This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\stackMath
thanks: This work was completed with the support of CONACYT.

Standard automorphisms of semisimple Lie algebras and their relations

David Reynoso-Mercado Instituto de Matemáticas, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA,\brCalle 70 No. 52-21, Medellín, Colombia [email protected]
(Date: February 28, 2023)
Abstract.

Let 𝔤\mathfrak{g} be the simple Lie algebra of square matrices (n+1)×(n+1)(n+1)\times(n+1) with zero trace. There are certain relations concerning standard automorphisms that are considered “folklore”. One can find a complete proof of these in Millson and Toledano Laredo’s work [Transformation Groups, Vol. 10, No. 2, 2005, pp. 217– 254], but said proof is based on topological arguments which are non-trivial. The aim of this work is to verify these relations in an elementary way.

Key words and phrases:
Lie algebras, semisimple Lie algebra, standar automorphisms, Braid group
1991 Mathematics Subject Classification:
Primary 17Bxx; Secondary 17B10

1. Introduction

Let 𝔤𝔰𝔩(n+1,)\mathfrak{g}\coloneqq\mathfrak{sl}(n+1,\mathbb{C}) be the simple Lie algebra of square matrices (n+1)×(n+1)(n+1)\times(n+1) with zero trace. We denote the standard basis of the space of square matrices Matn+1()\operatorname{Mat}_{n+1}(\mathbb{C}) by {Eij}i,j=1n+1\{E_{ij}\}_{i,j=1}^{n+1} and the set {1, 2,,n}\{1,\,2,\cdots,\,n\} by JnJ_{n}.

As a Lie algebra, 𝔤\mathfrak{g} is generated by the elements eiEii+1e_{i}\coloneqq E_{i\,i+1} and fiEi+1if_{i}\coloneqq E_{i+1\,i} for iJni\in J_{n}.

Note that with the corresponding simple co-roots hiEiiEi+1i+1h_{i}\coloneqq E_{i\,i}-E_{i+1\,i+1}, with iJni\in J_{n}, we have that [ei,fi]=hi[e_{i},f_{i}]=h_{i} and 𝔥inhi\mathfrak{h}\coloneqq\bigoplus_{i}^{n}\mathbb{C}h_{i} is a Cartan subalgebra of 𝔤\mathfrak{g}.

Let Din+1Ei,iD\coloneqq\bigoplus_{i}^{n+1}\mathbb{C}E_{i,i}, 𝔥\mathfrak{h} be a vector subspace of DD. The dual base of the standard base of DD is denoted as {ε~i}iJn\{\tilde{\varepsilon}_{i}\}_{i\in J_{n}}, and the corresponding elements of 𝔥\mathfrak{h}^{*} are denoted as εi=ε~i|𝔥\varepsilon_{i}=\tilde{\varepsilon}_{i}|_{\mathfrak{h}}.

With this notation Φ{εiεj|1i,jn+1}{0}𝔥\Phi\coloneqq\{\varepsilon_{i}-\varepsilon_{j}|1\leq i,j\leq n+1\}\setminus\{0\}\subset\mathfrak{h}^{*} is the root system of 𝔤\mathfrak{g}, that is, the Eij={x𝔤|[h,x]=(εiεj)(h)xh𝔥}\mathbb{C}E_{i\,j}=\{x\in\mathfrak{g}|[h,x]=(\varepsilon_{i}-\varepsilon_{j})(h)\cdot x\,\,\,\,\forall h\in\mathfrak{h}\} are the root spaces of 𝔤\mathfrak{g} with respect to 𝔥\mathfrak{h}. The Weyl group of 𝔤\mathfrak{g}, denoted by 𝒲\mathcal{W}, is identified with the symmetric group Sn+1S_{n+1}, which acts linearly on 𝔥\mathfrak{h}^{*} such that for σ𝒲\sigma\in\mathcal{W}

σ(εiεj)=εσ(i)εσ(j).\sigma(\varepsilon_{i}-\varepsilon_{j})=\varepsilon_{\sigma(i)}-\varepsilon_{\sigma(j)}.

𝒲\mathcal{W} is generated by the simple transpositions si=(i,i+1)s_{i}=(i,i+1) with iIi\in I, and the following relations form a complete system of relations

(sisj)mij=1 with i,jJn and\displaystyle(s_{i}s_{j})^{m_{ij}}=1\mbox{ with }i,\,j\in J_{n}\mbox{ and} (1.1)
mij={1if ij=0,3if |ij|=1,2otherwise.m_{ij}=\left\{\begin{array}[]{ll}1&\mbox{if }i-j=0,\\ 3&\mbox{if }|i-j|=1,\\ 2&\mbox{otherwise}.\end{array}\right.

Let us denote the adjoint representation of 𝔤\mathfrak{g} by ad:𝔤𝔤𝔩(𝔤)\operatorname{ad}\colon\mathfrak{g}\longrightarrow\mathfrak{gl}(\mathfrak{g}), xadx[x,]x\mapsto\operatorname{ad}_{x}\coloneqq[x,-], and define

τiexp(adei)exp(ad(fi))exp(adei)iJn.\displaystyle\tau_{i}\coloneqq\exp(\operatorname{ad}_{e_{i}})\exp(\operatorname{ad}_{(-f_{i})})\exp(\operatorname{ad}_{e_{i}})\,\,\,\forall i\in J_{n}. (1.2)

For all iJni\in J_{n}, it is easy to see that τi(Ekl)=Esi(k)si(l)\tau_{i}(\mathbb{C}E_{k\,l})=\mathbb{C}E_{s_{i}(k)\,s_{i}(l)} for all k,lIk,\,l\in I whit klk\neq l. In [3, 21.2], we can see that the weight spaces of the adjoint representation are permuted by the τi\tau_{i} in the same way that the corresponding weights (roots in this case) are permuted by the sis_{i}, that is τi(𝔥)=𝔥\tau_{i}(\mathfrak{h})=\mathfrak{h}.

The aim of this work is to verify the following realations by the τi\tau_{i}’s in an elementary way.

Theorem 1.1.

Let nn be a positive integer and τi\tau_{i}’s be the automorphisms of 𝔰𝔩(n+1,)\mathfrak{sl}(n+1,\mathbb{C}) defined in (1.2). Then the automorphisms τi\tau_{i}, 1in1\leq i\leq n, fulfil to the relations

τiτjmij\displaystyle\underbrace{\tau_{i}\tau_{j}\cdots}_{m_{ij}} =\displaystyle= τjτimij,\displaystyle\underbrace{\tau_{j}\tau_{i}\cdots}_{m_{ij}}, (1.3)
τi2τj2\displaystyle\tau_{i}^{2}\tau_{j}^{2} =\displaystyle= τj2τi2,\displaystyle\tau_{j}^{2}\tau_{i}^{2}, (1.4)
τi4\displaystyle\tau_{i}^{4} =\displaystyle= 1,\displaystyle 1, (1.5)
τiτj2τi1\displaystyle\tau_{i}\tau_{j}^{2}\tau_{i}^{-1} =\displaystyle= τj2τi2αj(hi),\displaystyle\tau_{j}^{2}\tau_{i}^{-2\alpha_{j}(h_{i})}, (1.6)

for any 1ijn1\leq i\neq j\leq n, where mijm_{ij} is the same for the relation in (1.1).

Note that the relations (1.1) for i=ji=j imply si2=1s_{i}^{2}=1. Under this premise, the remaining relations of (1.1) are equivalent to (1.3), also known as braid relations.

It is evident that directly verifying the relations of Theorem 1.1 is a challenging task. To prove our result, we follow the steps of [5, Proposition 2.14], which is a more general result.

We will study the elements

σiexp(ei)exp(fi)exp(ei)SL(n+1,)\sigma_{i}\coloneqq\exp({e_{i}})\exp(-f_{i})\exp({e_{i}})\in\operatorname{SL}(n+1,\mathbb{C})

and verify that these elements of the simple connected Lie group SL(n+1,)\operatorname{SL}(n+1,\mathbb{C}) fulfill “the same” relations as the elements τi\tau_{i} of Theorem 1.1 inspired by the results of Millson and Toledano Laredo [5]. It is important to note that the “braid relations” in this context are classical ([7],[1]), while the other relations are considered “folklore”.

The theorem’s result will follow once we observe that

τi(x)=σixσi1iJn,x𝔰𝔩(n+1,).\tau_{i}(x)=\sigma_{i}x\sigma_{i}^{-1}\,\,\,\forall i\in J_{n},x\in\mathfrak{sl}(n+1,\mathbb{C}).

It is important to note that the automorphisms τi\tau_{i} can be defined not only for the adjoint representation, but also for any finite-dimensional representation VV of 𝔤\mathfrak{g}, see [3, 21.2]. In this context, they are relevant when one wants to see that the character of VV is invariant under the action of the Weyl group.

2. Preliminaries

2.1. Braid group

The Artin braid group BnB_{n} is the group generated by the n1n-1 elements {σi}i=1n1\{\sigma_{i}\}_{i=1}^{n-1} and the braid relations:

  1. (1)

    σiσj=σjσi\sigma_{i}\sigma_{j}=\sigma_{j}\sigma_{i}, for all ii and jj in {1, 2,,n1}\{1,\,2,\cdots,\,n-1\}, with |ij|2|i-j|\geq 2, and

  2. (2)

    σiσi+1σi=σi+1σiσi+1\sigma_{i}\sigma_{i+1}\sigma_{i}=\sigma_{i+1}\sigma_{i}\sigma_{i+1}, for ii in {1, 2,,n2}\{1,\,2,\cdots,\,n-2\}.

