This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

State preparation and evolution in quantum computing: a perspective from Hamiltonian moments

Joseph C. Aulicino Pritzker Molecular Engineering, University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637, United States of America    Trevor Keen Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 377996, United States of America    Bo Peng [email protected] Physical Sciences and Computational Division, Pacific Northwest National Laboratory, Richland, WA 99354, United States of America
Abstract

Quantum algorithms on noisy intermediate-scale quantum (NISQ) devices are expected to soon have the ability to simulate quantum systems that are classically intractable, demonstrating a quantum advantage. However, the non-negligible gate error present on NISQ devices impedes the implementation of conventional quantum algorithms. Practical strategies usually exploit hybrid quantum-classical algorithms to demonstrate potentially useful applications of quantum computing in the NISQ era. Among the numerous hybrid quantum-classical algorithms, recent efforts highlight the development of quantum algorithms based upon quantum computed Hamiltonian moments, ϕ|^n|ϕ\langle\phi|\hat{\mathcal{H}}^{n}|\phi\rangle (n=1,2,n=1,2,\cdots), with respect to quantum state |ϕ|\phi\rangle. In this tutorial review, we will give a brief review of these quantum algorithms with focuses on the typical ways of computing Hamiltonian moments using quantum hardware and improving the accuracy of the estimated state energies based on the quantum computed moments. Furthermore, we will present an example to show how we can measure and compute the Hamiltonian moments of a four-site Heisenberg model, and compute the energy and magnetization of the model utilizing the imaginary time evolution on the real IBM-Q NISQ hardware. Along this line, we will further discuss some practical issues associated with these algorithms. We will conclude this tutorial review by discussing some possible developments and applications in this direction in the near future.

quantum computing, state preparation and evolution, Hamiltonian moments, hybrid quantum classical algorithm, quantum simulation

I Introduction

The original idea of solving many-body quantum mechanical problems on a quantum computer dates back to R. Feynman’s insight almost four decades ago Feynman (1982), when high-performance classical computing was at its early state and quantum computing was only a thought experiment. In the last forty years, developments in classical quantum approaches and high performance computing technology yielded adequate tools to perform highly accurate small- to medium-size quantum simulations and qualitative large-scale quantum simulations. Despite these exciting developments and achievements, the classical quantum approach is gradually approaching the computing limit attributed to the unfavorable scaling along with the expanded system size. For instance, consider the well-known examples of full Configuration Interaction (full CI) approach David Sherrill and Schaefer (1999) and Coupled Cluster (CC) approach Bartlett and Musiał (2007). Classically, in order to achieve the chemical accuracy (\sim1 kcal/mol) for the energy evalulation, the runtime in the full CI and the “golden standard” CCSD(T) scale as 𝒪(Nn)\mathcal{O}\Big{(}\begin{subarray}{c}N\\ n\end{subarray}\Big{)} and 𝒪(N7)\mathcal{O}(N^{7}), respectively, with respect to the system size NN (and number of electrons nn), which impedes their routine applications for large systems. On the other hand, quantum computing (simulation performed on a quantum computer) is a next-generation computing technology that bears the hope of outperforming high-performance classical computing techniques to solve a wide class of problems encountered in scientific research and industrial applications. Quantum computation enables the encoding of an exponential amount of information about many-body quantum systems into a polynomial number of qubits, which provides a more efficient way to expand and explore the computational state-space in polynomial time Sugisaki et al. (2019).

Since the first application of quantum computing algorithm for computational chemistry problems in 2005 Aspuru-Guzik et al. (2005), numerous quantum algorithms have been proposed aiming at demonstrating the potential quantum speedup, in comparison to the classical approaches, for solving problems in domain science such as chemistry, nuclear physics, quantum field theory, and high energy physics O’Malley et al. (2016); Linke et al. (2017); Kandala et al. (2017); Dumitrescu et al. (2018); Klco et al. (2018); Colless et al. (2018); McCaskey et al. (2019). However, many proposed quantum algorithms featuring favorable scaling typically have deep circuit demands, and are not suitable for the near-term noisy intermediate-scale quantum (NISQ) devices Preskill (2018). In the search for quantum algorithms suitable running on the NISQ devices, one should mention hybrid quantum-classical Variational Quantum algorithm (VQA) Peruzzo et al. (2014); McClean et al. (2016); Romero et al. (2018); Shen et al. (2017); Kandala et al. (2017, 2019); Colless et al. (2018); Huggins et al. (2020), quantum approximate optimization algorithm (QAOA) Farhi, Goldstone, and Gutmann (2014), quantum annealing Bharti et al. (2021); Albash and Lidar (2018), gaussian boson sampling Aaronson and Arkhipov (2011), analog quantum simulation Trabesinger (2012); Georgescu, Ashhab, and Nori (2014), iterative quantum assisted eigensolver McArdle et al. (2019); Motta et al. (2020); Parrish and McMahon (2019); Kyriienko (2020), and many others, which bear the hope to capitalize the near-term NISQ quantum devices. Nevertheless, these NISQ quantum algorithms have their own limitations. For example, VQAs face challenges such as Barren plateau McClean et al. (2018); Cerezo et al. (2021); Cerezo and Coles (2021), ansatz searching Herasymenko and O’Brien (2019), and measurement overhead Bonet-Monroig, Babbush, and O’Brien (2020) which stimulate the emerging of some many recent improvements. Numerous comprehensive reviews on the NISQ quantum algorithms and techniques have appeared in recent years to pave the foundation of and provide guidance to future studies (see e.g. Refs. 35; 21 for more recent ones). However, due to the rapid development of this emerging field, it becomes challenging for the reviews to comprehensively cover many newly developed quantum algorithms and techniques in a timely manner. Furthermore, it is usually more efficient, in particular for non-specialists, to choose a thread to understand and digest the basic ideas and the interconnection of these algorithms by going through some tutorials. With these concerns in mind, instead of giving another comprehensive review covering some newly developed quantum algorithms, here we present a tutorial review on some recently developed quantum algorithms based on the quantum computation of Hamiltonian moments. The Hamiltonian moment here is referring to the expectation value of Hamiltonian powers with respect to a given state |ϕ|\phi\rangle for the systems of interest ϕ|^n|ϕ\langle\phi|\hat{\mathcal{H}}^{n}|\phi\rangle (n=1,2,n=1,2,\cdots), and can be considered as one of the building blocks for performing variational or perturbative calculations solving the energy and property of a many-body quantum system. We will introduce the state preparation and evolution, and hybrid algorithms associated with quantum Hamiltonian moments. With the examples and discussions, we hope to provide a relatively easy-to-read review with a clear demonstration of the connections and differences between some relevant quantum algorithms.

This tutorial review is organized as follows. Section II reviews the ways of quantum computing Hamiltonian moments. Section III reviews some recently proposed hybrid approaches based on quantum Hamiltonian moments (see Fig. 1 for a typical workflow of the hybrid algorithm of this kind). Section IV gives a tutorial of how to target the ground state and magnetization of a generalized four-site Heisenberg model employing quantum Hamilonian moments in the imaginary time evolution approach on IBM-Q quantum hardware. Section IV also includes the discussions of some practical issues associated with performing quantum computing on the NISQ device with a focus on the impact of these issues on the results of quantum simulations. We will conclude this tutorial review by pointing out possible developments and applications in this direction in the near future.

Refer to caption
Figure 1: The workflow of a typical hybrid quantum classical algorithm based on quantum computed Hamiltonian moments ^r\langle\hat{\mathcal{H}}^{r}\rangle (r=1,2,r=1,2,\cdots).

II Quantum computation of Hamiltonian moments

Given a system Hamiltonian ^\hat{\mathcal{H}} of interest and a trial state |ϕ|\phi\rangle, the nn-th order (n1n\geq 1) Hamiltonian moment with respect to |ϕ|\phi\rangle is defined as

^nϕ|^n|ϕ.\displaystyle\langle\hat{\mathcal{H}}^{n}\rangle\equiv\langle\phi|\hat{\mathcal{H}}^{n}|\phi\rangle. (1)

In classical computations, ^n\langle\hat{\mathcal{H}}^{n}\rangle’s are obtained by power iteration, i.e. a repeated multiplication of ^\hat{\mathcal{H}} and |ϕ|\phi\rangle. However, as the dimension of the Hilbert space grows exponentially with the system size, and the number of terms that constitutes ^n\langle\hat{\mathcal{H}}^{n}\rangle would quickly blow up as the power nn becomes large, the classical computations of ^n\langle\hat{\mathcal{H}}^{n}\rangle’s would quickly become intractable. On the other hand, quantum computing allows for a more straightforward encoding of the quantum states defined in a Hilbert space of potentially large and classically intractable dimensions. Therefore, we consider (a) how to utilize quantum resources for the direct computation of ^n\langle\hat{\mathcal{H}}^{n}\rangle, and (b) how to exploit the noisy ^n\langle\hat{\mathcal{H}}^{n}\rangle’s computed on NISQ devices to accurately evaluate ground/excited states and dynamics of quantum many-body systems. In this section, we try to answer the first question by briefly reviewing some of the methods that have been proposed for directly computing ^n\langle\hat{\mathcal{H}}^{n}\rangle on quantum devices. We leave the discussion of the second question to Section III.

To directly compute ^n\langle\hat{\mathcal{H}}^{n}\rangle on quantum devices for a quantum many-body system, a first step is to encode the many-body Hamiltonian in terms of qubits. There have been many ways proposed to encode the system Hamiltonian. For example, in the Jordan-Wigner Jordan and Wigner (1928) and Bravyi-Kitaev methods Bravyi and Kitaev (2002); Seeley, Richard, and Love (2012); Tranter et al. (2015), the NqN_{q}-qubit system Hamiltonian is encoded as a linear combination of tensor products of Pauli qubit operators,

^=m=1MhmPm,\displaystyle\hat{\mathcal{H}}=\sum_{m=1}^{M}h_{m}P_{m}, (2)

where hmh_{m} is a scalar and Pmq=1Nqσi(q)P_{m}\equiv{\prod_{q=1}^{N_{q}}}^{\otimes}\sigma_{i}(q) is a Pauli string with σi(q)\sigma_{i}(q) being either 2×22\times 2 identity matrix or one of the three Pauli matrices

σx=(0110),σy=(0ii0),σz=(1001)\displaystyle\sigma_{x}=\left(\begin{array}[]{cc}0&1\\ 1&0\end{array}\right),~{}~{}\sigma_{y}=\left(\begin{array}[]{cc}0&-i\\ i&0\end{array}\right),~{}~{}\sigma_{z}=\left(\begin{array}[]{cc}1&0\\ 0&-1\end{array}\right) (9)

for the qq-th qubit. From (2), a naive way to directly compute ^n\langle\hat{\mathcal{H}}^{n}\rangle is to plug (2) into (1), and evaluate the expectation values of the products of Pauli strings that constitute ^n\langle\hat{\mathcal{H}}^{n}\rangle. Apparently, without any simplification or reduction, the naive way would require evaluating 𝒪(Mn)\mathcal{O}(M^{n}) terms and would quickly become intractable as MM and/or nn scale up. Therefore, major efforts in this direction focus on mitigating this evaluation overhead as much as possible by introducing some simplifications and reductions based on the properties of the Pauli strings.

II.1 Term-by-term measurement

One straightforward way is to apply Pauli reduction and commutativity to reduce the number of terms, and then do term-by-term measurements. The Pauli reduction simply utilizes the commutation and anti-commutation relations between Pauli matrices

{[σi,σj]=2iϵijkσk{σi,σj}=2δijIσiσj=iϵijkσk+δijI,\displaystyle\left\{\begin{array}[]{cl}[\sigma_{i},\sigma_{j}]&=2i\epsilon_{ijk}\sigma_{k}\\ \{\sigma_{i},\sigma_{j}\}&=2\delta_{ij}I\end{array}\right.\Rightarrow\sigma_{i}\sigma_{j}=i\epsilon_{ijk}\sigma_{k}+\delta_{ij}I, (12)

where σi,σj,σk\sigma_{i},\sigma_{j},\sigma_{k} are Pauli matrices, ϵijk\epsilon_{ijk} is the structure constant following the Levi-Civita symbol Tyldesley (1975), and δij\delta_{ij} is the Kronecker delta. From (12) it is straightforward to see the product of Pauli strings is another Pauli string with an appropriate phase factor. Therefore, in comparison to the evaluation of ^\langle\hat{\mathcal{H}}\rangle, the evaluation of ^n\langle\hat{\mathcal{H}}^{n}\rangle does not increase the circuit depth. Furthermore, we notice that the measurement of a single Pauli string could be used to determine classes of contributions to Hamiltonian moments of arbitrary order. For example, since every Pauli string is unitary, the evaluation of Pi\langle P_{i}\rangle can simultaneously contribute all the H2k+1\langle H^{2k+1}\rangle’s (k0,kk\geq 0,k\in\mathbb{N}) Kowalski and Peng (2020). Suchsland et al. systematically analyzed the actual number of Pauli strings corresponding to ^n\hat{\mathcal{H}}^{n} (n=1,2,3n=1,2,3) for a collection of 11 molecules, including Hn (n=2,4,6,8,10n=2,4,6,8,10), LiH, NaH, H2O, NH3, and N2, that require up to Nq=18N_{q}=18 qubits Suchsland et al. (2021). It was found that the actual numbers of Pauli strings in these systems after applying (12) exhibit at most 𝒪(Nq3)\mathcal{O}(N_{q}^{3}), 𝒪(Nq5)\mathcal{O}(N_{q}^{5}), and 𝒪(Nq7)\mathcal{O}(N_{q}^{7}) scalings in comparison to the predicted 𝒪(Nq4)\mathcal{O}(N_{q}^{4}), 𝒪(Nq8)\mathcal{O}(N_{q}^{8}), and 𝒪(Nq12)\mathcal{O}(N_{q}^{12}) scalings for ^n\hat{\mathcal{H}}^{n} (n=1,2,3n=1,2,3) respectively.

Refer to caption
Figure 2: A pictorial QWC grouping procedure.

On the top of the above simplification, a more significant term reduction can be achieved by utilizing the commutativity of the Pauli strings. To see this method works mathematically, consider operators 𝒜^\hat{\mathcal{A}} and ^\hat{\mathcal{B}} that commute, i.e. [𝒜^,^]=0[\hat{\mathcal{A}},\hat{\mathcal{B}}]=0, then there exists a complete orthonormal eigenbasis |ui{|u_{i}\rangle} (i=0,1,i=0,1,\cdots) that simultaneously diagonalizes both operators, and we can write

𝒜^=iλi|uiui|,^=iκi|uiui|,\displaystyle\hat{\mathcal{A}}=\sum_{i}\lambda_{i}|u_{i}\rangle\langle u_{i}|,~{}~{}\hat{\mathcal{B}}=\sum_{i}\kappa_{i}|u_{i}\rangle\langle u_{i}|, (13)

with {λi,i=0,1,}\{\lambda_{i},i=0,1,\cdots\} and {κi,i=0,1,}\{\kappa_{i},i=0,1,\cdots\} being the eigenvalues of 𝒜^\hat{\mathcal{A}} and ^\hat{\mathcal{B}}, respectively. Now the expectation values of 𝒜^\hat{\mathcal{A}} and ^\hat{\mathcal{B}} with respect to a trial state |ϕ|\phi\rangle can be expressed as

𝒜^\displaystyle\langle\hat{\mathcal{A}}\rangle =ϕ|𝒜^|ϕ=iλi|ui|ϕ|2,\displaystyle=\langle\phi|\hat{\mathcal{A}}|\phi\rangle=\sum_{i}\lambda_{i}|\langle u_{i}|\phi\rangle|^{2},
^\displaystyle\langle\hat{\mathcal{B}}\rangle =ϕ|^|ϕ=iκi|ui|ϕ|2.\displaystyle=\langle\phi|\hat{\mathcal{B}}|\phi\rangle=\sum_{i}\kappa_{i}|\langle u_{i}|\phi\rangle|^{2}. (14)

Therefore, if we measure each |ui|ϕ|2|\langle u_{i}|\phi\rangle|^{2}’s, we can deduce 𝒜^\langle\hat{\mathcal{A}}\rangle and ^\langle\hat{\mathcal{B}}\rangle based on (14).

The simplest commutativity among Pauli strings is qubitwise commutativity (QWC) Kandala et al. (2017); McClean et al. (2016), where two Pauli strings qubitwise commute if two single-qubit Pauli matrices at each index commute, i.e.

