}_{2}}F_{\sigma}{}_{n_{1}n_{2}}
=12g(ετxm¯ετym¯1m¯2)[𝐞2/5(gm¯n¯000)\displaystyle~{}=~{}\displaystyle\frac{1}{2g}~{}(\varepsilon_{\tau}x^{\underline{m}}~{}\varepsilon_{\tau}y^{\underline{m}_{1}\underline{m}_{2}})\left[{\bf e}^{2/5}\left(\begin{array}[]{cc}g_{\underline{m}\underline{n}}&0\\ 0&0\end{array}\right)\right. (6.74)
+𝐞8/5(C~p¯gm¯[p¯gn¯]q¯C~q¯C~l¯gl¯[n¯1gn¯2]m¯gp¯[m¯1gm¯2]n¯C~p¯gm¯1[n¯1gn¯2]m¯2)](ετxn¯ετyn¯1n¯2)\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\left.+{\bf e}^{-8/5}\left(\begin{array}[]{cc}-\tilde{C}^{\underline{p}}g_{\underline{m}[\underline{p}}g_{\underline{n}]\underline{q}}\tilde{C}^{\underline{q}}&\tilde{C}^{\underline{l}}g_{\underline{l}[\underline{n}_{1}}g_{\underline{n}_{2}]\underline{m}}\\ g_{\underline{p}[\underline{m}_{1}}g_{\underline{m}_{2}]\underline{n}}\tilde{C}^{\underline{p}}&g_{\underline{m}_{1}[\underline{n}_{1}}g_{\underline{n}_{2}]\underline{m}_{2}}\end{array}\right)\right]\left(\begin{array}[]{c}\varepsilon_{\tau}x^{\underline{n}}\\ \varepsilon_{\tau}y^{\underline{n}_{1}\underline{n}_{2}}\end{array}\right) (6.79)
g2((εσy)m¯(εσx)m¯1m¯2)[𝐞8/5(000gm¯1[n¯1gn¯2]m¯2)\displaystyle~{}~{}~{}-\displaystyle\frac{g}{2}~{}\left((\varepsilon_{\sigma}y)_{\underline{m}}~{}(\varepsilon_{\sigma}x)_{\underline{m}_{1}\underline{m}_{2}}\right)\left[{\bf e}^{8/5}\left(\begin{array}[]{cc}0&0\\ 0&g^{\underline{m}_{1}[\underline{n}_{1}}g^{\underline{n}_{2}]\underline{m}_{2}}\end{array}\right)\right. (6.82)
+𝐞2/5(gm¯n¯gm¯[n¯1C~n¯2]C~[m¯1gm¯2]n¯C~[m¯1gm¯2][n¯1C~n¯2])]((εσy)n¯(εσx)n¯1n¯2)\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\left.+{\bf e}^{-2/5}\left(\begin{array}[]{cc}g^{\underline{m}\underline{n}}&g^{\underline{m}[\underline{n}_{1}}\tilde{C}^{\underline{n}_{2}]}\\ -\tilde{C}^{[\underline{m}_{1}}g^{\underline{m}_{2}]\underline{n}}&\tilde{C}^{[\underline{m}_{1}}g^{\underline{m}_{2}][\underline{n}_{1}}\tilde{C}^{\underline{n}_{2}]}\end{array}\right)\right]\left(\begin{array}[]{c}(\varepsilon_{\sigma}y)_{\underline{n}}\\ (\varepsilon_{\sigma}x)_{\underline{n}_{1}\underline{n}_{2}}\end{array}\right) (6.87)
=L0+Ly\displaystyle~{}=~{}L_{0}+L_{y} (6.88)

with

L0\displaystyle L_{0} =\displaystyle= 𝐞2/52gετxm¯gm¯n¯ετxn¯g𝐞8/58(εσx)m¯1m¯2gm¯1[n¯1gn¯2]m¯2(εσx)n¯1n¯2\displaystyle\displaystyle\frac{{\bf e}^{2/5}}{2g}\varepsilon_{\tau}x^{\underline{m}}g_{\underline{m}\underline{n}}\varepsilon_{\tau}x^{\underline{n}}-\displaystyle\frac{g{\bf e}^{8/5}}{8}(\varepsilon_{\sigma}x)_{\underline{m}_{1}\underline{m}_{2}}g^{\underline{m}_{1}[\underline{n}_{1}}g^{\underline{n}_{2}]\underline{m}_{2}}(\varepsilon_{\sigma}x)_{\underline{n}_{1}\underline{n}_{2}} (6.89)
Ly\displaystyle L_{y} =\displaystyle= 𝐞8/58g(ετym¯1m¯2ετx[m¯1C~m¯2])gm¯1[n¯1gn¯2]m¯2(ετyn¯1n¯2+C~[n¯1ετxn¯2])\displaystyle\displaystyle\frac{{\bf e}^{-8/5}}{8g}\left(\varepsilon_{\tau}y^{\underline{m}_{1}\underline{m}_{2}}-\varepsilon_{\tau}x^{[\underline{m}_{1}}\tilde{C}^{\underline{m}_{2}]}\right)g_{\underline{m}_{1}[\underline{n}_{1}}g_{\underline{n}_{2}]\underline{m}_{2}}\left(\varepsilon_{\tau}y^{\underline{n}_{1}\underline{n}_{2}}+\tilde{C}^{[\underline{n}_{1}}\varepsilon_{\tau}x^{\underline{n}_{2}]}\right)
g𝐞2/52((εσy)m¯+(εσx)m¯l¯C~l¯)gm¯n¯((εσy)n¯C~l¯(εσx)l¯n¯).\displaystyle-\displaystyle\frac{g{\bf e}^{-2/5}}{2}\left((\varepsilon_{\sigma}y)_{\underline{m}}+(\varepsilon_{\sigma}x)_{\underline{m}\underline{l}}\tilde{C}^{\underline{l}}\right)g^{\underline{m}\underline{n}}\left((\varepsilon_{\sigma}y)_{\underline{n}}-\tilde{C}^{\underline{l}}(\varepsilon_{\sigma}x)_{\underline{l}\underline{n}}\right)~{}~{}~{}.

