This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Statistical Analysis of Chen Distribution Under Improved Adaptive Type-II Progressive Censoring

Li Zhang🖂 İD
College of Mathematics and Statistics
Northwest Normal University, Lanzhou 730070, China
🖂The corresponding author. Email address: [email protected]
Abstract

This paper takes into account the estimation for the two unknown parameters of the Chen distribution with bathtub-shape hazard rate function under the improved adaptive Type-II progressive censored data. Maximum likelihood estimation for two parameters are proposed and the approximate confidence intervals are established using the asymptotic normality. Bayesian estimation are obtained under the symmetric and asymmetric loss function, during which the importance sampling and Metropolis-Hastings algorithm are proposed. Finally, the performance of various estimation methods is evaluated by Monte Carlo simulation experiments, and the proposed estimation method is illustrated through the analysis of a real data set.

Keywords: Bathtub-shape hazard rate function; Improved adaptive Type-II progressive censoring; Maximum likelihood estimation; Approximate confidence interval; Bayesian estimation; Monte Carlo simulation

1 Introduction

In reliability research and lifetime test experiments, most of the experiments take a long time to terminate, but considering the cost and time of the experiment, the failure time of all individuals cannot be observed, only the exact time of failure of a few experimental individuals can be observed, and the factors that may lead to individual failures need to be considered, the following research on censored data is reasonable and necessary. The classical censoring schemes includes type-I and type-II censoring, which are the most basic censoring schemes. They can be described as: suppose there are nn independent identical units placed in a lifetime experiment, type-I censoring requires that the experiment be terminated at a prefixed time point TT, while type-II censoring requires that he experiment is terminated when the predetermined number of failed individuals m<nm<n is observed. The hybrid censoring scheme is a mixture of type-I censoring and type-II censoring. Epstein (1954) proposed a type-I hybrid censoring scheme for the first time. Chen & Bhattacharyya (1987) derived the exact distribution of the maximum likelihood estimator of the mean of an exponential distribution and an exact lower confidence bound for the mean based on a hybrid censored sample. Childs et al. (2003) propose a hybrid censoring scheme which guarantees at least a fixed number of failures in a life testing experiment and the exacted distribution of maximum likelihood estimate with exponential distribution as well as exact lower confidence bound for the mean ia studied. Kundu (2007) presents the statistical inference on Weibull parameters when the data are hybrid censored. The disadvantage of the above three censoring schemes is that these cells are not removed at all time points except at the termination of the experiment. To solve this problem, a type-II progressive censoring scheme is used, which is a scheme that combines type-II progressive censoring and type-I censoring. Refer to the type-II progressive censoring scheme proposed by Balakrishnan & Aggarwala (2000). The type-II progressive censoring scheme can be described as: consider nn identical units placed in a lifetime test experiment, let X1,X2,,XnX_{1},X_{2},\cdots,X_{n} be the corresponding failure time and X1<X2<<XnX_{1}<X_{2}<\cdots<X_{n}, let mm is the predetermined number of failures, when the first failure has occurred, record the failure time as X1:m:nX_{1:m:n}, at this time there are R1R_{1} units from the remaining n1n-1 units randomly removed. Similarly, when the second failure time X2:m:nX_{2:m:n} is observed, R2R_{2} units are randomly removed from the remaining n2R1n-2-R_{1} units, and so on, at the mm-thth failure time Xm:m:nX_{m:m:n}, all remaining nmR1R2Rm1n-m-R_{1}-R_{2}-\cdots-R_{m-1} units are removed. In the progressive censoring scheme, R1,R2,,RmR_{1},R_{2},\cdots,R_{m} are predetermined prior to the study and are not changed during the experiment. Childs et al. (2008) proposed a type-II progressive hybrid censoring scheme. If Xm:m:n>TX_{m:m:n}>T, the experiment is terminated at Xm:m:nX_{m:m:n}, otherwise, the experiment terminated at TT. Dey & Dey (2014) takes into account the estimation for the unknown parameter of the Rayleigh distribution under type-II progressive censoring scheme. Tomer & Panwar (2015) considered point and interval estimation for the Maxwell distribution of type-I progressive hybrid censored data.o¨\ddot{o}.Gu¨\ddot{u}ru¨\ddot{u}nlu¨\ddot{u} Alma & Belaghi (2016) discussed the analysis of progressive type-II progressive hybrid censored data when the lifetime distribution of the individual item is the normal and extreme value distributions. Cramer et al. (2016) considered the exponential distribution under this censoring scheme. Zhang & Gui (2019) studied the inference of reliability of generalized Rayleigh distribution based on the progressively type-II censored data. Zhang & Gui (2020) develop a goodness of fit test process for Pareto distribution based on progressive type-II censoring scheme.

However, a problem with this type of censoring scheme is that the number of effective units is random. If the effective sample obtained is very small or close to 0, it will make the statistical inference process infeasible or the experimental efficiency is very low. Therefore, to avoid this problem, Ng et al. (2009) proposed for the first time a new scheme called adaptive type-II progressive censoring (AT-II PCS) which is a mixture of type-I censoring and type-II progressive censoring. Under this censoring scheme, the number of failed units mm to be observed and the progressive censoring scheme R1,R2,,RmR_{1},R_{2},\cdots,R_{m} are given in advance, but in the process of the experiment, some RiR_{i} values may change according to the situation, so this censoring scheme can try to strike a balance between the total experiment time, the number of failed units, and the validity of the statistical analysis. The detailed description is as follows: if Xm:m:n<TX_{m:m:n}<T, the experiment ends at point Xm:m:nX_{m:m:n}, and the remaining RmR_{m} units are all removed. Otherwise, if before time point TT, the number of failed individuals is j(0<j<m)j(0<j<m) and Xj:m:n<T<Xj+1:m:nX_{j:m:n}<T<X_{j+1:m:n}. Let Rj+1==Rm1=0R_{j+1}=\cdots=R_{m-1}=0, The test continued until the failure of the m-th unit was observed and Rm=nmi=1jRi(i=1,,j)R_{m}=n-m-\sum_{i=1}^{j}R_{i}\quad(i=1,\cdots,j), the experiment ends at point Xm:m:nX_{m:m:n}. Here TT, mm, R1R_{1}, R2R_{2}, \cdots, RmR_{m} (R1+R2++Rm+m=n)(R_{1}+R_{2}+\cdots+R_{m}+m=n) are all preset before the experiment. The value of time TT plays a very important role in determining the value of RiR_{i}. When TT\to\infty, it is obvious that time is not the main concern of the experimenter. So the censoring scheme will degenerate into a general type-II progressive censoring, if T0T\to 0, the censoring scheme degenerates into the traditional type-II censoring scheme. Some general statistical properties of an adaptive type-II progressive censoring scheme are investigated by Ye et al. (2014). Nassar & Abo-Kasem (2017) describes the estimation of the inverse Weibull parameters under the AT-II PCS. El-Din et al. (2017) studied the estimation of generalized exponential distribution based on AT-II PCS. Panahi & Moradi (2020) discussed the problem of estimating parameters of the inverted exponentiated Rayleigh distribution based on AT-II PCS. Mohan & Chacko (2021) studied the estimation of parameters for a two parameter Kumaraswamy-exponential distribution based on AT-II PCS. An adaptive type-II progressive hybrid censored sampling with random removals is considered by Elshahhat & Nassar (2022). Lv et al. (2022) studied the statistical inference of Gompertz distribution based on AT-II PCS. In AT-II PCS, the time of the experiment is not an important consideration. We focus on being able to observe enough mm failure units. If the test unit is a high-reliability product, the duration of the experiment will be very long, while AT-II PCS does not guarantee a satisfactory, appropriate experimental total test time. But in many practical situations, the time of the experiment is inevitably an important factor to consider.

To remedy this deficiency, Yan et al. (2021) proposed an improved censoring scheme called improved adaptive Type-II progressive censoring scheme(IAT-II PCS). One of its advantages is that it is guaranteed to end within the time specified in the experiment. A detailed description of IAT-II PCS is as follows: suppose there are nn units in the experiment. Assuming that they are independent and identically distributed, the failure unit mm to be observed and the censoring scheme R=(R1,R2,,Rm)R=(R_{1},R_{2},...,R_{m}) are per-specified before the experiment. In addition, two time thresholds T1T_{1} and T2T_{2} (T1,T2>0)(T_{1},T_{2}>0) are per-specified with T1<T2T_{1}<{T_{2}}, where time T1T_{1} is a warning about the test time, and T2T_{2} is the maximum time allowed for the experiment, which means that when the experiment is carried out to time T1T_{1}, the experiment needs to be accelerated. In order to ensure that as many failed individuals as possible can be observed when the experiment is terminated at T2T_{2}, no experimental units will be censored when the experiment is accelerated. Of course, under this censoring scheme, when the experiment is carried out for enough time, the experiment is allowed to observe less than mm failure individuals. The experiment has the following three cases.

Refer to caption
Figure 1: Schematic representation of IAT-II PCS
Case1:\displaystyle Case1: X1:m:n,X2:m:n,,Xm:m:n,ifXm:m:n<T1<T2,\displaystyle X_{1:m:n},X_{2:m:n},\dots,X_{m:m:n},\quad if\ X_{m:m:n}<T_{1}<T_{2}, (1)
Case2:\displaystyle Case2: X1:m:n,,Xk1:m:n,Xm:m:n,ifXk1:m:n<T1<Xm:m:n<T2,\displaystyle X_{1:m:n},\dots,X_{k_{1}:m:n}\dots,X_{m:m:n},\quad if\ X_{k_{1}:m:n}<T_{1}<X_{m:m:n}<T_{2}, (2)
Case3:\displaystyle Case3: X1:m:n,,Xk1:m:n,Xk2:m:n,ifXk1:m:n<T1<Xk2:m:n<T2,\displaystyle X_{1:m:n},\dots,X_{k_{1}:m:n}\dots,X_{k_{2}:m:n},\quad if\ X_{k_{1}:m:n}<T_{1}<X_{k_{2}:m:n}<T_{2}, (3)

The censoring scheme and the end position of the experiment in these three cases are as follows

Case1:\displaystyle Case1: R=(R1,R2,,Rm),Rm=0,\displaystyle R=(R_{1},R_{2},...,R_{m}),R_{m}=0, (4)
Case2:\displaystyle Case2: R=(R1,R2,,Rk1,0,,0,Rm),Rm=nmi=1k1Ri,\displaystyle R=(R_{1},R_{2},...,R_{k_{1}},0,...,0,R_{m}),R_{m}=n-m-\sum_{i=1}^{k_{1}}R_{i}, (5)
Case3:\displaystyle Case3: R=(R1,R2,,Rk1,0,,Rk2,RT2),Rk2=0,RT2=nk2i=1k1Ri,\displaystyle R=(R_{1},R_{2},...,R_{k_{1}},0,...,R_{k_{2}},R_{T_{2}}),R_{k_{2}}=0,R_{T_{2}}=n-k_{2}-\sum_{i=1}^{k_{1}}R_{i}, (6)

In real life, there are many hazard rate functions used to model real life data, the most popular failure rate functions are constant, increasing or decreasing failure rate functions. For example Weibull, gamma and exponentiated exponential, among others. But there are other different forms of the hazard function, such as unimodal, bathtub-shaped, increasing-decreasing-increasing, etc. These distribution models described above also do not fit reasonably non-monotonic hazard rates, especially bathtub shape hazard rates that are common in reliability and other fields. An example of a bathtub-shaped failure rate is that the failure rate of newly installed electronic equipment is relatively high, failures often occur, production performance drops to a minimum level for a short period of time, and then the equipment will stabilize after a few days or months of use, remaining at this level for several years, and then the equipment underwent various forms of overhaul or technical transformation to restore production performance. Yan et al. (2021) used the Burr-XII distribution in the IAT-II PC proposed in 2021, and its hazard rate function could not fit the data of the bathtub curve. In recent years, a number of probability distributions have been introduced to model the risk rate of having a bathtub shape, which can be found in the literature. In this paper, we mainly focus on a two-parameter bathtub distribution proposed by Chen (2000). the probability density function (PDF)(PDF) and cumulative distribution function (CDF)(CDF) of XX are given by

f(x;α,β)\displaystyle f(x;\alpha,\beta) =αβxβ1exp[α(1exβ)+xβ]x>0,α,β>0,\displaystyle=\alpha\beta x^{\beta-1}\exp\left[\alpha(1-e^{x^{\beta}})+x^{\beta}\right]\quad x>0,\alpha,\beta>0, (7)
F(x;α,β)\displaystyle F(x;\alpha,\beta) =1exp[α(1exβ)]x>0,α,β>0.\displaystyle=1-\exp\left[\alpha(1-e^{x^{\beta}})\right]\quad x>0,\alpha,\beta>0. (8)

The reliability and the hazard rate functions hazard function of XX are as follows

S(x;α,β)\displaystyle S(x;\alpha,\beta) =\displaystyle= exp[α(1exβ)]x>0,α,β>0,\displaystyle\exp\left[\alpha(1-e^{x^{\beta}})\right]\quad x>0,\alpha,\beta>0, (9)
H(x;α,β)\displaystyle H(x;\alpha,\beta) =\displaystyle= αβxβ1exβx>0,α,β>0,\displaystyle\alpha\beta x^{\beta-1}e^{x^{\beta}}\quad x>0,\alpha,\beta>0, (10)

where α\alpha and β\beta are the unknown scale and shape parameters, respectively, and when β<1\beta<1, the hazard rate function is bathtub-shape.

