This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Staggered explicit-implicit time-discretization for elastodynamics with dissipative internal variables

Tomáš Roubíček111Charles University, Mathematical Institute, Sokolovská 83, CZ-186 75 Praha 8, Czech Republic 222Institute of Thermomechanics of the Czech Acad. Sci., Dolejškova 5, CZ–182 08 Praha 8, Czech Rep. and Chrysoula Tsogka333Department of Applied Mathematics, University of California, Merced, 5200 North Lake road, Merced, CA 95343, USA 444Institute of Applied and Computational Mathematics, Foundation for Research and Technology - Hellas, Nikolaou Plastira 100, Vassilika Vouton, GR-700 13 Heraklion, Crete, Greece
Abstract

An extension of the two-step staggered time discretization of linear elastodynamics in stress-velocity form to systems involving internal variables subjected to a possibly non-linear dissipative evolution is proposed. The original scheme is thus enhanced by another step for the internal variables which, in general, is implicit, although even this step might be explicit if no spatial gradients of the internal variables are involved. Using an abstract Banach-space formulation, a-priori estimates and convergence are proved under a CFL condition. The developed three-step scheme finds applications in various problems of continuum mechanics at small strain. Here, we consider in particular plasticity, viscoelasticity (creep), diffusion in poroelastic media, and damage.

AMS Subject Classification 65M12, 65P10, 65Z05, 74C10, 74F10, 74H15, 74R20, 74S05, 76S05.

Keywords Elastodynamics, explicit discretization, fractional steps, mixed finite-element method, plasticity, creep, poro-elasticity, damage.

1 Introduction

In computational mechanics one can distinguish two main classes of time-dependent problems, quasistatic and dynamic. Focusing on the latter one, one can further distinguish two other cases: (i) Low-frequency regimes, which are typically related with vibrations of structures and where the energy is not dominantly transmitted through space. In this case implicit time-discretization is relatively efficient, even though large systems of algebraic equations are to be solved at each time step. (ii) High-frequency regimes which arise typically within wave propagation and for which only explicit time-discretizations are reasonably efficient, in particular in three-dimensions. These explicit methods can essentially be used in hyperbolic problems, as mere elastodynamics (treated here) or the elasto-magnetic Maxwell system or some conservation laws. Yet, many applications need to combine the convervative hyperbolic problems with various dissipative processes of a parabolic character, involving typically some internal variables. For parabolic problems, however, explicit methods are known to be problematic due to severe time-step restrictions. Therefore, we propose and analyse an explicit/implicit scheme, using the fractional-step (also called staggered) technique. In fact, the proposed method becomes completely explicit in the absence of gradients of internal variables, as it can be in plasticicity or viscoelasticity as in Sect. 5.1, or an interfacial variant of damage models (so-called delamination) as in [41].

Our starting point is the linear elastodynamic problem: Find the displacement u:[0,T]×Ωdu:[0,T]\times\varOmega\to{\mathbb{R}}^{d} satisfying

ϱu..dive(u)=f\displaystyle\varrho\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE..}\over{u}}}{{\buildrel\hskip 1.00006pt\text{\Large..}\over{u}}}{{\buildrel\hskip 1.00006pt\text{\large..}\over{u}}}{{\buildrel\hskip 1.00006pt\text{\large..}\over{u}}}-{\rm div}\,\mathbb{C}e(u)=f on Ω for t(0,T],\displaystyle\text{on }\ \varOmega\ \text{ for }\ t\in(0,T], (1.1a)
[e(u)]n+𝔹u=g\displaystyle[\mathbb{C}e(u)]\vec{n}+\mathbb{B}u=g on Γ for t(0,T],\displaystyle\text{on }\ \varGamma\ \text{ for }\ t\in(0,T], (1.1b)
u|t=0=u0,u.|t=0=v0\displaystyle u|_{t=0}=u_{0},\ \ \ \mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{u}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{u}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{u}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{u}}}|_{t=0}=v_{0} on Ω,\displaystyle\text{on }\ \varOmega, (1.1c)

for T>0T>0 a fixed time horizon. Here Ωd\varOmega\subset{\mathbb{R}}^{d} is a bounded Lipschitz domain, d=2d=2 or 33, Γ\varGamma is its boundary, and n\vec{n} the unit outward normal. The dot-notation stands for the time derivative. In (1.1), ϱ>0\varrho>0 denotes the mass density, \mathbb{C} is the elasticity tensor which is symmetric and positive definite, e(u)e(u) denotes the small-strain tensor defined as e(u)=12(u)+12ue(u)=\frac{1}{2}(\nabla u)^{\top}{+}\frac{1}{2}\nabla u, and 𝔹\mathbb{B} is a symmetric positive semidefinite 2nd-order tensor determining the elastic support on the boundary. The terms appearing in the second member of (1.1) are, the bulk force ff and the surface loading gg. In (1.1c), u0u_{0} denotes the initial displacement and v0v_{0} the initial velocity. For a more compact notation, we write the initial-boundary-value problem (1.1) in the following abstract form

𝒯u..+𝒲u=u(t) for t(0,T],u|t=0=u0,u.|t=0=v0.\displaystyle\mathcal{T}^{\prime}\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE..}\over{u}}}{{\buildrel\hskip 1.00006pt\text{\Large..}\over{u}}}{{\buildrel\hskip 1.00006pt\text{\large..}\over{u}}}{{\buildrel\hskip 1.00006pt\text{\large..}\over{u}}}+\mathcal{W}^{\prime}u=\mathcal{F}_{u}^{\prime}(t)\ \ \text{ for }\ t\in(0,T],\ \ u|_{t=0}=u_{0},\ \ \ \mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{u}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{u}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{u}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{u}}}|_{t=0}=v_{0}. (1.2)

Here 𝒯\mathcal{T} is the kinetic energy, 𝒲\mathcal{W} is the stored energy, and \mathcal{F} is the external force, while ()(\cdot)^{\prime} denotes the Gâteaux derivative. In the context of (1.1), we have

𝒯(u.)=Ω12ϱ|u.|2dx,𝒲(u)=Ω12e(u):e(u)dx+Γ12𝔹uudS\mathcal{T}(\color[rgb]{0,0,0}\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{u}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{u}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{u}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{u}}}\color[rgb]{0,0,0})=\int_{\varOmega}\frac{1}{2}\varrho|\color[rgb]{0,0,0}\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{u}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{u}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{u}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{u}}}\color[rgb]{0,0,0}|^{2}\,\mathrm{d}x,\ \quad\mathcal{W}(u)=\int_{\varOmega}\frac{1}{2}\mathbb{C}e(u){:}e(u)\,\mathrm{d}x+\int_{\varGamma}\frac{1}{2}\mathbb{B}u\cdot u\,\mathrm{d}S

and

(t,u)=Ωf(t)udx+Γg(t)udS.\mathcal{F}(t,u)=\int_{\varOmega}f(t){\cdot}u\,\mathrm{d}x+\int_{\varGamma}g(t){\cdot}u\,\mathrm{d}S.

Thus u(t)\mathcal{F}_{u}^{\prime}(t) is a linear functional, let us denote it shortly by F(t)F(t).

For high-frequency wave propagation problems, implicit time discretizations are computationally expensive, especially in the three dimensional setting. Therefore, we focus our attention on explicit methods. The simplest explicit scheme is the following second-order finite difference scheme

𝒯uτhk+12uτhk+uτhk1τ2+𝒲huτhk=Fh(kτ).\displaystyle\mathcal{T}^{\prime}\frac{u_{\tau h}^{k+1}-2u_{\tau h}^{k}+u_{\tau h}^{k-1}}{\tau^{2}}+\mathcal{W}_{h}^{\prime}u_{\tau h}^{k}=F_{h}(k\tau). (1.3)

Here τ>0\tau>0 denotes the time step, and 𝒲h\mathcal{W}_{h} (resp. FhF_{h}) denote some discrete approximations of the respective continuous functionals obtained by a suitable finite-element method (FEM) with mesh size h>0h>0. For simplicity, we assume the mass density constant (or at least piecewise constant in space) so that the kinetic energy 𝒯\mathcal{T} does not need any numerical approximation. In particular, a numerical approximation leading to a diagonal the mass matrix 𝒯\mathcal{T}^{\prime} in (1.3), typically referred to as mass lumping, is an important ingredient so as to obtain efficient explicit methods. Here we will consider that uu is discretized in an element-wise constant way so that 𝒯\mathcal{T}^{\prime} leads to a diagonal matrix even without any approximation. Multiplying (1.3) by uτhk+1uτhkτ\frac{u_{\tau h}^{k+1}-u_{\tau h}^{k}}{\tau} and using the scheme, it is easy to show that the energy preserved is

12𝒯uτhk+1uτhkτ,uτhk+1uτhkτ+12𝒲huτhk+1,uτhk.\frac{1}{2}\langle\color[rgb]{0,0,0}{\mathcal{T}}^{\prime}\color[rgb]{0,0,0}\frac{u_{\tau h}^{k+1}-u_{\tau h}^{k}}{\tau},\frac{u_{\tau h}^{k+1}-u_{\tau h}^{k}}{\tau}\rangle+\frac{1}{2}\langle\mathcal{W}_{h}^{\prime}u_{\tau h}^{k+1},u_{\tau h}^{k}\rangle.

This is an energy, i.e., a positive quantity under the following Courant-Fridrichs-Lewy (CFL) condition [20]

𝒯uh,uhτ24𝒲huh,uh\displaystyle\big{\langle}\mathcal{T}^{\prime}u_{h},u_{h}\big{\rangle}\geq\frac{\tau^{2}}{4}\big{\langle}{\cal W}_{h}^{\prime}u_{h},u_{h}\big{\rangle} (1.4)

for any uhu_{h} from the respective finite-dimensional subspace. The CFL typically bounds the time discretization step τ=𝒪(hmin)\tau=\mathscr{O}(h_{\rm min}) with hminh_{\rm min} the smallest element size on a FEM discretization. This method has frequently been used and analysed from various aspects, including comparison with implicit time discretizations, cf. e.g. [34, 33]. However, the form of the discrete stored energy 12𝒲huτhk+1,uτhk\frac{1}{2}\langle\mathcal{W}_{h}^{\prime}u_{\tau h}^{k+1},u_{\tau h}^{k}\rangle makes this discretization less suitable for the problem that we wish to consider in this paper where the stored energy is enhanced by some internal variables and (possibly) nonlinear processes on them.

Therefore, we use another explicit discretization scheme, the so-called leap-frog scheme. To this end, we first write the velocity/stress formulation of (1.1a). Introducing the velocity, v=u.v=\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{u}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{u}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{u}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{u}}} and the stress tensor σ:=e(u)\sigma:=\mathbb{C}e(u), we get

ϱv.divσ=f and σ.=e(v)\displaystyle\varrho\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{v}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{v}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{v}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{v}}}-{\rm div}\,\sigma=f\ \ \ \text{ and }\ \ \ \mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{\sigma}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{\sigma}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\sigma}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\sigma}}}=\mathbb{C}e(v) on Ω for t(0,T],\displaystyle\text{on }\ \varOmega\ \text{ for }\ t\in(0,T], (1.5a)
σ.n+𝔹v=g.\displaystyle\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{\sigma}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{\sigma}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\sigma}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\sigma}}}\vec{n}+\mathbb{B}v=\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{g}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{g}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{g}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{g}}} on Γ for t(0,T],\displaystyle\text{on }\ \varGamma\ \text{ for }\ t\in(0,T], (1.5b)
v|t=0=v0,σ|t=0=σ0:=e(u0)\displaystyle v|_{t=0}=v_{0},\ \ \ \sigma|_{t=0}=\sigma_{0}:=\mathbb{C}e(u_{0}) on Ω.\displaystyle\text{on }\ \varOmega. (1.5c)

In the abstract form (1.2), when writing 𝒲=𝒲E\mathcal{W}=\mathscr{W}\circ E with EE denoting the linear operator u(e,w):=(e(u),u|Γ)u\mapsto(e,w):=(e(u),u|_{\varGamma}) and with u|Γu|_{\varGamma} denoting the trace of uu on the boundary Γ\varGamma, this reads as

𝒯v.+EΣ=F(t)\displaystyle\mathcal{T}^{\prime}\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{v}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{v}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{v}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{v}}}+E^{*}\varSigma=F(t) for t(0,T],\displaystyle\text{ for }\ t\in(0,T], v|t=0=v0, and \displaystyle v|_{t=0}=v_{0},\ \ \ \ \text{ and }\ \ (1.6a)
Σ.=𝒲Ev+G.(t)\displaystyle\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{\varSigma}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{\varSigma}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\varSigma}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\varSigma}}}=\mathscr{W}^{\prime}Ev+\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{G}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{G}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{G}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{G}}}(t) for t(0,T],\displaystyle\text{ for }\ t\in(0,T], Σ|t=0=Σ0:=𝒲Eu0,\displaystyle\varSigma|_{t=0}=\varSigma_{0}:=\mathscr{W}^{\prime}Eu_{0}, (1.6b)

where EE^{*} is the adjoint operator to EE. The stored energy governing (1.5) is

𝒲(e,w)=Ω12e:edx+Γ12𝔹wwdS\mathscr{W}(e,w)=\int_{\varOmega}\frac{1}{2}\mathbb{C}e{:}e\,\mathrm{d}x+\int_{\varGamma}\frac{1}{2}\mathbb{B}w{\cdot}w\,\mathrm{d}S

while the external loading is now split into two parts acting differently, namely

F(t),u=Ωf(t)udxandG(t),w=Γg(t)wdx.\langle F(t),u\rangle=\int_{\varOmega}f(t)\cdot u\,\mathrm{d}x\qquad\text{and}\qquad\langle G(t),w\rangle=\int_{\varGamma}g(t)\cdot w\,\mathrm{d}x.

Let us note that (1.6) involves the equation on Ω\varOmega, as well as, the equation on Γ\varGamma. Thus 𝒯\mathcal{T} is to be understood as the functional on Ω×Γ\varOmega\times\varGamma, that is trivial on Γ\varGamma since no inertia is considered on the (d1(d{-}1)-dimensional boundary Γ\varGamma. In particular, the “generalized” stress Σ=𝒲Eu=(e(u),𝔹u|Γ)\varSigma=\mathscr{W}^{\prime}Eu=(\mathbb{C}e(u),\mathbb{B}u|_{\varGamma}) contains, besides the bulk stress tensor, also the traction stress vector. Relying on the linearity of 𝒲\mathscr{W}^{\prime}, we have Σ.=𝒲Ev\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{\varSigma}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{\varSigma}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\varSigma}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\varSigma}}}=\mathscr{W}^{\prime}Ev with v=u.v=\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{u}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{u}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{u}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{u}}}, as used in (1.6b). Let us note that the adjoint operator E:(σ,ς)𝔉E^{*}:(\sigma,\varsigma)\mapsto\mathfrak{F} in (1.6a) with the traction force ς=𝔹u|Γ\varsigma=\mathbb{B}u|_{\varGamma} determines a bulk force 𝔉\mathfrak{F} as a functional on test displacements uu by

Ω𝔉udx=𝔉,u\displaystyle\int_{\varOmega}\mathfrak{F}\cdot u\,\mathrm{d}x=\left\langle\mathfrak{F},u\right\rangle =E(σ,ς),u=(σ,ς),Eu=(σ,ς),(e(u),u|Γ)\displaystyle=\left\langle E^{*}(\sigma,\varsigma),u\right\rangle=\left\langle(\sigma,\varsigma),Eu\right\rangle=\left\langle(\sigma,\varsigma),(e(u),u|_{\varGamma})\right\rangle
=Ωσ:e(u)dx+ΓςudS=Γ(σn+ς)udSΩdivσudx,\displaystyle=\int_{\varOmega}\sigma:e(u)\,\mathrm{d}x+\int_{\varGamma}\varsigma\cdot u\,\mathrm{d}S=\int_{\varGamma}(\sigma\cdot\vec{n}+\varsigma)\cdot u\,\mathrm{d}S-\int_{\varOmega}{\rm div}\,\sigma\cdot u\,\mathrm{d}x\,,

which clarifies the force EΣ=𝔉E^{*}\varSigma=\mathfrak{F} in (1.6a). The leap-frog time discretization of (1.6) then reads as

Στhk+1/2Στhk1/2τ=𝒲hEhvτhk+Dτhk and 𝒯vτhk+1vτhkτ+EhΣτhk+1/2=Fτhk+1/2,\displaystyle\frac{\varSigma_{\tau h}^{k+1/2}-\varSigma_{\tau h}^{k-1/2}}{\tau}=\mathscr{W}_{h}^{\prime}E_{h}v_{\tau h}^{k}+D_{\tau h}^{k}\ \ \ \ \ \text{ and }\ \ \ \ {\mathcal{T}}^{\prime}\frac{v_{\tau h}^{k+1}{-}v_{\tau h}^{k}}{\tau}+E_{h}^{*}\varSigma_{\tau h}^{k+1/2}=F_{\tau h}^{k+1/2}, (1.7)

where 𝒲h\mathscr{W}_{h} and EhE_{h} are suitable FEM discretizations of 𝒲\mathscr{W} and EE, cf. (3.1a) and (3.1) below, and

Fτhk+1/2:=1τkτ(k+1)τFh(t)dt and Dτhk:=1τ(k1/2)τ(k+1/2)τG.h(t)dt=Gh((k+12)τ)Gh((k12)τ)τ.\displaystyle F_{\tau h}^{k+1/2}:=\frac{1}{\tau}\int_{k\tau}^{(k+1)\tau}\!\!\!\!\!\!\!F_{h}(t)\,\mathrm{d}t\ \ \ \text{ and }\ \ \ D_{\tau h}^{k}:=\frac{1}{\tau}\int_{(k-1/2)\tau}^{(k+1/2)\tau}\!\!\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{G}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{G}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{G}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{G}}}_{h}(t)\,\mathrm{d}t=\frac{G_{h}((k{+}\frac{1}{2})\tau)-G_{h}((k{-}\frac{1}{2})\tau)}{\tau}\,. (1.8)

As mentioned before, we assume here that vv is discretized in an element-wise constant way so that 𝒯\mathcal{T} leads to a diagonal matrix. In this case we do not need to employ numerical integration to approximate the mass matrix. For higher-order discretizations, however, mass lumping is necessary so as to obtain explicit discretization schemes. We refer to [10, 31, 50] for details in the case G0G\equiv 0. The proposed FEM leads to a block diagonal matrix for 𝒲h=Eh𝒲hEh\mathcal{W}_{h}^{\prime}=E_{h}^{*}\mathscr{W}_{h}^{\prime}E_{h}, which means that the resulting scheme does not require the solution of a big linear system at each iteration in time. The spatial FEM discretization exploits regularity available in linear elastodynamics, in particular that divσ{\rm div}\,\sigma and e(v)e(v) in (1.5a) live in L2L^{2}-spaces. Moreover, the equations in (1.7) are decoupled in the sense that, first, Στhk+1/2\varSigma_{\tau h}^{k+1/2} is calculated from the former equation and, second, vτhk+1v_{\tau h}^{k+1} is calculated from the latter equation assuming, that (vτhk,Στhk1/2)(v_{\tau h}^{k},\varSigma_{\tau h}^{k-1/2}) is known from the previous time step. For k=0k=0, it starts from vτh0=v0v_{\tau h}^{0}=v_{0} and from a half time step Στh1/2=Στh0+τ2𝒲hEhvτh0\varSigma_{\tau h}^{1/2}=\varSigma_{\tau h}^{0}+\frac{\tau}{2}\mathscr{W}_{h}^{\prime}E_{h}v_{\tau h}^{0}. For the space discretization, the lower order Qk+1divQkQ^{\rm div}_{k+1}-Q_{k} finite element is obtained for k=0k=0 and in this case the velocity is discretized as piecewise constant on rectangular or cubic elements while the stress is discretized by piecewise bi-linear functions with some continuities. Namely the normal component of the stress is continuous across edges of adjacent elements while the tangential component is allowed to be discontinuous. For more details about the space discretization we refer the interested reader to [10]. Alternative discretizations for the linear elasticity problem have been proposed by D. Arnold and his collaborators who designed mixed finite elements for general rectangular and triangular grids [6, 4, 5]. For tetrahedral leap-frog discretization of the elastodynamics see [21]. In general, the leap-frog scheme has been frequently used in geophysics to calculate seismic wave propagation with the finite differences method, cf. e.g. [13, 25, 51].