In the gauge g=𝐞3/5g={\bf e}^{-3/5} Lagrangians take simple form as

L0\displaystyle L_{0} =\displaystyle= 𝐞2[F05a¯η^a¯b¯F05b¯14F5a¯1a¯2η^a¯1[b¯1η^b¯2]a¯2F5b¯1b¯2]\displaystyle-\displaystyle\frac{{\bf e}}{2}\left[F^{05\underline{a}}\hat{\eta}_{\underline{a}\underline{b}}F^{05\underline{b}}-\displaystyle\frac{1}{4}F^{5\underline{a}_{1}\underline{a}_{2}}\hat{\eta}_{\underline{a}_{1}[\underline{b}_{1}}\hat{\eta}_{\underline{b}_{2}]\underline{a}_{2}}F^{5\underline{b}_{1}\underline{b}_{2}}\right] (6.90)
Ly\displaystyle L_{y} =\displaystyle= 12𝐞[12F0a¯1a¯2η^a¯1b¯1η^b¯2a¯2F0b¯1b¯216Fa¯1a¯2a¯3η^a¯1b¯1η^a¯2b¯2η^a¯3b¯3Fb¯1b¯2b¯3]\displaystyle-\displaystyle\frac{1}{2{\bf e}}~{}\left[\frac{1}{2}F^{0\underline{a}_{1}\underline{a}_{2}}\hat{\eta}_{\underline{a}_{1}\underline{b}_{1}}\hat{\eta}_{\underline{b}_{2}\underline{a}_{2}}F^{0\underline{b}_{1}\underline{b}_{2}}-\displaystyle\frac{1}{6}~{}F^{\underline{a}_{1}\underline{a}_{2}\underline{a}_{3}}\hat{\eta}_{\underline{a}_{1}\underline{b}_{1}}\hat{\eta}_{\underline{a}_{2}\underline{b}_{2}}\hat{\eta}_{\underline{a}_{3}\underline{b}_{3}}F^{\underline{b}_{1}\underline{b}_{2}\underline{b}_{3}}\right]

with m~=(0,m¯)\tilde{m}=(0,\underline{m}).

The SL(5) U-duality symmetry of the Lagrangian (6.90) is broken to GL(4) symmetry by the dimensional reduction similarly to (1.2). Then the kinetic term of the new perturbative Lagrangian for a {\cal M}5-brane in the 4-dimensions is given by

L0\displaystyle L_{0} =\displaystyle= 𝐞2[(x˙m¯+m¯Y+sl¯[m¯xl¯])gm¯n¯(x˙n¯+n¯Y+sk¯[n¯xk¯])14[m¯1xm¯2]gm¯1[n¯1gn¯2]m¯2[n¯1xn¯2]].\displaystyle\frac{{\bf e}}{2}\left[(\dot{x}^{\underline{m}}+\partial^{\underline{m}}Y+s_{\underline{l}}\partial^{[\underline{m}}x^{\underline{l}]})g_{\underline{m}\underline{n}}(\dot{x}^{\underline{n}}+\partial^{\underline{n}}Y+s_{\underline{k}}\partial^{[\underline{n}}x^{\underline{k}]})-\frac{1}{4}\partial^{[\underline{m}_{1}}x^{\underline{m}_{2}]}g_{\underline{m}_{1}[\underline{n}_{1}}g_{\underline{n}_{2}]\underline{m}_{2}}\partial^{[\underline{n}_{1}}x^{\underline{n}_{2}]}\right].

The remaining one worldvolume dimension is embedded in the internal space which we do not discuss in this paper.

The total derivative terms to obtain the Wess-Zumino term for the {\cal M}5-brane are given analogously to the string case (4.91) with the gauge m¯s5=0\partial^{\underline{m}}s_{5}=0 as

ετxm¯(εσy)m¯12(εσx)m¯1m¯2ετym¯1m¯2\displaystyle\varepsilon_{\tau}x^{\underline{m}}(\varepsilon_{\sigma}y)_{\underline{m}}-\frac{1}{2}(\varepsilon_{\sigma}x)_{\underline{m}_{1}\underline{m}_{2}}\varepsilon_{\tau}y^{\underline{m}_{1}\underline{m}_{2}} (6.92)
=12ϵm¯1m¯4{τ(xm¯1m¯2ym¯3m¯4)\displaystyle~{}=~{}\frac{1}{2}\epsilon_{\underline{m}_{1}\cdots\underline{m}_{4}}\Bigl{\{}\partial_{\tau}(x^{\underline{m}_{1}}\partial^{\underline{m}_{2}}y^{\underline{m}_{3}\underline{m}_{4}})
+m¯1(xm¯2y˙m¯3m¯4+Ym¯2ym¯3m¯42xm¯2m¯3Ym¯42s5xm¯2m¯3xm¯4)}\displaystyle~{}~{}~{}~{}+\partial^{\underline{m}_{1}}(x^{\underline{m}_{2}}\dot{y}^{\underline{m}_{3}\underline{m}_{4}}+Y\partial^{\underline{m}_{2}}y^{\underline{m}_{3}\underline{m}_{4}}-2x^{\underline{m}_{2}}\partial^{\underline{m}_{3}}Y^{\underline{m}_{4}}-2s_{5}x^{\underline{m}_{2}}\partial^{\underline{m}_{3}}x^{\underline{m}_{4}})\Bigr{\}}~{}~{}~{}

where the sn¯s_{\underline{n}} dependent terms are cancelled out because of the totally antisymmetricity of 5 indices

ϵm¯1m¯4sn¯(([m¯1xn¯])m¯2ym¯3m¯4+12(m¯4xm¯1)[n¯ym¯2m¯3])\displaystyle\epsilon_{\underline{m}_{1}\cdots\underline{m}_{4}}s_{\underline{n}}\Bigl{(}(\partial^{[\underline{m}_{1}}x^{\underline{n}]})\partial^{\underline{m}_{2}}y^{\underline{m}_{3}\underline{m}_{4}}+\frac{1}{2}(\partial^{\underline{m}_{4}}x^{\underline{m}_{1}})\partial^{[\underline{n}}y^{\underline{m}_{2}\underline{m}_{3}]}\Bigr{)}
=ϵm¯1m¯4sn¯14![m¯1xn¯m¯2ym¯3m¯4]=0.\displaystyle~{}~{}=\epsilon_{\underline{m}_{1}\cdots\underline{m}_{4}}s_{\underline{n}}\frac{1}{4!}\partial^{[\underline{m}_{1}}x^{\underline{n}}\partial^{\underline{m}_{2}}y^{\underline{m}_{3}\underline{m}_{4}]}=0~{}~{}~{}. (6.93)

Adding the total derivative term (6.92) to the {\cal M}5-brane Lagrangian (6.71) in gauge ϕ=12g\phi=\frac{1}{2g}, g=2𝐞3/5g=2{\bf e}^{-3/5}, ϕ¯=0=λ\bar{\phi}=0=\lambda’s the Lagrangian for the 5{\cal M}5-brane becomes