Refer to caption
Figure 2: Failure rate functions with α=2\alpha=2.
Refer to caption
Figure 3: Failure rate functions with α=0.2\alpha=0.2.

The rest of this paper is organized as follows: In Section 22, maximum likelihood estimate (MLE) on unknown parameters is derived and the approximate confidence intervals is proposed. In Section 33, Bayesian estimation is performed with gamma prior, and Importance sampling and Metropolis-Hastings algorithm are used. Next, based on the Monte Carlo method, a large number of simulations are carried out for parameter estimations and interval estimations in Section 44. A real data set has been used to evaluated the estimation methods in Section 22 and 33. Finally, in Section 66, we put forward some concluding conclusions.

2 Model description and notation

Let X=X1:m:nR,X2:m:nR,,Xk1:m:nR,,Xk2:m:nR,,Xm:m:nRX=X_{1:m:n}^{R},X_{2:m:n}^{R},\dots,X_{k_{1}:m:n}^{R},\dots,X_{k_{2}:m:n}^{R},\dots,X_{m:m:n}^{R} is an IAT-II PC sample from a lifetime test of size mm from a sample of size nn , where lifetimes have Chen distribution with pdf,cdf as given by (7). With predetermined number of removal of units from experiment, say R=(R1,R2,,Rk1,,Rk2,,Rm)R=(R_{1},R_{2},\dots,R_{k_{1}},\dots,R_{k_{2}},\dots,R_{m}). The parameter xi:m:nRx_{i:m:n}^{R} (simplified as xix_{i} in later equation, i=1,2,,mi=1,2,\dots,m) is used to represent the observed values of IAT-II PC sample. on this basis, the corresponding likelihood function is given by

L=Ci=1D2f(xi)i=1D1[(1F(xi))]Ri(1F(xB))B,\displaystyle L=C\prod_{i=1}^{D_{2}}f(x_{i})\prod_{i=1}^{D_{1}}\left[\left(1-F(x_{i})\right)\right]^{R_{i}}\left(1-F(x_{B})\right)^{B}, (11)

where D2D_{2}, D1D_{1}, BB, CC are shown in Table (1)

Table 1: Interpretation of D2D_{2}, D1D_{1}, BB, CC in likelihood function
      D2D_{2}       D1D_{1}       BB       C
      Case1       mm       mm       0       i=1m(ni+1s=1i1Rs)\prod\limits_{i=1}^{m}\left(n-i+1-\sum\limits_{s=1}^{i-1}R_{s}\right)
      Case2       mm       k1k_{1}       nmi=1k1Rin-m-\sum\limits_{i=1}^{k_{1}}R_{i}       i=1m(ni+1s=1k1Rs)\prod\limits_{i=1}^{m}\left(n-i+1-\sum\limits_{s=1}^{k_{1}}R_{s}\right)\quad
      Case3       k2k_{2}       k1k_{1}       nk2i=1k1Rin-k_{2}-\sum\limits_{i=1}^{k_{1}}R_{i}       i=1m(ni+1s=1k1Rs)\prod\limits_{i=1}^{m}\left(n-i+1-\sum\limits_{s=1}^{k_{1}}R_{s}\right)\quad

Then, from (7), (11), The likelihood function of α\alpha and β\beta is given by

L(α,β)=C[i=1D2αβxiβ1exp(α(1exiβ)+xiβ)]×[i=1D1[exp(α(1exiβ))]Ri][exp(α(1exBβ))]B.\begin{split}L(\alpha,\beta)=&C\left[\prod_{i=1}^{D_{2}}\alpha\beta x_{i}^{\beta-1}\exp\left(\alpha\left(1-e^{x_{i}^{\beta}}\right)+x_{i}^{\beta}\right)\right]\\ &\times\left[\prod_{i=1}^{D_{1}}\left[\exp\left(\alpha\left(1-e^{x_{i}^{\beta}}\right)\right)\right]^{R_{i}}\right]\left[\exp\left(\alpha\left(1-e^{x_{B}^{\beta}}\right)\right)\right]^{B}.\end{split} (12)

Then, we propose several statistical inference methods.

2.1 Maximum likelihood estimation

We can write the natural logarithm of the likelihood function as follows

lnL(α,β)=lnC+D2lnα+D2lnβ+i=1D2(β1)lnxi+α(1exiβ)+xiβ+i=1D1Riα(1exiβ)+Bα(1exBβ).\begin{split}\ln L(\alpha,\beta)=&\ln C+D_{2}\ln\alpha+D_{2}\ln\beta+\sum_{i=1}^{D_{2}}(\beta-1)\ln x_{i}\\ &+\alpha(1-e^{x_{i}^{\beta}})+x_{i}^{\beta}+\sum_{i=1}^{D_{1}}R_{i}\alpha(1-e^{x_{i}^{\beta}})+B\alpha(1-e^{x_{B}^{\beta}}).\end{split} (13)

The Maximum likelihood estimations of α\alpha and β\beta can be obtained by solving the following two equations

lnL(α,β)α=\displaystyle\frac{\partial\ln L(\alpha,\beta)}{\partial\alpha}= D2α+i=1D2(1exiβ)+i=1D1Ri(1exiβ)+B(1exBβ)=0,\displaystyle\frac{D_{2}}{\alpha}+\sum_{i=1}^{D_{2}}(1-e^{x_{i}^{\beta}})+\sum_{i=1}^{D_{1}}R_{i}(1-e^{x_{i}^{\beta}})+B(1-e^{x_{B}^{\beta}})=0, (14)
lnL(α,β)β=\displaystyle\frac{\partial\ln L(\alpha,\beta)}{\partial\beta}= D2β+i=1D2lnxi+xiβlnxi\displaystyle\frac{D_{2}}{\beta}+\sum_{i=1}^{D_{2}}\ln x_{i}+x_{i}^{\beta}\ln x_{i}
α(i=1D2exiβxiβlnxi+i=1D1Riexiβxiβlnxi+BexBβxBβlnxB)=0.\displaystyle-\alpha\left(\sum_{i=1}^{D_{2}}e^{x_{i}^{\beta}}x_{i}^{\beta}\ln x_{i}+\sum_{i=1}^{D_{1}}R_{i}e^{x_{i}^{\beta}}x_{i}^{\beta}\ln x_{i}+Be^{x_{B}^{\beta}}x_{B}^{\beta}\ln x_{B}\right)=0. (15)

From (14), the MLE of α\alpha can be obtained as follows

α^=D2ν(xi,β),\displaystyle\hat{\alpha}=\frac{D2}{\nu(x_{i},\beta)}, (16)

where ν(xi,β)=i=1D2(exiβ1)+i=1D1Ri(exiβ1)+B(exBβ1)\nu(x_{i},\beta)=\sum_{i=1}^{D_{2}}(e^{x_{i}^{\beta}}-1)+\sum_{i=1}^{D_{1}}R_{i}(e^{x_{i}^{\beta}}-1)+B(e^{x_{B}^{\beta}}-1). Now substitute equation (16) into equation (15), substituting α^\hat{\alpha} for α\alpha to get the MLE estimate of β\beta as follows

D2β+i=1D2lnxi(1+xiβ)D2ν(xi,β)(i=1D2ϕi(xi,β)+i=1D1Riϕi(xi,β)+BϕB(xB,β))=0,\displaystyle\frac{D_{2}}{\beta}+\sum_{i=1}^{D_{2}}\ln x_{i}(1+x_{i}^{\beta})-\frac{D2}{\nu(x_{i},\beta)}\left(\sum_{i=1}^{D_{2}}\phi_{i}(x_{i},\beta)+\sum_{i=1}^{D_{1}}R_{i}\phi_{i}(x_{i},\beta)+B\phi_{B}(x_{B},\beta)\right)=0, (17)

where ϕi(xi,β)=exiβxiβlnxi\phi_{i}(x_{i},\beta)=e^{x_{i}^{\beta}}x_{i}^{\beta}\ln x_{i}. Equation (17) does not have a closed-form solution, so the MLE of β\beta can be obtained by numerical methods of the following nonlinear equations

g(β)=(i=1D2lnxi(1+xiβ)D2+i=1D2ϕi(xi,β)+i=1D1Riϕi(xi,β)+BϕB(xB,β)ν(xi,β))1.\displaystyle g(\beta)=\left(-\frac{\sum_{i=1}^{D_{2}}\ln x_{i}(1+x_{i}^{\beta})}{D_{2}}+\frac{\sum_{i=1}^{D_{2}}\phi_{i}(x_{i},\beta)+\sum_{i=1}^{D_{1}}R_{i}\phi_{i}(x_{i},\beta)+B\phi_{B}(x_{B},\beta)}{\nu(x_{i},\beta)}\right)^{-1}. (18)

The MLE of β\beta is denoted by β^\hat{\beta}, and the solution for g(β)=βg(\beta)=\beta can be obtained by a simple iterative method

β(k+1)=g(β(k)),\displaystyle\beta^{(k+1)}=g(\beta^{(k)}),

here β(k)\beta^{(k)} represents the kk-thth iteration, and the iterative process stops when the difference between two consecutive solutions is less than a predetermined tolerance limit. When we obtain the MLE of β\beta, the MLE of α\alpha can be obtained directly from equation (16).

2.2 Approximate Confidence Intervals

In this subsection, we further discuss the (1γ)×100%(1-\gamma)\times 100\% approximate confidence intervals for the unknown parameters λ=(α,β)\lambda=(\alpha,\beta) based on the asymptotic distribution of the MLE λ^\hat{\lambda} is (λ^λ)N2(0,I1(λ))(\hat{\lambda}-\lambda)\to N_{2}(0,I^{-1}(\lambda)) (see[Jerald. (1982)]). where I1(λ)I^{-1}(\lambda) is defined as the inverse Fisher information matrix of the two unknown parameters.

The fisher information matrix I(λ)I(\lambda) is written as which elements are negatives of expected values of the second partial derivatives of the lnL(α,β)\ln L(\alpha,\beta). The results are as follows

I(λ)=E[2lnL(α,β)2α2lnL(α,β)αβ2lnL(α,β)βα2lnL(α,β)2β].\displaystyle I(\lambda)=-E\begin{bmatrix}\frac{\partial^{2}\ln L(\alpha,\beta)}{\partial^{2}\alpha}&\frac{\partial^{2}\ln L(\alpha,\beta)}{\partial\alpha\partial\beta}\\ \frac{\partial^{2}\ln L(\alpha,\beta)}{\partial\beta\partial\alpha}&\frac{\partial^{2}\ln L(\alpha,\beta)}{\partial^{2}\beta}\end{bmatrix}. (19)

In general, it can be shown that the asymptotic variance-covariance matrix of MLEMLE is inverting the fisher information matrix I1(λ)I^{-1}(\lambda). The specific details are as follows

I1(λ)=[2lnL(α,β)2α2lnL(α,β)αβ2lnL(α,β)βα2lnL(α,β)2β](α,β)=(α^,β^)1=[var(α^)cov(α^,β^)cov(β^,α^)var(β^)].\displaystyle I^{-1}(\lambda)=\begin{bmatrix}-\frac{\partial^{2}\ln L(\alpha,\beta)}{\partial^{2}\alpha}&-\frac{\partial^{2}\ln L(\alpha,\beta)}{\partial\alpha\partial\beta}\\ -\frac{\partial^{2}\ln L(\alpha,\beta)}{\partial\beta\partial\alpha}&-\frac{\partial^{2}\ln L(\alpha,\beta)}{\partial^{2}\beta}\end{bmatrix}_{(\alpha,\beta)=(\hat{\alpha},\hat{\beta})}^{-1}=\begin{bmatrix}var(\hat{\alpha})&cov(\hat{\alpha},\hat{\beta})\\ cov(\hat{\beta},\hat{\alpha})&var(\hat{\beta})\end{bmatrix}. (20)