When taking the average (i.e. the sum with the weights 12\frac{1}{2} and 12\frac{1}{2}) of the second equation in (1.7) in the level kk and k1k{-}1 tested by vτhkv_{\tau h}^{k} and summing it with the first equation in (1.7) tested by [𝒲h]1(Στhk+1/2+Στhk1/2)/2[\mathscr{W}_{h}^{\prime}]^{-1}(\varSigma_{\tau h}^{k+1/2}{+}\varSigma_{\tau h}^{k-1/2})/2, we obtain

12τ[𝒲h]1Στhk+1/2,Στhk+1/212τ[𝒲h]1Στhk1/2,Στhk1/2\displaystyle\frac{1}{2\tau}\big{\langle}[\mathscr{W}_{h}^{\prime}]^{-1}\varSigma_{\tau h}^{k+1/2},\varSigma_{\tau h}^{k+1/2}\big{\rangle}-\frac{1}{2\tau}\big{\langle}[\mathscr{W}_{h}^{\prime}]^{-1}\varSigma_{\tau h}^{k-1/2},\varSigma_{\tau h}^{k-1/2}\big{\rangle}
=Στhk+1/2+Στhk1/22,Ehvτhk+[𝒲h]1Dτhk,Στhk+1/2+Στhk1/22 and\displaystyle\qquad\qquad=\Big{\langle}\frac{\varSigma_{\tau h}^{k+1/2}{+}\varSigma_{\tau h}^{k-1/2}}{2},E_{h}v_{\tau h}^{k}\Big{\rangle}+\Big{\langle}[\mathscr{W}_{h}^{\prime}]^{-1}D_{\tau h}^{k},\frac{\varSigma_{\tau h}^{k+1/2}{+}\varSigma_{\tau h}^{k-1/2}}{2}\Big{\rangle}\ \ \text{ and}
𝒯vτhk+1vτhk1τ,vτhk+Στhk+1/2+Στhk1/22,Ehvτhk=Fτhk+1/2+Fτhk1/22,vτhk.\displaystyle\Big{\langle}{\mathcal{T}}^{\prime}\frac{v_{\tau h}^{k+1}{-}v_{\tau h}^{k-1}}{\tau},v_{\tau h}^{k}\Big{\rangle}+\Big{\langle}\frac{\varSigma_{\tau h}^{k+1/2}{+}\varSigma_{\tau h}^{k-1/2}}{2},E_{h}v_{\tau h}^{k}\Big{\rangle}=\Big{\langle}\frac{F_{\tau h}^{k+1/2}{+}F_{\tau h}^{k-1/2}}{2},v_{\tau h}^{k}\Big{\rangle}\,.

Summing it up, we get that the following discrete energy is conserved

12𝒯vτhk+1,vτhk+Φh(Στhk+1/2) with Φh(Σ)=12[𝒲h]1Σ,Σ.\displaystyle\frac{1}{2}\langle\color[rgb]{0,0,0}{\mathcal{T}}{}^{\prime}v_{\tau h}^{k+1},v_{\tau h}^{k}\rangle+\varPhi_{h}(\varSigma_{\tau h}^{k+1/2})\ \ \text{ with }\ \ \varPhi_{h}(\varSigma)=\frac{1}{2}\langle[\mathscr{W}_{h}^{\prime}]^{-1}\varSigma,\varSigma\rangle\,. (1.9)

Note that Φh\varPhi_{h} is the discrete stored energy expressed in terms of the generalized stress. In contrast to (1.3), this formulation allows for enhancement of the discrete stored energy by some internal variables. The energy (1.9) is shown to be a positive quantity under the following CFL condition

[𝒲h]1Σh,Σhτ24EhΣh,(𝒯)1EhΣh\displaystyle\big{\langle}[\mathcal{W}^{\prime}_{h}]^{-1}\varSigma_{h},\varSigma_{h}\big{\rangle}\geq\frac{\tau^{2}}{4}\big{\langle}E^{*}_{h}\varSigma_{h},({\mathcal{T}}^{\prime})^{-1}E^{*}_{h}\varSigma_{h}\big{\rangle} (1.10)

for any Σh\varSigma_{h} from the respective finite-dimensional subspace. Moreover, F=0F=0 is often considered, which makes the a-priori estimation easier. Let us also note that the adjective “leap-frog” is sometimes used also for the time-discretization (1.3) if written as a two-step scheme, cf. e.g. [19, Sect. 7.1.1.1].

The plan of this article is as follows: In Section 2, we complement the abstract system (1.6) by another equation for some internal variable and cast its weak formulation without relying on any regularity. Then, in Section 3, we extend the two-step leap-frog discrete scheme (1.7) to a suitable three-step scheme, and study the energy properties of the proposed scheme. Then, in Section 4, we prove the numerical stability of the 3-step staggered approximation scheme and its convergence under the CFL condition (4.1). Such an abstract scheme is then illustrated in Section 5 on several examples from continuum mechanics, in particular on models of plasticity, creep, diffusion, and damage. For illustration of computational efficiency, we refer to [43] where this scheme was implemented for another problem, namely a delamination (i.e. interfacial damage).

It should be emphasized that, to the best of our knowledge, a rigorously justified (as far as numerical stability and convergence) combination of the explicit staggered discretization with nonlinear dissipative processes on some internal variables is new, although occasionally some dissipative nonlinear phenomena can be found in literature as in [45] for a unilateral contact, in [13] for a Maxwell viscoelastic rheology, in [47] for electroactive polymers, in [23] for an aeroelastic system, or in [24] for general thermomechanical systems, but without any numerical stability (a-priori estimates) and convergence guaranteed.

2 Internal variables and their dissipative evolution.

The concept of internal variables has a long tradition, cf. [36], and opens wide options for material modelling, cf. e.g. [35, 37] and references therein. Typically, internal variables are governed by a parabolic-type 1st-order evolution. The abstract system (1.2) is thus generalized to

𝒯u..+𝒲u(u,z)=F(t)\displaystyle\mathcal{T}^{\prime}\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE..}\over{u}}}{{\buildrel\hskip 1.00006pt\text{\Large..}\over{u}}}{{\buildrel\hskip 1.00006pt\text{\large..}\over{u}}}{{\buildrel\hskip 1.00006pt\text{\large..}\over{u}}}+\mathcal{W}_{u}^{\prime}(u,z)=F(t) for t(0,T],u|t=0=u0,u.|t=0=v0,\displaystyle\text{ for }\ t\in(0,T],\ \ u|_{t=0}=u_{0},\ \ \ \mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{u}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{u}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{u}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{u}}}|_{t=0}=v_{0}, (2.1a)
Ψ(z.)+𝒲z(u,z)0\displaystyle\partial\varPsi(\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}})+\mathcal{W}_{z}^{\prime}(u,z)\ni 0 for t(0,T],z|t=0=z0.\displaystyle\text{ for }\ t\in(0,T],\ \ z|_{t=0}=z_{0}. (2.1b)

The inclusion in (2.1b) refers to a possibility that the convex (pseudo)potential Ψ\varPsi of dissipative forces may be nonsmooth and then its subdifferential Ψ\partial\varPsi can be multivalued.

Combination of the 2nd-order evolution (1.2) with such 1st-order evolution is to be handled carefully. In contrast to the implicit staggered schemes, cf. [42], the constitutive equation is differentiated in time, cf. (1.5a), and it seems necessary to use the staggered scheme so that the internal-variable flow rule can be used without being differentiated in time, even for a quadratic stored energy 𝒲\mathcal{W}.

Moreover, to imitate the leap-frog scheme, it seems suitable (or maybe even necessary) that the stored energy 𝒲\mathcal{W} may be expressed in terms of the generalized stress as

𝒲(u,z)=Φ(Σ,z) with Σ=Eu, and Φ(,z) and Φ(Σ,) quadratic,\displaystyle\mathcal{W}(u,z)=\varPhi(\varSigma,z)\ \ \text{ with }\ \ \varSigma=\mathfrak{C}Eu,\ \text{ and }\ \ \varPhi(\cdot,z)\ \text{ and }\ \varPhi(\varSigma,\cdot)\text{ quadratic}, (2.2)

where \mathfrak{C} stands for a “generalized” elasticity tensor and EE is an abstract gradient-type operator. Typically Eu=(e(u),u|Γ)Eu=(e(u),u|_{\varGamma}) or simply Eu=e(u)Eu=e(u) are considered here in the context of continuum mechanics at small strains, cf. the examples in Sect. 5. Here, Σ\varSigma may not directly enter the balance of forces and is thus to be called rather as some “proto-stress”, while the actual generalized stress will be denoted by SS. For a relaxation of the last requirement of (2.2) see Remark 4.4 below.

Then, likewise (1.6), we can write the system (2.1) in the velocity/proto-stress formulation as

Σ.=Ev+G.(t)\displaystyle\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{\varSigma}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{\varSigma}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\varSigma}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\varSigma}}}=\mathfrak{C}Ev+\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{G}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{G}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{G}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{G}}}(t) for t(0,T],\displaystyle\text{ for }\ t\in(0,T],\ \ (2.3a)
𝒯v.+ES=F(t) with S=ΦΣ(Σ,z)\displaystyle\mathcal{T}^{\prime}\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{v}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{v}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{v}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{v}}}+E^{*}S=F(t)\ \ \text{ with }\ \ S=\mathfrak{C}^{*}\varPhi_{\varSigma}^{\prime}(\varSigma,z)\!\!\!\!\!\! for t(0,T],\displaystyle\text{ for }\ t\in(0,T],\ \ (2.3b)
Ψ(z.)+Φz(Σ,z)0\displaystyle\partial\varPsi(\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}})+\varPhi_{z}^{\prime}(\varSigma,z)\ni 0 for t(0,T],\displaystyle\text{ for }\ t\in(0,T], (2.3c)
Σ|t=0=Σ0:=Eu0+G(0),v|t=0=v0,z|t=0=z0.\displaystyle\varSigma|_{t=0}=\varSigma_{0}:=\mathfrak{C}Eu_{0}+G(0)\,,\ \ \ v|_{t=0}=v_{0}\,,\ \ z|_{t=0}=z_{0}\,. (2.3d)

Here ΦΣ(Σ,z)\varPhi_{\varSigma}^{\prime}(\varSigma,z) is a “generalized” strain and, when multiplied by \mathfrak{C}^{*}, it becomes a generalized stress. Actually, (1.6) is a special case of (2.3) when Φ=Φ(Σ)=Ω121σ:σdx+Γ𝔹1ςςdS\varPhi=\varPhi(\varSigma)=\int_{\varOmega}\frac{1}{2}\mathbb{C}^{-1}\sigma:\sigma\,\mathrm{d}x+\int_{\varGamma}\mathbb{B}^{-1}\varsigma\cdot\varsigma\,\mathrm{d}S and S=Σ=(σ,ς)S=\varSigma=(\sigma,\varsigma) while =𝒲=(,𝔹)\mathfrak{C}=\mathscr{W}^{\prime}=(\mathbb{C},\mathbb{B}), so that indeed S=ΦΣ(Σ)=(,𝔹)(1σ,𝔹1ς)=(σ,ς)=ΣS=\mathfrak{C}^{*}\varPhi_{\varSigma}^{\prime}(\varSigma)=(\mathbb{C},\mathbb{B})(\mathbb{C}^{-1}\sigma,\mathbb{B}^{-1}\varsigma)=(\sigma,\varsigma)=\varSigma.

The energy properties of this system can be revealed by testing the particular equations/inclusions in (2.3) by ΦΣ(Σ,z)\varPhi_{\varSigma}^{\prime}(\varSigma,z), vv, and z.\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}}. Thus, at least formally, we obtain

ΦΣ(Σ,z),Σ.=ΦΣ(Σ,z),Ev+G.=ΦΣ(Σ,z),Ev+ΦΣ(Σ,z),G.,\displaystyle\big{\langle}\varPhi_{\varSigma}^{\prime}(\varSigma,z),\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{\varSigma}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{\varSigma}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\varSigma}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\varSigma}}}\big{\rangle}=\big{\langle}\varPhi_{\varSigma}^{\prime}(\varSigma,z),\mathfrak{C}Ev+\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{G}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{G}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{G}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{G}}}\big{\rangle}=\big{\langle}\mathfrak{C}^{*}\varPhi_{\varSigma}^{\prime}(\varSigma,z),Ev\big{\rangle}+\big{\langle}\varPhi_{\varSigma}^{\prime}(\varSigma,z),\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{G}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{G}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{G}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{G}}}\big{\rangle}, (2.4a)
𝒯v.,v+ΦΣ(Σ,z),Ev=F(t),v,\displaystyle\color[rgb]{0,0,0}\big{\langle}{\mathcal{T}}^{\prime}\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{v}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{v}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{v}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{v}}},v\big{\rangle}\color[rgb]{0,0,0}+\big{\langle}\mathfrak{C}^{*}\varPhi_{\varSigma}^{\prime}(\varSigma,z),Ev\big{\rangle}=\big{\langle}F(t),v\big{\rangle}\,, (2.4b)
Ξ(z.)+Φz(Σ,z),z.0 with Ξ(z.):=infΨ(z.),z..\displaystyle\varXi(\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}})+\big{\langle}\varPhi_{z}^{\prime}(\varSigma,z),\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}}\big{\rangle}\leq 0\ \ \ \ \text{ with }\ \ \ \varXi(\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}}):=\inf\big{\langle}\partial\varPsi(\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}}),\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}}\big{\rangle}\,. (2.4c)

The functional Ξ\varXi is a dissipative rate and the “inf” in it refers to the fact that the dissipative potential Ψ\varPsi can be nonsmooth and thus the subdifferential Ψ\partial\varPsi can be multivalued even at z.0\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}}\neq 0, otherwise an equality in (2.4c) holds. Summing it up and using the calculus ddt𝒯(v)=𝒯v,v.=𝒯v.,v\frac{\mathrm{d}}{\mathrm{d}t}{\mathcal{T}}(v)=\langle{\mathcal{T}}^{\prime}v,\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{v}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{v}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{v}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{v}}}\rangle=\langle{\mathcal{T}}^{\prime}\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{v}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{v}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{v}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{v}}},v\rangle and ddtΦ(Σ,z)=ΦΣ(Σ,z),Σ.+Φz(Σ,z),z.\frac{\mathrm{d}}{\mathrm{d}t}\varPhi(\varSigma,z)=\langle\varPhi_{\varSigma}^{\prime}(\varSigma,z),\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{\varSigma}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{\varSigma}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\varSigma}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\varSigma}}}\rangle+\langle\varPhi_{z}^{\prime}(\varSigma,z),\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}}\rangle, we obtain the following inequality for the energy,

ddt(𝒯(v)+Φ(Σ,z)kinetic andstored energies)+Ξ(z.)dissipationrateF(t),v+ΦΣ(Σ,z),G.power ofexternal force.\displaystyle\frac{\mathrm{d}}{\mathrm{d}t}\big{(}\!\!\!\!\begin{array}[t]{c}\begin{array}[t]{c}\underbrace{\mathcal{T}(v)+\varPhi(\varSigma,z)}\vspace*{.5em}\end{array}\vspace*{-1em}\\ _{\mbox{\footnotesize\rm kinetic and}}\vspace*{-.5em}\\ _{\mbox{\footnotesize\rm stored energies}}\end{array}\!\!\!\!\big{)}\ +\!\!\!\!\!\!\begin{array}[t]{c}\begin{array}[t]{c}\underbrace{\varXi(\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}})}\vspace*{.5em}\end{array}\vspace*{-1em}\\ _{\mbox{\footnotesize\rm dissipation}}\vspace*{-.5em}\\ _{\mbox{\footnotesize\rm rate}}\end{array}\!\!\!\!\!\!\color[rgb]{0,0,0}\leq\color[rgb]{0,0,0}\!\!\begin{array}[t]{c}\begin{array}[t]{c}\underbrace{\big{\langle}F(t),v\big{\rangle}+\big{\langle}\varPhi_{\varSigma}^{\prime}(\varSigma,z),\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{G}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{G}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{G}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{G}}}\big{\rangle}}\vspace*{.5em}\end{array}\vspace*{-1em}\\ _{\mbox{\footnotesize\rm power of}}\vspace*{-.5em}\\ _{\mbox{\footnotesize\rm external force}}\end{array}\,. (2.17)

Actually, (2.4c) and (2.17) often hold as equalities.

Let us now formulate some abstract functional setting of the system (2.3). For some Banach spaces 𝒮\mathcal{S}, 𝒵\mathcal{Z}, and 𝒵1𝒵\mathcal{Z}_{1}\supset\mathcal{Z} and for a Hilbert space \mathcal{H}, let Φ:𝒮×𝒵\varPhi:{\mathcal{S}}\times\mathcal{Z}\to{\mathbb{R}} be smooth and coercive, 𝒯:\mathcal{T}:\mathcal{H}\to{\mathbb{R}} be quadratic and coercive, and let Ψ:𝒵[0,+]\Psi:\mathcal{Z}\to[0,+\infty] be convex, lower semicontinuous, and coercive on 𝒵1\mathcal{Z}_{1}, cf. (4.2) below. Intentionally, we do not want to rely on any regularity which is usually at disposal in linear problems but might be restrictive in some nonlinear problems. For this reason, we reconstruct the abstract “displacement” and use (2.3a) integrated in time, i.e.

Σ=Eu+G with u(t):=0tv(t)dt+u0.\displaystyle\varSigma={\mathfrak{C}}Eu+G\ \ \ \text{ with }\ \ u(t):=\int_{0}^{t}\!\!v(t)\,\mathrm{d}t+u_{0}\,. (2.18)

Moreover, we still need another Banach space \mathcal{E} and define the Banach space 𝒰:={u;Eu}\mathcal{U}:=\{u\in\mathcal{H};\ Eu\in\mathcal{E}\} equipped with the standard graph norm. Then, by definition, we have the continuous embedding 𝒰\mathcal{U}\to\mathcal{H} and the continuous linear operator E:𝒰E:\mathcal{U}\to\mathcal{E}. We assume that 𝒰\mathcal{U} is embedded into \mathcal{H} densely, so that 𝒰\mathcal{H}^{*}\subset\mathcal{U}^{*} and that \mathcal{H} is identified with its dual \mathcal{H}^{*}, so that we have the so-called Gelfand triple

𝒰𝒰.\mathcal{U}\subset\mathcal{H}\cong\mathcal{H}^{*}\subset\mathcal{U}^{*}.

We further consider the abstract elasticity tensor \mathfrak{C} as a linear continuous operator 𝒮\mathcal{E}\to\mathcal{S}. Therefore Eu𝒮\mathfrak{C}Eu\in\mathcal{S} provided u𝒰u\in\mathcal{U} so that the equation (2.18) is meant in 𝒮\mathcal{S} and one needs G(t)𝒮G(t)\in\mathcal{S}. Let us note that 𝒯:\mathcal{T}^{\prime}:\mathcal{H}\to\mathcal{H}^{*}\cong\mathcal{H}, ΦΣ:𝒮×𝒵𝒮\varPhi_{\varSigma}^{\prime}:{\mathcal{S}}\times\mathcal{Z}\to{\mathcal{S}}^{*}, E:𝒰E^{*}:\mathcal{E}^{*}\to\mathcal{U}^{*}, and :𝒮\mathfrak{C}^{*}:\mathcal{S}^{*}\to\mathcal{E}^{*}, so that 𝒯v\mathcal{T}^{\prime}v\in\mathcal{H}^{*} provided vv\in\mathcal{H} and also S=ΦΣS=\mathfrak{C}^{*}\varPhi_{\varSigma}^{\prime}\in\mathcal{E}^{*} and ESE^{*}S\in\mathcal{H}^{*}. In particular, the equation (2.3b) can be meant in \mathcal{H} if integrated in time, and one needs F(t)F(t) valued in \mathcal{H}.

For a Banach space 𝒳\mathcal{X}, we will use the standard notation Lp(0,T;𝒳)L^{p}(0,T;\mathcal{X}) for Bochner spaces of the Bochner measurable functions [0,T]𝒳[0,T]\to\mathcal{X} whose norm is integrable with the power pp or essentially bounded if p=p=\infty, and W1,p(0,T;𝒳)W^{1,p}(0,T;\mathcal{X}) the space of functions from Lp(0,T;𝒳)L^{p}(0,T;\mathcal{X}) whose distributional time derivative is also in Lp(0,T;𝒳)L^{p}(0,T;\mathcal{X}). Also, Ck(0,T;𝒳)C^{k}(0,T;\mathcal{X}) will denote the space of functions [0,T]𝒳[0,T]\to\mathcal{X} whose kthk^{\rm th}-derivative is continuous, and Cw(0,T;𝒳)C_{\rm w}(0,T;\mathcal{X}) will denote the space of weakly continuous functions [0,T]𝒳[0,T]\to\mathcal{X}. Later, we will also use Lin(𝒰,){\rm Lin}(\mathcal{U},\mathcal{E}), denoting the space of linear bounded operators 𝒰\mathcal{U}\to\mathcal{E} normed by the usual sup-norm.

