This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Stable intersections of conformal regular Cantor sets with large Hausdorff dimensions

Hugo Araújo Carlos Gustavo Moreira  and  Alex Zamudio Espinosa
Abstract.

In this paper we prove that among pairs K,KK,\,K^{\prime}\subset\mathbbm{C} of conformal dynamically defined Cantor sets with sum of Hausdorff dimensions HD(K)+HD(K)>2HD(K)+HD(K^{\prime})>2, there is an open and dense subset of such pairs verifying int(KK)\text{int}(K-K^{\prime})\neq\emptyset. This is motivated by the work [1], where Moreira and Yoccoz proved a similar statement for dynamically defined Cantor sets in the real line. Here we adapt their argument to the context of conformal Cantor sets in the complex plane, this requires the introduction of several new concepts and a more detailed analysis in some parts of the argument.

The paper was written while the first author was at IMPA and PUC, the second author at IMPA and the third author at UFRJ
This work was supported by CNPq and CAPES

1. Introduction

The aim of this paper is to prove a complex version of the main theorem in [1]. We will prove that among pairs K,KK,\,K^{\prime}\subset\mathbbm{C} of conformal dynamically defined Cantor sets with sum of Hausdorff dimensions HD(K)+HD(K)>2HD(K)+HD(K^{\prime})>2, there is an open and dense subset of such pairs verifying int(KK)\text{int}(K-K^{\prime})\neq\emptyset. The analogous statement for dynamically defined Cantor sets in the real line was proved by Moreira and Yoccoz in [1]. Here we adapt their argument to the context of conformal Cantor sets, this requires the introduction of several new concepts and a more detailed analysis in some parts of the argument. The main new difficulties come from the fact that smooth real maps are naturally conformal, in the sense that their derivative preserves angles, and this is not true for maps in dimension two. A rough version of our main theorem is the following.

Theorem 1.1.

There exists an open and dense subset 𝒱\mathcal{V} of the space of pairs (K1,K2)(K_{1},K_{2}) of conformal Cantor sets in the complex plane such that HD(K1)+HD(K2)>2HD(K_{1})+HD(K_{2})>2 satisfying the following. If (K,K)𝒱(K,K^{\prime})\in\mathcal{V}, then

s(K,K)={λ:(K+λ,K) has stable intersection}\mathcal{I}_{s}(K,K^{\prime})=\{\lambda\in\mathbbm{C}:(K+\lambda,K^{\prime})\text{ has stable intersection}\}

is dense in

={λ:(K+λ)K}.\mathcal{I}=\{\lambda\in\mathbbm{C}:(K+\lambda)\cap K^{\prime}\neq\emptyset\}.

In particular, int(KK)\text{int}(K-K^{\prime})\neq\emptyset.

The work of Moreira and Yoccoz was motivated by a conjecture of Palis, according to which generic pairs of dynamically defined Cantor sets in the real line K,KK,\,K^{\prime} either verify that their arithmetic difference KK={xy:xK,yK}K-K^{\prime}=\{x-y:x\in K,\,y\in K^{\prime}\} has zero Lebesgue measure or non-empty interior. Palis conjecture emerged from his work with Takens ([2], [3]), where, in their study of homoclinic bifurcations for surface diffeomorphisms, they used the crucial fact that if HD(K)+HD(K)<1HD(K)+HD(K^{\prime})<1, then KKK-K^{\prime} has zero Lebesgue measure. Looking for a converse, Palis proposed its conjecture.

The study of homoclinic bifurcations has proved to be fruitful in the understanding of dynamics for surface diffeomorphisms. Complicated dynamical phenomena arise from them. For example, arbitrarily close to any diffeomorphism exhibiting a generic homoclinic tangency, there are open regions in which any diffeomorphism belonging to a residual set has an infinite number of sinks- this is the so called Newhouse phenomenon. Looking for analogous results and using similar ideas to those of Newhouse, Buzzard [4] proved the existence of an open set of automorphisms of 2\mathbbm{C}^{2} with stable homoclinic tangencies. Buzzard’s strategy was very similar to the work of Newhouse [9], constructing a “very thick” horseshoe, such that the Cantor sets, this time living in the complex plane, associated to it would also be “very thick”. However, the concept of thickness does not have a simple extension to this complex setting and so the argument to guarantee intersections between the Cantor sets after a small pertubation is different.

Furthermore, Moreira and Yoccoz were able to use their solution to Palis conjecture in the study of homoclinic bifurcations for surface diffeomorphisms (see [5]). They proved that given a surface diffeomorphism FF with a homoclinic quadratic tangency associated to a horseshoe with dimension larger than one, the set of diffeomorphisms close to FF presenting a stable tangency has positive density at FF.

