This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Stimulated Radiation from Axion Cluster Evolution in Static Spacetimes

Liang Chen [email protected] Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA    Thomas W. Kephart [email protected] Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA
Abstract

If their number density is high enough, clusters of axions can decay to photons via stimulated emission. We study both the special and general relativistic corrections to lasing in such dense axion clusters as they evolve in static spacetime of a host object. Our main results are rate equations for the evolution of axion and photon number densities that include these corrections. We use Schwarzschild spacetime as a detailed example.

I Introduction

If axions exist (for reviews of axion physics see Kim:1986ax ; Cheng:1987gp ; Raffelt:1990yz ), they are a dark matter (DM) candidate produced in a Bose-Einstein condensate (BEC) in the early universe by vacuum misalignment Abbott:1982af ; Preskill:1982cy ; Dine:1982ah and/or by cosmic strings after inflation Sikivie:2010bq where the produced axions relax into a BEC via a+aa+aa+a\rightarrow a+a scattering and by the gravitationally scattering of axions. When the temperature is near the QCD scale (T1T\sim 1GeV), regions where the axion field aa is far from the minimum of its potential V(a(T))V(a(T)) have axion over densities that can decouple from the Hubble flow to form axion mini clusters. The typical mass of these objects is roughly 1014M\sim 10^{-14}M_{\odot} Enander ; Fairbairn:2017sil and a fraction fmc10%f_{mc}\sim 10\% of all axions are expected to be in mini clusters Fairbairn:2017dmf . The evolution of axion mini clustered have been studied in Kolb:1993zz ; Kolb:1993hw and more recently in Braaten:2019knj .

Since the central density, radius and total masses of axion miniclusters are known along their evolutionary stability curves, we can check to see if these parameters are in the range where lasing can commence. If it does lase, then the cluster experiences an immediate (approximate δ\delta-function) change in those parameters due to the fast mass loss after which the cluster must rearrange itself to regain stability or quasi-stability.

Gravitationally bound and self bound axion clusters have been studied by several groups. Relativistic axions are best expressed in terms of a real scalar field and low energy axions E<<maE<<m_{a} by an effective complex field, see Guth:2014hsa ; Braaten:2019knj ; Braaten:2018lmj . For a detailed review of for various bound state including quasi-bound states and including breather like states, see Braaten:2019knj . Particles in free space can interact gravitationally or through other mutual interactions to form bound or quasi-bound objects. If the particles are identical bosons in the early universe, then the objects are Bose stars. If the particles are cold or can radiate energy, then they can form a Bose-Einstein condensate (BEC) with properties that differ from low occupation number configurations. For a recent review of axion cosmology see Marsh:2015xka . Depending on invisible axion model parameters, they can form gravitationally bound clumps called axion stars or self interaction systems called axitons. For an extensive review of bound axion systems with a review of axion field theory, and definitions see again Braaten:2019knj . (We assume that the axions considered here to be is states of high occupation number, but not in BECs. They could in principle also be in a large set of overlapping BECs, but not in a single BEC, and in this case they would still behave sufficiently classically that our methods will apply to a good approximation.)

Let us call all the possible types of bound or quasibound axion configurations axion clusters. Here we will be interested in the evolution of these axion clusters, however we will not need to distinguish between stable or quasi-stable clusters, since we will be studying axion cluster decay to photons via lasing who’s time scale is much shorter than other time scales associated with cluster evolution phenomenon, like relaxation, radiative cooling, etc. Hence the clusters we consider need not even be bound, but could just be dense transients. Hence our focus will be on snap shots of otherwise slowly evolving clusters where we ask if the parameters are right for lasing to commence when we take both general and special relativistic effects into account, i.e., we allow for axion velocities near the speed of light cc in curved backgrounds.

The axion field aa couples to standard model particles, plus it self interacts via an effective potential V(a)V(a), but the coupling of most interest here is to photons via the global chiral anomaly term in the Lagrangian

αcγ08πfaaFF\frac{\alpha\,c_{\gamma 0}}{8\pi f_{a}}aF\wedge F

where α\alpha is the fine structure constant, faf_{a} is the axion decay constant, FF is the electromagnetic field strength and cγ0c_{\gamma 0} is an O(1)O(1) model dependent constant. From this term we can calculate the decay rate for aγ+γa\rightarrow\gamma+\gamma.

Experimental and cosmological limits have now constrained the mass of the QCD axion to lie in a narrow range 103eV>ma>105eV10^{-3}eV>m_{a}>10^{-5}eV. Because axions are copiously produced at rest during the QCD phase transition, they would over close the universe if their mass was lighter than the lower bound and they would have been experimentally detected if they were heavier than the upper bound. Since they are born non-relativistic they are a cold dark matter (CDM) candidate. Studies of density perturbations have shown that CDM can form structures on all scales. Consequently, assuming axions are the CDM, we expect to find them seeding galaxies or clusters of galaxies, but also perhaps being the seeds of early stars. There are many potential forms of these axion clumps. If they are diffuse the axions will remain non-relativistic. If they become dense then they can become relativistic. The clumps may or may not be spherically symmetric depending on the environment in which they were formed. If they are sufficiently dense the a curved space metric will be necessary to describe the cluster. If their number density is high enough, then they can lase and hence the resulting photons can be detectable at large distances.

Spherically symmetric non-relativistic lasing axion clusters were first studied in the 1980s Kephart:1986vc ; Tkachev:1987cd ; Kephart:1994uy . More recently non-spherically symmetric non-relativistic cluster with arbitrary momentum and spacial distributions have also been studied Chen:2020ufn ; Chen:2020yvx . However, these studies focuses on self-bounded axion cluster. Our purpose here is to study axion cloud bounded by a host object in static space-times. An example is axions moving in a static geometry like Schwarzschild space-time.

QCD axion clumps with conventional couplings can undergo resonant decay for sufficiently large angular momentum Hertzberg:2018zte . Radio emission from QCD axions occurs in the context of bose stars if axion-photon coupling is large Levkov:2020txo . These are among recent studies on this topic in flat spacetime. There are many standard general relativistic treatment of axion cluster in the literature. Braaten:2019knj gives a comprehensive review of axion clusters and includes applications that considered gravitational effect on axion cluster. Ikeda:2018nhb shows that laserlike emission from axion clouds exists by numerically solving the problem at classical level in fixed Kerr background. Detailed studies of axionic instability induced by electromagnetic field deformations of the Kerr-Newman geometry, and periodic bursts of light from superradiant growth are carried out in Boskovic:2018lkj . These studies did the analysis from the perspective of field theory. What sets Kephart:1994uy apart from these studies is that it tackled the problem from statistical model using Boltzmann equation. Therefore, results from Kephart:1994uy are potentially applicable to other types of pesudoscalar particle decaying into two photons. Although Kephart:1994uy is a statistical model built in flat spacetime, other studies such as Ikeda:2018nhb and Boskovic:2018lkj suggests curved spacetime may provide more information on this issue. Therefore, we decided to rebuild this model in curved static spacetime. Hence, the methodology implemented here is tailored particularly towards Kephart:1994uy . For other approachs of superradiance-blast simulation, please see the studies mentioned above.

II aγ+γa\leftrightarrow\gamma+\gamma process in Minkowski spacetime

This is a brief summary of the formulation of axion cluster lasing using Boltzmann equation in Kephart:1994uy . Two photons emitted by decay of a spin zero particle have the same helicity, as required by angular momentum conservation. The change in the number density of photons of a given helicity λ=±1\lambda=\pm 1 within the axion cluster, due to the process aγ+γa\leftrightarrow\gamma+\gamma in Minkowski spacetime, is

dnλdt=\displaystyle{dn_{\lambda}\over dt}= 𝑑XLIMS(3)[fa(1+f1λ)(1+f2λ)f1λf2λ(1+fa)]\displaystyle\int dX^{(3)}_{\text{LIMS}}[f_{a}(1+f_{1\lambda})(1+f_{2\lambda})-f_{1\lambda}f_{2\lambda}(1+f_{a})] (1)
×|M(aγ(λ)γ(λ))|2,\displaystyle\times|M(a\rightarrow\gamma(\lambda)\gamma(\lambda))|^{2}~{},

where faf_{a}, f1λf_{1\lambda} and f2λf_{2\lambda} are the occupation numbers of the axion and the two photons and M=M(aγ(+)γ(+))=M(aγ()γ())M=M(a\rightarrow\gamma(+)\gamma(+))=M(a\rightarrow\gamma(-)\gamma(-)) is the decay amplitude determined by the Abelian chiral anomalyAdler:1969gk ; Bell:1969ts and is related to the spontaneous axion decay constant by

τa1=Γa=18π(12ma)12λ=±|M(aγ(λ)γ(λ))|2.\displaystyle\tau_{a}^{-1}=\Gamma_{a}={1\over{8\pi}}({1\over{2m_{a}}}){1\over 2}\sum_{\lambda=\pm}|M(a\rightarrow\gamma(\lambda)\gamma(\lambda))|^{2}~{}. (2)

The three body Lorentz invariant momentum measure is

𝑑XLIMS(3)=\displaystyle\int dX^{(3)}_{\text{LIMS}}= d3p(2π)32p0d3k1(2π)32k10d3k2(2π)32k20\displaystyle\int{d^{3}p\over(2\pi)^{3}2p^{0}}\int{d^{3}k_{1}\over(2\pi)^{3}2k_{1}^{0}}\int{d^{3}k_{2}\over(2\pi)^{3}2k_{2}^{0}}
×(2π)4δ(4)(pk1k2).\displaystyle\times(2\pi)^{4}\delta^{(4)}(p-k_{1}-k_{2})~{}.

See the Appendix for details of deriving dXLIMSdX_{\text{LIMS}}. From here one obtains eq. (10) of Kephart:1994uy

2kdfλ(k)dt=4maΓaπd3k12k10d3p2p0δ4(pkk1)\displaystyle 2k\frac{df_{\lambda}(\vec{k})}{dt}=\frac{4m_{a}\Gamma_{a}}{\pi}\int\frac{d^{3}k_{1}}{2k_{1}^{0}}\frac{d^{3}p}{2p^{0}}\delta^{4}(p-k-k_{1}) (3)
×{fa(p)[1+fλ(k)+fλ(k1)]fλ(k)fλ(k1)}.\displaystyle\times\{f_{a}(\vec{p})[1+f_{\lambda}(\vec{k})+f_{\lambda}(\vec{k_{1}})]-f_{\lambda}(\vec{k})f_{\lambda}(\vec{k_{1}})\}~{}.

which became the starting point for studying the lasing of axion cluster in flat spacetime.

III aγ+γa\leftrightarrow\gamma+\gamma process in Static spacetime

We generalize equation (1) to find the change in the number density of photons of a given helicity =±1=\pm 1 within the axion cluster, due to the process aγ+γa\leftrightarrow\gamma+\gamma in static spacetime

ds2=g00dt2+gijdxidxj,\displaystyle ds^{2}=g_{00}dt^{2}+g_{ij}dx^{i}dx^{j}~{},

which is

dnλdτ=\displaystyle{dn_{\lambda}\over d\tau}= 𝑑XSCMS(3)[fa(1+f1λ)(1+f2λ)f1λf2λ(1+fa)]\displaystyle\int dX^{(3)}_{\text{SCMS}}[f_{a}(1+f_{1\lambda})(1+f_{2\lambda})-f_{1\lambda}f_{2\lambda}(1+f_{a})]
×|M(aγ(λ)γ(λ))|2,\displaystyle\times|M(a\rightarrow\gamma(\lambda)\gamma(\lambda))|^{2}~{}, (4)

where dXSCMSdX_{\text{SCMS}} is the static spacetime covariant measure, the generalization of dXLIMSdX_{\text{LIMS}} in flat spacetime. We give a pedagogical discussion of how we derive and interpret dXSCMSdX_{\text{SCMS}} in the Appendix.

The one body static covariant measure is

𝑑XSCMS=\displaystyle\int dX_{\text{SCMS}}= gijdp1dp2dp3(2π)32g00p0,\displaystyle\int{\sqrt{||g_{ij}||}dp^{1}dp^{2}dp^{3}\over(2\pi)^{3}2\sqrt{-g_{00}}p^{0}}~{},

and the three body static covariant measure is

𝑑XSCMS(3)\displaystyle\int dX^{(3)}_{\text{SCMS}}
=\displaystyle= gijdp1dp2dp3(2π)32g00p0gijdk11dk12dk13(2π)32g00k10\displaystyle\int{\sqrt{||g_{ij}||}dp^{1}dp^{2}dp^{3}\over(2\pi)^{3}2\sqrt{-g_{00}}p^{0}}{\sqrt{||g_{ij}||}dk_{1}^{1}dk_{1}^{2}dk_{1}^{3}\over(2\pi)^{3}2\sqrt{-g_{00}}k_{1}^{0}}
×gijdk21dk22dk23(2π)32g00k20(2π)4δ(4)(pk1k2).\displaystyle\times{\sqrt{||g_{ij}||}dk_{2}^{1}dk_{2}^{2}dk_{2}^{3}\over(2\pi)^{3}2\sqrt{-g_{00}}k_{2}^{0}}(2\pi)^{4}\delta^{(4)}(p-k_{1}-k_{2})~{}.

Equation (2) describes the axion decay constant τa\tau_{a} in a local inertial frame that is comoving with the axion. The relation between the time in the comoving frame τ\tau with the axion and the coordinate time tt in static spacetime is

dtdτ=\displaystyle{dt\over d\tau}= 1g00gijpipjm2+1.\displaystyle{1\over\sqrt{-g_{00}}}\sqrt{g_{ij}{p^{i}p^{j}\over m^{2}}+1}~{}.

Specifically, in Schwarzschild spacetime

ds2=(12Mr)dt2+(12Mr)1dr2+r2dΩ2,\displaystyle ds^{2}=-(1-{2M\over r})dt^{2}+(1-{2M\over r})^{-1}dr^{2}+r^{2}d\Omega^{2}~{}, (5)

this becomes

(dtdτ)=\displaystyle({dt\over d\tau})= (12Mr)1/2gijpipjm2+1\displaystyle(1-{2M\over r})^{-1/2}\sqrt{g_{ij}{p^{i}p^{j}\over m^{2}}+1}

where

gijpipj=\displaystyle g_{ij}p^{i}p^{j}= (12Mr)1(pr)2+r2(pθ)2+r2sin2θ(pϕ)2\displaystyle(1-{2M\over r})^{-1}(p^{r})^{2}+r^{2}(p^{\theta})^{2}+r^{2}\sin^{2}\theta(p^{\phi})^{2}

is the square of the magnitude of the 3-momentum. The decay constant τa\tau_{a} in the comoving frame would change to the decay constant τal\tau_{al} in lab frame

τal=τa1g00gijpipjm2+1,\displaystyle\tau_{al}=\tau_{a}{1\over\sqrt{-g_{00}}}\sqrt{g_{ij}{p^{i}p^{j}\over m^{2}}+1}~{},

and the decay rate in the lab frame becomes

Γal=Γag00(gijpipjm2+1)1/2.\displaystyle\Gamma_{al}=\Gamma_{a}\sqrt{-g_{00}}(g_{ij}{p^{i}p^{j}\over m^{2}}+1)^{-1/2}~{}.

In a static spacetime, the number density given by

n(xα)=f(pi,xα)d3p(2π)3=f(pi,xα)gij(2π)3𝑑p1𝑑p2𝑑p3,\displaystyle n(x^{\alpha})=\int f(p^{i},x^{\alpha}){d^{3}p\over(2\pi)^{3}}=\int f(p^{i},x^{\alpha}){\sqrt{||g_{ij}||}\over(2\pi)^{3}}dp^{1}dp^{2}dp^{3}~{},

where |gij||g_{ij}| is the determinant of the 3-surface metric

ds2=gijdxidxj\displaystyle ds^{2}=g_{ij}dx^{i}dx^{j}

at constant coordinate time tt. The total number of the particle is

N(t)=n(xα)d3x=n(xα)gij𝑑x1𝑑x2𝑑x3,\displaystyle N(t)=\int n(x^{\alpha})d^{3}x=\int n(x^{\alpha})\sqrt{||g_{ij}||}dx^{1}dx^{2}dx^{3}~{},

In static spacetime, the rate of change in number density is related to the rate of change in occupation number by

dnλdt=\displaystyle{dn_{\lambda}\over dt}= 2g00k0dfλdtgijdk1dk2dk3(2π)32g00k0.\displaystyle\int 2\sqrt{-g_{00}}k^{0}{df_{\lambda}\over dt}{\sqrt{||g_{ij}||}dk^{1}dk^{2}dk^{3}\over(2\pi)^{3}2\sqrt{-g_{00}}k^{0}}~{}.

In Minkowski spacetime k0=kk^{0}=k, but the magnitude of energy and momentum are no longer equal in general in a static spacetime. Instead, we have a static energy-momentum relation for photon:

gijkikj=\displaystyle g_{ij}k^{i}k^{j}= g00(k0)2,\displaystyle-g_{00}({k^{0}})^{2}~{}, (6)

and for massive particle, the corresponding relation is

m2+gijpipj=\displaystyle m^{2}+g_{ij}p^{i}p^{j}= g00(p0)2.\displaystyle-g_{00}(p^{0})^{2}~{}. (7)

Multiplying equation (4) by dτdt{d\tau\over dt}, we have an equation for the rate of change in the number density of photons measured by coordinate time tt,

dnλdt=\displaystyle{dn_{\lambda}\over dt}= dXSCMS(3){[fa[1+fλ(ki)+fλ(k1i)]\displaystyle\int dX^{(3)}_{\text{SCMS}}\{[f_{a}[1+f_{\lambda}(k^{i})+f_{\lambda}(k_{1}^{i})]
fλ(ki)fλ(k1i)}×16πmaΓadτdt.\displaystyle-f_{\lambda}(k^{i})f_{\lambda}(k_{1}^{i})\}\times 16\pi m_{a}\Gamma_{a}{d\tau\over dt}~{}.

Writing dnλdtdn_{\lambda}\over dt in terms of faf_{a} we have one body measure dXSCMSdX_{\text{SCMS}} on the LHS of this equation that we use to cancel one of the three measures in dXSCMS(3)dX^{(3)}_{\text{SCMS}} on the RHS. There remains two measures, one for the axion and one for a photon, plus the δ\delta function,

2g00k0dfλdt=\displaystyle 2\sqrt{-g_{00}}k^{0}{df_{\lambda}\over dt}= gijdp1dp2dp3(2π)32g00p0gijdk11dk12dk13(2π)32g00k10\displaystyle\int{\sqrt{||g_{ij}||}dp^{1}dp^{2}dp^{3}\over(2\pi)^{3}2\sqrt{-g_{00}}p^{0}}{\sqrt{||g_{ij}||}dk_{1}^{1}dk_{1}^{2}dk_{1}^{3}\over(2\pi)^{3}2\sqrt{-g_{00}}k_{1}^{0}}
×(2π)4δ4(pαkαk1α)\displaystyle\times(2\pi)^{4}\delta^{4}(p^{\alpha}-k^{\alpha}-k_{1}^{\alpha})
×{[fa[1+fλ(ki)+fλ(k1i)]fλ(ki)fλ(k1i)}\displaystyle\times\{[f_{a}[1+f_{\lambda}(k^{i})+f_{\lambda}(k_{1}^{i})]-f_{\lambda}(k^{i})f_{\lambda}(k_{1}^{i})\}
×16πmaΓag00(gijpipjma2+1)1/2.\displaystyle\times 16\pi m_{a}\Gamma_{a}\sqrt{-g_{00}}(g_{ij}{p^{i}p^{j}\over m_{a}^{2}}+1)^{-1/2}~{}.