From the log-likelihood function in (13) we can obtain the second derivatives of lnL(α,β)\ln L(\alpha,\beta) as follow

2lnL(α,β)2α\displaystyle\frac{\partial^{2}\ln L(\alpha,\beta)}{\partial^{2}\alpha} =\displaystyle= D2α2,\displaystyle-\frac{D_{2}}{\alpha^{2}},
2lnL(α,β)2β\displaystyle\frac{\partial^{2}\ln L(\alpha,\beta)}{\partial^{2}\beta} =\displaystyle= D2β2+i=1D2ln2xixiβα(i=1D2ϕiξi+i=1D1Riϕiξi+BϕBξB),\displaystyle-\frac{D_{2}}{\beta^{2}}+\sum_{i=1}^{D_{2}}\ln^{2}x_{i}x_{i}^{\beta}-\alpha\left(\sum_{i=1}^{D_{2}}\phi_{i}\xi_{i}+\sum_{i=1}^{D_{1}}R_{i}\phi_{i}\xi_{i}+B\phi_{B}\xi_{B}\right), (21)
2lnL(α,β)βα\displaystyle\frac{\partial^{2}\ln L(\alpha,\beta)}{\partial\beta\partial\alpha} =\displaystyle= 2lnL(α,β)αβ=(i=1D2ϕi+i=1D1Riϕi+BϕB),\displaystyle\frac{\partial^{2}\ln L(\alpha,\beta)}{\partial\alpha\partial\beta\ }=-\left(\sum_{i=1}^{D_{2}}\phi_{i}+\sum_{i=1}^{D_{1}}R_{i}\phi_{i}+B\phi_{B}\right),

where ξi=lnxi(1+xiβ)\xi_{i}=\ln x_{i}(1+x_{i}^{\beta}), ξB=lnxB(1+xBβ)\xi_{B}=\ln x_{B}(1+x_{B}^{\beta}), ϕi(xi,β)β=exp(xiβ)xiβlnxiξi\frac{\partial\phi_{i}(x_{i},\beta)}{\partial\beta}=\exp(x_{i}^{\beta})x_{i}^{\beta}\ln x_{i}\xi_{i}.

Therefore, we can obtain the (1γ)×100%(1-\gamma)\times 100\% approximate confidence intervals for the parameters α\alpha and β\beta as follow

(α^+Zγ/2var(α),α^+Zγ/2var(α)),(β^+Zγ/2var(β),β^+Zγ/2var(β)),\displaystyle\left({\Large}\hat{\alpha}+Z_{\gamma/2}\sqrt{var(\alpha)},\ \hat{\alpha}+Z_{\gamma/2}\sqrt{var(\alpha)}\right),\quad\left({\Large}\hat{\beta}+Z_{\gamma/2}\sqrt{var(\beta)},\ \hat{\beta}+Z_{\gamma/2}\sqrt{var(\beta)}\right), (22)

where Zγ/2Z_{\gamma/2} is the upper (γ/2)th(\gamma/2)^{th} percentile point of a standard normal distribution.

3 Bayesian estimation

This section is devoted to obtain the Bayes estimators of the parameters α\alpha and β\beta of Chen distribution based on improved adaptive asymptotic type-II censored data. The Bayesian estimates are obtained using symmetric as well as asymmetric loss function such as squared error loss function(SEL), LINEX loss function(LL) and entropy loss(EL) function. We assume the parameters α\alpha and β\beta independent and have gamma prior distributions with the following prior distribution. G(a,b)G(a,b) and G(c,d)G(c,d) distribution with PDFs respectively as

π1(α;a,b)=baΓ(a)αa1ebα,α>0,a,b>0,\displaystyle\pi_{1}(\alpha;a,b)=\frac{b^{a}}{\Gamma(a)}\alpha^{a-1}e^{-b\alpha},\quad\alpha>0,a,b>0,
π2(β;c,d)=dcΓ(c)βc1edβ,β>0,c,d>0.\displaystyle\pi_{2}(\beta;c,d)=\frac{d^{c}}{\Gamma(c)}\beta^{c-1}e^{-d\beta},\quad\beta>0,c,d>0.

Therefore, the joint prior distribution of α\alpha and β\beta is given by

π(α,β)αa1βc1e(bα+dβ)α,β>0,a,b,c,d>0.\displaystyle\pi(\alpha,\beta)\propto\alpha^{a-1}\beta^{c-1}e^{-(b\alpha+d\beta)}\quad\alpha,\beta>0,a,b,c,d>0. (23)

Subsequently, the joint posterior distribution of α\alpha and β\beta becomes

π(α,βX)=L(α,βX)π(α,β)00L(α,βX)π(α,β)dαdβ.\displaystyle\pi(\alpha,\beta\mid X)=\frac{L(\alpha,\beta X)\pi(\alpha,\beta)}{\int_{0}^{\infty}\int_{0}^{\infty}L(\alpha,\beta X)\pi(\alpha,\beta)\rm d\alpha\rm d\beta}.

Given α\alpha, β\beta, directly calculate the joint posterior distribution π(α,βX)\pi(\alpha,\beta\mid X) as follow

π(α,βX)αD2+a1exp[α(bi=1D2(1exiβ)i=1D1Ri(1exiβ)B(1exBβ))]×βD2+c1exp[β(di=1D2logxi)]exp(i=1D2xiβ).\displaystyle\begin{aligned} \pi(\alpha,\beta\mid X)\propto&\alpha^{D_{2}+a-1}\exp\left[-\alpha\left(b-\sum_{i=1}^{D_{2}}\left(1-e^{x_{i}^{\beta}}\right)-\sum_{i=1}^{D_{1}}R_{i}\left(1-e^{x_{i}^{\beta}}\right)\right.\right.\\ &\left.\left.-B\left(1-e^{x_{B}^{\beta}}\right)\right)\right]\times\beta^{D_{2}+c-1}\exp\left[-\beta\left(d-\sum_{i=1}^{D_{2}}logx_{i}\right)\right]\exp\left(\sum_{i=1}^{D_{2}}x_{i}^{\beta}\right).\end{aligned} (24)

Under the square error loss function (SEL), the Bayes estimate for any parameter μ\mu is given by

d^SEL=E(ημ).\displaystyle\hat{d}_{SEL}=E(\eta\mid\mu). (25)

For LINEX loss function(LL), the Bayes estimate for any parameter uu is given by

d^LL=1glnEη(egημ).\displaystyle\hat{d}_{LL}=-\frac{1}{g}\ln E_{\eta}(e^{-g\eta}\mid\mu). (26)

For entropy loss function(EL), the Bayesian estimates obtained by minimizing the risk function are

d^EL=[Eη(ηqμ)]1q.\displaystyle\hat{d}_{EL}=\left[E_{\eta}({\eta^{-q}}\mid\mu)\right]^{-\frac{1}{q}}. (27)

Where gg and qq are known constants, η\eta represents any one of the unknown parameters. Obviously, (25) (26) (27) cannot get an explicit solution. Therefore, the Markov chain Carlo method(MCMC) is used to generate samples from the posterior density function and in turn to compute the Bayesian estimation of the unknown parameters. The following two technique are introduced to calculate bayes estimation.

3.1 Metropolis-Hastings algorithm with Gibbs sampling

The Metropolis-Hastings (M-H) algorithm as a general Markov chain Monte Carlo (MCMC) method be introduced by Metropolis et al. (1953) and then Hastings (1970) extended the M-H algorithm. Gibbs sampling method is a special case of the MCMC method. It can be used to generated a sequence of sampling from the full conditional probability distributions of random variables. Gibbs sampling requires that the joint posterior distribution of each parameter be decomposed into full conditional distribution and then sampling from them. We can apply the Gibbs sampling procedure to generate a sample from (24), and then compute the Bayesian estimation.

Therefore, the posterior conditional density function of α\alpha and β\beta can be obtained as

π(αβ,x)αD2+a1exp[α[bi=1D2(1exiβ)i=1D1Ri(1exiβ)B(1exBβ)]],\displaystyle\pi(\alpha\mid\beta,x)\propto\alpha^{D_{2}+a-1}\exp\left[-\alpha\left[b-\sum_{i=1}^{D_{2}}(1-e^{x_{i}^{\beta}})-\sum_{i=1}^{D_{1}}R_{i}(1-e^{x_{i}^{\beta}})-B(1-e^{x_{B}^{\beta}})\right]\right], (28)
π(βα,x)βD2+c1exp[β(di=1D2lnxi)]exp(i=1D2xiβ),\displaystyle\ \pi(\beta\mid\alpha,x)\propto\beta^{D_{2}+c-1}\exp\left[-\beta\left(d-\sum_{i=1}^{D_{2}}\ln x_{i}\right)\right]\exp\left(\sum_{i=1}^{D_{2}}x_{i}^{\beta}\right), (29)

here, we use the M-H algorithm with Gibbs sampling to generate samples from (28) and (29). The M-H algorithm is performed for Bayesian estimates.

Algorithm 1 Metropolis-Hastings algorithm
0:  Bayesian estimators of the parameters α\alpha and β\beta under different loss function with Metropolis-Hastings technique.
0:   Step1 : The initial value of the given parameters is η(0)=(α(0),β(0))\eta^{(0)}=(\alpha^{(0)},\beta^{(0)}).Step2 : Use Metropolis-Hasting algorithm to generate α(0)\alpha^{(0)} from(28) and β(0)\beta^{(0)} from (29) as the Gibbs sampling iteration values. q(β)=N(β^)q(\beta)=N(\hat{\beta}). Take the normal distribution as the proposal distribution. Repeat NN times, then we get η(h)=(α(h),β(h)),h=1,2,,N\eta^{(h)}=(\alpha^{(h)},\beta^{(h)}),\quad h=1,2,...,N.Step3 : Take the first MM results as a burn-in phase. Under different loss function, Bayesian estimations are
d^SEL\displaystyle\hat{d}_{SEL} =\displaystyle= 1NMh=M+1Nη(h),\displaystyle\frac{1}{N-M}\sum_{h=M+1}^{N}\eta^{(h)},
d^LL\displaystyle\hat{d}_{LL} =\displaystyle= 1gln(1NMh=M+1Negη(h)),\displaystyle-\frac{1}{g}\ln\left(\frac{1}{N-M}\sum_{h=M+1}^{N}e^{g\eta^{{\scriptsize(}h{\scriptsize)}}}\right),
d^EL\displaystyle\hat{d}_{EL} =\displaystyle= [1NMh=M+1N(η(h))q]1q.\displaystyle\left[\frac{1}{N-M}\sum_{h=M+1}^{N}\left(\eta^{{\scriptsize(}h{\scriptsize)}}\right)^{-q}\right]^{-\frac{1}{q}}.
Step4 : Get the results in step2. Sort in ascending order as (η(1),η(2),,η(N))\left(\eta_{(1)},\eta_{(2)},...,\eta_{(N)}\right).

