This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Stochastic Kähler Geometry: From random zeros to random metrics

Bernard Shiffman Department of Mathematics, Johns Hopkins University, Baltimore, MD 21218, USA [email protected]  and  Steve Zelditch Department of Mathematics, Northwestern University, Evanston, IL 60208, USA
Abstract.

We provide a survey of results on the statistics of random sections of holomorphic line bundles on Kähler manifolds, with an emphasis on the resulting asymptotics when a line bundle is raised to increasing tensor powers. We conclude with a brief discussion of the ‘Bergman’ Kähler metrics induced by these random sections.

Research of the second author partially supported by NSF grant DMS-1810747

Introduction

Stochastic Kähler geometry refers to the study of probabilistic problems in complex algebraic or analytic geometry in the setting of Kähler manifolds (Mm,J,ω)(M^{m},J,\omega) of any complex dimension mm. It concerns random fields on a Kähler manifold which are defined in terms of the complex structure JJ and Kähler form ω\omega. The basic random fields are holomorphic sections sH0(M,Lk)s\in H^{0}(M,L^{k}) of powers of a holomorphic Hermitian line bundle (L,h)(M,ω)(L,h)\to(M,\omega). From these holomorphic fields one can construct random complex submanifolds ZsZ_{\vec{s}} (zero sets of one or several sections), random embeddings into complex projective spaces N{\mathbb{C}}{\mathbb{P}}^{N}, and random ‘Bergman’ or ‘Fubini-Study’ Kähler metrics induced by the embeddings. Zero sets and embeddings both determine positive (1,1)-forms ω=i¯φ\omega={i}\partial\bar{\partial}\varphi, where φ\varphi is a psh (plurisubharmonic) function. Although the behavior of random zero sets in the high tensor power limit kk\to\infty is the heart of stochastic Kähler geometry, the same techniques often apply with little change to random Kähler metrics and other more general objects. The goal of this survey is to review some of the main results on random zero sets and also to briefly discuss these generalizations to random Kähler metrics.

Most results of stochastic Kähler geometry to date pertain to the asymptotics of probabilistic invariants such as distribution and correlation functions of zeros and of critical points as the degree kk\to\infty. One of the main results is universality of the limit of rescaled invariants on small balls of radius k12k^{-{\frac{1}{2}}}. Recently such scaling limits have been used to study the local topology of random zero sets. Another focal point is on the asymptotic normality of linear statistics, showing that fluctuations of linear statistics, i.e.  integrals Zsψ\int_{Z_{s}}\psi of a test form ψ\psi over the zeros of random sections, tend to Gaussian random variables determined by the variance current. Asymptotic normality of integrals against a random positive (1,1)(1,1) form ω\omega is equivalent to asymptotic normality of the potential uu of ω\omega, and that is the way it is often stated in the physics literature (e.g. [CLW15a, CLW15b]). We call attention to some natural ensembles of potentials for which asymptotic normality is as yet unknown: linear statistics for critical points and for zeros of codimension greater than 1.

As the reference to potentials indicates, the unifying theme is that of random psh functions. A Kähler metric is defined as a mixed Hessian ω=i¯u\omega=i\partial\bar{\partial}u of a local psh function uu, known as the ‘Kähler potential’. Zero sets are also defined as Zf:=(i2π¯u)qZ_{\vec{f}}:=(\frac{i}{2\pi}\,\partial\bar{\partial}u)^{q} where u=logj=1q|fj(z)|2u=\log\sum_{j=1}^{q}|f_{j}(z)|^{2} with qm=dimMq\leq m=\dim_{{\mathbb{C}}}M and fjf_{j} are local holomorphic functions. The same formula when q>mq>m is a way to define a smooth Kähler metric, and ZfZ_{\vec{f}} can be viewed as a ‘singular Kähler metric’. As this suggests, many results about random zero sets have analogues for random smooth metrics. If q=dk:=dimH0(M,Lk)q=d_{k}:=\dim H^{0}(M,L^{k}) and if f\vec{f} is a basis of H0(M,Lk)H^{0}(M,L^{k}) then i¯logj=1dk|fj(z)|2i\partial\bar{\partial}\log\sum_{j=1}^{d_{k}}|f_{j}(z)|^{2} is known as a Bergman metric of degree kk.

One of the themes of stochastic Kähler geometry is the response of the probabilistic results to changes in the input geometry. By ‘geometry’ we mean line bundles LML\to M, Hermitian metrics hh on LL, curvature forms Θh\Theta_{h} and the ‘quantization’ of Hermitian metrics hh (together with a choice of measure ν\nu on MM) as inner products G(hk,ν)G(h^{k},\nu) on spaces H0(M,Lk)H^{0}(M,L^{k}) of holomorphic sections of powers of LL. The inner product determines a Gaussian measure γhk,ν\gamma_{h^{k},\nu} on H0(M,Lk)H^{0}(M,L^{k}), and this provides the notion of ‘random polynomial’ or more generally ‘random section’. The geometric language is useful (and even necessary) to formulate generalizations of logarithmic potential theory and random polynomial theory on {\mathbb{C}} to compact Riemann surfaces or to higher dimensional complex manifolds. Holomorphic sections of line bundles are the analogues on a compact manifold MM of holomorphic functions on n{\mathbb{C}}^{n}, and specifically H0(M,Lk)H^{0}(M,L^{k}) is the replacement for polynomials of degree k\leq k.

We may contrast stochastic Kähler geometry with the much-studied one-dimensional theory of stochastic (or, random) conformal geometry. Conformal stochastic geometry is a highly developed field of probability, mathematical physics and complex analysis. It contains such subfields as SLE, the quantum Hall effect, Hele-Shale flow, and Liouville quantum gravity in mathematical physics, and probabilistic problems in one dimensional complex analysis. As the name ‘conformal’ suggests, it is strictly a complex one-dimensional theory. The key difference is that stochastic conformal geometry is concerned with conformally-invariant ensembles of real objects such as the Gaussian free field (GFF), SLE curves, Coulomb gas point processes, or random LQG area forms in Liouville quantum gravity [AHM11, Du06, KN13]. The key objects are often random fractals. In stochastic Kähler geometry, the emphasis is on holomorphic fields and the objects they induce in complex geometry.

In this survey, we only refer briefly to results in the complex one dimensional case, although it is a very rich field. Moreover, many of the recent constructions on higher dimensiional Kähler manifolds use ideas that originated in the probabilistic study of real algebraic manifolds and zero sets of random real functions, in particular ideas stemming from the work of Nazarov–Sodin [NS09] on counting connected components of spherical harmonics and other random real functions, and their topological applications due to Sarnak–Wigman [SW10], Canzani–Sarnak [CS19] and others on Betti numbers and combinatorial configurations. We omit these important results because they would take us too far afield.

1. Background

In this section we introduce some background and notation pertaining to random holomorphic sections of positive Hermitian line bundles.

Let (M,L)(M,L) be an mm-dimensional compact complex manifold polarized with a Hermitian holomorphic line bundle (L,h)(L,h). We consider a local holomorphic frame eLe_{L} over a trivializing chart UU. If s=feLs=fe_{L} is a holomorphic section of LL over UU, its Hermitian norm is given by s(z)h=eφh|f(z)|\|s(z)\|_{h}=e^{-\varphi_{h}}|f(z)| where

(1) φh(z):=logeL(z)h.\varphi_{h}(z):=-\log\|e_{L}(z)\|_{h}\;.

The curvature form of (L,h)(L,h) is given locally by Θh=2¯φh\Theta_{h}=2\partial\bar{\partial}\varphi_{h}, and the Chern form c1(L,h)c_{1}(L,h) is given by

(2) c1(L,h)=12πΘh=1π¯φh.c_{1}(L,h)=\frac{\sqrt{-1}}{2\pi}\Theta_{h}=\frac{\sqrt{-1}}{\pi}\,\partial\bar{\partial}\varphi_{h}\;.

We now assume that the Hermitian metric hh has strictly positive curvature and we give MM the Kähler form

(3) ωh:=i¯φh=πc1(L,h).\omega_{h}:=i\partial\bar{\partial}\varphi_{h}=\pi c_{1}(L,h)\;.

1.1. From metrics and measures to inner products and Gaussian measures

We denote by H0(M,Lk)H^{0}(M,L^{k}) the space of global holomorphic sections of Lk=LLL^{k}=L\otimes\cdots\otimes L. The metric hh induces Hermitian metrics hkh^{k} on LkL^{k} given by skhk=shk\|s^{\otimes k}\|_{h^{k}}=\|s\|_{h}^{k}.

We let ν\nu denote a (finite, positive) Borel measure on MM. Together, the data (h,ν)(h,\nu) induces Hermitian inner products G(hk,ν)G(h^{k},\nu) on the spaces H0(M,Lk)H^{0}(M,L^{k}) of global holomorphic sections of powers LkML^{k}\to M given by

(4) s1,s2¯k=s1,s2¯G(hk,ν):=Ms1(z),s2(z)¯hk𝑑ν(z),s1,s2H0(M,Lk).\langle s_{1},\overline{s_{2}}\rangle_{k}=\langle s_{1},\overline{s_{2}}\rangle_{G(h^{k},\nu)}:=\int_{M}\langle s_{1}(z),\overline{s_{2}(z)}\rangle_{h^{k}}\,d\nu(z),\quad s_{1},s_{2}\in H^{0}(M,L^{k})\,.

In turn, each inner product on H0(M,Lk)H^{0}(M,L^{k}) induces an orthonormal basis {S1k,,Sdkk}\{S_{1}^{k},\dots,S_{d_{k}}^{k}\} and associated Gaussian measure γhk,ν\gamma_{h^{k},\nu} given by the formula,

(5) dγhk,ν(sk):=1πdke|c|2dc,sk=j=1dkcjSjk,c=(c1,,cdk)dk,d\gamma_{h^{k},\nu}(s^{k}):=\frac{1}{\pi^{d_{k}}}e^{-|c|^{2}}dc\,,\quad s^{k}=\sum_{j=1}^{d_{k}}c_{j}S^{k}_{j}\,,\quad c=(c_{1},\dots,c_{d_{k}})\in{\mathbb{C}}^{d_{k}}\,,

where dcdc denotes 2dk2d_{k}-dimensional Lebesgue measure. The measure γhk,ν\gamma_{h^{k},\nu} is characterized by the property that the 2dk2d_{k} real variables cj,cj\Re c_{j},\Im c_{j} (j=1,,dkj=1,\dots,d_{k}) are independent Gaussian random variables with mean 0 and variance 1/21/2; equivalently,

𝐄(cj)=0=𝐄(cjcl),𝐄(cjc¯l)=δjl.{\mathbf{E}}(c_{j})=0={\mathbf{E}}(c_{j}c_{l}),\;\;\;{\mathbf{E}}(c_{j}\bar{c}_{l})=\delta_{jl}.

Here, 𝐄{\mathbf{E}} denotes the expectation.

The inner product G(hk,ν)G(h^{k},\nu) further induces an associated spherical measure on the unit sphere SH0(M,Lk)SH^{0}(M,L^{k}) in H0(M,Lk)H^{0}(M,L^{k}) with respect to G(hk,ν)G(h^{k},\nu). In this survey, we restrict our discussion to inner products where ν\nu is the volume form of MM. For results with more general metrics and measures, see for example [Be09, BSh07, BeBW11].

1.2. Polynomials and holomorphic sections of line bundles

The space 𝑃𝑜𝑙𝑦k{\it Poly}_{k} of univariate polynomials of degree kk is a complex vector space of dimension k+1k+1. The ‘SU(2){\operatorname{SU}}(2) inner product’ on 𝑃𝑜𝑙𝑦k{\it Poly}_{k} may be written in the form

f1,f¯2=i2f1(z)f2(z)¯eklog(1+|z|2)dzdz¯(1+|z|2)2=i2f(1z)f2(z)¯dzdz¯(1+|z|2)k+2,\langle f_{1},\bar{f}_{2}\rangle=\frac{i}{2}\int_{{\mathbb{C}}}f_{1}(z)\overline{f_{2}(z)}e^{-k\log(1+|z|^{2})}\frac{dz\wedge d\bar{z}}{(1+|z|^{2})^{2}}=\frac{i}{2}\int_{{\mathbb{C}}}f(_{1}z)\overline{f_{2}(z)}\frac{dz\wedge d\bar{z}}{(1+|z|^{2})^{k+2}}\,,

f1,f2𝑃𝑜𝑙𝑦kf_{1},f_{2}\in{\it Poly}_{k}.

This has a simple geometric interpretation: namely, we view polynomials of degree kk as holomorphic sections of the line bundle 𝒪(k)=Lk\mathcal{O}(k)=L^{k}, where L1L\to{\mathbb{C}}{\mathbb{P}}^{1} is the hyperplane section bundle. We give LL the Hermitian metric eLh=e12log(1+|z|2)\|e_{L}\|_{h}=e^{-\frac{1}{2}\log(1+|z|^{2})}, where eL=1e_{L}=1. Then ωh=i2dzdz¯(1+|z|2)2\omega_{h}=\frac{i}{2}\frac{dz\wedge d\bar{z}}{(1+|z|^{2})^{2}} is the usual area form on ^=1\hat{{\mathbb{C}}}={\mathbb{C}}{\mathbb{P}}^{1}, and f1,f¯2=f1,f¯2G(hk,ωh)\langle f_{1},\bar{f}_{2}\rangle=\langle f_{1},\bar{f}_{2}\rangle_{G(h^{k},\omega_{h})}.

For multivariable polynomials, we let M=mM={\mathbb{C}}{\mathbb{P}}^{m} with LmL\to{\mathbb{C}}{\mathbb{P}}^{m} the hyperplane section bundle 𝒪(1)\mathcal{O}(1), so that the space of global sections H0(m,L)H^{0}({\mathbb{C}}{\mathbb{P}}^{m},L) consists of the linear functions f(z)=j=0mcjzjf(z)=\sum_{j=0}^{m}c_{j}z_{j} on m+1{\mathbb{C}}^{m+1}. Then H0(m,Lk)H^{0}({\mathbb{C}}{\mathbb{P}}^{m},L^{k}) is the vector space 𝑃𝑜𝑙𝑦km{\it Poly}_{k}^{m} of homogeneous polynomials of degree kk on m+1{\mathbb{C}}^{m+1}, which we identify with the space of polynomials of degree k\leq k in the variables z1,,zmz_{1},\dots,z_{m} by setting z0=1z_{0}=1. If we let wj=zj/z0w_{j}=z_{j}/z_{0},  1jm1\leq j\leq m, be local coordinates on m{\mathbb{C}}{\mathbb{P}}^{m} and we give L=𝒪(1)L=\mathcal{O}(1) the Hermitian metric eLh=(1+w2)1/2\|e_{L}\|_{h}=(1+\|w\|^{2})^{-1/2}, then φh=12log(1+w2)\varphi_{h}=\frac{1}{2}\log(1+\|w\|^{2}) and ωh=i2¯log(1+w2)\omega_{h}=\frac{i}{2}\partial\bar{\partial}\log(1+\|w\|^{2}), the Fubini-Study metric on m{\mathbb{C}}{\mathbb{P}}^{m}. Then the volume form

dV=1m!ωhm=(1+w2)m1d2mw,dV=\frac{1}{m!}\omega_{h}^{m}=(1+\|w\|^{2})^{-m-1}\,d_{2m}w\,,

where d2mwd_{2m}w is Euclidean volume. We then have the SU(m+1){\operatorname{SU}}(m+1)-invariant inner product

f1,f¯2G(hk,dV)=mf1(z)f2(z)¯(1+z2)k+m+1d2mz,f1,f2𝑃𝑜𝑙𝑦km.\langle f_{1},\bar{f}_{2}\rangle_{G(h^{k},dV)}=\int_{{\mathbb{C}}^{m}}\frac{f_{1}(z)\,\overline{f_{2}(z)}}{(1+\|z\|^{2})^{k+m+1}}\,d_{2m}z\,,\quad f_{1},f_{2}\in{\it Poly}_{k}^{m}\;.

1.3. Asymptotics of Bergman kernels on positive line bundles

We let 2(M,Lk)\mathcal{L}^{2}(M,L^{k}) denote the 2\mathcal{L}^{2} sections of LkML^{k}\to M with respect to the inner product G(hk,dV)G(h^{k},dV), where dV=1m!ωhmdV=\frac{1}{m!}\omega_{h}^{m}.

We define the Bergman kernel as the orthogonal projection

Bk(z,w):2(M,Lk)H0(M,Lk).B_{k}(z,w):\mathcal{L}^{2}(M,L^{k})\rightarrow H^{0}(M,L^{k})\,.

Then

(6) Bk(z,w)=j=1dkSjk(z)Sjk(w)¯,B_{k}(z,w)=\sum_{j=1}^{d_{k}}S_{j}^{k}(z)\otimes\overline{S_{j}^{k}(w)}\,,

where {S1k,,Sdkk}\{S_{1}^{k},\cdots,S_{d_{k}}^{k}\} is an orthonormal basis of H0(M,Lk)H^{0}(M,L^{k}) with respect to G(hk,dV)G({h^{k}},dV). Along the diagonal, the contraction of the Bergman kernel is

(7) Bk(z,z)=j=1dkSjk(z)hk2.\|B_{k}(z,z)\|=\sum_{j=1}^{d_{k}}\|S^{k}_{j}(z)\|_{h^{k}}^{2}\,.

In the case where the curvature form Θh\Theta_{h} of the Hermitian line bundle (L,h)(L,h) is everywhere positive, we have the following Tian–Yau–Zelditch asymptotic expansion [Ca97, Z97]:

(8) Bk(z,z)1πm[km+a1(z)km1+a2(z)km2+],\|B_{k}(z,z)\|\sim\frac{1}{\pi^{m}}[k^{m}+a_{1}(z)k^{m-1}+a_{2}(z)k^{m-2}+\cdots]\,,

where each coefficient aj(z)a_{j}(z) is a polynomial of the curvature and its covariant derivatives. Formulas for the first three coefficients were given by Lu [Lu00]. In particular, a1(z)a_{1}(z) equals one-half the scalar curvature of ωh\omega_{h}.

Example: In the case of (m,ωFS)({\mathbb{C}}{\mathbb{P}}^{m},\omega_{FS}) with the line bundle (𝒪(1),hFS)(\mathcal{O}(1),h_{FS}), the Bergman kernel is easily computed to be a constant along the diagonal [BShZ00b]:

(9) Bk(z,z)=(k+m)!πmk!.\|B_{k}(z,z)\|=\frac{(k+m)!}{\pi^{m}\,k!}\,.