Let SnS_{n} be the symmetric group and s1,s2,,sn1Sns_{1},\,s_{2},\cdots,\,s_{n-1}\in S_{n} its generators, where sis_{i} is the adjacent transposition that swaps ii and i+1i+1. It is known that there is a unique π:BnSn\pi:B_{n}\longrightarrow S_{n} group homomorphism such that π(σi)=si\pi(\sigma_{i})=s_{i}, see [4, Lemma 1.2], the π\pi is called the natural projection. Moreover, since {si}i=1n1\{s_{i}\}_{i=1}^{n-1} is the generator set SnS_{n} we have that π\pi is surjective.

The kernel of π:BnSn\pi:B_{n}\longrightarrow S_{n} is called the pure braid group and is denoted by PnP_{n}. The elements of PnP_{n} are called pure braids on nn strings.

2.2. Lie algebras and their representations

Let XX be a complex matrix. Recall that the exponential of XX, denoted by expX\exp\,X or eXe^{X}, is the usual power series

expX=m=0Xmm!.\exp\,X=\sum_{m=0}^{\infty}\;\frac{X^{m}}{m!}.
Proposition 2.1.

For all XMatn()X\in\operatorname{Mat}_{n}(\mathbb{C}), the series expX\exp\,X converges and exp\exp is a continuous function of XX.

Proof.

See [2, Section 2.1].∎

Let VV be a finite dimensional vector space over kk and EndV\operatorname{End}V denote the set of linear transformations VVV\rightarrow V. We write 𝔤𝔩(V)\mathfrak{gl}(V) for (Endk(V))L(\operatorname{End}_{k}(V))_{L}, viewed as Lie algebra and call it the general linear algebra. If V=knV=k^{n}, then Endk(kn)Matn(k)\operatorname{End}_{k}(k^{n})\cong\operatorname{Mat}_{n}(k), and we use 𝔤𝔩(n,k)\mathfrak{gl}(n,k) to denote Matn(k)\operatorname{Mat}_{n}(k). Recall that the special linear Lie algebra denoted by 𝔰𝔩(n,k)\mathfrak{sl}(n,k) is the set of matrices X𝔤𝔩(n,k)X\in\mathfrak{gl}(n,k) such that Tr(X)=0\operatorname{Tr}(X)=0, where Tr(X)i=1nxii\operatorname{Tr}(X)\coloneqq\sum_{i=1}^{n}x_{ii} is the trace of XX.

A representation of a Lie algebra 𝔤\mathfrak{g} is a pair (V,ρ)(V,\rho), where VV is a vector space over kk and ρ:𝔤𝔤𝔩(V)\rho:\mathfrak{g}\longrightarrow\mathfrak{gl}(V) is a homeomorphism of Lie algebras, that is ρ\rho is a linear transformation such that ρ([x,y])=[ρ(x),ρ(y)]\rho([x,y])=[\rho(x),\rho(y)]. If 𝔤\mathfrak{g} is a Lie algebra and x𝔤x\in\mathfrak{g}, we define the adjoint representation of 𝔤\mathfrak{g} as ad:𝔤𝔤𝔩(𝔤)\operatorname{ad}:\mathfrak{g}\longrightarrow\mathfrak{gl}(\mathfrak{g}) where xadx[x,]x\mapsto\operatorname{ad}_{x}\coloneqq[x,-] is a homomorphism of Lie algebras.

Remark 2.2.

Let X,YMatn()X,\,Y\in\operatorname{Mat}_{n}(\mathbb{C}). Then exp(adX)(Y)=exp(X)Yexp(X)\exp(\operatorname{ad}_{X})(Y)=\exp(X)\,Y\exp(-X).

Let e,f,he,\,f,\,h be matrices of 𝔰𝔩(2,k)\mathfrak{sl}(2,k), defined as follows

e(0100),h(1001),f(0010).\displaystyle e\coloneqq\left(\begin{array}[]{cc}0&1\\ 0&0\\ \end{array}\right),\;h\coloneqq\left(\begin{array}[]{cc}1&0\\ 0&-1\\ \end{array}\right),\;f\coloneqq\left(\begin{array}[]{cc}0&0\\ 1&0\\ \end{array}\right). (2.7)

Then the set {e,h,f}\{e,\,h,\,f\} is a basis of 𝔰𝔩(2,k)\mathfrak{sl}(2,k), such that [h,e]=2e[h,e]=2e [h,f]=2f[h,f]=-2f, [e,f]=h[e,f]=h. The following theorem is taken from [6, Theorem 1.2.14].

Theorem 2.3.

Let kk be a field with char(k)=0\operatorname{char}(k)=0 and the Lie algebra 𝔰𝔩(2,k)=𝔤\mathfrak{sl}(2,k)=\mathfrak{g}. Then the following holds

  1. (1)

    For any mm an integer positive, there is an unique simple representation L(m)L^{(m)} (up to isomorphisms) such that dim(L(m))=m\dim\,(L^{(m)})=m.

  2. (2)

    Let {e,h,f}\{e,\,h,\,f\} be a basis of 𝔤\mathfrak{g}, then each simple representation L(m+1)L^{(m+1)} of dimension m+1m+1 have a decomposes into one-dimensional eigenspaces under hh

    LmLm2L2mLm,L_{m}\oplus L_{m-2}\oplus\cdots\oplus L_{2-m}\oplus L_{-m},

    for the integer eigenvalues m,m2,, 2m,mm,\,m-2,\,\cdots,\,2-m,\,-m, and additionally from Lj0Lj+2L_{j}\neq 0\neq L_{j+2} already follows e:LjLj+2e\colon L_{j}\longrightarrow L_{j+2} as well as f:Lj+2Ljf\colon L_{j+2}\longrightarrow L_{j}.

2.3. Root space decomposition

Let 𝔤𝔤𝔩(n,k)\mathfrak{g}\coloneqq\mathfrak{gl}(n,k) and 𝔥𝔤\mathfrak{h}\subset\mathfrak{g} be the subset of 𝔤\mathfrak{g} whose elements are diagonal matrices. Then 𝔥\mathfrak{h} is subalgebra of 𝔤\mathfrak{g}. Let ρad𝔤|𝔥:𝔥𝔤𝔩(𝔤)\rho\coloneqq\operatorname{ad}_{\mathfrak{g}}|_{\mathfrak{h}}:\mathfrak{h}\longrightarrow\mathfrak{gl}(\mathfrak{g}) be a representation of 𝔥\mathfrak{h} with ρ(x)\rho(x) semisimple for all x𝔥x\in\mathfrak{h}. Let x=diag(x1,x2,,xn)𝔥x=\operatorname{diag}(x_{1},x_{2},\cdots,x_{n})\in\mathfrak{h} and {Ei,j}i,j=1n\{E_{i,\,j}\}_{i,j=1}^{n} be the standard basis of Matn()\operatorname{Mat}_{n}(\mathbb{C}), where Ei,jE_{i,\,j} be the matrix whose ijij-th entry is 11 and the remaining ones is 0, that [x,Eij]=(xixj)Eij[x,E_{ij}]=(x_{i}-x_{j})E_{ij}. We can define a map εi:𝔥\varepsilon_{i}:\mathfrak{h}\longrightarrow\mathbb{C} by εi(diag(x1,,xn))=xi\varepsilon_{i}(\operatorname{diag}(x_{1},\cdots,x_{n}))=x_{i}, then

[x,Eij]=(εiεj)(x)Eij.[x,E_{ij}]=(\varepsilon_{i}-\varepsilon_{j})(x)E_{ij}.

Let P(𝔤)P(\mathfrak{g}) be the set of weights of 𝔤\mathfrak{g}, it is easy to see that P(𝔤)={εiεj|1ijn}P(\mathfrak{g})=\{\varepsilon_{i}-\varepsilon_{j}|1\leqslant i\leqslant j\leqslant n\}. For iji\neq j then 𝔤εiεj=Eij\mathfrak{g}_{\varepsilon_{i}-\varepsilon_{j}}=\mathbb{C}E_{ij} and 𝔤0=𝔥\mathfrak{g}_{0}=\mathfrak{h}, if char(k)2\operatorname{char}(k)\neq 2.