[I,I]=[I,σx]=[I,σy]=[I,σz]=0,\displaystyle[I,I]=[I,\sigma_{x}]=[I,\sigma_{y}]=[I,\sigma_{z}]=0,
[σx,σx]=[σy,σy]=[σz,σz]=0.\displaystyle[\sigma_{x},\sigma_{x}]=[\sigma_{y},\sigma_{y}]=[\sigma_{z},\sigma_{z}]=0. (15)

For example, {σxσy,σxI,Iσy,II}\{\sigma_{x}\otimes\sigma_{y},\sigma_{x}\otimes I,I\otimes\sigma_{y},I\otimes I\} is a QWC class, since any pair of Pauli strings in this class commute (a more pictorial QWC grouping procedure is shown in Fig. 2). For the observables grouped in one QWC class, one can easily find a shared eigenbasis that simultaneously diagonalizes all the observables. Take the previous example, if we want to measure the QWC class in the computational basis, utilizing the Clifford representation of single Pauli matrices σx\sigma_{x} and σy\sigma_{y}

σx=HσzH,\displaystyle\sigma_{x}=H\sigma_{z}H,
σy=SσxS=SHσzHS,\displaystyle\sigma_{y}=S\sigma_{x}S^{\dagger}=SH\sigma_{z}HS^{\dagger}, (16)

we will only need perform the following measurement

[Uncaptioned image]

which gives the probabilities of the variational circuit rotated into the shared eigenbasis, and the expectation values of each Pauli string can then be recovered by classically combining these probabilities with the eigenvalues of these Pauli strings.

Now, given a large amount of Pauli strings that constitute ^n\hat{\mathcal{H}}^{n}, how should we find an optimal grouping of these Pauli strings such that the total number of measurements is minimized? Unfortunately, it turns out that finding the optimal grouping is NP-hard Karp (2010); Gokhale et al. (2020), and can be converted to minimum clique cover or minimum graph coloring problem, which in practice can be approximately solved through heuristic approaches that scale quadratically with the number of the Pauli strings Yen, Verteletskyi, and Izmaylov (2020). In terms of term reduction, for small molecules the QWC grouping can bring roughly 75% saving for evaluating ^\langle\hat{\mathcal{H}}\rangle, and even bigger savings for for ^n\langle\hat{\mathcal{H}}^{n}\rangle (n>1n>1). Early studies of applying QWC bases to evaluating ^4\langle\hat{\mathcal{H}}^{4}\rangle for the Heisenberg models represented by 10 to 40 qubits exhibits a sub-linear scaling of the number of measurements in the number of the qubits Vallury et al. (2020). Furthermore, for some small molecular systems, it has been shown that the number of QWC bases grouping the Pauli strings that constitute ^n\hat{\mathcal{H}}^{n} eventually reach a plateau, regardless of the power nn Claudino et al. (2021).

Essentially, the QWC grouping has its roots in mutually unbiased bases (MUB) Schwinger (1960); Klappenecker and Rötteler (2004) from quantum information theory associated with maximizing the information learned from a single measurement. In general, MUBs group the potentially 4Nq14^{N_{q}}-1 NqN_{q}-qubit Pauli strings (excluding identity string) into commuting groups of maximal size, of which using QWCs would allow reducing this requirement to 3Nq3^{N_{q}} Altepeter, James, and Kwiat (2004). Further, it is known that there in principle exists an MUB grouping for NqN_{q}-qubit that can further reduce this requirement to even 2Nq+12^{N_{q}}+1 with maximum 2Nq12^{N_{q}}-1 distinct Pauli strings in each commuting group, however, the entanglement in the MUBs Lawrence, Brukner, and Zeilinger (2002) makes MUB quantum state tomography challenging. In practice, beside QWC, other grouping techniques have alternatively been proposed, including general commutativity Gokhale et al. (2020); Yen, Verteletskyi, and Izmaylov (2020), unitary partitioning Izmaylov et al. (2020), and Fermionic basis rotation grouping Huggins et al. (2021). Generally speaking, the applications of these grouping rules for evaluating ^\langle\hat{\mathcal{H}}\rangle have shown that, at a cost of introducing additional one-/multi-qubit unitary transformation before the measurement, the total number of terms can be significantly reduced from 𝒪(Nq4)\mathcal{O}(N_{q}^{4}) to 𝒪(Nq23)\mathcal{O}(N_{q}^{2\sim 3}). In particular, for simpler cases where the entire Hamiltonian or its power could even be transformed by a single unitary, the evaluation of the corresponding expectation values can be done in a single set of measurements.

It is worth mentioning that the above discussion is limited to the number of terms that can be efficiently reduced through the groupings that feature the commutativity of Pauli strings, while the total number of measurements required from the number of groups also critically depends on the covariance between Pauli strings, cov(Pi,Pj)\text{cov}\big{(}P_{i},P_{j}\big{)}, and the desired precision ϵ\epsilon. Given that we can always write the Hamiltonian powers as linear combination of Pauli strings similar to Eq. (2), the total number of measurements for evaluating the moments can then be expressed as Gonthier et al. (2020); Rubin, Babbush, and J. (2018); Wecker, Hastings, and Troyer (2015)

# of Measurements=\displaystyle\text{\# of Measurements}=
(Gi,j,Ghihjcov(Pi,Pj)ϵ)2\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\Bigg{(}\displaystyle\frac{\sum_{G}\sqrt{\sum_{i,j,\in G}h_{i}h_{j}\text{cov}\big{(}P_{i},P_{j}\big{)}}}{\epsilon}\Bigg{)}^{2} (17)

with GG indexing the groups. Therefore, it is likely that the number of groups decreases at the cost of introducing larger covariances that could essentially increase the total number of measurements required to achieve a desired precision.

There are also many other advanced measurement schemes proposed recently. One example is to simultaneously obtain expectation values of multiple observables by randomly measuring and projecting the quantum state into classical shadows Huang, Kueng, and Preskill (2020, 2021); Aaronson (2018); Struchalin et al. (2021); Chen et al. (2021); Zhao, Rubin, and Miyake (2021); Acharya, Saha, and Sengupta (2021); Hadfield (2021); Hillmich et al. (2021); Zhang et al. (2021). The algorithm in principle enables the measurements of MM low-weight observables using only 𝒪(log2M)\mathcal{O}(\log_{2}M) samples. The practical performance of the algorithm for model and molecular Hamiltonians on NISQ device, in terms of accuracy and efficiency, is still under intense study.

II.2 Expansion by Chebyshev polynomials via quantum walk

Another way to exactly implement ^n\hat{\mathcal{H}}^{n} is by Chebyshev polynomial expansion. We can exactly express a monomial xnx^{n} on [1,1]\left[-1,1\right] as a finite sum of Chebyshev polynomials of the first kind, i.e.

xn=k=0nCnkTk(x)\displaystyle x^{n}=\sum\limits_{k=0}^{n}C_{nk}T_{k}(x) (18)

where

Cnk={12n1(n(nk)/2)if (nk) is even, j>012n(nn/2)if n is even, j=00else\displaystyle C_{nk}=\begin{cases}\dfrac{1}{2^{n-1}}~{}\binom{n}{(n-k)/2}&\text{if }(n-k)\text{ is even, }j>0\\[10.00002pt] \dfrac{1}{2^{n}}~{}\binom{n}{n/2}&\text{if }n\text{ is even, }j=0\\[10.00002pt] 0&\text{else}\end{cases} (19)

and Tk(x)T_{k}(x) is the kthk^{th} degree Chebyshev polynomial of the first kind Subramanian, Brierley, and Jozsa (2019). This expansion is useful because a “quantum walk” can exactly produce the effect of Chebyshev polynomials in ^/d\hat{\mathcal{H}}/d, where dd is the sparsity of the matrix. A quantum walk is a process in which the Hilbert space is enlarged, and then a walk operator that works in the enlarged Hilbert space is repeatedly implemented. For details on quantum walks and their implementations, see e.g. Refs. 68; 69. With amplitude amplification to obtain a constant success probability of preparing a quantum state and a flag qubit to indicate if the preparation was successful, the query complexity of this method is 𝒪(ndn1λ0n)\mathcal{O}\left(nd^{n-1}\lambda_{0}^{-n}\right) Subramanian, Brierley, and Jozsa (2019). Using this method without amplitude amplification, the query complexity of this implementation is 𝒪(n)\mathcal{O}\left(n\right). Here, λ0\lambda_{0} denotes the smallest (magnitude) eigenvalue of HH, with the assumption that ^\hat{\mathcal{H}} does not have 0 as an eigenvalue. However, this method has its own drawbacks. The implementation of the quantum walk can be expensive, requiring a number of ancillary qubits that grows linearly with the system size Subramanian, Brierley, and Jozsa (2019). The Chebyshev polynomial expansion’s potential application for computing the imaginary time evolution of an unnormalized quantum state, and in general eβ^e^{-\beta\hat{\mathcal{H}}} for evaluating partition function has been discussed in Ref. 70, where they use the recursion relation for Chebyshev polynomials.

II.3 Linear combination of unitary time propagator

Recently, Seki and Yunoki proposed a quantum power method to evaluate ^n|ϕ\hat{\mathcal{H}}^{n}|\phi\rangle Seki and Yunoki (2021), where the Hamiltonian power ^n\hat{\mathcal{H}}^{n} is first expressed as the nn-th time derivative of 𝒰^(t)=ei^t\hat{\mathcal{U}}(t)=e^{i\hat{\mathcal{H}}t} at t=0t=0, then the time derivative is approximated through the central finite difference (CFD) which can be alternatively expressed as a linear combination of 𝒰^(Δt)\hat{\mathcal{U}}(\Delta_{t})’s at different time variables Δt\Delta_{t}’s in close proximity to t=0t=0, i.e.

^n\displaystyle\hat{\mathcal{H}}^{n} =inn𝒰^(t)tn|t=0in[𝒰^(Δt2)𝒰^(Δt2)]n/Δtn\displaystyle=i^{n}\frac{\partial^{n}\hat{\mathcal{U}}(t)}{\partial t^{n}}\bigg{|}_{t=0}\approx i^{n}\left[\hat{\mathcal{U}}(\frac{\Delta_{t}}{2})-\hat{\mathcal{U}}(-\frac{\Delta_{t}}{2})\right]^{n}/\Delta_{t}^{n}
=k=0n[inΔtn(1)k(nk)][𝒰^(Δt2)]n2k.\displaystyle=\sum_{k=0}^{n}\left[\frac{i^{n}}{\Delta_{t}^{n}}(-1)^{k}\Big{(}\begin{subarray}{c}n\\ k\end{subarray}\Big{)}\right]\left[\hat{\mathcal{U}}(\frac{\Delta_{t}}{2})\right]^{n-2k}. (20)

To implement the approach to quantum circuit, each 𝒰^(Δt2)\hat{\mathcal{U}}(\frac{\Delta_{t}}{2}) is further decomposed using symmetric Suzuki-Trotter decomposition (SSTD) Trotter (1959); Suzuki (1990). There are two sources of error in this approach, the CFD error and SSTD error. The systematic CFD error scales quadratically with Δt\Delta_{t}, i.e. 𝒪(Δt2)\mathcal{O}(\Delta_{t}^{2}), while the 2m2m-th order SSTD brings the systematic error of 𝒪(Δt2m)\mathcal{O}(\Delta_{t}^{2m}). However, there are several advantages in the proposed approach. First, both aforementioned errors can be systematically suppressed through Richardson extrapolation Richardson and Gaunt (1927); Temme, Bravyi, and Gambetta (2017) at the cost of involving more terms in the linear combination in Eq. (20), which on the other hand offers the space for using low order SSTD. Second, the number of gates required for approximate ^n\hat{\mathcal{H}}^{n} for an NqN_{q}-qubit Hamiltonian ^\hat{\mathcal{H}} scales as 𝒪(nNq)\mathcal{O}(nN_{q}). In principle, the quantum power method can be combined with many classical approaches, which will be elaborated in Section III for targeting the ground/excited states and properties of a quantum many-body system. As shown in Ref. 71, numerical noiseless simulations employing the quantum power method in Krylov-subspace diagonalization for targeting ground state of model systems demonstrate systematically improved accuracy over the conventional VQE.

Inspired by the classical inverse power iteration approach for finding the dominant eigenstate of a given hermitian matrix with a more favorable logarithmic complexity in the iteration depth Sachdeva and Vishnoi (2014), Kyriienko recently proposed a quantum inverse iteration algorithm Kyriienko (2020) for approximately computing the inverse of nn-th power of the Hamiltonian, ^n\hat{\mathcal{H}}^{-n}. The approach extends the discretized Fourier approximation of the Hamiltonian inverse Childs, Kothari, and Somma (2017) to the nn-th power,

^niNn2πj=0Jyjn1Δyk=KKzkΔzezk2/2𝒰^j,k,\displaystyle\hat{\mathcal{H}}^{-n}\approx\frac{iN_{n}}{\sqrt{2\pi}}\sum_{j=0}^{J}y_{j}^{n-1}\Delta_{y}\sum_{k=-K}^{K}z_{k}\Delta_{z}e^{-z_{k}^{2}/2}\hat{\mathcal{U}}_{j,k}, (21)

where NnN_{n} is a normalization factor, yjjΔyy_{j}\equiv j\Delta_{y} and zkkΔzz_{k}\equiv k\Delta_{z} with the integers j[0,J]j\in[0,J] and k[K,K]k\in[-K,K] and intervals Δy,z\Delta_{y,z}\in\mathbb{R} defining a discretization grid space, and unitary 𝒰^j,k\hat{\mathcal{U}}_{j,k} is given by eiyjzk^e^{-iy_{j}z_{k}\hat{\mathcal{H}}}. Then ϕ|^n|ϕ\langle\phi|\hat{\mathcal{H}}^{-n}|\phi\rangle is evaluated through the SWAP test Ekert et al. (2002); Higgott, Wang, and Brierley (2019), overlap measurement Mitarai and Fujii (2019), or Bell-type-like measurement Kyriienko (2020). However, this method requires a number of calls to a time-evolution oracle that is dependent on the condition number of the system, as well as a requirement that the Hamiltonian has been shifted such that all of the eigenvalues are positive. This latter requirement requires the user to have some knowledge of the ground state energy of the system a priori. A suitable guess can be found, for example, using the minimum label finding algorithm of Ref. 81.

Alternatively, if considering a fault-tolerant implementation with favorable resource scaling ^n|ϕ\hat{\mathcal{H}}^{n}|\phi\rangle or ^n|ϕ\hat{\mathcal{H}}^{-n}|\phi\rangle can be done through amplitude amplification approach Brassard et al. (2002), Hamiltonian simulation Berry et al. (2015), qubitization Low and Chuang (2017), or the direct block-encoding Gilyén et al. (2019) methods at the cost of introducing deeper circuit and implementing controlled-𝒰^\hat{\mathcal{U}} operations which, however, are still challenging to be implemented in the NISQ devices. Some of these methods have deep connection to linear combination of unitaries (LCU) technique Childs and Wiebe (2012). The basic idea of LCU can be briefly demonstrated from the following toy example. Suppose we want to implement 𝒰^0+𝒰^1\hat{\mathcal{U}}_{0}+\hat{\mathcal{U}}_{1} on |ϕ|\phi\rangle. We can start by introducing an ancilla qubit and preparing |+|ϕ|+\rangle|\phi\rangle with |+12(|0+|1)|+\rangle\equiv\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle). Then by performing the controlled unitary |00|𝒰^0+|11|𝒰^1|0\rangle\langle 0|\otimes\hat{\mathcal{U}}_{0}+|1\rangle\langle 1|\hat{\mathcal{U}}_{1} on |+|ϕ|+\rangle|\phi\rangle we are able to obtain the state 12(|0𝒰^0|ϕ+|1𝒰^1|ϕ)\frac{1}{\sqrt{2}}(|0\rangle\hat{\mathcal{U}}_{0}|\phi\rangle+|1\rangle\hat{\mathcal{U}}_{1}|\phi\rangle). Now, if we measure the ancilla qubit in the {|+,|}\{|+\rangle,|-\rangle\} basis and obtain the outcome associated with |+|+\rangle, then we obtain a state proportional to (𝒰^0+𝒰^1)|ϕ(\hat{\mathcal{U}}_{0}+\hat{\mathcal{U}}_{1})|\phi\rangle.

III Classical computation of target states from quantum computed moments

Now supposing we already have necessary Hamiltonian moments computed from quantum simulation, how can we proceed to accurately evaluate the energy and/or properties of the Hamiltonian? In this section, we will try to give our answers from some classical approaches.