The authors of this paper have been trying to push all this theory to the context of Cantor sets in the complex plane and apply it to the study of homoclinic bifurcations of automorphisms of 2\mathbbm{C}^{2}. In [6], Araújo and Moreira introduced the concept of conformal Cantor sets and also extended the concept of recurrent compact sets to this context, which serves as a tool to obtain stable intersection. More importantly, Araújo and Moreira showed that given a complex horseshoe of an automorphism of 2\mathbbm{C}^{2}, one can associate to it a conformal Cantor set. Using all this, they were able to recast Buzzard’s example in terms of the theory of conformal Cantor sets.

In the paper [7], Moreira and Zamudio proved a multidimensional version of the scale recurrence lemma for conformal Cantor sets. The real version of this lemma was a key step in the solution, by Moreira and Yoccoz, of Palis conjecture. Moreover, Moreira and Zamudio used the multidimensional conformal version of the scale recurrence lemma to prove a dimension formula relating the Hausdorff dimension of the image of a product of conformal Cantor sets h(K1××Kn)h(K_{1}\times...\times K_{n}), where hh is a C1C^{1} function, and the sum of the Hausdorff dimensions HD(K1)++HD(Kn)HD(K_{1})+...+HD(K_{n}).

In this paper we intend to use the results in [6], [7] and obtain a version of Palis conjecture for conformal Cantor sets. In a future paper we plan to use the concepts and ideas laid down in this paper to study homoclinic bifurcations for automorphisms of 2\mathbbm{C}^{2}. We plan to obtain results analogous to the ones in [5]. We expect that conformal regular Cantor sets in \mathbbm{C} will play a role in the study of homoclinic bifurcations of automorphisms of 2\mathbbm{C}^{2}, similar to regular Cantor sets in \mathbbm{R} in the study of homoclinic bifurcations of surface diffeomorphisms.

The paper is organized as follows. In section 2 we fix the notation, present basic concepts and results which will be used later. Most of the proofs are omitted and references are given to the works [6], [7], [8] and [9]. We also reduce our work to the proof of theorem 2.22; its proof is long and contained in the remaining sections. In section 3 we define a random family of Cantor sets and analyze some of its geometrical properties; it is from this family that we will find the pair of Cantor sets in the conclusion of 2.22. In section 4 we prove theorem 2.22, assuming propositions 4.1 and 4.2. The proof of these propositions is postponed to the last two sections (5 and 6) of this work.

2. Notation and preliminaries

In this section we give the definitions of the objects appearing in this paper and recall some results regarding them that have appeared on previous works [6], [7], [8]. We also present new results and reduce the proof of the main theorem to the proof of theorem 2.22.

2.1. Notations

Here we introduce some of the notations we will use along the text:

  • We will work with the space of complex numbers \mathbbm{C}. We identify it with 2\mathbbm{R}^{2} in the usual way. In this space we will use the Euclidean metric, given by the norm |(x,y)|=x2+y2|(x,y)|=\sqrt{x^{2}+y^{2}}.

  • We will also work with the space of non-zero complex numbers \mathbbm{C}^{*}. We will sometimes identify \mathbbm{C}^{*} with J=×𝕋J=\mathbbm{R}\times\mathbbm{T}, where 𝕋=/(2π)\mathbbm{T}=\mathbbm{R}/(2\pi\mathbbm{Z}), through the map (t,v)et+iv(t,v)\to e^{t+iv}. Note that JJ has the structure of a commutative group. We will endow JJ with the metric coming from the inclusion J=J=\mathbbm{C}^{*}\subset\mathbbm{C}.

  • Given a linear map A:22A:\mathbbm{R}^{2}\to\mathbbm{R}^{2} we denote its norm by |A||A|, its minimum norm by m(A)m(A). They are given by

    |A|=supv0|Av||v|,m(A)=infv0|Av||v|.|A|=\sup_{v\neq 0}\frac{|Av|}{|v|},\,\,m(A)=\inf_{v\neq 0}\frac{|Av|}{|v|}.

    We will say that AA is conformal if |A|=m(A)|A|=m(A).

  • We will use IdId to denote the identity matrix, sometimes we will use the same symbol for the identity function. Each case will be clear from the context.