12gFSDη^ABAFSD¯Bετxm¯(εσy)m¯+12(εσx)m¯1m¯2ετym¯1m¯2\displaystyle\displaystyle\frac{1}{2g}~{}{F}_{\rm SD}{}^{A}\hat{\eta}_{AB}F_{\overline{\rm SD}}{}^{B}-\varepsilon_{\tau}x^{\underline{m}}(\varepsilon_{\sigma}y)_{\underline{m}}+\frac{1}{2}(\varepsilon_{\sigma}x)_{\underline{m}_{1}\underline{m}_{2}}\varepsilon_{\tau}y^{\underline{m}_{1}\underline{m}_{2}}
=L0+Ly+LWZ\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}=L_{0}+L_{y}+L_{\rm WZ}
L0\displaystyle L_{0} =\displaystyle= 𝐞4[ετxm¯gm¯n¯ετxn¯14(εσx)m¯1m¯2gm¯1[n¯1gn¯2]m¯2(εσx)n¯1n¯2]\displaystyle\displaystyle\frac{{\bf e}}{4}\left[\varepsilon_{\tau}x^{\underline{m}}g_{\underline{m}\underline{n}}\varepsilon_{\tau}x^{\underline{n}}-\displaystyle\frac{1}{4}(\varepsilon_{\sigma}x)_{\underline{m}_{1}\underline{m}_{2}}g^{\underline{m}_{1}[\underline{n}_{1}}g^{\underline{n}_{2}]\underline{m}_{2}}(\varepsilon_{\sigma}x)_{\underline{n}_{1}\underline{n}_{2}}\right]
Ly\displaystyle L_{y} =\displaystyle= 14𝐞[14(ετym¯1m¯2ετx[m¯1C~m¯2]+𝐞(εσx)l¯1l¯2gl¯1m¯1gl¯2m¯2)gm¯1[n¯1gn¯2]m¯2\displaystyle\displaystyle\frac{1}{4{\bf e}}\left[\frac{1}{4}\left(\varepsilon_{\tau}y^{\underline{m}_{1}\underline{m}_{2}}-\varepsilon_{\tau}x^{[\underline{m}_{1}}\tilde{C}^{\underline{m}_{2}]}+{\bf e}(\varepsilon_{\sigma}x)_{\underline{l}_{1}\underline{l}_{2}}g^{\underline{l}_{1}\underline{m}_{1}}g^{\underline{l}_{2}\underline{m}_{2}}\right)g_{\underline{m}_{1}[\underline{n}_{1}}g_{\underline{n}_{2}]\underline{m}_{2}}\right.
×(ετyn¯1n¯2+C~[n¯1ετxn¯2]+𝐞gn¯1k¯1gn¯2k¯2(εσx)k¯1k¯2)\displaystyle~{}~{}~{}~{}\left.\times\left(\varepsilon_{\tau}y^{\underline{n}_{1}\underline{n}_{2}}+\tilde{C}^{[\underline{n}_{1}}\varepsilon_{\tau}x^{\underline{n}_{2}]}+{\bf e}g^{\underline{n}_{1}\underline{k}_{1}}g^{\underline{n}_{2}\underline{k}_{2}}(\varepsilon_{\sigma}x)_{\underline{k}_{1}\underline{k}_{2}}\right)\right.
((εσy)m¯+(εσx)m¯l¯C~l¯+𝐞ετxl¯gl¯m¯)gm¯n¯((εσy)n¯C~k¯(εσx)k¯n¯+𝐞gn¯k¯ετxk¯)]\displaystyle\left.-\left((\varepsilon_{\sigma}y)_{\underline{m}}+(\varepsilon_{\sigma}x)_{\underline{m}\underline{l}}\tilde{C}^{\underline{l}}+{\bf e}\varepsilon_{\tau}x^{\underline{l}}g_{\underline{l}\underline{m}}\right)g^{\underline{m}\underline{n}}\left((\varepsilon_{\sigma}y)_{\underline{n}}-\tilde{C}^{\underline{k}}(\varepsilon_{\sigma}x)_{\underline{k}\underline{n}}+{\bf e}g_{\underline{n}\underline{k}}\varepsilon_{\tau}x^{\underline{k}}\right)\right]
LWZ\displaystyle L_{\rm WZ} =\displaystyle= ετxm¯1C~m¯2(εσx)m¯1m¯2.\displaystyle\varepsilon_{\tau}x^{\underline{m}_{1}}\tilde{C}^{\underline{m}_{2}}(\varepsilon_{\sigma}x)_{\underline{m}_{1}\underline{m}_{2}}~{}~{}~{}. (6.94)

Dimensional reduction Ly0L_{y}\to 0 gives the {\cal M}5-brane Lagrangian with the Wass-Zumino term.

The obtained new {\cal M}5-brane Lagrangian in the supergravity background (4.1) is

L5\displaystyle L_{{\cal M}5} =\displaystyle= L0+LWZ\displaystyle L_{0}+L_{\rm WZ}
L0\displaystyle L_{0} =\displaystyle= 𝐞2[(x˙m¯+m¯Y+sl¯[m¯xl¯])gm¯n¯(x˙n¯+n¯Y+sk¯[n¯xk¯])\displaystyle\displaystyle\frac{{\bf e}}{2}\left[(\dot{x}^{\underline{m}}+\partial^{\underline{m}}Y+s_{\underline{l}}\partial^{[\underline{m}}x^{\underline{l}]})g_{\underline{m}\underline{n}}(\dot{x}^{\underline{n}}+\partial^{\underline{n}}Y+s_{\underline{k}}\partial^{[\underline{n}}x^{\underline{k}]})\right.
14[m¯1xm¯2]gm¯1[n¯1gn¯2]m¯2[n¯1xn¯2]]\displaystyle\left.~{}-\displaystyle\frac{1}{4}\partial^{[\underline{m}_{1}}x^{\underline{m}_{2}]}g_{\underline{m}_{1}[\underline{n}_{1}}g_{\underline{n}_{2}]\underline{m}_{2}}\partial^{[\underline{n}_{1}}x^{\underline{n}_{2}]}\right]
LWZ\displaystyle L_{\rm WZ} =\displaystyle= (x˙m¯1+m¯1Y)Cm¯1m¯2m¯3m¯2xm¯3+16(m¯1xm¯2)(m¯3xm¯4)s[m¯1Cm¯2m¯3m¯4].\displaystyle(\dot{x}^{\underline{m}_{1}}+\partial^{\underline{m}_{1}}Y)C_{\underline{m}_{1}\underline{m}_{2}\underline{m}_{3}}\partial^{\underline{m}_{2}}x^{\underline{m}_{3}}+\frac{1}{6}(\partial^{\underline{m}_{1}}x^{\underline{m}_{2}})(\partial^{\underline{m}_{3}}x^{\underline{m}_{4}})s_{[\underline{m}_{1}}C_{\underline{m}_{2}\underline{m}_{3}\underline{m}_{4}]}~{}~{}~{}.~{} (6.95)

6.2 Non-perturbative M2-brane from {\cal M}5-brane

A non-perturbative membrane action in the 11-dimensional supergravity theory is given by [53]