III.1 Lanczos approach

One of the most common approaches that can be exploited is the Lanczos approach Lanczos (1950). In the Lanczos approach, an orthonormal set of quantum states {|ϕi,i=1,2,}\{|\phi_{i}\rangle,i=1,2,\cdots\} is generated through a three-term recursion

^|ϕi+1=βi|ϕi+αi+1|ϕi+1+βi+1|ϕi+2,\displaystyle\hat{\mathcal{H}}|\phi_{i+1}\rangle=\beta_{i}|\phi_{i}\rangle+\alpha_{i+1}|\phi_{i+1}\rangle+\beta_{i+1}|\phi_{i+2}\rangle, (22)

where αi=ϕi|^|ϕi\alpha_{i}=\langle\phi_{i}|\hat{\mathcal{H}}|\phi_{i}\rangle, βi=ϕi|^|ϕi+1\beta_{i}=\langle\phi_{i}|\hat{\mathcal{H}}|\phi_{i+1}\rangle. The three-term recursion essentially transforms the Hamiltonian ^\hat{\mathcal{H}} into a tridiagonal form

𝒯^i=[α1β1β1α2βi1βi1αi]\displaystyle\hat{\mathcal{T}}_{i}=\left[\begin{array}[]{cccc}\alpha_{1}&\beta_{1}&&\\ \beta_{1}&\alpha_{2}&\ddots&\\ &\ddots&\ddots&\beta_{i-1}\\ &&\beta_{i-1}&\alpha_{i}\end{array}\right] (27)

where the matrix elements αi\alpha_{i} and βi\beta_{i} can essentially be represented recursively in terms of Hamiltonian moments. Explicitly, it can be shown

α1\displaystyle\alpha_{1} =^,\displaystyle=\langle\hat{\mathcal{H}}\rangle,
β1\displaystyle\beta_{1} =^2^2,\displaystyle=\sqrt{\langle\hat{\mathcal{H}}^{2}\rangle-\langle\hat{\mathcal{H}}\rangle^{2}},
α2\displaystyle\alpha_{2} =^32^2^+^3^2^2,\displaystyle=\frac{\langle\hat{\mathcal{H}}^{3}\rangle-2\langle\hat{\mathcal{H}}^{2}\rangle\langle\hat{\mathcal{H}}\rangle+\langle\hat{\mathcal{H}}\rangle^{3}}{\langle\hat{\mathcal{H}}^{2}\rangle-\langle\hat{\mathcal{H}}\rangle^{2}},
β2\displaystyle\beta_{2} =^4(α1+α2)2β12(α12+β12)2β12,\displaystyle=\frac{\langle\hat{\mathcal{H}}^{4}\rangle-(\alpha_{1}+\alpha_{2})^{2}\beta_{1}^{2}-(\alpha_{1}^{2}+\beta_{1}^{2})^{2}}{\beta_{1}^{2}}, (28)
\displaystyle\vdots

Now the strict upper bound of the ground state energy of the Hamiltonian can be obtained by directly diagonalizing 𝒯^i\hat{\mathcal{T}}_{i}. It has been shown that the classical Lanczos scheme can directly be applied even employing the noisy ^n\langle\hat{\mathcal{H}}^{n}\rangle Suchsland et al. (2021), which effectively provides a way to improve the energy estimate from real quantum hardware without being subject to specific hardware and an explicit description of the underlying noise. Preliminary tests on H2, H3, and four-site tetrahedral Heisenberg model demonstrate that combining the Lanczos scheme with VQE algorithm helps correct the noise and enhance the quality of the ansatz.

Alternatively, the matrix elements αi\alpha_{i} and βi\beta_{i} can be expressed in terms of the so-called connected moments (or cumulant) Horn and Weinstein (1984). An nn-th order connected moments is defined as

^ncϕ|^n|ϕm=0n1(n1m1)^mcϕ|^nm|ϕ,\displaystyle\langle\hat{\mathcal{H}}^{n}\rangle_{c}\equiv\langle\phi|\hat{\mathcal{H}}^{n}|\phi\rangle-\sum_{m=0}^{n-1}\left(\begin{array}[]{c}n-1\\ m-1\end{array}\right)\langle\hat{\mathcal{H}}^{m}\rangle_{c}\langle\phi|\hat{\mathcal{H}}^{n-m}|\phi\rangle, (31)

from which (28) can be generalized as zz-expansions of α\alpha and β\beta Hollenberg (1993); Witte and Hollenberg (1994); Hollenberg and Witte (1996)

α(z)\displaystyle\alpha(z) =^c+z(^3c^2c)+𝒪(z2),\displaystyle=\langle\hat{\mathcal{H}}\rangle_{c}+z\left(\frac{\langle\hat{\mathcal{H}}^{3}\rangle_{c}}{\langle\hat{\mathcal{H}}^{2}\rangle_{c}}\right)+\mathcal{O}(z^{2}),
β2(z)\displaystyle\beta^{2}(z) =z^2c+z2(^2c^4c^3c22^2c2)+𝒪(z3),\displaystyle=z\langle\hat{\mathcal{H}}^{2}\rangle_{c}+z^{2}\left(\frac{\langle\hat{\mathcal{H}}^{2}\rangle_{c}\langle\hat{\mathcal{H}}^{4}\rangle_{c}-\langle\hat{\mathcal{H}}^{3}\rangle_{c}^{2}}{2\langle\hat{\mathcal{H}}^{2}\rangle_{c}^{2}}\right)+\mathcal{O}(z^{3}), (32)

where zi/Vz\equiv i/V with ii the recursion index and VV the volume of the system. From the bound analysis of orthogonal polynomials van Doorn (1987); Ismail and Li (1992), it has been shown that the true ground state energy of the Hamiltonian can be approximated through the greatest lower bound (i.e. infimum) of the expansion (32) Hollenberg and Witte (1996),

E0E0inf=infz>0[α(z)2β(z)].\displaystyle E_{0}\approx E_{0}^{\rm inf}=\inf_{z>0}[\alpha(z)-2\beta(z)]. (33)

For example, the first order in zz gives Hollenberg and Witte (1994)

E0inf=^c^2c2^3c2^2c^4c×\displaystyle E_{0}^{\rm inf}=\langle\hat{\mathcal{H}}\rangle_{c}-\frac{\langle\hat{\mathcal{H}}^{2}\rangle_{c}^{2}}{\langle\hat{\mathcal{H}}^{3}\rangle_{c}^{2}-\langle\hat{\mathcal{H}}^{2}\rangle_{c}\langle\hat{\mathcal{H}}^{4}\rangle_{c}}\times
(3^3c22^2c^4c^3c).\displaystyle~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}~{}\Bigg{(}\sqrt{3\langle\hat{\mathcal{H}}^{3}\rangle_{c}^{2}-2\langle\hat{\mathcal{H}}^{2}\rangle_{c}\langle\hat{\mathcal{H}}^{4}\rangle_{c}}-\langle\hat{\mathcal{H}}^{3}\rangle_{c}\Bigg{)}. (34)

Approach (34) has been employed to demonstrate the energy estimate of 2D quantum magnetism model on lattices up to 25 qubits on IBM-Q quantum hardware Vallury et al. (2020), where the results show a consistent improvement of the estimated energies in comparison to the VQE results for the same ansatz. Another application of the Lanczos method is the continued fractions expansion of the Green’s function. The Green’s function can be calculated in the Lehmann representation using the α\alpha and β\beta parameters from the Lanczos method. For full details, see e.g. Chapter 8 of Ref. 95.

It is worth mentioning that standard Lanczos is a variational approach while the infimum approach (33) does not offer a strict upper bound of the true ground state energy, which, as exemplified by (34), is essentially an alternative size-extensive connected moment expansion of the ground state energy. Other polynomial expansion approaches, in particular connected moment expansions, will be discussed in details in Section III.3.

III.2 Real time evolution

Alternatively, one can resort to time evolution approaches to target the energy of the Hamiltonian. Here the time evolution approaches include both real time evolution (RTE) approach and its imaginary analogue. In RTE, the dynamics of a quantum state |ϕt|\phi_{t}\rangle is governed by the time-dependent Schrödinger equation

i|ϕtt=^|ϕt.\displaystyle i\frac{\partial|\phi_{t}\rangle}{\partial t}=\hat{\mathcal{H}}|\phi_{t}\rangle. (35)

In the Schrödinger picture the solution of Eq. (35), |ϕt|\phi_{t}\rangle, can be expressed by acting a time-evolution operator U^(t)=eiH^t\hat{U}(t)=e^{-i\hat{H}t} (or its truncated Taylor expansion in practice) on an initial state |ϕ0|\phi_{0}\rangle,

|ϕt\displaystyle|\phi_{t}\rangle =U^(t)|ϕ0\displaystyle=\hat{U}(t)|\phi_{0}\rangle
=ei^t|ϕ0=n=0+(it)nn!^n|ϕ0.\displaystyle=e^{-i\hat{\mathcal{H}}t}|\phi_{0}\rangle=\sum_{n=0}^{+\infty}\frac{(-it)^{n}}{n!}\hat{\mathcal{H}}^{n}|\phi_{0}\rangle. (36)

The introduction of ^n\hat{\mathcal{H}}^{n} in (36) effectively builds a non-orthogonal Krylov subspace. Now consider an order-(r+1r+1) Krylov subspace 𝒦r+1={^n|ϕ0,n=0,1,,r}\mathcal{K}_{r+1}=\{\hat{\mathcal{H}}^{n}|\phi_{0}\rangle,n=0,1,\cdots,r\}, the ground state can then be approximated as a linear combination of the Krylov basis

|ϕt\displaystyle|\phi_{t}\rangle =n=0rcn^n|ϕ0\displaystyle=\sum_{n=0}^{r}c_{n}\hat{\mathcal{H}}^{n}|\phi_{0}\rangle (37)

under the constraint ϕt|ϕt=1\langle\phi_{t}|\phi_{t}\rangle=1 with cnc_{n}’s being the expansion coefficients to be determined. Plugging the expanded form (37) to Eq. (35) and projecting the approximate evolution on to the subspace 𝒦r+1\mathcal{K}_{r+1}, we end up with a set of time-dependent coupled equations in terms of the first 2r+12r+1 Hamiltonian moments, which in matrix form can be expressed as

𝐜˙=i𝐋1𝐑𝐜\displaystyle\dot{\mathbf{c}}=-i\mathbf{L}^{-1}\mathbf{R}\mathbf{c} (38)

where the vector 𝐜=(c0,c1,,cn)T\mathbf{c}=(c_{0},c_{1},\cdots,c_{n})^{T} and 𝐜˙\dot{\mathbf{c}} is its time-derivative. Hamiltonian moments matrices 𝐋\mathbf{L} and 𝐑\mathbf{R} are defined as follows,

𝐋\displaystyle\mathbf{L} =(1^^r^^2^r+1^r^r+1^2r)\displaystyle=\left(\begin{array}[]{cccc}1&\langle\hat{\mathcal{H}}\rangle&\cdots&\langle\hat{\mathcal{H}}^{r}\rangle\\ \langle\hat{\mathcal{H}}\rangle&\langle\hat{\mathcal{H}}^{2}\rangle&\cdots&\langle\hat{\mathcal{H}}^{r+1}\rangle\\ \vdots&\vdots&\ddots&\vdots\\ \langle\hat{\mathcal{H}}^{r}\rangle&\langle\hat{\mathcal{H}}^{r+1}\rangle&\cdots&\langle\hat{\mathcal{H}}^{2r}\rangle\end{array}\right) (43)
𝐑\displaystyle\mathbf{R} =(^^2^r+1^2^3^r+2^r+1^r+2^2r+1).\displaystyle=\left(\begin{array}[]{cccc}\langle\hat{\mathcal{H}}\rangle&\langle\hat{\mathcal{H}}^{2}\rangle&\cdots&\langle\hat{\mathcal{H}}^{r+1}\rangle\\ \langle\hat{\mathcal{H}}^{2}\rangle&\langle\hat{\mathcal{H}}^{3}\rangle&\cdots&\langle\hat{\mathcal{H}}^{r+2}\rangle\\ \vdots&\vdots&\ddots&\vdots\\ \langle\hat{\mathcal{H}}^{r+1}\rangle&\langle\hat{\mathcal{H}}^{r+2}\rangle&\cdots&\langle\hat{\mathcal{H}}^{2r+1}\rangle\end{array}\right). (48)

Eq. (38) is a first order, linear ordinary differential equation (ODE), whose solution depends on the eigenvalues of the matrix 𝐋1𝐑\mathbf{L}^{-1}\mathbf{R} that essentially approximate some of the eigenvalues of ^\hat{\mathcal{H}}. In a recent study Guzman and Lacroix (2021), this approach is demonstrate to be able to to target both the ground and excited states for pairing Hamiltonian. Alternatively, as shown in Ref. 71, employing Rayleigh-Ritz technique, 𝐋\mathbf{L} and 𝐑\mathbf{R} constitute general eigenvalue problem

𝐑𝐯=ϵ𝐋𝐯\displaystyle\mathbf{R}\mathbf{v}=\epsilon\mathbf{L}\mathbf{v} (49)

with the eigenpair (ϵ,𝐯\epsilon,\mathbf{v}) approximate the energy and state vector of the true ground state. To solve Eq. (49) for (ϵ,𝐯\epsilon,\mathbf{v}), employ canonical orthogonalization to do the following transformation

𝐔𝐑𝐔(𝐔1𝐯)=ϵ𝐔𝐑𝐯=ϵ(𝐔1𝐯),\displaystyle\mathbf{U}^{\dagger}\mathbf{R}\mathbf{U}(\mathbf{U}^{-1}\mathbf{v})=\epsilon\mathbf{U}^{\dagger}\mathbf{R}\mathbf{v}=\epsilon(\mathbf{U}^{-1}\mathbf{v}), (50)

where 𝐔𝐔=𝐋1\mathbf{U}\mathbf{U}^{\dagger}=\mathbf{L}^{-1}. Since 𝐋\mathbf{L} is a hermitian that can be diagonalized by a unitary matrix 𝐕\mathbf{V} with eigenvalues constituting a diagonal matrix 𝐬\mathbf{s}, i.e. 𝐋=𝐕𝐬𝐕\mathbf{L}=\mathbf{V}\mathbf{s}\mathbf{V}^{\dagger}, 𝐔\mathbf{U} can be constructed through 𝐔=𝐕𝐬1/2\mathbf{U}=\mathbf{V}\mathbf{s}^{-1/2}. Similar subspace diagonalization schemes have been adopted in many other hybrid quantum-classical algorithms such as quantum subspace expansion McClean et al. (2017); Colless et al. (2018), and some variants of VQE Parrish et al. (2019); Nakanishi, Mitarai, and Fujii (2019); Huggins et al. (2020).

III.3 Imaginary time evolution

The imaginary time evolution (ITE) approach has a long history of being a robust computational approach to solve the ground state of a many-body quantum system. To see how it works, let’s first assume the quantum state at time tt, |ϕt|\phi_{t}\rangle, is now expanded in the eigen-space of ^\hat{\mathcal{H}}, {|ψn,n=0,1,}\{|\psi_{n}\rangle,n=0,1,\cdots\}, with EnE_{n}’s being the corresponding eigenvalues, then as we show in the previous section |ϕt|\phi_{t}\rangle can be expressed as

|ϕt=ncneiEnt|ψn\displaystyle|\phi_{t}\rangle=\sum_{n}c_{n}e^{-iE_{n}t}|\psi_{n}\rangle (51)

with cnc_{n}’s being the expansion coefficients at the initial time. Now, if we consider a replacement τ=it\tau=it (τ\tau is often called imaginary time) and confine τ0\tau\geq 0, Eq. (51) becomes

|ϕτ=ncneEn(ττ0)|ψn.\displaystyle|\phi_{\tau}\rangle=\sum_{n}c_{n}e^{-E_{n}(\tau-\tau_{0})}|\psi_{n}\rangle. (52)

Comparing Eqs. (51) and (52), we see that the wavefunction is driven from an “oscillating” superposition of the Hamiltonian eigenstates to an “exponential decaying” superposition of the eigenstates with the decay rate proportional to EnE_{n}. More importantly, in the limit of large τ\tau

|ϕτ1c0eE0τ|ψ0,\displaystyle|\phi_{\tau\gg 1}\rangle\approx c_{0}e^{-E_{0}\tau}|\psi_{0}\rangle, (53)

the ground state ψ0(x)\psi_{0}(x) is “screened out” because its exponential decay rate is the smallest in the eigen spectrum of ^\hat{\mathcal{H}}. Briefly speaking, given a trial wavefunction |ϕ|\phi\rangle that has non-zero overlap with the true ground state wavefunction ψ0\psi_{0}, ϕ|ψ00\langle\phi|\psi_{0}\rangle\neq 0, the ITE approach, in comparison to the RTE of the trial state, guarantees a monotonically decreasing energy functional in τ\tau that converges to the ground state energy at τ\tau\rightarrow\infty, i.e.