  • Let (X,d)(X,d) be a metric space and AXA\subset X. We will use the notation Vδ(A)V_{\delta}(A) for the open δ\delta neighborhood around AA, i.e. Vδ(A)={xX:d(x,A)<δ}V_{\delta}(A)=\{x\in X:\,d(x,A)<\delta\}. For a point xXx\in X and a positive real number rr we use the notation B(x,r)=Vr({x})B(x,r)=V_{r}(\{x\}).

  • We will have to deal with many inequalities and several parameters. In order to reduce the number of constants introduced along the text we will use the following notations: Given expressions f(x)f(x) and g(x)g(x) depending in the parameter xx, when we write f(x)g(x)f(x)\lesssim g(x) this means that there is a constant C>0C>0 such that f(x)Cg(x)f(x)\leq Cg(x) for all xx. The constant CC can only depend on other constants when those have already been fixed. This ensures that we will not get any contradiction between the different constants that will appear. fgf\gtrsim g will mean gfg\lesssim f, fgf\approx g will mean fgf\lesssim g and gfg\gtrsim f both hold.

  • Derivative of a ClC^{l} function, we use two notations Djf(x)D^{j}f(x) or DxjfD^{j}_{x}f, both mean derivative of order jj of ff at the point xx. They are jj-linear functions.

  • The uniform norm of functions f:XYf:X\to Y, where XX and YY are subsets of normed vector spaces, will be denoted by fsupxX|f(x)|\left\lVert f\right\rVert\coloneqq\sup_{x\in X}\left\lvert f(x)\right\rvert. In many occasions, ff will be the derivative of order jj of a ClC^{l} function.

  • Given a real number mm we will denote by [m][m] its integer part, this is [m]=sup{r:rm}[m]=\sup\{r\in\mathbbm{Z}:r\leq m\}.

2.2. The space of conformal regular Cantor Sets

We begin by the very concept of conformal regular Cantor set. First we remember that a CmC^{m} regular Cantor set, also called dynamically defined Cantor set, is given by the following data.

  • A finite set 𝔸\mathbb{A} of letters and a set B𝔸×𝔸B\subset\mathbb{A}\times\mathbb{A} of admissible pairs.

  • For each a𝔸a\in\mathbb{A} a compact connected set G(a)G(a)\subset\mathbb{C}.

  • A CmC^{m} map g:Vg:V\to\mathbb{C}, for m>1m>1, defined on an open neighbourhood VV of a𝔸G(a)\bigsqcup_{a\in\mathbb{A}}G(a).

These data must verify the following assumptions:

  • The sets G(a)G(a), a𝔸a\in\mathbb{A}, are pairwise disjoint.

  • (a,b)B(a,b)\in B implies G(b)g(G(a))G(b)\subset g(G(a)), otherwise G(b)g(G(a))=G(b)\cap g(G(a))=\emptyset.

  • For each a𝔸a\in\mathbb{A}, the restriction g|G(a)g|_{G(a)} can be extended to a CmC^{m} diffeomorphism from an open neighborhood of G(a)G(a) onto its image such that m(Dg)>μm(Dg)>\mu for some constant μ>1\mu>1, where m(A):=infv0|Av||v|m(A):=\displaystyle{\inf_{v\neq 0}\frac{\lvert Av\rvert}{\lvert v\rvert}} is the minimum norm of the linear operator AA on 2\mathbb{R}^{2}.

  • The subshift (Σ,σ)(\Sigma,\sigma) induced by BB, called the type of the Cantor set,

    Σ={a¯=(a0,a1,a2,)𝔸:(ai,ai+1)B,i0},\Sigma=\{\underline{a}=(a_{0},a_{1},a_{2},\dots)\in\mathbb{A}^{\mathbb{N}}:(a_{i},a_{i+1})\in B,\forall i\geq 0\},

    σ(a0,a1,a2,)=(a1,a2,a3,)\sigma(a_{0},a_{1},a_{2},\dots)=(a_{1},a_{2},a_{3},\dots), is topologically mixing.

Once we have all these data we can define a Cantor set (i.e. a totally disconnected, perfect compact set) on the complex plane:

K=n0gn(a𝔸G(a)).K=\bigcap_{n\geq 0}g^{-n}\left(\bigsqcup_{a\in\mathbb{A}}G(a)\right).

We say that such a set is conformal if, for all xKx\in K, the derivative of gg at xx, denoted by Dg(x):22Dg(x):\mathbbm{R}^{2}\to\mathbbm{R}^{2}, is a conformal linear operator.