3.2 Importance sampling technique

The importance sampling method can be used to compute the approximate results of (25), (26) and (27), so as to obtain the Bayesian estimations. From (24), we have

π(α,βX)g(αβ,x)g(βx)ω(α,β),\displaystyle\pi(\alpha,\beta\mid X)\propto g(\alpha\mid\beta,x)g(\beta\mid x)\omega(\alpha,\beta), (30)

where

g(αβ,x)\displaystyle g(\alpha\mid\beta,x) \displaystyle\propto αD2+a1exp[α[b+i=1D1Ri(exiβ1)+B(exBβ1)]],\displaystyle\alpha^{D_{2}+a-1}\exp\left[-\alpha\left[b+\sum_{i=1}^{D_{1}}R_{i}\left(e^{x_{i}^{\beta}}-1\right)+B\left(e^{x_{B}^{\beta}}-1\right)\right]\right], (31)
g(βx)\displaystyle g(\beta\mid x) \displaystyle\propto βD2+c1exp[β(di=1D2logxi)],\displaystyle\beta^{D_{2}+c-1}\exp\left[-\beta\left(d-\sum_{i=1}^{D_{2}}logx_{i}\right)\right], (32)
ω(α,β)\displaystyle\omega(\alpha,\beta) \displaystyle\propto exp[i=1D2α(1exiβ)+i=1D2xiβ][b+ν(xi,β)]D2+a,\displaystyle\frac{\exp\left[\sum_{i=1}^{D_{2}}\alpha\left(1-e^{x_{i}^{\beta}}\right)+\sum_{i=1}^{D_{2}}x_{i}^{\beta}\right]}{\left[b+\nu\left(x_{i},\beta\right)\right]^{D_{2}+a}},\ \ \ \ \ (33)

where ν(xi,β)=i=1D2(exiβ1)+i=1D1Ri(exiβ1)+B(exBβ1)\nu(x_{i},\beta)=\sum_{i=1}^{D_{2}}(e^{x_{i}^{\beta}}-1)+\sum_{i=1}^{D_{1}}R_{i}(e^{x_{i}^{\beta}}-1)+B(e^{x_{B}^{\beta}}-1). Note that the distribution of g(αβ,x)g(\alpha\mid\beta,x) follows Gamma distribution with parameters(D2+a1)(D_{2}+a-1) and (bi=1D2(1exiβ)i=1D1Ri(1exiβ)B(1exBβ))(b-\sum_{i=1}^{D_{2}}(1-e^{x_{i}^{\beta}})-\sum_{i=1}^{D_{1}}R_{i}(1-e^{x_{i}^{\beta}})-B(1-e^{x_{B}^{\beta}})). The distribution of g(βx)g(\beta\mid x) follow Gamma distribution with parameters (D2+c1)(D_{2}+c-1) and (di=1D2logxi)(d-\sum_{i=1}^{D_{2}}\log x_{i}). Therefore, one can easily generate samples from the distribution of α\alpha and β\beta, respectively. Then by the importance sampling method, the Bayesian estimation of α\alpha and β\beta under the squared error loss function are obtained as

α^SEL=i=1N2α(i)ω(i)i=1N2ω(i),\displaystyle\hat{\alpha}_{SEL}=\frac{\sum_{i=1}^{N_{2}}\alpha^{(i)}\omega^{(i)}}{\sum_{i=1}^{N_{2}}\omega^{(i)}}, (34)

and

β^SEL=i=1N2β(i)ω(i)i=1N2ω(i).\displaystyle\hat{\beta}_{SEL}=\frac{\sum_{i=1}^{N_{2}}\beta^{(i)}\omega^{(i)}}{\sum_{i=1}^{N_{2}}\omega^{(i)}}. (35)

Similarly, the Bayesian estimation of α\alpha and β\beta under the LINEX loss function are obtained as

α^LL=1gln[i=1N2egα(i)ω(i)i=1N2ω(i)],\displaystyle\hat{\alpha}_{LL}=-\frac{1}{g}\ln\left[\frac{\sum_{i=1}^{N_{2}}e^{-g\alpha^{(i)}}\omega^{(i)}}{\sum_{i=1}^{N_{2}}\omega^{(i)}}\right], (36)

and

β^LL=1gln[i=1N2egβ(i)ω(i)i=1N2ω(i)].\displaystyle\hat{\beta}_{LL}=-\frac{1}{g}\ln\left[\frac{\sum_{i=1}^{N_{2}}e^{-g\beta^{(i)}}\omega^{(i)}}{\sum_{i=1}^{N_{2}}\omega^{(i)}}\right]. (37)

Again the Bayesian estimation of α\alpha and β\beta under the entropy loss function are obtained as

α^EL=[i=1N2(α(i))qω(i)i=1N2ω(i)]1q,\displaystyle\hat{\alpha}_{EL}=\left[\frac{\sum_{i=1}^{N_{2}}(\alpha^{{\scriptsize(}i{\scriptsize)}})^{-q}\omega^{(i)}}{\sum_{i=1}^{N_{2}}\omega^{(i)}}\right]^{-\frac{1}{q}}, (38)

and

β^EL=[i=1N2(β(i))qω(i)i=1N2ω(i)]1q.\displaystyle\hat{\beta}_{EL}=\left[\frac{\sum_{i=1}^{N_{2}}(\beta^{{\scriptsize(}i{\scriptsize)}})^{-q}\omega^{(i)}}{\sum_{i=1}^{N_{2}}\omega^{(i)}}\right]^{-\frac{1}{q}}. (39)

The procedure of importance sampling is given as follows

Algorithm 2 Importance sampling algorithm
0:  Bayesian estimators of the parameters α\alpha and β\beta under different loss function with importance sampling technique.
0:   Step1: Generate β(1)\beta^{(1)} from g(βx)g(\beta\mid x).Step2: Generate α(1)\alpha^{(1)} from g(αβ,x)g(\alpha\mid\beta,x).Step3: Calculate ω(1)(β(1))\omega^{(1)}(\beta^{(1)}) and θ(1)=θ(α(1),β(1))\theta^{(1)}=\theta(\alpha^{(1)},\beta^{(1)}).Step4: Respect the above process N2N_{2} times and obtain (ω(1),ω(2),,ω(N2))\left(\omega^{(1)},\omega^{(2)},...,\omega^{(N_{2})}\right) and (θ(1),θ(2),,θ(N2))\left(\theta^{(1)},\theta^{(2)},...,\theta^{(N_{2})}\right).Step5: Calculate the Bayesian estimators of the parameters α\alpha and β\beta under different loss function.

4 Simulation experiments

In this section, the simulation study is carried out Monte Carlo simulation to evaluate the performance of the proposed methods. The Biases and mean square errors(MSE) of the MLE and Bayesian estimates for α\alpha and β\beta are evaluated under the IAT-II PCS and and in RR program. The Bayesian estimates are computed by using Importance sampling and M-H technique. Under different combination of (n,m)(n,m) and different censoring schemes (T1,T2,R1,R2,,Rm)(T_{1},T_{2},R_{1},R_{2},\cdots,R_{m}). the point and interval estimation results are assessed on the basis of mean Bias and MSE respectively.

All the estimates are to compute arbitrary the unknown parameter values α=0.2\alpha=0.2 and β=0.5)\beta=0.5). Accordingly hyperparameters in gamma prior are assigned as a=2a=2, b=2,b=2, and c=2c=2, d=2d=2. Here we consider four different censoring schemes, namely:

Scheme1 :\displaystyle: Rm=nm,Ri=0forim.\displaystyle R_{m}=n-m,R_{i}=0\ \ \textup{for}\ i\neq m.
Scheme2 :\displaystyle: R1=nm,Ri=0fori1.\displaystyle R_{1}=n-m,R_{i}=0\ \ \textup{for}\ i\neq 1.
Scheme3 :\displaystyle: Rm+12=nm,Ri=0forim+12;ifmisodd,and\displaystyle R_{\frac{m+1}{2}}=n-m,R_{i}=0\ \ \textup{for}\ i\neq\frac{m+1}{2};\ \textup{if}\ m\ \textup{is}\ \textup{odd},\ \textup{and}
Rm2=nm,Ri=0forim2,ifmiseven.\displaystyle R_{\frac{m}{2}}=n-m,R_{i}=0\ \ \textup{for}\ i\neq\frac{m}{2},\ \textup{if}\ m\ \textup{is}\ \textup{even}.
Scheme4 :\displaystyle: Ri=nmm,i=1,2,,m.\displaystyle R_{i}=\frac{n-m}{m},\quad i=1,2,\cdots,m.

In our study, two expected time on test (T1,T2)(T_{1},T_{2}) are (0.4,4) and (1,7). We consider three different values of (n,m)(n,m), namely (15,5), (20,10) and (30,15). For evaluating Bayes estimators under LINEX loss function, we take g=1g=1 and for entropy loss function, we take q=1q=1. Based on the simulation study we have the following conclusion.

From the simulate results in Table 2 and 3, one can observe following conclusions for MLE. From these Tables the following conclusion are made:

1. The estimation of MLE is evaluated by Bias and MSE, among which MSE is better than Bias.

2. In most cases, for different censoring schemes, Scheme 4 is uniform censoring scheme and others are non-uniform schemes. It can be seen from the table that the estimation effect of uniform censoring scheme is better than that of other non-uniform censoring schemes.

3. Compared with Table 2 and Table 3, in most cases, when the time threshold becomes larger, the Bias and MSE of related MLE becomes larger, the estimation effect of (T1,T2)=(1,7)(T_{1},T_{2})=(1,7) is poor. Therefore, it is essential to set a reasonable time threshold in the experiment.

Table 2: Bias and MSE of the MLE α^\hat{\alpha} and β^\hat{\beta} for different choices of n,mn,m and T1=0.4,T2=4T_{1}=0.4,T_{2}=4.
α^\hat{\alpha} β^\hat{\beta}
n,m scheme α\alpha β\beta Bias MSE Bias MSE
I 0.2 0.5 -0.18276 0.03340 0.11049 0.01221
II 0.2 0.5 -0.06933 0.00481 -0.24902 0.06201
15,5 III 0.2 0.5 -0.19048 0.03628 0.17394 0.03026
IV 0.2 0.5 -0.03561 0.00127 -0.01553 0.00024
I 0.2 0.5 -0.08918 0.00795 0.25224 0.06362
II 0.2 0.5 0.09200 0.00846 -0.23686 0.05610
20,10 III 0.2 0.5 0.06425 0.00413 -0.14137 0.01998
IV 0.2 0.5 -0.05793 0.00336 0.11998 0.01440
I 0.2 0.5 -0.17254 0.02977 0.41297 0.17055
II 0.2 0.5 -0.11648 0.01357 -0.35441 0.12561
30,15 III 0.2 0.5 -0.10793 0.01165 -0.08880 0.00789
IV 0.2 0.5 0.02276 0.00052 -0.21521 0.04632
Table 3: Bias and MSE of the MLE α^\hat{\alpha} and β^\hat{\beta} for different choices of n,mn,m and T1=1,T2=7T_{1}=1,T_{2}=7.
α^\hat{\alpha} β^\hat{\beta}
n,m scheme α\alpha β\beta Bias MSE Bias MSE
I 0.2 0.5 -0.09838 0.00968 -0.03055 0.00093
II 0.2 0.5 -0.11620 0.01350 -0.34789 0.12103
15,5 III 0.2 0.5 -0.08268 0.00684 -0.34844 0.12141
IV 0.2 0.5 -0.11235 0.01262 0.21203 0.04496
I 0.2 0.5 -0.11840 0.01402 0.18201 0.03313
II 0.2 0.5 0.12462 0.01553 -0.22917 0.05252
20,10 III 0.2 0.5 -0.11064 0.01224 0.24352 0.05930
IV 0.2 0.5 -0.12914 0.01668 0.31077 0.09658
I 0.2 0.5 -0.11563 0.01337 0.19582 0.03834
II 0.2 0.5 -0.11043 0.01219 0.23403 0.05477
30,15 III 0.2 0.5 0.07763 0.00603 -0.20020 0.04008
IV 0.2 0.5 -0.08184 0.00670 0.16316 0.02662

Table 4 and 5 present the coverage probability and average length of two-side 95.5%95.5\% confidence intervals of parameters constructed by maximum likelihood method (using fisher observation information matrix). From these Tables the following conclusion are made:

1. The truth value of α=0.2\alpha=0.2 and β=0.5\beta=0.5 is in the middle of the each interval and can be well covered.

2. The asymptotic confidence interval of β\beta obtained by fisher observation information matrix, in most case, the average length of the interval is getting longer when the time threshold increase. Meanwhile, different censoring schemes RR had no significant effect on the α\alpha and β\beta results of interval estimation.

3. The average length of the interval about α\alpha is significantly different under the two time thresholds (0.4,4)(0.4,4) and (1,7)(1,7).