E0=limτ+E(τ)withE(τ)=ϕτ|^|ϕτ.\displaystyle E_{0}=\lim_{\tau\rightarrow+\infty}E(\tau)~{}~{}\text{with}~{}~{}E(\tau)=\langle\phi_{\tau}|\hat{\mathcal{H}}|\phi_{\tau}\rangle. (54)

Here the ITE of the trial wavefunction, |ϕt|\phi_{t}\rangle, is defined as

|ϕt=eτ^/2|ϕ(ϕ|eτ^|ϕ)1/2.\displaystyle|\phi_{t}\rangle=\frac{e^{-\tau\hat{\mathcal{H}}/2}|\phi\rangle}{\left(\langle\phi|e^{-\tau\hat{\mathcal{H}}}|\phi\rangle\right)^{1/2}}. (55)

and the first derivative of E(τ)E(\tau) with respect to τ\tau is non-positive

dE(τ)dτ=(ϕt|^2|ϕtϕt|^|ϕt2)0,\displaystyle\frac{\rm{d}E(\tau)}{\rm{d}\tau}=-\big{(}\langle\phi_{t}|\hat{\mathcal{H}}^{2}|\phi_{t}\rangle-\langle\phi_{t}|\hat{\mathcal{H}}|\phi_{t}\rangle^{2}\big{)}\leq 0, (56)

where the equality sign holds if and only if |ϕt|\phi_{t}\rangle is an exact eigenstate of ^\hat{\mathcal{H}} (e.g. |ψ0|\psi_{0}\rangle).

The development and application of ITE approach targeting the ground state wave function and energy dates back to 1970s, when the similar random-walk imaginary-time technique were developed for diffusion Monte-Carlo methods Davies et al. (1980); Anderson (1975, 1979, 1980). Later on, in the pursuit of non-perturbative analytical tool for a wide variety of Hamiltonian systems that can be systematically improved, various polynomial expansions of Eq. (54) have been studied extensively. For example, a straightforward way is to utilize a finite number of Hamiltonian moments, ^n\hat{\mathcal{H}}^{n}, to constitute a truncated Taylor expansion of E(τ)E(\tau) which we will have a detailed examination in Section IV.

t-expansion Beyond the conventional Taylor expansion, to reproduce asymptotic behavior of E(τ)E(\tau) over a longer imaginary time, Horn and Weinstein introduced a power series expansion in imaginary time τ\tau for E(τ)E(\tau) in the early 1980s Horn and Weinstein (1984),

E(τ)=n=0(τ)nn!^n+1c,\displaystyle E(\tau)=\sum_{n=0}^{\infty}\frac{(-\tau)^{n}}{n!}\langle\hat{\mathcal{H}}^{n+1}\rangle_{c}, (57)

where ^n+1c\langle\hat{\mathcal{H}}^{n+1}\rangle_{c} is the connected moments defined in Eq. (31). The τ\tau\rightarrow\infty behavior of E(τ)E(\tau) was then reconstructed through Padé approximants to Eq. (57). Furthermore, it was found that it might be more efficient and error-resilient to first construct (L,L+ML,L+M)-Padé approximants (M2M\geq 2) to dE(τ)dτ\frac{\rm{d}E(\tau)}{\rm{d}\tau} rather than to E(τ)E(\tau), and then integrate the Padé approximant from 0 to the critical τ\tau-value (where Eq. (56) becomes positive) to obtain a larger set of approximations to E(τ)E(\tau). Early applications of the Padé approximants of Eq. (57) on Heisenberg and Ising models demonstrated remarkable improvement upon mean-field results.

Connected moment expansion Based on the Horn-Weinstein theorem, Cioslowski further derived a more practical re-summation technique, the so-called connected moment expansion (CMX), to Eq. (57) to address the algebraic τ\tau-independent form of E(τ)E(\tau) Cioslowski (1987),

limτ+E(τ)=limnE0CMX(n)=limn(I1S2,12S3,1(1+S2,22S2,12S3,2(1+(1+S2,n12S2,n22S3,n1)))),\displaystyle\lim_{\tau\rightarrow+\infty}E(\tau)=\lim_{n\rightarrow\infty}E_{0}^{\rm CMX(\it n)}=\lim_{n\rightarrow\infty}\left(I_{1}-\frac{S_{2,1}^{2}}{S_{3,1}}\left(1+\frac{S_{2,2}^{2}}{S_{2,1}^{2}S_{3,2}}\left(1+\cdots\left(1+\frac{S_{2,n-1}^{2}}{S_{2,n-2}^{2}S_{3,n-1}}\right)\cdots\right)\right)\right), (58)

where the Sn,iS_{n,i}’s are defined from the recursion

Sn,1\displaystyle S_{n,1} =^nc,n=2,3,,\displaystyle=\langle\hat{\mathcal{H}}^{n}\rangle_{c},~{}~{}n=2,3,\ldots,
Sn,i+1\displaystyle S_{n,i+1} =Sn,iSn+2,iSn+1,i2,i1.\displaystyle=S_{n,i}S_{n+2,i}-S_{n+1,i}^{2},~{}~{}i\geq 1.

It is worth mentioning that further analysis of the CMX recursion had suggested that Eq. (58) might be recast in a compact matrix form Knowles (1987); Stubbins (1988)

limnECMX(n)\displaystyle\lim_{n\rightarrow\infty}E^{{\rm CMX}(n)} =^climn(^2c^nc)𝐗\displaystyle=\langle\hat{\mathcal{H}}\rangle_{c}-\lim_{n\rightarrow\infty}\left(\langle\hat{\mathcal{H}}^{2}\rangle_{c}~{}~{}\cdots~{}~{}\langle\hat{\mathcal{H}}^{n}\rangle_{c}\right)\mathbf{X} (59)

where vector 𝐗\mathbf{X} is the solution of the following linear system

(^3c^n+1c^n+1c^2n1c)𝐗=(^2c^nc).\displaystyle\left(\begin{array}[]{ccc}\langle\hat{\mathcal{H}}^{3}\rangle_{c}&\cdots&\langle\hat{\mathcal{H}}^{n+1}\rangle_{c}\\ \vdots&\ddots&\vdots\\ \langle\hat{\mathcal{H}}^{n+1}\rangle_{c}&\cdots&\langle\hat{\mathcal{H}}^{2n-1}\rangle_{c}\end{array}\right)\mathbf{X}=\left(\begin{array}[]{c}\langle\hat{\mathcal{H}}^{2}\rangle_{c}\\ \vdots\\ \langle\hat{\mathcal{H}}^{n}\rangle_{c}\end{array}\right). (66)

The analytical properties of CMX and its comparison with other methods (e.g. Lanczos approach) have been extensively discussed in the literature Knowles (1987); Prie et al. (1994); Mancini, Zhou, and Meier (1994); Ullah (1995); Mancini et al. (1995); Fessatidis et al. (2006, 2010). In particular, similar to perturbational theories, CMX is conceptually simple and size-extensive, and the accuracy can be easily tuned through the rank of the connected moments included in the approximation and/or the quality of the trial wave function. For the latter, there have been discussions on using multi-configurational Cioslowski (1987) or even correlated wavefunction (e.g. truncated CI or CC wave functions Noga, Szabados, and Surján (2002)) in the CMX framework for accelerating the CMX convergence rate. Nevertheless, there were two major problems associated with the CMX calculations. First, the algebraic structure of the series expansion in the CMX could cause singularity Mancini, Zhou, and Meier (1994). Early efforts tried to address this issue with limited success by employing alternative moments expansion Mancini, Zhou, and Meier (1994); Ullah (1995); Mancini et al. (1995), generalized moments expansion Fessatidis et al. (2006), or generalized Padé expansion Knowles (1987). Second, CMX results are not variational. In comparison with the variational Lanczos methods Mancini, Prie, and Massano (1991); Prie et al. (1994), it was found that CMX might be considered as a limiting case of the strict Lanczos scheme, and their exact equivalence only holds in certain regions of parameter space. A systematic analysis of low order Lanczos and CMX ground state energy for model Hamiltonians such as harmonic oscilaltor, anharmonic oscillator, and Kondo model concluded that the accuracy of both approaches was dependent on the region of parameter space being studied Prie et al. (1994).

Peeters-Devreese-Soldatov approach Regarding the variational expansion, there had been another interesting yet less known moment approach proposed by Peeters and Devreese Peeters and Devreese (1984), and further analyzed by Soldatov Soldatov (1995) in the 1990s, which we will refer to as the PDS approach. This approach originates in generalizing the Bogolubov inequality Bogolubov (1947) and the Feynman inequality Feynman (1955) through the analysis of their Laplace transforms to obtain the upper bounds for the free energy. In particular, in the operator formalism, given a system Hamiltonian operator ^\hat{\mathcal{H}} with ground state E0E_{0}, and a complex scalar ss\in\mathbb{C} with (s)>E0\Re(s)>-E_{0}, we can write the following inequality Peeters and Devreese (1984); Devreese, Evrard, and Kartheuser (1975)

e^e^11s+^1s+^.\displaystyle\langle e^{-\hat{\mathcal{H}}}\rangle\geq e^{-\langle\hat{\mathcal{H}}\rangle}\underset{\mathcal{L}^{-1}}{\stackrel{{\scriptstyle\mathcal{L}}}{{\Longleftrightarrow}}}\left\langle\frac{1}{s+\hat{\mathcal{H}}}\right\rangle\geq\frac{1}{s+\langle\hat{\mathcal{H}}\rangle}. (67)

with \mathcal{L} and 1\mathcal{L}^{-1} being the Laplace transform and inverse Laplace transform operators, and \langle\cdot\rangle the expectation value with respect to a given trial wavefunction |ϕ|\phi\rangle. The PDS formalism is based on expanding and analyzing 1s+^\left\langle\frac{1}{s+\hat{\mathcal{H}}}\right\rangle using a simple identity (with introducing a parameter a1a_{1}\in\mathbb{R}, and a1sa_{1}\neq-s)

1s+^\displaystyle\frac{1}{s+\hat{\mathcal{H}}} =1s+a1^a1(s+a1)2+1s+^(^a1)2(s+a1)2.\displaystyle=\frac{1}{s+a_{1}}-\frac{\hat{\mathcal{H}}-a_{1}}{(s+a_{1})^{2}}+\frac{1}{s+\hat{\mathcal{H}}}\cdot\frac{(\hat{\mathcal{H}}-a_{1})^{2}}{(s+a_{1})^{2}}.\; (68)

Remarkably, the expectation value of the third term on the right hand side of identity (68), defined as a residual term R1(s,a1)R_{1}(s,a_{1}), is non-negative,

R1(s,a1)=1s+^(^a1)2(s+a1)20,((s)>E0).\displaystyle R_{1}(s,a_{1})=\left\langle\frac{1}{s+\hat{\mathcal{H}}}\cdot\frac{(\hat{\mathcal{H}}-a_{1})^{2}}{(s+a_{1})^{2}}\right\rangle\geq 0,~{}~{}(\Re(s)>-E_{0}). (69)

By analyzing its first and second derivatives with respect to the induced parameter a1a_{1}, it is easy to show that when a1=^a_{1}=\langle\hat{\mathcal{H}}\rangle, R1(s,a1)R_{1}(s,a_{1}) reaches its local minima.

Now if we recursively expand 1s+^\frac{1}{s+\hat{\mathcal{H}}} in (68) one more time, and introducing another parameter parameter a2a_{2}\in\mathbb{R}, and a2sa_{2}\neq-s, we have

1s+^\displaystyle\frac{1}{s+\hat{\mathcal{H}}} =1s+a1^a1(s+a1)2+(1s+a2^a2(s+a2)2)×\displaystyle=\frac{1}{s+a_{1}}-\frac{\hat{\mathcal{H}}-a_{1}}{(s+a_{1})^{2}}+\left(\frac{1}{s+a_{2}}-\frac{\hat{\mathcal{H}}-a_{2}}{(s+a_{2})^{2}}\right)\times
(^a1)2(s+a1)2+R2(s,a1,a2)\displaystyle~{}~{}~{}~{}\frac{(\hat{\mathcal{H}}-a_{1})^{2}}{(s+a_{1})^{2}}+R_{2}(s,a_{1},a_{2}) (70)

with a refined residual term R2(s,a1,a2)R_{2}(s,a_{1},a_{2}) also being non-negative for (s)>E0\Re(s)>-E_{0}

R2(s,a1,a2)\displaystyle R_{2}(s,a_{1},a_{2}) =1s+^(^a1)2(s+a1)2(^a2)2(s+a2)20.\displaystyle=\left\langle\frac{1}{s+\hat{\mathcal{H}}}\cdot\frac{(\hat{\mathcal{H}}-a_{1})^{2}}{(s+a_{1})^{2}}\cdot\frac{(\hat{\mathcal{H}}-a_{2})^{2}}{(s+a_{2})^{2}}\right\rangle\geq 0. (71)

Examining the first and second derivatives of R2(s,a1,a2)R_{2}(s,a_{1},a_{2}) with respect to a1a_{1}, a2a_{2} shows when

{(^a1)(^a1)(^a2)=0(^a2)(^a1)(^a2)=0,\displaystyle\left\{\begin{array}[]{l}\langle(\hat{\mathcal{H}}-a_{1})\cdot(\hat{\mathcal{H}}-a_{1})(\hat{\mathcal{H}}-a_{2})\rangle=0\\ \langle(\hat{\mathcal{H}}-a_{2})\cdot(\hat{\mathcal{H}}-a_{1})(\hat{\mathcal{H}}-a_{2})\rangle=0\end{array}\right., (74)

R2R_{2} reaches its local minima.

Note that there is an important feature about aia_{i} (i=1,2i=1,2), a little transform of (74) shows

ai=^j=1ji2(^aj)2j=1ji2(^aj)2,(i=1,2),\displaystyle a_{i}=\frac{\displaystyle\left\langle\hat{\mathcal{H}}\prod_{\begin{subarray}{c}j=1\\ j\neq i\end{subarray}}^{2}(\hat{\mathcal{H}}-a_{j})^{2}\right\rangle}{\displaystyle\left\langle\prod_{\begin{subarray}{c}j=1\\ j\neq i\end{subarray}}^{2}(\hat{\mathcal{H}}-a_{j})^{2}\right\rangle},~{}~{}(i=1,2), (75)

from which it is straightforward to show

^aiE0,ands+ai0,(i=1,2),\displaystyle\langle\hat{\mathcal{H}}\rangle\geq a_{i}\geq E_{0},~{}~{}\text{and}~{}~{}s+a_{i}\geq 0,(i=1,2), (76)

therefore all the terms in (70) are non-negative, and

R1(s,a1)R2(s,a1,a2).\displaystyle R_{1}(s,a_{1})\geq R_{2}(s,a_{1},a_{2}). (77)

(76) and (77) tell us that by keeping recursively refining 1s+^\frac{1}{s+\hat{\mathcal{H}}} using identity (68), we are able to get tighter upper bounds to E0E_{0}. This then constitutes the basic idea of PDS approach. For example, if we recursively expand (68) KK times (K,K2K\in\mathbb{N},K\geq 2) with each time introducing a new parameter aia_{i}, i=1,,Ki=1,\ldots,K), we will get a more refined non-negative residual term RK(s,a1,,aK)R_{K}(s,a_{1},\ldots,a_{K})

RK(s,a1,,aK)\displaystyle R_{K}(s,a_{1},\ldots,a_{K}) =1s+^i=1K(^ai)2(s+ai)2,\displaystyle=\left\langle\frac{1}{s+\hat{\mathcal{H}}}\prod_{i=1}^{K}\frac{(\hat{\mathcal{H}}-a_{i})^{2}}{(s+a_{i})^{2}}\right\rangle, (78)

and

RK1(s,a1,,aK1)RK(s,a1,,aK).\displaystyle R_{K-1}(s,a_{1},\ldots,a_{K-1})\geq R_{K}(s,a_{1},\ldots,a_{K}). (79)

The KK-th order PDS formalism, PDS(KK), is then associated with determining the introduced KK real parameters (a1(K),,aK(K))(a_{1}^{(K)},\ldots,a_{K}^{(K)}) that minimize the value of RKR_{K} through