A weak formulation of (2.3b) can be obtained after by-part integration over the time interval I=[0,T]I=[0,T] when tested by a smooth function. It is often useful to consider

Φ(Σ,z)=Φ0(Σ,z)+Φ1(z) with [Φ0]z:𝒮×𝒵𝒵1 and Φ1:𝒵𝒵\displaystyle\varPhi(\varSigma,z)=\varPhi_{0}(\varSigma,z)+\varPhi_{1}(z)\ \ \ \text{ with }\ [\varPhi_{0}]_{z}^{\prime}:{\mathcal{S}}\times\mathcal{Z}\to\mathcal{Z}_{1}^{*}\ \text{ and }\ \varPhi_{1}^{\prime}:\mathcal{Z}\to\mathcal{Z}^{*} (2.19)

and to use integration by-parts for the term Φ1(z),z.\langle\varPhi_{1}^{\prime}(z),\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}}\rangle. We thus arrive to the following definition.

Definition 2.1 (Weak solution to (2.3).)

The quadruple (u,Σ,v,z)Cw(0,T;𝒰)×Cw(0,T;𝒮)×Cw(0,T;)×Cw(0,T;𝒵)(u,\varSigma,v,z)\in C_{\rm w}(0,T;{\mathcal{U}})\times C_{\rm w}(0,T;{\mathcal{S}})\times C_{\rm w}(0,T;{\mathcal{H}})\times C_{\rm w}(0,T;\mathcal{Z}) with Ψ(z.)L1(I)\varPsi(\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}})\in L^{1}(I) and z.L1(0,T;𝒵1)\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}}\in L^{1}(0,T;\mathcal{Z}_{1}) will be called a weak solution to the initial-value problem (2.3) with (2.18) if v=u.v=\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{u}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{u}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{u}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{u}}} in the distributional sense, Σ=Eu+G\varSigma={\mathfrak{C}}Eu+G holds a.e. on II, and if

0TΦΣ(Σ,z),Ev~𝒮×𝒮𝒯v,v~.×dt=𝒯v0,v~(0)×+0TF,v~×dt\displaystyle\int_{0}^{T}\!\!\big{\langle}\varPhi_{\varSigma}^{\prime}(\varSigma,z),\mathfrak{C}E\mathchoice{\text{\small$\widetilde{\text{\normalsize$v$}}\hskip 0.26999pt$}}{\text{\small$\widetilde{\text{\normalsize$v$}}$}}{\widetilde{v}\hskip 0.29999pt}{\widetilde{v}}\big{\rangle}_{{\mathcal{S}}^{*}\times{\mathcal{S}}}-\big{\langle}\mathcal{T}^{\prime}v,\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{\mathchoice{\text{\small$\widetilde{\text{\normalsize$v$}}\hskip 0.26999pt$}}{\text{\small$\widetilde{\text{\normalsize$v$}}$}}{\widetilde{v}\hskip 0.29999pt}{\widetilde{v}}}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{\mathchoice{\text{\small$\widetilde{\text{\normalsize$v$}}\hskip 0.26999pt$}}{\text{\small$\widetilde{\text{\normalsize$v$}}$}}{\widetilde{v}\hskip 0.29999pt}{\widetilde{v}}}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\mathchoice{\text{\small$\widetilde{\text{\normalsize$v$}}\hskip 0.26999pt$}}{\text{\small$\widetilde{\text{\normalsize$v$}}$}}{\widetilde{v}\hskip 0.29999pt}{\widetilde{v}}}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\mathchoice{\text{\small$\widetilde{\text{\normalsize$v$}}\hskip 0.26999pt$}}{\text{\small$\widetilde{\text{\normalsize$v$}}$}}{\widetilde{v}\hskip 0.29999pt}{\widetilde{v}}}}}\big{\rangle}_{{\mathcal{H}}^{*}\times{\mathcal{H}}}\,\mathrm{d}t=\big{\langle}\mathcal{T}^{\prime}v_{0},\mathchoice{\text{\small$\widetilde{\text{\normalsize$v$}}\hskip 0.26999pt$}}{\text{\small$\widetilde{\text{\normalsize$v$}}$}}{\widetilde{v}\hskip 0.29999pt}{\widetilde{v}}(0)\big{\rangle}_{{\mathcal{H}}^{*}\times{\mathcal{H}}}+\int_{0}^{T}\!\!\big{\langle}F,\mathchoice{\text{\small$\widetilde{\text{\normalsize$v$}}\hskip 0.26999pt$}}{\text{\small$\widetilde{\text{\normalsize$v$}}$}}{\widetilde{v}\hskip 0.29999pt}{\widetilde{v}}\big{\rangle}_{{\mathcal{H}}^{*}\times{\mathcal{H}}}\,\mathrm{d}t (2.20a)
for any v~C1(0,T;)C(0,T;𝒰)\mathchoice{\text{\small$\widetilde{\text{\normalsize$v$}}\hskip 0.26999pt$}}{\text{\small$\widetilde{\text{\normalsize$v$}}$}}{\widetilde{v}\hskip 0.29999pt}{\widetilde{v}}\in C^{1}(0,T;{\mathcal{H}})\,\cap\,C(0,T;{\mathcal{U}}) with v~(T)=0\mathchoice{\text{\small$\widetilde{\text{\normalsize$v$}}\hskip 0.26999pt$}}{\text{\small$\widetilde{\text{\normalsize$v$}}$}}{\widetilde{v}\hskip 0.29999pt}{\widetilde{v}}(T)=0, and
0TΨ(z~)+[Φ0]z(Σ,z),z~z.𝒵1×𝒵1+Φ1(z),z~𝒵×𝒵dt+Φ1(z0)Φ1(z(T))+0TΨ(z.)dt\displaystyle\int_{0}^{T}\!\!\varPsi(\mathchoice{\text{\small$\widetilde{\text{\normalsize$z$}}\hskip 0.26999pt$}}{\text{\small$\widetilde{\text{\normalsize$z$}}$}}{\widetilde{z}\hskip 0.29999pt}{\widetilde{z}})+\big{\langle}[\varPhi_{0}]_{z}^{\prime}(\varSigma,z),\mathchoice{\text{\small$\widetilde{\text{\normalsize$z$}}\hskip 0.26999pt$}}{\text{\small$\widetilde{\text{\normalsize$z$}}$}}{\widetilde{z}\hskip 0.29999pt}{\widetilde{z}}{-}\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}}\big{\rangle}_{\mathcal{Z}_{1}^{*}\times\mathcal{Z}_{1}}\!+\big{\langle}\varPhi_{1}^{\prime}(z),\mathchoice{\text{\small$\widetilde{\text{\normalsize$z$}}\hskip 0.26999pt$}}{\text{\small$\widetilde{\text{\normalsize$z$}}$}}{\widetilde{z}\hskip 0.29999pt}{\widetilde{z}}\big{\rangle}_{\mathcal{Z}^{*}\times\mathcal{Z}}\,\mathrm{d}t+\varPhi_{1}(z_{0})\geq\varPhi_{1}(z(T))+\!\int_{0}^{T}\!\!\varPsi(\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}})\,\mathrm{d}t (2.20b)

for any z~C(0,T;𝒵)\mathchoice{\text{\small$\widetilde{\text{\normalsize$z$}}\hskip 0.26999pt$}}{\text{\small$\widetilde{\text{\normalsize$z$}}$}}{\widetilde{z}\hskip 0.29999pt}{\widetilde{z}}\in C(0,T;\mathcal{Z}), where indices in the dualities ,\langle\cdot,\cdot\rangle indicate the respective spaces in dualities, and if also u(0)=u0u(0)=u_{0}, Σ(0)=Σ0\varSigma(0)=\varSigma_{0}, and z(0)=z0z(0)=z_{0}.

Let us note that the remaining initial condition v(0)=v0v(0)=v_{0} is contained in (2.20a). Definition 2.1 works successfully for p>1p>1, i.e. for rate-dependent evolution of the abstract internal variable zz, so that z.Lp(0,T;𝒵1)\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}}\in L^{p}(0,T;\mathcal{Z}_{1}). For the rate-dependent evolution when p=1p=1, we would need to modify it. Here, we restrict ourselves to p2p\geq 2, because of the a-priori estimates in Proposition 4.1.

3 A three-step staggered time discretization

We derive in this section the leap-frog discretization of (2.3a,b) combined with an implicit discretization for (2.3c), using a fractional-step split (called also a staggered scheme) with a mid-point formula for (2.3c). Instead of a two-step scheme (1.7), we obtain a three-step scheme and therefore, from now on, we abandon the convention of a half-step notation as used in (1.7) and write k+1k+1 instead of k+1/2k+1/2.

To this aim, we consider sequences of nested finite-dimensional subspaces Sh𝒮S_{h}\subset\mathcal{S}, VhV_{h}\subset\mathcal{H}, and Zh𝒵Z_{h}\subset\mathcal{Z} where the values of the respective discrete variables Σh\varSigma_{h}, vhv_{h}, and zhz_{h} will be, assuming that their unions are dense in the respective Banach spaces. We will use an interpolation operator Ih:Lin(𝒮,Sh)I_{h}:{\rm Lin}(\mathcal{S},S_{h}) and the embedding operator Jh:Zh𝒵J_{h}:Z_{h}\to\mathcal{Z}; it is important that the collection {Jh}h>0\{J_{h}\}_{h>0} is uniformly bounded and, since h>0Zh\bigcup_{h>0}Z_{h} is dense in 𝒵\mathcal{Z}, the sequence {Jh}h>0\{J_{h}\}_{h>0} converges to the identity on 𝒵\mathcal{Z} strongly. We consider EhLin(Vh,)E_{h}\in{\rm Lin}(V_{h},\mathcal{E}). Let us note that we allow for a “non-conformal” approximation of vv, i.e., VhV_{h}\subset\mathcal{H} is not necessarily a subspace of 𝒰\mathcal{U}. This is in agreement with discretizations of the velocity as in [10, 9, 11, 18, 50].

Considering that we know from previous step Στhk,vτhk,zτhk\varSigma_{\tau h}^{k},v_{\tau h}^{k},z_{\tau h}^{k}, then the proposed discretization scheme is

1) calculate Στhk+1\varSigma_{\tau h}^{k+1}: Στhk+1Στhkτ=IhEhvτhk+Dτhk,\displaystyle\!\!\!\frac{\varSigma_{\tau h}^{k+1}-\varSigma_{\tau h}^{k}}{\tau}=I_{h}\mathfrak{C}E_{h}v_{\tau h}^{k}+D_{\tau h}^{k}, (3.1a)
2) calculate zτhk+1z_{\tau h}^{k+1}: JhΨ(zτhk+1zτhkτ)+Φz(Στhk+1,zτhk+1+zτhk2)0,\displaystyle\!\!\!J_{h}^{*}\partial\varPsi\Big{(}\frac{z_{\tau h}^{k+1}{-}z_{\tau h}^{k}}{\tau}\Big{)}+\varPhi_{z}^{\prime}\Big{(}\varSigma_{\tau h}^{k+1},\frac{z_{\tau h}^{k+1}{+}z_{\tau h}^{k}}{2}\Big{)}\ni 0\,, (3.1b)
3) calculate vτhk+1v_{\tau h}^{k+1}: 𝒯vτhk+1vτhkτ+EhSτhk+1=Fτhk+1/2 with Sτhk+1=IhΦΣ(Στhk+1,zτhk+1),\displaystyle\!\!\!{\mathcal{T}}^{\prime}\frac{v_{\tau h}^{k+1}{-}v_{\tau h}^{k}}{\tau}+E_{h}^{\ast}S_{\tau h}^{k+1}=F_{\tau h}^{k+1/2}\ \text{ with }\ S_{\tau h}^{k+1}=\mathfrak{C}^{*}I_{h}^{*}\varPhi_{\varSigma}^{\prime}(\varSigma_{\tau h}^{k+1},z_{\tau h}^{k+1}),
         and  uτhk+1u_{\tau h}^{k+1}: uτhk+1=uτhk+τvτhk+1,\displaystyle\!\!\!u_{\tau h}^{k+1}=u_{\tau h}^{k}+\tau v_{\tau h}^{k+1}, (3.1c)

where Fτhk+1/2F_{\tau h}^{k+1/2} and DτhkD_{\tau h}^{k} are from (1.8). It seems important in the non-linear case to compute the variables in the order given above. We note however, that for the linear viscoelastic problem with Maxwell rheology a scheme with a different ordering has been proposed in [27, Part I, Sect.2]. The potentials Φ\varPhi, Ψ\varPsi, and 𝒯{\mathcal{T}} are considered restricted on Sh×ZhS_{h}\times Z_{h}, ZhZ_{h}, and VhV_{h}, so that their corresponding (sub)differentials ΦΣ\varPhi_{\varSigma}^{\prime}, Φz\varPhi_{z}^{\prime}, Ψ\partial\varPsi, and 𝒯{\mathcal{T}}^{\prime} are valued in ShS_{h}^{*}, ZhZ_{h}^{*}, and VhV_{h}^{*}, respectively. The particular equations/inclusion in (3.1) are thus to be understood in ShS_{h}, ZhZ_{h}^{*}, VhV_{h}^{*}, \mathcal{E}^{*}, and VhV_{h}, respectively. The only implicit equation is (3.1b). Note however that even this equation becomes explicit if there are no spatial gradients in Φ\varPhi and Ψ\varPsi. In view of the definition of the convex subdifferential, (3.1b) means the variational inequality

Ψ(z~)+Φz(Στhk+1,zτhk+1+zτhk2),z~zτhk+1zτhkτΨ(zτhk+1zτhkτ)\displaystyle\varPsi\big{(}\widetilde{z}\big{)}+\bigg{\langle}\varPhi_{z}^{\prime}\Big{(}\varSigma_{\tau h}^{k+1},\frac{z_{\tau h}^{k+1}{+}z_{\tau h}^{k}}{2}\Big{)},\widetilde{z}-\frac{z_{\tau h}^{k+1}{-}z_{\tau h}^{k}}{\tau}\bigg{\rangle}\geq\varPsi\Big{(}\frac{z_{\tau h}^{k+1}{-}z_{\tau h}^{k}}{\tau}\Big{)} (3.2)

for any z~Vh\widetilde{z}\in V_{h}. In any case, the equation (3.1b) posseses a potential

z2τΦ(Στhk+1,z+zτhk2)+Ψ(zzτhkτ)\displaystyle z\mapsto\frac{2}{\tau}\varPhi\Big{(}\varSigma_{\tau h}^{k+1},\frac{z{+}z_{\tau h}^{k}}{2}\Big{)}+\varPsi\Big{(}\frac{z{-}z_{\tau h}^{k}}{\tau}\Big{)} (3.3)

which is to be minimized on ZhZ_{h}. Therefore the existence of a solution to this inclusion (3.1b), or equivalently of the variational inequality (3.2), can be shown by a direct method, cf. also [42]. The scheme (3.1) is thus to be solved recurrently for k=0,1,,T/τ1k=0,1,...,T/\tau-1, starting from the initial conditions (2.3d) assumed, for simplicity, to live in the respective finite-dimensional spaces.

The energy properties of this scheme can be obtained by imitating (2.4)–(2.17). More specifically, we proceed as follows: we test (3.1a) by 12ΦΣ(Στhk+1,zτhk+1)+12ΦΣ(Στhk,zτhk)\frac{1}{2}\varPhi_{\varSigma}^{\prime}(\varSigma_{\tau h}^{k+1},z_{\tau h}^{k+1})+\frac{1}{2}\varPhi_{\varSigma}^{\prime}(\varSigma_{\tau h}^{k},z_{\tau h}^{k}), then test (3.1b) by zτhk+1zτhkτ\frac{z_{\tau h}^{k+1}-z_{\tau h}^{k}}{\tau}, and eventually test the average of (3.1) at the level k+1k{+}1 and k{k} by vτhkv_{\tau h}^{k}. Using that Φ(,z)\varPhi(\cdot,z) and Φ(Σ,)\varPhi(\Sigma,\cdot) are quadratic as assumed in (2.2), we have

ΦΣ(Στhk+1,zτhk+1)+ΦΣ(Στhk,zτhk)2,Στhk+1Στhkτ\displaystyle\bigg{\langle}\frac{\varPhi_{\varSigma}^{\prime}(\varSigma_{\tau h}^{k+1},z_{\tau h}^{k+1})+\varPhi_{\varSigma}^{\prime}(\varSigma_{\tau h}^{k},z_{\tau h}^{k})}{2},\frac{\varSigma_{\tau h}^{k+1}\!-\varSigma_{\tau h}^{k}}{\tau}\bigg{\rangle}
=ΦΣ(Στhk+1,zτhk)+ΦΣ(Στhk,zτhk)2,Στhk+1Στhkτ\displaystyle\quad=\bigg{\langle}\frac{\varPhi_{\varSigma}^{\prime}(\varSigma_{\tau h}^{k+1},z_{\tau h}^{k})+\varPhi_{\varSigma}^{\prime}(\varSigma_{\tau h}^{k},z_{\tau h}^{k})}{2},\frac{\varSigma_{\tau h}^{k+1}\!-\varSigma_{\tau h}^{k}}{\tau}\bigg{\rangle}
+τ2ΦΣ(Στhk+1,zτhk+1)ΦΣ(Στhk+1,zτhk)τ,Στhk+1Στhkτ\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad\qquad+\frac{\tau}{2}\bigg{\langle}\frac{\varPhi_{\varSigma}^{\prime}(\varSigma_{\tau h}^{k+1},z_{\tau h}^{k+1})-\varPhi_{\varSigma}^{\prime}(\varSigma_{\tau h}^{k+1},z_{\tau h}^{k})}{\tau},\frac{\varSigma_{\tau h}^{k+1}\!-\varSigma_{\tau h}^{k}}{\tau}\bigg{\rangle}
=Φ(Στhk+1,zτhk)Φ(Στhk,zτhk)τ+τ2ΦΣ(Στhk+1,zτhk+1)ΦΣ(Στhk+1,zτhk)τ,Στhk+1Στhkτ,\displaystyle\quad=\frac{\varPhi(\varSigma_{\tau h}^{k+1},z_{\tau h}^{k}){-}\varPhi(\varSigma_{\tau h}^{k},z_{\tau h}^{k})}{\tau}+\frac{\tau}{2}\bigg{\langle}\frac{\varPhi_{\varSigma}^{\prime}(\varSigma_{\tau h}^{k+1},z_{\tau h}^{k+1})-\varPhi_{\varSigma}^{\prime}(\varSigma_{\tau h}^{k+1},z_{\tau h}^{k})}{\tau},\frac{\varSigma_{\tau h}^{k+1}\!-\varSigma_{\tau h}^{k}}{\tau}\bigg{\rangle}\,, (3.4a)
where we used also (3.1a), and
Φz(Στhk+1,zτhk+1+zτhk2),zτhk+1zτhkτ=Φ(Στhk+1,zτhk+1)Φ(Στhk+1,zτhk)τ.\displaystyle\bigg{\langle}\varPhi_{z}^{\prime}\Big{(}\varSigma_{\tau h}^{k+1},\frac{z_{\tau h}^{k+1}{+}z_{\tau h}^{k}}{2}\Big{)},\frac{z_{\tau h}^{k+1}-z_{\tau h}^{k}}{\tau}\bigg{\rangle}=\frac{\varPhi(\varSigma_{\tau h}^{k+1},z_{\tau h}^{k+1})-\varPhi(\varSigma_{\tau h}^{k+1},z_{\tau h}^{k})}{\tau}\,. (3.4b)

Therefore, using again the particular equations/inclusion in (3.1), we get respectively