After simplification, we obtained the evolution equation

2k0dfλdt=\displaystyle 2k^{0}\frac{df_{\lambda}}{dt}= 4maΓaπgijdp1dp2dp32g00p0gijdk11dk12dk132g00k10\displaystyle\frac{4m_{a}\Gamma_{a}}{\pi}\int{\sqrt{||g_{ij}||}dp^{1}dp^{2}dp^{3}\over 2\sqrt{-g_{00}}p^{0}}{\sqrt{||g_{ij}||}dk_{1}^{1}dk_{1}^{2}dk_{1}^{3}\over 2\sqrt{-g_{00}}k_{1}^{0}}
×{[fa[1+fλ(ki)+fλ(k1i)]fλ(ki)fλ(k1i)}\displaystyle\times\{[f_{a}[1+f_{\lambda}(k^{i})+f_{\lambda}(k_{1}^{i})]-f_{\lambda}(k^{i})f_{\lambda}(k_{1}^{i})\}
×δ4(pαkαk1α)(gijpipjma2+1)1/2.\displaystyle\times\delta^{4}(p^{\alpha}-k^{\alpha}-k_{1}^{\alpha})(g_{ij}{p^{i}p^{j}\over m_{a}^{2}}+1)^{-1/2}~{}. (8)

which resembles equation (3), and reduces to it in the flat spacetime limit.

IV Momentum Space Integrations

The momentum space integrations needed for the evaluation of (8) are rather tedious and can be found in the Appendix. Specifically, doing the k1k_{1} integration first leads to

2k0dfλ(ki)dt\displaystyle 2k^{0}\frac{df_{\lambda}(k^{i})}{dt}
=\displaystyle= 4maΓaπ(g00)map0gijdp1dp2dp32g00p0\displaystyle\frac{4m_{a}\Gamma_{a}}{\pi(-g_{00})}\int{m_{a}\over p^{0}}{\sqrt{||g_{ij}||}dp^{1}dp^{2}dp^{3}\over 2\sqrt{-g_{00}}p^{0}}
×12gij(piki)(pjkj)\displaystyle\times{1\over 2\sqrt{g_{ij}(p^{i}-k^{i})(p^{j}-k^{j})}}
×δ[p0k0gij(piki)(pjkj)g00]\displaystyle\times\delta[p^{0}-k^{0}-\sqrt{g_{ij}(p^{i}-k^{i})(p^{j}-k^{j})\over-g_{00}}]
×{fa(pi)[1+fλ(ki)+fλ(piki)]fλ(ki)fλ(piki)}.\displaystyle\times\{f_{a}(p^{i})[1+f_{\lambda}(k^{i})+f_{\lambda}(p^{i}-k^{i})]-f_{\lambda}(k^{i})f_{\lambda}(p^{i}-k^{i})\}~{}. (9)

and then we assume that the occupation numbers of both axion and photon are isotropic,

fa(pi)=fa(gijpipj),fλ(ki)=fλ(gijkikj),\displaystyle f_{a}(p^{i})=f_{a}(\sqrt{g_{ij}p^{i}p^{j}})~{},\qquad f_{\lambda}(k^{i})=f_{\lambda}(\sqrt{g_{ij}k^{i}k^{j}})~{},

and the pp integration given in the Appendix results in

dfλ(gijkikj)dt\displaystyle\frac{df_{\lambda}(\sqrt{g_{ij}k^{i}k^{j}})}{dt} (10)
=\displaystyle= maΓag00gijkikjmap0dp0×{fa(gijpipj)\displaystyle{m_{a}\Gamma_{a}\sqrt{-g_{00}}\over g_{ij}k^{i}k^{j}}\int{m_{a}\over p^{0}}dp^{0}\times\{f_{a}(\sqrt{g_{ij}p^{i}p^{j}})
[1+fλ(gijkikj)+fλ(g00(p0k0))]\displaystyle[1+f_{\lambda}(\sqrt{g_{ij}k^{i}k^{j}})+f_{\lambda}\left(\sqrt{-g_{00}}(p^{0}-k^{0})\right)]
fλ(gijkikj)fλ(g00(p0k0))}.\displaystyle-f_{\lambda}(\sqrt{g_{ij}k^{i}k^{j}})f_{\lambda}\left(\sqrt{-g_{00}}(p^{0}-k^{0})\right)\}~{}.

where we have a factor of g00\sqrt{-g_{00}} from gravitational redshift which corrects the time difference between the clock in the lab frame and the clock at the location the axion. The factor map0{m_{a}\over p^{0}} is due to the special relativistic correction.

V Evolution equations

In the Appendix, we find that at event 𝒫0{\mathcal{P}_{0}}, there are upper and lower limits on the 0th0^{th} component of photon momentum. This is true for every event at any point in spacetime. The bounds are

p0\displaystyle p^{0}\geq k0+ma24k0(g00)\displaystyle k^{0}+{m_{a}^{2}\over 4k^{0}(-g_{00})}
kmax/min0=\displaystyle k^{0}_{\text{max/min}}= 12[p0±(p0)2ma2g00]\displaystyle{1\over 2}[\ p^{0}\pm\sqrt{(p^{0})^{2}-{m_{a}^{2}\over-g_{00}}}\ ]
=\displaystyle= 12(p0±gijpipjg00)\displaystyle{1\over 2}(p^{0}\pm\sqrt{g_{ij}p^{i}p^{j}\over-g_{00}})
gijkikjmax/min=\displaystyle\sqrt{g_{ij}k^{i}k^{j}}_{\text{max/min}}= 12(g00p0±gijpipj).\displaystyle{1\over 2}(\sqrt{-g_{00}}p^{0}\pm\sqrt{g_{ij}p^{i}p^{j}})~{}.

Switching from variable gijpipj\sqrt{g_{ij}p^{i}p^{j}} to p0p^{0}, the evolution equation becomes

dfλ(gijkikj)dt\displaystyle\frac{df_{\lambda}(\sqrt{g_{ij}k^{i}k^{j}})}{dt}
=\displaystyle= maΓag00gijkikjk0ma24k0g00map0dp0{fa((g00)(p0)2ma2)\displaystyle{m_{a}\Gamma_{a}\sqrt{-g_{00}}\over g_{ij}k^{i}k^{j}}\int_{k^{0}-{m_{a}^{2}\over 4k^{0}g_{00}}}{m_{a}\over p^{0}}dp^{0}\{f_{a}\left(\sqrt{(-g_{00})(p^{0})^{2}-m_{a}^{2}}\right)
×[1+fλ(gijkikj)+fλ(g00(p0k0))]\displaystyle\times[1+f_{\lambda}(\sqrt{g_{ij}k^{i}k^{j}})+f_{\lambda}\left(\sqrt{-g_{00}}(p^{0}-k^{0})\right)]
fλ(gijkikj)fλ(g00(p0k0))}.\displaystyle-f_{\lambda}(\sqrt{g_{ij}k^{i}k^{j}})f_{\lambda}\left(\sqrt{-g_{00}}(p^{0}-k^{0})\right)\}~{}.

Note that p0=k0+k10p^{0}=k^{0}+k_{1}^{0} and g00k10=gijk1ik1j\sqrt{-g_{00}}k_{1}^{0}=\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}}. The p0p^{0} integral can be rewritten as an integral over gijk1ik1j\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}},

dfλ(gijkikj)dt\displaystyle\frac{df_{\lambda}(\sqrt{g_{ij}k^{i}k^{j}})}{dt}
=\displaystyle= maΓag00gijkikjma24gijkikjmad(gijk1ik1j)gijkikj+gijk1ik1j\displaystyle{m_{a}\Gamma_{a}\sqrt{-g_{00}}\over g_{ij}k^{i}k^{j}}\int_{m_{a}^{2}\over 4\sqrt{g_{ij}k^{i}k^{j}}}{m_{a}d(\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}})\over\sqrt{g_{ij}k^{i}k^{j}}+\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}}}
×{fa((gijkikj+gijk1ik1j)2ma2)\displaystyle\times\{f_{a}\left(\sqrt{(\sqrt{g_{ij}k^{i}k^{j}}+\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}})^{2}-m_{a}^{2}}\right)
×[1+fλ(gijkikj)+fλ(gijk1ik1j)]\displaystyle\times[1+f_{\lambda}(\sqrt{g_{ij}k^{i}k^{j}})+f_{\lambda}(\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}})]
fλ(gijkikj)fλ(gijk1ik1j)}.\displaystyle-f_{\lambda}(\sqrt{g_{ij}k^{i}k^{j}})f_{\lambda}(\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}})\}~{}.

We convert the LHS of this equation into the changing rate of the number density by integrating over the momentum space,

dnλdt=dfλ(gijkikj)dtgijkikj2π2d(gijkikj).\displaystyle\frac{dn_{\lambda}}{dt}=\int\frac{df_{\lambda}(\sqrt{g_{ij}k^{i}k^{j}})}{dt}{g_{ij}k^{i}k^{j}\over 2\pi^{2}}d(\sqrt{g_{ij}k^{i}k^{j}})~{}.

The rate of change in photon number density is then

dnλdt=maΓag002π2k0ma24k0g00map0{fa((g00)(p0)2ma2)\displaystyle\frac{dn_{\lambda}}{dt}={m_{a}\Gamma_{a}\sqrt{-g_{00}}\over 2\pi^{2}}\int\int_{k^{0}-{m_{a}^{2}\over 4k^{0}g_{00}}}{m_{a}\over p^{0}}\{f_{a}\left(\sqrt{(-g_{00})(p^{0})^{2}-m_{a}^{2}}\right)
×[1+fλ(gijkikj)+fλ(g00p0gijkikj)]\displaystyle\times[1+f_{\lambda}(\sqrt{g_{ij}k^{i}k^{j}})+f_{\lambda}(\sqrt{-g_{00}}p^{0}-\sqrt{g_{ij}k^{i}k^{j}})]
fλ(gijkikj)fλ(g00p0gijkikj)}\displaystyle-f_{\lambda}(\sqrt{g_{ij}k^{i}k^{j}})f_{\lambda}(\sqrt{-g_{00}}p^{0}-\sqrt{g_{ij}k^{i}k^{j}})\}
×dp0d(gijkikj),\displaystyle\times dp^{0}d(\sqrt{g_{ij}k^{i}k^{j}})~{},

or alternatively

dnλdt=maΓag002π2ma24gijkikjmad(gijk1ik1j)d(gijkikj)gijkikj+gijk1ik1j\displaystyle\frac{dn_{\lambda}}{dt}={m_{a}\Gamma_{a}\sqrt{-g_{00}}\over 2\pi^{2}}\int\int_{m_{a}^{2}\over 4\sqrt{g_{ij}k^{i}k^{j}}}{m_{a}d(\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}})d(\sqrt{g_{ij}k^{i}k^{j}})\over\sqrt{g_{ij}k^{i}k^{j}}+\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}}} (11)
×{fa((gijkikj+gijk1ik1j)2ma2)[1+fλ(gijkikj)\displaystyle\times\{f_{a}\left(\sqrt{(\sqrt{g_{ij}k^{i}k^{j}}+\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}})^{2}-m_{a}^{2}}\right)[1+f_{\lambda}(\sqrt{g_{ij}k^{i}k^{j}})
+fλ(gijk1ik1j)]fλ(gijkikj)fλ(gijk1ik1j)}.\displaystyle+f_{\lambda}(\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}})]-f_{\lambda}(\sqrt{g_{ij}k^{i}k^{j}})f_{\lambda}(\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}})\}~{}.

We assume that the various dependences of the axion occupation number are separable, and of the form

fa(gijpipj,r,t)\displaystyle f_{a}(\sqrt{g_{ij}p^{i}p^{j}},r,t)
=\displaystyle= Θ(pmaxgijpipj)[fac(t)Θ(r+r)Θ(rr)\displaystyle\Theta(p_{\text{max}}-\sqrt{g_{ij}p^{i}p^{j}})[f_{ac}(t)\Theta(r_{+}-r)\Theta(r-r_{-})
+fad(t)d(r)].\displaystyle+f_{ad}(t)d(r)]~{}. (12)

We let r+rr_{+}\sim r_{-} both be far beyond the event horizon if the host object is a black hole, with the small distortion d(r)d(r) in the region (rrr+)(r_{-}\leq r\leq r_{+}) away from a uniform distribution. In the Appendix, we find that the maximum momentum of an axion is

pmax=maβ=mag00(r+)g00(r)1.p_{\text{max}}=m_{a}\beta^{\prime}=m_{a}\sqrt{{-g_{00}(r_{+})\over-g_{00}(r_{-})}-1}~{}.

Since we set the maximum axion momentum to be maβm_{a}\beta^{\prime}, according to the bounds mentioned in the previous section, extremes of photon momentum become

gijkikj±=\displaystyle\sqrt{g_{ij}k^{i}k^{j}}_{\pm}= 12(g00p0±gijpipj)|gijpipj=maβ\displaystyle{1\over 2}(\sqrt{-g_{00}}p^{0}\pm\sqrt{g_{ij}p^{i}p^{j}})\bigg{|}_{\sqrt{g_{ij}p^{i}p^{j}}=m_{a}\beta^{\prime}}
=\displaystyle= 12[ma2+(maβ)2±(maβ)2]\displaystyle{1\over 2}[\sqrt{m_{a}^{2}+(m_{a}\beta^{\prime})^{2}}\pm\sqrt{(m_{a}\beta^{\prime})^{2}}]
=\displaystyle= ma2(1+β2±β).\displaystyle{m_{a}\over 2}(\sqrt{1+\beta^{\prime 2}}\pm\beta^{\prime})~{}.

This is somewhat different from the extreme photon momentum values in Kephart:1994uy , because there the escape velocity was defined in the non-relativistic sense.
Suppose that the photon occupation number which correspondences to that of axions (12), is

fλ(gijkikj,r,t)\displaystyle f_{\lambda}(\sqrt{g_{ij}k^{i}k^{j}},r,t)
=\displaystyle= [fλc(t)Θ(r+r)Θ(rr)+fλd(t)d(r)]\displaystyle[f_{\lambda c}(t)\Theta(r_{+}-r)\Theta(r-r_{-})+f_{\lambda d}(t)d(r)] (13)
×Θ(gijkikj+gijkikj)Θ(gijkikjgijkikj).\displaystyle\times\Theta(\sqrt{g_{ij}k^{i}k^{j}}_{+}-\sqrt{g_{ij}k^{i}k^{j}})\Theta(\sqrt{g_{ij}k^{i}k^{j}}-\sqrt{g_{ij}k^{i}k^{j}}_{-})~{}.

The volume of the shell Θ(gijkikj+gijkikj)Θ(gijkikjgijkikj)\Theta(\sqrt{g_{ij}k^{i}k^{j}}_{+}-\sqrt{g_{ij}k^{i}k^{j}})\Theta(\sqrt{g_{ij}k^{i}k^{j}}-\sqrt{g_{ij}k^{i}k^{j}}_{-}) is

Vk\displaystyle V_{k}\approx 4π[12(gijkikj++gijkikj)]2\displaystyle 4\pi[{1\over 2}(\sqrt{g_{ij}k^{i}k^{j}}_{+}+\sqrt{g_{ij}k^{i}k^{j}}_{-})]^{2}
×(gijkikj+gijkikj)=πma3β(1+β2).\displaystyle\times(\sqrt{g_{ij}k^{i}k^{j}}_{+}-\sqrt{g_{ij}k^{i}k^{j}}_{-})=\pi m_{a}^{3}\beta^{\prime}(1+\beta^{\prime 2})~{}.

The kk and k1k_{1} integrations of (11) are both long and tedious and so have been relegated to the Appendix. They result in the following expression

dnλdt=maΓa2π2g00\displaystyle\frac{dn_{\lambda}}{dt}={m_{a}\Gamma_{a}\over 2\pi^{2}}\sqrt{-g_{00}}
×{ma2β33[fac(t)Θ(r+r)Θ(rr)+fad(t)d(r)\displaystyle\times\{{m_{a}^{2}\beta^{\prime 3}\over 3}[f_{ac}(t)\Theta(r_{+}-r)\Theta(r-r_{-})+f_{ad}(t)d(r)
+2fac(t)fλc(t)Θ(r+r)Θ(rr)\displaystyle+2f_{ac}(t)f_{\lambda c}(t)\Theta(r_{+}-r)\Theta(r-r_{-})
+2(fac(t)fλd(t)+fad(t)fλc(t))d(r)\displaystyle+2(f_{ac}(t)f_{\lambda d}(t)+f_{ad}(t)f_{\lambda c}(t))d(r)
fλc2(t)Θ(r+r)Θ(rr)2fλc(t)fλd(t)d(r)]\displaystyle-f_{\lambda c}^{2}(t)\Theta(r_{+}-r)\Theta(r-r_{-})-2f_{\lambda c}(t)f_{\lambda d}(t)d(r)]
ma2β22[fλc2(t)Θ(r+r)Θ(rr)+2fλc(t)fλd(t)d(r)]},\displaystyle-{m_{a}^{2}\beta^{\prime 2}\over 2}[f_{\lambda c}^{2}(t)\Theta(r_{+}-r)\Theta(r-r_{-})+2f_{\lambda c}(t)f_{\lambda d}(t)d(r)]\}~{}, (14)

where the subscripts cc and dd refer to the flat and distorted part of the spectrum. (See the next two sections for more discussion of the distortion function d(r)d(r).) This result will be used to analyze the Schwarzschild case in the next section. Later we apply the results to a specific model and extract the distortion caused by the relativistic corrections of the flat space case. Equation (14) is one of the main results of this work.

The rate of change in axion number density is the opposite of that of photon, and is

dnadt=12λ=±dnλdt.\displaystyle\frac{dn_{a}}{dt}=-{1\over 2}\sum_{\lambda=\pm}\frac{dn_{\lambda}}{dt}~{}.

as we find from (14).

VI Setup of simple cluster model

The rate equations we have just developed applies to all static spacetime metrics, includes those from metric based theories other than general relativity. E.g., there could be static host objects in other metric based gravitational theory that allow spontaneous particle creation which serve as a source of the axion production. But for now we set the question of axion production aside and focus on the gravitational correction to stimulated radiation in axion clusters.

The major difference between this model and Kephart:1994uy is that here the axion self gravity is ignored but the gravity from the host objects(star, black hole, etc) is taken into account. If these axions were produced by perturbative black hole processes, we assume the total energy in axions be much smaller than the mass of the black hole.

We want to investigate static stationary spacetime where

g00=g00(r)gij=gij(r,θ)limrgμν=ημν.\displaystyle g_{00}=g_{00}(r)\qquad g_{ij}=g_{ij}(r,\theta)\qquad\lim_{r\rightarrow\infty}g_{\mu\nu}=\eta_{\mu\nu}~{}.

Schwarzschild and Reissner-Nordström metric belong to this category. Because of the factor g00\sqrt{-g_{00}}, it is difficult to maintain a uniform distribution for photons along the radial direction. Thus we introduce a small distortion function d(r)d(r) in the following calculations.

The axion number density at event xαx^{\alpha} is an integration of fa(gijpipj,r)f_{a}(\sqrt{g_{ij}p^{i}p^{j}},r) over pip^{i},

na(t,xi)=\displaystyle n_{a}(t,x^{i})= 0maβΘ(pmaxgijpipj)gijkikj2π2d(gijkikj)\displaystyle\int_{0}^{m_{a}\beta^{\prime}}\Theta(p_{\text{max}}-\sqrt{g_{ij}p^{i}p^{j}}){g_{ij}k^{i}k^{j}\over 2\pi^{2}}d(\sqrt{g_{ij}k^{i}k^{j}})
×[fac(t)Θ(r+r)Θ(rr)+fad(t)d(r)]\displaystyle\times[f_{ac}(t)\Theta(r_{+}-r)\Theta(r-r_{-})+f_{ad}(t)d(r)]
=\displaystyle= (maβ)36π2[fac(t)Θ(r+r)Θ(rr)+fad(t)d(r)]\displaystyle{(m_{a}\beta^{\prime})^{3}\over 6\pi^{2}}[f_{ac}(t)\Theta(r_{+}-r)\Theta(r-r_{-})+f_{ad}(t)d(r)]
=\displaystyle= [nac(t)Θ(r+r)Θ(rr)+nad(t)d(r)].\displaystyle[n_{ac}(t)\Theta(r_{+}-r)\Theta(r-r_{-})+n_{ad}(t)d(r)]~{}.