Recall that the inner product G(hk,dV)G(h^{k},dV) induces the Gaussian field (H0(M,Lk),γhk,dV)(H^{0}(M,L^{k}),\gamma_{h^{k},dV}), where γhk,dV\gamma_{h^{k},dV} is given by 5. In fact, the Bergman kernel Bk(z,w)B_{k}(z,w) can be interpreted as the covariance function for the Gaussian field (H0(M,Lk),γhk,dV)\big{(}H^{0}(M,L^{k}),\,\gamma_{h^{k},dV}\big{)}:

(10) 𝐄(sk(z)sk(w)¯)=Bk(z,w),{\mathbf{E}}\big{(}s^{k}(z)\otimes\overline{s^{k}(w)}\big{)}=B_{k}(z,w)\,,

where 𝐄{\mathbf{E}} denotes the expected value with respect to γhk,dV\gamma_{h^{k},dV}.

Proof.

Apply 𝐄(cjc¯l)=δjl{\mathbf{E}}(c_{j}\bar{c}_{l})=\delta_{jl} to

𝐄(sk(z)sk(w)¯)=𝐄(j=1dkcjSjk(z)l=1nclSlk(w)¯).{\mathbf{E}}\left(s^{k}(z)\otimes\overline{s^{k}(w)}\right)={\mathbf{E}}\left(\sum_{j=1}^{d_{k}}c_{j}S^{k}_{j}(z)\otimes\overline{\sum_{l=1}^{n}c_{l}S^{k}_{l}(w)}\right).

1.4. Off-diagonal scaling asymptotics of the Szegő kernel

To provide asymptotics for the Bergman kernel off the diagonal, it is convenient to lift the Bergman kernel to the circle bundle XX of the dual bundle to LL. To describe the lifted kernel, we let LML^{*}\to M denote the dual line bundle to LML\to M with the dual metric hh^{*}, and we let X:={λL:λh=1}X:=\{\lambda\in L^{*}:\|\lambda\|_{h^{*}}=1\}. We regard a section skH0(M,Lk)s^{k}\in H^{0}(M,L^{k}) as a function on XX by setting

sk(λ)=(λλ,sk(z)),λLz.s^{k}(\lambda)=(\lambda\otimes\cdots\otimes\lambda,s^{k}(z)),\quad\lambda\in L^{*}_{z}\,.

and we note that sks^{k} is kk-equivariant: sk(eiθλ)=eikθsk(λ)s^{k}(e^{i\theta}\lambda)=e^{ik\theta}s^{k}(\lambda). We assume that (L,h)(L,h) has positive curvature; then XX is the boundary of the strictly pseudoconvex disk bundle {λL:(λ)<1}\{\lambda\in L^{*}:\ell(\lambda)<1\} where (λ)=λh2\ell(\lambda)=\|\lambda\|^{2}_{h^{*}}. We let Π:2(X)2(X)\Pi:\mathcal{L}^{2}(X)\to\mathcal{H}^{2}(X) denote the orthogonal projection to the space 2(X)\mathcal{H}^{2}(X) of square-integrable CR functions on XX, where we give XX the volume form

i2πm!¯(i¯)m=i2π¯dVM.\frac{i}{2\pi\,m!}\bar{\partial}\ell\wedge(i\partial\bar{\partial}\ell)^{m}=\frac{i}{2\pi}\bar{\partial}\ell\wedge dV_{M}\,.

Then Π=k=0Πk\Pi=\bigoplus_{k=0}^{\infty}\Pi_{k}, where Πk:2(X)k2(X)\Pi_{k}:\mathcal{L}^{2}(X)\to\mathcal{H}^{2}_{k}(X) is the orthogonal projection onto the space of kk-equivariant functions k2(X)\mathcal{H}^{2}_{k}(X) in 2(X)\mathcal{H}^{2}(X). Indeed, 2(X)=k=0k2(X)\mathcal{H}^{2}(X)=\bigoplus_{k=0}^{\infty}\mathcal{H}^{2}_{k}(X), where k2(X)H0(M,Lk)\mathcal{H}^{2}_{k}(X)\approx H^{0}(M,L^{k}). We call Πk(x,y)\Pi_{k}(x,y) the (kk-th) Szegő kernel; the sum Π(x,y)\Pi(x,y) is the classical Szegő kernel for the strictly pseudoconvex boundary XX.

To relate the Bergman kernel Bk(z,w)B_{k}(z,w) to the Szegő kernel Πk(z,θ;w,φ)\Pi_{k}(z,\theta;w,\varphi), we use a local frame eLe_{L} to write Sjk=FjkeLkS^{k}_{j}=F_{j}^{k}e_{L}^{\otimes k}. Recalling (6), we have

Bk(z,w)\displaystyle B_{k}(z,w) =\displaystyle= (j=1dkFjk(z)Fjk(w)¯)eL(z)keL(w)¯k,\displaystyle\textstyle\left(\sum_{j=1}^{d_{k}}F_{j}^{k}(z)\overline{F_{j}^{k}(w)}\right)e_{L}(z)^{\otimes k}\otimes\overline{e_{L}(w)}^{\otimes k}\;,
Πk(z,θ1;w,θ2)\displaystyle\Pi_{k}(z,\theta_{1};w,\theta_{2}) =\displaystyle= eik(θ1θ2)ekφ(z)kφ(w)j=1dkFjk(z)Fjk(w)¯.\displaystyle\textstyle e^{ik(\theta_{1}-\theta_{2})}e^{-k\varphi(z)-k\varphi(w)}\sum_{j=1}^{d_{k}}F_{j}^{k}(z)\overline{F_{j}^{k}(w)}\,.

Here, (z,θ)(z,\theta) denotes the point eiθeL(z)heL(z)Xe^{i\theta}\|e_{L}(z)\|_{h}e^{*}_{L}(z)\in X. Thus

|Πk(z,θ1;w,θ2)|=Bk(z,w),\displaystyle|\Pi_{k}(z,\theta_{1};w,\theta_{2})|=\|B_{k}(z,w)\|\;,
Πk(z,z):=Πk(z,0;z,0)=Bk(z,z).\displaystyle\Pi_{k}(z,z):=\Pi_{k}(z,0;z,0)=\|B_{k}(z,z)\|\;.

The asymptotics of the Bergman kernal are used in Section 2 to study the distributions of zeros of a random section skH0(M,Lk)s^{k}\in H^{0}(M,L^{k}). In particular, the off-diagonal asymptotics of the Bergman kernel provides information on correlations and variances of random zeros. To this end, a general asymptotic expansion was given in [ShZ02] and further clarified in [ShZ08] as follows:

Theorem 1.1.

Let (L,h)(M,ωh)(L,h)\to(M,\omega_{h}) be a positive holomorphic line bundle over a compact Kähler manifold. Let z0Mz_{0}\in M and choose local coordinates {zj}\{z^{j}\} in a neighborhood of z0z_{0} so that z0=0z_{0}=0 and Θh(z0)=dzjdz¯j\Theta_{h}(z_{0})=\sum dz^{j}\wedge d\bar{z}^{j}. Then

πmkmΠk(zk,θ1k;wk,θ2k)=ei(θ1θ2)+i(zw¯)12|zw|2×[1+r=1nkr/2pr(z,w)+k(n+1)/2Rkn(z,w)],\frac{\pi^{m}}{k^{m}}\,\Pi_{k}\left(\frac{z}{\sqrt{k}},\frac{\theta_{1}}{k};\frac{w}{\sqrt{k}},\frac{\theta_{2}}{k}\right)=e^{i(\theta_{1}-\theta_{2})+i\Im(z\cdot\bar{w})-{\frac{1}{2}}|z-w|^{2}}\\ \times\left[1+\sum_{r=1}^{n}k^{-r/2}p_{r}(z,w)+k^{-(n+1)/2}R_{kn}(z,w)\right]\;,

where prp_{r} is a polynomial in (z,z¯,w,w¯)(z,\bar{z},w,\bar{w}) of the same parity as rr, and

|jRkn(z,w)|Cjnεbkεfor |z|+|w|<blogk,|\nabla^{j}R_{kn}(z,w)|\leq C_{jn\varepsilon b}k^{\varepsilon}\quad\mbox{for }\ |z|+|w|<b\sqrt{\log k}\,,

for ε,b+\varepsilon,b\in{\mathbb{R}}^{+}, j,k0j,k\geq 0. Furthermore, the constant CjkεbC_{jk\varepsilon b} can be chosen independently of z0z_{0}.

Here, j\nabla^{j} stands for the jj-th covariant derivative.

The theorem shows that on Kähler manifolds, there is a characteristic length scale associated to the kk-th power LkML^{k}\to M of a positive line bundle: the Planck scale 1k\frac{1}{\sqrt{k}}. It arises in the following ways:

  • The Szegő kernel Πk(z,z0)\Pi_{k}(z,z_{0}) is of size km\simeq k^{m} for dist(z,z0)<bk{\operatorname{dist}}(z,z_{0})<\frac{b}{\sqrt{k}}, and then decays rapidly outside the ball.

  • On the length scale 1k\frac{1}{\sqrt{k}}, all Kähler manifolds and positive line bundles look alike in the scaling limit: they all look like the (trivial) line bundle m+1m{\mathbb{C}}^{m+1}\to{\mathbb{C}}^{m} with the Euclidean Kähler form on m{\mathbb{C}}^{m}.

  • Correlations become universal on this length scale.

Specific formulas for the coefficients in the off-diagonal expansion using Bochner coordinates are given by Lu–Shiffman in [LuSh15]. For real-analytic metrics, [HLX20] gives symptotics on an enlarged length scale. A detailed study of the off-diagonal asymptotics is given in the book of Ma–Marinescu [MaMar07] using different techniques involving normal coordinates instead of holomorphic coordinates.

Away from the diagonal, we have the following decay estimate [ShZ08]:

Theorem 1.2.

Let (L,h)(M,ωh)(L,h)\to(M,\omega_{h}) be as above. For b>j+2α+2mb>\sqrt{j+2\alpha+2m}\,, j,α0j,\alpha\geq 0, we have

jΠk(z,0;w,0)=O(kα)uniformly for dist(z,w)blogkk.\nabla^{j}\Pi_{k}(z,0;w,0)=O(k^{-\alpha})\qquad\mbox{uniformly for }\ {\operatorname{dist}}(z,w)\geq b\,\sqrt{\frac{\log k}{k}}\;.

In particular, our variance formulas are expressed in terms of the normalized Bergman kernel

(11) Pk(z,w):=Bk(z,w)Bk(z,z)12Bk(w,w)12.P_{k}(z,w):=\frac{\|B_{k}(z,w)\|}{\|B_{k}(z,z)\|^{\frac{1}{2}}\,\|B_{k}(w,w)\|^{\frac{1}{2}}}\,.

which is the square root of the so-called Berezin kernel. Note that 0Pk(z,w)10\leq P_{k}(z,w)\leq 1 by Cauchy-Schwarz, and Pk(z,z)=1P_{k}(z,z)=1.

Theorems 1.11.2 yield the following counterparts for the normalized kernel Pk(z,w)P_{k}(z,w):

Proposition 1.3.

Let (L,h)(M,ωh)(L,h)\to(M,\omega_{h}) be a positive holomorphic line bundle over a compact Kähler manifold. For b>j+2αb>\sqrt{j+2\alpha}, j,α0j,\alpha\geq 0, the normalized Bergman kernel satisfies the asymptotic estimate

jPk(z,w)=O(kα)uniformly for d(z,w)blogkk.\nabla^{j}P_{k}(z,w)=O(k^{-\alpha})\qquad\mbox{uniformly for }\ d(z,w)\geq b\,\sqrt{\frac{\log k}{k}}\;.
Proposition 1.4.

Using the hypotheses and notation of Theorem 1.1, we have the following asymptotics for the normalized Bergman kernel near the diagonal:

For ε,b>0\varepsilon,b>0, there are constants Cj=Cj(M,ε,b)C_{j}=C_{j}({M,\varepsilon,b}), j2j\geq 2, independent of the point z0z_{0}, such that

Pk(zk,wk)=e12|zw|2[1+Rk(z,w)],P_{k}\left(\frac{z}{\sqrt{k}},\frac{w}{\sqrt{k}}\right)=e^{-\frac{1}{2}|z-w|^{2}}[1+R_{k}(z,w)]\;,

where

|Rk(z,w)|C22|zw|2k1/2+ε,|Rk(z)|C2|zw|k1/2+ε,|jRk(z,w)|Cjk1/2+εj2,\begin{array}[]{c}|R_{k}(z,w)|\leq\frac{C_{2}}{2}\,|z-w|^{2}k^{-1/2+\varepsilon}\,,\quad|\nabla R_{k}(z)|\leq C_{2}\,|z-w|\,k^{-1/2+\varepsilon}\,,\\[8.0pt] |\nabla^{j}R_{k}(z,w)|\leq C_{j}\,k^{-1/2+\varepsilon}\quad j\geq 2\,,\end{array}

for |z|+|w|<blogk|z|+|w|<b\sqrt{\log k}.

2. Random zero sets

We now consider zero sets

Zs={zM:s(z)=0}Z_{s}=\{z\in M:s(z)=0\}

of Gaussian random holomorphic sections sH0(M,L)s\in H^{0}(M,L). In the case where MM is a compact Riemann surface CC (complex dimension 1), the zero set ZsZ_{s} is a finite set {ζ1,,ζk}\{\zeta_{1},\dots,\zeta_{k}\} of points in CC. For example, if C=1C={\mathbb{C}}{\mathbb{P}}^{1} and L=𝒪(k)L=\mathcal{O}(k), then ss is a polynomial on 1{\mathbb{C}}\subset{\mathbb{C}}{\mathbb{P}}^{1} of degree k\leq k and the zero set consists of the roots of ss (and the point at infinity if degs<k\deg s<k).

From the probabilistic viewpoint, the zeros of a random holomorphic section define a point process on CC, that is, a measure on the configuration space Conf(C){\rm Conf}(C) of finite subsets of CC (where the points may have positive integral multiplicities). Each holomorphic section gives rise to the discrete set of its zeros, and the point process is the probability measure on Conf(C){\rm Conf}(C) induced by the probability measure on the vector space H0(C,L)H^{0}(C,L). A probability measure on Conf(C){\rm Conf}(C) is determined by its nn-point correlations 𝐊n(z1,,zn){\mathbf{K}}_{n}(z_{1},\dots,z_{n}), n1n\geq 1, which are the probability densities (in Cn=C××CC^{n}=C\times\cdots\times C) that z1,,znCz_{1},\dots,z_{n}\in C are the (simultaneous) zeros of a random section. For example, the pair correlation 𝐊2(z1,z2){\mathbf{K}}_{2}(z_{1},z_{2}) determines whether the zeros tend to cluster or to ‘repel’ each other.

The zero set s1(0)={ζ1,,ζk}Conf(C)s^{-1}(0)=\{\zeta_{1},\dots,\zeta_{k}\}\in{\rm Conf}(C) of zeros of a section ss yields the normalized empirical measure

1kZs=1kjδζj,\frac{1}{k}Z_{s}=\frac{1}{k}\sum_{j}\delta_{\zeta_{j}},

(again, counting multiplicities), so that the point process can be considered as a measure on the space of probability measures on CC with discrete support. Here, δz\delta_{z} is the Dirac delta-function at zz. Thus the normalized empirical measure of zeros,

(1kZs,ψ)=1kjψ(ζj),ψ𝒞(C),(\frac{1}{k}Z_{s},\psi)=\frac{1}{k}\sum_{j}\psi(\zeta_{j}),{\quad\psi\in\mathcal{C}(C)},

is a random probability measure on CC. Its expectation is a measure called the expected distribution of zeros.

For m=dimM2m=\dim M\geq 2, ZsZ_{s} is the current of integration over the zero set of ss:

(12) (Zs,ψ)=Zsψ,ψ𝒟m1,m1(M),(Z_{s},\psi)=\int_{Z_{s}^{\prime}}\psi,\qquad\psi\in\mathcal{D}^{m-1,m-1}(M)\,,

where ZsZ_{s}^{\prime} is the set of smooth points (counted with multiplicities) of the analytic hypersurface {ζ:f(ζ)=0}\{\zeta:f(\zeta)=0\}. In Section 4.1, we discuss point processes of simultaneous zeros of mm holomorphic sections on MM.

In [ShZ99], we showed the following:

Theorem 2.1.

Let (L,h)(M,ωh)(L,h)\to(M,\omega_{h}) be a positive line bundle over a compact Kähler manifold. Then

1k𝐄(Zsk)1πωh\frac{1}{k}{\mathbf{E}}(Z_{s^{k}})\to\frac{1}{\pi}\,\omega_{h}

weakly in the sense of measures, where 𝐄{\mathbf{E}} is the expectation with respect to the Gaussian measure γhk,dV\gamma_{h^{k},dV} on H0(M,Lk)H^{0}(M,L^{k}). In fact,

(13) 1k𝐄(Zsk,ψ)=1πMωhψ+O(1k2),ψ𝒟m1,m1(M).\frac{1}{k}\,{\mathbf{E}}(Z_{s^{k}},\psi)=\frac{1}{\pi}\int_{M}\omega_{h}\wedge\psi\ +\ O\left(\frac{1}{k^{2}}\right)\,,\qquad\psi\in\mathcal{D}^{m-1,m-1}(M)\;.

Thus, if {skH0(M,Lk)}\{s^{k}\in H^{0}(M,L^{k})\} is a sequence of independent random sections, then

1kZsk1πωha.s.\frac{1}{k}Z_{s^{k}}\to\frac{1}{\pi}\,\omega_{h}\quad a.s.

Precisely, we form the probability space 𝒮:=k=1H0(M,Lk)\mathcal{S}:=\prod_{k=1}^{\infty}H^{0}(M,L^{k}) with the product measure. Its elements are sequences {sk}\{s^{k}\} of independent random sections. (In [ShZ99], (13) was stated with remainder term O(1k)O(\frac{1}{k}) in place of O(1k2)O(\frac{1}{k^{2}}) .)

In particular, we have

limk1k𝐄Vol2m2(ZskU)mπVol2m(U),\lim_{k\rightarrow\infty}\frac{1}{k}{\mathbf{E}}{\operatorname{Vol}}_{2m-2}(Z_{s^{k}}\cap U)\to\frac{m}{\pi}{\operatorname{Vol}}_{2m}(U)\,,

for UU open in MM. In the Riemann surface case (m=1m=1),

limk1k𝐄#{ZskU}=1πArea(U).\lim_{k\rightarrow\infty}\frac{1}{k}{\mathbf{E}}\#\{Z_{s^{k}}\cap U\}={\frac{1}{\pi}\operatorname{Area}(U)}\;.