Φ(Στhk+1,zτhk)Φ(Στhk,zτhk)τ=ΦΣ(Στhk+1,zτhk+1)+ΦΣ(Στhk,zτhk)2,IhEhvτhk+Dτhk\displaystyle\frac{\varPhi(\varSigma_{\tau h}^{k+1},z_{\tau h}^{k})-\varPhi(\varSigma_{\tau h}^{k},z_{\tau h}^{k})}{\tau}=\bigg{\langle}\frac{\varPhi_{\varSigma}^{\prime}(\varSigma_{\tau h}^{k+1},z_{\tau h}^{k+1})+\varPhi_{\varSigma}^{\prime}(\varSigma_{\tau h}^{k},z_{\tau h}^{k})}{2},I_{h}\mathfrak{C}E_{h}v_{\tau h}^{k}+D_{\tau h}^{k}\bigg{\rangle}
τ2ΦΣ(Στhk+1,zτhk+1)ΦΣ(Στhk+1,zτhk)τ,Στhk+1Στhkτ,\displaystyle\hskip 140.00021pt-\frac{\tau}{2}\bigg{\langle}\frac{\varPhi_{\varSigma}^{\prime}(\varSigma_{\tau h}^{k+1},z_{\tau h}^{k+1})-\varPhi_{\varSigma}^{\prime}(\varSigma_{\tau h}^{k+1},z_{\tau h}^{k})}{\tau},\frac{\varSigma_{\tau h}^{k+1}\!-\varSigma_{\tau h}^{k}}{\tau}\bigg{\rangle}\,, (3.5a)
Ξ(zτhk+1zτhkτ)+Φ(Στhk+1,zτhk+1)Φ(Στhk+1,zτhk)τ0,and\displaystyle\varXi\Big{(}\frac{z_{\tau h}^{k+1}{-}z_{\tau h}^{k}}{\tau}\Big{)}+\frac{\varPhi(\varSigma_{\tau h}^{k+1},z_{\tau h}^{k+1})-\varPhi(\varSigma_{\tau h}^{k+1},z_{\tau h}^{k})}{\tau}\leq 0\,,\qquad\text{and} (3.5b)
𝒯vτhk+1vτhk12τ,vτhk+EhIhΦΣ(Στhk+1,zτhk+1)+ΦΣ(Στhk,zτhk)2,vτhk=Fτhk+1/2,vτhk.\displaystyle\big{\langle}{\mathcal{T}}^{\prime}\frac{v_{\tau h}^{k+1}{-}v_{\tau h}^{k-1}}{2\tau},v_{\tau h}^{k}\big{\rangle}+\bigg{\langle}E_{h}^{*}\mathfrak{C}^{*}I_{h}^{*}\frac{\varPhi_{\varSigma}^{\prime}(\varSigma_{\tau h}^{k+1},z_{\tau h}^{k+1}){+}\varPhi_{\varSigma}^{\prime}(\varSigma_{\tau h}^{k},z_{\tau h}^{k})}{2},v_{\tau h}^{k}\bigg{\rangle}=\big{\langle}F_{\tau h}^{k+1/2},v_{\tau h}^{k}\big{\rangle}\,. (3.5c)

Let us also note that, if Ψ(0)=0\varPsi(0)=0 is assumed, the substitution z~=0\widetilde{z}=0 into the inequality (3.2) gives Ψ(zτhk+1zτhkτ)\varPsi(\frac{z_{\tau h}^{k+1}-z_{\tau h}^{k}}{\tau}) instead of the dissipation rate Ξ(zτhk+1zτhkτ)\varXi(\frac{z_{\tau h}^{k+1}-z_{\tau h}^{k}}{\tau}) in (3.5b), which is a suboptimal estimate except if Ψ\varPsi is degree-1 positively homogeneous.

Summing (3.5) up, we benefit from the cancellation of the terms ±Φ(Στhk+1,zτhk)\pm\varPhi(\varSigma_{\tau h}^{k+1},z_{\tau h}^{k}), which is the usual goal and attribute of well-designed fractional-split schemes. Thus, using also the simple algebra

𝒯(vτhk+1vτhk1),vτhk=𝒯vτhk+1,vτhk𝒯vτhk,vτhk1,\displaystyle\big{\langle}{\mathcal{T}}^{\prime}(v_{\tau h}^{k+1}{-}v_{\tau h}^{k-1}),v_{\tau h}^{k}\big{\rangle}=\big{\langle}{\mathcal{T}}^{\prime}v_{\tau h}^{k+1},v_{\tau h}^{k}\big{\rangle}-\big{\langle}{\mathcal{T}}^{\prime}v_{\tau h}^{k},v_{\tau h}^{k-1}\big{\rangle}\,, (3.6)

we obtain the analog of (2.17), namely

𝒯vτhk+1,vτhk𝒯vτhk,vτhk12τ+Φ(Στhk+1,zτhk+1)Φ(Στhk,zτhk)τ+Ξ(zτhk+1zτhkτ)\displaystyle\frac{\langle{\mathcal{T}}^{\prime}v_{\tau h}^{k+1},v_{\tau h}^{k}\rangle-\langle{\mathcal{T}}^{\prime}v_{\tau h}^{k},v_{\tau h}^{k-1}\rangle}{2\tau}+\frac{\varPhi(\varSigma_{\tau h}^{k+1},z_{\tau h}^{k+1})-\varPhi(\varSigma_{\tau h}^{k},z_{\tau h}^{k})}{\tau}+\varXi\Big{(}\frac{z_{\tau h}^{k+1}-z_{\tau h}^{k}}{\tau}\Big{)}
Fτhk+1/2,vτhk+ΦΣ(Στhk+1,zτhk+1)+ΦΣ(Στhk,zτhk)2,Dτhk\displaystyle\qquad\qquad\qquad\leq\big{\langle}F_{\tau h}^{k+1/2},v_{\tau h}^{k}\big{\rangle}+\bigg{\langle}\frac{\varPhi_{\varSigma}^{\prime}(\varSigma_{\tau h}^{k+1},z_{\tau h}^{k+1})+\varPhi_{\varSigma}^{\prime}(\varSigma_{\tau h}^{k},z_{\tau h}^{k})}{2},D_{\tau h}^{k}\bigg{\rangle}
τ2ΦΣ(Στhk+1,zτhk+1)ΦΣ(Στhk+1,zτhk)τ,Στhk+1Στhkτ.\displaystyle\qquad\qquad\qquad\quad\ -\frac{\tau}{2}\bigg{\langle}\frac{\varPhi_{\varSigma}^{\prime}(\varSigma_{\tau h}^{k+1},z_{\tau h}^{k+1})-\varPhi_{\varSigma}^{\prime}(\varSigma_{\tau h}^{k+1},z_{\tau h}^{k})}{\tau},\frac{\varSigma_{\tau h}^{k+1}\!-\varSigma_{\tau h}^{k}}{\tau}\bigg{\rangle}\,. (3.7)

If Ψ\varPsi is smooth except possibly at zero, there is even equality in (3.7).

Considering some approximate values {zτhk}k=0,,K\{z_{\tau h}^{k}\}_{k=0,...,K} of the variable zz with K=T/τK=T/\tau, we define the piecewise-constant and the piecewise affine interpolants respectively by

z¯τh(t)=zτhk,z¯¯τh(t)=12zτhk+12zτhk1, and\displaystyle\overline{z}_{\tau h}(t)=z_{\tau h}^{k},\qquad\ \ \underline{\overline{z}}_{\tau h}(t)=\frac{1}{2}z_{\tau h}^{k}+\frac{1}{2}z_{\tau h}^{k-1},\qquad\ \text{ and} (3.8a)
zτh(t)=t(k1)ττzτhk+kτtτzτhk1\displaystyle z_{\tau h}(t)=\frac{t-(k{-}1)\tau}{\tau}z_{\tau h}^{k}+\frac{k\tau-t}{\tau}z_{\tau h}^{k-1} for (k1)τ<tkτ.\displaystyle\text{for }(k{-}1)\tau<t\leq k\tau. (3.8b)

Similar meaning is implied for Στh\varSigma_{\tau h}, vτhv_{\tau h}, Σ¯τh\overline{\varSigma}_{\tau h}, v¯τh\overline{v}_{\tau h}, F¯τh\overline{F}_{\tau h}, etc. The discrete scheme (3.1) can be written in a “compact” form as

Σ.τh=IhEhv¯τh+G.τh and u.τh=v¯τh,\displaystyle\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{\varSigma}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{\varSigma}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\varSigma}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\varSigma}}}_{\tau h}=I_{h}\mathfrak{C}E_{h}\overline{v}_{\tau h}+\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{G}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{G}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{G}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{G}}}_{\tau h}\ \ \text{ and }\ \ \mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{u}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{u}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{u}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{u}}}_{\tau h}=\overline{v}_{\tau h}, (3.9a)
JhΨ(z.τh)+Φz(Σ¯τh,z¯¯τh)0,\displaystyle J_{h}^{*}\partial\varPsi\big{(}\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}}_{\tau h}\big{)}+\varPhi_{z}^{\prime}\big{(}\overline{\varSigma}_{\tau h},\underline{\overline{z}}_{\tau h}\big{)}\ni 0\,, (3.9b)
𝒯v.τh+EhS¯τh=F¯τh with S¯τh=IhΦΣ(Σ¯τh,z¯τh)\displaystyle{\mathcal{T}}^{\prime}\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{v}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{v}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{v}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{v}}}_{\tau h}+E_{h}^{\ast}\overline{S}_{\tau h}={\overline{F}}_{\tau h}\ \ \text{ with }\ \ \overline{S}_{\tau h}=\mathfrak{C}^{*}I_{h}^{*}\varPhi_{\varSigma}^{\prime}(\overline{\varSigma}_{\tau h},\overline{z}_{\tau h})\, (3.9c)

to be valid a.e. on the time interval [0,T][0,T].

4 Numerical stability and convergence

Because the energy (1.9) involves now also the internal variable, the CFL condition has to be modified. More specifically, we assume that

η>0ΣhSh,zhZh:Φ(Σh,zh)τ24ηEhSh,(𝒯)1EhSh× with Sh=IhΦΣ(Σh,zh),\displaystyle\exists\,\eta>0\ \forall\,\varSigma_{h}\in S_{h},\ z_{h}\in Z_{h}:\ \ \varPhi(\varSigma_{h},z_{h})\geq\frac{\tau^{2}}{4{-}\eta}\big{\langle}E^{*}_{h}S_{h},({\mathcal{T}}^{\prime})^{-1}E^{*}_{h}S_{h}\big{\rangle}_{{\mathcal{H}}^{*}\times{\mathcal{H}}}\ \ \text{ with }\ S_{h}=\mathfrak{C}^{*}I_{h}^{*}\varPhi^{\prime}_{\Sigma}(\varSigma_{h},z_{h}), (4.1)

where Σh\varSigma_{h} and zhz_{h} are considered from the corresponding finite-dimensional subspaces. Let us still introduce the Banach space 𝒳:={X𝒮;EX}{\mathcal{X}}:=\{X\in{\mathcal{S}}^{*};\ E^{*}{\mathfrak{C}}^{*}X\in{\mathcal{H}}^{*}\}. We further assume Lin(,𝒮)\mathfrak{C}\in{\rm Lin}({\mathcal{E}},{\mathcal{S}}) invertible and that the collection of the interpolation operators {Ih:𝒮Sh}h>0\{I_{h}:\mathcal{S}\to S_{h}\}_{h>0} is bounded in Lin(𝒮,𝒮){\rm Lin}(\mathcal{S},\mathcal{S}).

Proposition 4.1 (Numerical stability.)

Let FF be constant in time, valued in {\mathcal{H}}^{*}, GW1,1(0,T;𝒮)G\!\in\!W^{1,1}(0,T;{\mathcal{S}}), u0𝒰u_{0}\in\mathcal{\mathcal{U}} so that Σ0=Eu0𝒮\varSigma_{0}={\mathfrak{C}}Eu_{0}\in{\mathcal{S}}, v0v_{0}\in\mathcal{H}, z0𝒵z_{0}\in\mathcal{Z}, the functionals 𝒯\mathcal{T}, Φ\varPhi, and Ψ\varPsi be coercive and ΦΣ(Σ,)\varPhi_{\varSigma}^{\prime}(\varSigma,\cdot) be Lipschitz continuous uniformly for Σ𝒮\varSigma\in\mathcal{S} in the sense

ϵ>0p2(Σ,v,z)𝒮××𝒵:\displaystyle\exists\epsilon>0\ p\geq 2\ \forall(\varSigma,v,z)\in{\mathcal{S}}{\times}{\mathcal{H}}{\times}\mathcal{Z}:
𝒯(v)ϵv2,Φ(Σ,z)ϵΣ𝒮2+ϵz𝒵2,Ψ(z)ϵz𝒵1p,\displaystyle\mathcal{T}(v)\geq\epsilon\|v\|_{\mathcal{H}}^{2},\ \ \varPhi(\varSigma,z)\geq\epsilon\|\varSigma\|_{\mathcal{S}}^{2}+\epsilon\|z\|_{\mathcal{Z}}^{2},\ \ \varPsi(z)\geq\epsilon\|z\|_{\mathcal{Z}_{1}}^{p}, (4.2a)
CΣ𝒮,z𝒵:\displaystyle\exists C\ \forall\varSigma\in\mathcal{S},\ z\in\mathcal{Z}: ΦΣ(Σ,z)𝒮C(1+Σ𝒮+z𝒵),\displaystyle\big{\|}\varPhi_{\varSigma}^{\prime}(\varSigma,z)\big{\|}_{{\mathcal{S}}^{*}}\leq C\big{(}1+\|\varSigma\|_{\mathcal{S}}+\|z\|_{\mathcal{Z}}\big{)}, (4.2b)
Σ𝒮,z,z~𝒵:\displaystyle\exists\ell\in{\mathbb{R}}\ \forall\varSigma\in\mathcal{S},\ z,\mathchoice{\text{\small$\widetilde{\text{\normalsize$z$}}\hskip 0.26999pt$}}{\text{\small$\widetilde{\text{\normalsize$z$}}$}}{\widetilde{z}\hskip 0.29999pt}{\widetilde{z}}\in\mathcal{Z}: ΦΣ(Σ,z)ΦΣ(Σ,z~)𝒮zz~𝒵1.\displaystyle\big{\|}\varPhi_{\varSigma}^{\prime}(\varSigma,z)-\varPhi_{\varSigma}^{\prime}(\varSigma,\mathchoice{\text{\small$\widetilde{\text{\normalsize$z$}}\hskip 0.26999pt$}}{\text{\small$\widetilde{\text{\normalsize$z$}}$}}{\widetilde{z}\hskip 0.29999pt}{\widetilde{z}})\big{\|}_{{\mathcal{S}}^{*}}\leq\ell\|z-\mathchoice{\text{\small$\widetilde{\text{\normalsize$z$}}\hskip 0.26999pt$}}{\text{\small$\widetilde{\text{\normalsize$z$}}$}}{\widetilde{z}\hskip 0.29999pt}{\widetilde{z}}\big{\|}_{\mathcal{Z}_{1}}. (4.2c)

Let also the CFL condition (4.1) hold with τ>0\tau>0 sufficiently small (in order to make the discrete Gronwall inequality effective). Then the following a-priori estimates hold:

uτhW1,(0,T;)C,\displaystyle\|u_{\tau h}\|_{W^{1,\infty}(0,T;\mathcal{H})}\leq C\,, (4.3a)
ΣτhL(0,T;𝒮)C and Σ.τhL1(0,T;𝒳)C,\displaystyle\|\varSigma_{\tau h}\|_{L^{\infty}(0,T;\mathcal{S})}\leq C\ \ \text{ and }\ \ \|\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{\varSigma}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{\varSigma}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\varSigma}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\varSigma}}}_{\tau h}\|_{L^{1}(0,T;\mathcal{X}^{*})}\leq C, (4.3b)
vτhL(0,T;)C and 𝒯v.τhL(0,T;𝒰)C,\displaystyle\|v_{\tau h}\|_{L^{\infty}(0,T;\mathcal{H})}\leq C\ \ \text{ and }\ \ \|\mathcal{T}^{\prime}\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{v}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{v}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{v}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{v}}}_{\tau h}\|_{L^{\infty}(0,T;\mathcal{U}^{*})}\leq C, (4.3c)
zτhL(0,T;𝒵)C and z.τhLp(0,T;𝒵1)C.\displaystyle\|z_{\tau h}\|_{L^{\infty}(0,T;\mathcal{Z})}\leq C\ \ \text{ and }\ \ \|\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}}_{\tau h}\|_{L^{p}(0,T;\mathcal{Z}_{1})}\leq C. (4.3d)

Proof. The energy imbalance that we have here is (3.7) which can be re-written as

𝔈hk+1𝔈hkτ+Ξ(zτhk+1zτhkτ)Fτhk,vτhk×+ΦΣ(Στhk+1,zτhk+1)+ΦΣ(Στhk,zτhk)2,Dτhk𝒮×𝒮\displaystyle\frac{\mathfrak{E}_{h}^{k+1}{-}\mathfrak{E}_{h}^{k}}{\tau}+\varXi\Big{(}\frac{z_{\tau h}^{k+1}{-}z_{\tau h}^{k}}{\tau}\Big{)}\leq\big{\langle}F_{\tau h}^{k},v_{\tau h}^{k}\big{\rangle}_{{\mathcal{H}}^{*}\times{\mathcal{H}}}+\bigg{\langle}\frac{\varPhi_{\varSigma}^{\prime}(\varSigma_{\tau h}^{k+1},z_{\tau h}^{k+1})+\varPhi_{\varSigma}^{\prime}(\varSigma_{\tau h}^{k},z_{\tau h}^{k})}{2},D_{\tau h}^{k}\bigg{\rangle}_{{\mathcal{S}}^{*}\times{\mathcal{S}}}
τ2ΦΣ(Στhk+1,zτhk+1)ΦΣ(Στhk+1,zτhk)τ,Στhk+1Στhkτ𝒮×𝒮\displaystyle\qquad\qquad\qquad\qquad\qquad\qquad-\frac{\tau}{2}\bigg{\langle}\frac{\varPhi_{\varSigma}^{\prime}(\varSigma_{\tau h}^{k+1},z_{\tau h}^{k+1})-\varPhi_{\varSigma}^{\prime}(\varSigma_{\tau h}^{k+1},z_{\tau h}^{k})}{\tau},\frac{\varSigma_{\tau h}^{k+1}\!-\varSigma_{\tau h}^{k}}{\tau}\bigg{\rangle}_{{\mathcal{S}}^{*}\times{\mathcal{S}}} (4.4)

with an analog of the energy (1.9), namely

𝔈hk+1=12𝒯vτhk+1,vτhk×+Φ(Στhk+1,zτhk+1).\displaystyle\mathfrak{E}_{h}^{k+1}=\frac{1}{2}\langle{\mathcal{T}}^{\prime}v_{\tau h}^{k+1},v_{\tau h}^{k}\rangle_{{\mathcal{H}}^{*}\times{\mathcal{H}}}+\varPhi(\varSigma_{\tau h}^{k+1},z_{\tau h}^{k+1}). (4.5)

We need to show that 𝔈hk+1\mathfrak{E}_{h}^{k+1} is indeed a sum of the kinetic and the stored energies at least up to some positive coefficients. To do so, like e.g. [45, Lemma 4.2] or [50, Sect. 6.1.6], let us write

𝒯vτhk+1,vτhk\displaystyle\langle{\mathcal{T}}^{\prime}v_{\tau h}^{k+1},v_{\tau h}^{k}\rangle =𝒯vτhk+1+vτhk2,vτhk+1+vτhk2𝒯vτhk+1vτhk2,vτhk+1vτhk2\displaystyle=\Big{\langle}{\mathcal{T}}^{\prime}\frac{v_{\tau h}^{k+1}+v_{\tau h}^{k}}{2},\frac{v_{\tau h}^{k+1}+v_{\tau h}^{k}}{2}\Big{\rangle}-\Big{\langle}{\mathcal{T}}^{\prime}\frac{v_{\tau h}^{k+1}-v_{\tau h}^{k}}{2},\frac{v_{\tau h}^{k+1}-v_{\tau h}^{k}}{2}\Big{\rangle}
=𝒯vτhk+1+vτhk2,vτhk+1+vτhk2\displaystyle=\Big{\langle}{\mathcal{T}}^{\prime}\frac{v_{\tau h}^{k+1}+v_{\tau h}^{k}}{2},\frac{v_{\tau h}^{k+1}+v_{\tau h}^{k}}{2}\Big{\rangle}
τ24Eh(IhΦΣ(Στhk+1,zτhk+1)Fτhk+1/2),(𝒯)1Eh(IhΦΣ(Στhk+1,zτhk+1)Fτhk+1/2),\displaystyle\ -\frac{\tau^{2}}{4}\big{\langle}E^{*}_{h}\big{(}\mathfrak{C}^{*}I_{h}^{*}\varPhi^{\prime}_{\Sigma}(\varSigma^{k+1}_{\tau h},z_{\tau h}^{k+1}){-}F_{\tau h}^{k+1/2}\big{)},({\mathcal{T}}^{\prime})^{-1}E^{*}_{h}\big{(}\mathfrak{C}^{*}I_{h}^{*}\varPhi^{\prime}_{\Sigma}(\varSigma^{k+1}_{\tau h},z_{\tau h}^{k+1}){-}F_{\tau h}^{k+1/2}\big{)}\big{\rangle}\,, (4.6)

where all the duality pairings are between {\mathcal{H}}^{*} and {\mathcal{H}}; here also (3.1) has been used. Thus, using also 𝒯(v)=12𝒯v,v{\mathcal{T}}(v)=\frac{1}{2}\langle{\mathcal{T}}^{\prime}v,v\rangle, we can write the energy (4.5) as