4. The asymptotic confidence interval of α\alpha, in most case, are more ideal than that of β\beta.

Table 4: Interval estimations,and Average Length(AL) for different choices of n,mn,m and T1=0.4,T2=4T_{1}=0.4,T_{2}=4.
n,m scheme α\alpha β\beta αAL\alpha-AL βAL\beta-AL
I (0.00129,0.58393) (0.48694,1.71175) 0.58264 1.22482
II (0.02411,0.28934) (0.04585,0.63700) 0.26523 0.59115
15,5 III (0.02096,0.40454) (0.11858,1.42586) 0.38358 1.30727
IV (0.06947,0.71424) (0.09405,0.86234) 0.64476 0.76829
I (0.01640,0.70959) (0.17385,0.90605) 0.57258 0.73220
II (0.13701,0.53979) (0.01334,0.04607) 0.38361 0.03273
20,10 III (0.13223,0.75290) (0.14972,0.85257) 0.62068 0.70285
IV (0.10312,0.54511) (0.14693,0.65170) 0.44199 0.50477
I (0.03949,0.31102) (0.45257,1.11968) 0.27154 0.66710
II (0.15002,0.56836) (0.11233,0.51236) 0.41834 0.40002
30,15 III (0.12563,0.55586) (0.16401,0.78419) 0.43023 0.62018
IV (0.06050,0.33362) (0.36250,1.06036) 0.27311 0.69786
Table 5: Interval estimations,and Average Length(AL) for different choices of n,mn,m and T1=1,T2=7T_{1}=1,T_{2}=7.
n,m scheme α\alpha β\beta αAL\alpha-AL βAL\beta-AL
I (0.02227,0.46365) (0.17421,1.26507) 0.44138 1.09087
II (0.02410,0.29141) (0.04789,0.66570) 0.26731 0.61781
15,5 III (0.02988,0.46066) (0.04098,0.80587) 0.43079 0.76489
IV (0.02385,0.32205) (0.31173,2.04524) 0.29820 1.73351
I (0.02728,0.73341) (0.09402,0.61997) 0.58973 0.52595
II (0.13713,0.76841) (0.08804,0.65271) 0.63127 0.56467
20,10 III (0.02880,0.27724) (0.46691,1.07021) 0.24844 0.60330
IV (0.01690,0.29710) (0.47157,1.23919) 0.28020 0.76762
I (0.03392,0.20986) (0.48876,0.96220) 0.17594 0.47344
II (0.04174,0.33184) (0.38175,1.41139) 0.29011 1.02963
30,15 III (0.14169,0.54398) (0.15428,0.58258) 0.40229 0.40229
IV (0.05112,0.27315) (0.41602,1.05710) 0.22203 0.64107

Table 6, 7, 8, 9 present the Bias and MSE of Bayesian estimation of α\alpha and β\beta by importance sampling technique under squared error loss function, LINEX loss function and entropy loss function. Table 10, 11, 12, 13 present the Bias and MSE of Bayesian estimation by Metropolis-Hasting technique of α\alpha and β\beta. From these Tables the following conclusion are made:

1. For the tables, we can also see that Bias and MSE of Bayes estimators of α\alpha and β\beta are smaller than Bias and MSE of corresponding MLE.

2. From Table 6, 8 and Table 7, 9, in most cases, one can see that Bayesian estimators of α\alpha and β\beta by importance sampling technique under squared error loss function possess minimum Bias and MSE. When the time threshold increase, under entropy loss function also possess minimum Bias and MSE. From Table 10 and Table 12, one can see Bayesian estimators of α\alpha by M-H technique under squared error loss function possess minimum Bias and MSE. From Table 11 Bayesian estimators of β\beta by M-H technique under LINEX loss function possess minimum Bias and MSE, when the time threshold is (T1,T2)=(0.4,4)(T_{1},T_{2})=(0.4,4) and Table 13, Bayesian estimators of β\beta by M-H technique under LINEX loss function and entropy loss function possess minimum Bias and MSE, when the time threshold is (T1,T2)=(1,7)(T_{1},T_{2})=(1,7).

3. The Bias and MSE of Bayesian estimation using M-H technique, in most case, are smaller than that using importance sampling.

Table 6: Bias and MSE of the Bayesian estimates by importance sampling technique of α^\hat{\alpha} under squared error loss function α^SEL\hat{\alpha}_{SEL}, LINEX loss function α^LL\hat{\alpha}_{LL}, and entropy loss function α^EL\hat{\alpha}_{EL}, for different choices of n,m,α,βn,m,\alpha,\beta and T1=0.4,T2=4T_{1}=0.4,T_{2}=4.
α^SEL\hat{\alpha}_{SEL} α^LL\hat{\alpha}_{LL} α^EL\hat{\alpha}_{EL}
n,m sc alpha beta Bias MSE Bias MSE Bias MSE
I 0.2 0.5 -0.05442 0.00296 -0.05454 0.00297 -0.05571 0.00310
II 0.2 0.5 0.00409 0.00002 0.00236 0.00001 -0.01083 0.00012
15,5 III 0.2 0.5 -0.03628 0.00132 -0.03630 0.00132 -0.03644 0.00133
IV 0.2 0.5 -0.08628 0.00744 -0.08746 0.00765 -0.10018 0.01004
I 0.2 0.5 -0.05352 0.00286 -0.05365 0.00288 -0.05504 0.00303
II 0.2 0.5 -0.07435 0.00553 -0.07471 0.00558 -0.07949 0.00632
20,10 III 0.2 0.5 0.01078 0.00012 0.01070 0.00011 0.01009 0.00010
IV 0.2 0.5 0.01141 0.00013 0.00952 0.00009 -0.00244 0.00001
I 0.2 0.5 -0.10540 0.01111 -0.10750 0.01156 -0.13787 0.01901
II 0.2 0.5 0.05013 0.00251 0.04831 0.00233 0.03676 0.00135
30,15 III 0.2 0.5 -0.02612 0.00068 -0.02675 0.00072 -0.03156 0.00100
IV 0.2 0.5 0.01169 0.00014 0.01142 0.00013 0.00932 0.00009
Table 7: Bias and MSE of the Bayesian estimates by importance sampling technique of β^\hat{\beta} under squared error loss function β^SEL\hat{\beta}_{SEL} LINEX loss function β^LL\hat{\beta}_{LL} and entropy loss function β^EL\hat{\beta}_{EL} for different choices of n,m,α,βn,m,\alpha,\beta and T1=0.4,T2=4T_{1}=0.4,T_{2}=4.
β^SEL\hat{\beta}_{SEL} β^LL\hat{\beta}_{LL} β^EL\hat{\beta}_{EL}
n,m sc α\alpha β\beta Bias MSE Bias MSE Bias MSE
I 0.2 0.5 0.06578 0.00433 0.06322 0.00400 0.05649 0.00319
II 0.2 0.5 0.11644 0.01356 0.10269 0.01055 0.04396 0.00193
15,5 III 0.2 0.5 0.09152 0.00838 0.09152 0.00838 0.09152 0.00838
IV 0.2 0.5 0.07352 0.00541 0.06354 0.00404 0.04380 0.00192
I 0.2 0.5 -0.04531 0.00205 -0.04584 0.00210 -0.04785 0.00229
II 0.2 0.5 0.15521 0.02409 0.12921 0.01670 0.01849 0.00034
20,10 III 0.2 0.5 -0.00909 0.00008 -0.00917 0.00008 -0.00943 0.00009
IV 0.2 0.5 -0.01205 0.00015 -0.01630 0.00027 -0.03579 0.00128
I 0.2 0.5 0.21632 0.04679 0.21328 0.04549 0.20346 0.04140
II 0.2 0.5 0.25439 0.06471 0.24590 0.06047 0.21985 0.04834
30,15 III 0.2 0.5 -0.07071 0.00500 -0.07143 0.00510 -0.07462 0.00557
IV 0.2 0.5 0.15959 0.02547 0.15892 0.02526 0.15735 0.02476
Table 8: Bias and MSE of the Bayesian estimates by importance sampling technique of α^\hat{\alpha} under squared error loss function αSEL^\hat{\alpha_{SEL}}, LINEX loss function αLL^\hat{\alpha_{LL}}, and entropy loss function αEL^\hat{\alpha_{EL}}, for different choices of n,m,α,βn,m,\alpha,\beta and T1=1,T2=7T_{1}=1,T_{2}=7.
αSEL^\hat{\alpha_{SEL}} αLL^\hat{\alpha_{LL}} αEL^\hat{\alpha_{EL}}
n,m sc α\alpha β\beta Bias MSE Bias MSE Bias MSE
I 0.2 0.5 0.02854 0.00081 0.02854 0.00081 0.02845 0.00081
II 0.2 0.5 -0.05099 0.00260 -0.05099 0.00260 -0.05576 0.00311
15,5 III 0.2 0.5 0.06638 0.00441 0.06638 0.00441 0.06353 0.00404
IV 0.2 0.5 0.04207 0.00177 0.04207 0.00177 0.04180 0.00175
I 0.2 0.5 -0.00651 0.00004 -0.00651 0.00004 -0.01564 0.00024
II 0.2 0.5 0.05089 0.00259 0.05089 0.00259 0.04696 0.00220
20,10 III 0.2 0.5 -0.09754 0.00951 -0.09754 0.00951 -0.09998 0.01000
IV 0.2 0.5 0.09069 0.00823 0.09069 0.00823 0.08205 0.00673
I 0.2 0.5 -0.05424 0.00294 -0.05424 0.00294 -0.05457 0.00298
II 0.2 0.5 -0.06160 0.00379 -0.06160 0.00379 -0.06420 0.00412
30,15 III 0.2 0.5 -0.04417 0.00195 -0.04417 0.00195 -0.04914 0.00241
IV 0.2 0.5 0.00413 0.00002 0.00413 0.00002 0.00167 0.00000
Table 9: Bias and MSE of the Bayesian estimates by importance sampling technique of β^\hat{\beta} under squared error loss function β^SEL\hat{\beta}_{SEL} LINEX loss function β^LL\hat{\beta}_{LL} and entropy loss function β^EL\hat{\beta}_{EL} for different choices of n,m,α,βn,m,\alpha,\beta and T1=1,T2=7T_{1}=1,T_{2}=7.
β^SEL\hat{\beta}_{SEL} β^LL\hat{\beta}_{LL} β^EL\hat{\beta}_{EL}
n,m sc α\alpha β\beta Bias MSE Bias MSE Bias MSE
I 0.2 0.5 -0.01712 0.00029 -0.01712 0.00029 -0.01714 0.00029
II 0.2 0.5 -0.15450 0.02387 -0.15542 0.02416 -0.16039 0.02572
15,5 III 0.2 0.5 -0.10080 0.01016 -0.30124 0.09074 -0.30434 0.09262
IV 0.2 0.5 0.06374 0.00406 -0.13645 0.01862 -0.13695 0.01876
I 0.2 0.5 0.08405 0.00706 0.07961 0.00634 0.04465 0.00199
II 0.2 0.5 0.02863 0.00082 0.02693 0.00073 0.01339 0.00018
20,10 III 0.2 0.5 0.03779 0.00143 0.03532 0.00125 0.02682 0.00072
IV 0.2 0.5 -0.11941 0.01426 -0.12013 0.01443 -0.12269 0.01505
I 0.2 0.5 0.07355 0.00541 0.07316 0.00535 0.07221 0.00521
II 0.2 0.5 0.04997 0.00250 0.04939 0.00244 0.04749 0.00226
30,15 III 0.2 0.5 -0.06077 0.00369 -0.06093 0.00371 -0.06154 0.00379
IV 0.2 0.5 0.06078 0.00369 0.06014 0.00362 0.05806 0.00337
Table 10: Bias and MSE of the Bayesian estimates by M-H technique of α^\hat{\alpha} under squared error loss function α^SEL\hat{\alpha}_{SEL}, LINEX loss function α^LL\hat{\alpha}_{LL}, and entropy loss function α^EL\hat{\alpha}_{EL}, for different choices of n,m,α,βn,m,\alpha,\beta and T1=0.4,T2=4T_{1}=0.4,T_{2}=4.
α^SEL\hat{\alpha}_{SEL} α^LL\hat{\alpha}_{LL} α^EL\hat{\alpha}_{EL}
n,m sc α\alpha β\beta Bias MSE Bias MSE Bias MSE
I 0.2 0.5 -0.03289 0.00108 -0.05811 0.00338 -0.16499 0.02722
II 0.2 0.5 0.02562 0.00066 0.01058 0.00011 -0.00766 0.00006
15,5 III 0.2 0.5 -0.03411 0.00116 -0.07142 0.00510 -0.13038 0.01700
IV 0.2 0.5 0.05093 0.00259 0.01892 0.00036 -0.03241 0.00105
I 0.2 0.5 -0.02719 0.00074 -0.07549 0.00570 -0.16503 0.02723
II 0.2 0.5 -0.00444 0.00002 -0.02316 0.00054 -0.03929 0.00154
20,10 III 0.2 0.5 0.00170 0.00000 -0.03327 0.00111 -0.07890 0.00622
IV 0.2 0.5 -0.01749 0.00031 -0.04216 0.00178 -0.14863 0.02209
I 0.2 0.5 0.08353 0.00698 0.06098 0.00372 -0.03633 0.00132
II 0.2 0.5 -0.03041 0.00092 -0.05154 0.00266 -0.11496 0.01322
30,15 III 0.2 0.5 0.06115 0.00374 0.04258 0.00181 0.01858 0.00035
IV 0.2 0.5 0.00978 0.00010 -0.01915 0.00037 -0.12970 0.01682
Table 11: Bias and MSE of the Bayesian estimation by Metropolis-Hasting technique of β^\hat{\beta} under squared error loss function β^SEL\hat{\beta}_{SEL} LINEX loss function β^LL\hat{\beta}_{LL} and entropy loss function β^EL\hat{\beta}_{EL} for different choices of n,m,α,βn,m,\alpha,\beta and T1=0.4,T2=4T_{1}=0.4,T_{2}=4.
β^SEL\hat{\beta}_{SEL} β^LL\hat{\beta}_{LL} β^EL\hat{\beta}_{EL}
n,m sc α\alpha β\beta Bias MSE Bias MSE Bias MSE
I 0.2 0.5 -0.02572 0.00066 -0.04132 0.00171 -0.03905 0.00153
II 0.2 0.5 0.06254 0.00391 0.04549 0.00207 0.04602 0.00212
15,5 III 0.2 0.5 -0.02232 0.00050 -0.05789 0.00335 -0.13166 0.01734
IV 0.2 0.5 -0.02203 0.00049 -0.03712 0.00138 -0.03318 0.00110
I 0.2 0.5 0.06556 0.00430 0.04950 0.00245 0.05266 0.00277
II 0.2 0.5 0.04908 0.00241 0.03299 0.00109 0.03581 0.00128
20,10 III 0.2 0.5 0.04123 0.00170 0.02461 0.00061 0.02561 0.00066
IV 0.2 0.5 0.05221 0.00273 0.03508 0.00123 0.03523 0.00124
I 0.2 0.5 0.27074 0.07330 0.20603 0.04245 -0.01829 0.00033
II 0.2 0.5 0.20663 0.04269 0.14835 0.02201 -0.26525 0.07036
30,15 III 0.2 0.5 -0.00897 0.00008 -0.06634 0.00440 -0.33857 0.11463
IV 0.2 0.5 0.09338 0.00872 0.04952 0.00245 -0.20184 0.04074
Table 12: Bias and MSE of the Bayesian estimation by Metropolis-Hasting technique of α^\hat{\alpha} under squared error loss function α^SEL\hat{\alpha}_{SEL}, LINEX loss function α^LL\hat{\alpha}_{LL}, and entropy loss function α^EL\hat{\alpha}_{EL}, for different choices of n,m,α,βn,m,\alpha,\beta and T1=1,T2=7T_{1}=1,T_{2}=7.
α^SEL\hat{\alpha}_{SEL} α^LL\hat{\alpha}_{LL} α^EL\hat{\alpha}_{EL}
n,m sc α\alpha β\beta Bias MSE Bias MSE Bias MSE
I 0.2 0.5 0.00518 0.00003 -0.01761 0.00031 -0.16221 0.02631
II 0.2 0.5 0.05806 0.00337 0.04225 0.00178 0.02617 0.00068
15,5 III 0.2 0.5 -0.00693 0.00005 -0.03054 0.00093 -0.16305 0.02658
IV 0.2 0.5 0.05205 0.00271 0.03126 0.00098 -0.01381 0.00019
I 0.2 0.5 0.05050 0.00255 0.02748 0.00075 -0.05710 0.00326
II 0.2 0.5 -0.04886 0.00239 -0.06539 0.00428 -0.08724 0.00761
20,10 III 0.2 0.5 0.00867 0.00008 -0.02407 0.00058 -0.07979 0.00637
IV 0.2 0.5 0.02826 0.00080 -0.01598 0.00026 -0.12982 0.01685
I 0.2 0.5 0.04949 0.00245 0.02357 0.00056 -0.12603 0.01588
II 0.2 0.5 -0.02273 0.00052 -0.03918 0.00154 -0.06612 0.00437
30,15 III 0.2 0.5 0.03766 0.00142 0.01636 0.00027 -0.05739 0.00329
IV 0.2 0.5 0.04199 0.00176 0.01822 0.00033 -0.08413 0.00708
Table 13: Bias and MSE of the Bayesian estimation by Metropolis-Hasting technique of β^\hat{\beta} under squared error loss function β^SEL\hat{\beta}_{SEL} LINEX loss function β^LL\hat{\beta}_{LL} and entropy loss function β^EL\hat{\beta}_{EL} for different choices of n,m,α,βn,m,\alpha,\beta and T1=1,T2=7T_{1}=1,T_{2}=7.
β^SEL\hat{\beta}_{SEL} β^LL\hat{\beta}_{LL} β^EL\hat{\beta}_{EL}
n,m sc α\alpha β\beta Bias MSE Bias MSE Bias MSE
I 0.2 0.5 -0.01451 0.00021 -0.04061 0.00165 -0.13918 0.01937
II 0.2 0.5 -0.12429 -0.12429 -0.14812 0.02194 -0.18092 0.03273
15,5 III 0.2 0.5 -0.20364 0.04147 -0.23067 0.05321 -0.29499 0.08702
IV 0.2 0.5 0.04736 0.00224 -0.00273 0.00001 -0.18747 0.03514
I 0.2 0.5 0.13877 0.01926 0.09580 0.00918 -0.04724 0.00223
II 0.2 0.5 0.05261 0.00277 0.03182 0.00101 0.02369 0.00056
20,10 III 0.2 0.5 0.00837 0.00007 -0.00689 0.00005 -0.00274 0.00001
IV 0.2 0.5 0.08137 0.00662 0.06326 0.00400 0.06173 0.00381
I 0.2 0.5 0.04209 0.00177 0.02625 0.00069 0.02952 0.00087
II 0.2 0.5 0.08297 0.00688 0.06655 0.00443 0.06909 0.00477
30,15 III 0.2 0.5 0.04989 0.00249 0.03292 0.00108 0.03339 0.00111
IV 0.2 0.5 0.03840 0.00147 0.02289 0.00052 0.02695 0.00073