We outline the proof of Theorem 2.1 in the next section.

2.1. Poincaré-Lelong formula

In complex dimension one, if f(z)f(z) is a holomorphic function on a domain in {\mathbb{C}}, then the fundamental solution Δlog|z|2=2πδ0\Delta\log|z|^{2}=2\pi\delta_{0} of the Laplace operator immediately yields

(14) Zf=f(ζ)=0δζ=i2π¯log|f|2=i2π2log|f|2zz¯dzdz¯,Z_{f}=\sum_{f(\zeta)=0}\delta_{\zeta}=\frac{i}{2\pi}\partial\bar{\partial}\log|f|^{2}=\frac{i}{2\pi}\frac{\partial^{2}\log|f|^{2}}{\partial z\partial\bar{z}}dz\wedge d\bar{z}\,,

as a singular (1,1)(1,1)-current.

In higher dimensions, we similarly have (see[Le67])

(15) Zf=i2π¯log|f|2,Z_{f}=\frac{i}{2\pi}\partial\bar{\partial}\log|f|^{2}\;,

where Zf𝒟1,1(M)Z_{f}\in\mathcal{D}^{\prime 1,1}(M) denotes the current of integration given in (12).

For a section sk=feLkH0(M,Lk){s^{k}}=fe_{L}^{\otimes k}\in H^{0}(M,L^{k}) of a Hermitian holomorphic line bundle LML\to M, we then have by(15) the Poincare-Lelong formula,

(16) Zsk=iπ¯log|f|=iπ¯logskhk+kπωh.Z_{s^{k}}=\frac{i}{\pi}\partial\bar{\partial}\log|f|=\frac{i}{\pi}\partial\bar{\partial}\log\|{s^{k}}\|_{h^{k}}+\frac{k}{\pi}\omega_{h}\;.

Averaging (16), we obtain:

Theorem 2.2.

Let {Sjk}\{S_{j}^{k}\} be an orthonormal basis of H0(M,Lk)H^{0}(M,L^{k}). Write Sjk=fjkeLkS_{j}^{k}=f_{j}^{k}e_{L}^{\otimes k}. Then,

1k𝐄(Zsk)=12πk¯logj=1dk|fjk|2=12πk¯logBk(z,z)+1πω,\frac{1}{k}{\mathbf{E}}(Z_{s^{k}})=\frac{\sqrt{-1}}{2\pi k}\partial\bar{\partial}\log\sum_{j=1}^{d_{k}}|f^{k}_{j}|^{2}=\frac{\sqrt{-1}}{2\pi k}\partial\bar{\partial}\log\|B_{k}(z,z)\|+\frac{1}{\pi}\omega,

where we recall that BkB_{k} is the Bergman kernel.

Proof.

Let s=jajSjks=\sum_{j}a_{j}S_{j}^{k} and write it as s=a,Sk=a,feLks=\langle\vec{a},\vec{S}^{k}\rangle=\langle\vec{a},\vec{f}\rangle e^{k}_{L}. Let ψ𝒟m1,m1(M)\psi\in\mathcal{D}^{m-1,m-1}(M). Then

𝐄1k[Zsk]),ψ=1πkdkdγk(a)M¯log|a,f|ψ.{\mathbf{E}}\langle\frac{1}{k}[Z_{s}^{k}]),\psi\rangle=\frac{\sqrt{-1}}{\pi k}\int_{{\mathbb{C}}^{d_{k}}}d\gamma_{k}(a)\int_{M}\partial\bar{\partial}\log|\langle\vec{a},\vec{f}\rangle|\wedge\psi\;.

To compute the integral, we write f=|f|u\vec{f}=|\vec{f}|\vec{u} where |u|1.|\vec{u}|\equiv 1. Evidently, log|a,f|=log|f|+log|a,u|\log|\langle\vec{a},\vec{f}\rangle|=\log|\vec{f}|+\log|\langle\vec{a},\vec{u}\rangle|. The first term gives

(17) 1πkM¯log|f|ψ=12πkM¯logBk(z,z)ψ+1πMωψ.\frac{\sqrt{-1}}{\pi k}\int_{M}\partial\bar{\partial}\log|\vec{f}|\wedge\psi=\frac{\sqrt{-1}}{2\pi k}\int_{M}\partial\bar{\partial}\log\|B_{k}(z,z)\|\wedge\psi+\frac{1}{\pi}\int_{M}\omega\wedge\psi.

We now look at the second term. We have

(18) 1πdk𝑑γk(a)M¯log|a,u|ψ=1πM¯[dklog|a,u|dγk(a)]ψ=0,\frac{\sqrt{-1}}{\pi}\int_{{\mathbb{C}}^{d_{k}}}d\gamma_{k}(a)\int_{M}\partial\bar{\partial}\log|\langle\vec{a},\vec{u}\rangle|\wedge\psi\\ =\frac{\sqrt{-1}}{\pi}\int_{M}\partial\bar{\partial}\left[\int_{{\mathbb{C}}^{d_{k}}}\log|\langle\vec{a},\vec{u}\rangle|\,d\gamma_{k}(a)\right]\wedge\psi=0,

since the average log|a,u|dγk(a)\int\log|\langle\vec{a},\vec{u}\rangle|d\gamma_{k}(a) is a constant independent of u\vec{u} for |u|=1|\vec{u}|=1, and thus the operator ¯\partial\bar{\partial} kills it. ∎

Combining Lemma 2.2 with the Bergman kernel asymptotics (8) yields Theorem 2.1.

2.2. Correlation of zeros

In this section, we discuss nn-point ‘correlations’ between zeros, or ‘joint intensities’, of random sections skH0(M,Lk)s^{k}\in H^{0}(M,L^{k}) of powers of a positive line bundle. We first consider pair correlations (n=2n=2): the pair correlation current for random zeros is defined by

(19) 𝐊2k(z,w):=𝐄(Zsk(z)Zsk(w));{\mathbf{K}}_{2}^{k}(z,w):={\mathbf{E}}\left(Z_{s^{k}}(z)\otimes Z_{s^{k}}(w)\right);

i.e., for test forms ψ1,ψ2𝒟m1,m1(M)\psi_{1},\ \psi_{2}\in\mathcal{D}^{m-1,m-1}(M),

(20) (𝐊2k(z,w),ψ1(z)ψ2(w)):=𝐄[(Zsk,ψ1)(Zsk,ψ2)].\left({\mathbf{K}}_{2}^{k}(z,w),\psi_{1}(z)\otimes\psi_{2}(w)\right):={\mathbf{E}}\left[\left(Z_{s^{k}},\psi_{1}\right)\otimes\left(Z_{s^{k}},\psi_{2}\right)\right].

In the case of complex dimension 1, the zeros form a point process, as discussed above, and the pair correlation measures take the form

𝐊2k(z,w)=[Δ](𝐊1k(z)1)+K~2k(z,w)𝐊1k(z)𝐊1k(w),{\mathbf{K}}_{2}^{k}(z,w)=[\Delta]\wedge({\mathbf{K}}_{1}^{k}(z)\otimes 1)+\tilde{K}_{2}^{k}(z,w)\,{\mathbf{K}}_{1}^{k}(z)\otimes{\mathbf{K}}_{1}^{k}(w)\,,

where [Δ][\Delta] denotes the current of integration along the diagonal Δ={(z,z)}C×C\Delta=\{(z,z)\}\subset C\times C, and 𝐊1k=𝐄(Zsk)kπωh{\mathbf{K}}^{k}_{1}={\mathbf{E}}(Z_{s^{k}})\approx\frac{k}{\pi}\omega_{h} for large kk. Then 𝐊2k𝒞(C×C){\mathbf{K}}_{2}^{k}\in\mathcal{C}^{\infty}(C\times C) for kk sufficiently large. The diagonal term comes from ‘self-correlations’ of a zero with itself. The second term is the interesting one. In [BShZ00a], it was shown that 𝐊2k{\mathbf{K}}_{2}^{k} has a universal limit using the 1/k1/\sqrt{k} scale of Section 1.4:

K~2k(zk,wk)\displaystyle\tilde{K}_{2}^{k}\left(\frac{z}{\sqrt{k}},\frac{w}{\sqrt{k}}\right) \displaystyle\to (sinh2(r2/2)+r4/4)cosh(r2/2)r2sinh(r2/2)sinh3(r2/2)\displaystyle\frac{\left(\sinh^{2}(r^{2}/2)+r^{4}/4\right)\cosh(r^{2}/2)-r^{2}\sinh(r^{2}/2)}{\sinh^{3}(r^{2}/2)}
=12r2136r6+1720r10,r=|zw|,\displaystyle=\frac{1}{2}r^{2}-\frac{1}{36}r^{6}+\frac{1}{720}r^{10}-\cdots,\qquad r=|z-w|\,,

using local holomorphic coordinates about z0Mz_{0}\in M with ω(z0)=i2dzdz¯\omega(z_{0})=\frac{i}{2}dz\wedge d\bar{z}. Equation (2.2), which holds for all Riemann surfaces, was given in [Ha96] for 1{\mathbb{C}}{\mathbb{P}}^{1} and in [NV98] for genus(C)=1(C)=1.

The fact that the pair correlation κk0\kappa^{k}\to 0 as the distance r0r\to 0 (with kk fixed) tells us that the zeros ‘repel’ in the sense that they cluster less than independent random points cluster, as illustrated below:

[Uncaptioned image][Uncaptioned image]

Poisson point process       zeros of random polynomials

It was shown in [BShZ00b, Th. 3.6] that nn-point correlations for random zero sets have universal scaling limits in all dimensions and codimensions of the form

1knp𝐊npmk(z1k,,znk)=𝐊npm(z1,,zn)+O(1k),\frac{1}{k^{np}}{\mathbf{K}}^{k}_{npm}\left(\frac{z^{1}}{\sqrt{k}}\,,\dots,\,\frac{z^{n}}{\sqrt{k}}\right)={\mathbf{K}}^{\infty}_{npm}(z^{1},\dots,z^{n})+O\left(\frac{1}{\sqrt{k}}\right)\,,

where pp is the codimension of the simultaneous zero set (of pp holomorphic sections of LkL^{k}). Formulas for 𝐊npmk{\mathbf{K}}^{k}_{npm} are given in [BShZ00b] and [BShZ01]. In particular, for the point process case p=mp=m,

𝐊2pm(z,w)=m+14r42m+O(r82m),r=zw.{\mathbf{K}}^{\infty}_{2pm}(z,w)=\frac{m+1}{4}\,r^{4-2m}+O(r^{8-2m})\,,\qquad r=\|z-w\|\,.

Hence, random simultaneous zeros of mm sections in H0(M,Lk)H^{0}(M,L^{k}) do not ‘repel’ when dimM2\dim M\geq 2, and in fact for dimM3\dim M\geq 3 they cluster more than those in Poisson processes, for large kk.

2.3. A pluri-bipotential for the zero variance

In this section we give a formula for the variance Var(Zsk){\operatorname{Var}}(Z_{s^{k}}) of the zero current ZskZ_{s^{k}} of a Gaussian random holomorphic section skH0(M,Lk)s^{k}\in H^{0}(M,L^{k}) (Theorem 2.4). Let us first describe the variance of a (general) random current:

Definition 2.3.

Let X:Ω𝒟j(M)X:\Omega\to\mathcal{D}^{\prime j}(M) be a random variable with values in the space 𝒟j(M)\mathcal{D}_{\mathbb{R}}^{\prime j}(M) of real currents of degree jj on a manifold MM. The variance of XX is the current

(22) 𝐕𝐚𝐫(X):=𝐄(XX)𝐄(X)𝐄(X),{\bf{Var}}(X):={\mathbf{E}}(X\boxtimes X)-{\mathbf{E}}(X)\boxtimes{\mathbf{E}}(X)\,,

where we use the notation

ST=π1Sπ2T𝒟p+q(M×M),for S𝒟p(M),T𝒟q(M).S\boxtimes T=\pi_{1}^{*}S\wedge\pi_{2}^{*}T\in\mathcal{D}^{\prime p+q}(M\times M)\;,\qquad\mbox{for }\ S\in\mathcal{D}^{\prime p}(M),\ T\in\mathcal{D}^{\prime q}(M)\;.

Here, π1,π2:M×MM\pi_{1},\pi_{2}:M\times M\to M are the projections to the first and second factors, respectively. Using more intuitive notation, we shall write (ST)(z,w)=S(z)T(w)(S\boxtimes T)(z,w)=S(z)\wedge T(w), where (z,w)(z,w) denotes a point of M×MM\times M.

The rationale behind Definition 2.3 is that the variance of the pairing of XX with a compactly supported real test form ψ𝒟dimMk(M)\psi\in\mathcal{D}_{\mathbb{R}}^{\dim M-k}(M) is given by

(23) Var(X,ψ)=(𝐕𝐚𝐫(X),ψψ).{\operatorname{Var}}(X,\psi)=\big{(}{\bf{Var}}(X),\,\psi\boxtimes\psi\big{)}\,.

We now show that the variance Var(Zsk){\operatorname{Var}}(Z_{s^{k}}) of the zero current depends only on the normalized Szegő kernel PkP_{k} given in equation(11):

Theorem 2.4.

[ShZ08] Let (L,h)(M,ωh)(L,h)\to(M,\omega_{h}) be a positive holomorphic line bundle over a compact Kähler manifold. Then the variance of the zero current of holomorphic sections of LkL^{k} is given by

(24) 𝐕𝐚𝐫(Zsk)=14π2z¯zw¯wLi2[Pk(z,w)2]𝒟2,2(M×M),{{\bf{Var}}}\big{(}Z_{s^{k}}\big{)}=-\frac{1}{4\pi^{2}}\partial_{z}\bar{\partial}_{z}\partial_{w}\bar{\partial}_{w}{\operatorname{Li}}_{2}[P_{k}(z,w)^{2}]\in\mathcal{D}^{\prime 2,2}(M\times M)\;,

where Li2{\operatorname{Li}}_{2} is the ‘di-logarithm’

Li2(t)=n=1tnn2=0tlog(1x)x𝑑x.{\operatorname{Li}}_{2}(t)=\ \sum_{n=1}^{\infty}\frac{t^{n}}{n^{2}}=-\int_{0}^{t}\frac{\log(1-x)}{x}\,dx\;.

Theorem 2.4 is equivalent via (23) to the variance formula:

(25) Var(Zsψ)=14π2M×MLi2[Pk(z,w)2]i¯ψ(z)i¯ψ(w),{\operatorname{Var}}\left(\int_{Z_{s}}\psi\right)=\frac{1}{4\pi^{2}}\int_{M\times M}{\operatorname{Li}}_{2}[P_{k}(z,w)^{2}]\;i\partial\bar{\partial}\psi(z)\wedge i\partial\bar{\partial}\psi(w)\;,

for test forms ψ𝒟m1,m1(M)\psi\in\mathcal{D}^{m-1,m-1}(M). (In [ShZ08, Th. 3.1], G~(t)=14π2Li2(t2)\widetilde{G}(t)=\frac{1}{4\pi^{2}}{\operatorname{Li}}_{2}(t^{2}).)

In the Riemann surface case, (24) becomes (in local coordinates)

𝐕𝐚𝐫(Zsk)=14π2ΔzΔwLi2[Pk(z,w)2](idzdz¯)(idwdw¯),{{\bf{Var}}}\big{(}Z_{s^{k}}\big{)}=\frac{1}{4\pi^{2}}\Delta_{z}\Delta_{w}{\operatorname{Li}}_{2}[P_{k}(z,w)^{2}]\;(idz\wedge d\bar{z})\wedge(idw\wedge d\bar{w}),

so that 14π2Li2[Pk(z,w)2]\frac{1}{4\pi^{2}}{\operatorname{Li}}_{2}[P_{k}(z,w)^{2}] is a bipotential for the variance of zeros. In higher dimensions, we say that 14π2Li2[Pk(z,w)2]\frac{1}{4\pi^{2}}{\operatorname{Li}}_{2}[P_{k}(z,w)^{2}] is a pluri-bipotential for the variance current.

To prove Theorem 2.4, we first note that it suffices to verify the identity over a trivializing neighborhood UU of (z,w)(z,w). Using the notation of Section 1.1, we write sk=c,Sks^{k}=\langle\vec{c},\vec{S^{k}}\rangle, where Sk=FeLk\vec{S^{k}}=\vec{F}e_{L}^{\otimes k}, sk=feLk=c,FeLks^{k}=fe_{L}^{\otimes k}=\langle\vec{c},\vec{F}\rangle e_{L}^{\otimes k}. We have by Theorem 2.2,

(26) 𝐄(Zsk)=iπ¯logF.{\mathbf{E}}(Z_{s^{k}})=\frac{i}{\pi}\partial\bar{\partial}\log\|\vec{F}\|\,.

The first step of the proof of Theorem 2.4 is the following lemma:

Lemma 2.5.

Writing f~=F1f\tilde{f}=\|\vec{F}\|^{-1}f, we have

𝐕𝐚𝐫(Zsk)=1π2z¯zw¯w𝐄(log|f~(z)|log|f~(w)|).{\bf{Var}}(Z_{s^{k}})=-\frac{1}{\pi^{2}}\partial_{z}\bar{\partial}_{z}\partial_{w}\bar{\partial}_{w}{\mathbf{E}}\left(\log|\tilde{f}(z)|\,\log|\tilde{f}(w)|\right)\;.
Proof.

By the Poincaré–Lelong formula (15),

(27) 𝐄(ZskZsk)=1π2z¯zw¯w𝐄(log|f(z)|log|f(w)|).{\mathbf{E}}(Z_{s^{k}}\boxtimes Z_{s^{k}})=-\frac{1}{\pi^{2}}\partial_{z}\bar{\partial}_{z}\partial_{w}\bar{\partial}_{w}{\mathbf{E}}\left(\log|f(z)|\,\log|f(w)|\right)\,.