𝔈hk+1\displaystyle\mathfrak{E}_{h}^{k+1} =𝒯(vτhk+1/2)+aτhk+1Φ(Στhk+1,zτhk+1)+τ22(𝒯)1EhIhΦΣ(Στhk+1,zτhk+1),Fτhk+1/2τ24Fτhk+1/22\displaystyle={\mathcal{T}}(v_{\tau h}^{k+1/2})+a_{\tau h}^{k+1}\varPhi(\varSigma_{\tau h}^{k+1},z_{\tau h}^{k+1})+\frac{\tau^{2}}{2}\big{\langle}({\mathcal{T}}^{\prime})^{-1}E^{*}_{h}\mathfrak{C}^{*}I_{h}^{*}\varPhi^{\prime}_{\Sigma}(\varSigma^{k+1}_{\tau h},z_{\tau h}^{k+1}),F_{\tau h}^{k+1/2}\big{\rangle}-\frac{\tau^{2}}{4}\|F_{\tau h}^{k+1/2}\|_{\mathcal{H}}^{2}
with aτhk+1:=1τ24EhIhΦΣ(Στhk+1,zτhk+1),(𝒯)1EhIhΦΣ(Στhk+1,zτhk+1)Φ(Στhk+1,zτhk+1)η\displaystyle\text{ with }\ \ a_{\tau h}^{k+1}:=1-\frac{\tau^{2}}{4}\frac{\big{\langle}E^{*}_{h}\mathfrak{C}^{*}I_{h}^{*}\varPhi^{\prime}_{\Sigma}(\varSigma^{k+1}_{\tau h},z_{\tau h}^{k+1}),({\mathcal{T}}^{\prime})^{-1}E^{*}_{h}\mathfrak{C}^{*}I_{h}^{*}\varPhi^{\prime}_{\Sigma}(\varSigma^{k+1}_{\tau h},z_{\tau h}^{k+1})\big{\rangle}}{\varPhi(\varSigma_{\tau h}^{k+1},z_{\tau h}^{k+1})}\geq\eta (4.7)

and with vτhk+1/2:=12vτhk+1+12vτhkv_{\tau h}^{k+1/2}:=\frac{1}{2}v_{\tau h}^{k+1}+\frac{1}{2}v_{\tau h}^{k}. The energy 𝔈hk+1\mathfrak{E}_{h}^{k+1} yields a-priori estimates if the coefficient aτhka_{\tau h}^{k} is non-negative, which is just ensured by our CFL condition (4.1) used for Σh=Στhk+1\varSigma_{h}=\varSigma_{\tau h}^{k+1} and zh=zτhk+1z_{h}=z_{\tau h}^{k+1}. Here η>0\eta>0 in (4.7) is just from (4.1).

Altogether, summing (4.4) for k=0,,lT/τ1k=0,...,l\leq T/\tau-1 and using (4.7), we obtain the estimate

ϵ(vτhl+1/22+aτhl+1Στhl+1𝒮2+aτhl+1zτhl+1𝒵2+τk=0lzτhk+1zτhkτ𝒵1p)\displaystyle\epsilon\bigg{(}\big{\|}v_{\tau h}^{l+1/2}\big{\|}_{\mathcal{H}}^{2}+a_{\tau h}^{l+1}\big{\|}\varSigma_{\tau h}^{l+1}\big{\|}_{\mathcal{S}}^{2}+a_{\tau h}^{l+1}\big{\|}z_{\tau h}^{l+1}\big{\|}_{\mathcal{Z}}^{2}+\tau\sum_{k=0}^{l}\Big{\|}\frac{z_{\tau h}^{k+1}{-}z_{\tau h}^{k}}{\tau}\Big{\|}_{\mathcal{Z}_{1}}^{p}\bigg{)}
τ24Fτhl+1/22τ22(𝒯)1EhIhΦΣ(Στhl+1,zτhl+1),Fτhl+1/2τ22(𝒯)1EhIhΦΣ(Στh0,zτh0),Fτh1/2\displaystyle\quad\leq\frac{\tau^{2}}{4}\|F_{\tau h}^{l+1/2}\|_{\mathcal{H}}^{2}-\frac{\tau^{2}}{2}\big{\langle}({\mathcal{T}}^{\prime})^{-1}E^{*}_{h}\mathfrak{C}^{*}I_{h}^{*}\varPhi^{\prime}_{\Sigma}(\varSigma_{\tau h}^{l+1},z_{\tau h}^{l+1}),F_{\tau h}^{l+1/2}\big{\rangle}-\frac{\tau^{2}}{2}\big{\langle}({\mathcal{T}}^{\prime})^{-1}E^{*}_{h}\mathfrak{C}^{*}I_{h}^{*}\varPhi^{\prime}_{\Sigma}(\varSigma^{0}_{\tau h},z_{\tau h}^{0}),F_{\tau h}^{1/2}\big{\rangle}
+𝒯(vτh1/2)+aτh0Φ(Στh0,zτh0)+τk=0l(Fτhk+1/2,vτhk\displaystyle\quad\ +{\mathcal{T}}(v_{\tau h}^{-1/2})+a_{\tau h}^{0}\varPhi(\varSigma_{\tau h}^{0},z_{\tau h}^{0})+\tau\sum_{k=0}^{l}\bigg{(}\big{\langle}F_{\tau h}^{k+1/2},v_{\tau h}^{k}\big{\rangle}
+12ΦΣ(Στhk+1,zτhk+1)+ΦΣ(Στhk,zτhk)𝒮Dτhk𝒮+τ2zτhk+1zτhkτ𝒵1Στhk+1Στhkτ𝒮),\displaystyle\quad\ +\frac{1}{2}\big{\|}\varPhi_{\varSigma}^{\prime}(\varSigma_{\tau h}^{k+1},z_{\tau h}^{k+1})+\varPhi_{\varSigma}^{\prime}(\varSigma_{\tau h}^{k},z_{\tau h}^{k})\big{\|}_{{\mathcal{S}}^{*}}\big{\|}D_{\tau h}^{k}\big{\|}_{{\mathcal{S}}}+\frac{\tau}{2}\ell\Big{\|}\frac{z_{\tau h}^{k}+1{-}z_{\tau h}^{k}}{\tau}\Big{\|}_{\mathcal{Z}_{1}}\Big{\|}\frac{\varSigma_{\tau h}^{k+1}\!{-}\varSigma_{\tau h}^{k}}{\tau}\Big{\|}_{{\mathcal{S}}}\bigg{)}\,, (4.8)

where ϵ\epsilon, pp, \ell and aτhl+1a_{\tau h}^{l+1} come from (4.2) and (4.7). Here we also have used that the collection {Ih}h>0\{I_{h}\}_{h>0} is bounded. Using (4.2b), we estimate ΦΣ(Στhk,zτhk)𝒮C(1+Στhk𝒮2+zτhk𝒵2)\|\varPhi_{\varSigma}^{\prime}(\varSigma_{\tau h}^{k},z_{\tau h}^{k})\|_{{\mathcal{S}}^{*}}\leq C(1+\|\varSigma_{\tau h}^{k}\|_{\mathcal{S}}^{2}+\|z_{\tau h}^{k}\|_{\mathcal{Z}}^{2}) and ΦΣ(Στhk+1,zτhk+1)𝒮C(1+Στhk+1𝒮2+zτhk+1𝒵2)\|\varPhi_{\varSigma}^{\prime}(\varSigma_{\tau h}^{k+1},z_{\tau h}^{k+1})\|_{{\mathcal{S}}^{*}}\leq C(1+\|\varSigma_{\tau h}^{k+1}\|_{\mathcal{S}}^{2}+\|z_{\tau h}^{k+1}\|_{\mathcal{Z}}^{2}), and then use the summability of Dτhk𝒮\|D_{\tau h}^{k}\big{\|}_{{\mathcal{S}}} needed for the discrete Gronwall inequality; here the assumption G.L1(0,T;𝒮)\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{G}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{G}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{G}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{G}}}\in L^{1}(0,T;{\mathcal{S}}) is needed. The last term in (4.8) is to be estimated by the Young inequality as

τ2zτhk+1zτhkτ𝒵1Στhk+1Στhkτ𝒮\displaystyle\frac{\tau}{2}\ell\Big{\|}\frac{z_{\tau h}^{k}+1{-}z_{\tau h}^{k}}{\tau}\Big{\|}_{\mathcal{Z}_{1}}\Big{\|}\frac{\varSigma_{\tau h}^{k+1}\!{-}\varSigma_{\tau h}^{k}}{\tau}\Big{\|}_{\mathcal{S}} ϵ2zτhk+1zτhkτ𝒵12+28ϵΣτhk+1Στhk𝒮2\displaystyle\leq\frac{\epsilon}{2}\Big{\|}\frac{z_{\tau h}^{k}+1{-}z_{\tau h}^{k}}{\tau}\Big{\|}_{\mathcal{Z}_{1}}^{2}+\frac{\ell^{2}}{8\epsilon}\big{\|}\varSigma_{\tau h}^{k+1}\!{-}\varSigma_{\tau h}^{k}\big{\|}_{\mathcal{S}}^{2}
ϵ2zτhk+1zτhkτ𝒵1p+Cp,ϵ,(1+Στhk+1𝒮2+Στhk𝒮2)\displaystyle\leq\frac{\epsilon}{2}\Big{\|}\frac{z_{\tau h}^{k}+1{-}z_{\tau h}^{k}}{\tau}\Big{\|}_{\mathcal{Z}_{1}}^{p}+C_{p,\epsilon,\ell}\big{(}1+\|\varSigma_{\tau h}^{k+1}\|_{\mathcal{S}}^{2}+\|\varSigma_{\tau h}^{k}\|_{\mathcal{S}}^{2}\big{)}

with some Cp,ϵ,C_{p,\epsilon,\ell} depending on pp, ϵ\epsilon, and \ell. Here we needed p2p\geq 2; note that this is related with the specific explicit time discretization due to the last term in (3.7) but not with the problem itself. Then we use the discrete Gronwall inequality to obtain the former estimates in (4.3b,c) and the estimates (4.3a,d). Using the discrete Gronwall inequality is a bit tricky because of the term vτhl+1/22\|v_{\tau h}^{l+1/2}\|_{\mathcal{H}}^{2} on the left-hand side of (4.8) while there is vτhkv_{\tau h}^{k} instead of vτhk+1/2v_{\tau h}^{k{+}1/2} on the right-hand side of (4.8). To cope with it, we have to rely on FF being constant (as assumed). We prove the estimate for l=1l=1, then we sum up (4.8) for l+1l{+}1 and ll to get Fτhk+1/2,vτhk+1/2\big{\langle}F_{\tau h}^{k+1/2},v_{\tau h}^{k+1/2}\big{\rangle} also on the right-hand side. Note also that, in view of (3.6) for k=0k=0, we have obtained the term 𝒯(vτh1/2){\mathcal{T}}(v_{\tau h}^{-1/2}) on the right-hand side of (4.8) which, however, can simply be ignored if taking the “fictitious” velocity at level k=1k=-1 as vτh0=vh0-v_{\tau h}^{0}=-v_{h}^{0}.

The equation Σ.τh=IhEhv¯τh+G.τh\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{\varSigma}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{\varSigma}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\varSigma}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\varSigma}}}_{\tau h}=I_{h}\mathfrak{C}E_{h}\overline{v}_{\tau h}+\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{G}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{G}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{G}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{G}}}_{\tau h} gives the latter estimate in (4.3b) by estimating

0TΣ.τh,X𝒳×𝒳dt\displaystyle\int_{0}^{T}\!\!\big{\langle}\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{\varSigma}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{\varSigma}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\varSigma}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\varSigma}}}_{\tau h},X\big{\rangle}_{\mathcal{X}^{*}\times\mathcal{X}}\,\mathrm{d}t =0TIhEhv¯τh+G.τh,X𝒳×𝒳dt\displaystyle=\int_{0}^{T}\!\!\big{\langle}I_{h}\mathfrak{C}E_{h}\overline{v}_{\tau h}+\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{G}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{G}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{G}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{G}}}_{\tau h},X\big{\rangle}_{\mathcal{X}^{*}\times\mathcal{X}}\,\mathrm{d}t
=0Tv¯τh,EhIhX×dt+0TG.τh,X𝒳×𝒳dt\displaystyle=\int_{0}^{T}\!\!\big{\langle}\overline{v}_{\tau h},E_{h}^{*}\mathfrak{C}^{*}I_{h}^{*}X\big{\rangle}_{\mathcal{H}\times\mathcal{H}^{*}}\,\mathrm{d}t+\int_{0}^{T}\!\!\big{\langle}\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{G}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{G}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{G}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{G}}}_{\tau h},X\big{\rangle}_{\mathcal{X}^{*}\times\mathcal{X}}\,\mathrm{d}t (4.9)

for XL(0,T;𝒳)X\in L^{\infty}(0,T;\mathcal{X}) and using also the already proved boundedness of v¯τh\overline{v}_{\tau h} in L(0,T;)L^{\infty}(0,T;\mathcal{H}) and the assumed boundedness of EhE_{h} uniform in h>0h>0; here we used also that Σ.τh(t)𝒮𝒳\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{\varSigma}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{\varSigma}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\varSigma}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\varSigma}}}_{\tau h}(t)\in\mathcal{S}\subset\mathcal{X}^{*}.

Eventually, the already obtained estimates (4.2b) give ΦΣ(Σ¯τh,z¯τh)\varPhi_{\varSigma}^{\prime}(\overline{\varSigma}_{\tau h},\overline{z}_{\tau h}) bounded in L(0,T;𝒮)L^{\infty}(0,T;\mathcal{S}^{*}). Therefore S¯τh=IhΦΣ(Σ¯τh,z¯τh)\overline{S}_{\tau h}=\mathfrak{C}^{*}I_{h}^{*}\varPhi_{\varSigma}^{\prime}(\overline{\varSigma}_{\tau h},\overline{z}_{\tau h}) is bounded in L(0,T;)L^{\infty}(0,T;\mathcal{E}^{*}), hence EhS¯τhE_{h}^{*}\overline{S}_{\tau h} is bounded in L(0,T;𝒰)L^{\infty}(0,T;\mathcal{U}^{*}), so that 𝒯v.τh=F¯τhEhS¯τh\mathcal{T}^{\prime}\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{v}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{v}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{v}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{v}}}_{\tau h}=\overline{F}_{\tau h}-E_{h}^{*}\overline{S}_{\tau h} gives the latter estimate in (4.3c). \hfill\Box


We will now need the approximation properties for h0h\to 0:

v𝒰,vhVh,vhv in EhvhEv in  with ELin(𝒰,),\displaystyle v\in\mathcal{U},\ \,v_{h}\in V_{h},\ \ \,v_{h}\to v\ \ \text{ in }\ \mathcal{H}\ \ \ \Rightarrow\ \ \ E_{h}v_{h}\to Ev\ \ \text{ in }\ \mathcal{E}\ \ \text{ with }\ E\in{\rm Lin}(\mathcal{U},\mathcal{E})\,, (4.10a)
Σ𝒮,ΣhSh,ΣhΣ in 𝒮IhΣhΣ in 𝒮.\displaystyle\Sigma\in\mathcal{S},\ \Sigma_{h}\in S_{h},\ \Sigma_{h}\to\Sigma\ \ \text{ in }\ \mathcal{S}\ \ \ \Rightarrow\ \ \ I_{h}\Sigma_{h}\to\Sigma\ \ \ \;\text{ in }\ \mathcal{S}\,. (4.10b)
Proposition 4.2 (Convergence.)

Let (2.19) and (4.10a) hold, all the involved Banach spaces be separable, and the assumptions of Proposition 4.1 hold. Moreover, let

z𝒵:ΦΣ(,z)continuous linear, and ΦΣ:𝒮×𝒵0Lin(𝒮,𝒮)continuous\displaystyle\forall z{\in}\mathcal{Z}:\ \varPhi_{\varSigma}^{\prime}(\cdot,z)\ \text{continuous linear, and }\varPhi_{\varSigma}^{\prime}:\mathcal{S}{\times}\mathcal{Z}_{0}\to{\rm Lin}(\mathcal{S},\mathcal{S}^{*})\ \text{continuous}
or ΦΣ:𝒮×𝒵𝒮 is continuous linear,\displaystyle\qquad\qquad\qquad\qquad\qquad\text{or }\ \varPhi_{\varSigma}^{\prime}:\mathcal{S}\times\mathcal{Z}\to\mathcal{S}^{*}\ \text{ is continuous linear,} (4.11a)
z𝒵:[Φ0]z(,z)continuous linear, and [Φ0]z:𝒮×𝒵0Lin(𝒵0,𝒵1)continuous\displaystyle\forall z{\in}\mathcal{Z}:\ [\varPhi_{0}]_{z}^{\prime}(\cdot,z)\ \text{continuous linear, and }[\varPhi_{0}]_{z}^{\prime}:\mathcal{S}{\times}\mathcal{Z}_{0}\to{\rm Lin}(\mathcal{Z}_{0},\mathcal{Z}_{1})\ \text{continuous}
or [Φ0]z:𝒮×𝒵𝒵1 is continuous linear, and\displaystyle\qquad\qquad\qquad\qquad\qquad\text{or }\ [\varPhi_{0}]_{z}^{\prime}:\mathcal{S}\times\mathcal{Z}\to\mathcal{Z}_{1}^{*}\ \text{ is continuous linear, and} (4.11b)
Φ1:𝒵𝒵 is linear continuous,\displaystyle\varPhi_{1}^{\prime}:\mathcal{Z}\to\mathcal{Z}^{*}\ \text{ is linear continuous}, (4.11c)

for some Banach space 𝒵0\mathcal{Z}_{0} into which 𝒵\mathcal{Z} is embedded compactly, where Φ0\varPhi_{0} and Φ1\varPhi_{1} are from (2.19). Then there is a selected subsequence, again denoted {(uτh,Στh,vτh,zτh)}τ>0\{(u_{\tau h},\varSigma_{\tau h},v_{\tau h},z_{\tau h})\}_{\tau>0} converging weakly* in the topologies indicated in the estimates (4.3) to some (u,Σ,v,z)(u,\varSigma,v,z). Moreover, any (u,Σ,v,z)(u,\varSigma,v,z) obtained as such a limit is a weak solution according Definition 2.1.

Proof. By the Banach selection principle, we can select the weakly* converging subsequence as claimed; here the separability of the involved Banach spaces is used.

Referring to the compact embedding 𝒵𝒵0\mathcal{Z}\subset\mathcal{Z}_{0} used in the former option in (4.11a,b) and relying on a generalization the Aubin-Lions compact-embedding theorem with z¯.τh\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{\overline{z}}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{\overline{z}}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\overline{z}}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\overline{z}}}}_{\tau h} being bounded in the space of the 𝒵1\mathcal{Z}_{1}-valued measures on II, cf. [39, Corollary 7.9], we have z¯τhz\overline{z}_{\tau h}\to z strongly in Lr(0,T;𝒵1)L^{r}(0,T;\mathcal{Z}_{1}) for any 1r<+1\leq r<+\infty.