Let 𝔤\mathfrak{g} a semisimple Lie algebra over \mathbb{C} and 𝔥𝔤\mathfrak{h}\subset\mathfrak{g} be a subalgebra. We call 𝔥\mathfrak{h} a Cartan subalgebra if and only if 𝔥\mathfrak{h} is abelian, it consists of semisimple elements and is maximal with this property. Let 𝔥\mathfrak{h} be a subalgebra of 𝔤\mathfrak{g} a semisimple Lie algebra over \mathbb{C}. We will write λ,h\langle\lambda,h\rangle to denote λ(h)\lambda(h) for all λ𝔥\lambda\in\mathfrak{h}^{*} and h𝔥h\in\mathfrak{h} and we use ρ\rho to denote the adjoint map ad𝔤|𝔥:𝔥𝔤𝔩(𝔤)\operatorname{ad}_{\mathfrak{g}}|_{\mathfrak{h}}:\mathfrak{h}\longrightarrow\mathfrak{gl}(\mathfrak{g}). Since 𝔥\mathfrak{h} is Cartan subalgebra, then its elements are semisimple. Then it follows from [6, Proposición 2.2.2] that ρ(h)\rho(h) is semisimple h𝔥\forall h\in\mathfrak{h}. Thus, 𝔤\mathfrak{g} is equal to λ𝔥𝔤λ\bigoplus_{\lambda\in\mathfrak{h}^{*}}\mathfrak{g}_{\lambda}, where 𝔤λ={x𝔤|[h,x]=λ,h(x)h𝔥}.\mathfrak{g}_{\lambda}=\{x\in\mathfrak{g}|[h,x]=\langle\lambda,h\rangle(x)\,\,\forall h\in\mathfrak{h}\}.

Now, consider 𝔤=𝔰𝔩(n+1,)\mathfrak{g}=\mathfrak{sl}(n+1,\mathbb{C}) and 𝔥𝔤\mathfrak{h}\subset\mathfrak{g} the subalgebra whose elements are diagonal matrices with trace equal zero. Then, αi=εiεi+1\alpha_{i}=\varepsilon_{i}-\varepsilon_{i+1} with i{1,,n}i\in\{1,\cdots,\,n\} is a basis of 𝔥\mathfrak{h}^{*}. Moreover, we have that Φ(𝔤,𝔥)={αij=εiεj|ij}\Phi(\mathfrak{g},\mathfrak{h})=\{\alpha_{ij}=\varepsilon_{i}-\varepsilon_{j}|i\neq j\}. Thus,

𝔰𝔩(n+1,)=𝔥αijΦEij.\mathfrak{sl}(n+1,\mathbb{C})=\mathfrak{h}\oplus\bigoplus_{\alpha_{ij}\in\Phi}\mathbb{C}E_{ij}.

The following theorem is taken from [6, Theorem 2.3.12].

Theorem 2.4.

Let 𝔤\mathfrak{g} be a semisimple Lie algebra over \mathbb{C}, 𝔥𝔤\mathfrak{h}\subset\mathfrak{g} a Cartan subalgebra and Φ\Phi the corresponding root system. The following statements hold:

  1. (1)

    𝔥\mathfrak{h} is itself centralizer.

  2. (2)

    All root spaces have one dimension. Moreover, for all αΦ\alpha\in\Phi, there exists an injective Lie algebras homomorphism φα:𝔰𝔩(2,)𝔤\varphi_{\alpha}:\mathfrak{sl}(2,\mathbb{C})\longrightarrow\mathfrak{g} defined as

    φα((000))=𝔤αφα((000))=𝔤α y φα((1001))=[𝔤α,𝔤α].\varphi_{\alpha}\left(\left(\begin{array}[]{cc}0&\mathbb{C}\\ 0&0\end{array}\right)\right)=\mathfrak{g}_{\alpha}\mbox{, }\varphi_{\alpha}\left(\left(\begin{array}[]{cc}0&0\\ \mathbb{C}&0\end{array}\right)\right)=\mathfrak{g}_{-\alpha}\mbox{ y }\varphi_{\alpha}\left(\mathbb{C}\left(\begin{array}[]{cc}1&0\\ 0&-1\end{array}\right)\right)=[\mathfrak{g}_{\alpha},\mathfrak{g}_{-\alpha}]\mbox{.}

    In particular, αΦ\alpha\in\Phi if and only if αΦ-\alpha\in\Phi.

  3. (3)

    If αΦ\alpha\in\Phi, then αΦ={α,α}\mathbb{C}\alpha\cap\Phi=\{\alpha,-\alpha\}.

  4. (4)

    If αβΦ and α+βΦ,\alpha\mbox{, }\beta\in\Phi\mbox{ and }\alpha+\beta\in\Phi, then [𝔤α,𝔤β]=𝔤α+β[\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta}]=\mathfrak{g}_{\alpha+\beta}.

For αΦ\alpha\in\Phi, we can define a co-root hαh_{\alpha} as an element in 𝔥\mathfrak{h} such that hα[𝔤α,𝔤α]h_{\alpha}\in[\mathfrak{g}_{\alpha},\mathfrak{g}_{-\alpha}] and α,hα=2\langle\alpha,h_{\alpha}\rangle=2.

Theorem 2.5.

Let 𝔤\mathfrak{g}, 𝔥\mathfrak{h} and Φ\Phi be as in Theorem 2.4. The following statements hold:

  1. (1)

    For any αβΦ\alpha\mbox{, }\beta\in\Phi, we have that β,hα\langle\beta,h_{\alpha}\rangle\in\mathbb{Z} and sα(β)ββ,hααΦs_{\alpha}(\beta)\coloneqq\beta-\langle\beta,h_{\alpha}\rangle\alpha\in\Phi.

  2. (2)

    spanΦ=𝔥\operatorname{span}_{\mathbb{C}}\Phi=\mathfrak{h}^{*}.

Proof.

See [6, Theorem 2.3.17].∎

For the Lie algebra 𝔰𝔩(n+1,)\mathfrak{sl}(n+1,\mathbb{C}) we have that Φ={αij=εiεj|ij}\Phi=\{\alpha_{ij}=\varepsilon_{i}-\varepsilon_{j}|i\neq j\} its corresponding root system and Π={αi=εiεi+1|1in}\Pi=\{\alpha_{i}=\varepsilon_{i}-\varepsilon_{i+1}|1\leq i\leq n\} is the set of simple roots.

Let 𝒲\mathcal{W} be the Weyl group of Φ\Phi. We want to show that 𝒲={sαi1in}\mathcal{W}=\langle\{s_{\alpha_{i}}\mid 1\leq i\leq n\}\rangle. Due to the definition of Weyl group, it is enough to show that sαij{si1in}s_{\alpha_{ij}}\in\langle\{s_{i}\mid 1\leq i\leq n\}\rangle for all αijΦ\alpha_{ij}\in\Phi. First, from the definition of sα(β)s_{\alpha}(\beta) (see theorem 2.5), we have

sαi(αj)={αi if j=i,αij if j=i+1,αji if j=i1,αj if |ji|2,\displaystyle s_{\alpha_{i}}(\alpha_{j})=\left\{\begin{array}[]{cl}-\alpha_{i}&\mbox{ if }j=i,\\ \alpha_{ij}&\mbox{ if }j=i+1,\\ \alpha_{ji}&\mbox{ if }j=i-1,\\ \alpha_{j}&\mbox{ if }|j-i|\geq 2,\end{array}\right. (2.12)

for any 1i,jn1\leq i,\,j\leq n. On other hand, for any 1i<jn1\leq i<j\leq n and 1kn1\leq k\leq n, we have

sαij(αk)={αikif k=j+1,αkjif k=i1,αij1if k=j,αi+1jif k=i,αkotherwise.\displaystyle s_{\alpha_{ij}}(\alpha_{k})=\left\{\begin{array}[]{cl}\alpha_{ik}&\mbox{if }k=j+1,\\ \alpha_{kj}&\mbox{if }k=i-1,\\ -\alpha_{ij-1}&\mbox{if }k=j,\\ -\alpha_{i+1j}&\mbox{if }k=i,\\ \alpha_{k}&\mbox{otherwise.}\end{array}\right. (2.18)

Using equation (2.12) and (2.18), it is easy to verify that

sij=sisi+1sjisjsj1si+1si{si1in}.s_{ij}=s_{i}s_{i+1}\cdots s_{j-i}s_{j}s_{j-1}\cdots s_{i+1}s_{i}\in\langle\{s_{i}\mid 1\leq i\leq n\}\rangle.

Therefore, 𝒲={si1in}\mathcal{W}=\langle\{s_{i}\mid 1\leq i\leq n\}\rangle. Moreover, simple computations reveal that 𝒲\mathcal{W} is isomorphic to the symmetric group Sn+1S_{n+1}.

3. Tits extension

In this section, we will recall the arguments about generalised braid groups presented by Millson and Toledano ([5, Section 2]).

Let 𝔤\mathfrak{g} be a complex, semisimple Lie algebra with Cartan subalgebra 𝔥\mathfrak{h} and 𝒲\mathcal{W} be the Weyl group. Let Φ\Phi be a root system, Π={α1,,αn}\Pi=\{\alpha_{1},\cdots,\alpha_{n}\} a basis of Φ\Phi and VV be a finite-dimensional 𝔤\mathfrak{g}-module. We denote by 𝔥reg𝔥αΦker(α)\mathfrak{h}_{reg}\coloneqq\mathfrak{h}\setminus\bigcup_{\alpha\in\Phi}\ker(\alpha) the set of regular elements.