RK(s,a1(K),,aK(K))ai(K)=0,(i=1,,K),\frac{\partial R_{K}(s,a_{1}^{(K)},\ldots,a_{K}^{(K)})}{\partial a_{i}^{(K)}}=0,~{}~{}(i=1,\ldots,K), (80)

which can be alternatively translated to

j=1K(^aj(K))m=1miK(^am(K))=0,(i=1,,K).\displaystyle\left\langle\prod_{j=1}^{K}(\hat{\mathcal{H}}-a_{j}^{(K)})\prod_{\begin{subarray}{c}m=1\\ m\neq i\end{subarray}}^{K}(\hat{\mathcal{H}}-a_{m}^{(K)})\right\rangle=0,~{}~{}(i=1,\ldots,K). (81)

with each ai(K)a_{i}^{(K)} (i=1,,Ki=1,\ldots,K) being an strict upper bound to E0E_{0}, and can be expressed as

^>>ai(K1)>ai(K)=^j=1jiK(^aj(K))2j=1jiK(^aj(K))2E0.\displaystyle\langle\hat{\mathcal{H}}\rangle>\cdots>a_{i}^{(K-1)}>a_{i}^{(K)}=\frac{\displaystyle\left\langle\hat{\mathcal{H}}\prod_{\begin{subarray}{c}j=1\\ j\neq i\end{subarray}}^{K}(\hat{\mathcal{H}}-a_{j}^{(K)})^{2}\right\rangle}{\displaystyle\left\langle\prod_{\begin{subarray}{c}j=1\\ j\neq i\end{subarray}}^{K}(\hat{\mathcal{H}}-a_{j}^{(K)})^{2}\right\rangle}\geq E_{0}. (82)

To numerically solve ai(K)a_{i}^{(K)}’s in a PDS(KK) approach, take Eq. (74) as an exmaple, we can first express Eq. (74) in a matrix form

𝐒𝐌𝐗=𝟎\displaystyle\mathbf{S}\cdot\mathbf{M}\cdot\mathbf{X}=\mathbf{0} (83)

with

𝐒\displaystyle\mathbf{S} =(1a11a2),𝐌=(^3^2^^2^1),\displaystyle=\left(\begin{array}[]{cc}1&-a_{1}\\ 1&-a_{2}\end{array}\right),~{}~{}\mathbf{M}=\left(\begin{array}[]{ccc}\langle\hat{\mathcal{H}}^{3}\rangle&\langle\hat{\mathcal{H}}^{2}\rangle&\langle\hat{\mathcal{H}}\rangle\\ \langle\hat{\mathcal{H}}^{2}\rangle&\langle\hat{\mathcal{H}}\rangle&1\end{array}\right), (88)
𝐗\displaystyle\mathbf{X} =(1a1a2a1a2),𝟎=(00).\displaystyle=\left(\begin{array}[]{c}1\\ -a_{1}-a_{2}\\ a_{1}a_{2}\end{array}\right),~{}~{}\mathbf{0}=\left(\begin{array}[]{c}0\\ 0\end{array}\right). (94)

Then, if we assume a1a2a_{1}\neq a_{2}, then det|𝐒|0\det|\mathbf{S}|\neq 0 and 𝐒1\mathbf{S}^{-1} exists, therefore we are able to act 𝐒1\mathbf{S}^{-1} on both sides of (83) to get

𝐌𝐗=𝟎𝐌~𝐗~=𝐘~\displaystyle\mathbf{M}\cdot\mathbf{X}=\mathbf{0}\Leftrightarrow\mathbf{\tilde{M}}\cdot\mathbf{\tilde{X}}=-\mathbf{\tilde{Y}} (95)

with

𝐌~\displaystyle\mathbf{\tilde{M}} =(^2^^1),𝐗~=(a1a2a1a2),\displaystyle=\left(\begin{array}[]{cc}\langle\hat{\mathcal{H}}^{2}\rangle&\langle\hat{\mathcal{H}}\rangle\\ \langle\hat{\mathcal{H}}\rangle&1\end{array}\right),~{}~{}\mathbf{\tilde{X}}=\left(\begin{array}[]{c}-a_{1}-a_{2}\\ a_{1}a_{2}\end{array}\right), (100)
𝐘~\displaystyle\mathbf{\tilde{Y}} =(^3^2).\displaystyle=\left(\begin{array}[]{c}\langle\hat{\mathcal{H}}^{3}\rangle\\ \langle\hat{\mathcal{H}}^{2}\rangle\end{array}\right). (103)

It can be easily seen that given ^n\langle\hat{\mathcal{H}}^{n}\rangle (n=1,2,3n=1,2,3), 𝐗~\mathbf{\tilde{X}} (or equivalently 𝐗\mathbf{X}) can be solved from (95), and aia_{i} (i=1,2i=1,2) are then the solution of the polynomial

Poly(a)=i=02Xia2i.\displaystyle\text{Poly}(a)=\sum_{i=0}^{2}X_{i}a^{2-i}. (104)

Now generalizing (83)-(104) we get the working equation for the PDS(KK) approach, where one need to first solve (95) for an auxiliary vector 𝐗~=(X1,,XK)T\mathbf{\tilde{X}}=(X_{1},\cdots,X_{K})^{T} with matrix elements defined as

{Mij=H2KijYi=H2Ki,(i,j=1,,K),\displaystyle\left\{\begin{array}[]{cl}M_{ij}&=\langle H^{2K-i-j}\rangle\\ Y_{i}&=\langle H^{2K-i}\rangle\end{array}\right.,~{}~{}(i,j=1,\cdots,K), (107)

and then solve the following polynomial

PolyK(a)=aK+i=1KX~iaKi,\text{Poly}_{K}(a)=a^{K}+\sum_{i=1}^{K}\tilde{X}_{i}a^{K-i}, (108)

for (a1(K),,aK(K))(a_{1}^{(K)},\ldots,a_{K}^{(K)}) that provide upper bounds to the exact ground and excited state energies of the Hamiltonian characterized by either discrete or continuous spectral resolutions, or both.

III.4 Variational simulation of real and imaginary time dynamics

In the RTE and ITE, the target quantum state is approximated through the evolutions of the trial state as shown in Eqs. (36) and (55). In practice, the trial state can usually be prepared by applying a sequence of parametrized gates to the initial state |0|0\rangle. For example, we can write

|ϕ=|ϕ(θ)=Un(θn)Uk(θk)U1(θ)|0,\displaystyle|\phi\rangle=|\phi(\vec{\theta})\rangle=U_{n}(\theta_{n})\cdots U_{k}(\theta_{k})\cdots U_{1}(\theta)|0\rangle, (109)

where U(θ)=Un(θn)Uk(θk)U1(θ)U(\vec{\theta})=U_{n}(\theta_{n})\cdots U_{k}(\theta_{k})\cdots U_{1}(\theta) with θ=(θ1,,θn)\vec{\theta}=(\theta_{1},\cdots,\theta_{n}) and Uk(θk)U_{k}(\theta_{k}) the kk-th one-/two-qubit gate parametrized by rotation θk\theta_{k}. In the conventional VQE, based on the measurement outcome of the trial state, classical optimization routines are then employed to find optimal θ\vec{\theta} that minimizes the cost function defined as the measurement outcome of the quantum state |ϕ(θ)|\phi(\vec{\theta})\rangle,

Emin=minθE(θ)=minθϕ(θ)|^ϕ(θ),\displaystyle E_{\min}=\min_{\vec{\theta}}E(\vec{\theta})=\min_{\vec{\theta}}\langle\phi(\vec{\theta})|\hat{\mathcal{H}}|\phi(\vec{\theta})\rangle, (110)

which gives a lowest upper bound to the true ground state state energy of the many-body Hamiltonian ^\hat{\mathcal{H}} in the parameter space. Similar variational procedure can also be applied following the RTE and ITE approaches by replacing the |ϕ|\phi\rangle in the VQE with the time-evolved state approximated as a linear combination of Krylov bases as shown in Eqs. (36) and (55). There are at least two advantages of combining variational optimization with the time evolution of the quantum state. First of all, since the variational optimization also contributes to bring down the cost function, the combination would help reduce the number of Krylov bases employed to evolve the trial state, which in turn helps reduce the measurement requirement. Second, the Krylov bases employed to improve the fidelity of the trial state helps restructure the potential energy surface in the same parameter space, which in turn offers an effective approach to navigate the dynamics to be free from getting trapped in the local minima of the old potential energy surface.

These advantages have been demonstrated by Peng and Kowalski in a recent study Peng and Kowalski (2021), where Eq. (104) is effectively treated as an alternative energy functional for the variational quantum solver whose analytical energy derivative E(θ)\nabla E(\vec{\theta}) can be exploted to drive the optimization

θk+1=θkη1(θ)E(θ).\displaystyle\vec{\theta}_{k+1}=\vec{\theta}_{k}-\eta\mathcal{R}^{-1}(\vec{\theta})\nabla E(\vec{\theta}). (111)

Here η\eta is the learning rate for updating θ\vec{\theta} at step kk, and (θk)\mathcal{R}(\vec{\theta}_{k}) is the Riemannian metric matrix at θk\vec{\theta}_{k} that is flexible to characterize the singular point of the parameter space and is essentially related to the indistinguishability of E(θ)E(\vec{\theta}) Yamamoto (2019). Note that similar formulation is quite often used in, for example, gradient descent approach Lemaéchal (2012) with the metric being often replaced by the Hessian matrix. Different from the conventional gradient descent approach, Eq. (111) has its origin in the general nonlinear optimization framework featuring natural gradient for targeting machine learning problems Amari (1998). Here, the natural gradient accounts for the geometric structure of the parameter space, and is expressed as the product of the Fisher information matrix and the gradient of the cost function often with the attempt of circumventing the plateaus in the parameter space McArdle et al. (2019); Yamamoto (2019); Stokes et al. (2020). Analogously, in the quantum computing, the Fisher information matrix is replaced by the quantum Fubini-Study metric to describe the curvature of the ansatz class.

There have been discussions about deriving and applying quantum Fubini-Study metric in the quantum simulations, and comparing its performance with classical Fisher metric in some recent reports McArdle et al. (2019); Yamamoto (2019); Stokes et al. (2020). For example, following Ref. 26 one can show that the RTE or ITE approach can be translated to a variational approach for a given ansatz |ϕτ=|ϕ(θ(τ))|\phi_{\tau}\rangle=|\phi(\vec{\theta}(\tau))\rangle, θ(τ)\vec{\theta}(\tau)\in\vec{\mathbb{R}} for targeting the target state |ϕ|\phi\rangle. Take ITE approach as an example, following McLachlan’s variational principle McLachlan (1964)

δ𝒬^|ϕτ=0,\displaystyle\delta\|\hat{\mathcal{Q}}|\phi_{\tau}\rangle\|=0, (112)

where

𝒬^τ+^E(τ)\displaystyle\hat{\mathcal{Q}}\equiv\frac{\partial}{\partial\tau}+\hat{\mathcal{H}}-E(\tau) (113)

and

𝒬^|ϕτ2\displaystyle\|\hat{\mathcal{Q}}|\phi_{\tau}\rangle\|^{2} =ϕτ|𝒬^𝒬^|ϕτ\displaystyle=\langle\phi_{\tau}|\hat{\mathcal{Q}}^{\dagger}\hat{\mathcal{Q}}|\phi_{\tau}\rangle
=i,jϕτ|θi|ϕτθjθ˙iθ˙j+i(ϕτ|θi(^E(τ))|ϕτ+ϕτ|(^E(τ))||ϕτθi)θ˙i+ϕτ|(^E(τ))2|ϕτ,\displaystyle=\sum_{i,j}\frac{\partial\langle\phi_{\tau}|}{\partial\theta_{i}}\frac{\partial|\phi_{\tau}\rangle}{\partial\theta_{j}}\dot{\theta}_{i}\dot{\theta}_{j}+\sum_{i}\left(\frac{\partial\langle\phi_{\tau}|}{\partial\theta_{i}}(\hat{\mathcal{H}}-E(\tau))|\phi_{\tau}\rangle+\langle\phi_{\tau}|(\hat{\mathcal{H}}-E(\tau))|\frac{\partial|\phi_{\tau}\rangle}{\partial\theta_{i}}\right)\dot{\theta}_{i}+\langle\phi_{\tau}|(\hat{\mathcal{H}}-E(\tau))^{2}|\phi_{\tau}\rangle, (114)

with θ˙iθiτ\dot{\theta}_{i}\equiv\frac{\partial\theta_{i}}{\partial\tau}, we have

𝒬^|ϕτ2θ˙i\displaystyle\frac{\partial\|\hat{\mathcal{Q}}|\phi_{\tau}\rangle\|^{2}}{\partial\dot{\theta}_{i}} =j(ϕτ|θi|ϕτθj+ϕτ|θj|ϕτθi)θ˙j+ϕτ|θi(HEτ)|ϕτ+ϕτ|(HEτ)||ϕτθi=0.\displaystyle=\sum_{j}\left(\frac{\partial\langle\phi_{\tau}|}{\partial\theta_{i}}\frac{\partial|\phi_{\tau}\rangle}{\partial\theta_{j}}+\frac{\partial\langle\phi_{\tau}|}{\partial\theta_{j}}\frac{\partial|\phi_{\tau}\rangle}{\partial\theta_{i}}\right)\dot{\theta}_{j}+\frac{\partial\langle\phi_{\tau}|}{\partial\theta_{i}}(H-E_{\tau})|\phi_{\tau}\rangle+\langle\phi_{\tau}|(H-E{\tau})|\frac{\partial|\phi_{\tau}\rangle}{\partial\theta_{i}}=0. (115)

Note that since |ϕτ|\phi_{\tau}\rangle is normalized, ϕτ|ϕτ=1\langle\phi_{\tau}|\phi_{\tau}\rangle=1, we also have

0=ϕτ|ϕτθi=ϕτ|θi|ϕτ+ϕτ||ϕτθi,\displaystyle 0=\frac{\partial\langle\phi_{\tau}|\phi_{\tau}\rangle}{\partial\theta_{i}}=\frac{\partial\langle\phi_{\tau}|}{\partial\theta_{i}}|\phi_{\tau}\rangle+\langle\phi_{\tau}|\frac{\partial|\phi_{\tau}\rangle}{\partial\theta_{i}}, (116)

and Eq. (115) can be simplified as a linear system in matrix form

θ˙=E(θ)\displaystyle\mathcal{R}\dot{\vec{\theta}}=-\nabla E(\vec{\theta}) (117)

which is essentially the dynamics (111) with the matrix elements ij\mathcal{R}_{ij} given by

ij=(ϕτ|θi|ϕτθj).\displaystyle\mathcal{R}_{ij}=\Re\left(\frac{\partial\langle\phi_{\tau}|}{\partial\theta_{i}}\frac{\partial|\phi_{\tau}\rangle}{\partial\theta_{j}}\right). (118)

Same dynamics and Riemannian metric might be derived from other variational principles. As shown in Ref. 126, classically there are three variational principles, namely the Dirac and Frenkel variational principle Dirac (1930); Frenkel (1934), the McLachlan variational principle McLachlan (1964), and the time-dependent variational principle Kramer and Saraceno (1981); Broeckhove et al. (1988), that lead to the same evolution equation. However, when parameters are confined to be real, the Dirac and Frenkel and the McLachlan variational principles are equivalent, while the time-dependent variational principle cannot lead to a nontrivial evolution of the parameters.

It is also worth mentioning that a caveat in the above derivation is that we implicitly assume |ϕτ=|ϕ|\phi_{\tau}\rangle=|\phi\rangle. If there is time-dependent global phase difference between |ϕτ|\phi_{\tau}\rangle and |ϕ|\phi\rangle, their time-derivatives can be very different and the dynamics (117) would be incorrect McArdle et al. (2019). In essence, the \mathcal{R} defined in Eq. (118) is not gauge invariant thus not qualified for measuring the quantum distance Cheng (2013). The problem can be fixed by either explicitly introducing a time-dependent phase gate to the trial state, or defining a gauge invariant quantum geometric tensor

ij=(ϕτ|θi|ϕτθj)ϕτ|θi|ϕτϕτ||ϕτθj\displaystyle\mathcal{R}_{ij}=\Re\left(\frac{\partial\langle\phi_{\tau}|}{\partial\theta_{i}}\frac{\partial|\phi_{\tau}\rangle}{\partial\theta_{j}}\right)-\frac{\partial\langle\phi_{\tau}|}{\partial\theta_{i}}|\phi_{\tau}\rangle\langle\phi_{\tau}|\frac{\partial|\phi_{\tau}\rangle}{\partial\theta_{j}} (119)

which is essentially associated with quantum natural gradient Stokes et al. (2020).