Notice that we always consider the degree of differentiability of the map gg, mm, to be a real number larger than one. This means that gg has derivatives up to order [m][m] and D[m]gD^{[m]}g is Hölder with exponent m[m]m-[m]. This hypothesis, as we will precise later in this section, allows us to control the geometry of small parts of the Cantor set KK. All Cantor sets in this paper will be conformal regular Cantor sets.

Besides, as we mentioned on the introduction, an important family of dynamically defined sets are contained in the class of CmC^{m} conformal regular Cantor sets. Let GG be an automorphism of 2\mathbbm{C}^{2} exhibiting a horseshoe Λ\Lambda and pp be a hyperbolic periodic point in it. Then, there is a subset UWs(p)U\subset W^{s}(p), open in the topology of Ws(p)W^{s}(p) as an immersed manifold, and some ε>0\varepsilon>0 sufficiently small such that ΛU\Lambda\cap U is, after some parametrization, a C1+εC^{1+\varepsilon} conformal regular Cantor set. See Theorem A of [6].

We will usually write only KK to represent all the data that defines a particular dynamically defined Cantor set. Of course, the compact set KK can be described in multiple ways as a Cantor set constructed with the objects above, but whenever we say that KK is a Cantor set we assume that one particular set of data as above is fixed. In this spirit, we may represent the Cantor set KK by the map gg that defines it as described above, since all the data can be inferred if we know gg.

Notice that in our definition we did not require the pieces G(a)G(a) to have non-empty interior. To circumvent this, we introduce the following sets.

Lemma 2.1.

There is δ>0\delta>0 sufficiently small such that the sets G(a)Vδ(G(a))G^{*}(a)\coloneqq V_{\delta}(G(a)) satisfy:

  1. (i)

    G(a)G^{*}(a) is open and connected.

  2. (ii)

    G(a)G(a)G(a)\subset G^{*}(a) and g|G(a)g|_{G^{*}(a)} can be extended to an open neighbourhood of G(a)¯\overline{G^{*}(a)}, such that it is a CmC^{m} embedding (with CmC^{m} inverse ) from this neighbourhood to its image and m(Dg)>μm(Dg)>\mu.

  3. (iii)

    The sets G(a)¯\overline{G^{*}(a)}, a𝔸a\in\mathbb{A}, are pairwise disjoint.

  4. (iv)

    (a,b)B(a,b)\in B implies G(b)¯g(G(a))\overline{G^{*}(b)}\subset g(G^{*}(a)), and (a,b)B(a,b)\notin B implies G(b)¯g(G(a))¯=\overline{G^{*}(b)}\cap\overline{g(G^{*}(a))}=\emptyset.

The sets G(a)¯\overline{G^{*}(a)} could substitute the pieces G(a)G(a) in our definition as to make the hypothesis of open interiors be true. These changes do not enlarge the Cantor set. To see this, we introduce more notation and a previous result.

Associated to a Cantor set KK we define the sets

Σfin\displaystyle\Sigma^{fin} ={(a0,,an):(ai,ai+1)Bi, 0i<n},\displaystyle=\{(a_{0},\dots,a_{n}):(a_{i},a_{i+1})\in B\ \forall i,\,0\leq i<n\},
Σ\displaystyle\Sigma^{-} ={(,an,an+1,,a1,a0):(ai1,ai)Bi0}.\displaystyle=\{(\dots,a_{-n},a_{-n+1},\dots,a_{-1},a_{0}):(a_{i-1},a_{i})\in B\ \forall i\leq 0\}.

Given a¯=(a0,,an)\underline{a}=(a_{0},\dots,a_{n}), b¯=(b0,,bm)\underline{b}=(b_{0},\dots,b_{m}), θ¯1=(,θ21,θ11,θ01)\underline{\theta}^{1}=(\dots,\theta^{1}_{-2},\theta^{1}_{-1},\theta^{1}_{0}) and θ¯2=(,θ22,θ12,θ02)\underline{\theta}^{2}=(\dots,\theta^{2}_{-2},\theta^{2}_{-1},\theta^{2}_{0}), we write:

  • if an=b0a_{n}=b_{0}, ab¯=(a0,,an,b1,,bm)\underline{ab}=(a_{0},\dots,a_{n},b_{1},\dots,b_{m});

  • if θ01=a0\theta^{1}_{0}=a_{0}, θ1a¯=(,θ21,θ11,a0,,an)\underline{\theta^{1}a}=(\dots,\theta^{1}_{-2},\theta^{1}_{-1},a_{0},\dots,a_{n})

  • if θ¯1θ¯2\underline{\theta}^{1}\neq\underline{\theta}^{2} and θ01=θ02\theta^{1}_{0}=\theta^{2}_{0}, θ¯1θ¯2=(θj,θj+1,,θ0)\underline{\theta}^{1}\wedge\underline{\theta}^{2}=(\theta_{-j},\theta_{-j+1},\dots,\theta_{0}), in which θi=θi1=θi2\theta_{-i}=\theta^{1}_{-i}=\theta^{2}_{-i} for all i=0,,ji=0,\dots,j and θj11θj12\theta^{1}_{-j-1}\neq\theta^{2}_{-j-1}.