Further, we realize that the approximate solution satisfy identities/inequality analogous to what is used in Definition 2.1. In view of (2.20a), the equations (3.9c) now means

0TΦΣ(Σ¯τh,z¯τh),IhEhv~𝒮×𝒮𝒯vτh,v~.×dt=𝒯v0,v~(0)×+0TFh,v~×dt\displaystyle\int_{0}^{T}\!\!\big{\langle}\varPhi_{\varSigma}^{\prime}(\overline{\varSigma}_{\tau h},\overline{z}_{\tau h}),I_{h}\mathfrak{C}E_{h}\mathchoice{\text{\small$\widetilde{\text{\normalsize$v$}}\hskip 0.26999pt$}}{\text{\small$\widetilde{\text{\normalsize$v$}}$}}{\widetilde{v}\hskip 0.29999pt}{\widetilde{v}}\big{\rangle}_{{\mathcal{S}}^{*}\times{\mathcal{S}}}-\big{\langle}\mathcal{T}^{\prime}v_{\tau h},\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{\mathchoice{\text{\small$\widetilde{\text{\normalsize$v$}}\hskip 0.26999pt$}}{\text{\small$\widetilde{\text{\normalsize$v$}}$}}{\widetilde{v}\hskip 0.29999pt}{\widetilde{v}}}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{\mathchoice{\text{\small$\widetilde{\text{\normalsize$v$}}\hskip 0.26999pt$}}{\text{\small$\widetilde{\text{\normalsize$v$}}$}}{\widetilde{v}\hskip 0.29999pt}{\widetilde{v}}}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\mathchoice{\text{\small$\widetilde{\text{\normalsize$v$}}\hskip 0.26999pt$}}{\text{\small$\widetilde{\text{\normalsize$v$}}$}}{\widetilde{v}\hskip 0.29999pt}{\widetilde{v}}}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\mathchoice{\text{\small$\widetilde{\text{\normalsize$v$}}\hskip 0.26999pt$}}{\text{\small$\widetilde{\text{\normalsize$v$}}$}}{\widetilde{v}\hskip 0.29999pt}{\widetilde{v}}}}}\big{\rangle}_{{\mathcal{H}}^{*}\times{\mathcal{H}}}\,\mathrm{d}t=\big{\langle}\mathcal{T}^{\prime}v_{0},\mathchoice{\text{\small$\widetilde{\text{\normalsize$v$}}\hskip 0.26999pt$}}{\text{\small$\widetilde{\text{\normalsize$v$}}$}}{\widetilde{v}\hskip 0.29999pt}{\widetilde{v}}(0)\big{\rangle}_{{\mathcal{H}}^{*}\times{\mathcal{H}}}+\int_{0}^{T}\!\!\big{\langle}F_{h},\mathchoice{\text{\small$\widetilde{\text{\normalsize$v$}}\hskip 0.26999pt$}}{\text{\small$\widetilde{\text{\normalsize$v$}}$}}{\widetilde{v}\hskip 0.29999pt}{\widetilde{v}}\big{\rangle}_{{\mathcal{H}}^{*}\times{\mathcal{H}}}\,\mathrm{d}t (4.12a)
for any v~C1(0,T;)\mathchoice{\text{\small$\widetilde{\text{\normalsize$v$}}\hskip 0.26999pt$}}{\text{\small$\widetilde{\text{\normalsize$v$}}$}}{\widetilde{v}\hskip 0.29999pt}{\widetilde{v}}\in C^{1}(0,T;{\mathcal{H}}) valued in VhV_{h} and with v~(T)=0\mathchoice{\text{\small$\widetilde{\text{\normalsize$v$}}\hskip 0.26999pt$}}{\text{\small$\widetilde{\text{\normalsize$v$}}$}}{\widetilde{v}\hskip 0.29999pt}{\widetilde{v}}(T)=0. Like in (2.20b), the inclusion (3.9b) means
0TΨ(z~)+[Φ0]z(Σ¯τh,z¯¯τh),z~z.τh𝒵1×𝒵1+Φ1z¯¯τh,z~𝒵×𝒵dt+Φ1(z0)\displaystyle\int_{0}^{T}\!\!\varPsi(\mathchoice{\text{\small$\widetilde{\text{\normalsize$z$}}\hskip 0.26999pt$}}{\text{\small$\widetilde{\text{\normalsize$z$}}$}}{\widetilde{z}\hskip 0.29999pt}{\widetilde{z}})+\big{\langle}[\varPhi_{0}]_{z}^{\prime}(\overline{\varSigma}_{\tau h},\underline{\overline{z}}_{\tau h}),\mathchoice{\text{\small$\widetilde{\text{\normalsize$z$}}\hskip 0.26999pt$}}{\text{\small$\widetilde{\text{\normalsize$z$}}$}}{\widetilde{z}\hskip 0.29999pt}{\widetilde{z}}{-}\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}}_{\tau h}\big{\rangle}_{\mathcal{Z}_{1}^{*}\times\mathcal{Z}_{1}}\!+\big{\langle}\varPhi_{1}^{\prime}\underline{\overline{z}}_{\tau h},\mathchoice{\text{\small$\widetilde{\text{\normalsize$z$}}\hskip 0.26999pt$}}{\text{\small$\widetilde{\text{\normalsize$z$}}$}}{\widetilde{z}\hskip 0.29999pt}{\widetilde{z}}\big{\rangle}_{\mathcal{Z}^{*}\times\mathcal{Z}}\,\mathrm{d}t+\varPhi_{1}(z_{0})
Φ1(zτh(T))+0TΨ(z.τh)dt\displaystyle\hskip 240.00037pt\geq\varPhi_{1}(z_{\tau h}(T))+\!\int_{0}^{T}\!\!\varPsi(\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}}_{\tau h})\,\mathrm{d}t\, (4.12b)

for all z~L1(0,T;𝒵)\mathchoice{\text{\small$\widetilde{\text{\normalsize$z$}}\hskip 0.26999pt$}}{\text{\small$\widetilde{\text{\normalsize$z$}}$}}{\widetilde{z}\hskip 0.29999pt}{\widetilde{z}}\in L^{1}(0,T;\mathcal{Z}). This is completed by (3.9a).

It is further important that the equations in (3.9a) and the first equation in (3.9c) are linear, so that the weak convergence is sufficient for the limit passage there. In particular, we use (4.10a) and the Lebesgue dominated-convergence theorem.

As to the weak convergence of (3.9a) integrated in time towards (3.1a) integrated in time, i.e. towards Σ=Eu+G\varSigma=\mathfrak{C}Eu+G as used in Definition 2.1, we need to prove that

0TΣτhGτh,X𝒮×𝒮uτh,EhX×dt0TΣG,X𝒮×𝒮u,EX×dt\displaystyle\int_{0}^{T}\!\!\big{\langle}\varSigma_{\tau h}-G_{\tau h},X\big{\rangle}_{\mathcal{S}\times\mathcal{S}^{*}}-\big{\langle}u_{\tau h},E_{h}^{*}\mathfrak{C}^{*}X\big{\rangle}_{\mathcal{H}\times\mathcal{H}^{*}}\mathrm{d}t\to\int_{0}^{T}\!\!\big{\langle}\varSigma{-}G,X\big{\rangle}_{\mathcal{S}\times\mathcal{S}^{*}}-\big{\langle}u,E^{*}\mathfrak{C}^{*}X\big{\rangle}_{\mathcal{H}\times\mathcal{H}^{*}}\mathrm{d}t (4.13)

for any XL1(0,T;𝒮)X\in L^{1}(0,T;\mathcal{S}^{*}). By (4.10a), we have also EhSESE_{h}^{*}S\to E^{*}S in \mathcal{H} for any SS\in\mathcal{E}^{*}, in particular for S=X(t)S=\mathfrak{C}^{*}X(t). Thus certainly EhXEXE_{h}^{*}\mathfrak{C}^{*}X\to E^{*}\mathfrak{C}^{*}X in L1(0,T;)L^{1}(0,T;\mathcal{H}) strongly. Using the weak* convergence uτhuu_{\tau h}\to u in L(0,T;)L^{\infty}(0,T;\mathcal{H}), we obtain (4.13). Moreover, in the limit Eu=1(ΣG)L(0,T;)Eu=\mathfrak{C}^{-1}(\varSigma-G)\in L^{\infty}(0,T;\mathcal{E}) so that uL(0,T;𝒰)u\in L^{\infty}(0,T;\mathcal{U}).

For the limit passage in (4.12a), we also use ΦΣ(Σ¯τh,z¯τh)ΦΣ(Σ,z)\varPhi_{\varSigma}^{\prime}(\overline{\varSigma}_{\tau h},\overline{z}_{\tau h})\to\varPhi_{\varSigma}^{\prime}(\varSigma,z) weakly* in L(0,T;𝒮)L^{\infty}(0,T;\mathcal{S}^{*}) because ΦΣ\varPhi_{\varSigma}^{\prime} is continuous in the (weak×\timesstrong,weak)-mode, cf. (4.11a), and because of the mentioned strong convergence of z¯τhz\overline{z}_{\tau h}\to z.

Furthermore, we need to show the convergence [Φ0]z(Σ¯τh,z¯¯τh)[Φ0]z(Σ,z)[\varPhi_{0}]_{z}^{\prime}(\overline{\varSigma}_{\tau h},\underline{\overline{z}}_{\tau h})\to[\varPhi_{0}]_{z}^{\prime}(\varSigma,z). For this, we use again the mentioned generalized Aubin-Lions theorem to have the strong convergence z¯¯τhz\underline{\overline{z}}_{\tau h}\to z in Lr(0,T;𝒵1)L^{r}(0,T;\mathcal{Z}_{1}) for any 1r<+1\leq r<+\infty and then the continuity of [Φ0]z[\varPhi_{0}]_{z}^{\prime} in the (weak×\timesstrong,weak)-mode, cf. the former option in (4.11b). The limit passage of (4.12b) towards (2.20b) then uses also the weak lower semicontinuity of Φ1\varPhi_{1} and the weak convergence zτh(T)z(T)z_{\tau h}(T)\to z(T) in 𝒵\mathcal{Z}; here for this pointwise convergence in all time instants tt and in particular in t=Tt=T, we also used that we have some information about z.τh\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}}_{\tau h}, cf. (4.3d).

So far, we have relied on the former options in (4.11a,b) and the Aubin-Lions compactness argument as far as the zz-variable is concerned. If Φ\varPhi is quadratic (as e.g. in the examples in Sects. 5.15.2 below), we can use the latter options in (4.11a,b) and simplify the above arguments, relying merely on the weak convergence z¯τhz\overline{z}_{\tau h}\to z and z¯¯τhz\overline{\underline{z}}_{\tau h}\to z. \hfill\Box

Remark 4.3 (Alternative weak formulation)

Here, we used the weak formulation of (2.3c) containing the term Φz(Σ,z),z.\langle\varPhi_{z}^{\prime}(\varSigma,z),\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}}\big{\rangle} which often does not have a good meaning since z.\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{z}}} may not be regular enough in some applications. This term is thus eliminated by substituting it, after integration over the time interval, by Φ(Σ(T),z(T))0TΦΣ(Σ,z),Σ.dtΦ(Σ0,z0)\varPhi(\varSigma(T),z(T))-\int_{0}^{T}\langle\varPhi_{\varSigma}^{\prime}(\varSigma,z),\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{\varSigma}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{\varSigma}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\varSigma}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\varSigma}}}\big{\rangle}\,\mathrm{d}t-\varPhi(\varSigma_{0},z_{0}) or even rather by Φ(Σ(T),z(T))0TΦΣ(Σ,z),EvdtΦ(Σ0,z0)\varPhi(\varSigma(T),z(T))-\int_{0}^{T}\langle\varPhi_{\varSigma}^{\prime}(\varSigma,z),\mathfrak{C}Ev\big{\rangle}\,\mathrm{d}t-\varPhi(\varSigma_{0},z_{0}). This however, would bring even more difficulties because we would need to prove a strong convergence of ΦΣ(Σ,z)\varPhi_{\varSigma}^{\prime}(\varSigma,z), or of Σ.\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{\varSigma}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{\varSigma}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\varSigma}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\varSigma}}}, or Ev\mathfrak{C}Ev in our explicit-discretization scheme, which seems not easy.

Remark 4.4 (Nonquadratic Φ(Σ,)\varPhi(\varSigma,\cdot))

Some applications use such Φ(Σ,)\varPhi(\varSigma,\cdot) which is not quadratic. This is still consistent with the explicit leap-frog-type discretization if, instead of Φz(Σ,z)\varPhi_{z}^{\prime}(\varSigma,z), we consider an abstract difference quotient Φz(Σ,z,z~)\varPhi_{z}^{\circ}(\varSigma,z,\widetilde{z}) with the properties

Φz(Σ,z,z)=Φz(Σ,z) and Φz(Σ,z,z~),zz~=Φ(Σ,z)Φ(Σ,z~),\displaystyle\varPhi_{z}^{\circ}(\varSigma,z,z)=\varPhi_{z}^{\prime}(\varSigma,z)\ \ \text{ and }\ \ \big{\langle}\varPhi_{z}^{\circ}(\varSigma,z,\widetilde{z}),z{-}\widetilde{z}\big{\rangle}=\varPhi(\varSigma,z)-\varPhi(\varSigma,\widetilde{z})\,, (4.14)

cf. [42]. Then, instead of Φz(Στhk+1,zτhk+1+zτhk2)\varPhi_{z}^{\prime}(\varSigma_{\tau h}^{k+1},\frac{z_{\tau h}^{k+1}{+}z_{\tau h}^{k}}{2}) in (3.1b), we should write Φz(Στhk+1,zτhk+1,zτhk)\varPhi_{z}^{\circ}(\varSigma_{\tau h}^{k+1},z_{\tau h}^{k+1},z_{\tau h}^{k}).

Remark 4.5 (State-dependent dissipation)

The generalization of Ψ\varPsi dependent also on zz or even on (Σ,z)(\varSigma,z) is easy. Then Ψ\partial\varPsi is to be replaced by the partial subdifferential z.Ψ\partial_{\mathchoice{{\buildrel\hskip 0.70004pt\text{\LARGE.}\over{z}}}{{\buildrel\hskip 0.70004pt\text{\Large.}\over{z}}}{{\buildrel\hskip 0.70004pt\text{\large.}\over{z}}}{{\buildrel\hskip 0.70004pt\text{\large.}\over{z}}}}\varPsi and (3.1b) should use Ψ(Στhk+1,zτhk,)\varPsi(\varSigma_{\tau h}^{k+1},z_{\tau h}^{k},\cdot) instead of Ψ()\varPsi(\cdot).

Remark 4.6 (Spatial numerical approximation)

From the coercivity of the stored energy Φ\varPhi, we have Στhk𝒮\varSigma_{\tau h}^{k}\in\mathcal{S} for any k=0,1,k=0,1,... and thus, from (3.1a), EhvτhkE_{h}v_{\tau h}^{k}\in\mathcal{E} so that vτhk𝒰v_{\tau h}^{k}\in\mathcal{U}, although the limit vv cannot be assumed valued in 𝒰\mathcal{U} in general. Similarly, from (3.1), one can read that EhSτhkE_{h}^{*}S_{\tau h}^{k}\in\mathcal{H} although this cannot be expected in the limit in general. Anyhow, on the time-discrete level, one can use the FEM discretization similarly as in the linear elastodynamics where regularity can be employed, cf. [10, 9, 11, 50] for a mixed finite-element method and [18] for the more recently developed staggered discontinuous Galerkin method for elastodynamics.

Remark 4.7 (Other explicit-implicit schemes)

Combination of explicit and implicit time discretization might not only be due to parabolic evolution of internal variables but also due to geometrical reasons, e.g. transmission through a thin layer, that lead to a very restrictive CFL condition, cf. [14].

5 Particular examples

We present three examples from continuum mechanics of deformable bodies at small strains of different characters to illustrate applicability of the ansatz (2.2) and the above discretization scheme. Various combinations of these examples are possible, too, covering thus a relatively wide variety of models.

We use a standard notation concerning function spaces. Beside the Lebesgue LpL^{p}-spaces, we denote by Hk(Ω;n)H^{k}(\varOmega;{\mathbb{R}}^{n}) the Sobolev space of functions whose distributional derivatives are from L2(Ω;n×dk)L^{2}(\varOmega;{\mathbb{R}}^{n\times d^{k}}).

5.1 Plasticity or creep

The simplest example with quadratic stored energy and local dissipation potential is the model of plasticity or creep. The internal variable is then the plastic strain π\pi, valued in the set of symmetric trace-free matrices devd×d={Pd×d;P=P,trP=0}{\mathbb{R}}_{\rm dev}^{d\times d}=\{P\in{\mathbb{R}}^{d\times d};\ P^{\top}=P,\ {\rm tr}\,P=0\}. For simplicity, we consider only homogeneous Neumann or Dirichlet boundary conditions, so that simply E=e(u)E=e(u) and =\mathfrak{C}=\mathbb{C}. The stored energy in terms of strain e(u)e(u) is

𝒲(u,π)=Ω12(e(u)π):(e(u)π)dx,\displaystyle\mathscr{W}(u,\pi)=\int_{\varOmega}\frac{1}{2}\mathbb{C}(e(u){-}\pi){:}(e(u){-}\pi)\,\mathrm{d}x\,, (5.1)

which is actually a function of the elastic strain eel=eπe_{\rm el}=e{-}\pi. The additive decomposition e(u)=eel+πe(u)=e_{\rm el}{+}\pi is referred to as Green-Naghdi’s [26] decomposition. This energy leads to

Φ(σ,π)=Ω121σ:σσ:π+12π:πdx with σ=e(u).\displaystyle\varPhi(\sigma,\pi)=\int_{\varOmega}\frac{1}{2}\mathbb{C}^{-1}\sigma{:}\sigma-\sigma{:}\pi+\frac{1}{2}\mathbb{C}\pi{:}\pi\,\mathrm{d}x\ \ \ \text{ with }\ \sigma=\mathbb{C}e(u)\,. (5.2)

Let us note that Φσ(σ,π)=1σπ=eπ\varPhi_{\sigma}^{\prime}(\sigma,\pi)=\mathbb{C}^{-1}\sigma-\pi=e{-}\pi, i.e. the elastic strain eele_{\rm el}, and that the proto-stress Σ=σ\varSigma=\sigma is indeed different from the actual stress σπ\sigma-\mathbb{C}\pi.

The dissipation potential is standardly chosen as

Ψ(π.)=ΩσY|π.|+12𝔻π.:π.dx\displaystyle\varPsi(\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{\pi}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{\pi}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\pi}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\pi}}})=\int_{\varOmega}\sigma_{{}_{\rm Y}}|\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{\pi}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{\pi}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\pi}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\pi}}}|+\frac{1}{2}\mathbb{D}\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{\pi}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{\pi}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\pi}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\pi}}}{:}\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{\pi}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{\pi}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\pi}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\pi}}}\,\mathrm{d}x (5.3)

with σY0\sigma_{{}_{\rm Y}}\geq 0 a prescribed yield stress and 𝔻\mathbb{D} a positive semidefinite viscosity tensor. The dissipation rate is then Ξ(π.)=ΩσY|π.|+𝔻π.:π.dx\varXi(\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{\pi}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{\pi}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\pi}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\pi}}})=\int_{\varOmega}\sigma_{{}_{\rm Y}}|\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{\pi}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{\pi}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\pi}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\pi}}}|+\mathbb{D}\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{\pi}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{\pi}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\pi}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\pi}}}{:}\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{\pi}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{\pi}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\pi}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\pi}}}\,\mathrm{d}x. For 𝔻>0\mathbb{D}>0 and σY=0\sigma_{{}_{\rm Y}}=0, we obtain mere creep model or, in other words, the linear viscoelastic model in the Maxwell rheology. For both 𝔻>0\mathbb{D}>0 and σY>0\sigma_{{}_{\rm Y}}>0, we obtain viscoplasticity. For 𝔻=0\mathbb{D}=0 and σY>0\sigma_{{}_{\rm Y}}>0, we would obtain the rate-independent (perfect) plasticity but our Proposition 4.1 does not cover this case (i.e. p=1p=1 is not admitted).

The functional setting is =L2(Ω;d)\mathcal{H}=L^{2}(\varOmega;{\mathbb{R}}^{d}), =𝒮=𝒵=𝒵1=L2(Ω;symd×d)\mathcal{E}=\mathcal{S}=\mathcal{Z}=\mathcal{Z}_{1}=L^{2}(\varOmega;{\mathbb{R}}_{\rm sym}^{d\times d}) where symd×d{\mathbb{R}}_{\rm sym}^{d\times d} denotes symmetric (d×d)(d{\times}d)-matrices. Thus 𝒰:={vL2(Ω;d);e(v)L2(Ω;d×d)}=H1(Ω;d)\mathcal{U}:=\{v{\in}L^{2}(\varOmega;{\mathbb{R}}^{d});\ e(v){\in}L^{2}(\varOmega;{\mathbb{R}}^{d\times d})\}=H^{1}(\varOmega;{\mathbb{R}}^{d}) by Korn’s inequality.