The occupation numbers can be converted to number densities with

fac(t)=\displaystyle f_{ac}(t)= 6π2(maβ)3nac(t)\displaystyle{6\pi^{2}\over(m_{a}\beta^{\prime})^{3}}n_{ac}(t)
fad(t)=\displaystyle f_{ad}(t)= 6π2(maβ)3nad(t)\displaystyle{6\pi^{2}\over(m_{a}\beta^{\prime})^{3}}n_{ad}(t)

The number density of photon

nλ(t,xi)=\displaystyle n_{\lambda}(t,x^{i})= nλc(t)Θ(r+r)Θ(rr)+nλd(t)d(r)\displaystyle n_{\lambda c}(t)\Theta(r_{+}-r)\Theta(r-r_{-})+n_{\lambda d}(t)d(r) (15)

is an integration of photon occupation number fλf_{\lambda} over kik^{i}. The coefficients of occupation number and number density are related by

fλc(t)=\displaystyle f_{\lambda c}(t)= (2π)3nλc(t)Vk=8π2ma3βnλc(t)\displaystyle{(2\pi)^{3}n_{\lambda c}(t)\over V_{k}}={8\pi^{2}\over m_{a}^{3}\beta^{\prime}}n_{\lambda c}(t)
fλd(t)=\displaystyle f_{\lambda d}(t)= (2π)3nλd(t)Vk=8π2ma3βnλd(t),\displaystyle{(2\pi)^{3}n_{\lambda d}(t)\over V_{k}}={8\pi^{2}\over m_{a}^{3}\beta^{\prime}}n_{\lambda d}(t)~{},

which we note is different from the axion relations.

VII Radial distribution approximation

Because of the factor g00\sqrt{-g_{00}}, both axion and photon can not maintain a uniform radial distribution and it is this factor that causes the distortion d(r)d(r) to arise in those quantities. We can assume that the distortion is the displacement of g00\sqrt{-g_{00}} from 1.

g00=1+d(r).\displaystyle\sqrt{-g_{00}}=1+d(r)~{}.

In the case of Schwarzschild spacetime, the Maclaurin series for the correction factor g00\sqrt{-g_{00}} is

12Mr=\displaystyle\sqrt{1-{2M\over r}}= 1122Mr18(2Mr)2\displaystyle 1-{1\over 2}{2M\over r}-{1\over 8}({2M\over r})^{2}-...

In the case of Reissner-Nordström spacetime it is

12Mr+Q2r2=\displaystyle\sqrt{1-{2M\over r}+{Q^{2}\over r^{2}}}= 1122Mr+[12Q2r218(2Mr)2]\displaystyle 1-{1\over 2}{2M\over r}+[{1\over 2}{Q^{2}\over r^{2}}-{1\over 8}({2M\over r})^{2}]-...

From the Maclaurin series, we can see that all the rr dependent terms contribute to the unevenness of the distribution, i.e., to d(r)d(r).

Returning to the general form, we consider the time derivative of (15). Neglecting terms which are second or higher order of d(r)d(r), we have

dnλdt=dnλc(t)dtΘ(r+r)Θ(rr)+dnλd(t)dtd(r)\displaystyle\frac{dn_{\lambda}}{dt}={dn_{\lambda c}(t)\over dt}\Theta(r_{+}-r)\Theta(r-r_{-})+{dn_{\lambda d}(t)\over dt}d(r)
=\displaystyle= maΓa2π2[1+d(r)]{ma2β33[fac(t)Θ(r+r)Θ(rr)+fad(t)d(r)\displaystyle{m_{a}\Gamma_{a}\over 2\pi^{2}}[1+d(r)]\{{m_{a}^{2}\beta^{\prime 3}\over 3}[f_{ac}(t)\Theta(r_{+}-r)\Theta(r-r_{-})+f_{ad}(t)d(r)
+2fac(t)fλc(t)Θ(r+r)Θ(rr)\displaystyle+2f_{ac}(t)f_{\lambda c}(t)\Theta(r_{+}-r)\Theta(r-r_{-})
+2(fac(t)fλd(t)+fad(t)fλc(t))d(r)\displaystyle+2(f_{ac}(t)f_{\lambda d}(t)+f_{ad}(t)f_{\lambda c}(t))d(r)
fλc2(t)Θ(r+r)Θ(rr)2fλc(t)fλd(t)d(r)]\displaystyle-f_{\lambda c}^{2}(t)\Theta(r_{+}-r)\Theta(r-r_{-})-2f_{\lambda c}(t)f_{\lambda d}(t)d(r)]
ma2β22[fλc2(t)Θ(r+r)Θ(rr)+2fλc(t)fλd(t)d(r)]}.\displaystyle-{m_{a}^{2}\beta^{\prime 2}\over 2}[f_{\lambda c}^{2}(t)\Theta(r_{+}-r)\Theta(r-r_{-})+2f_{\lambda c}(t)f_{\lambda d}(t)d(r)]\}~{}.

which defines the uniform and distorted parts of the number density, nλc(t)n_{\lambda c}(t) and nλd(t)n_{\lambda d}(t) respectively, as well as the uniform and distorted parts of the of the corresponding occupation number.

We now match terms according to whether the radial distribution is uniform Θ(r+r)Θ(rr)\Theta(r_{+}-r)\Theta(r-r_{-}) or distorted d(r)d(r). The uniform part of the photon distribution is

dnλc(t)dt=maΓa2π2{ma2β33[fac(t)+2fac(t)fλc(t)fλc2(t)]12ma2β2fλc(t)2}.\displaystyle{dn_{\lambda c}(t)\over dt}={m_{a}\Gamma_{a}\over 2\pi^{2}}\{{m_{a}^{2}\beta^{\prime 3}\over 3}[f_{ac}(t)+2f_{ac}(t)f_{\lambda c}(t)-f_{\lambda c}^{2}(t)]-{1\over 2}m_{a}^{2}\beta^{\prime 2}f_{\lambda c}(t)^{2}\}~{}.

while the deformed part is

dnλd(t)dt\displaystyle{dn_{\lambda d}(t)\over dt}
=\displaystyle= maΓa2π2{ma2β33\displaystyle{m_{a}\Gamma_{a}\over 2\pi^{2}}\{{m_{a}^{2}\beta^{\prime 3}\over 3}
×[fac(t)+fad(t)+2fac(t)fλc(t)+2fac(t)fλd(t)\displaystyle\times[f_{ac}(t)+f_{ad}(t)+2f_{ac}(t)f_{\lambda c}(t)+2f_{ac}(t)f_{\lambda d}(t)
+2fad(t)fλc(t)fλc2(t)2fλc(t)fλd(t)]\displaystyle+2f_{ad}(t)f_{\lambda c}(t)-f_{\lambda c}^{2}(t)-2f_{\lambda c}(t)f_{\lambda d}(t)]
ma2β22[fλc2(t)+2fλc(t)fλd(t)]}.\displaystyle-{m_{a}^{2}\beta^{\prime 2}\over 2}[f_{\lambda c}^{2}(t)+2f_{\lambda c}(t)f_{\lambda d}(t)]\}~{}.

Finally we replace all the occupation number coefficents with number density coefficents and simplify to find

dnλcdt=Γa(nac+16π2ma3βnacnλc32π2β3ma3nλc216π2ma3nλc2)\displaystyle{dn_{\lambda c}\over dt}=\Gamma_{a}(n_{ac}+{16\pi^{2}\over m_{a}^{3}\beta^{\prime}}n_{ac}n_{\lambda c}-{32\pi^{2}\beta^{\prime}\over 3m_{a}^{3}}n_{\lambda c}^{2}-{16\pi^{2}\over m_{a}^{3}}n_{\lambda c}^{2})

which is the same as equation (32) of Kephart:1994uy , as expected. In addition, we have the simplified equation that accounts for radial distortion,

dnλd(t)dt\displaystyle{dn_{\lambda d}(t)\over dt}
=\displaystyle= Γa(nac+nad+16π2ma3βnacnλc+16π2ma3βnacnλd+16π2ma3βnλcnad\displaystyle\Gamma_{a}(n_{ac}+n_{ad}+{16\pi^{2}\over m_{a}^{3}\beta^{\prime}}n_{ac}n_{\lambda c}+{16\pi^{2}\over m_{a}^{3}\beta^{\prime}}n_{ac}n_{\lambda d}+{16\pi^{2}\over m_{a}^{3}\beta^{\prime}}n_{\lambda c}n_{ad}
32π2β3ma3nλc264π2β3ma3nλcnλd16π2ma3nλc232π2ma3nλcnλd).\displaystyle-{32\pi^{2}\beta^{\prime}\over 3m_{a}^{3}}n_{\lambda c}^{2}-{64\pi^{2}\beta^{\prime}\over 3m_{a}^{3}}{n_{\lambda c}n_{\lambda d}}-{16\pi^{2}\over m_{a}^{3}}n_{\lambda c}^{2}-{32\pi^{2}\over m_{a}^{3}}n_{\lambda c}n_{\lambda d})~{}.

VIII Surface loss and total photon density

The surface loss of photons at r=r+r=r_{+} is

(dnλ)r+surface loss\displaystyle(dn_{\lambda})_{r_{+}\text{surface loss}}
=\displaystyle= 12×dNλV=12×nλdV|gij|𝑑xi𝑑x2𝑑x3,\displaystyle{1\over 2}\times\frac{-dN_{\lambda}}{V}=-{1\over 2}\times\frac{n_{\lambda}dV}{\int\sqrt{|g_{ij}|}dx^{i}dx^{2}dx^{3}}~{},

where the factor 121\over 2 accounts for the probability that in the tangent space of an event at the surface, the momentum of the photon has positive radial component. In general, the surface loss rate Γs\Gamma_{s} (at both r+r_{+} and rr_{-}) is proportional to the number density,

(dnλdt)r+surface loss+(dnλdt)rsurface loss=Γsnλ.\displaystyle(\frac{dn_{\lambda}}{dt})_{r_{+}\text{surface loss}}+(\frac{dn_{\lambda}}{dt})_{r_{-}\text{surface loss}}=-\Gamma_{s}n_{\lambda}~{}.

For Schwarzschild spacetime,

(dnλ)r+surface loss\displaystyle(dn_{\lambda})_{r_{+}\text{surface loss}}
=\displaystyle= nλSc(dt)(12Mr)1r2r2sin2θ𝑑r𝑑θ𝑑ϕ×12\displaystyle-\frac{n_{\lambda}Sc\,(dt)}{\int\sqrt{(1-{2M\over r})^{-1}r^{2}r^{2}\sin^{2}\theta}drd\theta d\phi}\times\frac{1}{2}
=\displaystyle= nλSc(dt)4πrr+r212Mr𝑑r×12\displaystyle-\frac{n_{\lambda}Sc\,(dt)}{4\pi\int_{r_{-}}^{r_{+}}{r^{2}\over\sqrt{1-{2M\over r}}}dr}\times\frac{1}{2}
\displaystyle\approx nλ4πr+24πr+334πr33c(dt)×12.\displaystyle-n_{\lambda}\frac{4\pi r_{+}^{2}}{\frac{4\pi r_{+}^{3}}{3}-{4\pi r_{-}^{3}\over 3}}\,c\,(dt)\times\frac{1}{2}~{}.

Here since r2Mr\gg 2M, (working to lowest order in d(r)d(r)) we used the approximation 12Mr1\sqrt{1-{2M\over r}}\sim 1. Then the surface loss at r+r_{+} is

(dnλdt)r+surface loss=3cr+2nλ2(r+3r3)\displaystyle(\frac{dn_{\lambda}}{dt})_{r_{+}\text{surface loss}}=-\frac{3cr_{+}^{2}n_{\lambda}}{2(r_{+}^{3}-r_{-}^{3})}
=\displaystyle= 3cr+22(r+3r3)[nλc(t)Θ(Rr)+nλd(t)d(r)].\displaystyle-\frac{3cr_{+}^{2}}{2(r_{+}^{3}-r_{-}^{3})}[n_{\lambda c}(t)\Theta(R-r)+n_{\lambda d}(t)d(r)]~{}.

The surface loss of photon at r=rr=r_{-} can be neglected because photons would go back to the cluster unless being captured by the host. With any nonzero angular momentum, r2Mr_{-}\gg 2M limits the possibility of incidents that photon falling into the host. Define the surface loss rate,

Γs=3cr+22(r+3r3).\displaystyle\Gamma_{s}=-\frac{3cr_{+}^{2}}{2(r_{+}^{3}-r_{-}^{3})}~{}.

Surface loss rate for Reissner-Nordström spacetime can be obtained following similar procedures.

With surface loss included, the photon number density rate equation becomes

dnλcdt\displaystyle{dn_{\lambda c}\over dt}
=\displaystyle= Γa[nac+16π2ma3βnacnλc32π23ma3(β+32)nλc2]Γsnλc.\displaystyle\Gamma_{a}[n_{ac}+{16\pi^{2}\over m_{a}^{3}\beta^{\prime}}n_{ac}n_{\lambda c}-{32\pi^{2}\over 3m_{a}^{3}}(\beta^{\prime}+{3\over 2})n_{\lambda c}^{2}]-\Gamma_{s}n_{\lambda c}~{}.
dnλddt\displaystyle{dn_{\lambda d}\over dt}
=\displaystyle= Γa[nac+nad+16π2ma3β(nacnλc+nacnλd+nλcnad)\displaystyle\Gamma_{a}[n_{ac}+n_{ad}+{16\pi^{2}\over m_{a}^{3}\beta^{\prime}}(n_{ac}n_{\lambda c}+n_{ac}n_{\lambda d}+n_{\lambda c}n_{ad})
32π23ma3(β+32)nλc264π2β3ma3(β+32)nλcnλd]Γsnλd.\displaystyle-{32\pi^{2}\over 3m_{a}^{3}}(\beta^{\prime}+{3\over 2})n_{\lambda c}^{2}-{64\pi^{2}\beta^{\prime}\over 3m_{a}^{3}}(\beta^{\prime}+{3\over 2}){n_{\lambda c}n_{\lambda d}}]-\Gamma_{s}n_{\lambda d}~{}.

Assuming that all reactions create and/or annihilate equal number of photons from each helicity state, n+c=ncn_{+c}=n_{-c} and n+d=ndn_{+d}=n_{-d}. Hence nλc=12nγcn_{\lambda c}={1\over 2}n_{\gamma c} and nλd=12nγdn_{\lambda d}={1\over 2}n_{\gamma d}, and we find

dnγcdt=\displaystyle{dn_{\gamma c}\over dt}= Γa[2nac+16π2ma3βnacnγc16π23ma3(β+32)nγc2]Γsnγc.\displaystyle\Gamma_{a}[2n_{ac}+{16\pi^{2}\over m_{a}^{3}\beta^{\prime}}n_{ac}n_{\gamma c}-{16\pi^{2}\over 3m_{a}^{3}}(\beta^{\prime}+{3\over 2})n_{\gamma c}^{2}]-\Gamma_{s}n_{\gamma c}~{}.

and

dnγddt=\displaystyle{dn_{\gamma d}\over dt}= Γa[2nac+2nad+16π2ma3β(nacnγc+nacnγd+nγcnad)\displaystyle\Gamma_{a}[2n_{ac}+2n_{ad}+{16\pi^{2}\over m_{a}^{3}\beta^{\prime}}(n_{ac}n_{\gamma c}+n_{ac}n_{\gamma d}+n_{\gamma c}n_{ad})
16π23ma3(β+32)nγc232π23ma3(β+32)nγcnγd]Γsnγd.\displaystyle-{16\pi^{2}\over 3m_{a}^{3}}(\beta^{\prime}+{3\over 2})n_{\gamma c}^{2}-{32\pi^{2}\over 3m_{a}^{3}}(\beta^{\prime}+{3\over 2}){n_{\gamma c}n_{\gamma d}}]-\Gamma_{s}n_{\gamma d}~{}.

The uniform and distorted axion number density rate equations are minus one half of the photon number density rate equation, excluding sterile axions we find

dnacdt=Γa[+nac+8π2ma3βnacnγc8π23ma3βnγc2].\displaystyle{dn_{ac}\over dt}=-\Gamma_{a}[+n_{ac}+{8\pi^{2}\over m_{a}^{3}\beta^{\prime}}n_{ac}n_{\gamma c}-{8\pi^{2}\over 3m_{a}^{3}}\beta^{\prime}n_{\gamma c}^{2}]~{}.

and

dnaddt=\displaystyle{dn_{ad}\over dt}= Γa[+nac+nad+8π2ma3β(nacnγc+nacnγd+nγcnad)\displaystyle-\Gamma_{a}[+n_{ac}+n_{ad}+{8\pi^{2}\over m_{a}^{3}\beta^{\prime}}(n_{ac}n_{\gamma c}+n_{ac}n_{\gamma d}+n_{\gamma c}n_{ad})
8π23ma3βnγc216π23ma3βnγcnγd].\displaystyle-{8\pi^{2}\over 3m_{a}^{3}}\beta^{\prime}n_{\gamma c}^{2}-{16\pi^{2}\over 3m_{a}^{3}}\beta^{\prime}{n_{\gamma c}n_{\gamma d}}]~{}.

Counting time in units of axion decay constant 1/Γa1/\Gamma_{a}, then defining a new dimensionless variable ta=tΓat_{a}=t\Gamma_{a} and measuring volume in unit of axion Compton volume 16π2ma3{16\pi^{2}\over m_{a}^{3}}, the system of rate equations can be expressed as

dnγcCdta=[2nacC+1βnacCnγcC13(β+32)(nγcC)2]ΓsΓanγcC.\displaystyle{dn_{\gamma c}^{\text{C}}\over dt_{a}}=[2n_{ac}^{\text{C}}+{1\over\beta^{\prime}}n_{ac}^{\text{C}}n_{\gamma c}^{\text{C}}-{1\over 3}(\beta^{\prime}+{3\over 2})(n_{\gamma c}^{\text{C}})^{2}]-{\Gamma_{s}\over\Gamma_{a}}n_{\gamma c}^{\text{C}}~{}. (16)
dnacCdta=[nacC12βnacCnγcC+β6(nγcC)2].\displaystyle{dn_{ac}^{\text{C}}\over dt_{a}}=[-n_{ac}^{\text{C}}-{1\over 2\beta^{\prime}}n_{ac}^{\text{C}}n_{\gamma c}^{\text{C}}+{\beta^{\prime}\over 6}(n_{\gamma c}^{\text{C}})^{2}]~{}. (17)
dnγdCdta=\displaystyle{dn_{\gamma d}^{\text{C}}\over dt_{a}}= 2nacC+2nadC+1β(nacCnγcC+nacCnγdC+nγcCnadC)\displaystyle 2n_{ac}^{\text{C}}+2n_{ad}^{\text{C}}+{1\over\beta^{\prime}}(n_{ac}^{\text{C}}n_{\gamma c}^{\text{C}}+n_{ac}^{\text{C}}n_{\gamma d}^{\text{C}}+n_{\gamma c}^{\text{C}}n_{ad}^{\text{C}}) (18)
13(β+32)(nγcC)223(β+32)nγcCnγdCΓsΓanγdC.\displaystyle-{1\over 3}(\beta^{\prime}+{3\over 2})(n_{\gamma c}^{\text{C}})^{2}-{2\over 3}(\beta^{\prime}+{3\over 2}){n_{\gamma c}^{\text{C}}n_{\gamma d}^{\text{C}}}-{\Gamma_{s}\over\Gamma_{a}}n_{\gamma d}^{\text{C}}~{}.
dnadCdta=\displaystyle{dn_{ad}^{\text{C}}\over dt_{a}}= nacCnadC12β(nacCnγcC+nacCnγdC+nγcCnadC)\displaystyle-n_{ac}^{\text{C}}-n_{ad}^{\text{C}}-{1\over 2\beta^{\prime}}(n_{ac}^{\text{C}}n_{\gamma c}^{\text{C}}+n_{ac}^{\text{C}}n_{\gamma d}^{\text{C}}+n_{\gamma c}^{\text{C}}n_{ad}^{\text{C}}) (19)
+β6(nγcC)2+β3nγcCnγdC.\displaystyle+{\beta^{\prime}\over 6}(n_{\gamma c}^{\text{C}})^{2}+{\beta^{\prime}\over 3}{n_{\gamma c}^{\text{C}}n_{\gamma d}^{\text{C}}}~{}.