I=d3σL,L=L0+LWZ,\displaystyle I~{}=~{}\displaystyle\int d^{3}\sigma L~{}~{},~{}~{}L=L_{0}+L_{WZ}~{},~{}
{L0=TdetμxmνxngmnLWZ=T3!ϵμνρμxm1νxm2ρxm3Cm1m2m3\displaystyle{\left\{\begin{array}[]{ccl}L_{0}&=&-T\sqrt{-\det\partial_{\mu}x^{m}\partial_{\nu}x^{n}g_{mn}}\\ L_{\rm WZ}&=&\frac{T}{3!}\epsilon^{\mu\nu\rho}\partial_{\mu}x^{m_{1}}\partial_{\nu}x^{m_{2}}\partial_{\rho}x^{m_{3}}C_{m_{1}m_{2}m_{3}}\end{array}\right.} (6.98)

with the spacetime index m=0,1,,10m=0,1,\cdots,10 and the world-volume index μ=0,1,2\mu=0,1,2. The canonical coordinates are xmx^{m} and pmp_{m}, and the spacial world-volume coordinate derivative is i\partial_{i} with i=1,2i=1,2. The Hamiltonian is given by [63] where pm=L/x˙mp_{m}=\partial L/\partial\dot{x}^{m}

H\displaystyle H =\displaystyle= pmx˙mL\displaystyle p_{m}\dot{x}^{m}-L (6.101)
=\displaystyle= λ0τ+λii\displaystyle\lambda_{0}{\cal H}_{\tau}+\lambda^{i}{\cal H}_{i}~{}
{τ=12 aηab b+18 a1a2ηa1[b1ηb2]a2 b1b2i=ixmpm.\displaystyle{\left\{\begin{array}[]{ccl}{\cal H}_{\tau}&=&\frac{1}{2}\hbox{\,\Large$\triangleright$}_{a}{\eta}^{ab}\hbox{\,\Large$\triangleright$}_{b}+\frac{1}{8}\hbox{\,\Large$\triangleright$}^{a_{1}a_{2}}\eta_{a_{1}[b_{1}}{\eta}_{b_{2}]a_{2}}\hbox{\,\Large$\triangleright$}^{b_{1}b_{2}}\\ {\cal H}_{i}&=&\partial_{i}x^{m}p_{m}\end{array}\right.}~{}~{}~{}.

Here  A=( a, ab)\hbox{\,\Large$\triangleright$}_{A}=(\hbox{\,\Large$\triangleright$}_{a},~{}\hbox{\,\Large$\triangleright$}^{ab}) is related to  M=( m=pm, mn=ϵijixm1jxm2)\hbox{\,\Large$\triangleright$}_{M}=(\hbox{\,\Large$\triangleright$}_{m}=p_{m},~{}\hbox{\,\Large$\triangleright$}^{mn}=\epsilon^{ij}\partial_{i}x^{m_{1}}\partial_{j}x^{m_{2}}) as  A=EA MM\hbox{\,\Large$\triangleright$}_{A}=E_{A}{}^{M}\hbox{\,\Large$\triangleright$}_{M} for the background gauge field EAME_{A}{}^{M}. EAME_{A}{}^{M} includes gmng_{mn} and CmnlC_{mnl}. The Virasoro constraint 𝒮m=0{\cal S}^{m}=0 in (2.140) is related to the constraint i=0{\cal H}_{i}=0 in (6.101) which generates σ\sigma-diffeomorphism by multiplying the world-volume embedding operator in (6.109) as 𝒮m=iϵijjxm{\cal S}^{m}={\cal H}_{i}\epsilon^{ij}\partial_{j}x^{m}.

We focus on the 4-dimensional subspace where the supergravity background is a representation of the SL(5) U-duality symmetry, EAME_{A}{}^{M} \in SL(5)/SO(5). The currents  m¯\hbox{\,\Large$\triangleright$}_{\underline{m}} and  m¯n¯\hbox{\,\Large$\triangleright$}_{\underline{m}\underline{n}} are 4 and 6 components of SL(4) with m¯=1,,4\underline{m}=1,\cdots,4, which are unified into a SL(5) tensor  mn=( m¯, m¯n¯)\hbox{\,\Large$\triangleright$}_{mn}=(\hbox{\,\Large$\triangleright$}_{\underline{m}},\hbox{\,\Large$\triangleright$}_{\underline{m}\underline{n}}) with m=1,,5m=1,\cdots,5. The currents for a M2-brane in 4-dimensional space (6.101) obtained from the membrane Lagrangian (6.98) are written as

{ m¯=pm¯ m¯1m¯2=12ϵm¯1m¯4ϵijixm¯3jxm¯4.\displaystyle{\left\{\begin{array}[]{ccl}{\hbox{\,\Large$\triangleright$}}_{\underline{m}}&=&p_{\underline{m}}\\ {\hbox{\,\Large$\triangleright$}}_{\underline{m}_{1}\underline{m}_{2}}&=&{\frac{1}{2}}\epsilon_{\underline{m}_{1}\cdots\underline{m}_{4}}\epsilon^{ij}\partial_{i}x^{\underline{m}_{3}}\partial_{j}x^{\underline{m}_{4}}\end{array}\right.}~{}~{}~{}. (6.104)

Commutators of (6.104) are given as

{[ m¯(σ), n¯(σ)]=0[ m¯1(σ), m¯2m¯3(σ)]=2iϵm¯1m¯4ϵijjxm¯4iδ(2)(σσ)[ m¯1m¯2(σ), m¯3m¯4(σ)]=0.\displaystyle{\left\{\begin{array}[]{ccl}\left[\hbox{\,\Large$\triangleright$}_{\underline{m}}(\sigma),\hbox{\,\Large$\triangleright$}_{\underline{n}}(\sigma^{\prime})\right]&=&0\\ \left[\hbox{\,\Large$\triangleright$}_{\underline{m}_{1}}(\sigma),\hbox{\,\Large$\triangleright$}_{\underline{m}_{2}\underline{m}_{3}}(\sigma^{\prime})\right]&=&2i\epsilon_{\underline{m}_{1}\cdots\underline{m}_{4}}\epsilon^{ij}\partial_{j}x^{\underline{m}_{4}}\partial_{i}\delta^{(2)}(\sigma-\sigma^{\prime})\\ \left[\hbox{\,\Large$\triangleright$}_{\underline{m}_{1}\underline{m}_{2}}(\sigma),\hbox{\,\Large$\triangleright$}_{\underline{m}_{3}\underline{m}_{4}}(\sigma^{\prime})\right]&=&0\end{array}\right.}~{}~{}~{}. (6.108)

The pp-brane current algebras with the non-perturbative winding modes dxm1dxmpdx^{m_{1}}\wedge\cdots\wedge dx^{m_{p}} are obtained similarly in [64].