Fix a basepoint t0𝔥regt_{0}\in\mathfrak{h}_{reg}. Let [t0][t_{0}] be its image in 𝔥reg/𝒲\mathfrak{h}_{reg}/\mathcal{W}, and let P𝔤=π1(𝔥reg;t0)P_{\mathfrak{g}}=\pi_{1}(\mathfrak{h}_{reg};t_{0}), B𝔤=π1(𝔥reg/𝒲;[t0])B_{\mathfrak{g}}=\pi_{1}(\mathfrak{h}_{reg}/\mathcal{W};[t_{0}]) be the generalized pure and full braid groups of type 𝔤\mathfrak{g}. The fibration 𝔥reg𝔥reg/𝒲\mathfrak{h}_{reg}\longrightarrow\mathfrak{h}_{reg}/\mathcal{W} gives rise to the exact sequence

1P𝔤B𝔤𝒲1,1\longrightarrow P_{\mathfrak{g}}\longrightarrow B_{\mathfrak{g}}\longrightarrow\mathcal{W}\longrightarrow 1,

with B𝔤𝒲B_{\mathfrak{g}}\longrightarrow\mathcal{W} is obtained by associating to pB𝔤p\in B_{\mathfrak{g}} to the unique w𝒲w\in\mathcal{W} such that w1t0=p~(1)w^{-1}t_{0}=\tilde{p}(1), where p~\tilde{p} is the unique lift of pp to a path in 𝔥reg\mathfrak{h}_{reg} such that p~(0)=t0\tilde{p}(0)=t_{0}.

Let GG be the complex, connected, and simply-connected Lie group with Lie algebra 𝔤\mathfrak{g}, TT its torus with Lie algebra 𝔥\mathfrak{h}, and N(T)GN(T)\subset G the normalizer of TT in GG, so that 𝒲N(T)/T\mathcal{W}\cong N(T)/T. We regard B𝔤B_{\mathfrak{g}} as acting on VV by choosing a homeomorphism σ:B𝔤N(T)\sigma:B_{\mathfrak{g}}\longrightarrow N(T) compatible with the diagram in Figure 1.

B𝔤B_{\mathfrak{g}}N(T)N(T)𝒲\mathcal{W}σ\sigma
Figure 1. Diagram

By Brieskorn’s theorem (see [1, page 57]), B𝔤B_{\mathfrak{g}} is presented on generators S1,S2,,SnS_{1},S_{2},\cdots,S_{n}, labelled by the simple reflections s1,,sn𝒲s_{1},\cdots,s_{n}\in\mathcal{W}, with relations

SiSjmij=SjSimij,\underbrace{S_{i}S_{j}\cdots}_{m_{ij}}=\underbrace{S_{j}S_{i}\cdots}_{m_{ij}}, (3.1)

where mijm_{ij} is the order of sisjs_{i}s_{j} in the Weyl group. One of the first works in which the relations from (3.1) appears is [7, Lemma 56].

Tits has given a simple construction of a canonical class of homomorphisms σ\sigma that differ from each other via conjugation by an element of TT, see [8].

4. Proof of Theorem 1.1

This section will divide the proposition of Milson and Toledano [5, Proposition 2.14], into three new propositions to verify the relations (1.3)-(1.6) in our particular case, the Lie algebra 𝔰𝔩(n+1,)\mathfrak{sl}(n+1,\mathbb{C}).

From this point on, we will be working with the Lie group of matrices G=SL(n+1;)G=\operatorname{SL}(n+1;\mathbb{C}), with 𝔤=𝔰𝔩(n+1,)\mathfrak{g}=\mathfrak{sl}(n+1,\mathbb{C}) its Lie algebra. For αi\alpha_{i} a simple root as in section 2.3, we can define

Gi={(Ii10i1×20i1×ni02×i1A02×ni0ni×i10ni×2Ini)|ASL(2,)}G,G_{i}=\left\{\left(\begin{array}[]{c|c|c}I_{i-1}&0_{i-1\times 2}&0_{i-1\times n-i}\\ \hline\cr 0_{2\times i-1}&A&0_{2\times n-i}\\ \hline\cr 0_{n-i\times i-1}&0_{n-i\times 2}&I_{n-i}\end{array}\right)|\,A\in\operatorname{SL}(2,\mathbb{C})\right\}\subset G,

where IjI_{j} is the identity matrix in GL(j;)\operatorname{GL}(j;\mathbb{C}) and the matrix 0klMatk×l()0_{kl}\in\operatorname{Mat}_{k\times l}(\mathbb{C}) is composed entirely of zeros.

It is easy to see that GiSL(2;)G_{i}\cong\operatorname{SL}(2;\mathbb{C}) and that the Lie algebra Lie(Gi)\operatorname{Lie}(G_{i}) is generated by

ei=(Ii10i1×20i1×ni02×i1e02×ni0ni×i10ni×2Ini)hi=(Ii10i1×20i1×ni02×i1h02×ni0ni×i10ni×2Ini)e_{i}=\left(\begin{array}[]{c|c|c}I_{i-1}&0_{i-1\times 2}&0_{i-1\times n-i}\\ \hline\cr 0_{2\times i-1}&e&0_{2\times n-i}\\ \hline\cr 0_{n-i\times i-1}&0_{n-i\times 2}&I_{n-i}\end{array}\right)\mbox{, }h_{i}=\left(\begin{array}[]{c|c|c}I_{i-1}&0_{i-1\times 2}&0_{i-1\times n-i}\\ \hline\cr 0_{2\times i-1}&h&0_{2\times n-i}\\ \hline\cr 0_{n-i\times i-1}&0_{n-i\times 2}&I_{n-i}\end{array}\right)

and

fi=(Ii10i1×20i1×ni02×i1f02×ni0ni×i10ni×2Ini),f_{i}=\left(\begin{array}[]{c|c|c}I_{i-1}&0_{i-1\times 2}&0_{i-1\times n-i}\\ \hline\cr 0_{2\times i-1}&f&0_{2\times n-i}\\ \hline\cr 0_{n-i\times i-1}&0_{n-i\times 2}&I_{n-i}\end{array}\right),

where e,f,hMat2()e,\,f,\,h\in\operatorname{Mat}_{2}(\mathbb{C}) are as in Equation (2.7).

For any i{1,,n}i\in\{1,\cdots,n\}, let Ti{exp(xhi)|x}GiT_{i}\coloneqq\{\exp(xh_{i})|\,x\in\mathbb{C}\}\subset G_{i}, for 1in1\leq i\leq n, be an algebraic torus or more precisely:

Ti={(Ii10i1×20i1×ni02×i1exp(xh)02×ni0ni×i10ni×2Ini)|x}.T_{i}=\left\{\left(\begin{array}[]{c|c|c}I_{i-1}&0_{i-1\times 2}&0_{i-1\times n-i}\\ \hline\cr 0_{2\times i-1}&\exp(xh)&0_{2\times n-i}\\ \hline\cr 0_{n-i\times i-1}&0_{n-i\times 2}&I_{n-i}\end{array}\right)|x\in\mathbb{C}\right\}.

Let TSL(n+1;)T\subset\operatorname{SL}(n+1;\mathbb{C}) be the set of diagonal matrices with determinant equal to 11.

Proposition 4.1.

Let TiT_{i} be the torus of GiG_{i} group as above, then TT is equal to i=1nTi\langle\bigcup_{i=1}^{n}T_{i}\rangle.

Proof.

Since it is clear that any set TiT_{i} is a subset of TT, then i=1nTiT\langle\bigcup_{i=1}^{n}T_{i}\rangle\subset T.

On other hand, for X=diag(x1,,xn+1)X=\operatorname{diag}(x_{1},\cdots,x_{n+1}) an element of TT, for any i{1,,n}i\in\{1,\cdots,n\} there exists a complex number yiy_{i} such that eyi=xie^{y_{i}}=x_{i}. We can define

Yi=(Ii10i1×20i1×ni02×i1exp(j=1iyjh)02×ni0ni×i10ni×2Ini)Ti,Y_{i}=\left(\begin{array}[]{c|c|c}I_{i-1}&0_{i-1\times 2}&0_{i-1\times n-i}\\ \hline\cr 0_{2\times i-1}&\exp(\sum_{j=1}^{i}y_{j}h)&0_{2\times n-i}\\ \hline\cr 0_{n-i\times i-1}&0_{n-i\times 2}&I_{n-i}\end{array}\right)\in T_{i},

and since the determinant of XX is equal to 11, we have xn+1=Πi=1nxi1=ej=1nyjx_{n+1}=\Pi_{i=1}^{n}x_{i}^{-1}=e^{-\sum_{j=1}^{n}y_{j}}. Then,

Πi=1nYi=diag(ey1,ey2,,ej=1nyj)=diag(x1,x2,,xn+1)=X.\Pi_{i=1}^{n}Y_{i}=\operatorname{diag}(e^{y_{1}},e^{y_{2}},\cdots,e^{-\sum_{j=1}^{n}y_{j}})=\operatorname{diag}(x_{1},x_{2},\cdots,x_{n+1})=X.

Thus, Xi=1nTiX\in\langle\bigcup_{i=1}^{n}T_{i}\rangle and i=1nTi=T\langle\bigcup_{i=1}^{n}T_{i}\rangle=T. ∎

Obviously, the Lie algebra of TT is equal to 𝔥𝔤\mathfrak{h}\subset\mathfrak{g}, where 𝔥\mathfrak{h} is the subgroup of diagonal matrices which trace equal to zero.

Proposition 4.2.