IV Quantum simulation of a model Hamiltonian

In the preceding sections we have given a brief review of hybrid quantum-classical algorithms featuring quantum computed Hamiltonian moments and their classical post-processing approaches that are in principle capable of providing systematically improvable estimates for the target energy and quantum state. In this section, we will go over a simple tutor to demonstrate how one can use the algorithms of these kinds in practice for solving some practical problems.

In this tutorial, we will study a model Hamiltonian

^=Ji,j(σxiσxj+σyiσyj)+Ui,jσziσzj+Biσzi\displaystyle\hat{\mathcal{H}}=J\sum_{\langle i,j\rangle}\left(\sigma_{x}^{i}\sigma_{x}^{j}+\sigma_{y}^{i}\sigma_{y}^{j}\right)+U\sum_{\langle i,j\rangle}\sigma_{z}^{i}\sigma_{z}^{j}+B\sum_{i}\sigma_{z}^{i} (120)

which, as suggested in Ref. 132, when combining with different choices of scalars JJ, UU, and BB, abstracts a large range of physical topics such as the integrability Essler and Fagotti (2016), quantum magnetism Vasiliev et al. (2018) and many-body localization Abanin and Papić (2017); Nandkishore and Huse (2015). In the following we will show how to employ a Hamiltonian moment based hybrid quantum-classical approach to compute the energy and magnetism of this model Hamiltonian (120) governing four sites mapped to four qubits.

IV.1 Computation preparation

To launch the quantum computation, we first need to prepare our trial state. The following hardware efficient ansatz is used for the preparation of our trial state

|ϕ0=Cz0,1Cz1,2Cz2,3Ry0(θ0)Ry2(θ1)Ry3(π)|1100\displaystyle|\phi_{0}\rangle=C_{z}^{0,1}C_{z}^{1,2}C_{z}^{2,3}R_{y}^{0}(\theta_{0})R_{y}^{2}(\theta_{1})R_{y}^{3}(\pi)|1100\rangle (121)

where Czp,qC_{z}^{p,q} is a controlled-Z operation with control qubit pp and target qubit qq, Ryp(θ)R_{y}^{p}(\theta) is a rotation of θ\theta on qubit pp around yy-axis, and two rotations (θ0,θ1)=(2.0,1.0)(\theta_{0},\theta_{1})=(-2.0,1.0). We employ the hybrid ITE approach for our demonstration where the Hamiltonian moments are evaluated from IBM-Q NISQ quantum hardware, and the energy and magnetism computations are performed using classical ITE approach on quantum computed Hamiltonian moments. Specifically, the ITE propagator is approximated using a mm-order Taylor expansion,

eτ^/2n=0m(τ)nn!^n,\displaystyle e^{-\tau\hat{\mathcal{H}}/2}\simeq\sum_{n=0}^{m}\frac{(-\tau)^{n}}{n!}\hat{\mathcal{H}}^{n}, (122)

and therefore eτ^/2^eτ^/2\langle e^{-\tau\hat{\mathcal{H}}/2}\hat{\mathcal{H}}e^{-\tau\hat{\mathcal{H}}/2}\rangle and eτ^\langle e^{-\tau\hat{\mathcal{H}}}\rangle can be approximated as linear combinations of ^n\langle\hat{\mathcal{H}}^{n}\rangle.

IV.2 Quantum measurement

As mentioned in preceding sections, since ^n\hat{\mathcal{H}}^{n} can be generally expressed as a linear combination of Pauli strings, PiP_{i}’s, ^n\langle\hat{\mathcal{H}}^{n}\rangle is then evaluated based on the measurements of Pi\langle P_{i}\rangle’s. In quantum computation, there are generally two ways of measuring observables, direct and indirect measurement. In the former, the measured state collapses to the measurement basis that one can freely choose. In the latter, the measured state is not completely destroyed. One simplest and important example is the Hadamard test Aharonov, Jones, and Landau (2009). In the Hadamard test of ϕ|U|ϕ\langle\phi|U|\phi\rangle in the computational basis for a trial state |ϕ|\phi\rangle governed by a unitary UU, one is able to reuse the state (I±U)|ϕ2\frac{(I\pm U)|\phi\rangle}{\sqrt{2}} after the measurement. This property can be exploited for designing more efficient and less resource-demanding version of some quantum algorithms (for example, iterative version of the quantum phase estimation, see Refs. 138; 139). Here for the demonstration we first employ the Hadamard test to measure each Pi\langle P_{i}\rangle that contributes ^n\langle\hat{\mathcal{H}}^{n}\rangle, and then to show how to group PiP_{i}’s to enable simultaneous measurements.

As discussed in Section II.1, the Pauli cyclic rules (12) allow for some reduction of the number of Pauli strings that need to be measured. Here, for the four-site Heisenberg model, we found that 72 Pauli strings form a complete basis for reformulating arbitrary n\mathcal{H}^{n}. This finding suggests that once Pi\langle P_{i}\rangle’s are measured one can quickly (classically) compute approximate eτ\langle e^{-\tau\mathcal{H}}\rangle and eτ/2eτ/2\langle e^{-\tau\mathcal{H}/2}\mathcal{H}e^{-\tau\mathcal{H}/2}\rangle using arbitrary order expansion for any τ\tau. Moreover, the relatively few number of required PiP_{i}’s allows the feasibility of measuring Pi\langle P_{i}\rangle’s on physical quantum computers. Here, four IBM-Q’s publicly available devices, ibmq_quito, ibmq_santiago, ibmq_bogota, and ibmq_manila are employed, whose topologies and noise metrics are shown in Fig. 3.

Refer to caption
Figure 3: (a) Topologies of four IBM-Q NISQ devices employed in this work. All the employed IBM-Q NISQ processors belong to Falcon family with basis gates being CX, ID, RZ, SX, and X. The color of nodes implies frequency (GHz) of the qubit or how fast a 1-qubit gate can be executed. The color of the connection implies the gate time in nanoseconds for 2-qubit gate such as CX. (b) Average CX error (ϵ¯CX\overline{\epsilon}_{CX}), average readout error (ϵ¯Readout\overline{\epsilon}_{Readout}), average T1/T2 time (T1¯/T2¯\overline{T1}/\overline{T2}) of the employed IBM-Q devices.

IV.3 Estimated ground state energy and magnetism

We estimated the ground state energies of the four-site Heisenberg model Hamiltonian for varied UU and JJ values with B=1.0B=1.0 employing approximate ITE approach, where eτ^e^{-\tau\hat{\mathcal{H}}} is approximated by a 15th order Taylor expansion. In all the calculations, we set τ=2.5\tau=2.5. A detailed discussion with respect to different truncation of the Taylor expansion and the choice of τ\tau will be given in Section IV.4.3.

Fig. 4a exhibits the computed ground state energies of the model Hamiltonian with varied {U,J}(0,1)\{U,J\}\in(0,1), which are in an excellent agreement with the exact solutions shown in Fig. 4b, and the average mean squared error between the two is only 0.0025 a.u. Based on the measured Pi\langle P_{i}\rangle’s we are also able to evaluate the magnetization of the model Hamiltonian. The magnetization operator is given by ^=iσzi\hat{\mathcal{M}}=\sum_{i}\sigma_{z}^{i}. The contour of the expectation values of magnetization with respect to the estimated ground states under different UU and JJ values is shown in Fig. 4c, which are again in great agreement with the exact solutions shown in Fig. 4d.

Refer to caption
Figure 4: (a) Ground state energies of the model Hamiltonian with varied UU and JJ values estimated by the hybrid ITE approach, and (b) the corresponding exact ground state energies. (c) Magnetizations of the same model estimated by the hybrid ITE approach, and (d) the corresponding exact magnetizations. In the hybrid ITE approach, a 15-th order Taylor expansion is employed to approximate eτ^e^{-\tau\hat{\mathcal{H}}} with τ=2.5\tau=2.5, and totally 72 Pi\langle P_{i}\rangle’s have been measured on the quantum computer ibmq_quito. The measured Pi\langle P_{i}\rangle’s are compared with their analytical values in (e). The Mean Squared Error between the estimated and exact ground state energies across over all the (UU, JJ)’s is 0.0025 a.u.

IV.4 Discussions

IV.4.1 In comparison with VQE

Remarkably, the ground state energy and magnetization estimations in the present study exhibit great improvement in comparison with the VQE solutions of the same model on the real hardware reported in previous work Kandala et al. (2017). It is also worth mentioning that (i) the ansatz we used here is much simpler and shallower, and thus less robust, than the one used in the previous study, (ii) the measurement requirement for the model Hamiltonian is trivial in the present study, and does not heuristically depends on the quality of the ansatz and the number of iterations as it does in the conventional VQE practice, and (iii) as shown in Fig. 4e the deviation between measured and analytical Pi\langle P_{i}\rangle’s could be as large as ±0.30.4\pm 0.3\sim 0.4 a.u. given Pi(1,1)\langle P_{i}\rangle\in(-1,1). Nevertheless, despite of less robust ansatz employed and the noisy Pi\langle P_{i}\rangle’s, the ITE approach is able to give very accurate estimation based on trivial measurements, thus features a robust error mitigation ability from the algorithmic perspective. Similar feature has also been reported in the real quantum application of other Krylov subspace methods, for example the hybrid and quantum Lanczos approaches Suchsland et al. (2021); Motta et al. (2020).

IV.4.2 Grouping and readout error mitigation

As discussed in the preceding section, we can further reduce the number of terms to be measured by grouping the Pauli strings that commute and performing simultaneous measurements Yen, Verteletskyi, and Izmaylov (2020). Here, by applying QWC grouping, we found that the number of terms to be measured can be further reduced from 72 to 25 for the model Hamiltonian.

Another advantage of performing simultaneous measurement is that the readout error of the simultaneous measurement could be largely mitigated through calibration. To see how it works, suppose we perform nn-qubit simultaneous measurements for totally 2n2^{n} computational bases, the normalized resulting counts from the measurement of each basis, when collected, would constitute a matrix 𝐉\mathbf{J} of 2n2^{n} dimension. Under the ideal noise-free condition, we know that 𝐉\mathbf{J} is an identity matrix of the same dimension. In the real NISQ quantum computing, however, with the effect of noise 𝐉\mathbf{J} deviates from the identity matrix, and the extent of deviation implies how noisy the real measurement outcomes are. Based on this relation, if 𝐉\mathbf{J} is known, we can algebraically build a connection between any ideal counts vector 𝐂ideal\mathbf{C}_{\rm ideal} and its noisy analogue 𝐂noisy\mathbf{C}_{\rm noisy} from the real measurement through

𝐂ideal=𝐉1𝐂noisy.\displaystyle\mathbf{C}_{\rm ideal}=\mathbf{J}^{-1}\mathbf{C}_{\rm noisy}. (123)
Refer to caption
Figure 5: (a) and (b) Expectation values of 25 QWC bases measured from four IBM-Q machines with five repeated executions on each machine without and with measurement readout calibration respectively. (c) and (d) Expectation values, as well as standard deviations, of 25 QWC bases averaged over all IBM-Q machines and runs without and with measurement readout calibration respectively. (e) The estimated ground state energies of the model Hamiltonian with varied UU’s and JJ’s based on the calibrated simultaneous measurements of the 25 QWC bases.

Apparently, the construction of matrix 𝐉\mathbf{J} eats up the resource quickly due to the exponential growth of the dimension. Nevertheless, for small size problem like the four-site model Hamiltonian studied in the present work, 𝐉\mathbf{J} is a 16×1616\times 16 matrix, and a direction construction of 𝐉\mathbf{J} from simultaneously measuring 16 computation bases is still feasible. Here, after grouping the commuting Pauli strings into 25 QWC bases, we performed the simultaneous measurement in the computational basis for each QWC basis five times on four IBM-Q machines, and then mitigated the measurement outcomes employing (123). The raw and calibrated measurement outcomes are exhibited in Fig. 5a-d. As can be seen, after calibration the measurement outcomes are greatly improved showing great consistency with the analytical ones and significantly suppressing the deviation. Based on the measurement outcomes, the estimated ground state energies of the model Hamiltonian are in excellent agreement with the exact solutions (see Fig. 5e), and the MSE between the estimated and exact energies over all the (U,JU,J)’s is only 0.0045 a.u.

IV.4.3 Approximation in ITE

In the case of the model Hamiltonian studied here, as stated at the beginning of this section we approximate the imaginary time operator eτe^{-\tau\mathcal{H}} employing truncated Taylor expansion. Generally speaking, for x[0,b]x\in[0,b], the truncated expansion of an exponential function exe^{-x} is δ\delta-approximation when using b+log(1δ)b+\log(\frac{1}{\delta}) terms in the expansion Sachdeva and Vishnoi (2014). Regarding the ploynomial approximations to eτ^e^{-\tau\hat{\mathcal{H}}}, before figuring out the number of terms in the expansion, the variable τ\tau needs to be determined first as it rescales the spectrum of ^\hat{\mathcal{H}} and indirectly affects the level of accuracy of the employed expansion. To do so, as exemplified in Fig. 6, we fix the number of terms in the expansion and evolve the energy as a function of τ\tau to find its optimal value that gives the lowest energy. This is essentially a one dimensional optimization problem over τ\tau, and can be solved classically by Golden-Section Search Kiefer (1953), or similar methods. In the present study, we found τopt=2.5\tau_{\rm opt}=2.5 providing well converged ground state energies estimates for the given UU and JJ ranges. It worth mentioning that to improve the estimate of eτ^e^{-\tau\hat{\mathcal{H}}} using polynomial expansions in the larger τ\tau regime, one can alternatively resort to other polynomial expansions, such as CMX as discussed in Section III.3, or Padé expansion as originally proposed in Ref. 88 and recently applied in Ref. 96.

Refer to caption
Figure 6: (a) Energy evolutions and (b) corresponding error percentages of the four-site Heisenberg model Hamiltonian with different UU’s and JJ’s as functions of imaginary time, τ\tau, estimated by the approximate ITE approach employing a 15-th order Taylor expansion.

After fixing τ=τopt\tau=\tau_{\rm opt}, we can test the accuracy of the truncated Taylor expansion using different numbers of terms. As shown in Fig. 7 the level of accuracy improves as more terms used in the truncated Taylor expansion, and it verifies that at least a 15th order expansion is needed in order to give accurate energy estimates for the entire UU and JJ ranges.

Refer to caption
Figure 7: Ground state energies with varied UU’s and JJ’s estimated by the approximate ITE approaches employing (a) 9-th order, (b) 11-th order, (c) 15-th order, and (d) 17-th order Taylor expansion, respectively. For all the approximations, we fixed τ=2.5\tau=2.5.

V Conclusion and outlook

In this tutorial review, we have gone over some recent developments of hybrid quantum-classical algorithms based upon quantum computation of Hamiltonian moments. In particular, we have given an overview about how to rely on quantum resources to compute Hamiltonian moments, and what classical methods can be used following the quantum computation of the Hamiltonian moments to give rise to energy estimation for the target state. The levels of accuracy of these hybrid quantum-classical approaches are usually systematically improvable, even under the condition of working with noisy Hamiltonian moments, and thus provide error mitigation at the algorithmic level regardless of detailed description of the noise. Essentially, the algorithmic error mitigation can be attributed to the fact that these hybrid approaches are exploring the Krylov subspace of the entire Hilbert space, and if the ansatz is not totally orthogonal the true state, the power iteration would in principle guarantee a convergence given sufficiently high order Hamiltonian moments. On the other hand, what comes with the systematically improvable accuracy that is based on the cumulative construction of Krylov subspace is the price paid for obtaining higher order Hamiltonian moments, which will significantly increase the measurement requirement and bring hurdles for targeting larger quantum systems. The ongoing efforts are focused on either introducing some more efficient grouping rules to reduce the number of terms to be measured, or polishing the quality of the ansatz based on some physical and chemical inspiration such that lower order Hamiltonian moments will be sufficient for approaching certain level of accuracy. The latter can even be combined with variational quantum solver for the same purpose, which also helps the variational solver circumvent the barren plateaus. Another active direction is to combine these techniques with complete active space and/or Hamiltonian downfolding techniques (for recent studies, see e.g. Refs. 141; 142) that can target larger systems. All these combinations are worth exploring in the NISQ era. Ultimately, from the accuracy and efficiency improvements brought by these algorithms and/or their combinations with some other techniques, the critical question becomes which problems are most benefited from quantum computed Hamiltonian moments and how much quantum advantage can be eventually gained in these contexts.