Now let us compare the SL(5) current algebra of the non-perturbative M2-brane (6.108) with the one of the {\cal M}5-brane (2.135) . The perturbative {\cal M}5-brane current algebra in (2.135) reduces into the non-perturbative M2-brane algebra in (6.108) by reducing the 5-dimensional world-volume of the 𝒜{\cal A}5-brane into the 2-dimensional world-volume of the non-perturbative M2-brane as

m¯=ϵijjxm¯i.\displaystyle\partial^{\underline{m}}=\epsilon^{ij}\partial_{j}x^{\underline{m}}\partial_{i}~{}~{}~{}. (6.109)

The operator jxm¯\partial_{j}x^{\underline{m}} is an embedding of the membrane world-volume to the 5-brane world-volume (where the 5-th brane coordinate is in the internal space). It has the constant form jxm¯=δjm¯\partial_{j}x^{\underline{m}}=\delta_{j}^{\underline{m}} in the static gauge for the ground state [1].

Now we plug the world-volume projection (6.109) into the {\cal M}5-brane Lagrangian (6.95). The first term in the Y=0Y=0 gauge is given by

(x˙m¯+sl¯ϵijjxm¯ixl¯)gm¯n¯(x˙n¯+sk¯ϵijjxn¯ixk¯)\displaystyle(\dot{x}^{\underline{m}}+s_{\underline{l}}\epsilon^{ij}\partial_{j}x^{\underline{m}}\partial_{i}x^{\underline{l}})g_{\underline{m}\underline{n}}(\dot{x}^{\underline{n}}+s_{\underline{k}}\epsilon^{i^{\prime}j^{\prime}}\partial_{j^{\prime}}x^{\underline{n}}\partial_{i^{\prime}}x^{\underline{k}})
=(x˙a¯)2+2sb¯x˙a¯ϵijjxa¯ixb¯+(sb¯ϵijjxa¯ixb¯)2\displaystyle~{}~{}~{}~{}~{}=~{}(\dot{x}^{\underline{a}})^{2}+2s_{\underline{b}}\dot{x}_{\underline{a}}\epsilon^{ij}\partial_{j}x^{\underline{a}}\partial_{i}x^{\underline{b}}+(s_{\underline{b}}\epsilon^{ij}\partial_{j}x^{\underline{a}}\partial_{i}x^{\underline{b}})^{2}
=h002λih0i+λiλjhij\displaystyle~{}~{}~{}~{}~{}=~{}h_{00}-2\lambda^{i}h_{0i}+\lambda^{i}\lambda^{j}h_{ij} (6.110)

with

hij=ixa¯jxa¯=ixm¯gm¯n¯jxn¯,ixa¯em¯ia¯xm¯\displaystyle h_{ij}=\partial_{i}x^{\underline{a}}\partial_{j}x_{\underline{a}}=\partial_{i}x^{\underline{m}}g_{\underline{m}\underline{n}}\partial_{j}x^{\underline{n}}~{}~{},~{}~{}\partial_{i}x^{\underline{a}}\equiv e_{\underline{m}}{}^{\underline{a}}\partial_{i}x^{\underline{m}} (6.111)

and the membrane vielbein λi\lambda^{i} and the 5-brane vielbein sas_{a}

λi=sa¯ϵijjxa¯,sa¯=ea¯sm¯m¯.\displaystyle\lambda^{i}=s_{\underline{a}}\epsilon^{ij}\partial_{j}x^{\underline{a}}~{}~{},~{}~{}s_{\underline{a}}=e_{\underline{a}}{}^{\underline{m}}s_{\underline{m}}~{}~{}~{}. (6.112)

The second term is given by

12(12ϵmn¯ϵijl¯1l¯2jxl¯1ixl¯2)2=12(ϵijjxm¯ixn¯)2=dethij,\displaystyle\frac{1}{2}(\frac{1}{2}\epsilon^{\underline{mn}}{}_{\underline{l}_{1}\underline{l}_{2}}\epsilon^{ij}\partial_{j}x^{\underline{l}_{1}}\partial_{i}x^{\underline{l}_{2}})^{2}~{}=~{}-\frac{1}{2}(\epsilon^{ij}\partial_{j}x^{\underline{m}}\partial_{i}x^{\underline{n}})^{2}~{}~{}=~{}-~{}{\rm det}~{}h_{ij}~{}~{}~{}, (6.113)

where the following relation is used in the last equality of (6.113)

dethij\displaystyle{\rm det}~{}h_{ij} =\displaystyle= 12ϵiihijhijϵjj=12ϵiiixa¯jxa¯ixb¯jxb¯ϵjj=12(ϵijjxa¯ixb¯)2.\displaystyle\frac{1}{2}\epsilon^{ii^{\prime}}h_{ij}h_{i^{\prime}j^{\prime}}\epsilon^{jj^{\prime}}=\frac{1}{2}\epsilon^{ii^{\prime}}\partial_{i}x^{\underline{a}}\partial_{j}x_{\underline{a}}\partial_{i^{\prime}}x^{\underline{b}}\partial_{j^{\prime}}x_{\underline{b}}\epsilon^{jj^{\prime}}=\frac{1}{2}(\epsilon^{ij}\partial_{j}x^{\underline{a}}\partial_{i}x^{\underline{b}})^{2}~{}~{}. (6.114)

We choose the following gauge of the membrane worldvolume metric

ϕ=hh002,h=dethμν,λi=h0ih00,g2=1h(h00)2.\displaystyle\phi=-\displaystyle\frac{\sqrt{-h}h^{00}}{2}~{}~{},~{}~{}h={\rm det}~{}h_{\mu\nu}~{}~{},~{}~{}\lambda^{i}=-\frac{h^{0i}}{h^{00}}~{}~{},~{}~{}g^{2}=\frac{-1}{h(h^{00})^{2}}~{}~{}~{}. (6.115)

Using with the relation

dethij=hh00\displaystyle{\rm det}~{}h_{ij}=h~{}h^{00} (6.116)

the kinetic term L0L_{0} in (6.95) becomes

L0\displaystyle L_{0} =\displaystyle= 12{hh(h00h00+2h0ih0i+h0ih0j(h00)2hij)}\displaystyle\frac{1}{2}\Bigl{\{}-\sqrt{-h}-\sqrt{-h}\left(h^{00}h_{00}+2h^{0i}h_{0i}+\frac{h^{0i}h^{0j}}{(h^{00})^{2}}h_{ij}\right)\Bigr{\}} (6.117)
=\displaystyle= h.\displaystyle-\sqrt{-h}~{}~{}~{}.