  • Define the distance between θ¯1\underline{\theta}^{1} and θ¯2\underline{\theta}^{2} by d(θ¯1,θ¯2)=diam(G(θ¯1θ¯2))d(\underline{\theta}^{1},\underline{\theta}^{2})=diam(G(\underline{\theta}^{1}\wedge\underline{\theta}^{2})).

  • if a¯\underline{a} starts with b¯\underline{b}, we define a¯/b¯\underline{a}/\underline{b} as the unique finite word such that a¯=b¯(a¯/b¯)\underline{a}=\underline{b}(\underline{a}/\underline{b}).

For a¯=(a0,a1,,an)Σfin\underline{a}=(a_{0},a_{1},\dots,a_{n})\in\Sigma^{fin} we say that it has length nn and define:

G(a¯)={xa𝔸G(a),gj(x)G(aj),j=0,1,,n}G(\underline{a})=\{x\in\bigsqcup_{a\in\mathbb{A}}G(a),\;g^{j}(x)\in G(a_{j}),\;j=0,1,\dots,n\}

and the function fa¯:G(an)G(a¯)f_{\underline{a}}:G(a_{n})\to G(\underline{a}) by:

fa¯=g|G(a0)1g|G(a1)1(g|G(an1)1)|G(an).f_{\underline{a}}=g|^{-1}_{G(a_{0})}\circ g|^{-1}_{G(a_{1})}\circ\dots\circ(g|^{-1}_{G(a_{n-1})})|_{G(a_{n})}.

Notice that f(ai,ai+1)=g|G(ai)1f_{(a_{i},a_{i+1})}=g|^{-1}_{G(a_{i})}. Furthermore, we can consider the sets G(a¯)G^{*}(\underline{a}) defined in the same way

G(a¯)={xa𝔸G(a),gj(x)G(aj),j=0,1,,n}G^{*}(\underline{a})=\{x\in\bigsqcup_{a\in\mathbb{A}}G^{*}(a),\;g^{j}(x)\in G^{*}(a_{j}),\;j=0,1,\dots,n\}

but using the * version of the pieces and consider the function fa¯f_{\underline{a}} to be defined in the larger set G(an)G^{*}(a_{n}) having image equal to G(a¯)G^{*}(\underline{a}).

Now we have the following lemma.

Lemma 2.2.

Let KK be a dynamically defined Cantor set and G(a¯)G^{*}(\underline{a}) the sets defined above. There exists a constant C>0C>0 such that:

diam(G(a¯))<Cμn.diam(G^{*}(\underline{a}))<C\mu^{-n}.

As a consequence of this lemma we can see that

K=n0gn(a𝔸G(a))K=\bigcap_{n\geq 0}g^{-n}\left(\bigsqcup_{a\in\mathbb{A}}G^{*}(a)\right)

since G(a¯)G(a¯)G(\underline{a})\subset G^{*}(\underline{a}) and diam(G(a¯))0\text{diam}(G^{*}(\underline{a}))\rightarrow 0, and so the Cantor set has not been enlarged. Another consequence is that KK is contained in the interior of the union of the pieces G(a)G^{*}(a). From now on we will work with the assumption that the sets G(a)G(a) have non-empty interior and that they contain KK in the interior of their union. We keep the definition G(a)Vδ(G(a))G^{*}(a)\coloneqq V_{\delta}(G(a)) as before because it will be useful in the definition of limit geometries.

The following definition will be useful in the future.

Definition 2.3.

For every Cantor set KK we define the homeomorphism

H:KΣH:K\to\Sigma

that carries each point xKx\in K to its itinerary along the pieces G(a)G(a), that is

H(x)=(a0,a1,,an,)H(x)=(a_{0},a_{1},\dots,a_{n},\dots)

if and only if gi(x)G(ai)g^{i}(x)\in G(a_{i}) for all i0i\geq 0.

Our main result concerns generic Cantor sets. So now we fix the topology on the space of Cantor sets. We remind that any Cantor set we are considering is given by a map gg that is, at least, C1+εC^{1+\varepsilon} for some ε>0\varepsilon>0.