Equations (16) (17) (18) (19) are our main results. They can be applied in a variety of circumstances and we will show one specific example.

IX Example: lasing axions clustered near a solar mass host object

The following example is meant to be illustrative but the scenario described in this example is not necessarily physically. Non the less it will help place our results in context.

We have numerically solved the above system of rate equations for the case of a one solar mass, M=MM=M_{\odot} Schwarzschild host. We assume there is a hadronic axion (\sim 3 eV) cluster (Hadronic axions are not currently favored.) of diameter 600600 m with density 900 kg/m3 (roughly the density of water ice) which is equivalent to an initial axion number density of about 7.56×10187.56\times 10^{18} times the unit axion Compton number density (Compton number density means that there is about 1 axion inside 1 Compton volume defined by the Compton wavelength of the axion). If the cluster is placed at 40 AU (this corresponds to the radius of the Kuiper belt in the solar system) from the host, the relativity index becomes β=2.156×1010\beta^{\prime}=2.156\times 10^{-10}. The uniform photon density nγcn_{\gamma c} grows exponentially on a time scale of 1028/Γa10^{-28}/\Gamma_{a}. See Figures 1.

Refer to caption
Figure 1: The uniform axion density nacn_{ac} decreases exponentially on the same temporal scale as the photos.
Refer to caption
Figure 2: The distorted photon density formed a sharp pulse. The distorted axion density also formed a sharp pulse with the amplitude being the opposite of that of distorted photon.
Refer to caption
Figure 3: The total particle densities

Since the distortion factor d(r)2.465×1010d(r)\sim-2.465\times 10^{-10} is very small (see Figure 2.), the total photon and axion number density are affected very little. (See Figure 3.) The detailed photon radiation outcome, such as growth time and pulse height, are highly dependent on the initial axion number density, as the surface loss would affect low density axion clusters more noticeably than high density ones.

For the numerical calculation we selected a section of the axion cluster that is a section of a cone of height 600600 m, i.e., a frustum, which we get by including the factors Θ(θ)Θ(108θ)Θ(ϕ)Θ(108ϕ)\Theta(\theta)\Theta(10^{-8}-\theta)\Theta(\phi)\Theta(10^{-8}-\phi) to constrain the axion and photon occupation numbers (12) and (13), since g00g_{00} in equation (14) does not depend on the θ\theta or ϕ\phi if the host is of Schwarzschild or Reissner-Nordström type. Including these factors makes our results applicable to asteroid size axion cluster. These factors will not change the β\beta^{\prime}. During the lasing time scale, axions move only a few micrometer if the previous β\beta^{\prime} is the maximum velocity of the axions. This means that the axions would be confined in the region described by these Θ\Theta factors during lasing. Surface loss terms may need to be changed here, therefore it is not guaranteed that every point in the cluster would lase as the figures suggest, but some part of the cluster will. Other examples are easily handled by this approach, for instance, ring type axion clusters are also able to be described by our results by adding similar angular factors and changing surface loss terms.

X Discussion and Conclusion

We provided an example that shows lasing is possible for axions far away from the host object. Our treatment of gravity is different from references mentioned in the introduction. However, this leads to a slightly nuanced understanding. Self gravity is considered in studies on axion cluster such as Braaten:2018lmj . Self gravity is also considered in Kephart:1994uy by using Newtonian gravity. What we present here is the lasing of axion cloud bounded by a host object, not a self bounded system. The parameters in the example need to be somewhat carefully chosen, for lasing to occur., and this seems to imply that axion cloud lasing requires stricter conditions than axion cluster lasing. An axion cloud that requires a host object to bind typically has a lower density which makes lasing more difficult. The evolution equation suggests that low value of the maximum momentum β\beta^{\prime} amplifies lasing the process. The advantage for lasing of self bound axion clusters is that the cluster can form a Bose-Einstein condensate which makes β\beta^{\prime} essentially 0 if the coordinate system is judiciously chosen. Therefore, we conclude that self bound axion clusters may have a better chance of lasing than axion cloud bounded by a host.

One may argue that an axion cluster near a massive host would be freely falling and thus, by the equivalence principle in the cluster inertial frame, the usual physics applies and there is no need for any gravitational corrections. This is not the case since the cluster has finite size and there are tidal forces, differential rotation, etc to consider, plus frame dragging etc. in Kerr spacetime. The equation for lasing does not depend on the choice of coordinates, only on whether it is put into a covariant form and that is what we did. But a different observer finds different evolution equation if a specific set of coordinate is chosen. More importantly, the observer need not be in the axion’s inertial frame.

Axions are copiously produced at the QCD phase transition. A possible way to detect cosmological axions is through the lasing of axion clusters. If axions are a component of the cold dark matter, then their density perturbations in the early universe can grow to form highly over dense regions. If the density is high enough, then ambient photons from the CBM or from axion spontaneous decay can cause these axion clumps to begin to undergo stimulated emission, i.e., to lase Kephart:1986vc ; Tkachev:1987cd ; Kephart:1994uy .

Besides the initial density perturbations, other axion structures can form from the evolution of those perturbations, e.g., caustics from the infall of galactic axions Sikivie:1997ng ; Duffy:2008dk . Yet another possibility is that axions can be produced via a Penrose type process in the neighborhood of primordial black holes (PBHs).

Such black holes could be another result of early universe density perturbations which may come from axions, but could also have other origins. If the PBHs have angular momentum, which would be most likely but not necessarily due to mergers, and if their masses are in the right range MBHλC1M_{BH}\sim\lambda_{C}^{-1}, where λC\lambda_{C} is the Compton wave length of the axion, then superradience can lead to axion in an n,,m=2,1,1n,\ell,m=2,1,1 hydrogenlike orbit around these primordial Kerr black holes. Again, if the axion density is high enough, then lasing can commence. Such objects have been proposed as the source of fast radio bursts (FRBs) Rosa:2017ury . Other axion lasing mechanisms for FRBs have been suggested in Levkov:2020txo ; Buckley:2020fmh .

The results given here will allow us to improve on a broad class of models of lasing axion clusters in static spacetimes. The results also hold for the nonstatic case when the lasing happens so fast that the static approximation holds. The improvements include both special and general relativistic corrections. We plan to study specific physically relevant examples in future work.

XI Appendix: Some calculational details

In this appendix we give some of the calculational details that were avoided in the text in order to allow the discussion to proceed more naturally.

XI.1 dXLIMSdX_{\text{LIMS}}

We recall, in more than the usual amount of detail, how the Lorentz invariant phase space originates in Minkowski space in order to generalize it to curved space. Specifically, the one body Lorentz invariant momentum space measure is

𝑑XLIMS=\displaystyle\int dX_{\text{LIMS}}= d3p(2π)32p0.\displaystyle\int{d^{3}p\over(2\pi)^{3}2p^{0}}~{}.

This comes about in the following way. In Minkowski spacetime, the quantity dp0dp1dp2dp3dp^{0}dp^{1}dp^{2}dp^{3} which equals to |η|dp0dp1dp2dp3\sqrt{|\eta|}dp^{0}dp^{1}dp^{2}dp^{3} is Lorentz invariant, where η\eta is the determinant of the Minkowski metric. This is obvious because it measures the 4-momentum volume in any Lorentz coordinate system. The form of dp0dp1dp2dp3dp^{0}dp^{1}dp^{2}dp^{3} is preserved under Lorentz transformation.

For a particle in special relativity, when we count how many possible momentum states it possesses, p0p^{0}, p1p^{1}, p2p^{2}, p3p^{3} can not just take any values. These values have to satisfy the normalization condition pμpμ=m2p^{\mu}p_{\mu}=m^{2}. The first component is just the energy of the particle, so in addition, we need to require that p0>0p^{0}>0. Therefore, a new quantity that is both Lorentz invariant and counts the number of all possible momentum states is

p0=p0=+𝑑p0𝑑p1𝑑p2𝑑p3δ(pμpμm2)Θ(p0)\displaystyle\int_{p_{0}=-\infty}^{p_{0}=+\infty}dp^{0}dp^{1}dp^{2}dp^{3}\delta(p^{\mu}p_{\mu}-m^{2})\Theta(p^{0})
=\displaystyle= d3p2p2+m2=d3p2p0=(2π)3dXLIMS.\displaystyle{d^{3}p\over 2\sqrt{\vec{p}^{2}+m^{2}}}={d^{3}p\over 2p^{0}}=(2\pi)^{3}dX_{\text{LIMS}}~{}.

The quantity |η|dx0dx1dx2dx3=dx0dx1dx2dx3\sqrt{|\eta|}dx^{0}dx^{1}dx^{2}dx^{3}=dx^{0}dx^{1}dx^{2}dx^{3} is a Lorentz invariant pseudoscalar. The small change d(τm)d{(\frac{\tau}{m})} is also a Lorentz invariant, where τ\tau and mm are the proper time and the rest mass of the particle, respectively. Hence we have another Lorentz invariant quantity

mdx0dτdx1dx2dx3=p0d3r.\displaystyle m{dx^{0}\over d\tau}dx^{1}dx^{2}dx^{3}=p^{0}d^{3}r~{}.

Finally, from the product of two pseudoscalars dx0dx1dx2dx3dx^{0}dx^{1}dx^{2}dx^{3} and dp0dp1dp2dp3dp^{0}dp^{1}dp^{2}dp^{3}, which is a scalar, the Lorentz invariant phase space measure arises naturally,

2mdτdx0dx1dx2dx3𝑑p0𝑑p1𝑑p2𝑑p3δ(pμpμm2)Θ(p0)\displaystyle{2m\over d\tau}dx^{0}dx^{1}dx^{2}dx^{3}\int dp^{0}dp^{1}dp^{2}dp^{3}\delta(p^{\mu}p_{\mu}-m^{2})\Theta(p^{0})
=\displaystyle= 2p0d3rd3p2p0=d3rd3p=dXLIPS.\displaystyle 2p^{0}d^{3}r{d^{3}p\over 2p^{0}}=d^{3}rd^{3}p=dX_{\text{LIPS}}~{}.

This is the quantity that we will generalize to curved space below.

XI.2 Occupation number and number density of particles in Minkowski spacetime

The infinitesimal line element in Minkowski metric using polar coordinates reads

ds2=dt2+dr2+r2dθ2+r2sin2θdϕ2.\displaystyle ds^{2}=-dt^{2}+dr^{2}+r^{2}d\theta^{2}+r^{2}\sin^{2}\theta d\phi^{2}~{}. (20)

In these coordinates the particle number density is given by

n(r,t)=\displaystyle n(\vec{r},t)= f(p,r,t)d3p(2π)3=f(p,r,t)(2π)3𝑑px𝑑py𝑑pz\displaystyle\int f(\vec{p},\vec{r},t){d^{3}p\over(2\pi)^{3}}=\int{f(\vec{p},\vec{r},t)\over(2\pi)^{3}}dp^{x}dp^{y}dp^{z}
=\displaystyle= f(p,r,t)(2π)3(px,py,pz)(pr,pθ,pϕ)𝑑pr𝑑pθ𝑑pϕ\displaystyle\int{f(\vec{p},\vec{r},t)\over(2\pi)^{3}}{\partial(p^{x},p^{y},p^{z})\over\partial(p^{r},p^{\theta},p^{\phi})}dp^{r}dp^{\theta}dp^{\phi}
=\displaystyle= f(p,r,t)(2π)3r2sinθdprdpθdpϕ\displaystyle\int{f(\vec{p},\vec{r},t)\over(2\pi)^{3}}r^{2}\sin\theta dp^{r}dp^{\theta}dp^{\phi}
=\displaystyle= f(p,r,t)(2π)3|ηE|𝑑pr𝑑pθ𝑑pϕ,\displaystyle\int{f(\vec{p},\vec{r},t)\over(2\pi)^{3}}\sqrt{|\eta_{\text{\tiny E}}|}dp^{r}dp^{\theta}dp^{\phi}~{},

where ff is the occupation number and ηE\eta_{\text{\tiny E}} is the determinant of the 3 dimensional Euclidean metric in spherical coordinates. The total number of the particle is

N(t)=n(r,t)r2sinθdrdθdϕ=n(r,t)|ηE|𝑑r𝑑θ𝑑ϕ.\displaystyle N(t)=\int n(\vec{r},t)r^{2}\sin\theta drd\theta d\phi=\int n(\vec{r},t)\sqrt{|\eta_{\text{\tiny E}}|}drd\theta d\phi~{}.

XI.3 Covariant measures in static spacetime

For any species of particles, the occupation number f(p,r,t)f(\vec{p},\vec{r},t) in Minkowski spacetime should change to f(pi,xα)f(p^{i},x^{\alpha}), where pip^{i} is the three spatial component of the 4-momentum of the particle and xαx^{\alpha} is the spacetime coordinate of the particle. The occupation number does not depend on the first component p0p^{0} of the 4-momentum of the particle since normalization of the 4-momentum still holds in Schwarzschild spacetime. The coordinate time tt is the time measured by a stationary observer at r=r=\infty with 4-velocity ξ=(1,0,0,0)\xi=(1,0,0,0).

The concept of Lorentz transformation is not very useful in static spacetime because there is no global inertial frame. At a single event, the spacetime can be treated locally as flat and special relativity is still applicable, Lorentz transformation still provides the relationship between two nearby observers from two local inertial frames having relative velocity in that infinitesimal region. As soon as an observer, for example, moves forward along the geodesic a finite distance, the previous established Lorentz transformation loses its meaning.

The curvature of Schwarzschild spacetime presented in the form (5) is from the perspective of a special observer stationary at r=r=\infty who sets the origin r=0r=0 as the location of the singularity. The advantage of the metric form (5) is that it displays the symmetry of the metric conspicuously. When we change coordinates, the curvature of spacetime would be shown from the perspective of other observers. So even if the functionality of Lorentz transformation between inertial frames is irrecoverable in curved spacetime, we can embrace the general coordinate transformation under which general relativity demonstrates general covariance. For example, in Schwarzschild spacetime, the coordinates can be expressed as Schwarzschild coordinates, or Kruskal-Szekeres coordinates, or other equivalent transformations, but the general covariant quantities are valid without referring to the specific coordinate system.

In curved spacetime, when we count how many possible momentum states a particle can have, p0p^{0}, p1p^{1}, p2p^{2}, p3p^{3} are not arbitrary. They still have to satisfy a normalization condition gμνpμpν=m2g_{\mu\nu}p^{\mu}p^{\nu}=-m^{2} as they did in Minkowski space. The minus sign is due to the signature convention we chose for the curved space time metric. The first component is still related to the energy of the particle. A stationary particle has 4-momentum pμ=(p0,0,0,0)p^{\mu}=(p^{0},0,0,0), and its 4-velocity is vμ=(p0/m,0,0,0)v^{\mu}=(p^{0}/m,0,0,0). A co-stationary observer at the location of the particle would measure the energy of the particle to be m=gμνpμvν=g00(p0)2mm=-g_{\mu\nu}p^{\mu}v^{\nu}=-g_{00}{(p^{0})^{2}\over m}. p0=±mg00p^{0}=\pm{m\over\sqrt{-g_{00}}}, where we choose p0p^{0} such that it reduces to mm in the flat spacetime limit. So in addition, we may as well require that p0>0p^{0}>0. Moreover, p0>0p^{0}>0 implies that dtdτ>0{dt\over d\tau}>0, or the proper time and coordinate time flow in the same direction. Similar to the Lorentz invariant measure dXLIMSdX_{\text{LIMS}}, now there is a general covariant measure dXGCMSdX_{\text{GCMS}},

dXGCMS=\displaystyle dX_{\text{GCMS}}= |g|𝑑p0𝑑p1𝑑p2𝑑p3δ(gμνpμpν+m2)Θ(p0).\displaystyle\int\sqrt{|g|}dp^{0}dp^{1}dp^{2}dp^{3}\delta(g_{\mu\nu}p^{\mu}p^{\nu}+m^{2})\Theta(p^{0})~{}.

The general covariant 4-momentum volume element is |g|dp0dp1dp2dp3\sqrt{|g|}dp^{0}dp^{1}dp^{2}dp^{3}, regardless of the metric or the coordinates that give a specific form to the metric, where gg is the determinant of the metric. This abstract form of momentum space is as far as we can go without knowing of anything specific of the spacetime. It is applicable to not only Schwarzschild spacetime, but to any stationary spacetime, including the Kerr spacetime.

Now let us consider static spacetime where g0μ=g00δ0μg_{0\mu}=g_{00}\delta_{0\mu}, which is equivalent to the choice of synchronous gauge. In this case we can have a static covariant measure dXSCMSdX_{\text{SCMS}} which is a 4-momentum volume measure that is compatible with all the static spacetime and their coordinates transformations that keep g0μ=g00δ0μg_{0\mu}=g_{00}\delta_{0\mu}.

dXSCMS\displaystyle dX_{\text{SCMS}}
=\displaystyle= |g|p0=0+𝑑p0𝑑p1𝑑p2𝑑p3δ[g00(p0)2+gijpipj+m2].\displaystyle\sqrt{|g|}\int_{p_{0}=0}^{+\infty}dp^{0}dp^{1}dp^{2}dp^{3}\delta[g_{00}(p^{0})^{2}+g_{ij}p^{i}p^{j}+m^{2}]~{}.

This can be rewritten as

dXSCMS\displaystyle dX_{\text{SCMS}}
=\displaystyle= |g|dp1dp2dp30+𝑑p0\displaystyle\sqrt{|g|}dp^{1}dp^{2}dp^{3}\int_{0}^{+\infty}dp^{0}
×δ[g00(p0gijpipj+m2g00)(p0+gijpipj+m2g00)].\displaystyle\times\delta[g_{00}(p^{0}-\sqrt{{g_{ij}p^{i}p^{j}+m^{2}\over-g_{00}}})(p^{0}+\sqrt{{g_{ij}p^{i}p^{j}+m^{2}\over-g_{00}}})]~{}.

Using the properties of the Dirac δ\delta-function, we obtain

dXSCMS\displaystyle dX_{\text{SCMS}}
=\displaystyle= |g|dp1dp2dp30+𝑑p0\displaystyle\sqrt{|g|}dp^{1}dp^{2}dp^{3}\int_{0}^{+\infty}dp^{0}
×[12g00gijpipj+m2g00δ(p0gijpipj+m2g00)\displaystyle\times[{1\over-2g_{00}\sqrt{{g_{ij}p^{i}p^{j}+m^{2}\over-g_{00}}}}\delta(p^{0}-\sqrt{{g_{ij}p^{i}p^{j}+m^{2}\over-g_{00}}})
+12g00gijpipj+m2g00δ(p0+gijpipj+m2g00)].\displaystyle+{1\over-2g_{00}\sqrt{{g_{ij}p^{i}p^{j}+m^{2}\over-g_{00}}}}\delta(p^{0}+\sqrt{{g_{ij}p^{i}p^{j}+m^{2}\over-g_{00}}})].

Carrying out the integral leads to the final form

dXSCMS\displaystyle dX_{\text{SCMS}}
=\displaystyle= |g|dp1dp2dp32g00gijpipj+m2=g00gijdp1dp2dp32g00g00(p0)2\displaystyle{\sqrt{|g|}dp^{1}dp^{2}dp^{3}\over 2\sqrt{-g_{00}}\sqrt{g_{ij}p^{i}p^{j}+m^{2}}}={\sqrt{-g_{00}||g_{ij}||}dp^{1}dp^{2}dp^{3}\over 2\sqrt{-g_{00}}\sqrt{-g_{00}(p^{0})^{2}}}
=\displaystyle= gijdp1dp2dp32g00p0,\displaystyle{\sqrt{||g_{ij}||}dp^{1}dp^{2}dp^{3}\over 2\sqrt{-g_{00}}p^{0}}~{}, (21)

where |gij||g_{ij}| is the determinant of the metric at the 3-surface dx0=0dx^{0}=0 in the static spacetime of ds2=g00(dx0)2+gijdxidxj.ds^{2}=g_{00}(dx^{0})^{2}+g_{ij}dx^{i}dx^{j}~{}.