This is nothing but the Nambu-Goto Lagrangian for a membrane. The Wess-Zumino term LWZL_{\rm WZ} is obtained by using the world-volume projection (6.109) into (6.95) as

LWZ\displaystyle L_{\rm WZ} =\displaystyle= x˙m¯1ϵijjxm¯2ixm¯3Cm¯1m¯2m¯3=13!ϵμνρμxm¯1νxm¯2ρxm¯3Cm¯1m¯2m¯3.\displaystyle\dot{x}^{\underline{m}_{1}}\epsilon^{ij}\partial_{j}{x}^{\underline{m}_{2}}\partial_{i}x^{\underline{m}_{3}}C_{\underline{m}_{1}\underline{m}_{2}\underline{m}_{3}}~{}=~{}\frac{1}{3!}\epsilon^{\mu\nu\rho}\partial_{\mu}{x}^{\underline{m}_{1}}\partial_{\nu}{x}^{\underline{m}_{2}}\partial_{\rho}x^{\underline{m}_{3}}C_{\underline{m}_{1}\underline{m}_{2}\underline{m}_{3}}~{}~{}~{}. (6.118)

Together with the Nambu-Goto term (6.117) the non-perturbative M2-brane Lagrangian is obtained from the perturbative 𝒜5{\cal A}5-brane as

IM2\displaystyle I_{\rm M2} =\displaystyle= d3σL,L=L0+LWZ\displaystyle\displaystyle\int d^{3}\sigma L~{},~{}L~{}=~{}L_{0}+L_{\rm WZ}
L0\displaystyle L_{0} =\displaystyle= detμxm¯νxn¯gm¯n¯\displaystyle-\sqrt{-{\rm det}~{}\partial_{\mu}x^{\underline{m}}\partial_{\nu}x^{\underline{n}}g_{\underline{m}\underline{n}}}
LWZ\displaystyle L_{\rm WZ} =\displaystyle= 13!ϵμνρμxm¯1νxm¯2ρxm¯3Cm¯1m¯2m¯3.\displaystyle\displaystyle\frac{1}{3!}\epsilon^{\mu\nu\rho}\partial_{\mu}{x}^{\underline{m}_{1}}\partial_{\nu}{x}^{\underline{m}_{2}}\partial_{\rho}x^{\underline{m}_{3}}C_{\underline{m}_{1}\underline{m}_{2}\underline{m}_{3}}~{}~{}~{}. (6.119)

This is the expected M2-brane Lagrangian (6.98) where we set T=1T=1.


7 Discussion

In this paper we have shown how the conventional strings and membrane are obtained from 𝒜{\cal A}-theory five brane with the SL(5) U-duality symmetry.

The following topics are interesting for future problems.

  1. 1.

    From 𝒜{\cal A}5-brane to D-branes: The 𝒜{\cal A}-theory background vielbein field includes the R-R gauge fields which couple to D-branes. The Nambu-Goto Lagrangian will be obtained analogously to the non-perturbative M2-brane Lagrangian as in subsection 6.2 with special care of the BB-field. The Wess-Zumino term will be obtained by adding total derivative term with the BB-field cloud, in such a way that the gauge transformation rule of the R-R gauge field involves the BB-field.

  2. 2.

    From 𝒜{\cal A}-theory branes to the non-perturbative M5- and NS5-branes: The superstring theories have the NS5-brane solutions which couple to the BB-field magnetically. M-theory has the M5-brane solution [65], and type IIB superstring theory has both the NS-NS 5-brane and D5-brane. These 5-brane Lagrangians will be derived from 𝒜{\cal A}5-brane and all 5-branes should be related by duality transformations. It is interesting to clarify the relation of the 5-brane WEB for Lagrangians analogous to the one for current algebras [66].

  3. 3.

    From open 𝒜{\cal A}-theory branes to heterotic strings and type I string: Lagrangians of open 𝒜{\cal A}-theory brane [30] where SO(32) and E8×\timesE8 gauge groups are involved and other half BPS branes are interesting.

  4. 4.

    Quantization of 𝒜{\cal A}- and {\cal M}-branes: The main purpose to construct perturbative 𝒜{\cal A}-brane Lagrangian is for simpler quantization. Quantum effects of string theory with winding modes of strings or branes are important to consider the Planck size physics such as the early universe singularity [15, 13]. Quantizaion of 𝒜{\cal A}-theory will give a hint of unified description of string spectra and S-matrices [67, 68, 69, 70].

  5. 5.

    Higher dimensional cases: 𝒜{\cal A}-theories of D>>3 have U-duality symmetry ED+1 [71, 44, 72, 73] whose dimensions, so the numbers of dimension spacetime and the world-volume, are so large that it requires new interpretation of the unphysical spacetime and world-volume. Constructing 𝒜{\cal A}-theory may give a hint of new description of string.

Acknowledgments

We are grateful to Olaf Hohm, Igor Bandos, Martin Roček and Yuqi Li for the fruitful discussions. M.H. would like to thank Yuho Sakatani for useful discussions. We also acknowledge the Simons Center for Geometry and Physics for its hospitality during “The Simons Summer Workshop in Mathematics and Physics 2023 and 2024” where this work has been developed. W.S. is supported by NSF award PHY-2210533. M.H. is supported in part by Grant-in-Aid for Scientific Research (C), JSPS KAKENHI Grant Numbers JP22K03603 and JP20K03604.