Let N(T)N(T) be the normalizer of TT in SL(n+1;)\operatorname{SL}(n+1;\mathbb{C}). Then, we have the following equality

N(T)={i=1n+1xiEσ(i)|σSn+1 and (Πi=1n+1xi)det(i=1n+1Eσ(i))=1},\displaystyle N(T)=\left\{\sum_{i=1}^{n+1}x_{i}E_{\sigma(i)}|\sigma\in S_{n+1}\mbox{ and }(\Pi_{i=1}^{n+1}x_{i})\det\left(\sum_{i=1}^{n+1}E_{\sigma(i)}\right)=1\right\}, (4.1)

where Eσ(i)Eσ(i)iMatn+1()E_{\sigma(i)}\coloneqq E_{\sigma(i)i}\in\operatorname{Mat}_{n+1}(\mathbb{C}).

Proof.

Let’s take X=i=1n+1xiEσ(i)X=\sum_{i=1}^{n+1}x_{i}E_{\sigma(i)} in the right set of Equation (4.1). Is clear that X1=i=1n+1xi1Eσ(i)TX^{-1}=\sum_{i=1}^{n+1}x_{i}^{-1}E_{\sigma(i)}^{T} is the inverse matrix of XX. Now, let YiTiY_{i}\in T_{i} be as follows

Yi=(Ii10i1×20i1×ni02×i1eyh02×ni0ni×i10ni×2Ini).Y_{i}=\left(\begin{array}[]{c|c|c}I_{i-1}&0_{i-1\times 2}&0_{i-1\times n-i}\\ \hline\cr 0_{2\times i-1}&e^{yh}&0_{2\times n-i}\\ \hline\cr 0_{n-i\times i-1}&0_{n-i\times 2}&I_{n-i}\end{array}\right).

After some simple calculations, we have that XYiX1XY_{i}X^{-1} is a diagonal matrix and det(XYiX1)\det(XY_{i}X^{-1}) is equal to 11. Thus, XN(T)X\in N(T).

On other hand, let’s take an element of N(T)N(T), X=(xkl)X=(x_{kl}) with XX inverse being X1=(ykl)X^{-1}=(y_{kl}). Then, for all YTY\in T, we have that XYX1TXYX^{-1}\in T, including the generators of TT. Let YiTiY_{i}\in T_{i}, for 1in1\leq i\leq n, then

XYiX1=X(zkl)=(j=1n+1xkjzjl),XY_{i}X^{-1}=X(z_{kl})=(\sum_{j=1}^{n+1}x_{kj}z_{jl}),

where

zkl={yileyif k=iyi+1leyif k=i+1yklotherwise.z_{kl}=\left\{\begin{array}[]{ll}y_{il}\,e^{y}&\mbox{if }k=i\\ y_{i+1l}\,e^{-y}&\mbox{if }k=i+1\\ y_{kl}&\mbox{otherwise.}\end{array}\right.

Since XYiX1TXY_{i}X^{-1}\in T, then for klk\neq l we have

0=j=1n+1xkjzjl=(1jn+1j{i,i+1}xkjyjl)+xkiyiley+xki+1yi+1ley.0=\sum_{j=1}^{n+1}x_{kj}z_{jl}=\left(\sum_{\begin{subarray}{c}1\leq j\leq n+1\\ j\not\in\{i,\,i+1\}\end{subarray}}x_{kj}y_{jl}\right)+x_{ki}y_{il}e^{y}+x_{ki+1}y_{i+1l}e^{-y}.

But for klk\neq l, we have that j=1n+1xkjyjl=0\sum_{j=1}^{n+1}x_{kj}y_{jl}=0. Thus,

j=1n+1xkjzjl\displaystyle\sum_{j=1}^{n+1}x_{kj}z_{jl} =\displaystyle= xkiyiley+xki+1yi+1ley(xkiyil+xki+1yi+1l)\displaystyle x_{ki}y_{il}e^{y}+x_{ki+1}y_{i+1l}e^{-y}-(x_{ki}y_{il}+x_{ki+1}y_{i+1l})
=\displaystyle= xkiyil(ey1)+xki+1yi+1l(ey1).\displaystyle x_{ki}y_{il}(e^{y}-1)+x_{ki+1}y_{i+1l}(e^{-y}-1).

It follows that xkiyil=0=xki+1yi+1lx_{ki}y_{il}=0=x_{ki+1}y_{i+1l}. Therefore, xkiyil=0x_{ki}y_{il}=0 for all i,l,k{1,,n+1}i,\,l,\,k\in\{1,\ldots,n+1\} such that klk\neq l. For any 1in+11\leq i\leq n+1, we can define the set Li{xij|xij0}L_{i}\coloneqq\{x_{ij}|x_{ij}\neq 0\}, whose elements are in the ii-th row. Since det(X)=1\det(X)=1 we have that LiL_{i}\neq\emptyset.

Now, let ki=min{j|xijLi}k_{i}=\min\{j|x_{ij}\in L_{i}\}. Then, xikiykil=0x_{ik_{i}}y_{k_{i}l}=0 for all lil\neq i. It follows that ykii0y_{k_{i}i}\neq 0. Thus, xkkiykii=0x_{kk_{i}}y_{k_{i}i}=0 for any kik\neq i. Therefore xikix_{ik_{i}} is the unique non zero element in the kik_{i}-column of XX. Thus, for iji\neq j we have that kikjk_{i}\neq k_{j}, hence {k1,,kn+1}={1,,n+1}\{k_{1},\ldots,k_{n+1}\}=\{1,\ldots,n+1\}. There exist σSn+1\sigma\in S_{n+1} such that σ(i)=ki\sigma(i)=k_{i}. Therefore

X=i=1n+1xiσ(i)Eσ(i).X=\sum_{i=1}^{n+1}x_{i\sigma(i)}E_{\sigma(i)}.

For any σSn+1\sigma\in S_{n+1}, we use EσE_{\sigma} to denote sgn(σ)Eσ(1)+i=2n+1Eσ(i)\mbox{sgn}(\sigma)E_{\sigma(1)}+\sum_{i=2}^{n+1}E_{\sigma(i)}, where sgn(σ)(\sigma) is the sign of σ\sigma (which is equal to 11 if σ\sigma is even and is 1-1 if σ\sigma is odd). It is easy to see that det(Eσ)=1\det\left(E_{\sigma}\right)=1. Then, we have that the set {EσσSn+1}\{E_{\sigma}\mid\sigma\in S_{n+1}\} is a subset of N(T)N(T).

On other hand, for any σ,τSn+1\sigma,\tau\in S_{n+1}, it holds true that:

(i=1n+1Eσ(i))(i=1n+1Eτ(i))=i=1n+1Eστ(i).\left(\sum_{i=1}^{n+1}E_{\sigma(i)}\right)\left(\sum_{i=1}^{n+1}E_{\tau(i)}\right)=\sum_{i=1}^{n+1}E_{\sigma\circ\tau(i)}.

Let XN(T)X\in N(T), and σSn+1\sigma\in S_{n+1} be such that X=i=1n+1xiEσ(i)X=\sum_{i=1}^{n+1}x_{i}E_{\sigma(i)}. Then, XEσ1XE_{\sigma}^{-1} is equal to diag(x1sgn(σ),x2,,xn+1)\operatorname{diag}(x_{1}\mbox{sgn}(\sigma),\,x_{2},\ldots,\,x_{n+1}) and det(XEσ1)=det(X)det(Eσ1)=1\det(XE_{\sigma}^{-1})=\det(X)\det(E_{\sigma}^{-1})=1. Thus, XEσ1TXE_{\sigma}^{-1}\in T, and [X]=[Eσ][X]=[E_{\sigma}], with [X],[Eσ]N(T)/T[X],\,[E_{\sigma}]\in N(T)/T.

We have that, for any σ,τSn+1\sigma,\,\tau\in S_{n+1} such that στ\sigma\neq\tau, EσEτ1E_{\sigma}E_{\tau}^{-1} is not a diagonal matrix, since στ1idSn+1\sigma\circ\tau^{-1}\neq\mbox{id}_{S_{n+1}}. Therefore, for any σ,τSn+1\sigma,\,\tau\in S_{n+1}, we have [Eσ]=[Eτ][E_{\sigma}]=[E_{\tau}] if and only if σ=τ\sigma=\tau. Thus, we can conclude that

N(T)/T={[Eσ]σSn+1},N(T)/T=\{[E_{\sigma}]\mid\sigma\in S_{n+1}\},

that is, N(T)/TN(T)/T is isomophic to Sn+1S_{n+1}, the simetric group. Given that at the end of section 2.3 we saw that Sn+1𝒲S_{n+1}\cong\mathcal{W}, then 𝒲N(T)/T\mathcal{W}\cong N(T)/T.

A straightforward calculation reveals that the normalizer of TiT_{i} in GiG_{i}, denoted by NiN_{i}, has the following form:

Ni={(Ii10i1×20i1×ni02×i1aea1f02×ni0ni×i10ni×2Ini)|a,a0},Ti,N_{i}=\left\langle\left\{\left(\begin{array}[]{c|c|c}I_{i-1}&0_{i-1\times 2}&0_{i-1\times n-i}\\ \hline\cr 0_{2\times i-1}&a*e-a^{-1}*f&0_{2\times n-i}\\ \hline\cr 0_{n-i\times i-1}&0_{n-i\times 2}&I_{n-i}\end{array}\right)|a\in\mathbb{C},\,a\neq 0\right\},T_{i}\right\rangle,

from which it is evident that NiN(T)N_{i}\subset N(T).