Then f~=c,u\tilde{f}=\langle\vec{c},\vec{u}\rangle, where u=F1F\vec{u}=\|\vec{F}\|^{-1}\vec{F}, and

(28) log|f(z)|log|f(w)|\displaystyle\log|f(z)|\,\log|f(w)| =\displaystyle= logF(z)logF(w)+logF(z)log|f~(w)|\displaystyle\log\|\vec{F}(z)\|\,\log\|\vec{F}(w)\|+\log\|\vec{F}(z)\|\,\log|\tilde{f}(w)|
+log|f~(z)|logF(w)+log|f~(z)|log|f~(w)|,\displaystyle+\log|\tilde{f}(z)|\,\log\|\vec{F}(w)\|+\log|\tilde{f}(z)|\,\log|\tilde{f}(w)|\;,

which decomposes (27) into four terms. By (26), the first term contributes

1π2¯logF(z)¯logF(w)=𝐄(Zf)𝐄(Zf).-\frac{1}{\pi^{2}}\,\partial\bar{\partial}\log\|\vec{F}(z)\|\wedge\partial\bar{\partial}\log\|\vec{F}(w)\|={\mathbf{E}}(Z_{f})\boxtimes{\mathbf{E}}(Z_{f})\,.

Since u1\|\vec{u}\|\equiv 1, 𝐄(log|f~(w)|){\mathbf{E}}(\log|\tilde{f}(w)|) is independent of ww and hence the second term vanishes when applying w¯w\partial_{w}\bar{\partial}_{w}. The third term likewise vanishes when applying z¯z\partial_{z}\bar{\partial}_{z}. Therefore, the fourth term yields the variance current Var(Zsk){\operatorname{Var}}(Z_{s^{k}}). ∎

Next we use the following formula from [ShZ08, Lemma 3.3]:

Lemma 2.6.

Let (Y1,Y2)(Y_{1},Y_{2}) be joint complex Gaussian random variables of mean 0 and variances 𝐄(|Y1|2)=𝐄(|Y2|2)=1{\mathbf{E}}(|Y_{1}|^{2})={\mathbf{E}}(|Y_{2}|^{2})=1. Then

𝐄(log|Y1|log|Y2|)=14Li2(|𝐄(Y1Y¯2)|2)+γ24(γ=Euler’s constant).{\mathbf{E}}\big{(}\log|Y_{1}|\,\log|Y_{2}|\big{)}=\frac{1}{4}\,{\operatorname{Li}}_{2}\big{(}\left|{\mathbf{E}}(Y_{1}\overline{Y}_{2})\right|^{2}\big{)}+\frac{\gamma^{2}}{4}\qquad(\gamma=\mbox{Euler's constant})\,.

Completion of the proof of Theorem 2.4: Fix points z,wMz,w\in M, and let Y1=f~(z),Y2=f~(w)Y_{1}=\tilde{f}(z),\ Y_{2}=\tilde{f}(w). Recalling (10), we have

|𝐄(Y1Y¯2)|=jFjk(z)Fjk(w)¯F(z)F(w)=Bk(z,w)Bk(z,z)12Bk(w,w)12=Pk(z,w).|{\mathbf{E}}(Y_{1}\overline{Y}_{2})|=\frac{\sum_{j}F^{k}_{j}(z)\overline{F^{k}_{j}(w)}}{\|\vec{F}(z)\|\,\|\vec{F}(w)\|}=\frac{\|B_{k}(z,w)\|}{\|B_{k}(z,z)\|^{\frac{1}{2}}\,\|B_{k}(w,w)\|^{\frac{1}{2}}}=P_{k}(z,w)\,.

Therefore, by Lemma 2.6,

𝐄(log|f~(z)|log|f~(w)|)=𝐄(log|Y1|log|Y2|)=14Li2(Pk(z,w)2)+γ24.{\mathbf{E}}\left(\log|\tilde{f}(z)|\,\log|\tilde{f}(w)|\right)={\mathbf{E}}\big{(}\log|Y_{1}|\,\log|Y_{2}|\big{)}=\frac{1}{4}\,{\operatorname{Li}}_{2}\big{(}P_{k}(z,w)^{2}\big{)}+\frac{\gamma^{2}}{4}\,.

Equation (24) then follws from Lemma 2.5. ∎

2.4. Smooth linear statistics of zeros

By linear statistics for H0(M,Lk)H^{0}(M,L^{k}), we mean the random variable on the probability space (H0(M,L),γh,dV)(H^{0}(M,L),\gamma_{h,dV})

(29) sk([Zsk],ψ):=Zskψ(z),skH0(M,Lk),s^{k}\ \mapsto\ \left([Z_{s^{k}}],\psi\right):=\int_{Z_{s^{k}}}\psi(z),\qquad s^{k}\in H^{0}(M,L^{k}),

for a fixed continuous test form ψ𝒟m1,m1(M)\psi\in\mathcal{D}^{m-1,m-1}(M). In particular, when MM is a Riemann surface CC, we have

([Zsk],f)=z:sk(z)=0f(z),skH0(C,Lk),\left([Z_{s^{k}}],f\right)=\sum_{z:s^{k}(z)=0}f(z),\qquad s^{k}\in H^{0}(C,L^{k}),

for a fixed continuous test function ff.

Both the expectation and the variance of (29) have asymptotic expansions. To determine the asymptotic expansion of 𝐄(Zsk,ψ){\mathbf{E}}(Z_{s^{k}},\psi), for skH0(M,Lk)s^{k}\in H^{0}(M,L^{k}), we first apply (8) to obtain

(30) logBk(z,z)log(kmπm)+ρh2k1+b2k2+,\log\|B_{k}(z,z)\|\sim\log\left(\frac{k^{m}}{\pi^{m}}\right)+\frac{\rho_{h}}{2}k^{-1}+b_{2}k^{-2}+\cdots,

where ρh\rho_{h} is the scalar curvature of ωh\omega_{h}. Then by Theorem 2.2 and (8), we obtain the complete asymptotic expansion of the linear statistics

(31) 1k𝐄(Zsk,ψ)1πMωhψ+(i4πMρh¯ψ)k2+.\frac{1}{k}\,{\mathbf{E}}(Z_{s^{k}},\psi)\sim\frac{1}{\pi}\int_{M}\omega_{h}\wedge\psi+\left(\frac{i}{4\pi}\int_{M}\rho_{h}\,\partial\bar{\partial}\psi\right)k^{-2}+\cdots\;.

Similarly, the variance has the following complete asymptotic expansion:

Theorem 2.7.

[Sh21] Let (L,h)(M,ω)(L,h)\to(M,\omega) be a positive holomorphic line bundle over a compact Kähler manifold, and let ψ𝒟m1,m1(M)\psi\in\mathcal{D}_{\mathbb{R}}^{m-1,m-1}(M). The variance of the linear statistics (Zsk,ψ)(Z_{s^{k}},\psi) has an asymptotic expansion of the form

(32) Var(Zsk,ψ)A0km+A1km1++Ajkmj+.{\operatorname{Var}}\big{(}Z_{s^{k}},\psi\big{)}\sim A_{0}k^{-m}+A_{1}k^{-m-1}+\cdots+A_{j}k^{-m-j}+\cdots.

The leading and sub-leading coefficients are given by

(33) A0\displaystyle A_{0} =\displaystyle= πm2ζ(m+2)4¯ψ22,\displaystyle\frac{\pi^{m-2}\zeta(m+2)}{4}\,\|\partial\bar{\partial}\psi\|_{2}^{2}\,,
(34) A1\displaystyle A_{1} =\displaystyle= πm2ζ(m+3){18Mρh|¯ψ|21m!ωhm+14¯ψ22},\displaystyle-\pi^{m-2}\zeta(m+3)\left\{\frac{1}{8}\int_{M}\rho_{h}|\partial\bar{\partial}\psi|^{2}\frac{1}{m!}\omega_{h}^{m}+\frac{1}{4}\|\partial^{*}\partial\bar{\partial}\psi\|_{2}^{2}\right\},

where ζ\zeta denotes the Riemann zeta function, and ρh\rho_{h} is the scalar curvature of ωh\omega_{h}.

The expansion (32) builds on the methods of [ShZ10], where the asymptotic formula Var(Zsk,ψ)=km[A0+O(k1/2+ε)]{\operatorname{Var}}\big{(}Z_{s^{k}},\psi\big{)}=k^{-m}[A_{0}+O(k^{-1/2+\varepsilon})] was given.

In the complex curve case, (32) becomes

(35) Var(Zsk,f)ζ(3)16πΔf2k1π32880{Mρh|Δf|2ω+dΔf22}k2+,{\operatorname{Var}}\left(Z_{s^{k}},f\right)\sim\frac{\zeta(3)}{16\pi}\|\Delta f\|^{2}k^{-1}-\frac{\pi^{3}}{2880}\left\{\int_{M}\rho_{h}|\Delta f|^{2}\,\omega+\|d\Delta f\|_{2}^{2}\right\}k^{-2}+\cdots,

for f𝒞(M)f\in\mathcal{C}^{\infty}(M).

Thus, smooth linear statistics are self-averaging in the sense that its fluctuations are of smaller order than its typical values. The fact that the variance involves Δf22\|\Delta f\|^{2}_{2} rather than f22\|\nabla f\|^{2}_{2} signals that the covariance kernel is not Δ1\Delta^{-1} but Δ2\Delta^{-2}.

2.5. Asymptotic normality of zero distributions

The following theorem was proved first by Sodin–Tsirelson [ST04] for certain model random analytic functions on ,1{\mathbb{C}},{\mathbb{C}}{\mathbb{P}}^{1} and the unit disc and then in [ShZ10] to general one-dimensional ensembles and to codimension one zero sets in higher dimensions:

Theorem 2.8.

[ShZ10] Let (L,h)(M,ω)(L,h)\to(M,\omega) be a positive holomorphic line bundle over a compact Kähler manifold, and let ψ\psi be a real (m1,m1)(m-1,m-1)-form on MM with 𝒞3\mathcal{C}^{3} coefficients. Then for random sections skH0(M,Lk)s^{k}\in H^{0}(M,L^{k}), the distributions of the random variables

km/2(Zskkπω,ψ)k^{m/2}\left(Z_{s^{k}}-\frac{k}{\pi}\,\omega,\psi\right)

converge weakly to the Gaussian distribution of mean 0 and variance πm2ζ(m+2)4¯ψ22\frac{\pi^{m-2}\,\zeta(m+2)}{4}\,\|\partial\bar{\partial}\psi\|_{2}^{2}, as kk\to\infty.

Theorem 2.8 follows from a general result of Sodin-Tsirelson [ST04] on asymptotic normality of nonlinear functionals of Gaussian processes and the properties of the normalized Szegő kernel (11). To describe the result of [ST04], we recall that a (complex) Gaussian process on a measure space (T,μ)(T,\mu) is a random variable (with values in the space of complex measurable functions on TT) of the form

w(t)=cjgj(t),w(t)=\sum c_{j}g_{j}(t)\;,

where the cjc_{j} are i.i.d. complex Gaussian random variables of mean 0, variance 1, and the gjg_{j} are (fixed) complex-valued measurable functions. We say that w(t)w(t) is normalized if |gj(t)|2=1\sum|g_{j}(t)|^{2}=1 for all tTt\in T; i.e., if w(t)𝒩(0,1)w(t)\sim\mathcal{N}_{\mathbb{C}}(0,1) for all tTt\in T.

Theorem 2.9.

[ST04] Let w1,w2,w3,w^{1},w^{2},w^{3},\dots be a sequence of normalized complex Gaussian processes on a finite measure space (T,μ)(T,\mu). Let f:+f:{\mathbb{R}}^{+}\to{\mathbb{R}} be monotonically increasing such that f(r)L2(+,er2/2rdr)f(r)\in L^{2}({\mathbb{R}}^{+},e^{-r^{2}/2}rdr), and let η:T\eta:T\to{\mathbb{R}} be bounded measurable.

Let 𝒞k(s,t):=𝐄(wk(s)wk(t)¯)\mathcal{C}_{k}(s,t):={\mathbf{E}}\left(w^{k}(s)\overline{w^{k}(t)}\right) be the covariance function for wkw^{k} and suppose that

  1. i)

    lim infkTT|𝒞k(s,t)|2η(s)η(t)𝑑μ(s)𝑑μ(t)supsTT|𝒞k(s,t)|𝑑μ(t)>0;\displaystyle\liminf_{k\to\infty}\frac{\int_{T}\int_{T}|\mathcal{C}_{k}(s,t)|^{2}\eta(s)\eta(t)d\mu(s)d\mu(t)}{\sup_{s\in T}\int_{T}|\mathcal{C}_{k}(s,t)|d\mu(t)}>0\;;

  2. ii)

    limksupsTT|𝒞k(s,t)|𝑑μ(t)=0.\displaystyle\lim_{k\to\infty}\;\sup_{s\in T}\int_{T}|\mathcal{C}_{k}(s,t)|d\mu(t)=0.

Consider the random variables

Yk=Tf(|wk(t)|)η(t)𝑑μ(t).Y_{k}=\int_{T}f(|w^{k}(t)|)\eta(t)d\mu(t).

Then the distributions of the random variables

Yk𝐄YkVar(Yk)\frac{Y_{k}-{\mathbf{E}}Y_{k}}{\sqrt{{\operatorname{Var}}(Y_{k})}}

converge weakly to 𝒩(0,1)\mathcal{N}(0,1) as kk\to\infty.

To prove Theorem 2.8, we apply Theorem 2.9 with f(r)=logrf(r)=\log r and (T,μ)=(M,dV)(T,\mu)=(M,dV). To define the normalized Gaussian processes wkw^{k} on MM, choose a measurable section σL:ML\sigma_{L}:M\to L of LL with σL(z)h=1\|\sigma_{L}(z)\|_{h}=1 for all zMz\in M, and let

Sjk=FjkσLk,j=1,,dk,S_{j}^{k}=F^{k}_{j}\sigma_{L}^{\otimes k}\,,\quad j=1,\dots,d_{k},

be an orthonormal basis for H0(M,Lk)H^{0}(M,L^{k}). We then let

wk(z):=j=1dkcjFjk(z)Πk(z,z).w^{k}(z):=\sum_{j=1}^{d_{k}}c_{j}\,\frac{F^{k}_{j}(z)}{\sqrt{\Pi_{k}(z,z)}}\,.

Since |Fjk|=Sjkhk|F^{k}_{j}|=\|S^{k}_{j}\|_{h^{k}}, it follows that wkw^{k} defines a normalized complex Gaussian process. In fact,

(36) Πk(z,z)wkσLk=cjSjk=sk,\sqrt{\Pi_{k}(z,z)}\,w^{k}\sigma_{L}^{\otimes k}=\sum c_{j}S^{k}_{j}=s^{k}\,,

where sks^{k} is a random holomorphic section in H0(M,Lk)H^{0}(M,L^{k}).

We now let ψ\psi be a fixed real (m1,m1)(m-1,m-1)-form on MM and we write

iπ¯ψ=ηdV.\frac{i}{\pi}\partial\bar{\partial}\psi=\eta\,dV\;.

Then by (36),

Yk=Mlog|wk|ηdV=M(logsk(z)hklogΠk(z,z))iπ¯ψ(z)=(Zsk,ψ)+Ck,Y_{k}=\int_{M}\log|w^{k}|\eta\,dV=\int_{M}\left(\log\|s^{k}(z)\|_{h^{k}}-\log\sqrt{\Pi_{k}(z,z)}\right)\frac{i}{\pi}\partial\bar{\partial}\psi(z)=\big{(}Z_{s^{k}},\psi\big{)}+C_{k}\,,

where each CkC_{k} is a constant independent of the random section sks^{k}. Hence YkY_{k} has the same variance as the linear statistic (Zsk,ψ)\big{(}Z_{s^{k}},\psi\big{)}. In fact, the covariance functions 𝒞k(z,w)\mathcal{C}_{k}(z,w) for these Gaussian processes satisfy

|𝒞k(z,w)|=Pk(z,w).|\mathcal{C}_{k}(z,w)|=P_{k}(z,w)\;.

It was shown in [ShZ10], using the properties of the normalized Bergman kernel PkP_{k} given by Propositions (1.3)–(1.4), that conditions (i)–(ii) of Theorem 2.9 hold. Hence, the distributions of the random variables

(Zsk,ψ)𝐄(Zsk,ψ)Var(Zsk,ψ)=Yk𝐄(Yk)Var(Yk)\frac{(Z_{s^{k}},\psi)-{\mathbf{E}}(Z_{s^{k}},\psi)}{\sqrt{{\operatorname{Var}}(Z_{s^{k}},\psi)}}=\frac{Y_{k}-{\mathbf{E}}(Y_{k})}{\sqrt{{\operatorname{Var}}(Y_{k})}}

converge weakly to the standard Gaussian distribution 𝒩(0,1)\mathcal{N}(0,1) as kk\to\infty.

The conclusion of Theorem 2.8 then follows from the leading asymptotics of the expectation 𝐄(Zsk,ψ){\mathbf{E}}(Z_{s^{k}},\psi) and the variance Var(Zsk,ψ){\operatorname{Var}}(Z_{s^{k}},\psi) given by equations (31) and (32).∎

Nazarov and Sodin [NS11, NS12] give results on variances and asymptotic normality for linear statistics on {\mathbb{C}} with test functions that are not continuous. It is open whether similar results hold for line bundles on compact Kähler manifolds and whether asymptotic normality holds for linear statistics of zeros of any codimension.

One can also consider linear statistics for the point process consisting of simultaneous zeros of mm independent random sections of H0(M,Lk)H^{0}(M,L^{k}):

(37) (s1k,,smk)([Zs1k,,smk],f)={s1k(z)==smk(z)=0}f(z),(s^{k}_{1},\dots,s^{k}_{m})\mapsto\left([Z_{s^{k}_{1},\dots,s^{k}_{m}}],f\right)=\sum_{\{s_{1}^{k}(z)=\cdots=s_{m}^{k}(z)=0\}}f(z),

for a fixed continuous test function ff. Asymptotics for the expectation and variance of (37) in [ShZ10], but it is an open problem with asymptotic normality holds for (37).

2.6. Counting random zeros in a set and hole probabilities

We say that a set UMU\subset M is a ‘hole’ in the zero set ZsZ_{s} of a section sH0(M,L)s\in H^{0}(M,L) if ZsU=Z_{s}\cap U=\emptyset. Hole probabilities, overcrowding and other number statistics for special ensembles of functions of one complex variable were given, for example, in [Kr06, ST05]. To describe the framework of these results in the case where dimM=1\dim M=1, i.e. where MM is a compact Riemann surface CC, we consider the random variable 𝒩kU(sk):=#(ZskU)\mathcal{N}^{U}_{k}(s^{k}):=\#(Z_{s^{k}}\cap U) on H0(C,Lk)H^{0}(C,L^{k}) which counts the zeros of a section sks^{k} in an open set UU. Hence the hole probability is the probability that 𝒩kU(sk)=0\mathcal{N}^{U}_{k}(s^{k})=0. Sodin and Tsirelson [ST05] gave an asymptotic formula for the variance of 𝒩kU\mathcal{N}^{U}_{k} when M=1M={\mathbb{C}}{\mathbb{P}}^{1} (and for the analogous cases of holomorphic functions on {\mathbb{C}} and on the disk). This formula was sharpened and generalized using Theorem 2.4 to arbitrary compact Riemann surfaces as well as to compact Kähler manifolds of any dimension, to obtain the following analogue of Theorem 2.7:

Theorem 2.10.