5 Real Data Analysis

In this section, a set of actual data set is given for simulation and illustration. The data set represents the times of failures and running times for samples of devices from an eld-tracking study of a larger system. The data set was studied by Nelson (1998) Merovci & Elbatal (2014) Mohan & Chacko (2020) The data set has 30 observations and it is given below(see Oguntunde et al. (2017) )

2.75, 0.13, 1.47, 0.23, 1.81, 0.30, 0.65, 0.10, 3.00, 1.73, 1.06, 3.00, 3.00, 2.12, 3.00, 3.00, 3.00, 0.02, 2.61, 2.93, 0.88, 2.47, 0.28, 1.43, 3.00, 0.23, 3.00, 0.80, 2.45, 2.66.

We use Anderson-Darling(AD) test and Kolmogorov-Smirnov(KS) test for checking the goodness of fit. The value for the AD test statistic is 1.3748 and the corresponding P-value is 0.2093. The value for the KS test statistic is 0.21649 and the corresponding P-value is 0.1201. Since the P-value in two test modes is high (P>0.05)(P>0.05), we cannot reject the null hypothesis. To summarize, we have sufficient evidence to hold that the chen distribution can provide a suitable fit for this data set.

Then we consider the estimation of two parameters under improved adaptive Type-II progressive censored data. We have used the original data set of data to generate random sets of improved adaptive Type-II progressive censored samples. We considered different combinations for mm, T1T_{1} and T2T_{2}.

The random samples obtained using different schemes and different combinations of mm, T1T_{1} and T2T_{2} are given in Table 14

We have used the original set of data to generate random sets of improved adaptive Type-II progressive censored samples in Table 15. We consider the two time threshold are (T1,T2)=(0.4,4)(T_{1},T_{2})=(0.4,4) and (T1,T2)=(1,7)(T_{1},T_{2})=(1,7). Based on the above situation, we have obtained the MLE, interval estimation and Bayesian estimation of α\alpha and β\beta are given in Table 16-27.

According to these tables, we come to the following conclusions:

In most case, with increase of sample size mm, Biases and MSE of MLE decrease. with the increase of time threshold, Biases and MSE of MLE and Bayes estimation increases. Estimates obtained from the uniform censoring scheme seems better than the results from uneven censoring schemes.

We observe that the Bayes estimation under the squared error loss function, LINEX loss function, and entropy loss function shows minimum MSE than the MLE, for most cases of n=30n=30, m=5,15,20m=5,15,20.