The orthogonal reflection corresponding to AiA_{i} is denoted by si𝒲s_{i}\in\mathcal{W}. The proposition of Millson and Toledano [5, Proposition 2.14] will now be divided into three parts, each of which will be proven for our specific case.

Proposition 4.3.

For any choice of σiNiTi\sigma_{i}\in N_{i}\setminus T_{i}, 1in1\leq i\leq n, the assignment SiσiS_{i}\mapsto\sigma_{i} extends uniquely to a homomorphism σ:B𝔤N(T)\sigma:B_{\mathfrak{g}}\longrightarrow N(T), that makes the diagram in Figure (1) commute.

Proof.

We must show that the σi\sigma_{i} satisfy the braid relations, which can be verified through simple calculations. Let ii be an element in {1,,n}\{1,\cdots,\,n\}, and

σi(Ii10i1×20i1×ni02×i1aieai1f02×ni0ni×i10ni×2Ini)NiTi.\sigma_{i}\coloneqq\left(\begin{array}[]{c|c|c}I_{i-1}&0_{i-1\times 2}&0_{i-1\times n-i}\\ \hline\cr 0_{2\times i-1}&a_{i}*e-a_{i}^{-1}*f&0_{2\times n-i}\\ \hline\cr 0_{n-i\times i-1}&0_{n-i\times 2}&I_{n-i}\end{array}\right)\in N_{i}\setminus T_{i}.

Recall that

mij={3si|ij|=12si|ij|2.m_{ij}=\left\{\begin{array}[]{lcl}3&\mbox{si}&|i-j|=1\\ 2&\mbox{si}&|i-j|\geq 2.\end{array}\right.

We have the following cases.

Case 1:

When |ij|=1|i-j|=1, we have to prove that σiσjσi=σjσiσj\sigma_{i}\sigma_{j}\sigma_{i}=\sigma_{j}\sigma_{i}\sigma_{j}. Without loss of generality, we can chose j=i+1j=i+1. Due to the definition of matrices σi\sigma_{i} and σi+1\sigma_{i+1}, it suffices to observe the behavior of their following submatrices in Mat3()\operatorname{Mat}_{3}(\mathbb{C}).

MiaiE12ai1E21+E33,Mi+1E11+ai+1E23ai+11E32.M_{i}\coloneqq a_{i}E_{12}-a_{i}^{-1}E_{21}+E_{33}\mbox{,}\,\,\,M_{i+1}\coloneqq E_{11}+a_{i+1}E_{23}-a_{i+1}^{-1}E_{32}.

We have

MiMi+1Mi\displaystyle M_{i}M_{i+1}M_{i} =\displaystyle= (aiai+1E13ai1E21+E33)Mi\displaystyle(a_{i}a_{i+1}E_{13}-a_{i}^{-1}E_{21}+E_{33})M_{i}
=\displaystyle= aiai+1E13E22+(aiai+1)1E31\displaystyle a_{i}a_{i+1}E_{13}-E_{22}+(a_{i}a_{i+1})^{-1}E_{31}
=\displaystyle= (aiE12+ai+1E23+(aiai+1)1E31)(E11+ai+1E23ai+11E32)\displaystyle(a_{i}E_{12}+a_{i+1}E_{23}+(a_{i}a_{i+1})^{-1}E_{31})(E_{11}+a_{i+1}E_{23}-a_{i+1}^{-1}E_{32})
=\displaystyle= (E11+ai+1E23ai+11E32)(aiE12ai1E21+E33)Mi+1\displaystyle(E_{11}+a_{i+1}E_{23}-a_{i+1}^{-1}E_{32})\left(a_{i}E_{12}-a_{i}^{-1}E_{21}+E_{33}\right)M_{i+1}
=\displaystyle= Mi+1MiMi+1.\displaystyle M_{i+1}M_{i}M_{i+1}.

It follows that σiσjσi=σjσiσj\sigma_{i}\sigma_{j}\sigma_{i}=\sigma_{j}\sigma_{i}\sigma_{j}.

Case 2:

When |ij|2|i-j|\geq 2, we have to prove that σiσj=σjσi\sigma_{i}\sigma_{j}=\sigma_{j}\sigma_{i}. Without loss of generality, we can chose i<ji<j. Consider the submatrices of σi\sigma_{i} and σj\sigma_{j} below:

Mi\displaystyle M^{\prime}_{i} =\displaystyle= (Ii10i1×202×i1aieai1f)Mati+1(),\displaystyle\left(\begin{array}[]{c|c}I_{i-1}&0_{i-1\times 2}\\ \hline\cr 0_{2\times i-1}&a_{i}*e-a_{i}^{-1}*f\\ \end{array}\right)\in\operatorname{Mat}_{i+1}(\mathbb{C}),
Mij\displaystyle M_{ij} =\displaystyle= (Iji20ji2×20ji2×nj02×ji2ajeaj1f02×nj0ni×ji20nj×2Inj)Matni().\displaystyle\left(\begin{array}[]{c|c|c}I_{j-i-2}&0_{j-i-2\times 2}&0_{j-i-2\times n-j}\\ \hline\cr 0_{2\times j-i-2}&a_{j}*e-a_{j}^{-1}*f&0_{2\times n-j}\\ \hline\cr 0_{n-i\times j-i-2}&0_{n-j\times 2}&I_{n-j}\end{array}\right)\in\operatorname{Mat}_{n-i}(\mathbb{C}).

Then

σiσj\displaystyle\sigma_{i}\sigma_{j} =\displaystyle= (Mi0i+1×ni0ni×i+1Ini)(Ii+10i+1×ni0ni×i+1Mij)\displaystyle\left(\begin{array}[]{c|c}M^{\prime}_{i}&0_{i+1\times n-i}\\ \hline\cr 0_{n-i\times i+1}&I_{n-i}\\ \end{array}\right)\left(\begin{array}[]{c|c}I_{i+1}&0_{i+1\times n-i}\\ \hline\cr 0_{n-i\times i+1}&M_{ij}\\ \end{array}\right)
=\displaystyle= (Mi0i+1×ni0ni×i+1Mij)\displaystyle\left(\begin{array}[]{c|c}M^{\prime}_{i}&0_{i+1\times n-i}\\ \hline\cr 0_{n-i\times i+1}&M_{ij}\\ \end{array}\right)
=\displaystyle= (Ii+10i+1×ni0ni×i+1Mij)(Mi0i+1×ni0ni×i+1Ini)\displaystyle\left(\begin{array}[]{c|c}I_{i+1}&0_{i+1\times n-i}\\ \hline\cr 0_{n-i\times i+1}&M_{ij}\\ \end{array}\right)\left(\begin{array}[]{c|c}M^{\prime}_{i}&0_{i+1\times n-i}\\ \hline\cr 0_{n-i\times i+1}&I_{n-i}\\ \end{array}\right)
=\displaystyle= σjσi.\displaystyle\sigma_{j}\sigma_{i}.

Therefore, the braid relations are satisfied. ∎

Proposition 4.4.

If σ,σ:B𝔤N(T)\sigma,\,\sigma^{\prime}:B_{\mathfrak{g}}\longrightarrow N(T) are the homomorphisms corresponding to the choices {σi}i=1n\{\sigma_{i}\}_{i=1}^{n} and {σi}i=1n\{\sigma^{\prime}_{i}\}_{i=1}^{n}, with σi,σiNiTi\sigma_{i},\sigma^{\prime}_{i}\in N_{i}\setminus T_{i}, respectively, then there exists a tTt\in T such that, for any SB𝔤S\in B_{\mathfrak{g}}, σ(S)=tσ(S)t1\sigma(S)=t\sigma^{\prime}(S)t^{-1}.

Proof.

For any i{1,,n}i\in\{1,\cdots,n\}, let σi\sigma_{i} and σi\sigma^{\prime}_{i} be the following elements

σi\displaystyle\sigma_{i} =\displaystyle= (Ii10i1×20i1×ni02×i1aieai1f02×ni0ni×i10ni×2Ini),\displaystyle\left(\begin{array}[]{c|c|c}I_{i-1}&0_{i-1\times 2}&0_{i-1\times n-i}\\ \hline\cr 0_{2\times i-1}&a_{i}*e-a_{i}^{-1}*f&0_{2\times n-i}\\ \hline\cr 0_{n-i\times i-1}&0_{n-i\times 2}&I_{n-i}\end{array}\right),
σi\displaystyle\sigma^{\prime}_{i} =\displaystyle= (Ii10i1×20i1×ni02×i1biebi1f02×ni0ni×i10ni×2Ini).\displaystyle\left(\begin{array}[]{c|c|c}I_{i-1}&0_{i-1\times 2}&0_{i-1\times n-i}\\ \hline\cr 0_{2\times i-1}&b_{i}*e-b_{i}^{-1}*f&0_{2\times n-i}\\ \hline\cr 0_{n-i\times i-1}&0_{n-i\times 2}&I_{n-i}\end{array}\right).