XI.4 Integration in k1k_{1} space

We integrate the k1ik_{1}^{i} part of (8) first,

2k0dfλ(ki)dt\displaystyle 2k^{0}\frac{df_{\lambda}(k^{i})}{dt}
=\displaystyle= 4maΓaπ(gijpipjma2+1)1/2gijdp1dp2dp32g00p0\displaystyle\frac{4m_{a}\Gamma_{a}}{\pi}\int(g_{ij}{p^{i}p^{j}\over m_{a}^{2}}+1)^{-1/2}{\sqrt{||g_{ij}||}dp^{1}dp^{2}dp^{3}\over 2\sqrt{-g_{00}}p^{0}}
×gijdk11dk12dk132g00k101|g|δ(p0k0k10)\displaystyle\times\int{\sqrt{||g_{ij}||}dk_{1}^{1}dk_{1}^{2}dk_{1}^{3}\over 2\sqrt{-g_{00}}k_{1}^{0}}{1\over\sqrt{|g|}}\delta(p^{0}-k^{0}-k_{1}^{0})
×δ(p1k1k11)δ(p2k2k12)δ(p3k3k13)\displaystyle\times\delta(p^{1}-k^{1}-k_{1}^{1})\delta(p^{2}-k^{2}-k_{1}^{2})\delta(p^{3}-k^{3}-k_{1}^{3})
×{fa(pi)[1+fλ(ki)+fλ(k1i)]fλ(ki)fλ(k1i)}.\displaystyle\times\{f_{a}(p^{i})[1+f_{\lambda}(k^{i})+f_{\lambda}(k_{1}^{i})]-f_{\lambda}(k^{i})f_{\lambda}(k_{1}^{i})\}.

The only function that depends on k11k_{1}^{1}, k12k_{1}^{2} and k13k_{1}^{3} is fλ(k1i)=fλ(k11,k12,k13)f_{\lambda}(k_{1}^{i})=f_{\lambda}(k_{1}^{1},k_{1}^{2},k_{1}^{3}). Therefore, after the three δ\delta function are integrated, fλ(k1i)f_{\lambda}(k_{1}^{i}) will change to fλ(p1k1,p2k2,p3k3)=fλ(piki)f_{\lambda}(p^{1}-k^{1},p^{2}-k^{2},p^{3}-k^{3})=f_{\lambda}(p^{i}-k^{i}).

k10k_{1}^{0} is an implicit function of k11k_{1}^{1}, k12k_{1}^{2} and k13k_{1}^{3} as given by the photon energy momentum relation (6). After integration k10k_{1}^{0} would change to

k10gij(piki)(pjkj)g00,\displaystyle k_{1}^{0}\quad\rightarrow\quad\sqrt{g_{ij}(p^{i}-k^{i})(p^{j}-k^{j})\over-g_{00}}~{},

where gij(piki)(pjkj)g_{ij}(p^{i}-k^{i})(p^{j}-k^{j}) is the square of the magnitude of the 3-momentum pikip^{i}-k^{i}. Given that g=g00|gij|g=-g_{00}|g_{ij}|, we now have

2k0dfλ(ki)dt\displaystyle 2k^{0}\frac{df_{\lambda}(k^{i})}{dt}
=\displaystyle= 4maΓaπ(gijpipjma2+1)1/2gijdp1dp2dp32g00p0\displaystyle\frac{4m_{a}\Gamma_{a}}{\pi}\int(g_{ij}{p^{i}p^{j}\over m_{a}^{2}}+1)^{-1/2}{\sqrt{||g_{ij}||}dp^{1}dp^{2}dp^{3}\over 2\sqrt{-g_{00}}p^{0}}
×12gij(piki)(pjkj)1g00\displaystyle\times{1\over 2\sqrt{g_{ij}(p^{i}-k^{i})(p^{j}-k^{j})}}{1\over\sqrt{-g_{00}}}
×δ[p0k0gij(piki)(pjkj)g00]\displaystyle\times\delta[p^{0}-k^{0}-\sqrt{g_{ij}(p^{i}-k^{i})(p^{j}-k^{j})\over-g_{00}}]
×{fa(pi)[1+fλ(ki)+fλ(piki)]fλ(ki)fλ(piki)}.\displaystyle\times\{f_{a}(p^{i})[1+f_{\lambda}(k^{i})+f_{\lambda}(p^{i}-k^{i})]-f_{\lambda}(k^{i})f_{\lambda}(p^{i}-k^{i})\}.

From equation (7), gijpipjg_{ij}p^{i}p^{j} can be rewritten in terms of p0p^{0},

(gijpipjma2+1)1/2=\displaystyle(g_{ij}{p^{i}p^{j}\over m_{a}^{2}}+1)^{-1/2}= mag00p0.\displaystyle{m_{a}\over\sqrt{-g_{00}}p^{0}}~{}.

This leads to

2k0dfλ(ki)dt\displaystyle 2k^{0}\frac{df_{\lambda}(k^{i})}{dt}
=\displaystyle= 4maΓaπmag00p0gijdp1dp2dp32g00p0\displaystyle\frac{4m_{a}\Gamma_{a}}{\pi}\int{m_{a}\over\sqrt{-g_{00}}p^{0}}{\sqrt{||g_{ij}||}dp^{1}dp^{2}dp^{3}\over 2\sqrt{-g_{00}}p^{0}}
×12gij(piki)(pjkj)1g00\displaystyle\times{1\over 2\sqrt{g_{ij}(p^{i}-k^{i})(p^{j}-k^{j})}}{1\over\sqrt{-g_{00}}}
×δ[p0k0gij(piki)(pjkj)g00]\displaystyle\times\delta[p^{0}-k^{0}-\sqrt{g_{ij}(p^{i}-k^{i})(p^{j}-k^{j})\over-g_{00}}]
×{fa(pi)[1+fλ(ki)+fλ(piki)]fλ(ki)fλ(piki)}.\displaystyle\times\{f_{a}(p^{i})[1+f_{\lambda}(k^{i})+f_{\lambda}(p^{i}-k^{i})]-f_{\lambda}(k^{i})f_{\lambda}(p^{i}-k^{i})\}~{}.

Canceling common factors, we arrive at (9)

2k0dfλ(ki)dt\displaystyle 2k^{0}\frac{df_{\lambda}(k^{i})}{dt}
=\displaystyle= 4maΓaπ(g00)map0gijdp1dp2dp32g00p0\displaystyle\frac{4m_{a}\Gamma_{a}}{\pi(-g_{00})}\int{m_{a}\over p^{0}}{\sqrt{||g_{ij}||}dp^{1}dp^{2}dp^{3}\over 2\sqrt{-g_{00}}p^{0}}
×12gij(piki)(pjkj)\displaystyle\times{1\over 2\sqrt{g_{ij}(p^{i}-k^{i})(p^{j}-k^{j})}}
×δ[p0k0gij(piki)(pjkj)g00]\displaystyle\times\delta[p^{0}-k^{0}-\sqrt{g_{ij}(p^{i}-k^{i})(p^{j}-k^{j})\over-g_{00}}]
×{fa(pi)[1+fλ(ki)+fλ(piki)]fλ(ki)fλ(piki)}.\displaystyle\times\{f_{a}(p^{i})[1+f_{\lambda}(k^{i})+f_{\lambda}(p^{i}-k^{i})]-f_{\lambda}(k^{i})f_{\lambda}(p^{i}-k^{i})\}~{}.

XI.5 Integration in pip^{i} space with isotropic occupation number and Riemann normal coordinates

Here, we can proceed to integrate if occupation numbers are assumed to be isotropic. Occupation numbers depend on the 3-momentum only through its norm,

fa(pi)=\displaystyle f_{a}(p^{i})= fa(gijpipj)\displaystyle f_{a}(\sqrt{g_{ij}p^{i}p^{j}})
fλ(ki)=\displaystyle f_{\lambda}(k^{i})= fλ(gijkikj).\displaystyle f_{\lambda}(\sqrt{g_{ij}k^{i}k^{j}})~{}.

Applying the isotropic assumption to equation (9) results in

2k0dfλ(gijkikj)dt\displaystyle 2k^{0}\frac{df_{\lambda}(\sqrt{g_{ij}k^{i}k^{j}})}{dt} (22)
=\displaystyle= 4maΓaπ(g00)map0gijdp1dp2dp32g00p0\displaystyle\frac{4m_{a}\Gamma_{a}}{\pi(-g_{00})}\int{m_{a}\over p^{0}}{\sqrt{||g_{ij}||}dp^{1}dp^{2}dp^{3}\over 2\sqrt{-g_{00}}p^{0}}
×12gij(piki)(pjkj)\displaystyle\times{1\over 2\sqrt{g_{ij}(p^{i}-k^{i})(p^{j}-k^{j})}}
×δ[p0k0gij(piki)(pjkj)g00]\displaystyle\times\delta[p^{0}-k^{0}-\sqrt{g_{ij}(p^{i}-k^{i})(p^{j}-k^{j})\over-g_{00}}]
×{fa(gijpipj)[1+fλ(gijkikj)\displaystyle\times\{f_{a}(\sqrt{g_{ij}p^{i}p^{j}})[1+f_{\lambda}(\sqrt{g_{ij}k^{i}k^{j}})
+fλ(gij(piki)(pjkj))]\displaystyle+f_{\lambda}\left(\sqrt{g_{ij}(p^{i}-k^{i})(p^{j}-k^{j})}\right)]
fλ(gijkikj)fλ(gij(piki)(pjkj))}.\displaystyle-f_{\lambda}(\sqrt{g_{ij}k^{i}k^{j}})f_{\lambda}\left(\sqrt{g_{ij}(p^{i}-k^{i})(p^{j}-k^{j})}\right)\}~{}.

Equation (9) is valid at event 𝒫0(t𝒫0,x𝒫0i)\mathcal{P}_{0}(t_{\mathcal{P}_{0}},x^{i}_{\mathcal{P}_{0}}). On the 3-surface ds2=gijdxidxjds^{2}=g_{ij}dx^{i}dx^{j}, at point 𝒫0\mathcal{P}_{0} we employ Riemann normal coordiantes xRix_{\text{\tiny R}}^{i} on an infinitesimal small patch around 𝒫0\mathcal{P}_{0}. We write the metric on the infinitesimal 3-patch in these coordinates as

ds2=𝒢ij(xR)dxRidxRj.\displaystyle ds^{2}={\mathcal{G}}_{ij}(x_{\text{\tiny R}})dx_{\text{\tiny R}}^{i}dx_{\text{\tiny R}}^{j}~{}.

None of the temporal components are subject to change in equation (22), because the Riemann normal coordiantes are employed on the 3-surface. But the coordinate labels have to be changed from (t,xi)(t,x^{i}) to 𝒫0\mathcal{P}_{0}, to remind us that we are focusing on the physics only at 𝒫0\mathcal{P}_{0}. Hence we will make the following replacements

k0(t,x1,x2,x3)\displaystyle k^{0}(t,x^{1},x^{2},x^{3}) k0|𝒫0\displaystyle\quad\Rightarrow\quad k^{0}\Big{|}_{\mathcal{P}_{0}}
p0(t,x1,x2,x3)\displaystyle p^{0}(t,x^{1},x^{2},x^{3}) p0|𝒫0\displaystyle\quad\Rightarrow\quad p^{0}\Big{|}_{\mathcal{P}_{0}}
g00(t,x1,x2,x3)\displaystyle g_{00}(t,x^{1},x^{2},x^{3}) g00|𝒫0.\displaystyle\quad\Rightarrow\quad g_{00}\Big{|}_{\mathcal{P}_{0}}~{}.

If there is no isotropic assumption, the occupation numbers would depend on each momentum spatial component pip^{i}. But in general we do not know how to express pip^{i} under generic Riemann normal coordinates. It would be some generic function pi=F(xR,pR)p^{i}=F(x_{\text{\tiny R}},p_{\text{\tiny R}}), where pRp_{\text{\tiny R}} is the corresponding momentum in Riemann normal coordinates. Calculations are difficult to proceed without isotropic assumption.

The isotropic assumption is required so that the spatial quantites in equation (22) can be written in general covariant form (general covariant only on the 3-surface). General covariant quantities keep their form when switching to Riemann normal coordinates xRix_{\text{\tiny R}}^{i},

gijdp1dp2dp3\displaystyle\sqrt{||g_{ij}||}dp^{1}dp^{2}dp^{3}\,\Rightarrow\, 𝒢ijdpR1dpR2dpR3|𝒫0\displaystyle\sqrt{||{\mathcal{G}}_{ij}||}dp_{\text{\tiny R}}^{1}dp_{\text{\tiny R}}^{2}dp_{\text{\tiny R}}^{3}\Big{|}_{\mathcal{P}_{0}}
gij(piki)(pjkj)\displaystyle\sqrt{g_{ij}(p^{i}-k^{i})(p^{j}-k^{j})}\,\Rightarrow\, 𝒢ij(pRikRi)(pRjkRj)|𝒫0\displaystyle\sqrt{{\mathcal{G}}_{ij}(p_{\text{\tiny R}}^{i}-k_{\text{\tiny R}}^{i})(p_{\text{\tiny R}}^{j}-k_{\text{\tiny R}}^{j})}\Big{|}_{\mathcal{P}_{0}}
gijpipj\displaystyle\sqrt{g_{ij}p^{i}p^{j}} 𝒢ijpRipRj|𝒫0\displaystyle\,\Rightarrow\,\sqrt{{\mathcal{G}}_{ij}p_{\text{\tiny R}}^{i}p_{\text{\tiny R}}^{j}}\Big{|}_{\mathcal{P}_{0}}
gijkikj\displaystyle\sqrt{g_{ij}k^{i}k^{j}} 𝒢ijkRikRj|𝒫0.\displaystyle\,\Rightarrow\,\sqrt{{\mathcal{G}}_{ij}k_{\text{\tiny R}}^{i}k_{\text{\tiny R}}^{j}}\Big{|}_{\mathcal{P}_{0}}~{}.

With these substitutions equation (22) becomes

2k0|𝒫0dfλ(𝒢kRikRj|𝒫0,𝒫0)dt\displaystyle 2k^{0}\Big{|}_{\mathcal{P}_{0}}\frac{df_{\lambda}(\sqrt{{\mathcal{G}}k_{\text{\tiny R}}^{i}k_{\text{\tiny R}}^{j}}\Big{|}_{\mathcal{P}_{0}},\mathcal{P}_{0})}{dt} (23)
=\displaystyle= 4maΓaπ(g00|𝒫0)map0|𝒫0𝒢ijdpR1dpR2dpR3|𝒫02g00|𝒫0p0|𝒫0\displaystyle\frac{4m_{a}\Gamma_{a}}{\pi(-g_{00}\Big{|}_{\mathcal{P}_{0}})}\int{m_{a}\over p^{0}\Big{|}_{\mathcal{P}_{0}}}{\sqrt{||{\mathcal{G}}_{ij}||}dp_{\text{\tiny R}}^{1}dp_{\text{\tiny R}}^{2}dp_{\text{\tiny R}}^{3}\Big{|}_{\mathcal{P}_{0}}\over 2\sqrt{-g_{00}\Big{|}_{\mathcal{P}_{0}}}p^{0}\Big{|}_{\mathcal{P}_{0}}}
×12𝒢ij(pRikRi)(pRjkRj)|𝒫0\displaystyle\times{1\over 2\sqrt{{\mathcal{G}}_{ij}(p_{\text{\tiny R}}^{i}-k_{\text{\tiny R}}^{i})(p_{\text{\tiny R}}^{j}-k_{\text{\tiny R}}^{j})}\Big{|}_{\mathcal{P}_{0}}}
×δ[p0|𝒫0k0|𝒫0𝒢ij(pRikRi)(pRjkRj)g00|𝒫0]\displaystyle\times\delta[p^{0}\Big{|}_{\mathcal{P}_{0}}-k^{0}\Big{|}_{\mathcal{P}_{0}}-\sqrt{{\mathcal{G}}_{ij}(p_{\text{\tiny R}}^{i}-k_{\text{\tiny R}}^{i})(p_{\text{\tiny R}}^{j}-k_{\text{\tiny R}}^{j})\over-g_{00}}\Big{|}_{\mathcal{P}_{0}}]
×{fa(𝒢ijpRipRj|𝒫0)[1+fλ(𝒢ijkRikRj|𝒫0)\displaystyle\times\{f_{a}(\sqrt{{\mathcal{G}}_{ij}p_{\text{\tiny R}}^{i}p_{\text{\tiny R}}^{j}}\Big{|}_{\mathcal{P}_{0}})[1+f_{\lambda}(\sqrt{{\mathcal{G}}_{ij}k_{\text{\tiny R}}^{i}k_{\text{\tiny R}}^{j}}\Big{|}_{\mathcal{P}_{0}})
+fλ(𝒢ij(pRikRi)(pRjkRj)|𝒫0)]\displaystyle+f_{\lambda}\left(\sqrt{{\mathcal{G}}_{ij}(p_{\text{\tiny R}}^{i}-k_{\text{\tiny R}}^{i})(p_{\text{\tiny R}}^{j}-k_{\text{\tiny R}}^{j})}\Big{|}_{\mathcal{P}_{0}}\right)]
fλ(𝒢ijkRikRj|𝒫0)fλ(𝒢ij(pRikRi)(pRjkRj)|𝒫0)}.\displaystyle-f_{\lambda}(\sqrt{{\mathcal{G}}_{ij}k_{\text{\tiny R}}^{i}k_{\text{\tiny R}}^{j}}\Big{|}_{\mathcal{P}_{0}})f_{\lambda}\left(\sqrt{{\mathcal{G}}_{ij}(p_{\text{\tiny R}}^{i}-k_{\text{\tiny R}}^{i})(p_{\text{\tiny R}}^{j}-k_{\text{\tiny R}}^{j})}\Big{|}_{\mathcal{P}_{0}}\right)\}~{}.

The metric 𝒢ij{\mathcal{G}}_{ij} at point 𝒫0\mathcal{P}_{0} in Riemann normal coordinates xRix_{\text{\tiny R}}^{i} is 𝒢ij|𝒫0=(+1,+1,+1){\mathcal{G}}_{ij}\Big{|}_{\mathcal{P}_{0}}=(+1,+1,+1), which means at point 𝒫0\mathcal{P}_{0} on the 3-surface, the space is Euclidean. So the momentum differential volume at point 𝒫0\mathcal{P}_{0} can be expressed as

𝒢ijdpR1dpR2dpR3|𝒫0=|pR|2d|pR|d(cosθR)d(ϕR)|𝒫0.\displaystyle\sqrt{||{\mathcal{G}}_{ij}||}dp_{\text{\tiny R}}^{1}dp_{\text{\tiny R}}^{2}dp_{\text{\tiny R}}^{3}\Big{|}_{\mathcal{P}_{0}}=|\vec{p}_{\text{\tiny R}}|^{2}d|\vec{p}_{\text{\tiny R}}|d(-\cos\theta_{\text{\tiny R}})d(\phi_{\text{\tiny R}})\Big{|}_{\mathcal{P}_{0}}~{}.

where |pR||p_{\text{\tiny R}}| is the magnitude of the 3-momentum, which is invariant under the coordinate change

|pR|2|𝒫0=𝒢ijpRipRj|𝒫0=gijpipj|𝒫0.\displaystyle|\vec{p}_{\text{\tiny R}}|^{2}\Big{|}_{\mathcal{P}_{0}}={\mathcal{G}}_{ij}p_{\text{\tiny R}}^{i}p_{\text{\tiny R}}^{j}\Big{|}_{\mathcal{P}_{0}}=g_{ij}p^{i}p^{j}\Big{|}_{\mathcal{P}_{0}}~{}.