A modification of the stored energy models an isotropic hardening, enhancing (5.1) as

𝒲(u,π)=Ω121(e(u)π):(e(u)π)+122π:πdx\displaystyle\mathscr{W}(u,\pi)=\int_{\varOmega}\frac{1}{2}\mathbb{C}_{1}(e(u){-}\pi){:}(e(u){-}\pi)+\frac{1}{2}\mathbb{C}_{2}\pi{:}\pi\,\mathrm{d}x (5.4)

so that the energy Φ\varPhi from (5.2) is modified as

Φ(σ,π)=Ω1211σ:σσ:π+12(1+2)π:πdx.\displaystyle\varPhi(\sigma,\pi)=\int_{\varOmega}\frac{1}{2}\mathbb{C}_{1}^{-1}\sigma{:}\sigma-\sigma{:}\pi+\frac{1}{2}(\mathbb{C}_{1}{+}\mathbb{C}_{2})\pi{:}\pi\,\mathrm{d}x\,. (5.5)

In the pure creep variant σY=0\sigma_{{}_{\rm Y}}=0, this is actually the standard linear solid (in a so-called Zener form), considered together with the leap-frog time discretization in [7]. The isochoric constraint trπ=0{\rm tr}\,\pi=0 can then be avoided, assuming that 2\mathbb{C}_{2} is positive definite.

All these models lead to a flow rule which is localized on each element when an element-wise constant approximation of π\pi is used, and no large system of algebraic equations need to be solved so that the combination with the explicit discretization of the other equations leads to a very fast computational procedure.

Another modification for gradient plasticity by adding terms 12κ|π|2\frac{1}{2}\kappa|\nabla\pi|^{2} into the stored energy is easily possible, too. This modification uses 𝒵=H1(Ω;symd×d)\mathcal{Z}=H^{1}(\varOmega;{\mathbb{R}}_{\rm sym}^{d\times d}) and (2.19) with Φ1(z)=Ω12κ|π|2\varPhi_{1}(z)=\int_{\varOmega}\frac{1}{2}\kappa|\nabla\pi|^{2} and makes, however, the flow rule nonlocal but at least one can benefit from that the usual space discretization of the proto-stress σ\sigma uses the continuous piecewise smooth elements which allows for handling gradients π\nabla\pi if used consistently also for π\pi. For the quasistatic variant of this model, we refer to the classical monographs [28, 49], while the dynamical model with 𝔻=0\mathbb{D}=0 is e.g. in [37, Sect.5.2].

Noteworthy, all these models bear time regularity if the loading is smooth and initial conditions regular enough, which can be advantageously reflected in space FEM approximation, too.

The Maxwell visco-elastodynamics was also studied by J.-P. Groby [27, Part I, Sect.2] using a slightly modified time discretization scheme, namely the order of (3.1a) and (3.1) was exchanged.

The CFL condition (4.1) here is actually the same as the standard one (1.4). This is because the internal variable actually does not influence the elasticity response and, likewise, the inertia is independent of the internal variable, so the wave speed is not influenced either. The CFL is thus of the form τhϱ/|λmax()|\tau\leq h\sqrt{\varrho/|\lambda_{\rm max}(\mathbb{C})|} where λmax()\lambda_{\rm max}(\mathbb{C}) is the maximal eigenvalue of \mathbb{C}.

5.2 Poroelasticity in isotropic materials

Another example with quadratic stored energy but less trivial dissipation potential is a saturated Darcy or Fick flow of a diffusant in porous media, e.g. water in porous elastic rocks or in concrete, or a solvent in elastic polymers. The most simple model is the classical Biot model [12], capturing effects as swelling or seepage. In a one-component flow, the internal variable is then the scalar-valued diffusant content (or concentration) denoted by ζ\zeta.

As in the previous Section 5.1 , we consider only Neumann or Dirichlet boundary conditions, so that E=e(u)E=e(u). Here we use the orthogonal decomposition e=sphe+devee={\rm sph}\,e+{\rm dev}\,e with the spherical (volumetric) part sphe:=(tre)𝕀/d{\rm sph}\,e:=({\rm tr}\,e)\mathbb{I}/d and the deviatoric part deve{\rm dev}\,e and confine ourselves to isotropic materials where the elastic-moduli tensor ijkl=Kδijδkl+G(δikδjl+δilδjk2δijδkl/d)\mathbb{C}_{ijkl}=K\delta_{ij}\delta_{kl}+G(\delta_{ik}\delta_{jl}+\delta_{il}\delta_{jk}-2\delta_{ij}\delta_{kl}/d) with KK the bulk modulus and GG the shear modulus (= the second Lamé constant), which is the standard notation hopefully without any confusion with the notation used in (1.6). Then the proto-stress Σ=σ=e=Ksphe+2Gdeve\varSigma=\sigma=\mathbb{C}e=K{\rm sph}\,e+2G{\rm dev}\,e. In particular, sphσ=Ksphe{\rm sph}\,\sigma=K{\rm sph}\,e so that tre=K1trσ{\rm tr}\,e=K^{-1}{\rm tr}\,\sigma.

Adopting the gradient theory for this internal variable ζ\zeta, the stored energy in terms of strain is considered

𝒲(u,ζ)\displaystyle\mathscr{W}(u,\zeta) =Ω12e(u):e(u)+12M(βtre(u)ζ)2+12L(ζζeq)2+κ2|ζ|2dx\displaystyle=\int_{\varOmega}\frac{1}{2}\mathbb{C}e(u){:}e(u)+\frac{1}{2}M(\beta{\rm tr}\,e(u){-}\zeta)^{2}+\frac{1}{2}L(\zeta{-}\zeta_{\rm eq})^{2}+\frac{\kappa}{2}|\nabla\zeta|^{2}\,\mathrm{d}x
=Ω12(K+β2dM)|sphe(u)|2+G|deve(u)|2\displaystyle=\int_{\varOmega}\frac{1}{2}\Big{(}K+\frac{\beta^{2}}{d}M\Big{)}|{\rm sph}\,e(u)|^{2}+G|{\rm dev}\,e(u)|^{2}
βMζtre(u)+12Mζ2+12L(ζζeq)2+κ2|ζ|2dx\displaystyle\qquad\qquad\qquad-\beta M\zeta{\rm tr}\,e(u)+\frac{1}{2}M\zeta^{2}+\frac{1}{2}L(\zeta{-}\zeta_{\rm eq})^{2}+\frac{\kappa}{2}|\nabla\zeta|^{2}\,\mathrm{d}x

which, in terms of the (here partial) stress σ=e\sigma=\mathbb{C}e, reads as Ω12(1K+β2dK2M)|sphσ|2+1G|devσ|2βζMKtrσ+12Mζ2+12L(ζζeq)2dx\int_{\varOmega}\frac{1}{2}(\frac{1}{K}+\frac{\beta^{2}}{dK^{2}}M)|{\rm sph}\,\sigma|^{2}+\frac{1}{G}|{\rm dev}\,\sigma|^{2}-\beta\zeta\frac{M}{K}{\rm tr}\,\sigma+\frac{1}{2}M\zeta^{2}+\frac{1}{2}L(\zeta{-}\zeta_{\rm eq})^{2}\,\mathrm{d}x. Here M>0M>0 and β>0\beta>0 are so-called Biot modulus and coefficient, respectively, κ>0\kappa>0 is a capillarity coefficient, and ζeq\zeta_{\rm eq} is a given equilibrium content. From (5.2), we arrive at the overall stored energy as:

Φ(σ,ζ)=Ω\displaystyle\varPhi(\sigma,\zeta)=\int_{\varOmega} 12(1K+β2dK2M)|sphσ|2+1G|devσ|2βζMKtrσdx\displaystyle\frac{1}{2}\Big{(}\frac{1}{K}+\frac{\beta^{2}}{dK^{2}}M\Big{)}|{\rm sph}\,\sigma|^{2}+\frac{1}{G}|{\rm dev}\,\sigma|^{2}-\beta\zeta\frac{M}{K}{\rm tr}\,\sigma\,\mathrm{d}x
+Ω12Mζ2+12L(ζζeq)2+κ2|ζ|2dx,=:Φ1(ζ).\displaystyle\qquad\qquad\qquad\qquad+\!\!\!\!\!\begin{array}[t]{c}\begin{array}[t]{c}\underbrace{\int_{\varOmega}\frac{1}{2}M\zeta^{2}+\frac{1}{2}L(\zeta{-}\zeta_{\rm eq})^{2}+\frac{\kappa}{2}|\nabla\zeta|^{2}\,\mathrm{d}x\,,\!}\vspace*{.5em}\end{array}\vspace*{-1em}\\ _{\mbox{\footnotesize\rm$=:\Phi_{1}(\zeta)$}}\end{array}\,. (5.9)

Let us note that Φσ(σ,ζ)=1σ+βMdK2(βsphσζK𝕀)\varPhi_{\sigma}^{\prime}(\sigma,\zeta)=\mathbb{C}^{-1}\sigma+\frac{\beta M}{dK^{2}}(\beta{\rm sph}\,\sigma{-}\zeta K\mathbb{I}), i.e. the elastic strain, and that the proto-stress Σ=σ\varSigma=\sigma indeed differs from an actual stress by the spherical pressure part βMdK(βsphσζK𝕀)\frac{\beta M}{dK}(\beta{\rm sph}\,\sigma{-}\zeta K\mathbb{I}).

The driving force for the diffusion is the chemical potential μ=Φζ(σ,ζ)\mu=\varPhi_{\zeta}^{\prime}(\sigma,\zeta), i.e. here

μ=(M+L)ζβMKtrσLζeqκΔζ.\displaystyle\mu=(M+L)\zeta-\beta\frac{M}{K}{\rm tr}\,\sigma-L\zeta_{\rm eq}-\kappa\Delta\zeta\,. (5.10a)
The diffusion equation is
ζ.div(𝕄μ)=0\displaystyle\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{\zeta}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{\zeta}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\zeta}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\zeta}}}-{\rm div}(\mathbb{M}\nabla\mu)=0 (5.10b)

with 𝕄\mathbb{M} denoting the diffusivity tensor. The system (5.10) is called the Cahn-Hilliard equation, here combined with elasticity so that the flow of the diffusant is driven both by the gradient of concentration (Fick’s law) and the gradient of the mechanical pressure (Darcy’s law). The dissipation potential in terms of μ\nabla\mu, let us denote it by RR behind this system, is

R(μ)=Ω12𝕄μμdx.\displaystyle R(\mu)=\int_{\varOmega}\frac{1}{2}\mathbb{M}\nabla\mu{\cdot}\nabla\mu\,\mathrm{d}x\,. (5.11)

For the analysis cf. e.g. [35, Sect. 7.6].

One would expect the dissipation potential as a function of the rate of internal variables, as in (2.3c). In fact, the system (5.10) turns into the form (2.3c) if one takes the dissipation potential Ψ=Ψ(ζ.)\varPsi=\varPsi(\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{\zeta}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{\zeta}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\zeta}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\zeta}}}) as

Ψ(ζ.)=R(ζ.)\displaystyle\varPsi(\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{\zeta}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{\zeta}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\zeta}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\zeta}}})=R^{*}(\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{\zeta}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{\zeta}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\zeta}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\zeta}}}) (5.12)

with RR^{*} denoting the convex conjugate of RR. Now, Ψ\varPsi is nonlocal. The functional setting is as in the previous example but now 𝒵=H1(Ω)\mathcal{Z}=H^{1}(\varOmega) and 𝒵1=H1(Ω)\mathcal{Z}_{1}=H^{1}(\varOmega)^{*}. For a discretization of the type (3.1b), see [40].

Often, the diffusivity is considered dependent on ζ\zeta. Or even one can think about 𝕄=𝕄(σ,ζ)\mathbb{M}=\mathbb{M}(\sigma,\zeta). Then the modification in Remark 4.5 is to be applied. In particular, R(σ,ζ,μ)=Ω12𝕄(σ,ζ)μμdxR(\sigma,\zeta,\mu)=\int_{\varOmega}\frac{1}{2}\mathbb{M}(\sigma,\zeta)\nabla\mu{\cdot}\nabla\mu\,\mathrm{d}x and Ψ(σ,ζ,ζ.)=[R(σ,ζ,)](ζ.)\varPsi(\sigma,\zeta,\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{\zeta}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{\zeta}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\zeta}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\zeta}}})=[R(\sigma,\zeta,\cdot)]^{*}(\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{\zeta}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{\zeta}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\zeta}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\zeta}}}).

For this Biot model in the dynamical variant, the reader is also referred to the books [1, 16, 17, 48] or also [35, 37]. In any case, the diffusion involves gradients and in the implicit discretization it leads to large systems of algebraic equations, which inevitably slows down the fast explicit discretization of the mechanical part itself.

For this case also the CFL condition (4.1) is the same as the standard one and leads to a restriction of the form τCh/Vmax\tau\leq Ch/V_{\rm max} where VmaxV_{\rm max} denotes the maximal speed with which waves propagate in the medium. We note that the pressure velocity which is the maximal speed of propagation in isotropic solids is enhanced in the Biot model. The stability analysis of the discrete scheme is quite technical and does not always lead to a practical CFL condition. A. Ezziani in his Ph.D thesis [22] studied a discretization of Biot’s model similar to (5.2) but the stability analysis of the discrete scheme is very nontrivial, cf. [22, Formula (7.4.11)] and, as he points out, cannot be translated into a practical condition. Therefore, in practice he proposes to use τarh/Vpf\tau\leq a_{r}h/V_{\rm pf} where VpfV_{\rm pf} is the speed of the fast wave and ara_{r} is a constant depending on the order of the particular space discretization used. The attenuation caused by diffusion causes also some dispersion of wave velocities which stay however bounded from above by a high-frequency limit, cf. also [22, Fig. 5.2.1], so the CFL condition expectedly holds uniformly like for the pure elastodynamics.

5.3 Damage

The simplest examples of nonconvex stored energy are models of damage. The most typical models use as an internal variable the scalar-valued bulk damage α\alpha having the interpretation as a phenomenological volume fraction of microcracks or microvoids manifested macroscopically as a certain weakening of the elastic response. This concept was invented by L.M. Kachanov [32] and Yu.N. Rabotnov [38].

Considering gradient theories, the stored energy in terms of the strain and damage is here considered as

𝒲(e,α)=Ω12γ(α)e:e+ϕ(α)+κ2|α|2+ε2(e):edx,\displaystyle\mathscr{W}(e,\alpha)=\int_{\varOmega}\frac{1}{2}\gamma(\alpha)\mathbb{C}e{:}e+\phi(\alpha)+\frac{\kappa}{2}|\nabla\alpha|^{2}+\frac{\varepsilon}{2}\nabla(\mathbb{C}e){:}\nabla e\,\mathrm{d}x\,, (5.13)

where ϕ()\phi(\cdot) is an energy of damage which gives rise to an activation threshold for damage evolution and may also lead to healing (if allowed). The last term is mainly to facilitate the mathematics towards convergence and existence of a weak solution in such purely elastic materials without involving any viscosity, cf. [35, Sect. 7.5.3]. This regularization can also control dispersion of elastic waves. More specifically, the 4th-order term resulted in the momentum-equilibrium equation from the ε\varepsilon-term in (5.13) causes an anomalous dispersion, i.e. waves with shorter wavelength propagate faster than longer wavelength ones, cf. e.g. [35, Remark 6.3.6]. The α\nabla\alpha-term also facilitates the analysis and controls the internal length-scale of damage profiles.

Let us consider the “generalized” elasticity tensor =\mathfrak{C}=\mathbb{C} independent of xx. As in the previous examples, Eu=e(u)Eu=e(u) and G=0G=0. According (2.3a), the proto-stress Σ=Eu+G\varSigma=\mathfrak{C}Eu+G, denoted by σ\sigma, now looks as e=:σ\mathbb{C}e=:\sigma; in damage mechanics, the proto-stress is also called an effective stress with a specific mechanical interpretation, cf. [38]. In terms of σ\sigma, the stored energy is then

Φ(σ,α)=\displaystyle\varPhi(\sigma,\alpha)= Ω12γ(α)1σ:σ+ε21σ:σdx+Ωϕ(α)+κ2|α|2dx.=:Φ1(α)\displaystyle\int_{\varOmega}\frac{1}{2}\gamma(\alpha)\mathbb{C}^{-1}\sigma{:}\sigma+\frac{\varepsilon}{2}\nabla\mathbb{C}^{-1}\sigma{:}\nabla\sigma\,\mathrm{d}x+\!\!\!\!\begin{array}[t]{c}\begin{array}[t]{c}\underbrace{\int_{\varOmega}\phi(\alpha)+\frac{\kappa}{2}|\nabla\alpha|^{2}\,\mathrm{d}x\,.\!}\vspace*{.5em}\end{array}\vspace*{-1em}\\ _{\mbox{\footnotesize\rm$=:\Phi_{1}(\alpha)$}}\end{array} (5.17)

Then Φσ=γ(α)1σdiv(ε(1σ))\varPhi_{\sigma}^{\prime}=\gamma(\alpha)\mathbb{C}^{-1}\sigma-{\rm div}(\varepsilon\nabla(\mathbb{C}^{-1}\sigma)) and the true stress S=ΦσS=\mathbb{C}^{*}\varPhi_{\sigma}^{\prime} is then γ(α)σdiv(εσ)\gamma(\alpha)\sigma-{\rm div}(\varepsilon\nabla\sigma) provided \mathbb{C} is constant and symmetric. The damage driving force (energy) is Φα(σ,α)=12γ(α)1σ:σ+ϕ(α)div(κα)\varPhi_{\alpha}^{\prime}(\sigma,\alpha)=\frac{1}{2}\gamma^{\prime}(\alpha)\mathbb{C}^{-1}\sigma{:}\sigma+\phi^{\prime}(\alpha)-{\rm div}(\kappa\nabla\alpha). When γ(0)=0\gamma^{\prime}(0)=0 and ϕ(0)0\phi^{\prime}(0)\leq 0, then always α0\alpha\geq 0 also in the discrete scheme if α00\alpha_{0}\geq 0.

The other ingredient is the dissipation potential. To comply with the coercivity on 𝒵1=L2(Ω)\mathcal{Z}_{1}=L^{2}(\varOmega) with p2p\geq 2 as needed in Proposition 4.1, one can consider either

Ψ(α.)={Ωε1α.2dx+ or {Ωε1α.2dxif α.0 a.e. on Ω,Ωα.2/ε1dxotherwise\displaystyle\varPsi(\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{\alpha}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{\alpha}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\alpha}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\alpha}}})=\begin{cases}\int_{\varOmega}\varepsilon_{1}\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{\alpha}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{\alpha}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\alpha}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\alpha}}}^{2}\,\mathrm{d}x&\\ \ \ +\infty&\end{cases}\text{ or }\ \ \ \begin{cases}\int_{\varOmega}\varepsilon_{1}\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{\alpha}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{\alpha}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\alpha}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\alpha}}}^{2}\,\mathrm{d}x&\text{if }\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{\alpha}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{\alpha}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\alpha}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\alpha}}}\leq 0\text{ a.e.\ on }\varOmega,\\ \int_{\varOmega}\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{\alpha}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{\alpha}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\alpha}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\alpha}}}^{2}/\varepsilon_{1}\,\mathrm{d}x&\text{otherwise}\end{cases} (5.18)

with some (presumably small) coefficient ε1>0\varepsilon_{1}>0. The former option corresponds to a unidirectional (i.e. irreversible) damage not allowing any healing (as used in engineering) while the latter option allows for (presumably slow) healing as used in geophysical models on large time scales.