We can chose tiTit_{i}\in T_{i}, as follows

ti=(Ii10i1×20i1×ni02×i1ai1bi00aibi102×ni0ni×i10ni×2Ini).t_{i}=\left(\begin{array}[]{c|c|c}I_{i-1}&0_{i-1\times 2}&0_{i-1\times n-i}\\ \hline\cr 0_{2\times i-1}&\begin{array}[]{cc}a_{i}^{-1}b_{i}&0\\ 0&a_{i}b_{i}^{-1}\end{array}&0_{2\times n-i}\\ \hline\cr 0_{n-i\times i-1}&0_{n-i\times 2}&I_{n-i}\end{array}\right).

From our choice of tit_{i}, it is clear that σiti=σi\sigma_{i}^{\prime}t_{i}=\sigma_{i}. Let cic_{i} be a complex number such that ti=ecihit_{i}=e^{c_{i}h_{i}}. Now, take {λi}i=1n𝔥\{\lambda_{i}^{\vee}\}_{i=1}^{n}\subset\mathfrak{h} the co-weights defined by αi(λj)=δij\alpha_{i}(\lambda_{j}^{\vee})=\delta_{ij}, where δij\delta_{ij} is Kronecker’s delta. In our case, λj=diag(h1j,h2j,,hn+1j)\lambda_{j}^{\vee}=\operatorname{diag}(h_{1j},\,h_{2j},\cdots,\,h_{n+1\,j}) with

hij={n+1jn+1 siijjn+1 sii>j.h_{ij}=\left\{\begin{array}[]{lcl}\frac{n+1-j}{n+1}&\mbox{ si}&i\leq j\\ &&\\ \frac{-j}{n+1}&\mbox{ si}&i>j.\end{array}\right.

We choose a diagonal matrix tTt\in T as follow t=ejcjλjt=e^{-\sum_{j}c_{j}\lambda_{j}^{\vee}}. Since tt and its inverse matrix are diagonal matrices, we only need to consider the following product of submatrices:

(ejcjhij00ejcjhi+1j)(0bibi10)(ejcjhij00ejcjhi+1j)\displaystyle\left(\begin{array}[]{cc}e^{-\sum_{j}c_{j}h_{ij}}&0\\ 0&e^{-\sum_{j}c_{j}h_{i+1\,j}}\\ \end{array}\right)\left(\begin{array}[]{cc}0&b_{i}\\ -b_{i}^{-1}&0\\ \end{array}\right)\left(\begin{array}[]{cc}e^{\sum_{j}c_{j}h_{ij}}&0\\ 0&e^{\sum_{j}c_{j}h_{i+1\,j}}\\ \end{array}\right)
=\displaystyle= (0biexp(jcj(hi+1jhij)bi1exp(jcj(hijhi+1j))0)\displaystyle\left(\begin{array}[]{cc}0&b_{i}\exp({\sum_{j}c_{j}(h_{i+1\,j}-h_{ij})}\\ b_{i}^{-1}\exp(\sum_{j}c_{j}(h_{ij}-h_{i+1\,j}))&0\\ \end{array}\right)
=\displaystyle= (0biexp(jcj(αi(λj)))bi1exp(jcj(αi(λj)))0)\displaystyle\left(\begin{array}[]{cc}0&b_{i}\exp({\sum_{j}c_{j}(-\alpha_{i}(\lambda_{j}^{\vee}))})\\ -b_{i}^{-1}\exp({\sum_{j}c_{j}(\alpha_{i}(\lambda_{j}^{\vee}))})&0\end{array}\right)
=\displaystyle= (0biecibi1eci0)\displaystyle\left(\begin{array}[]{cc}0&b_{i}e^{-c_{i}}\\ -b_{i}^{-1}e^{c_{i}}&0\\ \end{array}\right)
=\displaystyle= (0bibi10)(eci00eci).\displaystyle\left(\begin{array}[]{cc}0&b_{i}\\ -b_{i}^{-1}&0\\ \end{array}\right)\left(\begin{array}[]{cc}e^{c_{i}}&0\\ 0&e^{-c_{i}}\\ \end{array}\right).

Then, we can conclude that

tσit1=ejcjλjσiejcjλj=σiecihαi=σiti=σi.\displaystyle t\sigma^{\prime}_{i}t^{-1}=e^{-\sum_{j}c_{j}\lambda_{j}^{\vee}}\,\,\sigma^{\prime}_{i}\,\,e^{\sum_{j}c_{j}\lambda_{j}^{\vee}}=\sigma^{\prime}_{i}\,\,e^{c_{i}h_{\alpha_{i}}}=\sigma^{\prime}_{i}\,\,t_{i}=\sigma_{i}.

Thus, we have for all i{1,,n}i\in\{1,\cdots,\,n\} that tσit1=σit\,\sigma^{\prime}_{i}\,t^{-1}=\sigma_{i}, with t=ejcjλjt=e^{-\sum_{j}c_{j}\lambda_{j}^{\vee}}.

Therefore, tσt1=σt\,\sigma^{\prime}\,t^{-1}=\sigma. ∎

Proposition 4.5.

For any σ:B𝔤N(T)\sigma:B_{\mathfrak{g}}\longrightarrow N(T), the homomorphism corresponding to the choice {σi}i=1n\{\sigma_{i}\}_{i=1}^{n}, is subjected to the relations:

σiσjmij\displaystyle\underbrace{\sigma_{i}\sigma_{j}\cdots}_{m_{ij}} =\displaystyle= σjσimij\displaystyle\underbrace{\sigma_{j}\sigma_{i}\cdots}_{m_{ij}} (4.14)
σi2σj2\displaystyle\sigma_{i}^{2}\sigma_{j}^{2} =\displaystyle= σj2σi2\displaystyle\sigma_{j}^{2}\sigma_{i}^{2} (4.15)
σi4\displaystyle\sigma_{i}^{4} =\displaystyle= 1\displaystyle 1 (4.16)
σiσj2σi1\displaystyle\sigma_{i}\sigma_{j}^{2}\sigma_{i}^{-1} =\displaystyle= σj2σi2αj,hi\displaystyle\sigma_{j}^{2}\sigma_{i}^{-2\langle\alpha_{j},h_{i}\rangle} (4.17)

for any 1ijn1\leq i\neq j\leq n, where the number mijm_{ij} of factors on each side of (4.14) is equal to the order of sisj𝒲s_{i}s_{j}\in\mathcal{W}.

Proof.

In proposition 4.3, we have already proved that σi\sigma_{i} satisfies equality (4.14). Additionally, we note that for all 1jn1\leq j\leq n, if we take

zi=(Ii10i1×20i1×ni02×i1aea1f02×ni0ni×i10ni×2Ini),z_{i}={\scriptstyle\left(\begin{array}[]{c|c|c}I_{i-1}&0_{i-1\times 2}&0_{i-1\times n-i}\\ \hline\cr 0_{2\times i-1}&a*e-a^{-1}*f&0_{2\times n-i}\\ \hline\cr 0_{n-i\times i-1}&0_{n-i\times 2}&I_{n-i}\end{array}\right),}

which can also be viewed as zi=(1ln+1l{i,i+1}Ell)+(aEii+1a1Ei+1i)z_{i}=\left(\sum_{\begin{subarray}{c}1\leq l\leq n+1\\ l\not\in\{i,\,i+1\}\end{subarray}}E_{ll}\right)+(aE_{ii+1}-a^{-1}E_{i+1\,i}), it follows that

zi1\displaystyle z_{i}^{-1} =\displaystyle= (1ln+1l{i,i+1}Ell)+(aEii+1+a1Ei+1i),\displaystyle\left(\sum_{\begin{subarray}{c}1\leq l\leq n+1\\ l\not\in\{i,\,i+1\}\end{subarray}}E_{ll}\right)+(-aE_{ii+1}+a^{-1}E_{i+1\,i}),
zi2\displaystyle z_{i}^{2} =\displaystyle= (1ln+1l{i,i+1}Ell)(Eii+Ei+1i+1).\displaystyle\left(\sum_{\begin{subarray}{c}1\leq l\leq n+1\\ l\not\in\{i,\,i+1\}\end{subarray}}E_{ll}\right)-(E_{ii}+E_{i+1\,i+1}).