References

  • [1] Machiko Hatsuda et al. 𝒜\mathcal{A}-theory — A brane world-volume theory with manifest U-duality” In JHEP 10, 2023, pp. 087 DOI: 10.1007/JHEP10(2023)087
  • [2] Cumrun Vafa “Evidence for F theory” In Nucl. Phys. B 469, 1996, pp. 403–418 DOI: 10.1016/0550-3213(96)00172-1
  • [3] Timo Weigand “F-theory” In PoS TASI2017, 2018, pp. 016 arXiv:1806.01854 [hep-th]
  • [4] W. Siegel “Superspace duality in low-energy superstrings” In Phys. Rev. D 48, 1993, pp. 2826–2837 DOI: 10.1103/PhysRevD.48.2826
  • [5] W. Siegel “Two vierbein formalism for string inspired axionic gravity” In Phys. Rev. D 47, 1993, pp. 5453–5459 DOI: 10.1103/PhysRevD.47.5453
  • [6] W. Siegel “Manifest duality in low-energy superstrings” In International Conference on Strings 93, 1993 arXiv:hep-th/9308133
  • [7] Arkady A. Tseytlin “Duality symmetric closed string theory and interacting chiral scalars” In Nucl. Phys. B 350, 1991, pp. 395–440 DOI: 10.1016/0550-3213(91)90266-Z
  • [8] Chris Hull and Barton Zwiebach “Double Field Theory” In JHEP 09, 2009, pp. 099 DOI: 10.1088/1126-6708/2009/09/099
  • [9] Olaf Hohm, Chris Hull and Barton Zwiebach “Generalized metric formulation of double field theory” In JHEP 08, 2010, pp. 008 DOI: 10.1007/JHEP08(2010)008
  • [10] Gerardo Aldazabal, Diego Marques and Carmen Nunez “Double Field Theory: A Pedagogical Review” In Class. Quant. Grav. 30, 2013, pp. 163001 DOI: 10.1088/0264-9381/30/16/163001
  • [11] Olaf Hohm, Dieter Lüst and Barton Zwiebach “The Spacetime of Double Field Theory: Review, Remarks, and Outlook” In Fortsch. Phys. 61, 2013, pp. 926–966 DOI: 10.1002/prop.201300024
  • [12] Martin Poláček and Warren Siegel “T-duality off shell in 3D Type II superspace” In JHEP 06, 2014, pp. 107 DOI: 10.1007/JHEP06(2014)107
  • [13] Martin Poláček and Warren Siegel “Pre-potential in the AdS5×S5AdS_{5}\,\times\,S^{5} Type IIB superspace” In JHEP 01, 2017, pp. 059 DOI: 10.1007/JHEP01(2017)059
  • [14] Machiko Hatsuda, Kiyoshi Kamimura and Warren Siegel “Superspace with manifest T-duality from type II superstring” In JHEP 06, 2014, pp. 039 DOI: 10.1007/JHEP06(2014)039
  • [15] Machiko Hatsuda, Kiyoshi Kamimura and Warren Siegel “Ramond-Ramond gauge fields in superspace with manifest T-duality” In JHEP 02, 2015, pp. 134 DOI: 10.1007/JHEP02(2015)134
  • [16] Machiko Hatsuda, Kiyoshi Kamimura and Warren Siegel “Type II chiral affine Lie algebras and string actions in doubled space” In JHEP 09, 2015, pp. 113 DOI: 10.1007/JHEP09(2015)113
  • [17] William D. Linch and Warren Siegel “F-theory from Fundamental Five-branes” In JHEP 02, 2021, pp. 047 DOI: 10.1007/JHEP02(2021)047
  • [18] William D. Linch and Warren Siegel “F-theory with Worldvolume Sectioning” In JHEP 04, 2021, pp. 022 DOI: 10.1007/JHEP04(2021)022
  • [19] W. Siegel “F-theory with zeroth-quantized ghosts”, 2016 arXiv:1601.03953 [hep-th]
  • [20] Warren Siegel and Yu-Ping Wang “F-theory amplitudes”, 2020 arXiv:2010.14590 [hep-th]
  • [21] Chia-Yi Ju and Warren Siegel “Gauging Unbroken Symmetries in F-theory” In Phys. Rev. D 94.10, 2016, pp. 106004 DOI: 10.1103/PhysRevD.94.106004
  • [22] Warren Siegel and Di Wang “M Theory from F Theory”, 2020 arXiv:2010.09564 [hep-th]
  • [23] William Linch and Warren Siegel “F-brane Superspace: The New World Volume”, 2017 arXiv:1709.03536 [hep-th]
  • [24] William D. Linch and Warren Siegel “F-brane Dynamics”, 2016 arXiv:1610.01620 [hep-th]
  • [25] William D Linch and Warren Siegel “Critical Super F-theories”, 2015 arXiv:1507.01669 [hep-th]
  • [26] Warren Siegel and Di Wang “Enlarged exceptional symmetries of first-quantized F-theory”, 2018 arXiv:1806.02423 [hep-th]
  • [27] William D. Linch and Warren Siegel “F-theory superspace” In JHEP 03, 2021, pp. 059 DOI: 10.1007/JHEP03(2021)059
  • [28] Warren Siegel and Di Wang “F-theory superspace backgrounds”, 2019 arXiv:1910.01710 [hep-th]
  • [29] Machiko Hatsuda and Warren Siegel “Perturbative F-theory 10-brane and M-theory 5-brane” In JHEP 11, 2021, pp. 201 DOI: 10.1007/JHEP11(2021)201
  • [30] Machiko Hatsuda and Warren Siegel “Open F-branes” In JHEP 04, 2022, pp. 073 DOI: 10.1007/JHEP04(2022)073
  • [31] David S. Berman and Malcolm J. Perry “Generalized Geometry and M theory” In JHEP 06, 2011, pp. 074 DOI: 10.1007/JHEP06(2011)074
  • [32] Martin Cederwall, Joakim Edlund and Anna Karlsson “Exceptional geometry and tensor fields” In JHEP 07, 2013, pp. 028 DOI: 10.1007/JHEP07(2013)028
  • [33] Martin Cederwall “Twistors and supertwistors for exceptional field theory” In JHEP 12, 2015, pp. 123 DOI: 10.1007/JHEP12(2015)123
  • [34] Lilian Chabrol “Geometry of +×E3(3)\mathbb{R}^{+}\times E_{3(3)} exceptional field theory and F-theory” In JHEP 08, 2019, pp. 073 DOI: 10.1007/JHEP08(2019)073
  • [35] Andre Coimbra, Charles Strickland-Constable and Daniel Waldram “Supergravity as Generalised Geometry I: Type II Theories” In JHEP 11, 2011, pp. 091 DOI: 10.1007/JHEP11(2011)091
  • [36] Andre Coimbra, Charles Strickland-Constable and Daniel Waldram “Supergravity as Generalised Geometry II: Ed(d)×+E_{d(d)}\times\mathbb{R}^{+} and M theory” In JHEP 03, 2014, pp. 019 DOI: 10.1007/JHEP03(2014)019
  • [37] David S. Berman, Martin Cederwall, Axel Kleinschmidt and Daniel C. Thompson “The gauge structure of generalised diffeomorphisms” In JHEP 01, 2013, pp. 064 DOI: 10.1007/JHEP01(2013)064
  • [38] Olaf Hohm and Henning Samtleben “Exceptional Form of D=11 Supergravity” In Phys. Rev. Lett. 111, 2013, pp. 231601 DOI: 10.1103/PhysRevLett.111.231601