Rewriting other quantities using the Euclidean notation, gives

𝒢ijpRipRj|𝒫0=\displaystyle\sqrt{{\mathcal{G}}_{ij}p_{\text{\tiny R}}^{i}p_{\text{\tiny R}}^{j}}\Big{|}_{\mathcal{P}_{0}}= |pR||𝒫0\displaystyle|\vec{p}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}}
𝒢ijkRikRj|𝒫0=\displaystyle\sqrt{{\mathcal{G}}_{ij}k_{\text{\tiny R}}^{i}k_{\text{\tiny R}}^{j}}\Big{|}_{\mathcal{P}_{0}}= |kR||𝒫0\displaystyle|\vec{k}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}}
𝒢ij(pRikRi)(pRjkRj)|𝒫0=\displaystyle\sqrt{{\mathcal{G}}_{ij}(p_{\text{\tiny R}}^{i}-k_{\text{\tiny R}}^{i})(p_{\text{\tiny R}}^{j}-k_{\text{\tiny R}}^{j})}\Big{|}_{\mathcal{P}_{0}}= |pRkR||𝒫0,\displaystyle|\vec{p}_{\text{\tiny R}}-\vec{k}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}}~{},

The law of cosines still hold at the event 𝒫0\mathcal{P}_{0},

|pRkR|2|𝒫0=|pR|2|𝒫0+|kR|2|𝒫02cosθR|𝒫0|pR||𝒫0|kR||𝒫0.\displaystyle|\vec{p}_{\text{\tiny R}}-\vec{k}_{\text{\tiny R}}|^{2}\Big{|}_{\mathcal{P}_{0}}=|\vec{p}_{\text{\tiny R}}|^{2}\Big{|}_{\mathcal{P}_{0}}+|\vec{k}_{\text{\tiny R}}|^{2}\Big{|}_{\mathcal{P}_{0}}-2\cos\theta_{\text{\tiny R}}\Big{|}_{\mathcal{P}_{0}}|\vec{p}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}}|\vec{k}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}}~{}. (24)

The photon 3-momentum kR\vec{k}_{\text{\tiny R}} is an independent variable in the 3-Euclidean space around the event 𝒫0\mathcal{P}_{0}. As far as the integration process is concerned, we have the freedom to choose that in this 3-Euclidean space, the angle formed by pR\vec{p}_{\text{\tiny R}} and kR\vec{k}_{\text{\tiny R}} is θR\theta_{\text{\tiny R}}, or in other words, kR=|kR|ez\vec{k}_{\text{\tiny R}}=|\vec{k}_{\text{\tiny R}}|\vec{e}_{z}.

Equation (24) can be expressed as

(g00)(p0k0)2|𝒫0\displaystyle(-g_{00})(p^{0}-k^{0})^{2}\Big{|}_{\mathcal{P}_{0}}
=\displaystyle= [(g00)(p0)2ma2]|𝒫0+(g00)(k0)2|𝒫0\displaystyle[(-g_{00})(p^{0})^{2}-m_{a}^{2}]\Big{|}_{\mathcal{P}_{0}}+(-g_{00})(k^{0})^{2}\Big{|}_{\mathcal{P}_{0}}
\displaystyle- 2cosθR(g00)(p0)2ma2(g00)(k0)2|𝒫0.\displaystyle 2\cos\theta_{\text{\tiny R}}\sqrt{(-g_{00})(p^{0})^{2}-m_{a}^{2}}\sqrt{(-g_{00})(k^{0})^{2}}\Big{|}_{\mathcal{P}_{0}}~{}.

cos2θR|𝒫01\cos^{2}\theta_{\text{\tiny R}}\Big{|}_{\mathcal{P}_{0}}\leq 1 requires that

p0|𝒫0k0|𝒫0+ma24k0(g00)|𝒫0.\displaystyle p^{0}\Big{|}_{\mathcal{P}_{0}}\geq k^{0}\Big{|}_{\mathcal{P}_{0}}+{m_{a}^{2}\over 4k^{0}(-g_{00})}\Big{|}_{\mathcal{P}_{0}}~{}.

or

kmin0|𝒫0k0|𝒫0kmax0|𝒫0,\displaystyle k^{0}_{\text{min}}\Big{|}_{\mathcal{P}_{0}}\leq k^{0}\Big{|}_{\mathcal{P}_{0}}\leq k^{0}_{\text{max}}\Big{|}_{\mathcal{P}_{0}}~{},

where

kmax/min0|𝒫0=\displaystyle k^{0}_{\text{max/min}}\Big{|}_{\mathcal{P}_{0}}= 12[p0±(p0)2ma2g00]|𝒫0\displaystyle{1\over 2}[\ p^{0}\pm\sqrt{(p^{0})^{2}-{m_{a}^{2}\over-g_{00}}}\ ]\Big{|}_{\mathcal{P}_{0}}
=\displaystyle= 12(p0±gijpipjg00)|𝒫0.\displaystyle{1\over 2}(p^{0}\pm\sqrt{g_{ij}p^{i}p^{j}\over-g_{00}})\Big{|}_{\mathcal{P}_{0}}~{}.

This equation and equation (24) provide a relationship between momentum of axions and photons, all located at a single point where Riemann normal coordinates were applied. The transition from 𝒫0{\mathcal{P}_{0}} to other events is straightforward because the bounds are written in covariant form.

With these notation replacements, (23) becomes

2k0|𝒫0dfλ(|kR||𝒫0,𝒫0)dt\displaystyle 2k^{0}\Big{|}_{\mathcal{P}_{0}}\frac{df_{\lambda}(|\vec{k}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}},\mathcal{P}_{0})}{dt}
=\displaystyle= 4maΓaπ(g00|𝒫0)map0|𝒫0|pR|2d|pR|d(cosθR)d(ϕR)|𝒫02g00|𝒫0p0|𝒫0\displaystyle\frac{4m_{a}\Gamma_{a}}{\pi(-g_{00}\Big{|}_{\mathcal{P}_{0}})}\int{m_{a}\over p^{0}\Big{|}_{\mathcal{P}_{0}}}{|\vec{p}_{\text{\tiny R}}|^{2}d|\vec{p}_{\text{\tiny R}}|d(-\cos\theta_{\text{\tiny R}})d(\phi_{\text{\tiny R}})\Big{|}_{\mathcal{P}_{0}}\over 2\sqrt{-g_{00}\Big{|}_{\mathcal{P}_{0}}}p^{0}\Big{|}_{\mathcal{P}_{0}}}
×12|pRkR||𝒫0×δ(p0|𝒫0k0|𝒫0|pRkR|g00|𝒫0)\displaystyle\times{1\over 2|\vec{p}_{\text{\tiny R}}-\vec{k}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}}}\times\delta(p^{0}\Big{|}_{\mathcal{P}_{0}}-k^{0}\Big{|}_{\mathcal{P}_{0}}-{|\vec{p}_{\text{\tiny R}}-\vec{k}_{\text{\tiny R}}|\over\sqrt{-g_{00}}}\Big{|}_{\mathcal{P}_{0}})
×{fa(|pR||𝒫0)[1+fλ(|kR||𝒫0)+fλ(|pRkR||𝒫0)]\displaystyle\times\{f_{a}(|\vec{p}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}})[1+f_{\lambda}(|\vec{k}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}})+f_{\lambda}(|\vec{p}_{\text{\tiny R}}-\vec{k}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}})]
fλ(|kR||𝒫0)fλ(|pRkR||𝒫0)}.\displaystyle-f_{\lambda}(|\vec{k}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}})f_{\lambda}(|\vec{p}_{\text{\tiny R}}-\vec{k}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}})\}~{}.

ϕR|𝒫0\phi_{\text{\tiny R}}\Big{|}_{\mathcal{P}_{0}} is directly integrated to yield

2k0|𝒫0dfλ(|kR||𝒫0,𝒫0)dt\displaystyle 2k^{0}\Big{|}_{\mathcal{P}_{0}}\frac{df_{\lambda}(|\vec{k}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}},\mathcal{P}_{0})}{dt}
=\displaystyle= 4maΓa(g00|𝒫0)map0|𝒫0|pR|2d|pR|d(cosθR)|𝒫0g00|𝒫0p0|𝒫0\displaystyle\frac{4m_{a}\Gamma_{a}}{(-g_{00}\Big{|}_{\mathcal{P}_{0}})}\int{m_{a}\over p^{0}\Big{|}_{\mathcal{P}_{0}}}{|\vec{p}_{\text{\tiny R}}|^{2}d|\vec{p}_{\text{\tiny R}}|d(-\cos\theta_{\text{\tiny R}})\Big{|}_{\mathcal{P}_{0}}\over\sqrt{-g_{00}\Big{|}_{\mathcal{P}_{0}}}p^{0}\Big{|}_{\mathcal{P}_{0}}}
×12|pRkR||𝒫0×δ(p0|𝒫0k0|𝒫0|pRkR|g00|𝒫0)\displaystyle\times{1\over 2|\vec{p}_{\text{\tiny R}}-\vec{k}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}}}\times\delta(p^{0}\Big{|}_{\mathcal{P}_{0}}-k^{0}\Big{|}_{\mathcal{P}_{0}}-{|\vec{p}_{\text{\tiny R}}-\vec{k}_{\text{\tiny R}}|\over\sqrt{-g_{00}}}\Big{|}_{\mathcal{P}_{0}})
×{fa(|pR||𝒫0)[1+fλ(|kR||𝒫0)+fλ(|pRkR||𝒫0)]\displaystyle\times\{f_{a}(|\vec{p}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}})[1+f_{\lambda}(|\vec{k}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}})+f_{\lambda}(|\vec{p}_{\text{\tiny R}}-\vec{k}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}})]
fλ(|kR||𝒫0)fλ(|pRkR||𝒫0)}.\displaystyle-f_{\lambda}(|\vec{k}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}})f_{\lambda}(|\vec{p}_{\text{\tiny R}}-\vec{k}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}})\}~{}.

Equation (7) at point 𝒫0\mathcal{P}_{0} reads

m2+𝒢ijpRipRj|𝒫0=m2+|pR|2|𝒫0=g00(p0)2|𝒫0,\displaystyle m^{2}+{\mathcal{G}}_{ij}p_{\text{\tiny R}}^{i}p_{\text{\tiny R}}^{j}\Big{|}_{\mathcal{P}_{0}}=m^{2}+|\vec{p}_{\text{\tiny R}}|^{2}\Big{|}_{\mathcal{P}_{0}}=-g_{00}(p^{0})^{2}\Big{|}_{\mathcal{P}_{0}}~{},

which gives a differential relation at 𝒫0\mathcal{P}_{0}

|pR|d|pR||𝒫0=g00p0dp0|𝒫0.\displaystyle|\vec{p}_{\text{\tiny R}}|d|\vec{p}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}}=-g_{00}p^{0}dp^{0}\Big{|}_{\mathcal{P}_{0}}~{}.

From the law of cosines (24), there is another differential relation which tells us how the magnitude |pRkR||\vec{p}_{\text{\tiny R}}-\vec{k}_{\text{\tiny R}}| changes when we change the angle θR\theta_{\text{\tiny R}} formed by pR\vec{p}_{\text{\tiny R}} and kR\vec{k}_{\text{\tiny R}} at 𝒫0\mathcal{P}_{0},

|pRkR|d|pRkR||𝒫0=|pR||kR|d(cosθR)|𝒫0.\displaystyle|\vec{p}_{\text{\tiny R}}-\vec{k}_{\text{\tiny R}}|d|\vec{p}_{\text{\tiny R}}-\vec{k}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}}=|\vec{p}_{\text{\tiny R}}||\vec{k}_{\text{\tiny R}}|d(-\cos\theta_{\text{\tiny R}})\Big{|}_{\mathcal{P}_{0}}~{}.

Replacing d(cosθR)d(-\cos\theta_{\text{\tiny R}}) with d|pRkR|d|\vec{p}_{\text{\tiny R}}-\vec{k}_{\text{\tiny R}}|, |pR|d|pR||\vec{p}_{\text{\tiny R}}|d|\vec{p}_{\text{\tiny R}}| with g00p0dp0-g_{00}p^{0}dp^{0}, and changing the argument of the δ\delta function, we have

2k0|𝒫0dfλ(|kR||𝒫0,𝒫0)dt\displaystyle 2k^{0}\Big{|}_{\mathcal{P}_{0}}\frac{df_{\lambda}(|\vec{k}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}},\mathcal{P}_{0})}{dt}
=\displaystyle= 4maΓa(g00|𝒫0)map0|𝒫0(g00)p0dp0|pRkR|d|pRkR||𝒫0g00|𝒫0p0|𝒫0|kR||𝒫0\displaystyle\frac{4m_{a}\Gamma_{a}}{(-g_{00}\Big{|}_{\mathcal{P}_{0}})}\int{m_{a}\over p^{0}\Big{|}_{\mathcal{P}_{0}}}{(-g_{00})p^{0}dp^{0}\quad|\vec{p}_{\text{\tiny R}}-\vec{k}_{\text{\tiny R}}|d|\vec{p}_{\text{\tiny R}}-\vec{k}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}}\over\sqrt{-g_{00}\Big{|}_{\mathcal{P}_{0}}}p^{0}\Big{|}_{\mathcal{P}_{0}}|\vec{k}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}}}
×12|pRkR||𝒫0×g00|𝒫0\displaystyle\times{1\over 2|\vec{p}_{\text{\tiny R}}-\vec{k}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}}}\times\sqrt{-g_{00}}\Big{|}_{\mathcal{P}_{0}}
×δ(|pRkR||𝒫0g00(p0k0)|𝒫0)\displaystyle\times\delta(|\vec{p}_{\text{\tiny R}}-\vec{k}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}}-\sqrt{-g_{00}}(p^{0}-k^{0})\Big{|}_{\mathcal{P}_{0}})
×{fa(|pR||𝒫0)[1+fλ(|kR||𝒫0)+fλ(|pRkR||𝒫0)]\displaystyle\times\{f_{a}(|\vec{p}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}})[1+f_{\lambda}(|\vec{k}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}})+f_{\lambda}(|\vec{p}_{\text{\tiny R}}-\vec{k}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}})]
fλ(|kR||𝒫0)fλ(|pRkR||𝒫0)}.\displaystyle-f_{\lambda}(|\vec{k}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}})f_{\lambda}(|\vec{p}_{\text{\tiny R}}-\vec{k}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}})\}~{}.

After canceling common factors in numerators and denominators, integrating the |pRkR||\vec{p}_{\text{\tiny R}}-\vec{k}_{\text{\tiny R}}| part, the equation becomes

k0|𝒫0dfλ(|kR||𝒫0,𝒫0)dt=maΓamap0|𝒫0dp0|𝒫0|kR||𝒫0\displaystyle k^{0}\Big{|}_{\mathcal{P}_{0}}\frac{df_{\lambda}(|\vec{k}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}},\mathcal{P}_{0})}{dt}=m_{a}\Gamma_{a}\int{m_{a}\over p^{0}\Big{|}_{\mathcal{P}_{0}}}{dp^{0}\Big{|}_{\mathcal{P}_{0}}\over|\vec{k}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}}}
×\displaystyle\times {fa(|pR||𝒫0)[1+fλ(|kR||𝒫0)+fλ(g00(p0k0)|𝒫0)]\displaystyle\{f_{a}(|\vec{p}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}})[1+f_{\lambda}(|\vec{k}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}})+f_{\lambda}\left(\sqrt{-g_{00}}(p^{0}-k^{0})\Big{|}_{\mathcal{P}_{0}}\right)]
\displaystyle- fλ(|kR||𝒫0)fλ(g00(p0k0)|𝒫0)}.\displaystyle f_{\lambda}(|\vec{k}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}})f_{\lambda}\left(\sqrt{-g_{00}}(p^{0}-k^{0})\Big{|}_{\mathcal{P}_{0}}\right)\}~{}.

The rate of change of photon occupation number at 𝒫0{\mathcal{P}_{0}} is then

dfλ(|kR||𝒫0,𝒫0)dt=maΓak0|kR||𝒫0map0|𝒫0𝑑p0|𝒫0\displaystyle\frac{df_{\lambda}(|\vec{k}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}},\mathcal{P}_{0})}{dt}={m_{a}\Gamma_{a}\over k^{0}|\vec{k}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}}}\int{m_{a}\over p^{0}\Big{|}_{\mathcal{P}_{0}}}dp^{0}\Big{|}_{\mathcal{P}_{0}}
×\displaystyle\times {fa(|pR||𝒫0)[1+fλ(|kR||𝒫0)+fλ(g00(p0k0)|𝒫0)]\displaystyle\{f_{a}(|\vec{p}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}})[1+f_{\lambda}(|\vec{k}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}})+f_{\lambda}\left(\sqrt{-g_{00}}(p^{0}-k^{0})\Big{|}_{\mathcal{P}_{0}}\right)]
\displaystyle- fλ(|kR||𝒫0)fλ(g00(p0k0)|𝒫0)}.\displaystyle f_{\lambda}(|\vec{k}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}})f_{\lambda}\left(\sqrt{-g_{00}}(p^{0}-k^{0})\Big{|}_{\mathcal{P}_{0}}\right)\}~{}.

Now the rate equation is given at event 𝒫0(t𝒫0,x𝒫0i)\mathcal{P}_{0}(t_{\mathcal{P}_{0}},x^{i}_{\mathcal{P}_{0}}) where the metric is Euclidean, using Riemann normal coordinates xRix_{\text{\tiny R}}^{i} on the 3-surface. The norms of 3-momenta keep the same value, regardless of which coordinates were used. We can converte from Riemann normal coordinates xRix_{\text{\tiny R}}^{i} back to general coordinates, via the following substitutions

gijpipj|𝒫0\displaystyle\sqrt{g_{ij}p^{i}p^{j}}\Big{|}_{\mathcal{P}_{0}} 𝒢ijpRipRj|𝒫0=|pR||𝒫0\displaystyle\quad\Leftarrow\sqrt{{\mathcal{G}}_{ij}p_{\text{\tiny R}}^{i}p_{\text{\tiny R}}^{j}}\Big{|}_{\mathcal{P}_{0}}=|\vec{p}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}}
gijkikj|𝒫0\displaystyle\sqrt{g_{ij}k^{i}k^{j}}\Big{|}_{\mathcal{P}_{0}} 𝒢ijkRikRj|𝒫0=|kR||𝒫0\displaystyle\quad\Leftarrow\sqrt{{\mathcal{G}}_{ij}k_{\text{\tiny R}}^{i}k_{\text{\tiny R}}^{j}}\Big{|}_{\mathcal{P}_{0}}=|\vec{k}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}}
gij(piki)(pjkj)|𝒫0\displaystyle\sqrt{g_{ij}(p^{i}-k^{i})(p^{j}-k^{j})}\Big{|}_{\mathcal{P}_{0}}\quad\Leftarrow 𝒢ij(pRikRi)(pRjkRj)|𝒫0=|pRkR||𝒫0\displaystyle\sqrt{{\mathcal{G}}_{ij}(p_{\text{\tiny R}}^{i}-k_{\text{\tiny R}}^{i})(p_{\text{\tiny R}}^{j}-k_{\text{\tiny R}}^{j})}\Big{|}_{\mathcal{P}_{0}}=|\vec{p}_{\text{\tiny R}}-\vec{k}_{\text{\tiny R}}|\Big{|}_{\mathcal{P}_{0}}

and

k0|𝒫0=gijkikjg00|𝒫0.\displaystyle k^{0}\Big{|}_{\mathcal{P}_{0}}=\sqrt{g_{ij}k^{i}k^{j}\over-g_{00}}\Big{|}_{\mathcal{P}_{0}}~{}.