[ShZ08] Let (L,h)(M,ωh)(L,h)\to(M,\omega_{h}) be a positive holomorphic line bundle over a compact Kähler manifold. Let UU be a domain in MM with piecewise 𝒞2\mathcal{C}^{2} boundary without cusps. Then for m=dimMm=\dim M independent Gaussian random sections s1k,,smks^{k}_{1},\dots,s^{k}_{m} in H0(M,Lk)H^{0}(M,L^{k}), the variance of the random variable

𝒩kU(s1k,,smk):=#{zU:s1k(z)==smk(z)=0}\mathcal{N}^{U}_{k}(s^{k}_{1},\dots,s^{k}_{m}):=\#\{z\in U:s^{k}_{1}(z)=\cdots=s^{k}_{m}(z)=0\}

has the asymptotics

(38) Var(𝒩kU)=km1/2[νmVol2m1(U)+O(k1/2+ε)],{\operatorname{Var}}(\mathcal{N}^{U}_{k})=k^{m-1/2}[\nu_{m}{\operatorname{Vol}}_{2m-1}(\partial U)+O(k^{-1/2+\varepsilon})]\,,

where νm\nu_{m} is a universal positive constant depending only on mm.

For the Riemann surface case, ν1=ζ(3/2)/(8π3/2)\nu_{1}=\zeta(3/2)/(8\pi^{3/2}). For random zero sets of one section, we similarly have:

Theorem 2.11.

[ShZ08] With the hypotheses of Theorem 2.10,

Var(Vol2m2ZskU)=k3/2m[18πm5/2ζ(m+1/2)Vol2m1(U)+O(k1/2+ε)].{\operatorname{Var}}({\operatorname{Vol}}_{2m-2}Z_{s^{k}}\cap U)=k^{3/2-m}\left[{\textstyle\frac{1}{8}}\pi^{m-5/2}\zeta(m+1/2)\,{\operatorname{Vol}}_{2m-1}(\partial U)+O(k^{-1/2+\varepsilon})\right].

Theorems 2.10 and 2.11 are special cases of a general result for simultaneous zeros of pp holomorphic sections on MM, for 1pm1\leq p\leq m.

The volume of the zero set ZskZ_{s^{k}} inside a domain also satisfies a large deviations bound of the form:

Theorem 2.12.

[ShZZr08] Let (L,h)(M,ωh)(L,h)\to(M,\omega_{h}) be as in Theorem 2.10, and let UU be an open subset of MM such that U\partial U has zero measure in MM. Then for all δ>0\delta>0 sufficiently small, there is a constant CU,δ>0C_{U,\delta}>0 such that

Prob{|Vol2m2(ZskU)mπVol2m(U)k|>δk}eCU,δkm+1k0.Prob\left\{\left|{\operatorname{Vol}}_{2m-2}(Z_{s^{k}}\cap U)-\frac{m}{\pi}\,{\operatorname{Vol}}_{2m}(U)\,k\right|>\delta\,k\right\}\leq e^{-C_{U,\delta}k^{m+1}}\quad\forall\ k\gg 0\,.

Here, k0k\gg 0 means kk0k\geq k_{0} for some k0+k_{0}\in{\mathbb{Z}}^{+}. In particular, for the case where dimM=1\dim M=1, we have:

Corollary 2.13.

Let (L,h)(C,ωh)(L,h)\to(C,\omega_{h}) be a positive Hermitian line bundle over a compact Riemann surface. Let UCU\subset C be an open set in CC such that U\partial U has zero measure in CC. Then for all δ>0\delta>0, there is a constant cU,δ>0c_{U,\delta}>0 such that

Prob{sk:|𝒩kU(sk)kπArea(U)|>δk}ecU,δk2k0.Prob\left\{s^{k}:\;\left|\mathcal{N}^{U}_{k}(s^{k})-\frac{k}{\pi}\,\mbox{\rm Area}(U)\right|>\delta\,k\right\}\leq e^{-c_{U,\delta}k^{2}}\quad\forall\ k\gg 0\,.

We also have upper and lower estimates for the ‘hole probability’:

Theorem 2.14.

[ShZZr08] Let (L,h)(M,ωh)(L,h)\to(M,\omega_{h}) and UMU\subset M be as above, and suppose there is a section sH0(M,L)s\in H^{0}(M,L) that does not vanish anywhere on U¯\overline{U}. Then there exist constants cU>cU>0c_{U}^{\prime}>c_{U}>0 such that

(39) ecUkm+1Prob{sk:ZskU=}ecUkm+1k0.e^{-c^{\prime}_{U}k^{m+1}}\leq Prob\{s^{k}:Z_{s^{k}}\cap U=\emptyset\}\leq e^{-c_{U}k^{m+1}}\quad\forall\ k\gg 0\,.

The upper bound in (39) is an immediate consequence of Theorem 2.12 with δ<mπVol2m(U)\delta<\frac{m}{\pi}{\operatorname{Vol}}_{2m}(U). The analogue of (39) for random entire functions of one variable was given in [ST05].

It is an open question whether

log(Prob{sk:ZskU=})c~(U)km+1\log(Prob\{s^{k}:Z_{s^{k}}\cap U=\emptyset\})\sim{-\tilde{c}(U)k^{m+1}}

for some constant c~(U)\tilde{c}(U). This was shown in [Zhu14] to hold for M=mM={\mathbb{C}}{\mathbb{P}}^{m} and U=ΔrmU=\Delta_{r}^{m}, where Δr={z:|z|<r}\Delta_{r}=\{z\in{\mathbb{C}}:|z|<r\}, with a specific formula for c~(Δrm)\tilde{c}(\Delta_{r}^{m}). When r1r\geq 1,

c~(Δrm)=2mlogr(m+1)!+1m!j=1m1j+1.\tilde{c}(\Delta_{r}^{m})=\frac{2m\log r}{(m+1)!}+\frac{1}{m!}\sum_{j=1}^{m}\frac{1}{j+1}\,.

2.7. Expected local topology of random zero sets

An active topic of recent research in random real algebraic geometry is the random topology of random real algebraic varieties defined by the zero locus of one or several independent real polynomials of a fixed degree kk: the number of connected components, the betti numbers, and the combinatorics of the components. Works of Gayet and Welschinger [GaW14, GaW15, GaW17] and others have resolved many problems in this area. For this survey, the question is whether there exist problems of this nature in the complex case. Globally, the answer is no: all of these topological invariants are deterministic. Recently, D. Gayet [Ga22b] has studied the local analogues of these problems in open sets UMU\subset M, and the local topology of ZskUZ_{s^{k}}\cap U is very random. The main result of [Ga22b], stated here in the rank 1 case, is the following:

Theorem 2.15.

Let (L,h)(M,ωh)(L,h)\to(M,\omega_{h}) be a positive holomorphic line bundle over a compact Kähler manifold. Let UU be an open set in MM with smooth boundary. Then for random holomorphic sections skH0(M,Lk)s^{k}\in H^{0}(M,L^{k}),

limk1km𝐄bj(ZskU)={0,for  0j2m2,jm1m!πmVol2m(U),for j=m1.\lim_{k\to\infty}\frac{1}{k^{m}}{\mathbf{E}}\,b_{j}(Z_{s^{k}}\cap U)=\left\{\begin{array}[]{cl}0,&\mbox{\rm for }\ 0\leq j\leq 2m-2,\ j\neq m-1\\[6.0pt] \frac{m!}{\pi^{m}}\,{\operatorname{Vol}}_{2m}(U)\,,&\mbox{\rm for }\ j=m-1\end{array}\right..

By contrast, in the real domain, all Betti numbers grow like λm\lambda^{m} where 1/λ1/\lambda is the natural scale of the model. In the complex setting, λ=1k\lambda=\frac{1}{\sqrt{k}}. Yet the (m1)(m-1)-th Betti number (and only that Betti number) grows like kmk^{m}.

In [Au97], Auroux proved that the (deterministic) quantitatively transversal Donaldson hypersurfaces, which are zeros of sections that vanish transversally with a controlled derivative, satisfy this local topology estimate for the (m1)(m-1)-th Betti number. The Donaldson hypersurfaces have common features with the random ones of Theorem 2.15 in the complex setting. For instance, the current of integration ZsZ_{s} fills out MM uniformly for large degrees kk in both contexts.

Gayet explains the intuition behind Theorem 2.15 when m=2m=2, as follows: By the maximum principle, if a complex curve C2C\subset{\mathbb{C}}^{2} contacts a real hyperplane HH, and is locally on one side of HH, then CHC\subset H. Let u:2u:{\mathbb{C}}^{2}\to{\mathbb{R}} be a Morse function and for r>0r>0 let ur(z)=u(r1z)u_{r}(z)=u(r^{-1}z). For increasing rr, the level sets of uru_{r} locally become closer and closer to being planar so that there are fewer random curves touching them from the interior; i.e., there are fewer critical points of u|Zsku|{Z_{s^{k}}} of index 0 compared to critical points of index 11. The result then follows from Morse theory.

As this intuition suggests, the proof of Theorem 2.15 involves the strong Morse inequalities and a statistical study of critical points via the Kac–Rice formula.

3. Critical points and values of random holomorphic sections

In this section, we review some results on random critical points, critical values, and excursion sets of Gaussian random holomorphic sections of H0(M,Lk)H^{0}(M,L^{k}) and their asymptotics.

3.1. Critical points

The critical point set Crit(s,h){\operatorname{Crit}}(s,h) of a holomorphic section sH0(M,L)s\in H^{0}(M,L) is defined by

(40) Crit(s,h):={zM:d(sh2)|z=0,s(z)0}={zM:(hs)(z)=0,s(z)0},{\operatorname{Crit}}(s,h):=\{z\in M:\left.d(\|s\|_{h}^{2})\right|_{z}=0,\;s(z)\not=0\}=\{z\in M:(\nabla_{h}s)(z)=0,\;s(z)\not=0\},

where h\nabla_{h} is the Chern connection of the Hermitian holomorphic line bundle (L,h)(L,h).

Along with the expected distribution of zeros (of a random section of a line bundle on a Riemann surface, or of simultaneous zeros in higher dimensions), we are also interested in the expected distributions of critical points

(41) 𝐊1kCrit:=𝐄[zCrit(sk,hk)δz]{\mathbf{K}}^{k\,{\operatorname{Crit}}}_{1}:=\textstyle{\mathbf{E}}\left[\sum_{z\in{\operatorname{Crit}}(s^{k},h^{k})}\delta_{z}\right]

of random holomorphic sections skH0(M,Lk)s^{k}\in H^{0}(M,L^{k}).

Additionally, the total number of critical points, #Crit(s,h)\#{\operatorname{Crit}}(s,h), is a (nonconstant) random variable, unlike the total number of zeros of mm holomorphic sections of LML\to M, which equals the topological invariant c1(L)mc_{1}(L)^{m}. Although the alternating sum of critical points of each Morse index is a topological invariant, the sum #Crit(s,h)\#{\operatorname{Crit}}(s,h) as well as the number of critical points of a given Morse index is non-constant. Hence, we are interested in the average number of critical points,

(42) 𝒩kCrit(L,h):=𝐄(#Crit(sk,hk))=M𝑑𝐊1kCrit,\mathcal{N}^{{\operatorname{Crit}}}_{k}(L,h):={\mathbf{E}}\left(\#{\operatorname{Crit}}(s^{k},h^{k})\right)=\int_{M}d{\mathbf{K}}^{k\,{\operatorname{Crit}}}_{1}\,,

of a random section skH0(M,Lk)s^{k}\in H^{0}(M,L^{k}). We also consider the average number of critical points of Morse index q, which we denote by 𝒩k,qCrit(L,h)\mathcal{N}^{{\operatorname{Crit}}}_{k,q}(L,h), for mq2mm\leq q\leq 2m. (It was observed in [DShZ04] that the critical points are all of Morse index m\geq m.)

The expected number 𝒩kCrit(L,h)\mathcal{N}^{{\operatorname{Crit}}}_{k}(L,h) and expected distribution of critical points can be expressed as formulas involving the Bergman kernel (see [DShZ04, Theorems 1 & 6]). These formulas can be used to obtain explicit expressions for the hyperplane section bundle 𝒪(1)m\mathcal{O}(1)\to{\mathbb{C}}{\mathbb{P}}^{m} with the Fubini-Study metric. In fact, the averages 𝒩kCrit(𝒪(1)m)\mathcal{N}^{\operatorname{Crit}}_{k}(\mathcal{O}(1)\to{\mathbb{C}}{\mathbb{P}}^{m}) are rational functions of kk. In dimensions 1 and 2, we have

𝒩kCrit(𝒪(1)1)\displaystyle{\mathcal{N}}^{\operatorname{Crit}}_{k}\left(\mathcal{O}(1)\!\to\!{\mathbb{C}}{\mathbb{P}}^{1}\right) =\displaystyle= 5k28k+43k2,\displaystyle\frac{5k^{2}-8k+4}{3k-2}\;,
𝒩kCrit(𝒪(1)2)\displaystyle\mathcal{N}^{\operatorname{Crit}}_{k}\left(\mathcal{O}(1)\!\to\!{\mathbb{C}}{\mathbb{P}}^{2}\right) =\displaystyle= 59k5231k4+375k3310k2+132k24(3k2)3.\displaystyle{\frac{59\,{k}^{5}-231\,{k}^{4}+375\,{k}^{3}-310\,{k}^{2}+132\,k-24}{\left(3\,k-2\right)^{3}}}\;.

The average numbers of critical points of sections of 𝒪(k)m\mathcal{O}(k)\to{\mathbb{C}}{\mathbb{P}}^{m} of each Morse index qq (mq2mm\leq q\leq 2m) are likewise rational functions of kk, for m1m\geq 1. See [DShZ06, Appendix 1] for some explicit formulas.

The expected number of critical points depends on the metric hh, but surprisingly its leading asymptotics is independent of hh. This can be seen from the following asymptotic formulas for 𝒩kCrit(L,h)\mathcal{N}^{{\operatorname{Crit}}}_{k}(L,h) and 𝒩k,qCrit(L,h)\mathcal{N}^{{\operatorname{Crit}}}_{k,q}(L,h):

Theorem 3.1.

([DShZ06, Cor. 1.4]) Let (L,h)(M,ωh)(L,h)\to(M,\omega_{h}) be a positive holomorphic line bundle on a compact Kähler manifold. Then for mq2mm\leq q\leq 2m,

(43) 𝒩k,qCrit(L,h)[β0qmc1(L)m]km+[β1qmc1(M)c1(L)m1]km1+[β2qmMρh2𝑑Vh+β2qmc1(M)2c1(L)m2+β2qm′′c2(M)c1(L)m2]km2+,\mathcal{N}^{{\operatorname{Crit}}}_{k,q}(L,h)\sim\left[\beta_{0qm}\,c_{1}(L)^{m}\right]k^{m}+\left[\beta_{1qm}\,c_{1}(M)\cdot c_{1}(L)^{m-1}\right]k^{m-1}\\ +\left[\beta_{2qm}\int_{M}\rho_{h}^{2}\,dV_{h}+\beta^{\prime}_{2qm}\,c_{1}(M)^{2}\cdot c_{1}(L)^{m-2}+\beta^{\prime\prime}_{2qm}\,c_{2}(M)\cdot c_{1}(L)^{m-2}\right]k^{m-2}+\cdots\,,

where ρh\rho_{h} is the scalar curvature of ωh\omega_{h}, and β0qm,β1qm,β2qm,β2qm,β2qm′′\beta_{0qm},\beta_{1qm},\beta_{2qm},\beta^{\prime}_{2qm},\beta^{\prime\prime}_{2qm} are universal constants depending only on qq and mm.

Taking the sum over qq from mm to 2m2m, one obtains a similar asymptotic expansion for 𝒩kCrit(L,h)\mathcal{N}^{{\operatorname{Crit}}}_{k}(L,h).

In fact, both the leading term and the subleading term of the expansion do not depend on the choice of metric on LL. Note that the non-topological part of the third term is β2qm\beta_{2qm} times the Calabi functional

Cal(ωh):=Mρh2𝑑Vh.Cal(\omega_{h}):=\int_{M}\rho_{h}^{2}\,dV_{h}\,.

It was shown in [Bau10] that q=m2mβ2qm\sum_{q=m}^{2m}\beta_{2qm} is positive for all m1m\geq 1, and hence we have:

Corollary 3.2.

Let hh and hh^{\prime} be metrics on LL with positive curvature. If Cal(h)>Cal(h)Cal(h^{\prime})>Cal(h), then there exists k0k_{0} such that 𝒩kCrit(L,h)>𝒩kCrit(L,h)\mathcal{N}^{{\operatorname{Crit}}}_{k}(L,h^{\prime})>\mathcal{N}^{{\operatorname{Crit}}}_{k}(L,h) for all kk0k\geq k_{0}.

It is known that Kähler metrics of constant scalar curvature are critical metrics of the functional CalCal on the space of Kähler metrics in c1(L)c_{1}(L) and that all critical metrics are global minimums for CalCal on this space [Ca85, Hw95]. Furthermore, if c1(L)c_{1}(L) contains a constant scalar curvature Kähler metric, then every critical metric has constant scalar curvature [Ca85]. Thus, constant scalar curvature metrics have “asymptotically minimal critical numbers” in the sense that if hh and hh^{\prime} are two positive metrics on LL such that ωh\omega_{h} but not ωh\omega_{h^{\prime}} has constant scalar curvature, then the conclusion of Corollary 3.2 holds.

It is known that β2mm>0\beta_{2mm}>0 for all mm [Bau10] and that β2qm>0\beta_{2qm}>0 in low dimensions [DShZ06], but it remains an open question whether β2qm>0\beta_{2qm}>0 for all q,mq,m.