VI Acknowledgement

J. C. A., T. K., and B. P. acknowledge Dr. Karol Kowalski and Dr. Niri Govind for their helpful discussions on some topics during the preparation of this paper.

VII Funding Information

J. C. A. was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships Program (SULI). T. K. is supported by the U. S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists, Office of Science Graduate Student Research (SCGSR) program. The SCGSR program is administered by the Oak Ridge Institute for Science and Education (ORISE) for the DOE. ORISE is managed by ORAU under contract number DE-SC0014664. B. P. was supported by the “Embedding QC into Many-body Frameworks for Strongly Correlated Molecular and Materials Systems” project, which is funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (BES), the Division of Chemical Sciences, Geosciences, and Biosciences. This material is based upon work supported by the U.S. Department of Energy, Office of Science, National Quantum Information Science Research Centers.

VIII Data Availability Statement

The data and code that support the findings of this study are available at https://github.com/jaulicino/HamiltonianMoment/

References

  • Feynman (1982) R. P. Feynman, “Simulating physics with computers,” Int. J. Theor. Phys. 21, 467–488 (1982).
  • David Sherrill and Schaefer (1999) C. David Sherrill and H. F. Schaefer, “The configuration interaction method: Advances in highly correlated approaches,”  (Academic Press, 1999) pp. 143–269.
  • Bartlett and Musiał (2007) R. J. Bartlett and M. Musiał, “Coupled-cluster theory in quantum chemistry,” Rev. Mod. Phys. 79, 291–352 (2007).
  • Sugisaki et al. (2019) K. Sugisaki, S. Nakazawa, K. Toyota, K. Sato, D. Shiomi,  and T. Takui, “Quantum chemistry on quantum computers: A method for preparation of multiconfigurational wave functions on quantum computers without performing post-hartree–fock calculations,” ACS Central Sci. 5, 167–175 (2019).
  • Aspuru-Guzik et al. (2005) A. Aspuru-Guzik, A. D. Dutoi, P. J. Love,  and M. Head-Gordon, “Simulated quantum computation of molecular energies,” Science 309, 1704–1707 (2005).
  • O’Malley et al. (2016) P. J. J. O’Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R. McClean, R. Barends, J. Kelly, P. Roushan, A. Tranter, N. Ding, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. G. Fowler, E. Jeffrey, E. Lucero, A. Megrant, J. Y. Mutus, M. Neeley, C. Neill, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White, P. V. Coveney, P. J. Love, H. Neven, A. Aspuru-Guzik,  and J. M. Martinis, “Scalable quantum simulation of molecular energies,” Phys. Rev. X 6, 031007 (2016).
  • Linke et al. (2017) N. M. Linke, D. Maslov, M. Roetteler, S. Debnath, C. Figgatt, K. A. Landsman, K. Wright,  and C. Monroe, “Experimental comparison of two quantum computing architectures,” Proc. Natl. Acad. Sci. U. S. A. 114, 3305–3310 (2017).
  • Kandala et al. (2017) A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow,  and J. M. Gambetta, “Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets,” Nature 549, 242–246 (2017).
  • Dumitrescu et al. (2018) E. F. Dumitrescu, A. J. McCaskey, G. Hagen, G. R. Jansen, T. D. Morris, T. Papenbrock, R. C. Pooser, D. J. Dean,  and P. Lougovski, “Cloud quantum computing of an atomic nucleus,” Phys. Rev. Lett. 120, 210501 (2018).
  • Klco et al. (2018) N. Klco, E. F. Dumitrescu, A. J. McCaskey, T. D. Morris, R. C. Pooser, M. Sanz, E. Solano, P. Lougovski,  and M. J. Savage, “Quantum-classical computation of schwinger model dynamics using quantum computers,” Phys. Rev. A 98, 032331 (2018).
  • Colless et al. (2018) J. I. Colless, V. V. Ramasesh, D. Dahlen, M. S. Blok, M. E. Kimchi-Schwartz, J. R. McClean, J. Carter, W. A. de Jong,  and I. Siddiqi, “Computation of molecular spectra on a quantum processor with an error-resilient algorithm,” Phys. Rev. X 8, 011021 (2018).
  • McCaskey et al. (2019) A. J. McCaskey, Z. P. Parks, J. Jakowski, S. V. Moore, T. D. Morris, T. S. Humble,  and R. C. Pooser, “Quantum chemistry as a benchmark for near-term quantum computers,” npj Quantum Inf. 5, 98 (2019).
  • Preskill (2018) J. Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum 2, 79 (2018).
  • Peruzzo et al. (2014) A. Peruzzo, J. R. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik,  and J. L. O’brien, “A variational eigenvalue solver on a photonic quantum processor,” Nat. Commun. 5, 4213 (2014).
  • McClean et al. (2016) J. R. McClean, J. Romero, R. Babbush,  and A. Aspuru-Guzik, “The theory of variational hybrid quantum-classical algorithms,” New J. Phys. 18, 023023 (2016).
  • Romero et al. (2018) J. Romero, R. Babbush, J. R. McClean, C. Hempel, P. J. Love,  and A. Aspuru-Guzik, “Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz,” Quantum Sci. Technol. 4, 014008 (2018).
  • Shen et al. (2017) Y. Shen, X. Zhang, S. Zhang, J.-N. Zhang, M.-H. Yung,  and K. Kim, “Quantum implementation of the unitary coupled cluster for simulating molecular electronic structure,” Phys. Rev. A 95, 020501 (2017).
  • Kandala et al. (2019) A. Kandala, K. Temme, A. D. Corcoles, A. Mezzacapo, J. M. Chow,  and J. M. Gambetta, “Error mitigation extends the computational reach of a noisy quantum processor,” Nature 567, 491–495 (2019).
  • Huggins et al. (2020) W. J. Huggins, J. Lee, U. Baek, B. O’Gorman,  and K. B. Whaley, “A non-orthogonal variational quantum eigensolver,” New J. Phys. 22, 073009 (2020).
  • Farhi, Goldstone, and Gutmann (2014) E. Farhi, J. Goldstone,  and S. Gutmann, “A quantum approximate optimization algorithm,” arXiv preprint arXiv:1411.4028  (2014).
  • Bharti et al. (2021) K. Bharti, A. Cervera-Lierta, T. H. Kyaw, T. Haug, S.Alperin-Lea, A. Anand, M. Degroote, H. Heimonen, J. S. Kottmann, T. Menke, W.-K. Mok, S. Sim, L.-C. Kwek,  and A. Aspuru-Guzik, “Noisy intermediate-scale quantum (nisq) algorithms,” arXiv preprint arXiv:2101.08448  (2021).
  • Albash and Lidar (2018) T. Albash and D. A. Lidar, “Adiabatic quantum computation,” Rev. Mod. Phys. 90, 015002 (2018).
  • Aaronson and Arkhipov (2011) S. Aaronson and A. Arkhipov, “Proceedings of the forty-third annual acm symposium on theory of computing,”  (2011) pp. 333–342.
  • Trabesinger (2012) A. Trabesinger, “Quantum simulation,” Nat. Phys. 8, 263 (2012).
  • Georgescu, Ashhab, and Nori (2014) I. M. Georgescu, S. Ashhab,  and F. Nori, “Quantum simulation,” Rev. Mod. Phys. 86, 153–185 (2014).
  • McArdle et al. (2019) S. McArdle, T. Jones, S. Endo, Y. Li, S. C. Benjamin,  and X. Yuan, “Variational ansatz-based quantum simulation of imaginary time evolution,” npj Quantum Inf. 5, 1–6 (2019).
  • Motta et al. (2020) M. Motta, C. Sun, A. T. K. Tan, M. J. O’Rourke, E. Ye, A. J. Minnich, F. G. S. L. Brandão,  and G. K.-L. Chan, “Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution,” Nat. Phys. 16, 205–210 (2020).
  • Parrish and McMahon (2019) R. M. Parrish and P. L. McMahon, “Quantum filter diagonalization: Quantum eigendecomposition without full quantum phase estimation,” arXiv preprint arXiv:1909.08925  (2019).
  • Kyriienko (2020) O. Kyriienko, “Quantum inverse iteration algorithm for programmable quantum simulators,” npj Quantum Inf. 6, 1–8 (2020).
  • McClean et al. (2018) J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush,  and H. Neven, “Barren plateaus in quantum neural network training landscapes,” Nat. Commun. 9, 4812 (2018).
  • Cerezo et al. (2021) M. Cerezo, A. Sone, T. Volkoff, L. Cincio,  and P. J. Coles, “Cost function dependent barren plateaus in shallow parametrized quantum circuits,” Nat. Commun. 12, 1791 (2021).
  • Cerezo and Coles (2021) M. Cerezo and P. J. Coles, “Higher order derivatives of quantum neural networks with barren plateaus,” Quantum Sci. Technol. 6, 035006 (2021).
  • Herasymenko and O’Brien (2019) Y. Herasymenko and T. E. O’Brien, “A diagrammatic approach to variational quantum ansatz construction,” arXiv preprint arXiv:1907.08157  (2019).
  • Bonet-Monroig, Babbush, and O’Brien (2020) X. Bonet-Monroig, R. Babbush,  and T. E. O’Brien, “Nearly optimal measurement scheduling for partial tomography of quantum states,” Phys. Rev. X 10, 031064 (2020).
  • Endo et al. (2021) S. Endo, Z. Cai, S. C. Benjamin,  and X. Yuan, “Hybrid quantum-classical algorithms and quantum error mitigation,” J. Phys. Soc. Jpn. 90, 032001 (2021).
  • Jordan and Wigner (1928) P. Jordan and E. Wigner, “Über das paulische Äquivalenzverbot,” Z. Physik 47, 631–651 (1928).
  • Bravyi and Kitaev (2002) S. B. Bravyi and A. Y. Kitaev, “Fermionic quantum computation,” Ann. Phys. 298, 210–226 (2002).
  • Seeley, Richard, and Love (2012) J. T. Seeley, M. J. Richard,  and P. J. Love, “The bravyi-kitaev transformation for quantum computation of electronic structure,” J. Chem. Phys. 137, 224109 (2012).
  • Tranter et al. (2015) A. Tranter, S. Sofia, J. Seeley, M. Kaicher, J. McClean, R. Babbush, P. V. Coveney, F. Mintert, F. Wilhelm,  and P. J. Love, “The bravyi–kitaev transformation: Properties and applications,” Int. J. Quantum Chem. 115, 1431–1441 (2015).
  • Tyldesley (1975) J. R. Tyldesley, An Introduction to Tensor Analysis for Engineers and Applied Scientists (Longman, 1975).
  • Kowalski and Peng (2020) K. Kowalski and B. Peng, “Quantum simulations employing connected moments expansions,” J. Chem. Phys. 153, 201102 (2020).
  • Suchsland et al. (2021) P. Suchsland, F. Tacchino, M. H. Fischer, T. Neupert, P. K. Barkoutsos,  and I. Tavernelli, “Algorithmic Error Mitigation Scheme for Current Quantum Processors,” Quantum 5, 492 (2021).
  • Karp (2010) R. M. Karp, “Reducibility among combinatorial problems,” in 50 Years of Integer Programming 1958-2008: From the Early Years to the State-of-the-Art, edited by M. Jünger, T. M. Liebling, D. Naddef, G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt, G. Rinaldi,  and L. A. Wolsey (Springer Berlin Heidelberg, Berlin, Heidelberg, 2010) pp. 219–241.
  • Gokhale et al. (2020) P. Gokhale, O. Angiuli, Y. Ding, K. Gui, T. Tomesh, M. Suchara, M. Martonosi,  and F. T. Chong, “o(n3)o(n^{3}) measurement cost for variational quantum eigensolver on molecular hamiltonians,” IEEE Trans. Qunatum Eng. 1, 1–24 (2020).
  • Yen, Verteletskyi, and Izmaylov (2020) T.-C. Yen, V. Verteletskyi,  and A. F. Izmaylov, “Measuring all compatible operators in one series of single-qubit measurements using unitary transformations,” J. Chem. Theory Comput. 16, 2400–2409 (2020).
  • Vallury et al. (2020) H. J. Vallury, M. A. Jones, C. D. Hill,  and L. C. L. Hollenberg, “Quantum computed moments correction to variational estimates,” Quantum 4, 373 (2020).
  • Claudino et al. (2021) D. Claudino, B. Peng, N. P. Bauman, K. Kowalski,  and T. S. Humble, “Improving the accuracy and efficiency of quantum connected moments expansions,” Quantum Sci. Technol. 6, 034012 (2021).
  • Schwinger (1960) J. Schwinger, “Unitary operator bases,” Proc. Nat. Acad. Sci. USA 46, 570–579 (1960).
  • Klappenecker and Rötteler (2004) A. Klappenecker and M. Rötteler, “Constructions of mutually unbiased bases,” in Finite Fields and Applications, edited by G. L. Mullen, A. Poli,  and H. Stichtenoth (Springer Berlin Heidelberg, Berlin, Heidelberg, 2004) pp. 137–144.
  • Altepeter, James, and Kwiat (2004) J. B. Altepeter, D. F. V. James,  and P. G. Kwiat, “4 qubit quantum state tomography,” in Quantum State Estimation, edited by M. Paris and J. Řeháček (Springer Berlin Heidelberg, Berlin, Heidelberg, 2004) pp. 113–145.
  • Lawrence, Brukner, and Zeilinger (2002) J. Lawrence, i. c. v. Brukner,  and A. Zeilinger, “Mutually unbiased binary observable sets on n qubits,” Phys. Rev. A 65, 032320 (2002).
  • Izmaylov et al. (2020) A. F. Izmaylov, T.-C. Yen, R. A. Lang,  and V. Verteletskyi, “Unitary partitioning approach to the measurement problem in the variational quantum eigensolver method,” J. Chem. Theory Comput. 16, 190–195 (2020).
  • Huggins et al. (2021) W. J. Huggins, J. R. McClean, N. C. Rubin, Z. Jiang, N. Wiebe, K. B. Whaley,  and R. Babbush, “Efficient and noise resilient measurements for quantum chemistry on near-term quantum computers,” npj Quantum Inf. 7 (2021), 10.1038/s41534-020-00341-7.
  • Gonthier et al. (2020) J. F. Gonthier, M. D. Radin, C. Buda, E. J. Doskocil, C. M. Abuan,  and J. Romero, “Identifying challenges towards practical quantum advantage through resource estimation: the measurement roadblock in the variational quantum eigensolver,”  (2020), arXiv:2012.04001 [quant-ph] .
  • Rubin, Babbush, and J. (2018) N. C. Rubin, R. Babbush,  and M. J., “Application of fermionic marginal constraints to hybrid quantum algorithms,” New J. Phys. 20, 053020 (2018).
  • Wecker, Hastings, and Troyer (2015) D. Wecker, M. B. Hastings,  and M. Troyer, “Progress towards practical quantum variational algorithms,” Phys. Rev. A 92, 042303 (2015).
  • Huang, Kueng, and Preskill (2020) H. Y. Huang, R. Kueng,  and J. Preskill, “Predicting many properties of a quantum system from very few measurements,” Nat. Phys. 16, 1050–1057 (2020).
  • Huang, Kueng, and Preskill (2021) H.-Y. Huang, R. Kueng,  and J. Preskill, “Efficient estimation of pauli observables by derandomization,” Phys. Rev. Lett. 127, 030503 (2021).
  • Aaronson (2018) S. Aaronson, “Shadow tomography of quantum states,” in Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018 (Association for Computing Machinery, New York, NY, USA, 2018) pp. 325–338.
  • Struchalin et al. (2021) G. I. Struchalin, Y. A. Zagorovskii, E. V. Kovlakov, S. S. Straupe,  and S. P. Kulik, “Experimental estimation of quantum state properties from classical shadows,” PRX Quantum 2, 010307 (2021).
  • Chen et al. (2021) S. Chen, W. Yu, P. Zeng,  and S. T. Flammia, “Robust shadow estimation,” arXiv preprint arXiv:2011.09636  (2021).
  • Zhao, Rubin, and Miyake (2021) A. Zhao, N. C. Rubin,  and A. Miyake, “Fermionic partial tomography via classical shadows,” Phys. Rev. Lett. 127, 110504 (2021).
  • Acharya, Saha, and Sengupta (2021) A. Acharya, S. Saha,  and A. M. Sengupta, “Informationally complete povm-based shadow tomography,” arXiv preprint arXiv:2105.05992  (2021).