Definition 2.4.

(The space ΩΣm\Omega^{m}_{\Sigma}) For a fixed symbolic space Σ\Sigma and real number m>1m>1 (we also allow m=\infty). The set of all CmC^{m} conformal regular Cantor sets KK with the type Σ\Sigma is defined as the set of all CmC^{m} conformal Cantor sets described as above whose set of data includes the alphabet 𝔸\mathbb{A} and the set BB of admissible pairs used in the construction of Σ\Sigma. We denote it by ΩΣm\Omega^{m}_{\Sigma}.

The topology on ΩΣm\Omega^{m}_{\Sigma} is generated by a basis of neighbourhoods UK,δΩΣmU_{K,\delta}\subset\Omega^{m}_{\Sigma} where KK is any CmC^{m} Cantor set in ΩΣm\Omega^{m}_{\Sigma} and δ>0\delta>0. The neighborhood UK,δU_{K,\delta} is the set of all CmC^{m} conformal regular Cantor sets KK^{\prime} given by g:V,Va𝔸G(a)g^{\prime}:V^{\prime}\to\mathbbm{C},\,V^{\prime}\supset\bigsqcup_{a\in\mathbb{A}}G^{\prime}(a) such that G(a)Vδ(G(a))G(a)\subset V_{\delta}(G^{\prime}(a)), G(a)Vδ(G(a))G^{\prime}(a)\subset V_{\delta}(G(a)) (that is, the pieces are close in the Hausdorff topology) and the restrictions of gg^{\prime} and gg to VVV\cap V^{\prime} are δ\delta close in the CmC^{m} metric. The topology on ΩΣ\Omega^{\infty}_{\Sigma} is the one such that a sequence of CC^{\infty} Cantor sets KnK_{n} converges to KK if and only if the sequence converges to KK in the topology of ΩΣm\Omega^{m}_{\Sigma} for every m(1,)m\in(1,\infty).

We also consider the union ΩΣ:=m>1ΩΣm\Omega_{\Sigma}:=\bigcup_{m>1}\Omega^{m}_{\Sigma}, the topology in ΩΣ\Omega_{\Sigma} is the finest topology such that the inclusions ΩΣmΩΣ\Omega^{m}_{\Sigma}\subset\Omega_{\Sigma} are continuous maps, the so called inductive limit topology. Thus, a set UΩΣU\subset\Omega_{\Sigma} is open if and only if UΩΣmU\cap\Omega^{m}_{\Sigma} is open in ΩΣm\Omega^{m}_{\Sigma} for all m>1m>1. It is not difficult to prove that an open set UΩΣU\subset\Omega_{\Sigma} can be written as a union U=m>1UmU=\bigcup_{m>1}U_{m}, where each UmU_{m} is open in ΩΣm\Omega^{m}_{\Sigma} and UmUmU_{m}\subset U_{m^{\prime}} if m>mm>m^{\prime}.

2.3. Limit geometries

To study the geometry of small parts of our Cantor sets, we introduce more objects. For each a¯=(a0,,an)Σfin\underline{a}=(a_{0},\,\dots,\,a_{n})\in\Sigma^{fin}, denote by K(a¯)K(\underline{a}) the set KG(a¯)K\cap G(\underline{a}). For each a𝔸a\in\mathbb{A}, fix a point caK(a)c_{a}\in K(a). We will refer to these points as base points. Define ca¯K(a¯)c_{\underline{a}}\in K(\underline{a}) by

ca¯fa¯(can).c_{\underline{a}}\coloneqq f_{\underline{a}}(c_{a_{n}}).

Additionally, given θ¯=(,θn,,θ0)Σ\underline{\theta}=(\dots,\theta_{-n},\dots,\theta_{0})\in\Sigma^{-} we write θ¯n(θn,,θ0)\underline{\theta}_{n}\coloneqq(\theta_{-n},\dots,\theta_{0}) and rθ¯n:=diam(G(θ¯n))r_{{\underline{\theta}}_{n}}:=\text{diam}(G(\underline{{\theta}}_{n})).