  • [39] Olaf Hohm and Henning Samtleben “Exceptional Field Theory I: E6(6)E_{6(6)} covariant Form of M-Theory and Type IIB” In Phys. Rev. D 89.6, 2014, pp. 066016 DOI: 10.1103/PhysRevD.89.066016
  • [40] Olaf Hohm and Henning Samtleben “Exceptional field theory. II. E7(7) In Phys. Rev. D 89, 2014, pp. 066017 DOI: 10.1103/PhysRevD.89.066017
  • [41] Olaf Hohm and Henning Samtleben “Exceptional field theory. III. E8(8) In Phys. Rev. D 90, 2014, pp. 066002 DOI: 10.1103/PhysRevD.90.066002
  • [42] David S. Berman, Chris D.. Blair, Emanuel Malek and Felix J. Rudolph “An action for F-theory: SL(2)+\mathrm{SL}(2){{\mathbb{R}}}^{+} exceptional field theory” In Class. Quant. Grav. 33.19, 2016, pp. 195009 DOI: 10.1088/0264-9381/33/19/195009
  • [43] M.. Duff “E8 x SO(16) SYMMETRY OF d = 11 SUPERGRAVITY”, 1985
  • [44] E. Cremmer and B. Julia “The SO(8) Supergravity” In Nucl. Phys. B 159, 1979, pp. 141–212 DOI: 10.1016/0550-3213(79)90331-6
  • [45] David Osten “Currents, charges and algebras in exceptional generalised geometry” In JHEP 06, 2021, pp. 070 DOI: 10.1007/JHEP06(2021)070
  • [46] David Osten “On exceptional QP-manifolds” In JHEP 01, 2024, pp. 028 DOI: 10.1007/JHEP01(2024)028
  • [47] David Osten “On the universal exceptional structure of world-volume theories in string and M-theory” In Phys. Lett. B 855, 2024, pp. 138814 DOI: 10.1016/j.physletb.2024.138814
  • [48] Yuho Sakatani and Shozo Uehara “Branes in Extended Spacetime: Brane Worldvolume Theory Based on Duality Symmetry” In Phys. Rev. Lett. 117.19, 2016, pp. 191601 DOI: 10.1103/PhysRevLett.117.191601
  • [49] Chris D.. Blair and Edvard T. Musaev “Five-brane actions in double field theory” In JHEP 03, 2018, pp. 111 DOI: 10.1007/JHEP03(2018)111
  • [50] Yuho Sakatani and Shozo Uehara “Exceptional M-brane sigma models and η\eta-symbols” In PTEP 2018.3, 2018, pp. 033B05 DOI: 10.1093/ptep/pty021
  • [51] Chris D.. Blair “Open exceptional strings and D-branes” In JHEP 07, 2019, pp. 083 DOI: 10.1007/JHEP07(2019)083
  • [52] Yuho Sakatani and Shozo Uehara “Born sigma model for branes in exceptional geometry” In PTEP 2020.7, 2020, pp. 073B05 DOI: 10.1093/ptep/ptaa081
  • [53] E. Bergshoeff, E. Sezgin and P.. Townsend “Supermembranes and Eleven-Dimensional Supergravity” In Phys. Lett. B 189, 1987, pp. 75–78 DOI: 10.1016/0370-2693(87)91272-X
  • [54] Edward Witten “String theory dynamics in various dimensions” In Nucl. Phys. B 443, 1995, pp. 85–126 DOI: 10.1201/9781482268737-32
  • [55] Machiko Hatsuda and Warren Siegel “O(D, D) gauge fields in the T-dual string Lagrangian” In JHEP 02, 2019, pp. 010 DOI: 10.1007/JHEP02(2019)010
  • [56] Machiko Hatsuda and Warren Siegel “T-dual Superstring Lagrangian with double zweibeins” In JHEP 03, 2020, pp. 058 DOI: 10.1007/JHEP03(2020)058
  • [57] Machiko Hatsuda, Kiyoshi Kamimura and Warren Siegel “Type II chiral affine Lie algebras and string actions in doubled space” In JHEP 2015.9 Springer ScienceBusiness Media LLC, 2015 DOI: 10.1007/jhep09(2015)113
  • [58] E. Cremmer, B. Julia, H. Lü and C.N. Pope “Dualisation of dualities” In Nuclear Physics B 523.1–2 Elsevier BV, 1998, pp. 73–144 DOI: 10.1016/s0550-3213(98)00136-9
  • [59] Christofer M Hull “A geometry for non-geometric string backgrounds” In JHEP 2005.10 Springer ScienceBusiness Media LLC, 2005, pp. 065–065 DOI: 10.1088/1126-6708/2005/10/065
  • [60] Christopher M Hull “Doubled geometry and T-folds” In JHEP 2007.07 Springer ScienceBusiness Media LLC, 2007, pp. 080–080 DOI: 10.1088/1126-6708/2007/07/080
  • [61] Kanghoon Lee and Jeong-Hyuck Park “Covariant action for a string in doubled yet gauged spacetime” In Nuclear Physics B 880 Elsevier BV, 2014, pp. 134–154 DOI: 10.1016/j.nuclphysb.2014.01.003
  • [62] Alex S. Arvanitakis and Chris D.. Blair “The exceptional sigma model” In JHEP 2018.4 Springer ScienceBusiness Media LLC, 2018 DOI: 10.1007/jhep04(2018)064
  • [63] Machiko Hatsuda and Kiyoshi Kamimura “SL(5) duality from canonical M2-brane” In JHEP 11, 2012, pp. 001 DOI: 10.1007/JHEP11(2012)001
  • [64] Machiko Hatsuda and Tetsuji Kimura “Canonical approach to Courant brackets for D-branes” In JHEP 06, 2012, pp. 034 DOI: 10.1007/JHEP06(2012)034
  • [65] Machiko Hatsuda and Kiyoshi Kamimura “M5 algebra and SO(5,5) duality” In JHEP 06, 2013, pp. 095 DOI: 10.1007/JHEP06(2013)095
  • [66] Machiko Hatsuda, Shin Sasaki and Masaya Yata “Five-brane current algebras in type II string theories” In JHEP 03, 2021, pp. 298 DOI: 10.1007/JHEP03(2021)298
  • [67] Hai-dong Feng and Warren Siegel “Gauge-covariant S-matrices for field theory and strings” In Phys. Rev. D 71, 2005, pp. 106001 DOI: 10.1103/PhysRevD.71.106001
  • [68] Henriette Elvang, Daniel Z. Freedman and Michael Kiermaier “Solution to the Ward Identities for Superamplitudes” In JHEP 10, 2010, pp. 103 DOI: 10.1007/JHEP10(2010)103
  • [69] Henriette Elvang, Daniel Z. Freedman and Michael Kiermaier “SUSY Ward identities, Superamplitudes, and Counterterms” In J. Phys. A 44, 2011, pp. 454009 DOI: 10.1088/1751-8113/44/45/454009
  • [70] Warren Siegel “S-matrices from 4d worldvolume”, 2020 arXiv:2012.12938 [hep-th]
  • [71] E. Cremmer and B. Julia “The N=8 Supergravity Theory. 1. The Lagrangian” In Phys. Lett. B 80, 1978, pp. 48 DOI: 10.1016/0370-2693(78)90303-9
  • [72] Guillaume Bossard et al. “E9 exceptional field theory. Part I. The potential” In JHEP 03, 2019, pp. 089 DOI: 10.1007/JHEP03(2019)089
  • [73] Guillaume Bossard et al. “E9 exceptional field theory. Part II. The complete dynamics” In JHEP 05, 2021, pp. 107 DOI: 10.1007/JHEP05(2021)107