  • Hadfield (2021) C. Hadfield, “Adaptive pauli shadows for energy estimation,” arXiv preprint arXiv:2105.12207  (2021).
  • Hillmich et al. (2021) S. Hillmich, C. Hadfield, R. Raymond, A. Mezzacapo,  and R. Wille, “Decision diagrams for quantum measurements with shallow circuits,” arXiv preprint arXiv:2105.06932  (2021).
  • Zhang et al. (2021) T. Zhang, J. Sun, X.-X. Fang, X. Zhang, X. Yuan,  and H. Lu, “Experimental quantum state measurement with classical shadows,” arXiv preprint arXiv:2106.10190  (2021).
  • Subramanian, Brierley, and Jozsa (2019) S. Subramanian, S. Brierley,  and R. Jozsa, “Implementing smooth functions of a hermitian matrix on a quantum computer,” J. Phys. Commun. 3, 065002 (2019).
  • Venegas-Andraca (2012) S. Venegas-Andraca, “Quantum walks: a comprehensive review,” Quantum Inf. Process. 11, 1015–1106 (2012).
  • Kempe (2003) J. Kempe, “Quantum random walks: An introductory overview,” Contemp. Phys. 44, 307–327 (2003).
  • Patel and Priyadarsini (2018) A. Patel and A. Priyadarsini, “Efficient quantum algorithms for state measurement and linear algebra applications,” Int. J. Quantum Inf. 16, 1850048 (2018).
  • Seki and Yunoki (2021) K. Seki and S. Yunoki, “Quantum power method by a superposition of time-evolved states,” PRX Quantum 2, 010333 (2021).
  • Trotter (1959) H. F. Trotter, “On the product of semi-groups of operators,” Proc. Amer. Math. Soc. 10, 545–551 (1959).
  • Suzuki (1990) M. Suzuki, “Fractal decomposition of exponential operators with applications to many-body theories and monte carlo simulations,” Phys. Lett. A 146, 319–323 (1990).
  • Richardson and Gaunt (1927) L. F. Richardson and J. A. Gaunt, “Viii. the deferred approach to the limit,” Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character 226, 299–361 (1927).
  • Temme, Bravyi, and Gambetta (2017) K. Temme, S. Bravyi,  and J. M. Gambetta, “Error mitigation for short-depth quantum circuits,” Phys. Rev. Lett. 119, 180509 (2017).
  • Sachdeva and Vishnoi (2014) S. Sachdeva and N. K. Vishnoi, Faster Algorithms via Approximation Theory (Now Foundations and Trends, 2014).
  • Childs, Kothari, and Somma (2017) A. M. Childs, R. Kothari,  and R. D. Somma, “Quantum algorithm for systems of linear equations with exponentially improved dependence on precision,” SIAM Journal on Computing 46, 1920–1950 (2017).
  • Ekert et al. (2002) A. K. Ekert, C. M. Alves, D. K. L. Oi, M. Horodecki, P. Horodecki,  and L. C. Kwek, “Direct estimations of linear and nonlinear functionals of a quantum state,” Phys. Rev. Lett. 88, 217901 (2002).
  • Higgott, Wang, and Brierley (2019) O. Higgott, D. Wang,  and S. Brierley, “Variational Quantum Computation of Excited States,” Quantum 3, 156 (2019).
  • Mitarai and Fujii (2019) K. Mitarai and K. Fujii, “Methodology for replacing indirect measurements with direct measurements,” Phys. Rev. Research 1, 013006 (2019).
  • Ge, Tura, and Cirac (2019) Y. Ge, J. Tura,  and J. I. Cirac, “Faster ground state preparation and high-precision ground energy estimation with fewer qubits,” J. Math. Phys. 60, 1–25 (2019).
  • Brassard et al. (2002) G. Brassard, P. Hoyer, M. Mosca,  and A. Tapp, “Quantum amplitude amplification and estimation,” in Quantum Computation and Quantum Information, Vol. 305, edited by J. S. J. Lomonaco (AMS Contemporary Mathematics, 2002) pp. 53–74.
  • Berry et al. (2015) D. W. Berry, A. M. Childs, R. Cleve, R. Kothari,  and R. D. Somma, “Simulating hamiltonian dynamics with a truncated taylor series,” Phys. Rev. Lett. 114, 090502 (2015).
  • Low and Chuang (2017) G. H. Low and I. L. Chuang, “Optimal hamiltonian simulation by quantum signal processing,” Phys. Rev. Lett. 118, 010501 (2017).
  • Gilyén et al. (2019) A. Gilyén, Y. Su, G. H. Low,  and N. Wiebe, “Quantum singular value transformation and beyond: Exponential improvements for quantum matrix arithmetics,” in Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019 (Association for Computing Machinery, New York, NY, USA, 2019) p. 193–204.
  • Childs and Wiebe (2012) A. M. Childs and N. Wiebe, “Hamiltonian simulation using linear combinations of unitary operations,” Quantum Inf. Comput. 12 (2012), 10.26421/qic12.11-12.
  • Lanczos (1950) C. Lanczos, “An iteration method for the solution of the eigenvalue problem of linear differential and integral operators,” J. Res. Natl. Bur. Stand. B 45, 255–283 (1950).
  • Horn and Weinstein (1984) D. Horn and M. Weinstein, “The tt expansion: A nonperturbative analytic tool for hamiltonian systems,” Phys. Rev. D 30, 1256–1270 (1984).
  • Hollenberg (1993) L. C. L. Hollenberg, “Plaquette expansion in lattice hamiltonian models,” Phys. Rev. D 47, 1640–1644 (1993).
  • Witte and Hollenberg (1994) N. S. Witte and L. C. L. Hollenberg, “Plaquette expansion proof and interpretation,” Z. Phys. B 95 (1994).
  • Hollenberg and Witte (1996) L. C. L. Hollenberg and N. S. Witte, “Analytic solution for the ground-state energy of the extensive many-body problem,” Phys. Rev. B 54, 16309–16312 (1996).
  • van Doorn (1987) E. A. van Doorn, “Representations and bounds for zeros of orthogonal polynomials and eigenvalues of sign-symmetric tri-diagonal matrices,” J. Approx. Theory 51, 254–266 (1987).
  • Ismail and Li (1992) M. E. H. Ismail and X. Li, “Bound on the extreme zeros of orthogonal polynomials,” Proc. Amer. Math. Soc. 115, 131–140 (1992).
  • Hollenberg and Witte (1994) L. C. L. Hollenberg and N. S. Witte, “General nonperturbative estimate of the energy density of lattice hamiltonians,” Phys. Rev. D 50, 3382–3386 (1994).
  • Pavarini et al. (2011) E. Pavarini, E. Koch, A. Lichtenstein,  and D. Vollhardt, eds., The LDA+DMFT approach to strongly correlated materials, Schriften des Forschungszentrums Jülich. Reihe modeling and simulation, Vol. 1 (Forschungszenrum Jülich GmbH Zentralbibliothek, Verlag, Jülich, 2011).
  • Guzman and Lacroix (2021) E. A. R. Guzman and D. Lacroix, “Predicting ground state, excited states and long-time evolution of many-body systems from short-time evolution on a quantum computer,” arXiv preprint arXiv:2104.08181  (2021).
  • McClean et al. (2017) J. R. McClean, M. E. Kimchi-Schwartz, J. Carter,  and W. A. de Jong, “Hybrid quantum-classical hierarchy for mitigation of decoherence and determination of excited states,” Phys. Rev. A 95, 042308 (2017).
  • Parrish et al. (2019) R. M. Parrish, E. G. Hohenstein, P. L. McMahon,  and T. J. Martínez, “Quantum computation of electronic transitions using a variational quantum eigensolver,” Phys. Rev. Lett. 122, 230401 (2019).
  • Nakanishi, Mitarai, and Fujii (2019) K. M. Nakanishi, K. Mitarai,  and K. Fujii, “Subspace-search variational quantum eigensolver for excited states,” Phys. Rev. Research 1, 033062 (2019).
  • Davies et al. (1980) K. T. R. Davies, H. Flocard, S. Krieger,  and M. S. Weiss, “Application of the imaginary time step method to the solution of the static hartree-fock problem,” Nuc. Phys. A 342, 111–123 (1980).
  • Anderson (1975) J. B. Anderson, “A random‐walk simulation of the schrödinger equation: H+3,” J. Chem. Phys. 63, 1499–1503 (1975).
  • Anderson (1979) J. B. Anderson, “Quantum chemistry by random walk: H4 square,” Int. J. Quantum Chem. 15, 109–120 (1979).
  • Anderson (1980) J. B. Anderson, “Quantum chemistry by random walk: Higher accuracy,” J. Chem. Phys. 73, 3897–3899 (1980).
  • Cioslowski (1987) J. Cioslowski, “Connected moments expansion: A new tool for quantum many-body theory,” Phys. Rev. Lett. 58, 83–85 (1987).
  • Knowles (1987) P. J. Knowles, “On the validity and applicability of the connected moments expansion,” Chem. Phys. Lett. 134, 512–518 (1987).
  • Stubbins (1988) C. Stubbins, “Methods of extrapolating the t-expansion series,” Phys. Rev. D 38, 1942 (1988).
  • Prie et al. (1994) J. D. Prie, D. Schwall, J. D. Mancini, D. Kraus,  and W. J. Massano, “On the relation between the connected-moments expansion and the lanczos variational scheme,” Nuov. Cim. D 16, 433–448 (1994).
  • Mancini, Zhou, and Meier (1994) J. D. Mancini, Y. Zhou,  and P. F. Meier, “Analytic properties of connected moments expansions,” Int. J. Quantum Chem. 50, 101–107 (1994).
  • Ullah (1995) N. Ullah, “Removal of the singularity in the moment-expansion formalism,” Phys. Rev. A 51, 1808–1810 (1995).
  • Mancini et al. (1995) J. D. Mancini, W. J. Massano, J. D. Prie,  and Y. Zhuo, “Avoidance of singularities in moments expansions: a numerical study,” Phys. Lett. A 209, 107–112 (1995).
  • Fessatidis et al. (2006) V. Fessatidis, J. D. Mancini, R. Murawski,  and S. P. Bowen, “A generalized moments expansion,” Phys. Lett. A 349, 320–323 (2006).
  • Fessatidis et al. (2010) V. Fessatidis, F. A. Corvino, J. D. Mancini, R. K. Murawski,  and J. Mikalopas, “Analytic properties of moments matrices,” Phys. Lett. A 374, 2890–2893 (2010).
  • Noga, Szabados, and Surján (2002) J. Noga, A. Szabados,  and P. Surján, “On the use of connected moments expansion with coupled cluster reference,” Int. J. Mol. Sci. 3, 508–521 (2002).
  • Mancini, Prie, and Massano (1991) J. D. Mancini, J. D. Prie,  and W. J. Massano, “Approximations to the ground-state energy of the single-impurity kondo model using variational and connected-moments expansions,” Phys. Rev. A 43, 1777–1782 (1991).
  • Peeters and Devreese (1984) F. M. Peeters and J. T. Devreese, “Upper bounds for the free energy. a generalisation of the bogolubov inequality and the feynman inequality,” Journal of Physics A: Mathematical and General 17, 625 (1984).
  • Soldatov (1995) A. V. Soldatov, “Generalized variational principle in quantum mechanics,” Int. J. Mod. Phys. B 9, 2899–2936 (1995).
  • Bogolubov (1947) N. Bogolubov, “On the theory of superfluidity,” J. Phys. 11, 23–32 (1947).
  • Feynman (1955) R. P. Feynman, “Slow electrons in a polar crystal,” Phys. Rev. 97, 660–665 (1955).
  • Devreese, Evrard, and Kartheuser (1975) J. T. Devreese, R. Evrard,  and E. Kartheuser, “Self-consistent equation-of-motion approach for polarons,” Phys. Rev. B 12, 3353–3367 (1975).
  • Peng and Kowalski (2021) B. Peng and K. Kowalski, “Variational quantum solver employing the pds energy functional,” Quantum 5, 473 (2021).
  • Yamamoto (2019) N. Yamamoto, “On the natural gradient for variational quantum eigensolver,” arXiv preprint arXiv:1909.05074  (2019).
  • Lemaéchal (2012) C. Lemaéchal, “Cauchy and the gradient method,” Doc. Math. Extra Optimization Stories, 251–254 (2012).
  • Amari (1998) S. Amari, “Natural gradient works efficiently in learning,” Neural Comput. 10, 251–276 (1998).
  • Stokes et al. (2020) J. Stokes, J. Izaac, N. Killoran,  and G. Carleo, “Quantum Natural Gradient,” Quantum 4, 269 (2020).
  • McLachlan (1964) A. D. McLachlan, “A variational solution of the time-dependent schrodinger equation,” Mol. Phys. 8, 39–44 (1964).
  • Yuan et al. (2019) X. Yuan, S. Endo, Q. Zhao, Y. Li,  and S. C. Benjamin, “Theory of variational quantum simulation,” Quantum 3, 191 (2019).
  • Dirac (1930) P. A. M. Dirac, “Note on exchange phenomena in the thomas atom,” Math. Proc. Camb. Philos. Soc. 26, 376–385 (1930).
  • Frenkel (1934) J. Frenkel, Wave Mechanics: Advanced General Theory (Clarendon Press Oxford, 1934).
  • Kramer and Saraceno (1981) P. Kramer and M. Saraceno, eds., “The time-dependent variational principle (tdvp),” in Geometry of the Time-Dependent Variational Principle in Quantum Mechanics (Springer Berlin Heidelberg, Berlin, Heidelberg, 1981) pp. 3–14.
  • Broeckhove et al. (1988) J. Broeckhove, L. Lathouwers, E. Kesteloot,  and P. Van Leuven, “On the equivalence of time-dependent variational principles,” Chem. Phys. Lett. 149, 547–550 (1988).
  • Cheng (2013) R. Cheng, “Quantum geometric tensor (fubini-study metric) in simple quantum system: A pedagogical introduction,” arXiv preprint arXiv:1012.1337  (2013).
  • Smith et al. (2019) A. Smith, M. Kim, F. Pollmann,  and J. Knolle, “Simulating quantum many-body dynamics on a current digital quantum computer,” npj Quantum Inf. 5 (2019), 10.1038/s41534-019-0217-0.
  • Essler and Fagotti (2016) F. H. L. Essler and M. Fagotti, “Quench dynamics and relaxation in isolated integrable quantum spin chains,” J. Stat. Mech.: Theory Exp. 2016, 064002 (2016).
  • Vasiliev et al. (2018) A. Vasiliev, O. Volkova, E. Zvereva,  and M. Markina, “Milestones of low-d quantum magnetism,” npj Quant. Mater. 3, 18 (2018).
  • Abanin and Papić (2017) D. A. Abanin and Z. Papić, “Recent progress in many-body localization,” Ann. Phys. (Berl.) 529, 1700169 (2017).
  • Nandkishore and Huse (2015) R. Nandkishore and D. A. Huse, “Many-body localization and thermalization in quantum statistical mechanics,” Ann. Rev. Condens. Matter Phys. 6, 15–38 (2015).
  • Aharonov, Jones, and Landau (2009) D. Aharonov, V. Jones,  and Z. Landau, “A polynomial quantum algorithm for approximating the jones polynomial,” Algorithmica 55, 395–421 (2009).
  • Knill, Ortiz, and Somma (2007) E. Knill, G. Ortiz,  and R. D. Somma, “Optimal quantum measurements of expectation values of observables,” Phys. Rev. A 75, 012328 (2007).
  • Dobšíček et al. (2007) M. Dobšíček, G. Johansson, V. Shumeiko,  and G. Wendin, “Arbitrary accuracy iterative quantum phase estimation algorithm using a single ancillary qubit: A two-qubit benchmark,” Phys. Rev. A 76, 030306 (2007).
  • Kiefer (1953) J. Kiefer, “Sequential minimax search for a maximum,” Proc. Am. Math. Soc. 4, 502–506 (1953).
  • Bauman et al. (2019) N. P. Bauman, E. J. Bylaska, S. Krishnamoorthy, G. H. Low, N. Wiebe, C. E. Granade, M. Roetteler, M. Troyer,  and K. Kowalski, “Downfolding of many-body hamiltonians using active-space models: Extension of the sub-system embedding sub-algebras approach to unitary coupled cluster formalisms,” J. Chem. Phys. 151, 014107 (2019).
  • Mniszewski et al. (2021) S. M. Mniszewski, P. A. Dub, S. Tretiak, P. M. Anisimov, Y. Zhang,  and C. F. A. Negre, “Reduction of the molecular hamiltonian matrix using quantum community detection,” Sci. Rep. 11, 4099 (2021).