Table 14: Improved adaptive Type-II progressive censoring schemes with nn = 30.
m censoring scheme censoring number
I r=(0,0,0,0,25)
II r=(10,3,4,0,8)
5 III r=(5,3,10,5,2)
IV r=(5,5,5,5,5)
I r=(15,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
II r=(0,0,0,0,0,0,0,0,0,0,0,0,0,0,15)
15 III r=(0,0,0,0,0,0,0,15,0,0,0,0,0,0,0)
IV r=(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
I r=(1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,1,1,1)
II r=(1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,8)
20 III r=(1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,7)
IV r=(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,9)
Table 15: Improved adaptive Type-II progressive censored samples (CS) generated from the data under different censoring schemes
T1,T2=(0.4,4)T_{1},T_{2}=(0.4,4) T1,T2=(1,7)T_{1},T_{2}=(1,7)
m CS k1k_{1},k2k_{2} k1k_{1},k2k_{2} Data
I (5,5) (5,5) 0.02,0.10,0.13,0.23,0.23
5 II (0,5) (0,5) 1.06,1.81,2.66,2.75,3.00
III (1,5) (2,5) 0.28,0.88,2.75,3.00,3.00
IV (1,5) (1,5) 0.28,1.43,2.47,3.00,3.00
I (0,15) (0,15) 2.12,2.45,2.47,2.61,2.66,2.75,2.93,3.00,3.00,3.00,3.00,3.00,3.00,3.00,3.00
15 II (7,15) (10,15) 0.02,0.10,0.13,0.23,0.23,0.28,0.30,0.65,0.80,0.88,1.06,1.43,1.47,1.73,1.81
III (7,15) (7,15) 0.02,0.10,0.13,0.23,0.23,0.28,0.30,3.00,3.00,3.00,3.00,3.00,3.00,3.00,3.00
IV (4,15) (5,15) 0.10,0.23,0.28,0.28,0.88,1.43,1.73,2.12,2.47,2.66,2.93,3.00,3.00,3.00,3.00
I (3,20) (5,20) 0.10,0.23,0.28,0.65,0.88,1.43,1.73,1.81,2.12,2.45,2.47,2.61,2.66,2.75,2.93,3.00,3.00,3.00,3.00,3.00
20 II (5,20) (8,20) 0.10,0.23,0.23,0.28,0.30,0.65,0.80,0.88,1.06,1.43,1.47,1.73,1.81,2.12,2.45,2.47,2.61,2.66,2.75,3.00
III (5,20) (8,20) 0.10,0.13,0.23,0.28,0.30,0.65,0.80,0.88,1.06,1.43,1.47,1.73,1.81,2.12,2.45,2.47,2.61,2.75,2.93,3.00
IV (6,20) (9,20) 0.02,0.13,0.23,0.23,0.28,0.30,0.65,0.80,0.88,1.06,1.43,1.47,1.73,1.81,2.12,2.45,2.47,2.61,2.66,3.00
Table 16: Bias and MSE of the MLE α^\hat{\alpha} and β^\hat{\beta} for different mm of real data and T1=0.4,T2=4T_{1}=0.4,T_{2}=4.
α^\hat{\alpha} β^\hat{\beta}
m scheme α\alpha β\beta Bias MSE Bias MSE
I 0.2 0.7 -0.13755 0.01892 -0.34460 0.11875
II 0.2 0.7 -0.16250 0.02640 -0.08052 0.00648
5 III 0.2 0.7 -0.16375 0.02681 -0.10764 0.01159
IV 0.2 0.7 -0.14705 0.02162 -0.28734 0.08257
I 0.2 0.7 -0.11538 0.01331 0.02099 0.00044
II 0.2 0.7 0.07061 0.00499 -0.38778 0.15037
15 III 0.2 0.7 -0.12998 0.01689 0.06769 0.00458
IV 0.2 0.7 -0.14268 0.02036 -0.22197 0.04927
I 0.2 0.7 0.00829 0.00007 -0.23010 0.05294
II 0.2 0.7 0.01764 0.00031 -0.18955 0.03593
20 III 0.2 0.7 -0.07151 0.00511 0.08936 0.00799
IV 0.2 0.7 -0.08887 0.00790 0.15267 0.02331
Table 17: Bias and MSE of the MLE α^\hat{\alpha} and β^\hat{\beta} for different mm of real data and T1=1,T2=7T_{1}=1,T_{2}=7.
α^\hat{\alpha} β^\hat{\beta}
m scheme α\alpha β\beta Bias MSE Bias MSE
I 0.2 0.7 -0.14386 0.02070 -0.38721 0.14993
II 0.2 0.7 -0.15644 0.02447 -0.15489 0.02399
5 III 0.2 0.7 -0.18071 0.16391 0.03266 0.02687
IV 0.2 0.7 -0.16410 0.02693 -0.10420 0.01086
I 0.2 0.7 -0.12755 0.01627 0.09112 0.00830
II 0.2 0.7 0.06181 0.00382 -0.32917 0.10835
15 III 0.2 0.7 -0.14848 0.02205 -0.23134 0.05352
IV 0.2 0.7 -0.05637 0.00318 -0.23491 0.05518
I 0.2 0.7 -0.02912 0.00085 -0.14887 0.02216
II 0.2 0.7 -0.08256 0.00682 0.11204 0.01255
20 III 0.2 0.7 -0.08465 0.00717 0.11645 0.01356
IV 0.2 0.7 -0.09430 0.00889 0.16460 0.02709
Table 18: Interval estimations and Average Length(AL) for different mm of real data and T1=0.4,T2=4.T_{1}=0.4,T_{2}=4.
m scheme α\alpha β\beta αAL\alpha-AL βAL\beta-AL
I (0.01317,0.29599) (0.10762,1.17368) 0.28282 1.06606
II (0.01806,0.37642) (0.03173,0.60056) 0.35836 0.56882
5 III (0.00590,0.22284) (0.21359,1.64287) 0.21694 1.42928
IV (0.01260,0.33131) (0.14081,1.20937) 0.31870 1.06856
I (0.02120,0.49601) (0.32968,1.57678) 0.47482 1.24710
II (0.13796,0.53081) (0.16223,0.72060) 0.39284 0.55837
15 III (0.01777,0.27589) (0.43800,1.34556) 0.25812 0.90756
IV (0.03575,0.22436) (0.26273,0.86978) 0.18861 0.60705
I (0.10367,0.41849) (0.28334,0.77930) 0.31482 0.49596
II (0.11081,0.42743) (0.31942,0.81573) 0.31662 0.49631
20 III (0.05219,0.31635) (0.53845,1.15719) 0.26417 0.61874
IV (0.04259,0.28997) (0.59634,1.21920) 0.24738 0.62286
Table 19: Interval estimations and Average Length(AL) for different mm of real data and T1=1,T2=7.T_{1}=1,T_{2}=7.
m scheme α\alpha β\beta αAL\alpha-AL βAL\beta-AL
I (0.01267,0.24871) (0.09530,1.02666) 0.23603 0.93137
II (0.00898,0.21137) (0.19531,1.52142) 0.20239 1.32611
5 III (0.00197,0.35623) (0.38560,1.93552) 0.35426 1.54991
IV (0.00585,0.36446) (0.21602,1.64324) 0.35861 1.42722
I (0.01482,0.55008) (0.35590,1.75858) 0.53526 1.40269
II (0.13254,0.51718) (0.19312,0.71206) 0.38464 0.51894
15 III (0.03205,0.20312) (0.27755,0.79135) 0.17107 0.51380
IV (0.06825,0.30224) (0.26872,0.80495) 0.23399 0.53623
I (0.08599,0.33957) (0.34566,0.87874) 0.25357 0.53308
II (0.04911,0.28086) (0.56385,1.16947) 0.23175 0.60562
20 III (0.04764,0.27928) (0.61874,1.17494) 0.23164 0.60760
IV (0.04104,0.27228) (0.61047,1.22451) 0.23125 0.61404
Table 20: Bias and MSE of the Bayesian estimation by importance sampling technique of α^\hat{\alpha} under squared error loss function α^SEL\hat{\alpha}_{SEL}, LINEX loss function α^LL\hat{\alpha}_{LL}, and entropy loss function α^EL\hat{\alpha}_{EL}, for different mm of real data and T1=0.4,T2=4T_{1}=0.4,T_{2}=4.
α^SEL\hat{\alpha}_{SEL} α^LL\hat{\alpha}_{LL} α^EL\hat{\alpha}_{EL}
m scheme α\alpha β\beta Bias MSE Bias MSE Bias MSE
I 0.2 0.7 -0.07636 0.00583 -0.07787 0.00606 -0.10805 0.01167
II 0.2 0.7 -0.08874 0.00787 -0.09096 0.00827 -0.11260 0.01268
5 III 0.2 0.7 -0.11380 0.01295 -0.11393 0.01298 -0.11576 0.01340
IV 0.2 0.7 -0.02445 0.00060 -0.02474 0.00061 -0.02715 0.00074
I 0.2 0.7 -0.06151 0.00378 -0.06152 0.00378 -0.06155 0.00379
II 0.2 0.7 -0.00017 0.00000 -0.01691 0.00029 -0.11025 0.01215
15 III 0.2 0.7 -0.05961 0.00355 -0.06036 0.00364 -0.06668 0.00445
IV 0.2 0.7 0.01180 0.00014 0.01094 0.00012 0.00498 0.00002
I 0.2 0.7 0.00445 0.00002 0.00424 0.00002 0.00264 0.00001
II 0.2 0.7 -0.02959 0.00088 -0.03010 0.00091 -0.03437 0.00118
20 III 0.2 0.7 0.02763 0.00076 0.02709 0.00073 0.02399 0.00058
IV 0.2 0.7 0.04536 0.00206 0.04257 0.00181 0.02717 0.00074
Table 21: Bias and MSE of the Bayesian estimation by importance sampling technique of β^\hat{\beta} under squared error loss function β^SEL\hat{\beta}_{SEL} LINEX loss function β^LL\hat{\beta}_{LL} and entropy loss function β^EL\hat{\beta}_{EL} for different mm of real data and T1=0.4,T2=4T_{1}=0.4,T_{2}=4.
β^SEL\hat{\beta}_{SEL} β^LL\hat{\beta}_{LL} β^EL\hat{\beta}_{EL}
m scheme α\alpha β\beta Bias MSE Bias MSE Bias MSE
I 0.2 0.7 -0.02299 0.00053 -0.04440 0.00197 -0.18193 0.03310
II 0.2 0.7 0.03976 0.00158 0.03500 0.00122 0.02533 0.00064
5 III 0.2 0.7 0.02922 0.00085 0.02915 0.00085 0.02906 0.00084
IV 0.2 0.7 0.14193 0.02014 0.13866 0.01923 0.13424 0.01802
I 0.2 0.7 -0.01219 0.00015 -0.01375 0.00019 -0.01701 0.00029
II 0.2 0.7 0.24726 0.06114 0.24455 0.05981 0.23998 0.05759
15 III 0.2 0.7 -0.05202 0.00271 -0.05525 0.00305 -0.06325 0.00400
IV 0.2 0.7 0.19761 0.03905 0.19443 0.03780 0.18915 0.03578
I 0.2 0.7 0.18049 0.03258 0.17883 0.03198 0.17615 0.03103
II 0.2 0.7 0.02903 0.00084 0.02830 0.00080 0.02693 0.00073
20 III 0.2 0.7 -0.02497 0.00062 -0.02515 0.00063 -0.02551 0.00065
IV 0.2 0.7 0.05447 0.00297 0.04743 0.00225 0.03455 0.00119
Table 22: Bias and MSE of the Bayesian estimation by importance sampling technique of α^\hat{\alpha} under squared error loss function α^SEL\hat{\alpha}_{SEL}, LINEX loss function α^LL\hat{\alpha}_{LL}, and entropy loss function α^EL\hat{\alpha}_{EL}, for different mm of real data and T1=1,T2=7T_{1}=1,T_{2}=7.
α^SEL\hat{\alpha}_{SEL} α^LL\hat{\alpha}_{LL} α^EL\hat{\alpha}_{EL}
m scheme α\alpha β\beta Bias MSE Bias MSE Bias MSE
I 0.2 0.7 -0.05041 0.00254 -0.05144 0.00265 -0.06200 0.00384
II 0.2 0.7 -0.10636 0.01131 -0.10826 0.01172 -0.12810 0.01641
5 III 0.2 0.7 0.13604 0.01851 0.13582 0.01845 0.13487 0.01819
IV 0.2 0.7 0.11202 0.01255 0.11174 0.01249 0.11044 0.01220
I 0.2 0.7 -0.05695 0.00324 -0.05695 0.00324 -0.05701 0.00325
II 0.2 0.7 0.00840 0.00007 -0.01088 0.00012 -0.12055 0.01453
15 III 0.2 0.7 -0.02730 0.00075 -0.02827 0.00080 -0.03582 0.00128
IV 0.2 0.7 -0.01630 0.00027 -0.01748 0.00031 -0.02542 0.00065
I 0.2 0.7 -0.00692 0.00005 -0.00730 0.00005 -0.01038 0.00011
II 0.2 0.7 -0.06124 0.00375 -0.06157 0.00379 -0.06439 0.00415
20 III 0.2 0.7 0.02467 0.00061 -0.02508 0.00063 -0.02842 0.00081
IV 0.2 0.7 0.08591 0.00738 0.08308 0.00690 0.06954 0.00484
Table 23: Bias and MSE of the Bayesian estimation by importance sampling technique of β^\hat{\beta} under squared error loss function β^SEL\hat{\beta}_{SEL} LINEX loss function β^LL\hat{\beta}_{LL} and entropy loss function β^EL\hat{\beta}_{EL} for different mm of real data and T1=1,T2=7T_{1}=1,T_{2}=7.
β^SEL\hat{\beta}_{SEL} β^LL\hat{\beta}_{LL} β^EL\hat{\beta}_{EL}
m scheme α\alpha β\beta Bias MSE Bias MSE Bias MSE
I 0.2 0.7 0.05194 0.00270 0.03097 0.00096 -0.15413 0.02376
II 0.2 0.7 0.11752 0.01381 0.10943 0.01197 0.09549 0.00912
5 III 0.2 0.7 0.00228 0.00001 0.00118 0.00000 -0.00162 0.00000
IV 0.2 0.7 -0.07670 0.00588 -0.07897 0.00624 -0.08233 0.00678
I 0.2 0.7 0.03894 0.00152 0.03823 0.00146 0.03671 0.00135
II 0.2 0.7 0.22882 0.05236 0.22588 0.05102 0.22133 0.04899
15 III 0.2 0.7 0.03251 0.00106 0.03111 0.00097 0.02666 0.00071
IV 0.2 0.7 0.20779 0.04318 0.20631 0.04257 0.20332 0.04134
I 0.2 0.7 0.01289 0.00017 0.01176 0.00014 0.00921 0.00008
II 0.2 0.7 -0.05215 0.00272 -0.05243 0.00275 -0.05302 0.00281
20 III 0.2 0.7 -0.04292 0.00184 -0.04384 0.00192 -0.04593 0.00211
IV 0.2 0.7 0.01598 0.00026 0.01291 0.00017 0.00625 0.00004
Table 24: Bias and MSE of the Bayesian estimation by M-H technique of α^\hat{\alpha} under squared error loss function α^SEL\hat{\alpha}_{SEL}, LINEX loss function α^LL\hat{\alpha}_{LL}, and entropy loss function α^EL\hat{\alpha}_{EL}, for different mm of real data and T1=0.4,T2=4T_{1}=0.4,T_{2}=4.
α^SEL\hat{\alpha}_{SEL} α^LL\hat{\alpha}_{LL} α^EL\hat{\alpha}_{EL}
m scheme α\alpha β\beta Bias MSE Bias MSE Bias MSE
I 0.2 0.7 -0.01205 0.00015 -0.02702 0.00073 -0.05351 0.00286
II 0.2 0.7 0.05914 0.00350 0.01671 0.00028 -0.07677 0.00589
5 III 0.2 0.7 0.09361 0.00876 0.03098 0.00096 -0.18152 0.03295
IV 0.2 0.7 0.03262 0.00106 -0.02590 0.00067 -0.18804 0.03536
I 0.2 0.7 -0.01415 0.00020 -0.02652 0.00070 -0.02448 0.00060
II 0.2 0.7 0.03592 0.00129 -0.00947 0.00009 -0.13514 0.01826
15 III 0.2 0.7 0.08795 0.00773 0.06847 0.00469 0.03149 0.00099
IV 0.2 0.7 0.11408 0.01301 0.09599 0.00921 0.07760 0.00602
I 0.2 0.7 0.00804 0.00006 -0.01747 0.00031 -0.14197 0.02015
II 0.2 0.7 -0.00150 0.00000 -0.02589 0.00067 -0.12907 0.01666
20 III 0.2 0.7 -0.04960 0.00246 -0.07071 0.00500 -0.13727 0.01884
IV 0.2 0.7 -0.00149 0.00000 -0.02496 0.00062 -0.12762 0.01629
Table 25: Bias and MSE of the Bayesian estimates by M-H technique of β^\hat{\beta} under squared error loss function β^SEL\hat{\beta}_{SEL} LINEX loss function β^LL\hat{\beta}_{LL} and entropy loss function β^EL\hat{\beta}_{EL} for different mm of real data and T1=0.4,T2=4T_{1}=0.4,T_{2}=4.
β^SEL\hat{\beta}_{SEL} β^LL\hat{\beta}_{LL} β^EL\hat{\beta}_{EL}
m scheme α\alpha β\beta Bias MSE Bias MSE Bias MSE
I 0.2 0.7 0.00026 0.00000 0.16158 0.02611 0.11324 0.01282
II 0.2 0.7 0.10786 0.01163 0.07988 0.00638 0.05756 0.00331
5 III 0.2 0.7 0.08466 0.00717 0.05469 0.00299 0.03198 0.00102
IV 0.2 0.7 0.17268 0.02982 0.14812 0.02194 0.13862 0.01922
I 0.2 0.7 -0.00555 0.00003 -0.05769 0.00333 -0.23209 0.05387
II 0.2 0.7 -0.00724 0.00005 -0.04963 0.00246 -0.14345 0.02058
15 III 0.2 0.7 0.04112 0.00169 -0.02387 0.00057 -0.21480 0.04614
IV 0.2 0.7 0.07185 0.00516 0.01602 0.00026 -0.14434 0.02083
I 0.2 0.7 0.08643 0.00747 0.02546 0.00065 -0.17772 0.03158
II 0.2 0.7 0.01869 0.00035 -0.03623 0.00131 -0.17325 0.03001
20 III 0.2 0.7 0.05342 0.00285 -0.00930 0.00009 -0.16786 0.02818
IV 0.2 0.7 -0.01733 0.00030 -0.08884 0.00789 -0.29719 0.08832
Table 26: Bias and MSE of the Bayesian estimates by M-H technique of α^\hat{\alpha} under squared error loss function α^SEL\hat{\alpha}_{SEL}, LINEX loss function α^LL\hat{\alpha}_{LL}, and entropy loss function α^EL\hat{\alpha}_{EL}, for different mm of real data and T1=1,T2=7T_{1}=1,T_{2}=7.
α^SEL\hat{\alpha}_{SEL} α^LL\hat{\alpha}_{LL} α^EL\hat{\alpha}_{EL}
m scheme α\alpha β\beta Bias MSE Bias MSE Bias MSE
I 0.2 0.7 -0.02627 0.00069 -0.03927 0.00154 -0.04494 0.00202
II 0.2 0.7 -0.03707 0.00137 -0.06351 0.00403 -0.11340 0.01286
5 III 0.2 0.7 0.11327 0.01283 0.04831 0.00233 -0.17754 0.03152
IV 0.2 0.7 0.04528 0.00205 -0.01225 0.00015 -0.18208 0.03315
I 0.2 0.7 -0.00677 0.00005 -0.01909 0.00036 -0.01526 0.00023
II 0.2 0.7 0.02574 0.00066 -0.02209 0.00049 -0.13430 0.01804
15 III 0.2 0.7 0.11666 0.01361 0.09819 0.00964 0.07273 0.00529
IV 0.2 0.7 -0.02765 0.00076 -0.05101 0.00260 -0.16051 0.02577
I 0.2 0.7 0.00706 0.00005 -0.01802 0.00032 -0.14993 0.02248
II 0.2 0.7 0.05952 0.00354 0.03717 0.00138 -0.06625 0.00439
20 III 0.2 0.7 0.00884 0.00008 -0.01686 0.00028 -0.13304 0.01770
IV 0.2 0.7 0.06622 0.00438 0.04601 0.00212 -0.00263 0.00001
Table 27: Bias and MSE of the Bayesian estimates by M-H technique of β^\hat{\beta} under squared error loss function β^SEL\hat{\beta}_{SEL} LINEX loss function β^LL\hat{\beta}_{LL} and entropy loss function β^EL\hat{\beta}_{EL} for different mm of real data and T1=1,T2=7T_{1}=1,T_{2}=7.
β^SEL\hat{\beta}_{SEL} β^LL\hat{\beta}_{LL} β^EL\hat{\beta}_{EL}
m scheme α\alpha β\beta Bias MSE Bias MSE Bias MSE
I 0.2 0.7 0.08043 0.00647 0.25041 0.06271 0.22513 0.05068
II 0.2 0.7 0.11075 0.01226 0.07756 0.00602 0.04768 0.00227
5 III 0.2 0.7 0.03099 0.00096 0.00883 0.00008 0.00330 0.00001
IV 0.2 0.7 0.11707 0.01371 0.08540 0.00729 0.05993 0.00359
I 0.2 0.7 0.02181 0.00048 -0.03164 0.00100 -0.14292 0.02043
II 0.2 0.7 -0.03177 0.00101 -0.07534 0.00568 -0.16969 0.02879
15 III 0.2 0.7 0.08504 0.00723 0.02962 0.00088 -0.17040 0.02904
IV 0.2 0.7 0.10244 0.01049 0.05754 0.00331 -0.05893 0.00347
I 0.2 0.7 0.09240 0.00854 0.03896 0.00152 -0.08720 0.00760
II 0.2 0.7 0.01618 0.00026 -0.04503 0.00203 -0.21788 0.04747
20 III 0.2 0.7 0.00047 0.00000 -0.05444 0.00296 -0.22237 0.04945
IV 0.2 0.7 0.05222 0.00273 -0.00639 0.00004 -0.15100 0.02280