Since σ\sigma appears nonlinearly in Φα(σ,α)\varPhi_{\alpha}^{\prime}(\sigma,\alpha), the strong convergence σ¯τhσ\overline{\sigma}_{\tau h}\to\sigma in L2(Q;d×d)L^{2}(Q;{\mathbb{R}}^{d\times d}) is needed. For this, the strain-gradient term with ε>0\varepsilon>0 is needed and the Aubin-Lions compact embedding theorem is used. This gives the strong convergence even in the norm of L1/ϵ(0,T;L2d/(d2)ϵ(Ω;d×d))L^{1/\epsilon}(0,T;L^{2d/(d-2)-\epsilon}(\varOmega;{\mathbb{R}}^{d\times d})) for arbitrarily small ϵ>0\epsilon>0 provided also σ.τh\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{\sigma}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{\sigma}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\sigma}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\sigma}}}_{\tau h} is bounded in some norm, which can be shown by using σ.τh=e(v¯τh)\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{\sigma}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{\sigma}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\sigma}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\sigma}}}_{\tau h}=\mathbb{C}e(\overline{v}_{\tau h}) and the Green formula

σ.τhL(0,T;H1(Ω;d×d))\displaystyle\big{\|}\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{\sigma}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{\sigma}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\sigma}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\sigma}}}_{\tau h}\|_{L^{\infty}(0,T;H^{-1}(\varOmega;{\mathbb{R}}^{d\times d}))} =supe~L1(0,T;H01(Ω;d×d))10TΩσ.τh:e~dxdt\displaystyle=\sup_{\|\widetilde{e}\|_{L^{1}(0,T;H_{0}^{1}(\varOmega;{\mathbb{R}}^{d\times d}))}\leq 1}\int_{0}^{T}\!\!\int_{\varOmega}\mathchoice{{\buildrel\hskip 1.00006pt\text{\LARGE.}\over{\sigma}}}{{\buildrel\hskip 1.00006pt\text{\Large.}\over{\sigma}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\sigma}}}{{\buildrel\hskip 1.00006pt\text{\large.}\over{\sigma}}}_{\tau h}{:}\widetilde{e}\,\mathrm{d}x\mathrm{d}t
=supe~L1(0,T;H01(Ω;d×d))10TΩe(v¯τh):e~dxdt\displaystyle=\sup_{\|\widetilde{e}\|_{L^{1}(0,T;H_{0}^{1}(\varOmega;{\mathbb{R}}^{d\times d}))}\leq 1}\int_{0}^{T}\!\!\int_{\varOmega}\mathbb{C}e(\overline{v}_{\tau h}){:}\widetilde{e}\,\mathrm{d}x\mathrm{d}t
=supe~L1(0,T;H01(Ω;d×d))10TΩv¯τhdiv(e~)dxdtCv¯τhL(0,T;L2(Ω;d))\displaystyle=\sup_{\|\widetilde{e}\|_{L^{1}(0,T;H_{0}^{1}(\varOmega;{\mathbb{R}}^{d\times d}))}\leq 1}\!\!-\int_{0}^{T}\!\!\int_{\varOmega}\overline{v}_{\tau h}{\cdot}{\rm div}(\mathbb{C}\widetilde{e})\,\mathrm{d}x\mathrm{d}t\leq C\|\overline{v}_{\tau h}\|_{L^{\infty}(0,T;L^{2}(\varOmega;{\mathbb{R}}^{d}))}

with CC depending on |||\mathbb{C}|. Cf. also the abstract estimation (4.9).

When γ\gamma or ϕ\phi are not quadratic but continuously differentiable, one can use the abstract difference quotient (4.14) defined, in the classical form, as

Φz(Σ,α,α~)={12γ(α)γ(α~)αα~1σ:σ+ϕ(α)ϕ(α~)αα~κΔα+α~2where αα~.12γ(α)1σ:σ+ϕ(α)κΔαwhere α=α~.\displaystyle\varPhi_{z}^{\circ}(\varSigma,\alpha,\widetilde{\alpha})=\begin{cases}\displaystyle{\frac{1}{2}\frac{\gamma(\alpha){-}\gamma(\widetilde{\alpha})}{\alpha{-}\widetilde{\alpha}}\mathbb{C}^{-1}\sigma{:}\sigma+\frac{\phi(\alpha){-}\phi(\widetilde{\alpha})}{\alpha{-}\widetilde{\alpha}}-\kappa\Delta\frac{\alpha{+}\widetilde{\alpha}}{2}}&\text{where }\ \alpha\neq\widetilde{\alpha}\,.\\ \frac{1}{2}\gamma^{\prime}(\alpha)\mathbb{C}^{-1}\sigma{:}\sigma+\phi^{\prime}(\alpha)-\kappa\Delta\alpha&\text{where }\ \alpha=\widetilde{\alpha}\,.\end{cases} (5.19)

Of course, rigorously, the Δ\Delta-operator in (5.19) is to be understood in the weak form when using it in (3.1b).

Due to the gradient κ\kappa-term in (5.17), the implicit incremental problem (3.1b) leads to an algebraic problem with a full matrix, which may substantially slow down the otherwise fast explicit scheme. Like in the previous model the capillarity, now this gradient theory controls the length-scale of the damage profile and also serves as a regularization to facilitate mathematical analysis. Sometimes, a nonlocal “fractional” gradient can facilitate the analysis, too. Then, some wavelet equivalent norm can be considered to accelerate the calculations, cf. also [3]. As far as the stress-gradient term, it is important that the discretization of the proto-stress in the usual implementation of the leap-frog method is continuous piecewise smooth, so that σ\nabla\sigma has a good sense in the discretization without need to use higher-order elements. Here we use that the latter relation in (3.1) is to be understood in the weak form, namely ΩSτhk+1:E~hdx=ΦΣ(Στhk+1,zτhk+1),E~h\int_{\varOmega}S_{\tau h}^{k+1}{:}\tilde{E}_{h}\,\mathrm{d}x=\langle\varPhi_{\varSigma}^{\prime}(\varSigma_{\tau h}^{k+1},z_{\tau h}^{k+1}),\mathfrak{C}\tilde{E}_{h}\rangle for E~h=e~h=e(u~h)\tilde{E}_{h}=\tilde{e}_{h}=e(\tilde{u}_{h}), which means

ΩSτhk+1:E~hdx=Ωγ(ατhk+1)1σk+1:e~h+ϵ1σk+1:e~hdx\int_{\varOmega}S_{\tau h}^{k+1}{:}\tilde{E}_{h}\,\mathrm{d}x=\int_{\varOmega}\gamma(\alpha_{\tau h}^{k+1})\mathbb{C}^{-1}\sigma^{k+1}{:}\mathbb{C}\tilde{e}_{h}+\epsilon\nabla\mathbb{C}^{-1}\sigma^{k+1}{:}\nabla\mathbb{C}\tilde{e}_{h}\,\mathrm{d}x

for any e~h\tilde{e}_{h} from the corresponding finite-dimensional subspace of H1(Ω;symd×d)H^{1}(\varOmega;{\mathbb{R}}_{\rm sym}^{d\times d}). Thus we indeed do not need higher-order elements, and also we do not need to specify explicitly homogeneous boundary conditions in this boundary-value problem.

The functional setting is =L2(Ω;d)\mathcal{H}=L^{2}(\varOmega;{\mathbb{R}}^{d}), =𝒮=H1(Ω;symd×d)\mathcal{E}=\mathcal{S}=H^{1}(\varOmega;{\mathbb{R}}_{\rm sym}^{d\times d}), 𝒵=H1(Ω)\mathcal{Z}=H^{1}(\varOmega), and 𝒵0=𝒵1=L2(Ω)\mathcal{Z}_{0}=\mathcal{Z}_{1}=L^{2}(\varOmega). Then 𝒰=H2(Ω;d)\mathcal{U}=H^{2}(\varOmega;{\mathbb{R}}^{d}), and E=e()E=e(\cdot) is understood as an operator H2(Ω;d)H1(Ω;symd×d)H^{2}(\varOmega;{\mathbb{R}}^{d})\to H^{1}(\varOmega;{\mathbb{R}}_{\rm sym}^{d\times d}), and =\mathfrak{C}^{*}\cong\mathbb{C}^{\top}\!=\mathbb{C} is understood as an a operator from H1(Ω;symd×d)H^{1}(\varOmega;{\mathbb{R}}_{\rm sym}^{d\times d}) to itself.

A particular case of this model is a so-called phase-field fracture, taking as a basic choice

γ(α):=ε2/ε02+α2,ϕ(α):=𝔤c(1α)2/ε, and κ:=ε𝔤c\displaystyle\gamma(\alpha):={\varepsilon^{2}}/{\varepsilon_{0}^{2}}{+}\alpha^{2},\ \ \ \ \phi(\alpha):={\mathfrak{g}}_{\rm c}{(1{-}\alpha)^{2}}/{\varepsilon},\ \ \text{ and }\ \ \kappa:=\varepsilon{\mathfrak{g}}_{\rm c} (5.20)

with 𝔤c{\mathfrak{g}}_{\rm c} denoting the energy of fracture and with ε\varepsilon controlling a “characteristic” width of the phase-field fracture. The physical dimension of ε0\varepsilon_{0} as well as of ε\varepsilon is m (meters) while the physical dimension of 𝔤c{\mathfrak{g}}_{\rm c} is J/m2. This is known as the so-called Ambrosio-Tortorelli functional [2]. In the dynamical context, only various implicit discretization schemes seems to be used so far, cf. [15, 29, 44, 46]. There are a lot of improvements of this basic model, approximating a mode-sensitive fracture, or ε\varepsilon-insensitive models (with ε\varepsilon referring to (5.20)), or ductile fracture, cf. [40]. This last variant combines this model with the plasticity as in Sect. 5.1.

As mentioned above in this case we have anomalous dispersion, i.e. the high frequencies propagate faster, cf. e.g. [35, Remark 6.3.6]. The resulting CFL condition is a combination of the usual CFL (1.4) for the 2nd-order elastodynamic model with the CFL condition for 4th-order plate as in [8]. More specifically, the speed of elastic waves in such combined model is like vv01+ε/λ2v\sim v_{0}\sqrt{1{+}\varepsilon/\lambda^{2}} with v0v_{0} the speed in the elastodynamic case (i.e. ε=0\varepsilon=0) and with λ\lambda the wavelength, cf. [35, Remark 6.3.6] for a one-dimensional analysis. For particular space discretisations, implementable wavelengths λ\lambda are bounded from below just by hh. This yields to a CFL condition of the type

τCh1+ε/h2.\displaystyle\tau\leq C\frac{h}{\sqrt{1{+}\varepsilon/h^{2}}}. (5.21)

Asymptotically, for h0h\to 0 we can see that τ\tau is to be small as 𝒪(ε1/2h2)\mathscr{O}(\varepsilon^{-1/2}h^{2}). For fixed ε>0\varepsilon>0, this is actually very restrictive like in the explicit discretization of the heat equation where it practically prevents from efficient usage of explicit discretizations. However, here the role of ε\varepsilon is primarily to facilitate rigorous existence of weak solutions of this model and can be assumed to be small. Then the influence of this 4th-order term and this restrictive asymptotics is presumably small, and the usual CFL condition resulting from (5.21) with ε=0\varepsilon=0 will dominate except on very fine space discretizations.

Let us eventually remark that better asymptotics of the type τ𝒪(ε1/2h1+δ)\tau\sim\mathscr{O}(\varepsilon^{-1/2}h^{1+\delta}) for h0h\to 0 can be obtained by replacing the 4th-order term by a nonlocal term of the order 2(1+δ)2(1{+}\delta) for some δ>0\delta>0 small, which would even allow for more general dispersion [30] and simultaneously make the analytically desired regularization of the damage model, cf. [35, Remarks 6.3.7 and 7.5.29]

Acknowledgments

This research has been partly supported from the grants 17-04301S (especially as far as the focus on the dissipative evolution of internal variables concerns) and 19-04956S (especially as far as the focus on the dynamic and nonlinear behaviour concerns) of the Czech Sci. Foundation, and by the institutional support RVO: 61388998 (ČR). T.R. also acknowledges the hospitality of FORTH in Heraklion, Crete.

The authors are deeply thankful to Christos G. Panagiotopoulos for fruitful discussions. Also the careful and critical reading of the original version and valuable suggestions by two anonymous referees are acknowledged.

References

  • [1] Y.N. Abousleiman, A.H.-D. Cheng, and F.-J. Ulm, editors. Poromechanics III: Biot Centennial (1905–2005), London, 2005. Taylor & Francis.
  • [2] L. Ambrosio and V.M. Tortorelli. Approximation of functional depending on jumps via by elliptic functionals via Γ\Gamma-convergence. Comm. Pure Appl. Math., 43:999–1036, 1990.
  • [3] M. Arndt, M. Griebel, and T.Roubíček. Modelling and numerical simulation of martensitic transformation in shape memory alloys. Continuum Mech. Thermodyn., 15:463–485, 2003.
  • [4] D.N. Arnold and G. Awanou. Rectangular mixed finite elements for elasticity. Math. Models Methods Appl. Sci., 15:1417–1429, 2005.
  • [5] D.N. Arnold, G. Awanou, and R. Winther. Finite elements for symmetric tensors in three dimensions. Math. Comput., 77:1229–1251, 2008.
  • [6] D.N. Arnold and R. Winther. Mixed finite elements for elasticity. Numerische Mathematik, 92:401–419, 2002.
  • [7] E. Bécache, A. Ezziani, and P. Joly. A mixed finite element approach for viscoelastic wave propagation. Computational Geosciences, 8:255–299, 2004.
  • [8] E. Bécache, G.Derveaux, and P. Joly. An efficient numerical method for the resolution of the Kirchhoff-Love dynamic plate equation. Numer. Meth. P. D. E., 21:323–348, 2005.
  • [9] E. Bécache, P. Joly, and C. Tsogka. Fictitious domains, mixed finite elements and perfectly matched layers for 2D elastic wave propagation. J. of Comput. Acoustics, 9(3):1175–1202, 2001.
  • [10] E. Bécache, P. Joly, and C. Tsogka. A new family of mixed finite elements for the linear elastodynamic problem. SIAM J. Numer. Anal., 39:2109–2132, 2002.
  • [11] E. Bécache, J. Rodríguez, and C. Tsogka. Convergence results of the fictitious domain method for a mixed formulation of the wave equation with a Neumann boundary condition. ESAIM: Math. Model. Numer. Anal., 43:377–398, 2009.
  • [12] M.A. Biot. General theory of three-dimensional consolidation. J. Appl. Phys., 12:155–164, 1941.
  • [13] T. Bohlen. Parallel 3-D viscoelastic finite difference seismic modelling. Computers & Geosciences, 28:887–899, 2002.
  • [14] M. Bonnet, A. Burel, M. Duruflé, and P. Joly. Effective transmission conditions for thin-layer transmission problems in elastodynamics. The case of a planar layer model. ESAIM: Math. Model. Numer. Anal., 50:43–75, 2016.
  • [15] M.J. Borden, C.V. Verhoosel, M.A. Scott, T.J.R. Hughes, and C.M. Landis. A phase-field description of dynamic brittle fracture. Comput. Meth. Appl. Mech. Engr., 217—-220:77–95, 2012.
  • [16] J.M. Carcione. Wave Fields in Real Media, Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media. Elsevier, Amsterdam, 2015.
  • [17] A.H.-D. Cheng. Poroelasticity. Springer, Switzerland, 2016.
  • [18] E.T. Chung, C.Y. Lam, and J. Qian. A staggered discontinuous Galerkin method for the simulation of seismic waves with surface topography. Geophysics, 80:T119–T135, 2015.
  • [19] G. Cohen and S. Pernet. Finite Element and Discontinuous Galerkin Methods for Transient Wave Equations. Springer, Dordrecht, 2017.
  • [20] R. Courant, K. Friedrichs, and H. Lewy. Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Annalen, 100:32–74, 1928.
  • [21] S. Delcourte and N. Glinsky. Analysis of a high-order space and time discontinuous Galerkin method for elastodynamic equations. Application to 3D wave propagation. ESAIM: Math. Model. Numer. Anal., 49:1085–1126, 2015.
  • [22] A. Ezziani. Modélisation mathématique et numérique de la propagation d’ondes dans les milieux viscoélastiques et poroélastiques. PhD thesis, Univ. Paris IX Dauphine, 2005.
  • [23] C. Farhat, M. Lesoinne, and N. Maman. Mixed explicit/implicit time integration of coupled aeroelastic problems: Three‐field formulation, geometric conservation and distributed solution. Intl. J. Numer. Meth. Fluids, 21:807–835, 1995.
  • [24] C.A. Felippa, K.C. Park, and C. Farhat. Partitioned analysis of coupled mechanical systems. Comput. Methods Appl. Mech. Engrg., 190:3247–3270, 2001.
  • [25] R.W. Graves. Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences. Bull. Seismological Soc. Amer., 86:1091–1106, 1996.
  • [26] A.E. Green and P.M. Naghdi. A general theory of an elastic-plastic continuum. Arch. Rational Mech. Anal., 18:251–281, 1965.
  • [27] J.-P. Groby. Modélisation de la propagation des ondes élastiques générées par un séisme proche ou éloigné à l’intérieur d’une ville. PhD thesis, Université de la Méditerranée - Aix-Marseille II, 2005.
  • [28] W. Han and B.D. Reddy. Plasticity. Springer, New York, 1999.
  • [29] M. Hofacker and C. Miehe. Continuum phase field modeling of dynamic fracture: variational principles and staggered FE implementation. Intl. J. Fract., 178:113–129, 2012.
  • [30] M. Jirásek. Nonlocal theories in continuum mechanics. Acta Polytechnica, 44:16–34, 2004.
  • [31] P. Joly and C. Tsogka. Finite Element Methods with Discontinuous Displacement, chapter 11. Chapman & Hall/CRC, Boca Raton, FL, 2008.
  • [32] L.M. Kachanov. Time of rupture process under creep conditions. Izv. Akad. Nauk SSSR, 8:26, 1958.
  • [33] R. Kolman, J. Plešek, J. Červ, and D. Gabriel. Grid dispersion analysis of plane square biquadratic serendipity finite elements in transient elastodynamics. Int. J. Numer. Meth. Engng., 96:1–28, 2013.
  • [34] R. Kolman, J. Plešek, J. Červ, M. Okrouhlík, and P. Pařík. Temporal-spatial dispersion and stability analysis of finite element method in explicit elastodynamics. Intl. J. Numer. Meth. Engr., 106:113–128, 2016.
  • [35] M. Kružík and T. Roubíček. Mathematical Methods in Continuum Mechanics of Solids. Springer, Switzeland, 2019.
  • [36] G.A. Maugin. The saga of internal variables of state in continuum thermo-mechanics (1893-2013). Mechanics Research Communications, 69:79–86, 2015.
  • [37] A. Mielke and T. Roubíček. Rate-Independent Systems – Theory and Application. Springer, New York, 2015.
  • [38] Yu.N. Rabotnov. Creep Problems in Structural Members. North-Holland, Amsterdam, 1969.
  • [39] T. Roubíček. Nonlinear Partial Differential Equations with Applications. Birkhäuser, Basel, 2nd edition, 2013.
  • [40] T. Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Disc. Cont. Dynam. Syst. S, 10:867–893, 2017.
  • [41] T. Roubíček, M. Kružík, V. Mantič, C.G. Panagiotopoulos, R. Vodička, and J. Zeman. Delamination and adhesive contacts, their mathematical modeling and numerical treatment. In V.Mantič, editor, Math. Methods and Models in Composites, chapter 11. Imperial College Press, 2nd edition.
  • [42] T. Roubíček and C.G. Panagiotopoulos. Energy-conserving time-discretisation of abstract dynamical problems with applications in continuum mechanics of solids. Numer. Funct. Anal. Optim., 38:1143–1172, 2017.
  • [43] T. Roubíček, C.G. Panagiotopoulos, and C. Tsogka. Explicit time-discretisation of elastodynamics with some inelastic processes at small strains. Preprint arXiv no.1903.11654, 2019.
  • [44] T. Roubíček and R. Vodička. A monolithic model for phase-field fracture and waves in solid-fluid media towards earthquakes. Intl. J. Fracture, 219, 2019.
  • [45] G. Scarella. Etude théorique et numérique de la propagation d’ondes en présence de contact unilatéral dans un milieu fissuré. PhD thesis, Univ. Paris Dauphine, 2004.
  • [46] A. Schlüter, A. Willenbücher, C. Kuhn, and R. Müller. Phase field approximation of dynamic brittle fracture. Comput Mech, 54:1141–1161, 2014.
  • [47] S. Seifi, K.C. Park, and H.S. Park. A staggered explicit-implicit finite element formulation forelectroactive polymers. Comput. Methods Appl. Mech. Engrg., 337:150–164, 2018.
  • [48] B. Straughan. Stability and Wave Motion in Porous Media. Springer, New York, 2008.
  • [49] R. Temam. Mathematical Problems in Plasticity. Gauthier-Villars, Paris, 1985. (French original in 1983).
  • [50] C. Tsogka. Modelisation mathématique et numérique de la propagation des ondes élastiques tridimensionnelles dans des milieux fissurés. PhD thesis, Univ. Paris IX Dauphine, 1999.
  • [51] J. Virieux. SH-wave propagation in heterogeneous media: Velocity-stress finite-difference method. Geophysics, 49:1933–1957, 1984.