The reason we can use Riemann normal coordinate and convert back is that, the equations do not depend on the specific Riemann normal coordinates we are using, and where the event point is located. All the relevant variables can be written in covariant form. We can go through the same process at event 𝒫1(t𝒫1,x𝒫1i)\mathcal{P}_{1}(t_{\mathcal{P}_{1}},x^{i}_{\mathcal{P}_{1}}), 𝒫2(t𝒫2,x𝒫2i)\mathcal{P}_{2}(t_{\mathcal{P}_{2}},x^{i}_{\mathcal{P}_{2}}) using Riemann normal coordinates xR1ix_{\text{\tiny R1}}^{i} and xR2ix_{\text{\tiny R2}}^{i} respectively, and then obtain equations of the same form. Thus we arrive at

dfλ(gijkikj|𝒫0,𝒫0)dt=maΓag00|𝒫0gijkikj|𝒫0map0|𝒫0𝑑p0|𝒫0\displaystyle\frac{df_{\lambda}(\sqrt{g_{ij}k^{i}k^{j}}\Big{|}_{\mathcal{P}_{0}},\mathcal{P}_{0})}{dt}={m_{a}\Gamma_{a}\sqrt{-g_{00}}\Big{|}_{\mathcal{P}_{0}}\over g_{ij}k^{i}k^{j}\Big{|}_{\mathcal{P}_{0}}}\int{m_{a}\over p^{0}\Big{|}_{\mathcal{P}_{0}}}dp^{0}\Big{|}_{\mathcal{P}_{0}}
×{fa(gijpipj|𝒫0)[1+fλ(gijkikj|𝒫0)\displaystyle\times\{f_{a}(\sqrt{g_{ij}p^{i}p^{j}}\Big{|}_{\mathcal{P}_{0}})[1+f_{\lambda}(\sqrt{g_{ij}k^{i}k^{j}}\Big{|}_{\mathcal{P}_{0}})
+fλ(g00(p0k0)|𝒫0)]\displaystyle+f_{\lambda}\left(\sqrt{-g_{00}}(p^{0}-k^{0})\Big{|}_{\mathcal{P}_{0}}\right)]
fλ(gijkikj|𝒫0)fλ(g00(p0k0)|𝒫0)}.\displaystyle-f_{\lambda}(\sqrt{g_{ij}k^{i}k^{j}}\Big{|}_{\mathcal{P}_{0}})f_{\lambda}\left(\sqrt{-g_{00}}(p^{0}-k^{0})\Big{|}_{\mathcal{P}_{0}}\right)\}~{}.

If the event 𝒫0(t𝒫0,x𝒫0i)\mathcal{P}_{0}(t_{\mathcal{P}_{0}},x^{i}_{\mathcal{P}_{0}}) is not at a special point in spacetime, then we should have this equation (10) at any location xαx^{\alpha},

dfλ(gijkikj)dt\displaystyle\frac{df_{\lambda}(\sqrt{g_{ij}k^{i}k^{j}})}{dt}
=\displaystyle= maΓag00gijkikjmap0dp0×{fa(gijpipj)\displaystyle{m_{a}\Gamma_{a}\sqrt{-g_{00}}\over g_{ij}k^{i}k^{j}}\int{m_{a}\over p^{0}}dp^{0}\times\{f_{a}(\sqrt{g_{ij}p^{i}p^{j}})
[1+fλ(gijkikj)+fλ(g00(p0k0))]\displaystyle[1+f_{\lambda}(\sqrt{g_{ij}k^{i}k^{j}})+f_{\lambda}\left(\sqrt{-g_{00}}(p^{0}-k^{0})\right)]
fλ(gijkikj)fλ(g00(p0k0))}.\displaystyle-f_{\lambda}(\sqrt{g_{ij}k^{i}k^{j}})f_{\lambda}\left(\sqrt{-g_{00}}(p^{0}-k^{0})\right)\}~{}.

We note the factor of g00\sqrt{-g_{00}} is from the gravitational redshift which corrects the time difference between the clock in the lab and the clock at the location the axion. The factor map0{m_{a}\over p^{0}} is due to special relativity correction.

XI.6 Maximum momentum of axion

An axion at rr has momentum pαp^{\alpha},

ma2+gij(r)pipj=\displaystyle m_{a}^{2}+g_{ij}(r)p^{i}p^{j}= g00(r)(p0)2.\displaystyle-g_{00}(r)(p^{0})^{2}~{}.

In our setup of simple model, we placed axions and photons inside the region Θ(r+r)Θ(rr)\Theta(r_{+}-r)\Theta(r-r_{-}). If the axion moves on a geodesic, then the scalar product of its momentum and the killing vector (1,0,0,0)(1,0,0,0) is a constant,

g00(r)p0(r)=g00(r+)p0(r+).\displaystyle g_{00}(r)p^{0}(r)=g_{00}(r_{+})p^{0}(r_{+})~{}.

The momentum is normalized at r+r_{+} such that

ma2+gij(r+)pi(r+)pj(r+)=\displaystyle m_{a}^{2}+g_{ij}(r_{+})p^{i}(r_{+})p^{j}(r_{+})= g00(r+)[p0(r+)]2.\displaystyle-g_{00}(r_{+})[p^{0}(r_{+})]^{2}~{}.

Considering an axion with just enough momentum to reach radius r+r_{+} where pi(r+)=0p^{i}(r_{+})=0, then we have

pesc0(r+)=mag00(r+).\displaystyle p^{0}_{\text{esc}}(r_{+})={m_{a}\over\sqrt{-g_{00}(r_{+})}}~{}.

Hence the escape value of p0p^{0} for an axion at any r<r+r<r_{+} is

pesc0(r)=g00(r+)g00(r)pesc0(r+)=g00(r+)g00(r)ma.\displaystyle p^{0}_{\text{esc}}(r)={g_{00}(r_{+})\over g_{00}(r)}p^{0}_{\text{esc}}(r_{+})={\sqrt{-g_{00}(r_{+})}\over-g_{00}(r)}m_{a}~{}.

The escape momentum gij(r)pipjesc\sqrt{g_{ij}(r)p^{i}p^{j}}_{\text{esc}} thus satisfy

ma2+[gij(r)pipj]esc=\displaystyle m_{a}^{2}+[g_{ij}(r)p^{i}p^{j}]_{\text{esc}}= g00(r+)g00(r)ma2,\displaystyle{-g_{00}(r_{+})\over-g_{00}(r)}m_{a}^{2}~{},

or upon solving for this momentum,

gij(r)pipjesc=\displaystyle\sqrt{g_{ij}(r)p^{i}p^{j}}_{\text{esc}}= mag00(r+)g00(r)1.\displaystyle m_{a}\sqrt{{-g_{00}(r_{+})\over-g_{00}(r)}-1}~{}.

The escape momenta are different for axions at different rr, and the maximally allowed momentum should be set to the largest gij(r)pipjesc\sqrt{g_{ij}(r)p^{i}p^{j}}_{\text{esc}}.

pmax=maβ=max{mag00(r+)g00(r)1},\displaystyle p_{\text{max}}=m_{a}\beta^{\prime}=\text{max}\{m_{a}\sqrt{{-g_{00}(r_{+})\over-g_{00}(r)}-1}\}~{},

where we have defined a relativistic parameter β\beta^{\prime}. In our setup of the simple model,

β=g00(r+)g00(r)1.\displaystyle\beta^{\prime}=\sqrt{{-g_{00}(r_{+})\over-g_{00}(r_{-})}-1}~{}. (25)

For Schwarzschild spacetime, the relativistic parameter or the maximum velocity is

βsch=\displaystyle\beta^{\prime}_{\text{sch}}= 2Mr2Mr+12Mr2Mr2Mr+=2Mr+r+r1.\displaystyle\sqrt{{2M\over r_{-}}-{2M\over r_{+}}\over 1-{2M\over r_{-}}}\gtrsim\sqrt{{2M\over r_{-}}-{2M\over r_{+}}}=\sqrt{2M\over r_{+}}\sqrt{{r_{+}\over r_{-}}-1}~{}.

Using solar parameters, the numerical value of the maximum velocity is written as

βsch=\displaystyle\beta^{\prime}_{\text{sch}}= 2×103MRMr+r+r1.\displaystyle 2\times 10^{-3}\sqrt{\frac{MR_{\odot}}{M_{\odot}r_{+}}}\sqrt{{r_{+}\over r_{-}}-1}~{}.

Depending on the outer radius of the cluster and the mass of the Schwarzschild host, there may be a noticable correction to the value of maximum velocity obtained from Newtonian theory. The maximum velocity β\beta of non-relativistic axion calculated in Kephart:1994uy is from self gravity, here β\beta^{\prime} is the result of gravitational bound from the host.

Equation (25) is a general formula for calculating the upper bound on gijpipj\sqrt{g_{ij}p^{i}p^{j}} without specifically knowing each individual component of the metric gijg_{ij} of the static spacetime. By itself equation (25) can not always constrain axions to be inside Θ(r+r)Θ(rr)\Theta(r_{+}-r)\Theta(r-r_{-}). Axions starting with gijpipj=maβ\sqrt{g_{ij}p^{i}p^{j}}=m_{a}\beta^{\prime} at r=rr=r_{-} and at r=r+r=r_{+} can barely reach r+r_{+} and rmaxr+r_{\text{max}}\approx r_{+}, respectively. The point is we can always find the maximum momentum of axions in the region, but the exact formula for the relativistic parameter β\beta^{\prime} is not that important. With any nonzero angular momentum, r2Mr_{-}\gg 2M limits the possibility of incidents that particles falling into the host.

XI.7 Integration over |k1i||k_{1}^{i}| |ki||k^{i}|

We choose not to impose the approximations on eq. (11) used in Kephart:1994uy . There the axions were treated as non-relativistic, so the maximum momentum of the axion maγβm_{a}\gamma\beta became maβm_{a}\beta. If we imposed this condition here, then due to the small value of β\beta^{\prime} derived previously, we find g00p0=ma2+gijpipjma\sqrt{-g_{00}}p^{0}=\sqrt{m_{a}^{2}+g_{ij}p^{i}p^{j}}\sim m_{a}, and (11) would become,

dnλdt=maΓag002π2ma24gijkikjd(gijk1ik1j)d(gijkikj)\displaystyle\frac{dn_{\lambda}}{dt}={m_{a}\Gamma_{a}\sqrt{-g_{00}}\over 2\pi^{2}}\int\int_{m_{a}^{2}\over 4\sqrt{g_{ij}k^{i}k^{j}}}d(\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}})d(\sqrt{g_{ij}k^{i}k^{j}})
×{fa((gijkikj+gijk1ik1j)2ma2)[1+fλ(gijkikj)\displaystyle\times\{f_{a}\left(\sqrt{(\sqrt{g_{ij}k^{i}k^{j}}+\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}})^{2}-m_{a}^{2}}\right)[1+f_{\lambda}(\sqrt{g_{ij}k^{i}k^{j}})
+fλ(gijk1ik1j)]fλ(gijkikj)fλ(gijk1ik1j)}.\displaystyle+f_{\lambda}(\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}})]-f_{\lambda}(\sqrt{g_{ij}k^{i}k^{j}})f_{\lambda}(\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}})\}~{}.

This approximation drops the special relativity correction, which account for the time difference between the clock of a stationary observer at xix^{i} and the intrinsic clock of the axion.

But since we have decided to keep this time dilation factor, we start with (11).

dnλdt\displaystyle\frac{dn_{\lambda}}{dt}
=\displaystyle= maΓag002π2ma24gijkikjmagijkikj+gijk1ik1j\displaystyle{m_{a}\Gamma_{a}\sqrt{-g_{00}}\over 2\pi^{2}}\int\int_{m_{a}^{2}\over 4\sqrt{g_{ij}k^{i}k^{j}}}{m_{a}\over\sqrt{g_{ij}k^{i}k^{j}}+\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}}}
×{fa((gijkikj+gijk1ik1j)2ma2)[1+fλ(gijkikj)\displaystyle\times\{f_{a}\left(\sqrt{(\sqrt{g_{ij}k^{i}k^{j}}+\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}})^{2}-m_{a}^{2}}\right)[1+f_{\lambda}(\sqrt{g_{ij}k^{i}k^{j}})
+fλ(gijk1ik1j)]fλ(gijkikj)fλ(gijk1ik1j)}\displaystyle+f_{\lambda}(\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}})]-f_{\lambda}(\sqrt{g_{ij}k^{i}k^{j}})f_{\lambda}(\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}})\}
×d(gijk1ik1j)d(gijkikj).\displaystyle\times d(\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}})d(\sqrt{g_{ij}k^{i}k^{j}})~{}.

The first integral is

d(gijkikj)ma24gijkikjd(gijk1ik1j)\displaystyle\int d(\sqrt{g_{ij}k^{i}k^{j}})\int_{m_{a}^{2}\over 4\sqrt{g_{ij}k^{i}k^{j}}}d(\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}})
magijkikj+gijk1ik1jfa((gijkikj+gijk1ik1j)2ma2)\displaystyle{m_{a}\over\sqrt{g_{ij}k^{i}k^{j}}+\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}}}f_{a}\left(\sqrt{(\sqrt{g_{ij}k^{i}k^{j}}+\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}})^{2}-m_{a}^{2}}\right)
=\displaystyle= d(gijkikj)ma24gijkikjma1+β2gijkikjd(gijk1ik1j)\displaystyle\int d(\sqrt{g_{ij}k^{i}k^{j}})\int^{m_{a}\sqrt{1+\beta^{\prime 2}}-\sqrt{g_{ij}k^{i}k^{j}}}_{m_{a}^{2}\over 4\sqrt{g_{ij}k^{i}k^{j}}}d(\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}})
magijkikj+gijk1ik1j[fac(t)Θ(r+r)Θ(rr)+fad(t)d(r)]\displaystyle{m_{a}\over\sqrt{g_{ij}k^{i}k^{j}}+\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}}}[f_{ac}(t)\Theta(r_{+}-r)\Theta(r-r_{-})+f_{ad}(t)d(r)]
=\displaystyle= d(gijkikj)[fac(t)Θ(r+r)Θ(rr)+fad(t)d(r)]\displaystyle\int d(\sqrt{g_{ij}k^{i}k^{j}})[f_{ac}(t)\Theta(r_{+}-r)\Theta(r-r_{-})+f_{ad}(t)d(r)]
×maln(gijkikj+gijk1ik1j)|ma24gijkikjma1+β2gijkikj\displaystyle\times m_{a}\ln(\sqrt{g_{ij}k^{i}k^{j}}+\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}})\bigg{|}^{m_{a}\sqrt{1+\beta^{\prime 2}}-\sqrt{g_{ij}k^{i}k^{j}}}_{m_{a}^{2}\over 4\sqrt{g_{ij}k^{i}k^{j}}}
=\displaystyle= mad(gijkikj)[fac(t)Θ(r+r)Θ(rr)+fad(t)d(r)]\displaystyle m_{a}\int d(\sqrt{g_{ij}k^{i}k^{j}})[f_{ac}(t)\Theta(r_{+}-r)\Theta(r-r_{-})+f_{ad}(t)d(r)]
×[ln(ma1+β2)ln(gijkikj+ma24gijkikj)]\displaystyle\times[\ln(m_{a}\sqrt{1+\beta^{\prime 2}})-\ln(\sqrt{g_{ij}k^{i}k^{j}}+{m_{a}^{2}\over 4\sqrt{g_{ij}k^{i}k^{j}}})]

Now let

z=\displaystyle z= gijkikj\displaystyle\sqrt{g_{ij}k^{i}k^{j}}
z±=\displaystyle z_{\pm}= gijkikj±=ma2(1+β2±β),\displaystyle\sqrt{g_{ij}k^{i}k^{j}}_{\pm}={m_{a}\over 2}(\sqrt{1+\beta^{\prime 2}}\pm\beta^{\prime})~{},

so that the first integral becomes

=\displaystyle= ma𝑑z[ln(ma1+β2)ln(z+ma24z)]\displaystyle m_{a}\int dz[\ln(m_{a}\sqrt{1+\beta^{\prime 2}})-\ln(z+{m_{a}^{2}\over 4z})]
×[fac(t)Θ(r+r)Θ(rr)+fad(t)d(r)]\displaystyle\times[f_{ac}(t)\Theta(r_{+}-r)\Theta(r-r_{-})+f_{ad}(t)d(r)]
=\displaystyle= ma[ln(4ma1+β2z)𝑑zln(4z2+ma2)𝑑z]\displaystyle m_{a}[\int\ln(4m_{a}\sqrt{1+\beta^{\prime 2}}z)dz-\int\ln(4z^{2}+m_{a}^{2})dz]
×[fac(t)Θ(r+r)Θ(rr)+fad(t)d(r)]\displaystyle\times[f_{ac}(t)\Theta(r_{+}-r)\Theta(r-r_{-})+f_{ad}(t)d(r)]
=\displaystyle= ma{[zln(4ma1+β2z)z]|+\displaystyle m_{a}\{[z\ln(4m_{a}\sqrt{1+\beta^{\prime 2}}z)-z]\bigg{|}^{+}_{-}
[maarctan2zma2z+zln(4z2+ma2)]|+}\displaystyle-[m_{a}\arctan{2z\over m_{a}}-2z+z\ln(4z^{2}+m_{a}^{2})]\bigg{|}^{+}_{-}\}
×[fac(t)Θ(r+r)Θ(rr)+fad(t)d(r)]\displaystyle\times[f_{ac}(t)\Theta(r_{+}-r)\Theta(r-r_{-})+f_{ad}(t)d(r)]
=\displaystyle= ma{[zln(4ma1+β2z)zln(4z2+ma2)\displaystyle m_{a}\{[z\ln(4m_{a}\sqrt{1+\beta^{\prime 2}}z)-z\ln(4z^{2}+m_{a}^{2})
+zmaarctan2zma]|+}\displaystyle+z-m_{a}\arctan{2z\over m_{a}}]\bigg{|}^{+}_{-}\}
×[fac(t)Θ(r+r)Θ(rr)+fad(t)d(r)]\displaystyle\times[f_{ac}(t)\Theta(r_{+}-r)\Theta(r-r_{-})+f_{ad}(t)d(r)]

where using

[zln(4ma1+β2z)]|+\displaystyle[z\ln(4m_{a}\sqrt{1+\beta^{\prime 2}}z)]\bigg{|}^{+}_{-}
=\displaystyle= maβln(2ma21+β2)\displaystyle m_{a}\beta^{\prime}\ln(2m_{a}^{2}\sqrt{1+\beta^{\prime 2}})
+ma21+β2ln[1+β2+β1+β2β]\displaystyle+{m_{a}\over 2}\sqrt{1+\beta^{\prime 2}}\ln[{\sqrt{1+\beta^{\prime 2}}+\beta^{\prime}\over\sqrt{1+\beta^{\prime 2}}-\beta^{\prime}}]

and

zln(4z2+ma2)|+\displaystyle z\ln(4z^{2}+m_{a}^{2})\bigg{|}^{+}_{-}
=\displaystyle= ma21+β2ln[(1+β2+β)2+1(1+β2β)2+1]\displaystyle{m_{a}\over 2}\sqrt{1+\beta^{\prime 2}}\ln[{(\sqrt{1+\beta^{\prime 2}}+\beta^{\prime})^{2}+1\over(\sqrt{1+\beta^{\prime 2}}-\beta^{\prime})^{2}+1}]
+maβln(2ma21+β2)\displaystyle+m_{a}\beta^{\prime}\ln(2m_{a}^{2}\sqrt{1+\beta^{\prime 2}})

as well as

[zln(4ma1+β2z)]zln(4z2+ma2)|+=0\displaystyle[z\ln(4m_{a}\sqrt{1+\beta^{\prime 2}}z)]-z\ln(4z^{2}+m_{a}^{2})\bigg{|}^{+}_{-}=0

and

zmaarctan2zma|+\displaystyle z-m_{a}\arctan{2z\over m_{a}}\bigg{|}^{+}_{-}
=\displaystyle= ma[β+arctan(1+β2β)arctan(1+β2+β)]\displaystyle m_{a}[\beta^{\prime}+\arctan(\sqrt{1+\beta^{\prime 2}}-\beta^{\prime})-\arctan(\sqrt{1+\beta^{\prime 2}}+\beta^{\prime})]
=\displaystyle= ma[β+(π4β2+β36β510+)\displaystyle m_{a}[\beta^{\prime}+({\pi\over 4}-{\beta^{\prime}\over 2}+{\beta^{\prime 3}\over 6}-{\beta^{\prime 5}\over 10}+...)
(π4+β2β36+β510+)]=maβ33\displaystyle-({\pi\over 4}+{\beta^{\prime}\over 2}-{\beta^{\prime 3}\over 6}+{\beta^{\prime 5}\over 10}+...)]=m_{a}{\beta^{\prime 3}\over 3}

the first integral finally reduces to

d(gijkikj)ma24gijkikjd(gijk1ik1j)\displaystyle\int d(\sqrt{g_{ij}k^{i}k^{j}})\int_{m_{a}^{2}\over 4\sqrt{g_{ij}k^{i}k^{j}}}d(\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}})
magijkikj+gijk1ik1j\displaystyle{m_{a}\over\sqrt{g_{ij}k^{i}k^{j}}+\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}}}
fa((gijkikj+gijk1ik1j)2ma2)\displaystyle f_{a}(\sqrt{(\sqrt{g_{ij}k^{i}k^{j}}+\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}})^{2}-m_{a}^{2}})
=\displaystyle= ma2β33[fac(t)Θ(r+r)Θ(rr)+fad(t)d(r)].\displaystyle{m_{a}^{2}\beta^{\prime 3}\over 3}[f_{ac}(t)\Theta(r_{+}-r)\Theta(r-r_{-})+f_{ad}(t)d(r)]~{}.