6 Conclusions

In this paper, we have considered the problem of estimation of two unknown parameters α\alpha and β\beta based on IAT-II PCS sample from the Chen distribution, which has a bathtub-shape failure rate function. The maximum likelihood estimators and interval estimations by observed Fisher information matrix of the two parameters have been obtained. On the premise that the prior distribution are gamma distribution, we mention that the Bayesian estimates are obtained under the squared error loss function, LINEX loss function, and entropy loss functions. To calculate the Bayesian estimates using the M-H technique and importance sampling technique. The results illustrate that in the simulation and real data tests, the maximum likelihood estimates and the Bayes estimate under different loss function shown an insignificant difference, though the latter has slightly better performances than the former. Among the Bayes estimators of α\alpha, estimator under squared loss function performs better and estimation effect under the entropy loss function comes second. Among the Bayes estimators of β\beta, estimator under LINEX loss function possess minimum Bias and MSE.

In the future work, the parameter inference of IAT-II PCS under accelerated life test, application of IAT-II PCS in competitive failure test and parameter inference under more effective censoring scheme can be considered.

7 Funding

This research is supported by the National Natural Science Foundation of China.

References

  • o¨\ddot{o}.Gu¨\ddot{u}ru¨\ddot{u}nlu¨\ddot{u} Alma & Belaghi (2016) o¨\ddot{o}.Gu¨\ddot{u}ru¨\ddot{u}nlu¨\ddot{u} Alma, & Belaghi, R. (2016). On the estimation of the extreme value and normal distribution parameters based on progressive type-ii hybrid-censored data. Journal of Statistical Computation and Simulation, 86, 569–596.
  • Balakrishnan & Aggarwala (2000) Balakrishnan, N., & Aggarwala, R. (2000). Progressive censoring: Theory, methods, and applications.
  • Chen & Bhattacharyya (1987) Chen, S.-M., & Bhattacharyya, G. K. (1987). Exact confidence bounds for an exponential parameter under hybrid censoring. Communications in Statistics - Theory and Methods, 16, 2429–2442.
  • Chen (2000) Chen, Z. (2000). A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function. Statistics &\& Probability Letters, 49, 155–161.
  • Childs et al. (2008) Childs, A., Chandrasekar, B., & Balakrishnan, N. (2008). Exact likelihood inference for an exponential parameter under progressive hybrid censoring schemes. (p. 323–334).
  • Childs et al. (2003) Childs, A., Chandrasekar, B., Balakrishnan, N., & Kundu, D. (2003). Exact likelihood inference based on type-i and type-ii hybrid censored samples from the exponential distribution. Annals of the Institute of Statistical Mathematics, .
  • Cramer et al. (2016) Cramer, E., Burkschat, M., & Górny, J. (2016). On the exact distribution of the mles based on type-ii progressively hybrid censored data from exponential distributions. Journal of Statistical Computation and Simulation, 86, 2036–2052.
  • Dey & Dey (2014) Dey, S., & Dey, T. (2014). Statistical inference for the rayleigh distribution under progressively type-ii censoring with binomial removal. Applied Mathematical Modelling, 38, 974–982.
  • El-Din et al. (2017) El-Din, M. M. M. M., Amein, M. M., Shafay, A. R., & Mohamed, S. (2017). Estimation of generalized exponential distribution based on an adaptive progressively type-ii censored sample. Journal of Statistical Computation and Simulation, 87, 1292–1304.
  • Elshahhat & Nassar (2022) Elshahhat, A., & Nassar, M. (2022). Analysis of adaptive type-ii progressively hybrid censoring with binomial removals. Journal of Statistical Computation and Simulation, 0, 1–27.
  • Epstein (1954) Epstein, B. (1954). Truncated life tests in exponential case. The Annals of Mathematical Statistics, 25.
  • Hastings (1970) Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97–109.
  • Jerald. (1982) Jerald., L. F. (1982). Statistical models and methods for lifetime data. John Wiley and Sons, New York, 10, 316–317.
  • Kundu (2007) Kundu, D. (2007). On hybrid censored weibull distribution. Journal of Statistical Planning and Inference, 137, 2127–2142.
  • Lv et al. (2022) Lv, Q., Tian, Y., & Gui, W. (2022). Statistical inference for gompertz distribution under adaptive type-ii progressive hybrid censoring. Journal of Applied Statistics, 0, 1–30.
  • Merovci & Elbatal (2014) Merovci, F., & Elbatal, I. (2014). Weibull-rayleigh distribution: Theory and applications. Applied Mathematics &\& Information Sciences, 5.
  • Metropolis et al. (1953) Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. Journal of Chemical Physics, 21, 1087–1092.
  • Mohan & Chacko (2020) Mohan, R., & Chacko, M. (2020). Estimation of parameters of kumaraswamy-exponential distribution based on adaptive type-ii progressive censored schemes. Journal of Statistical Computation and Simulation, 91, 81 – 107.
  • Mohan & Chacko (2021) Mohan, R., & Chacko, M. (2021). Estimation of parameters of kumaraswamy-exponential distribution based on adaptive type-ii progressive censored schemes. Journal of Statistical Computation and Simulation, 91, 81–107.
  • Nassar & Abo-Kasem (2017) Nassar, M., & Abo-Kasem, O. (2017). Estimation of the inverse weibull parameters under adaptive type-ii progressive hybrid censoring scheme. Journal of Computational and Applied Mathematics, 315, 228–239.
  • Nelson (1998) Nelson, W. (1998). Statistical methods for reliability data. New\mathrm{New} York(NY)\mathrm{York(NY)}: Wiley.
  • Ng et al. (2009) Ng, H. K. T., Kundu, D., & Chan, P. S. (2009). Statistical analysis of exponential lifetimes under an adaptive type-ii progressive censoring scheme. Naval Research Logistics (NRL), 56, 687–698.
  • Oguntunde et al. (2017) Oguntunde, P. E., Adejumo, A. O., & Owoloko, E. A. (2017). Application of kumaraswamy inverse exponential distribution to real lifetime data. International journal of applied mathematics and statistics, 56, 34–47.
  • Panahi & Moradi (2020) Panahi, H., & Moradi, N. (2020). Estimation of the inverted exponentiated rayleigh distribution based on adaptive type ii progressive hybrid censored sample. Journal of Computational and Applied Mathematics, 364, 112345.
  • Tomer & Panwar (2015) Tomer, S. K., & Panwar, M. S. (2015). Estimation procedures for maxwell distribution under type-i progressive hybrid censoring scheme. Journal of Statistical Computation and Simulation, 85, 339–356.
  • Yan et al. (2021) Yan, W., Li, P., & Yu, Y. (2021). Statistical inference for the reliability of burr-xii distribution under improved adaptive type-ii progressive censoring. Applied Mathematical Modelling, 95, 38–52.
  • Ye et al. (2014) Ye, Z.-S., Chan, P.-S., Xie, M., & Ng, H. K. T. (2014). Statistical inference for the extreme value distribution under adaptive type-ii progressive censoring schemes. Journal of Statistical Computation and Simulation, 84, 1099–1114.
  • Zhang & Gui (2020) Zhang, Y., & Gui, W. (2020). A goodness of fit test for the pareto distribution with progressively type ii censored data based on the cumulative hazard function. Journal of Computational and Applied Mathematics, 368, 112557.
  • Zhang & Gui (2019) Zhang, Z., & Gui, W. (2019). Statistical inference of reliability of generalized rayleigh distribution under progressively type-ii censoring. Journal of Computational and Applied Mathematics, 361, 295–312.