Given θ¯Σ\underline{\theta}\in\Sigma^{-} and n1n\geq 1, define Φθ¯n\Phi_{\underline{\theta}_{n}} as the unique map in

Aff(){αz+β,α,β}Aff(\mathbbm{C})\coloneqq\{\alpha z+\beta,\ \alpha\in\mathbbm{C}^{*},\,\beta\in\mathbbm{C}\}

such that

Φθ¯n(cθ¯n)=(Φθ¯nfθ¯n)(cθ0)=0andD(Φθ¯nfθ¯n)(cθ0)=Id.\Phi_{\underline{\theta}_{n}}(c_{\underline{\theta}_{n}})=\left(\Phi_{\underline{\theta}_{n}}\circ f_{\underline{\theta}_{n}}\right)(c_{\theta_{0}})=0\qquad\text{and}\qquad D\left(\Phi_{\underline{\theta}_{n}}\circ f_{\underline{\theta}_{n}}\right)(c_{\theta_{0}})=Id.

The maps Φθ¯n\Phi_{\underline{\theta}_{n}} act as a normalization of small parts of the Cantor set KK. For that purpose, we define the maps knθ¯k^{\underline{\theta}}_{n} by

knθ¯Φθ¯nfθ¯n.k^{\underline{\theta}}_{n}\coloneqq\Phi_{\underline{\theta}_{n}}\circ f_{\underline{\theta}_{n}}.

Through them we have the first result that allows control over the sets G(θ¯n)G(\underline{\theta}_{n}).

In what follows we consider some m>1m>1 fixed and KK being a Cantor set in the space ΩΣm\Omega_{\Sigma}^{m}.

Proposition 2.5.

(Limit Geometries) For each θ¯Σ\underline{\theta}\in\Sigma^{-} the sequence of CmC^{m} embeddings knθ¯:G(θ0)k^{\underline{\theta}}_{n}:G^{*}(\theta_{0})\to\mathbbm{C} converges in the CmC^{m} topology to a CmC^{m} embedding kθ¯:G(θ0)k^{\underline{\theta}}:G^{*}(\theta_{0})\to\mathbbm{C}. The convergence is uniform over all θ¯Σ\underline{\theta}\in\Sigma^{-} and in a small neighbourhood of gg in ΩΣm\Omega^{m}_{\Sigma}.

The kθ¯:G(θ0)k^{\underline{\theta}}:G(\theta_{0})\to\mathbbm{C} defined for any θ¯Σ\underline{\theta}\in\Sigma^{-} are called the limit geometries of KK.

Remark 2.6.

Define Σa={θ¯Σ,θ¯0=a}\Sigma^{-}_{a}=\{\underline{\theta}\in\Sigma^{-},\,\underline{\theta}_{0}=a\} and consider in this set the topology given by the metric d(θ¯1,θ¯2)=diam(G(θ¯1θ¯2))d(\underline{\theta}^{1},\underline{\theta}^{2})=\text{diam}(G(\underline{\theta}^{1}\wedge\underline{\theta}^{2})). Likewise, for m>1m>1, let Embm(G(a),)\text{Emb}_{m}(G^{*}(a),\mathbbm{C}) be the space of CmC^{m} embeddings from G(a)G^{*}(a) to \mathbbm{C} with CmC^{m} inverse equipped with the topology given by the C1C^{1} metric

d(g1,g2)=max{g1g2,Dg1Dg2}.d(g_{1},g_{2})=\max\{||g_{1}-g_{2}||,||Dg_{1}-Dg_{2}||\}.

For fixed 0<ε<10<\varepsilon<1 and a C1+εC^{1+\varepsilon} Cantor set KK, the map k:ΣaEmb1+ε(G(a),),θ¯kθ¯k:\Sigma^{-}_{a}\to\text{Emb}_{1+\varepsilon}(G^{*}(a),\mathbbm{C}),\;\underline{\theta}\mapsto k^{\underline{\theta}} is ε\varepsilon-Hölder, if we consider the metrics described above for both spaces. In case the Cantor set KK is CmC^{m}, for m2m\geq 2, then there is a constant C>0C>0 such that d(kθ¯1,kθ¯2)Cd(θ¯1,θ¯2)d(k^{\underline{\theta}^{1}},k^{\underline{\theta}^{2}})\leq Cd(\underline{\theta}^{1},\underline{\theta}^{2}). The constant CC can be chosen uniformly in a neighborhood of the Cantor set.

Since the convergence is uniform with respect to θ¯\underline{\theta} and in a neighborhood of ΩΣm\Omega^{m}_{\Sigma}, the limit geometries kθ¯k^{\underline{\theta}} depend continuously in θ¯\underline{\theta} and the Cantor set KK.

We also remark that the derivative Dkθ¯(x)Dk^{\underline{\theta}}(x) is conformal for all xK(θ0)x\in K(\theta_{0}).

Remark 2.7.