Using a similar procedure we find that the second integral is

d(gijkikj)ma24gijkikjd(gijk1ik1j)\displaystyle\int d(\sqrt{g_{ij}k^{i}k^{j}})\int_{m_{a}^{2}\over 4\sqrt{g_{ij}k^{i}k^{j}}}d(\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}})
magijkikj+gijk1ik1j\displaystyle{m_{a}\over\sqrt{g_{ij}k^{i}k^{j}}+\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}}}
fa((gijkikj+gijk1ik1j)2ma2)fλ(gijkikj)\displaystyle f_{a}\left(\sqrt{(\sqrt{g_{ij}k^{i}k^{j}}+\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}})^{2}-m_{a}^{2}}\right)f_{\lambda}(\sqrt{g_{ij}k^{i}k^{j}})
=\displaystyle= d(gijkikj)ma24gijkikjma1+β2gijkikjd(gijk1ik1j)\displaystyle\int d(\sqrt{g_{ij}k^{i}k^{j}})\int_{{m_{a}^{2}\over 4\sqrt{g_{ij}k^{i}k^{j}}}}^{m_{a}\sqrt{1+\beta^{\prime 2}}-\sqrt{g_{ij}k^{i}k^{j}}}d(\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}})
×magijkikj+gijk1ik1j\displaystyle\times{m_{a}\over\sqrt{g_{ij}k^{i}k^{j}}+\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}}}
×{fac(t)fλc(t)Θ(r+r)Θ(rr)\displaystyle\times\{f_{ac}(t)f_{\lambda c}(t)\Theta(r_{+}-r)\Theta(r-r_{-})
+[(fac(t)fλd(t)+fad(t)fλc(t))d(r)]}\displaystyle+[(f_{ac}(t)f_{\lambda d}(t)+f_{ad}(t)f_{\lambda c}(t))d(r)]\}
=\displaystyle= ma{[zln(4ma1+β2z)zln(4z2+ma2)\displaystyle m_{a}\{[z\ln(4m_{a}\sqrt{1+\beta^{\prime 2}}z)-z\ln(4z^{2}+m_{a}^{2})
+zmaarctan2zma]|+}\displaystyle+z-m_{a}\arctan{2z\over m_{a}}]\bigg{|}^{+}_{-}\}
×{fac(t)fλc(t)Θ(r+r)Θ(rr)\displaystyle\times\{f_{ac}(t)f_{\lambda c}(t)\Theta(r_{+}-r)\Theta(r-r_{-})
+[fac(t)fλd(t)+fad(t)fλc(t)]d(r)}\displaystyle+[f_{ac}(t)f_{\lambda d}(t)+f_{ad}(t)f_{\lambda c}(t)]d(r)\}
=\displaystyle= ma2β33{fac(t)fλc(t)Θ(r+r)Θ(rr)\displaystyle{m_{a}^{2}\beta^{\prime 3}\over 3}\{f_{ac}(t)f_{\lambda c}(t)\Theta(r_{+}-r)\Theta(r-r_{-})
+[fac(t)fλd(t)+fad(t)fλc(t)]d(r)}.\displaystyle+[f_{ac}(t)f_{\lambda d}(t)+f_{ad}(t)f_{\lambda c}(t)]d(r)\}~{}.

Here terms which are second or higher order of the distortion d(r)d(r) are dropped. Because the distortion is expected to be small when the locations of all the interactions are far away from the event horizon.

Likewise, the third integral is

d(gijkikj)ma24gijkikjd(gijk1ik1j)\displaystyle\int d(\sqrt{g_{ij}k^{i}k^{j}})\int_{m_{a}^{2}\over 4\sqrt{g_{ij}k^{i}k^{j}}}d(\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}})
magijkikj+gijk1ik1j\displaystyle{m_{a}\over\sqrt{g_{ij}k^{i}k^{j}}+\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}}}
fa((gijkikj+gijk1ik1j)2ma2)fλ(gijk1ik1j)\displaystyle f_{a}\left(\sqrt{(\sqrt{g_{ij}k^{i}k^{j}}+\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}})^{2}-m_{a}^{2}}\right)f_{\lambda}(\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}})
=\displaystyle= ma{[zln(4ma1+β2z)zln(4z2+ma2)\displaystyle m_{a}\{[z\ln(4m_{a}\sqrt{1+\beta^{\prime 2}}z)-z\ln(4z^{2}+m_{a}^{2})
+zmaarctan2zma]|+}\displaystyle+z-m_{a}\arctan{2z\over m_{a}}]\bigg{|}^{+}_{-}\}
×{fac(t)fλc(t)Θ(r+r)Θ(rr)\displaystyle\times\{f_{ac}(t)f_{\lambda c}(t)\Theta(r_{+}-r)\Theta(r-r_{-})
+[fac(t)fλd(t)+fad(t)fλc(t)]d(r)}\displaystyle+[f_{ac}(t)f_{\lambda d}(t)+f_{ad}(t)f_{\lambda c}(t)]d(r)\}
=\displaystyle= ma2β33{fac(t)fλc(t)Θ(r+r)Θ(rr)\displaystyle{m_{a}^{2}\beta^{\prime 3}\over 3}\{f_{ac}(t)f_{\lambda c}(t)\Theta(r_{+}-r)\Theta(r-r_{-})
+[fac(t)fλd(t)+fad(t)fλc(t)]d(r)}.\displaystyle+[f_{ac}(t)f_{\lambda d}(t)+f_{ad}(t)f_{\lambda c}(t)]d(r)\}~{}.

The last integral splits into two parts: back reactions produce normal axions with gij(r)pipjmaβ\sqrt{g_{ij}(r)p^{i}p^{j}}\leq m_{a}\beta^{\prime} and sterile axions with gij(r)pipj>maβ\sqrt{g_{ij}(r)p^{i}p^{j}}>m_{a}\beta^{\prime}.

d(gijkikj)ma24gijkikjd(gijk1ik1j)\displaystyle\int d(\sqrt{g_{ij}k^{i}k^{j}})\int_{m_{a}^{2}\over 4\sqrt{g_{ij}k^{i}k^{j}}}d(\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}})
×magijkikj+gijk1ik1jfλ(gijkikj)fλ(gijk1ik1j)\displaystyle\times{m_{a}\over\sqrt{g_{ij}k^{i}k^{j}}+\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}}}f_{\lambda}(\sqrt{g_{ij}k^{i}k^{j}})f_{\lambda}(\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}})
=\displaystyle= d(gijkikj)ma24gijkikjma1+β2gijkikjd(gijk1ik1j)\displaystyle\int d(\sqrt{g_{ij}k^{i}k^{j}})\int_{m_{a}^{2}\over 4\sqrt{g_{ij}k^{i}k^{j}}}^{m_{a}\sqrt{1+\beta^{\prime 2}}-\sqrt{g_{ij}k^{i}k^{j}}}d(\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}})
×magijkikj+gijk1ik1j+magijkikj+gijk1ik1j\displaystyle\times{m_{a}\over\sqrt{g_{ij}k^{i}k^{j}}+\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}}}+{m_{a}\over\sqrt{g_{ij}k^{i}k^{j}}+\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}}}
×d(gijkikj)ma1+β2gijkikjgijkikj+d(gijk1ik1j)\displaystyle\times\int d(\sqrt{g_{ij}k^{i}k^{j}})\int_{m_{a}\sqrt{1+\beta^{\prime 2}}-\sqrt{g_{ij}k^{i}k^{j}}}^{\sqrt{g_{ij}k^{i}k^{j}}_{+}}d(\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}})
×[fλc2(t)Θ(r+r)Θ(rr)+2fλc(t)fλd(t)d(r)]\displaystyle\times[f_{\lambda c}^{2}(t)\Theta(r_{+}-r)\Theta(r-r_{-})+2f_{\lambda c}(t)f_{\lambda d}(t)d(r)]
=\displaystyle= ma2(β33+β22)[fλc2(t)Θ(r+r)Θ(rr)\displaystyle m_{a}^{2}({\beta^{\prime 3}\over 3}+{\beta^{\prime 2}\over 2})[f_{\lambda c}^{2}(t)\Theta(r_{+}-r)\Theta(r-r_{-})
+2fλc(t)fλd(t)d(r)]\displaystyle+2f_{\lambda c}(t)f_{\lambda d}(t)d(r)]

The integral which accounts for the sterile axions is worked out as follows,

d(gijkikj)ma1+β2gijkikjgijkikj+d(gijk1ik1j)\displaystyle\int d(\sqrt{g_{ij}k^{i}k^{j}})\int_{m_{a}\sqrt{1+\beta^{\prime 2}}-\sqrt{g_{ij}k^{i}k^{j}}}^{\sqrt{g_{ij}k^{i}k^{j}}_{+}}d(\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}})
×magijkikj+gijk1ik1j\displaystyle\times{m_{a}\over\sqrt{g_{ij}k^{i}k^{j}}+\sqrt{g_{ij}k_{1}^{i}k_{1}^{j}}}
=\displaystyle= mad(gijkikj)[ln(gijkikj+ma2(1+β2+β))\displaystyle m_{a}\int d(\sqrt{g_{ij}k^{i}k^{j}})[\ln(\sqrt{g_{ij}k^{i}k^{j}}+{m_{a}\over 2}(\sqrt{1+\beta^{\prime 2}}+\beta^{\prime}))
ln(ma1+β2)]\displaystyle-\ln(m_{a}\sqrt{1+\beta^{\prime 2}})]
=\displaystyle= ma{[z+ma2(1+β2+β)]ln[z+ma2(1+β2+β)]\displaystyle m_{a}\{[z+{m_{a}\over 2}(\sqrt{1+\beta^{\prime 2}}+\beta^{\prime})]\ln[z+{m_{a}\over 2}(\sqrt{1+\beta^{\prime 2}}+\beta^{\prime})]
zzln(ma1+β2)}|+\displaystyle-z-z\ln(m_{a}\sqrt{1+\beta^{\prime 2}})\}\bigg{|}^{+}_{-}
=\displaystyle= ma{ma(1+β2+β)ln[ma(1+β2+β)]\displaystyle m_{a}\{m_{a}(\sqrt{1+\beta^{\prime 2}}+\beta^{\prime})\ln[m_{a}(\sqrt{1+\beta^{\prime 2}}+\beta^{\prime})]
ma1+β2ln[ma1+β2]\displaystyle-m_{a}\sqrt{1+\beta^{\prime 2}}\ln[m_{a}\sqrt{1+\beta^{\prime 2}}]
maβmaβln(ma1+β2)}\displaystyle-m_{a}\beta^{\prime}-m_{a}\beta^{\prime}\ln(m_{a}\sqrt{1+\beta^{\prime 2}})\}
=\displaystyle= ma2[(1+β2+β)ln(1+β2+β1+β2)β]\displaystyle m_{a}^{2}[(\sqrt{1+\beta^{\prime 2}}+\beta^{\prime})\ln({\sqrt{1+\beta^{\prime 2}}+\beta^{\prime}\over\sqrt{1+\beta^{\prime 2}}})-\beta^{\prime}]
=\displaystyle= ma2[(β+β22β36+)β]ma2β22.\displaystyle m_{a}^{2}[(\beta^{\prime}+{\beta^{\prime 2}\over 2}-{\beta^{\prime 3}\over 6}+...)-\beta^{\prime}]\approx m_{a}^{2}{\beta^{\prime 2}\over 2}~{}.

Substituting all four integrals into rate equation, we finally arrive at (14)

dnλdt=maΓa2π2g00\displaystyle\frac{dn_{\lambda}}{dt}={m_{a}\Gamma_{a}\over 2\pi^{2}}\sqrt{-g_{00}}
×{ma2β33[fac(t)Θ(r+r)Θ(rr)+fad(t)d(r)\displaystyle\times\{{m_{a}^{2}\beta^{\prime 3}\over 3}[f_{ac}(t)\Theta(r_{+}-r)\Theta(r-r_{-})+f_{ad}(t)d(r)
+2fac(t)fλc(t)Θ(r+r)Θ(rr)\displaystyle+2f_{ac}(t)f_{\lambda c}(t)\Theta(r_{+}-r)\Theta(r-r_{-})
+2(fac(t)fλd(t)+fad(t)fλc(t))d(r)\displaystyle+2(f_{ac}(t)f_{\lambda d}(t)+f_{ad}(t)f_{\lambda c}(t))d(r)
fλc2(t)Θ(r+r)Θ(rr)2fλc(t)fλd(t)d(r)]\displaystyle-f_{\lambda c}^{2}(t)\Theta(r_{+}-r)\Theta(r-r_{-})-2f_{\lambda c}(t)f_{\lambda d}(t)d(r)]
ma2β22[fλc2(t)Θ(r+r)Θ(rr)+2fλc(t)fλd(t)d(r)]}.\displaystyle-{m_{a}^{2}\beta^{\prime 2}\over 2}[f_{\lambda c}^{2}(t)\Theta(r_{+}-r)\Theta(r-r_{-})+2f_{\lambda c}(t)f_{\lambda d}(t)d(r)]\}~{}.
Acknowledgements.
We thank Kevin Ludwick for a helpful correspondence. This work was supported by US DOE grant DE-SC0019235.

References

  • (1) J. E. Kim, Phys. Rept.  150, 1 (1987). doi:10.1016/0370-1573(87)90017-2
  • (2) H. Y. Cheng, Phys. Rept.  158, 1 (1988). doi:10.1016/0370-1573(88)90135-4
  • (3) G. G. Raffelt, Phys. Rept.  198, 1 (1990). doi:10.1016/0370-1573(90)90054-6
  • (4) L. F. Abbott and P. Sikivie, Phys. Lett. B 120, 133 (1983) [Phys. Lett.  120B, 133 (1983)]. doi:10.1016/0370-2693(83)90638-X
  • (5) J. Preskill, M. B. Wise and F. Wilczek, Phys. Lett. B 120, 127 (1983) [Phys. Lett.  120B, 127 (1983)]. doi:10.1016/0370-2693(83)90637-8
  • (6) M. Dine and W. Fischler, Phys. Lett. B 120, 137 (1983) [Phys. Lett.  120B, 137 (1983)]. doi:10.1016/0370-2693(83)90639-1
  • (7) P. Sikivie, Phys. Lett. B 695, 22 (2011) doi:10.1016/j.physletb.2010.11.027 [arXiv:1003.2426 [astro-ph.GA]].
  • (8) Enander, J., A. Pargner, and T. Schwetz, J. Cosmol. Astropart. Phys. 12, 038 (2017)
  • (9) M. Fairbairn, D. J. E. Marsh, J. Quevillon and S. Rozier, Phys. Rev. D 97, no. 8, 083502 (2018) doi:10.1103/PhysRevD.97.083502 [arXiv:1707.03310 [astro-ph.CO]].
  • (10) M. Fairbairn, D. J. E. Marsh and J. Quevillon, Phys. Rev. Lett.  119, no. 2, 021101 (2017) doi:10.1103/PhysRevLett.119.021101 [arXiv:1701.04787 [astro-ph.CO]].
  • (11) E. W. Kolb and I. I. Tkachev, Phys. Rev. Lett.  71, 3051 (1993) doi:10.1103/PhysRevLett.71.3051 [hep-ph/9303313].
  • (12) E. W. Kolb and I. I. Tkachev, Phys. Rev. D 49, 5040 (1994) doi:10.1103/PhysRevD.49.5040 [astro-ph/9311037].
  • (13) M. P. Hertzberg and E. D. Schiappacasse, JCAP 11, 004 (2018) doi:10.1088/1475-7516/2018/11/004
  • (14) D. G. Levkov, A. G. Panin and I. I. Tkachev, Phys. Rev. D 102, no.2, 023501 (2020)
  • (15) E. Braaten and H. Zhang, Rev. Mod. Phys.  91, no. 4, 041002 (2019). doi:10.1103/RevModPhys.91.041002
  • (16) T. Ikeda, R. Brito and V. Cardoso, Phys. Rev. Lett. 122, no.8, 081101 (2019)
  • (17) M. Boskovic, R. Brito, V. Cardoso, T. Ikeda and H. Witek, Phys. Rev. D 99, no.3, 035006 (2019)
  • (18) A. H. Guth, M. P. Hertzberg and C. Prescod-Weinstein, Phys. Rev. D 92, no. 10, 103513 (2015) doi:10.1103/PhysRevD.92.103513 [arXiv:1412.5930 [astro-ph.CO]].
  • (19) E. Braaten, A. Mohapatra and H. Zhang, Phys. Rev. D 98, no. 9, 096012 (2018) doi:10.1103/PhysRevD.98.096012 [arXiv:1806.01898 [hep-ph]].
  • (20) D. J. E. Marsh, Phys. Rept.  643, 1 (2016) doi:10.1016/j.physrep.2016.06.005 [arXiv:1510.07633 [astro-ph.CO]].
  • (21) T. W. Kephart and T. J. Weiler, Phys. Rev. Lett.  58, 171 (1987). doi:10.1103/PhysRevLett.58.171
  • (22) I. I. Tkachev, Phys. Lett. B 191, 41 (1987). doi:10.1016/0370-2693(87)91318-9
  • (23) T. W. Kephart and T. J. Weiler, Phys. Rev. D 52, 3226 (1995). doi:10.1103/PhysRevD.52.3226
  • (24) L. Chen and T. W. Kephart, Phys. Rev. D 101, no. 10, 103033 (2020) doi:10.1103/PhysRevD.101.103033 [arXiv:2002.07885 [hep-ph]].
  • (25) L. Chen and T. W. Kephart, arXiv:2004.13308 [hep-ph].
  • (26) S. L. Adler, Phys. Rev.  177, 2426 (1969). doi:10.1103/PhysRev.177.2426
  • (27) J. Bell and R. Jackiw, Nuovo Cim. A 60, 47-61 (1969) doi:10.1007/BF02823296
  • (28) P. Sikivie, Phys. Lett. B 432, 139 (1998) doi:10.1016/S0370-2693(98)00595-4 [astro-ph/9705038].
  • (29) L. D. Duffy and P. Sikivie, Phys. Rev. D 78, 063508 (2008) doi:10.1103/PhysRevD.78.063508 [arXiv:0805.4556 [astro-ph]].
  • (30) J. G. Rosa and T. W. Kephart, Phys. Rev. Lett.  120, no. 23, 231102 (2018) doi:10.1103/PhysRevLett.120.231102 [arXiv:1709.06581 [gr-qc]].
  • (31) J. H. Buckley, P. S. B. Dev, F. Ferrer and F. P. Huang, arXiv:2004.06486 [astro-ph.HE].