Like the zeros of a random section on a Riemann surface (or the simultaneous zeros of mm-sections on MM), the critical points of random sections on MM form a point process. Its one-point function (or expected density) has an asymptotic expansion [DShZ06]

(44) 1km𝐊1kCrit(z)[b0+b1(z)k1+b2(z)k2+]1m!ωhm.\frac{1}{k^{m}}{\mathbf{K}}^{k\,{\operatorname{Crit}}}_{1}(z)\sim\left[b_{0}+b_{1}(z)k^{-1}+b_{2}(z)k^{-2}+\cdots\right]\frac{1}{m!}\omega_{h}^{m}\,.

The constant b0b_{0} depends only on the dimension mm; see [DShZ06] for its values. To our knowledge, the only result on the pair correlation of critical points of sections in H0(M,Lk)H^{0}(M,L^{k}) is the asymptotic formula for the case of Riemann surfaces in [Bab12]:

Theorem 3.3.

Let (L,h)(C,ωh)(L,h)\to(C,\omega_{h}) be a positive line bundle over a compact Riemann surface CC. Then the pair correlation of critical points K~2kCrit(z,w)\tilde{K}^{k\,{\operatorname{Crit}}}_{2}(z,w) has the scaling limit

limk1k2K~2kCrit(zk,wk)=23π2+O(r2),\lim_{k\to\infty}\frac{1}{k^{2}}\,\tilde{K}^{k\,{\operatorname{Crit}}}_{2}\left(\frac{z}{\sqrt{k}},\frac{w}{\sqrt{k}}\right)=\frac{2}{3\pi^{2}}+O(r^{2})\,,

where r=dist(z,w)r={\operatorname{dist}}(z,w).

Thus the clustering of critical points on Riemann surfaces is similar to that of Poisson point processes. It is an open problem to determine critical point pair correlation formulas in complex dimension greater than one.

3.2. Sup norms and random excursion sets

In this section, we discuss the excursion sets

{zM:s(z)h>r}\{z\in M:\|s(z)\|_{h}>r\}

and sup norms of random holomorphic sections ss of positive holomorphic line bundles (L,h)(L,h). Random excursion sets have been much studied in the case of real Gaussian fields for over three decades; we refer to [Ga22a, TA03] for background and references to that subject.

It is most useful to study the sup norms and excursion sets of random sections of unit 2\mathcal{L}^{2} norm with respect to Haar probability measure νk\nu_{k} on the unit (2dk1)(2d_{k}-1)-sphere,

(45) SH0(M,Lk)={skH0(M,Lk):skG(hk,dV)=1},SH^{0}(M,L^{k})=\{s^{k}\in H^{0}(M,L^{k}):\|s^{k}\|_{G(h^{k},dV)}=1\},

which probability space we call the spherical ensemble. One well-known problem is to determine the expected Euler characteristics of the excursion sets,

𝐄νk[χ{sk(z)hk>r}]=H0(M,Lk)χ{sk(z)hk>r}𝑑νk(s),{\mathbf{E}}_{\nu_{k}}\big{[}\chi\{\|s^{k}(z)\|_{h^{k}}>r\}\big{]}=\int_{H^{0}(M,L^{k})}\chi\{\|s^{k}(z)\|_{h^{k}}>r\}\,d\nu_{k}(s),

and also the probability that the excursion set is non-empty. (Here and in the following, χ\chi denotes the Euler characteristic.)

We note that for all sk=cjSjkSH0(M,Lk)s^{k}=\sum c_{j}S^{k}_{j}\in SH^{0}(M,L^{k}), we have by (6)–(8),

(46) |sk(z)|hk2l=1dk|cl|2j=1dkSjk(z)hk2=1Bk(z,z)=(1πm+o(1))km,|s^{k}(z)|^{2}_{h^{k}}\leq\sum_{l=1}^{d_{k}}|c_{l}|^{2}\sum_{j=1}^{d_{k}}\|S^{k}_{j}(z)\|^{2}_{h^{k}}=1\cdot\|B_{k}(z,z)\|=\left(\frac{1}{\pi^{m}}+o(1)\right)k^{m},

and thus the excursion sets {z:sk(z)hk>(πm/2+ε)km/2}\{z:\|s^{k}(z)\|_{h^{k}}>(\pi^{m/2}+\varepsilon)k^{m/2}\} are empty for all skH0(M,Lk)s^{k}\in H^{0}(M,L^{k}), for kk sufficiently large. Furthermore, a much sharper asymptotic upper bound usually holds:

Theorem 3.4.

[ShZ03, Th. 1.1] For all n>0n>0, there exists a positive constant CnC_{n} such that the probability

Prob{supzMsk(z)hk>Cnlogk}<O(1kn),skH0(M,Lk).Prob\left\{\sup_{z\in M}\|s^{k}(z)\|_{h^{k}}>C_{n}\,\sqrt{\log k}\right\}<O\left(\frac{1}{k^{n}}\right),\qquad s^{k}\in H^{0}(M,L^{k}).

Thus for almost all random sequences {sk}k=1SH0(M,Lk)\{s^{k}\}\in\prod_{k=1}^{\infty}SH^{0}(M,L^{k}),

(47) sk=O(logk).\|s^{k}\|_{\infty}=O\left(\sqrt{\log k}\right).

To our knowledge, the only article studying excursion sets in the holomorphic setting is a paper of Jingzhou Sun [Sun12], and we summarize Sun’s results below.

Theorem 3.5.

Let (L,h)(M,ωh)(L,h)\to(M,\omega_{h}) be a positive holomorphic line bundle on a compact Kähler manifold, and let k0k_{0} be sufficiently large so that LkL^{k} is very ample for all kk0k\geq k_{0}. Then there exists u0<1u_{0}<1 independent of kk, such that for for 1u>u01\geq u>u_{0}, and kk0k\geq k_{0},

  1. i)

    the excursion set

    uk(sk):={zM:sk(z)hk>uBk(z,z)1/2}\mathcal{E}^{k}_{u}(s^{k}):=\left\{z\in M:\|s^{k}(z)\|_{h^{k}}>u\,\|B_{k}(z,z)\|^{1/2}\right\}

    is either empty or contractible, and

  2. ii)

    Prob[uk(sk)]=Prob{supzMsk(z)hk>uBk(z,z)1/2}=Mc(M)(1kc1(L))(ku2c1(L)u2+1)dk1,\begin{array}[]{lcl}\\[18.0pt] Prob\big{[}\mathcal{E}_{u}^{k}(s^{k})\neq\emptyset\big{]}&=&\displaystyle Prob\left\{\sup_{z\in M}\|s^{k}(z)\|_{h^{k}}>u\,\|B_{k}(z,z)\|^{1/2}\right\}\\[12.0pt] &=&\displaystyle\int_{M}c(M)(1-kc_{1}(L))\wedge(ku^{2}\,c_{1}(L)-u^{2}+1)^{d_{k}-1}\,,\end{array}
    where c(M)(1kc1(L))c(M)(1-kc_{1}(L)) is the Chern polynomial evaluated at 1kc1(L)1-kc_{1}(L).

Corollary 3.6.

With the hypotheses and notation of Theorem 3.5, for 1u>u01\geq u>u_{0}, the expected Euler characteristic

𝐄χ[uk(sk)]\displaystyle{\mathbf{E}}\,\chi\big{[}\mathcal{E}_{u}^{k}(s^{k})\big{]} =\displaystyle= Mc(M)(1kc1(L))(ku2c1(L)u2+1)dk1\displaystyle\int_{M}c(M)(1-kc_{1}(L))\wedge(ku^{2}\,c_{1}(L)-u^{2}+1)^{d_{k}-1}
=\displaystyle= (1+o(1))dkm+1(1u2)dkm1u2m.\displaystyle(1+o(1))d_{k}^{m+1}(1-u^{2})^{d_{k}-m-1}u^{2m}\,.

Recall that

dk=dimH0(M,Lk)=kmm!Mc1m(L)+O(km1),d_{k}=\dim H^{0}(M,L^{k})=\frac{k^{m}}{m!}{\int_{M}c_{1}^{m}(L)}+O(k^{m-1})\,,

by the Hirzebruch–Riemann–Roch formula and Kodaira vanishing theorem (or see e.g., [ShS85, Lemma 7.6]).

When dimM=1\dim M=1, Theorem 3.5 yields the following:

Corollary 3.7.

Let (L,h)(L,h) be a positive line bundle of degree δ\delta over a compact Riemann surface (M,ωh)(M,\omega_{h}) of genus gg. Then with the notation of Theorem 3.5, there exists u0<1u_{0}<1 independent of kk, such that for 1u>u01\geq u>u_{0}, the expected Euler characteristic

𝐄χ[uk(sk)]=(1u2)kδg1[k2δ2u2kδ(gu21+u2)+(22g)(1u2)],{\mathbf{E}}\,\chi\big{[}\mathcal{E}_{u}^{k}(s^{k})\big{]}=(1-u^{2})^{k\delta-g-1}\,\big{[}k^{2}\delta^{2}u^{2}-k\delta(gu^{2}-1+u^{2})+(2-2g)(1-u^{2})\big{]}\,,

for kδ>2g2\,k\delta>2g-2.

To prove Theorem 3.5, J. Sun proves an embedding theorem of independent interest:

Theorem 3.8.

Let (L,h)(M,ωh)(L,h)\to(M,\omega_{h}) be a positive holomorphic line bundle on a compact Kähler manifold, and let k0+k_{0}\in{\mathbb{Z}}^{+} so that LkL^{k} is very ample for all kk0k\geq k_{0}. Let Φk:Mdk1\Phi_{k}:M\rightarrow{\mathbb{C}}{\mathbb{P}}^{d_{k}-1} be an embedding given by an orthonormal basis of H0(M,Lk)H^{0}(M,L^{k}) with respect to the Hermitian inner product G(hk,dV)G(h^{k},dV), for kk0k\geq k_{0}. Let rkr_{k} be the critical radius of Φk(M)dk1\Phi_{k}(M)\subset{\mathbb{C}}{\mathbb{P}}^{d_{k}-1}, where dk1{\mathbb{C}}{\mathbb{P}}^{d_{k}-1} is given the Fubini–Study metric. Then infkk0rk>0\inf_{k\geq k_{0}}r_{k}>0.

The proof of Theorem 3.5 uses the volume of tubes formula in [Gr85], setting u0=cosr0u_{0}=\cos r_{0}, where r0=infkk0rkr_{0}=\inf_{k\geq k_{0}}r_{k}.

3.3. Critical values

We now turn to the distribution of critical values of random holomorphic sections of powers of LML\to M. By the “value” of sk(z)H0(M,Lk)s^{k}(z)\in H^{0}(M,L^{k}), we mean the norm sk(z)hk+\|s^{k}(z)\|_{h^{k}}\in{\mathbb{R}}^{+}. We study the norms, since the values sk(z)s^{k}(z) lie in different fibers LzkL^{k}_{z} of LkL^{k}. Thus we let

(48) CV(sk):={sk(z)hk:zCrit(sk,hk)}={sk(z)hk:zM,sk(z)=0,sk(z)0}{\rm CV}({s^{k}}):=\{\|s^{k}(z)\|_{h^{k}}:z\in{\operatorname{Crit}}(s^{k},h^{k})\}=\{\|s^{k}(z)\|_{h^{k}}:z\in M\,,\nabla s^{k}(z)=0\,,s^{k}(z)\neq 0\}

denote the set of critical values of a section skH0(M,Lk)s^{k}\in H^{0}(M,L^{k}).

Since CV(λsk)=|λ|CV(sk){\rm CV}(\lambda{s^{k}})=|\lambda|\,{\rm CV}({s^{k}}), it is most useful to study the distribution of critical values of random sections of unit 2\mathcal{L}^{2} norm with respect to Haar probability measure νk\nu_{k} on the unit (2dk1)(2d_{k}-1)-sphere

(49) SH0(M,Lk)={skH0(M,Lk):sk2=1},SH^{0}(M,L^{k})=\{s^{k}\in H^{0}(M,L^{k}):\|s^{k}\|_{\mathcal{L}^{2}}=1\},

which probability space we call the spherical ensemble. (Clearly, the expected distribution of critical points of sks^{k} in the spherical ensemble is identical to that in the Gaussian ensemble and both ensembles have the same expected numbers 𝒩k,qCrit(L,h)\mathcal{N}^{{\operatorname{Crit}}}_{k,q}(L,h).)

We recall that by (46), we have the deterministic bound CV(sk)(0,Ckm/2),{\rm CV}(s^{k})\subset(0,Ck^{m/2})\,, and furthermore by (47), CV(sk)(0,Clogk){\rm CV}(s^{k})\subset\left(0,C\sqrt{\log k}\right) almost surely.

We let

(50) [CV(sk)]=zCrit(sk,hk)δ|sk(z)|hk\textstyle[{\rm CV}({s^{k}})]=\sum_{z\in{\operatorname{Crit}}(s^{k},h^{k})}\delta_{|s^{k}(z)|_{h^{k}}}

denote the critical value distribution of a section skSH0(M,Lk)s^{k}\in SH^{0}(M,L^{k}). To describe the asymptotics of the spherical averages 𝐄νk[CV(sk)]{\mathbf{E}}_{\nu_{k}}[{\rm CV}({s^{k}})], we use the following notation: denote by Sym(m,)m2+m2{\operatorname{Sym}}(m,{\mathbb{C}})\cong{\mathbb{C}}^{\frac{m^{2}+m}{2}} the space of m×mm\times m complex symmetric matrices, and define the special (positive definite) operator

(51) Q=(Qjqjq):=(δjjδqq+δjqδqj),1jqm, 1jqm.Q=(Q_{jq}^{j^{\prime}q^{\prime}}):=\big{(}\delta_{jj^{\prime}}\delta_{qq^{\prime}}+\delta_{jq^{\prime}}\delta_{qj^{\prime}}\big{)}\,,\quad 1\leq j\leq q\leq m,\ 1\leq j^{\prime}\leq q^{\prime}\leq m.

We define the universal function (depending only on the dimension mm)

fm(t)=2πm(m+3)Sym(m,)e|ξ|2|det(|QΞ|2t2I)|𝑑Ξ,f_{m}(t)=\frac{2}{\pi^{m(m+3)}}\int_{{\operatorname{Sym}}(m,{\mathbb{C}})}e^{-|\xi|^{2}}\left|\det\left(\left|\sqrt{Q}\,\Xi\right|^{2}-t^{2}I\right)\right|d\Xi,

where dΞd\Xi denotes Lebesgue measure on Sym(m,)m2+m{\operatorname{Sym}}(m,{\mathbb{C}})\cong{\mathbb{R}}^{m^{2}+m}. We then have:

Theorem 3.9.

([FZ14]) Let (L,h)(M,ωh)(L,h)\to(M,\omega_{h}) be a positive holomorphic line bundle on a compact Kähler manifold. The normalized expected density of critical values in the spherical ensemble SH0(M,Lk)SH^{0}(M,L^{k}) has the asymptotics

1km𝐄νk[CV(sk)]Vol(M)fm(t)tet2dt.\frac{1}{k^{m}}{\mathbf{E}}_{\nu_{k}}[{\rm CV}({s^{k}})]\to{\operatorname{Vol}}(M)\,f_{m}(t)\,te^{-t^{2}}\,dt\,.

In the case of complex curves, f1(t)=1π(2t24+8et2/2)f_{1}(t)=\frac{1}{\pi}(2t^{2}-4+8e^{-{t^{2}}/2}).

4. Point processes and Kähler metrics

In this section we give two examples showing how Kähler metrics can be constructed using point processes.

4.1. Zero point processes

Given a positive line bundle (L,h)(L,h) over a compact Riemann surface CC, we can form the point processes ZskZ_{s^{k}} of zeros of random sections of powers LkL^{k} of the line bundle. Recall from Theorem 2.1 that the expected measure 1k𝐄Zsk\frac{1}{k}{\mathbf{E}}Z_{s^{k}} converges to 1πωh\frac{1}{\pi}\omega_{h}. In higher dimensions, for holomorphic sections s1,,sm{s_{1},\cdots,s_{m}} of a line bundle LML\to M, chosen so that their common zero set

Zs1,,sm={zM:s1(z)==sm(z)=0}={ζ1,,ζp}Z_{s_{1},\dots,s_{m}}=\{z\in M:s_{1}(z)=\cdots=s_{m}(z)=0\}=\{\zeta_{1},\cdots,\zeta_{p}\}

is finite, we define the empirical probability measure

1p[Zs1,,sm]=1pj=1pδζj.\frac{1}{p}[Z_{s_{1},\dots,s_{m}}]=\frac{1}{p}\sum_{j=1}^{p}\delta_{\zeta_{j}}\,.

Given random holomorphic sections of a positive line bundle LkML^{k}\to M, the probability measures γhk,dV\gamma_{h^{k},dV} on H0(M,Lk)H^{0}(M,L^{k}) induce point processes Zs1k,,smkZ_{s^{k}_{1},\dots,s^{k}_{m}} on MM (for kk sufficiently large so the common zero set is 0-dimensional a.s.). We then have

Theorem 4.1.

[ShZ99, Prop. 4.4] Let (L,h)(M,ωh)(L,h)\to(M,\omega_{h}) be a positive holomorphic line bundle over a compact Kähler manifold. Then

1km𝐄[Zs1k,,smk]1πmωhm=m!πmdVolM.\frac{1}{k^{m}}\,{\mathbf{E}}[Z_{s^{k}_{1},\dots,s^{k}_{m}}]\to\frac{1}{\pi^{m}}\omega_{h}^{m}=\frac{m!}{\pi^{m}}\,d{\operatorname{Vol}}_{M}\,.

4.2. Berman’s canonical Kähler point process

In a series of articles, [Be11, Be14, Be17, Be18, Be20, Be21], R. Berman investigated determinantal point processes on Kähler manifolds defined in terms of Bergman kernels and related geometric invariants.

Let MM be a compact Kähler manifold and suppose that the canonical line bundle KM=mTMK_{M}=\bigwedge_{m}T^{*}_{M} is ample. It was shown by Aubin [Aub78] and by Yau [Yau78] that MM carries a Kähler–Einstein metric ωKE\omega_{KE}; i.e., the metric has constant scalar curvature: RicωKE=ωKE\,\omega_{KE}=-\omega_{KE}. Berman constructs determinantal point processes [𝐳k][{\bf z}_{k}] and uses their expected empirical measures to obtain Kähler metrics on MM converging to ωKE\omega_{KE} as kk\to\infty.