It is then evident that the σi\sigma_{i} satisfy the relations (4.15) y (4.16). For the last equation, we can take 1ijn1\leq i\neq j\leq n, and thus have two cases:

Case 1:

If |ji|=1|j-i|=1, then αj,hi=1\langle\alpha_{j},h_{i}\rangle=-1. Let’s suppose i=j1i=j-1, this implies that:

σiσj2σi1\displaystyle\sigma_{i}\sigma_{j}^{2}\sigma_{i}^{-1}
=\displaystyle= σj1σj2σj11\displaystyle\sigma_{j-1}\sigma_{j}^{2}\sigma_{j-1}^{-1}
=\displaystyle= (1ln+1l{j1,j}Ell+aj1Ej1jaj11Ejj1)(1ln+1l{j,j+1}EllEjjEj+1j+1)σj11\displaystyle{\left(\sum_{\begin{subarray}{c}1\leq l\leq n+1\\ l\not\in\{j-1,\,j\}\end{subarray}}E_{ll}+a_{j-1}E_{j-1j}-a_{j-1}^{-1}E_{jj-1}\right)\left(\sum_{\begin{subarray}{c}1\leq l\leq n+1\\ l\not\in\{j,\,j+1\}\end{subarray}}E_{ll}-E_{jj}-E_{j+1\,j+1}\right)}\sigma_{j-1}^{-1}
=\displaystyle= (1ln+1l{j1,j,j+1}Ellaj1Ej1jaj11Ejj1Ej+1j+1)σj11\displaystyle\left(\sum_{\begin{subarray}{c}1\leq l\leq n+1\\ l\not\in\{j-1,\,j,\,j+1\}\end{subarray}}E_{ll}-a_{j-1}E_{j-1j}-a_{j-1}^{-1}E_{jj-1}-E_{j+1j+1}\right)\sigma_{j-1}^{-1}
=\displaystyle= (1ln+1l{j1,j+1}Ell)(Ej1j1+Ej+1j+1)\displaystyle\left(\sum_{\begin{subarray}{c}1\leq l\leq n+1\\ l\not\in\{j-1,\,j+1\}\end{subarray}}E_{ll}\right)-(E_{j-1j-1}+E_{j+1\,j+1})
=\displaystyle= (1ln+1l{j,j+1}EllEjjEj+1j+1)(1ln+1l{j1,j}EllEj1j1Ejj)\displaystyle\left(\sum_{\begin{subarray}{c}1\leq l\leq n+1\\ l\not\in\{j,\,j+1\}\end{subarray}}E_{ll}-E_{jj}-E_{j+1\,j+1}\right)\left(\sum_{\begin{subarray}{c}1\leq l\leq n+1\\ l\not\in\{j-1,\,j\}\end{subarray}}E_{ll}-E_{j-1j-1}-E_{j\,j}\right)
=\displaystyle= σj2σj12=σj2σi2=σj2σi(2)(1).\displaystyle\sigma_{j}^{2}\sigma_{j-1}^{2}=\sigma_{j}^{2}\sigma_{i}^{2}=\sigma_{j}^{2}\sigma_{i}^{(-2)(-1)}.

The case in which i=j+1i=j+1 is analogous to the previous one.

Case 2:

If |ji|2|j-i|\geq 2, then αj,hi=0\langle\alpha_{j},h_{i}\rangle=0.

Thus, σj2σi2αj,hi=σj2σi(2)(0)=σj2σi(0)=σj2\sigma_{j}^{2}\sigma_{i}^{-2\langle\alpha_{j},h_{i}\rangle}=\sigma_{j}^{2}\sigma_{i}^{(-2)(0)}=\sigma_{j}^{2}\sigma_{i}^{(0)}=\sigma_{j}^{2}. Since |ji|2|j-i|\geq 2, we have that {i,i+1}{j,j+1}=\{i,i+1\}\cap\{j,j+1\}=\emptyset, from where we have that

σiσj2σi1\displaystyle\sigma_{i}\sigma_{j}^{2}\sigma_{i}^{-1}
=\displaystyle= (1ln+1l{i,i+1}Ell+aiEii+1ai1Ei+1i)(1ln+1l{j,j+1}EllEjjEj+1j+1)σi1\displaystyle{\left(\sum_{\begin{subarray}{c}1\leq l\leq n+1\\ l\not\in\{i,\,i+1\}\end{subarray}}E_{ll}+a_{i}E_{ii+1}-a_{i}^{-1}E_{i+1i}\right)\left(\sum_{\begin{subarray}{c}1\leq l\leq n+1\\ l\not\in\{j,\,j+1\}\end{subarray}}E_{ll}-E_{jj}-E_{j+1\,j+1}\right)}\sigma_{i}^{-1}
=\displaystyle= (1ln+1l{i,i+1,j,j+1}Ell+aiEii+1ai1Ei+1iEjjEj+1j+1)σi1\displaystyle{\left(\sum_{\begin{subarray}{c}1\leq l\leq n+1\\ l\not\in\{i,\,i+1,\,j,\,j+1\}\end{subarray}}E_{ll}+a_{i}E_{ii+1}-a_{i}^{-1}E_{i+1i}-E_{jj}-E_{j+1\,j+1}\right)}\sigma_{i}^{-1}
=\displaystyle= (1ln+1l{j,j+1}EllEjjEj+1j+1)\displaystyle\left(\sum_{\begin{subarray}{c}1\leq l\leq n+1\\ l\not\in\{j,\,j+1\}\end{subarray}}E_{ll}-E_{jj}-E_{j+1\,j+1}\right)
=\displaystyle= σj2.\displaystyle\sigma_{j}^{2}.

Therefore, it can be concluded that equality (4.17) has been achieved. ∎

Corollary 4.6.

Let nn be a positive integer and τi\tau_{i}’s be the automorphisms of 𝔰𝔩(n+1,)\mathfrak{sl}(n+1,\mathbb{C}) defined in (1.2). Then the automorphisms τi\tau_{i}, 1in1\leq i\leq n are subjected to the relations (4.14)-(4.17).

Proof.

As we saw in Remark (2.2), for any X,YX,\,Y matrices in Matn+1()\operatorname{Mat}_{n+1}(\mathbb{C}), we have that exp(adX)(Y)\exp(\operatorname{ad}_{X})(Y) is equal to exp(X)Yexp(X)\exp(X)Y\exp(-X), including the particular case where X=eiX=e_{i} or fif_{i}.

For all 1in1\leq i\leq n, let σi\sigma_{i} be equal to exp(ei)exp(fi)exp(ei)\exp(e_{i})\exp(-f_{i})\exp(e_{i}). Then,

τi(Y)\displaystyle\tau_{i}(Y) =\displaystyle= exp(adei)exp(adfi)exp(adei)(Y)\displaystyle\exp(\operatorname{ad}_{e_{i}})\exp(\operatorname{ad}_{-f_{i}})\exp(\operatorname{ad}_{e_{i}})(Y)
=\displaystyle= exp(ei)[exp(fi)[exp(ei)Yexp(ei)]exp(fi)]exp(ei)\displaystyle\exp(e_{i})[\exp(-f_{i})[\exp(e_{i})Y\exp(-e_{i})]\exp(f_{i})]\exp(-e_{i})
=\displaystyle= (exp(ei)exp(fi)exp(ei))Y(exp(ei)exp(fi)exp(ei))\displaystyle(\exp(e_{i})\exp(-f_{i})\exp(e_{i}))Y(\exp(-e_{i})\exp(f_{i})\exp(-e_{i}))
=\displaystyle= σiYσi1.\displaystyle\sigma_{i}Y\sigma_{i}^{-1}.

From the definition of element eie_{i} and fif_{i}, we have that one of the possible choices of elements of NiTiN_{i}\setminus T_{i} is

σi\displaystyle\sigma_{i} =\displaystyle= (In+1+Eii+1)(In+1Ei+1i)(In+1+Eii+1)\displaystyle(I_{n+1}+E_{i\,i+1})(I_{n+1}-E_{i+1\,i})(I_{n+1}+E_{i\,i+1})
=\displaystyle= In+1+Eii+1Ei+1,iEiiEi+1i+1\displaystyle I_{n+1}+E_{i\,i+1}-E_{i+1,i}-E_{i\,i}-E_{i+1\,i+1}
=\displaystyle= (Ii10110Ini).\displaystyle\left(\begin{array}[]{cccc}I_{i-1}&&&\\ &0&1&\\ &-1&0&\\ &&&I_{n-i}\end{array}\right).

Thus, {σi}i=1n\{\sigma_{i}\}_{i=1}^{n} satisfies the relations (4.14)-(4.17). Since τi(Y)=σiYσi1\tau_{i}(Y)=\sigma_{i}Y\sigma_{i}^{-1}, we can conclude that the standard automorphisms satisfy the desired relations. ∎

Acknowledgment

I would like to thank CONACYT for the Support for the Training of Human Resources with registration number 25412 of the Research Project CB-2014/239255 and Christof Geiss for his support, guidance and encouragement. Part of this work was done during my Master’s studies at the Universidad Nacional Autónoma de México.

References

  • [1] E. Brieskorn, Die Fundamentalgruppe des Raumes der Regulären Orbits einer Endlichen Komplexen Spiegelungsgruppe, Invent. Math. 12 (1971), 57– 61. Available from: http://dx.doi.org/10.1007/bf01389827
  • [2] Brian C. Hall, Lie groups, Lie Algebras, and Representations. Springer Verlag, 2003.
  • [3] James E. Humphreys, Introduction to Lie Algebras and Representation Theory. Springer Verlag, 1972.
  • [4] C. Kasssel, V. Turaev, Braid Groups. Springer Science+Business Media, LLC 2008.
  • [5] John J. Millson, V. Toledano Laredo, Casimir operators and monodromy representations of generalised braid groups, Transformation Groups, Vol. 10, No. 2, 2005, pp. 217– 254.
  • [6] W. Soergel, Halbeinfache Lie-algebren. Manuscript available on the page of the author: http://home.mathematik.uni-freiburg.de/soergel/Skripten/XXHL.pdf
  • [7] R. Steinberg, Lectures on Chevalley groups. Notes prepared by John Faulkner and Robert Wilson. Yale University, New Haven, Conn., 1968 iii+277pp.
  • [8] J. Tits, Normalisateurs de tores. I. Groupes de Coxeter etendus, J. Algebra 4 (1966), 96 –116.