Whereas the zero point process above depends on the choice of the metric (i.e., on the measure γhk,dV\gamma_{h^{k},dV}), Berman’s canonical point processes are independent of the choice of metric. As before (with L=KML=K_{M}), let {S1k,,Sdkk}\{S^{k}_{1},\dots,S^{k}_{d_{k}}\} be a basis for the pluricanonical system H0(M,KMk)H^{0}(M,K_{M}^{k}), where dk=dimH0(M,KMk)d_{k}=\dim H^{0}(M,K_{M}^{k}). Berman’s canonical probability measure (or point process) on the configuration space MdkM^{d_{k}} of dkd_{k} points in MM is the probability measure μkB\mu_{k}^{B} defined by

μkB:=1λk|detS(k)(z1,,zdk)|2k,\mu^{B}_{k}:=\frac{1}{\lambda_{k}}\left|\det S^{(k)}(z_{1},\dots,z_{d_{k}})\right|^{\frac{2}{k}},

where λk\lambda_{k} is a normalizing constant and

detS(k)(z1,,zdk):=det(Sjk(zl))1j,ldk\det S^{(k)}(z_{1},\dots,z_{d_{k}}):=\det\begin{pmatrix}S_{j}^{k}(z_{l})\end{pmatrix}_{1\leq j,l\leq d_{k}}

is a holomorphic section of the pluricanonical bundle KMdkkMdk=M××MK^{k}_{M^{d_{k}}}\to M^{d_{k}}=M\times\cdots\times M. Thus |detS(k)|2/k|\det S^{(k)}|^{2/k} is a semi-positive section of KMdkKMdk¯K_{M^{d_{k}}}\wedge\overline{K_{M^{d_{k}}}}, i.e. a positive measure on MdkM^{d_{k}}. Changing the basis changes |detS(k)|2/k|\det S^{(k)}|^{2/k} by a constant factor, and we divide by λk\lambda_{k} so that μkB\mu^{B}_{k} is a well-defined probability measure.

As mentioned at the beginning of Section 2, a point 𝐳k=(z1,,zdk)Mdk{\bf z}_{k}=(z_{1},\dots,z_{d_{k}})\in M^{d_{k}} gives rise to the empirical probability measure on MM,

[𝐳k]:=1dkj=1dkδzj.[{\bf z}_{k}]:=\frac{1}{d_{k}}\sum_{j=1}^{d_{k}}\delta_{z_{j}}\,.

Thus (after dividing out by the symmetric group) we can consider μkB\mu^{B}_{k} to be a probability measure on the space of discrete probability measures on MM.

Berman then obtains canonical sequences of Kähler forms and volume forms on MM converging to the Kähler-Einstein metric and volume, respectively:

Theorem 4.2.

[Be17] Let MM be a compact Kähler manifold such that KMK_{M} is ample.

  1. i)

    𝐄μkB[𝐳k]cωKEm,as k,{\mathbf{E}}_{\mu^{B}_{k}}[{\bf z}_{k}]\to c\,\omega_{KE}^{m}\,,\quad\mbox{as }\ k\to\infty,
    where cc is a normalizing constant;

  2. ii)

    Writing 𝐄μkB[𝐳k]=fk(im2ηη¯){\mathbf{E}}_{\mu^{B}_{k}}[{\bf z}_{k}]=f_{k}\,(i^{m^{2}}\eta\wedge\bar{\eta}) over an open set UU, where η\eta is a nonvanishing holomorphic mm-form, the Kähler form

    ωk:=i2π¯logfkωKE,as k.\omega_{k}:=\frac{i}{2\pi}\partial\bar{\partial}\log f_{k}\to\omega_{KE}\,,\quad\mbox{as }\ k\to\infty.

Note that the Kähler forms ωk\omega_{k} are globally defined and independent of the choice of η\eta. Part (i) is an analog of Theorem 4.1. The constant cc is chosen so that McωKEm=cm!VolKE(M)=1\int_{M}c\,\omega_{KE}^{m}=c\,{m!}{\operatorname{Vol}}_{KE}(M)=1.

5. Random Bergman metrics

In this section, we discuss a recent direction to stochastic Kähler geometry: the study of random Kähler metrics in a fixed class 𝒦[ω0]\mathcal{K}_{[\omega_{0}]} and their approximations by random Bergman metrics, as given by Ferrari, Klevtsov, and Zelditch [FKZ13, FKZ12, KZ16]. Here, ω0=ωh=πc1(L,h)\omega_{0}=\omega_{h}=\pi c_{1}(L,h) is the Kähler metric of a positive line bundle (L,h)(M,ωh)(L,h)\to(M,\omega_{h}) and 𝒦[ω0]\mathcal{K}_{[\omega_{0}]} is the infinite dimensional space of Kähler metrics ω[ω0]\omega\in[\omega_{0}], the cohomology class of ω0\omega_{0}. The space of all Kähler metrics 𝒦[ω0]\mathcal{K}_{[\omega_{0}]} on MM in the Kähler class [ω0][\omega_{0}] is parametrized as

(52) 𝒦[ω0]={φC(M)/:ω0+i¯φ>0}.\mathcal{K}_{[\omega_{0}]}=\{\varphi\in C^{\infty}(M)/\mathbb{R}\,:\,\omega_{0}+i\partial\bar{\partial}\varphi>0\}.

The motivation to study rather general types of random Kähler metrics originates in some sense in Polyakov’s approach to quantum gravity. In complex dimension one, it has led to an explosion of articles on LQG (Liouville quantum gravity). In keeping with our emphasis on higher dimensional Kähler manifolds, we do not review the voluminous literature on LQG but only the random Kähler metrics studied in [FKZ13, FKZ12, KZ16]. To endow (52) with an interesting probability measure is very difficult because of its infinite dimensionality. In LQG, one specific measure is studied and it is induced by a well-studied Gaussian field, the Gaussian free field. More precisely, it is a renormalized version of the exponential of the GFF and is known as the Gaussian multiplicative chaos. In higher dimensions, there is no parallel construction and one has to start from scratch. The main idea is to define a sequence μk\mu_{k} of probability measures on finite dimensional spaces k\mathcal{B}_{k} of Bergman metrics and then to study their limits.

We begin by describing the spaces k\mathcal{B}_{k} and then focus on one specific choice of probability measure induced by Brownian motion on k\mathcal{B}_{k} with respect to its symmetric space Riemannian metric. The space k\mathcal{B}_{k} of Bergman metrics of degree kk is the space of metrics given by the pullbacks of Fubini-Study metrics by the Kodaira map for H0(M,Lk)H^{0}(M,L^{k}). I.e., let {σ1,,σdk}\{\sigma_{1},\dots,\sigma_{d_{k}}\} be a basis for H0(M,Lk)H^{0}(M,L^{k}), and let

(53) ισ=[σ1,,σdk]:Mdk1.\iota_{\sigma}=[\sigma_{1},\dots,\sigma_{d_{k}}]:M\to{\mathbb{C}}{\mathbb{P}}^{d_{k}-1}\,.

Since positive line bundles are ample, we can choose kk sufficiently large so that (53) is an imbedding (for all bases {σj}\{\sigma_{j}\} of H0(M,Lk)H^{0}(M,L^{k})). The associated Bergman metric is

(54) 1kισωFS=i2k¯logj=1dk|fj|2,\frac{1}{k}\iota_{\sigma}^{*}\omega_{FS}=\frac{i}{2k}\,\partial\bar{\partial}\log\sum_{j=1}^{d_{k}}|f_{j}|^{2}\,,

where σj=fjeLk\sigma_{j}=f_{j}e_{L}^{\otimes k} for a local frame eLe_{L}. The space k\mathcal{B}_{k} of Bergman metrics of degree kk then consists of all metrics of the form (54).

The space k\mathcal{B}_{k} can be parametrized by the symmetric space SU(dk)\SL(dk,){\operatorname{SU}}(d_{k})\backslash{\operatorname{SL}}(d_{k},{\mathbb{C}}) as follows: let {S1k,,Sdkk}\{S_{1}^{k},\dots,S_{d_{k}}^{k}\} be a fixed orthonormal basis with respect to the inner product (4) induced by hh and ω0\omega_{0}, and write Sjk=FjkeLkS^{k}_{j}=F^{k}_{j}e_{L}^{\otimes k} as above. For matrices A=(Ajl)SL(dk,)A=(A_{jl})\in{\operatorname{SL}}(d_{k},{\mathbb{C}}), we let σjA=lAjlSlk\sigma^{A}_{j}=\sum_{l}A_{jl}S^{k}_{l}. Then σA={σ1A,σdkA}\sigma^{A}=\{\sigma^{A}_{1},\dots\sigma^{A}_{d_{k}}\} is a basis for H0(M,Lk)H^{0}(M,L^{k}), and the associated Bergman metric is

(55) 1k(ισA)ωFS=i2k¯logjlF¯jkPjlFlk=ω0+i2k¯logjlS¯jkPjlSlkhk,\frac{1}{k}(\iota_{\sigma^{A}})^{*}\omega_{FS}=\frac{i}{2k}\,\partial\bar{\partial}\log\sum_{jl}\bar{F}^{k}_{j}P_{jl}F^{k}_{l}=\omega_{0}+\frac{i}{2k}\,\partial\bar{\partial}\log\sum_{jl}\left\|\bar{S}^{k}_{j}P_{jl}S^{k}_{l}\right\|_{h^{k}}\,,

where P=AAP=A^{*}A is in the space of positive definite Hermitian dk×dkd_{k}\times d_{k} matrices with determinant one. We denote this space by 𝒫dk\mathcal{P}_{d_{k}} and note that SU(dk)\SL(dk,)𝒫dk{\operatorname{SU}}(d_{k})\backslash{\operatorname{SL}}(d_{k},{\mathbb{C}})\cong\mathcal{P}_{d_{k}} via the map AAAA\mapsto A^{*}A.

For matrices P=AA𝒫dkP=A^{*}A\in\mathcal{P}_{d_{k}}, we define the Bergman potential

(56) φP:=12klogjlF¯jkPjlFlk,\varphi_{P}:=\frac{1}{2k}\,\log\sum_{jl}\bar{F}^{k}_{j}P_{jl}F^{k}_{l}\,,

and we let

(57) ωP:=12k(ισA)ωFS=i¯φP\omega_{P}:=\frac{1}{2k}(\iota_{\sigma^{A}})^{*}\omega_{FS}=i\,\partial\bar{\partial}\varphi_{P}

denote the corresponding Bergman metric.111Here, we are using the convention that πωFS\pi\omega_{{{\operatorname{FS}}}} is in the Chern class of the hyperplane section bundle 𝒪(1)m\mathcal{O}(1)\to{\mathbb{C}}{\mathbb{P}}^{m}, and thus [πωP]=c1(M,L)[\pi\omega_{P}]=c_{1}(M,L) for ωPk\omega_{P}\in\mathcal{B}_{k}. Hence in this article, ωP\omega_{P} and φP\varphi_{P} equal 12\frac{1}{2} the corresponding terms in [FKZ12, KZ16]. In particular, φ𝐈k=φh+1klogBk(z,z)\varphi_{{\mathbf{I}}_{k}}=\varphi_{h}+\frac{1}{k}\log\|B_{k}(z,z)\|, and

(58) ω𝐈k=ω0+i2k¯logBk(z,z)=ω0+O(1k2),\omega_{{\mathbf{I}}_{k}}=\omega_{0}+\frac{i}{2k}\partial\bar{\partial}\log\|B_{k}(z,z)\|=\omega_{0}+O\left(\frac{1}{k^{2}}\right),

by (8), where 𝐈k{\mathbf{I}}_{k} is the dk×dkd_{k}\times d_{k} identity matrix.

5.1. Heat kernel measures

Given an orthonormal basis {Sjk}\{S_{j}^{k}\} of H0(M,Lk)H^{0}(M,L^{k}) with respect to hh and ω0=ωh\omega_{0}=\omega_{h}, the space k\mathcal{B}_{k} can be identified with the symmetric space 𝒫dk\mathcal{P}_{d_{k}} via equations (55)–(57). The general question is to find sequences {dμk}\{d\mu_{k}\} of measures on k\mathcal{B}_{k} that are independent of the choices of the basis {Sjk}\{S^{k}_{j}\} and which vary in a simple way under the change of the reference point ω0𝒦[ω0]\omega_{0}\in\mathcal{K}_{[\omega_{0}]} and have good asymptotic properties as kk\to\infty. Such measures can be given as the heat kernel measures

(59) dμkt(P):=pk(t,𝐈k,P)dP,d\mu_{k}^{t}(P):=p_{k}(t,{\mathbf{I}}_{k},P)\,dP,

where dPdP is Haar measure on 𝒫dk\mathcal{P}_{d_{k}}, and pk(t,P1,P2)p_{k}(t,P_{1},P_{2}) is the heat kernel of the symmetric space 𝒫dk\mathcal{P}_{d_{k}}. The measure is invariant under the action of the unitary group U(dk){\rm U}(d_{k}) and thus is independent of the choice of the orthonormal basis of sections {Sjk}\{S^{k}_{j}\} used for the matrix-metric identification in (55). Then (59) is the probability measure on k\mathcal{B}_{k} induced by Brownian motion on 𝒫dk\mathcal{P}_{d_{k}} starting at the identity 𝐈k{\mathbf{I}}_{k} at time t=0t=0.

In this section we review results of [KZ16] on the behavior of the heat kernel measure (59) on k\mathcal{B}_{k} as kk\to\infty. The heat kernel measure is only one among many possible measures to study; we choose it because it has a simple geometric and probabilistic interpretation and because we obtain surprisingly explicit formulae for its correlation function. However, it is so closely tied to the symmetric space geometry of positive Hermitian matrices that it does not reflect the deeper geometric aspects of k\mathcal{B}_{k}. At the end of this section, we propose a model which does go deeper, namely the Calabi metric measure on k\mathcal{B}_{k}. However it is difficult to obtain analytic expressions for the key probabilistic objects for this Calabi model.

It was shown in [FKZ12], that for all probability measures ν\nu on 𝒫dk\mathcal{P}_{d_{k}} on 𝒫dk\mathcal{P}_{d_{k}} invariant under the U(dk){\rm U}(d_{k}) action PUPUP\mapsto U^{*}PU, one has

(60) 𝐄νφP=φ𝐈k=12klogBk(z,z)logeL(z),{\mathbf{E}}_{\nu}\varphi_{P}=\varphi_{{\mathbf{I}}_{k}}=\frac{1}{2k}\log\|B_{k}(z,z)\|-\log\|e_{L}(z)\|\,,

and thus by (8)

(61) 𝐄νωP=ω𝐈k=ω0+O(1k2).{\mathbf{E}}_{\nu}\omega_{P}=\omega_{{\mathbf{I}}_{k}}=\omega_{0}+O\left(\frac{1}{k^{2}}\right).

In particular (61) holds for the heat kernel measures.

However, the two-point correlations depend on the choice of invariant measure. The two-point correlations for the heat kernel measures (59) were given in [KZ16], where it was shown that the correlations have the form

(62) 𝐄μktφP(z)φP(w)=φ𝐈k(z)φ𝐈k(w)+14k2I2(t,βk(z,w)),{\mathbf{E}}_{\mu^{t}_{k}}\,\varphi_{P}(z)\varphi_{P}(w)=\varphi_{{\mathbf{I}}_{k}}(z)\varphi_{{\mathbf{I}}_{k}}(w)+\frac{1}{4k^{2}}I_{2}(t,\beta_{k}(z,w)),

where

(63) βk(z,w)=Bk(z,w)2Bk(z,z)Bk(w,w)=Pk(z,w)2\beta_{k}(z,w)=\frac{\|B_{k}(z,w)\|^{2}}{\|B_{k}(z,z)\|\,\|B_{k}(w,w)\|}=P_{k}(z,w)^{2}

is the Berezin kernel, and

(64) xI2(t,x)=2txet/22πt1xx𝑑λe12tλ2coshλcoth2λxlogcoth2λx+1xcoth2λx1x.\frac{\partial}{\partial x}\,I_{2}(t,x)=\frac{2t}{x}-\frac{e^{-t/2}}{\sqrt{2\pi t}}\frac{\sqrt{1-x}}{x}\int_{-\infty}^{\infty}d\lambda\,\frac{\,e^{-\frac{1}{2t}\lambda^{2}}\cosh\lambda}{\sqrt{\coth^{2}\lambda-x}}\log\frac{\sqrt{\coth^{2}\lambda-x}+\sqrt{1-x}}{\sqrt{\coth^{2}\lambda-x}-\sqrt{1-x}}.

It follows from (60) and (62) that

(65) 𝐕𝐚𝐫(φP)=14k2I2(t,βk),{\bf{Var}}(\varphi_{P})=\frac{1}{4k^{2}}I_{2}(t,\beta_{k})\,,

where 𝐕𝐚𝐫=𝐕𝐚𝐫μkt{\bf{Var}}={\bf{Var}}_{\mu^{t}_{k}} is given by Definition 2.3. Note that

(𝐕𝐚𝐫(φP))(z,w)=Cov(φP(z),φP(w)).\big{(}{\bf{Var}}(\varphi_{P})\big{)}(z,w)={\rm Cov}\big{(}\varphi_{P}(z),\varphi_{P}(w)\big{)}\,.

Furthermore, differentiating (65), we have

(66) 𝐕𝐚𝐫(ωP)=14k2(i¯)z(i¯)wI2(t,βk(z,w)).{\bf Var}\big{(}\omega_{P}\big{)}=\frac{1}{4k^{2}}(i\partial\bar{\partial})_{z}\,(i\partial\bar{\partial})_{w}\,I_{2}(t,\beta_{k}(z,w))\,.

Formula (66) says that I2(t,βk)I_{2}(t,\beta_{k}) is the pluri-bipotential of the variance of the Kähler metric for the heat kernel measure at time tt. In the Riemann surface case (dimM=1\dim M=1), the variance of the area of a domain UMU\subset M is given by

Var(UωP)=U×U𝐕𝐚𝐫(ωP)=14k2U×UzwI2(t,βk(z,w)).{\operatorname{Var}}\left(\int_{U}\omega_{P}\right)=\int_{U\times U}{\bf{Var}}(\omega_{P})=-\frac{1}{4k^{2}}\int_{\partial U\times\partial U}\partial_{z}\,\partial_{w}\,I_{2}(t,\beta_{k}(z,w))\,.

If we fix kk and let tt\to\infty. Then

(67) xI2(,x):=limkxI2(t,x)=log(1x)x,\frac{\partial}{\partial x}\,I_{2}(\infty,x):=\lim_{k\to\infty}\frac{\partial}{\partial x}\,I_{2}(t,x)=-\frac{\log(1-x)}{x}\,,

(see [KZ16]) and thus

I2(,x)=Li2(x).I_{2}(\infty,x)={\operatorname{Li}}_{2}(x)\,.

Therefore for fixed kk, the variance of random Kähler metrics with respect to the heat kernel measure μkt\mu^{t}_{k} on the space k𝒫dk\mathcal{B}_{k}\cong\mathcal{P}_{d_{k}} converges to the variance of the scaled zero current πkZsk=ik¯log|f|\frac{\pi}{k}Z_{s^{k}}=\frac{i}{k}\partial\bar{\partial}\log|f| of a random section sk=feLkH0(M,Lk)s^{k}=fe_{L}^{\otimes k}\in H^{0}(M,L^{k}) (given in Theorem 2.4) as tt\to\infty. In fact, in the tt\to\infty limit, the random metrics converge to random zero divisors regarded as singular metrics, in the sense described in [KZ16, §5.1].

Since (66) gives an exact formula for any t,kt,k, one may also consider a variety of limits as t,kt\to\infty,k\to\infty in some relation. There is a natural choice of coupled limit motivated by the metric asymptotics of k\mathcal{B}_{k}. If we rescale the Cartan-Killing (CK) metric gCK,kg_{CK,k} on 𝒫dkk𝒦[ω0]\mathcal{P}_{d_{k}}\approx\mathcal{B}_{k}\subset\mathcal{K}_{[\omega_{0}]} as gk=ϵk2gCK,kg_{k}=\epsilon_{k}^{2}g_{CK,k}, with ϵk=k1dk1/2\epsilon_{k}=k^{-1}d_{k}^{-1/2}, then gkgMg_{k}\to g_{M} on TkT\mathcal{B}_{k}. Here gMg_{M} is the Mabuchi metric on 𝒦[ω0]\mathcal{K}_{[\omega_{0}]}, i.e. the Riemannian metric on 𝒦[ω0]\mathcal{K}_{[\omega_{0}]} defined by δφφ02=M(δφ)2ωφm/m!||\delta\varphi||^{2}_{\varphi_{0}}=\int_{M}(\delta\varphi)^{2}\omega_{\varphi}^{m}/m!, where ωφ=ω0+i¯φ\omega_{\varphi}=\omega_{0}+i\partial\bar{\partial}\varphi. Thus, a ball of radius one with respect to the usual CK metric gCK,kg_{CK,k} has radius approximately ϵk\epsilon_{k} with respect to the Mabuchi distance. With the rescaling gk=ϵk2gCK,kg_{k}=\epsilon_{k}^{2}g_{CK,k}, the corresponding Laplacian scales as Δgkϵk2ΔgCK,k\Delta_{g_{k}}\mapsto\epsilon_{k}^{-2}\Delta_{g_{CK,k}}. It follows that the heat operator scales as

exptΔgk=exptϵk2ΔgCK,k.\exp t\Delta_{g_{k}}=\exp t\epsilon_{k}^{-2}\Delta_{g_{CK,k}}.

In effect, it is only the time that is rescaled, and the rescaled heat kernel is pk(ϵk2t,𝐈k,P).p_{k}(\epsilon_{k}^{-2}t,{\mathbf{I}}_{k},P).

We therefore study the metric scaling limit with ttϵk2t\mapsto t\epsilon_{k}^{-2} and evaluate I2(ϵk2t,βk)I_{2}(\epsilon_{k}^{-2}t,\beta_{k}) asymptotically as kk\to\infty. This scaling keeps the dkd_{k}-balls of uniform size as kk\to\infty with respect to the limit Mabuchi metric. Thus, as kk changes, the Brownian motion with respect to gkg_{k} probes distances of size tt from the initial metric ω0\omega_{0} for all kk. It turns out that

(68) limkI2(ϵk2t,βk(z,z+u/k))=Li2(e|u|2).\lim_{k\to\infty}I_{2}\left(\epsilon_{k}^{-2}t,\beta_{k}(z,z+u/\sqrt{k})\right)={\operatorname{Li}}_{2}(e^{-|u|^{2}})\,.

5.2. The Calabi model

The Calabi metric is the natural (background independent) 2\mathcal{L}^{2} metric on either 𝒦[ω0]\mathcal{K}_{[\omega_{0}]} or k\mathcal{B}_{k}. If ω˙=δωTω𝒦[ω0]\dot{\omega}=\delta\omega\in T_{\omega}\mathcal{K}_{[\omega_{0}]},

δωC2=Mδω(z)ω2𝑑Vω.||\delta\omega||_{C}^{2}=\int_{M}||\delta\omega(z)||^{2}_{\omega}dV_{\omega}.

It is the restriction to a Kähler class of the deWitt-Ebin metric on metric tensors [E70, DeW67]. In terms of relative Kähler potentials, ω˙=i¯φ˙\dot{\omega}=i\partial\bar{\partial}\dot{\varphi}, the Calabi metric inner product is,

(69) Δωφ˙C,ω2=M|Δωφ˙|2𝑑Vω.||\Delta_{\omega}\dot{\varphi}||^{2}_{C,\omega}=\int_{M}|\Delta_{\omega}\dot{\varphi}|^{2}\,dV_{\omega}.

It is known that the sectional curvatures of (𝒦[ω0],gC)(\mathcal{K}_{[\omega_{0}]},g_{C}) are all equal to 11, i.e. this Riemannian manifold is an open subset of the infinite dimensional sphere of constant curvature 11 (see [Cal12]). The finite dimensional approximations to the Calabi metric should approximate domains in finite dimensional spheres. Hence,

Conjecture 5.1.

The Calabi volume Volk(k)\rm{Vol}_{k}(\mathcal{B}_{k}) with respect to G|kG|_{\mathcal{B}_{k}} is finite for each kk.

If the conjecture is true, one obtains a purely geometric sequence of probability measures. This could give a rigorous definition of the Polyakov path integral over metrics, which used the Calabi metric to define its volume form. Polyakov also used a power of the determinant of the Laplacian, which could also be implemented in the Bergman approximation.

References

  • [AHM11] Y. Ameur, H. Hedenmalm and N. Makarov, Fluctuations of eigenvalues of random normal matrices, Duke Math. J. 159 no. 1 (2011) 31–81, arXiv:0807.0375 [math.PR].
  • [Aub78] T. Aubin, Équations du type Monge-Ampère sur les variétés kählériennes compactes. Bull. Sci. Math. (2) 102 (1978), no. 1, 63--95.
  • [Au97] D. Auroux, Asymptotically holomorphic families of symplectic submanifolds. Geom. Funct. Anal. 7 (1997), no. 6, 971--995.
  • [Bab12] J. Baber, Scaled Correlations of Critical Points of Random Sections on Riemann Surfaces, J. Stat. Phys. 148 (2012), 250--279.
  • [Bau10] B. Baugher, Metric dependence and asymptotic minimization of the expected number of critical points of random holomorphic sections. Trans. Amer. Math. Soc. 362 (2010), no. 9, 4537--4555.
  • [Be09] R. J. Berman, Bergman kernels and equilibrium measures for line bundles over projective manifolds. Amer. J. Math. 131 (2009), no. 5, 1485--1524.
  • [Be11] R. J. Berman, Kähler-Einstein metrics emerging from free fermions and statistical mechanics. J. High Energy Phys. 2011, no. 10, 106, 31 pp.
  • [Be14] R. J. Berman, Determinantal point processes and fermions on complex manifolds: large deviations and bosonization. Comm. Math. Phys. 327 (2014), no. 1, 1--47.
  • [Be17] R. J. Berman, Large deviations for Gibbs measures with singular Hamiltonians and emergence of Kähler-Einstein metrics. Commun.  Math. Physics, Volume 354 (2017), no. 3, 1133--1172.
  • [Be18] R. J. Berman, Kähler-Einstein metrics, canonical random point processes and birational geometry. Algebraic Geometry: Salt Lake City 2015, 29--73, Proc. Sympos. Pure Math., 97.1, Amer. Math. Soc., Providence, RI, 2018. arXiv:1307.3634
  • [Be20] R.J. Berman, An invitation to Kähler-Einstein metrics and random point processes. Surveys in differential geometry 2018. Differential geometry, Calabi-Yau theory, and general relativity, 35-87, Surv. Differ. Geom., 23, Int. Press, Boston, MA, 2020.
  • [Be21] R.J. Berman, The probabilistic vs the quantization approach to Kähler-Einstein geometry, arXiv:2109.06575.
  • [BeBW11] R. J. Berman, S. Boucksom and D. Witt Nyström, Fekete points and convergence towards equilibrium measures on complex manifolds. Acta Math. 207 (2011), no. 1, 1--27.
  • [BShZ00a] P. Bleher, B. Shiffman, and S. Zelditch, Poincaré-Lelong approach to universality and scaling of correlations between zeros. Comm. Math. Phys. 208 (2000), no. 3, 771--785.
  • [BShZ00b] P. Bleher, B. Shiffman and S. Zelditch, Universality and scaling of correlations between zeros on complex manifolds, Invent. Math., 142 (2000), 351--395.
  • [BShZ01] P. Bleher, B. Shiffman and S. Zelditch, Correlations between zeros and supersymmetry. Commun. Math. Phys. 224 (2001), 255--269.
  • [BSh07] T. Bloom and B. Shiffman, Zeros of random polynomials on m\mathbb{C}^{m}, Math. Res.  Lett. 14 (2007), no. 3, 469--479.
  • [Ca85] E. Calabi, Extremal Kähler metrics II, in ‘Differential geometry and complex analysis’, I. Chavel and H. M. Farkas, eds., Springer, Berlin, 1985, 95--114.
  • [Cal12] S. Calamai, The Calabi’s metric for the space of Kähler metrics, Math Ann. 353 (2012), no. 2, 373--402.
  • [CLW15a] T. Can, M. Laskin and P. Wiegmann, Collective field theory for quantum Hall states, Physical Review B, 2015.
  • [CLW15b] T. Can, M. Laskin, and P. Wiegmann, Geometry of Quantum Hall States: Gravitational Anomaly and transport Coefficients, Annals of Physics (2015). arXiv:1411.3105.
  • [Ca97] D. Catlin, The Bergman kernel and a theorem of Tian. Analysis and geometry in several complex variables (Katata, 1997), 1--23, Trends Math., Birkhäuser Boston, Boston, MA, 1999.
  • [CS19] Y. Canzani and P. Sarnak, Topology and nesting of the zero set components of monochromatic random waves. Comm. Pure Appl. Math. 72 (2019), no. 2, 343--374.
  • [DeW67] B. S. DeWitt, Quantum Theory of Gravity. 1. The Canonical Theory, Phys. Rev.  160 1113 (1967).
  • [DShZ04] M. R. Douglas, B. Shiffman and S. Zelditch, Critical points and supersymmetric vacua I, Commun. Math. Phys. 252 (2004), 325--358.
  • [DShZ06] M. R. Douglas, B. Shiffman and S. Zelditch, Critical points and supersymmetric vacua II: Asymptotics and extremal metrics, J. Differential Geom. 72(3) (2006), 381--427.
  • [Du06] B. Duplantier, Conformal random geometry. Mathematical statistical physics, 101--217, Elsevier B. V., Amsterdam, 2006.
  • [E70] D. Ebin, The manifold of riemannian metrics, Proc. Sympos. Pure Math. 15, AMS, Providence RI (1970), pp. 11--40.
  • [FZ14] R. Feng and S. Zelditch, Critical values of random analytic functions on complex manifolds. Indiana Univ. Math. J. 63 (2014), no. 3, 651--686.
  • [FKZ12] F. Ferrari, S. Klevtsov and S. Zelditch, Simple matrix models for random Bergman metrics, J. Stat. Mech. Theory Exp. 2012, no. 4, P04012, 24 pp. arXiv:1112.4382 ][hep-th].
  • [FKZ13] F. Ferrari, S. Klevtsov and S. Zelditch, Random Kähler metrics, Nucl. Phys. B 869 (2013), no. 1, 89--110, arXiv:1107.4575 [hep-th].
  • [Ga22a] D. Gayet, Asymptotic topology of excursion and nodal sets of Gaussian random fields, J. Reine Angew. Math. 790 (2022), 149--195, arXiv:2104.05276.
  • [Ga22b] D. Gayet, Expected local topology of random complex submanifolds, arXiv:2202.10247.
  • [GaW14] D. Gayet and J.Y. Welschinger, Lower estimates for the expected Betti numbers of random real hypersurfaces. J. Lond. Math. Soc. (2) 90 (2014), no. 1, 105--120.
  • [GaW15] D. Gayet and J.Y. Welschinger, Expected topology of random real algebraic submanifolds. J. Inst Math Jussieu 14 (2015), no 4, 673--702.
  • [GaW17] D. Gayet and J.Y. Welschinger, Betti numbers of random real hypersurfaces and determinants of random symmetric matrices. J. Eur. Math. Soc. 18 (2016), no. 4, 733--772.
  • [Gr85] A. Gray, Volumes of tubes about complex submanifolds of complex projective space. Trans. Amer. Math. Soc. 291 (1985), no. 2, 437--449.
  • [Ha96] J. Hannay, Chaotic analytic zero points: exact statistics for those of a random spin state, J. Phys. A: Math. Gen. 29 (1996), L101--L105.
  • [HLX20] H. Hezari, Z. Lu and H. Xu, Off-diagonal asymptotic properties of Bergman kernels associated to analytic Kähler Potentials. Internat. Math. Res. Notices, 2020 (2020), no. 8, 2241--2286.
  • [Hw95] A. D. Hwang, On the Calabi energy of extremal Kähler metrics, Internat. J. Math. 6 (1995), no. 6, 825--830.
  • [KN13] N.-G. Kang and N. G. Makarov, Gaussian free field and conformal field theory, Astérisque No. 353 (2013), 136 pp.
  • [KZ16] S. Klevtsov and S. Zelditch, Heat kernel measures on random surfaces. Adv. Theor. Math. Phys. 20 (2016), no. 1, 135--164.
  • [Kr06] M. Krishnapur, Overcrowding estimates for zeroes of planar and hyperbolic Gaussian analytic functions, J. Stat. Phys. 124 (2006), 1399--1423.
  • [Le67] P. Lelong, Intégration sur un ensemble analytique complexe. Bull. Soc. Math. France 87 (1967), 239--262.
  • [Lu00] Z. Lu, On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch. Amer. J. Math. 122 (2000), no. 2, 235--273.
  • [LuSh15] Z. Lu and B. Shiffman, Asymptotic expansion of the off-diagonal Bergman kernel on compact Kähler manifolds. J. Geom. Anal. 25 (2015), no. 2, 761--782.
  • [MaMar07] X. Ma and G. Marinescu, Holomorphic Morse inequalities and Bergman kernels. Progress in Mathematics, 254. Birkhäuser Verlag, Basel, 2007.
  • [NS09] F. Nazarov and M. Sodin, On the number of nodal domains of random spherical harmonics. Amer. J. Math. 131 (2009), no. 5, 1337--1357.
  • [NS11] F. Nazarov and M. Sodin, Fluctuations in Random Complex Zeroes, International Mathematics Research Notices, 2011 (2011), no. 24, 5720--5759.
  • [NS12] F. Nazarov and M. Sodin, Correlation Functions for Random Complex Zeroes: Strong Clustering and Local Universality, Commun. Math.  Phys. 310 (2012), 75--98.
  • [NV98] S. Nonnemacher and A. Voros, Chaotic eigenfunctions in phase space. J. Statist. Phys. 92, 431--518 (1998).
  • [SW10] P. Sarnak and I. Wigman, Topologies of nodal sets of random band-limited functions. Comm. Pure Appl. Math. 72 (2019), no. 2, 275--342.
  • [Sh21] B. Shiffman, Asymptotic expansion of the variance of random zeros on complex manifolds, J. Geom. Anal. (2021), 8607--8631.
  • [ShS85] B. Shiffman and A. J. Sommese, Vanishing theorems on complex manifolds. Progress in Mathematics, 56. Birkhäuser Boston, Boston, MA, 1985.
  • [ShZ99] B. Shiffman and S. Zelditch, Distribution of zeros of random and quantum chaotic sections of positive line bundles. Comm. Math. Phys. 200 (1999), no. 3, 661--683.
  • [ShZ02] B. Shiffman and S. Zelditch, Asymptotics of almost holomorphic sections of ample line bundles on symplectic manifolds. J. Reine Angew. Math. 544 (2002), 181--222.
  • [ShZ03] B. Shiffman and S. Zelditch, Random polynomials of high degree and Levy concentration of measure, Asian J. Math. 7 (2003), no. 4, 627--646.
  • [ShZ08] B. Shiffman and S. Zelditch, Number variance of random zeros on complex manifolds, Geom. Funct. Anal. 18 (2008) no. 4, 1422--1475, arXiv:math/0608743 [math.CV].
  • [ShZ10] B. Shiffman and S. Zelditch, Number variance of random zeros on complex manifolds, II: smooth statistics, Pure Appl. Math. Q. 6 (2010) no. 4, 1145--1167, Special Issue: In honor of Joseph J. Kohn, Part 2.
  • [ShZZr08] B. Shiffman, S. Zelditch, and S. Zrebiec, Overcrowding and hole probabilities for random zeros on complex manifolds. Indiana Univ. Math. J. 57 (2008), no. 5, 1977--1997.
  • [ST04] M. Sodin and B. Tsirelson, Random complex zeros, I. Asymptotic normality, Israel J. Math. 144 (2004) 125--149, arXiv:math/0210090 [math.CV]
  • [ST05] M. Sodin and B. Tsirelson, Random complex zeroes, III. Decay of the hole probability, Israel J. Math. 147 (2005), 371--379.
  • [Sun12] J. Sun, Expected Euler characteristic of excursion sets of random holomorphic sections on complex manifolds. Indiana Univ. Math. J. 61 (2012), no. 3, 1157--1174
  • [TA03] J. Taylor and R. J.Adler, Euler characteristics for Gaussian fields on manifolds. Ann.  Probab. 31 (2003), no. 2, 533--563.
  • [Yau78] S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I. Comm. Pure Appl. Math. 31 (1978), no. 3, 339--411.
  • [Z97] S. Zelditch, Szegő kernels and a theorem of Tian. Internat. Math. Res. Notices 1998 (1998), no. 6, 317--331.
  • [Zhu14] J. Zhu, Hole probabilities of SU(m+1) Gaussian random polynomials. Anal. PDE 7 (2014), no. 8, 1923--1968.