It is important to observe that limit geometries depend on the choice of base points. Nonetheless, different choice of base points do not change the resultant limit geometries by much, only by an affine transformation that is bounded by some constant CC depending on KK. Here we mean that such transformations are given by maps A(z)=αz+βA(z)=\alpha z+\beta, where |α|,|β|<C\left\lvert\alpha\right\rvert,\left\lvert\beta\right\rvert<C. This bound is, as before, uniform for Cantor sets K~\tilde{K} sufficiently close to KK. See the paragraph after Corollary 3.2 of [6].

For reasons that will become more clear in the future, from now on we assume that for each a𝔸a\in\mathbb{A} the corresponding base point cac_{a} is a pre-periodic point.

Before proceeding, we fix some more notation. For θ¯Σ\underline{\theta}\in\Sigma^{-} and a¯Σfin\underline{a}\in\Sigma^{fin} we write

Gθ¯(a¯)kθ¯(G(a¯)),Kθ¯(a¯)kθ¯(K(a¯)),ca¯θ¯kθ¯(ca¯).\displaystyle G^{\underline{\theta}}(\underline{a})\coloneqq k^{\underline{\theta}}(G(\underline{a})),\qquad K^{\underline{\theta}}(\underline{a})\coloneqq k^{\underline{\theta}}(K(\underline{a})),\qquad c^{\underline{\theta}}_{\underline{a}}\coloneqq k^{\underline{\theta}}(c_{\underline{a}}).

Furthermore, to establish stable intersections, we are going to analyse very small parts of the Cantor sets, whose size will be controlled by a real number ρ\rho. This number should be regarded as a variable that we are going to assume in various instances to be very small, as to make the various estimates we are going to find in the future to fit all together. This being said, let c0c_{0} be a sufficiently large constant.

Definition 2.8.

For 0<ρ<10<\rho<1, the set Σ(ρ)\Sigma(\rho) is defined as the set of words a¯Σfin\underline{a}\in\Sigma^{fin} such that

c01ρdiam(G(a¯))c0ρ.c_{0}^{-1}\rho\leq\text{diam}(G(\underline{a}))\leq c_{0}\rho.

We say that the set G(a¯)G(\underline{a}) has an approximate size ρ\rho.

Using standard techniques (see [2] and [8]), one can prove that there is a constant CC depending only in the Cantor set and the parameter c0c_{0} such that

(1) C1ρd#Σ(ρ)Cρd,C^{-1}\rho^{-d}\leq\#\Sigma(\rho)\leq C\rho^{-d},

where d=HD(K)d=HD(K) is the Hausdorff dimension of KK.

Remark 2.9.

Notice that, because the set of limit geometries represent a compact subset of a𝔸Embm(G(a))\cup_{a\in\mathbb{A}}{Emb_{m}(G(a))}, every piece of approximate size ρ\rho also contains the ball B(ca¯,(c0)1ρ)B(c_{\underline{a}},(c_{0}^{\prime})^{-1}\rho) for some c0>0c_{0}^{\prime}>0 depending only on KK. The result remains valid for perturbations K~\tilde{K} sufficiently close to KK. Even more, by maybe enlarging c0c_{0}^{\prime} a little bit, because of Corollaries 3.3 and 3.4 of [6], it follows that for any a¯=(a0,,an)Σfin\underline{a}=(a_{0},\,\dots,\,a_{n})\in\Sigma^{fin}

(2) (c0)1|Dfa¯(can)|diam(G(a¯))c0.{(c^{\prime}_{0})}^{-1}\leq\frac{\left\lvert Df_{\underline{a}}(c_{a_{n}})\right\rvert}{\text{diam}(G(\underline{a}))}\leq c^{\prime}_{0}.

This allows us to control the approximate size of the sets G(a¯)G(\underline{a}) through the derivative of the map fa¯f_{\underline{a}} at canc_{a_{n}}.

2.4. Recurrent compact criterion for stable intersections

Our next objects are called configurations. They are a way of moving a Cantor set in the plane without changing its internal structure.

Definition 2.10.

A CmC^{m}-configuration of a piece G(a)G(a) of a Cantor set is a CmC^{m}, m>1m>1, diffeomorphism

h:G(a)U.h:G(a)\to U\subset\mathbbm{C}.

The space of all CmC^{m} configurations of a piece G(a)G(a) is denoted by 𝒫m(a)\mathcal{P}^{m}(a) and we equip it with the CmC^{m} topology. The space of all configurations is denoted by 𝒫(a)=m>1𝒫m(a)\mathcal{P}(a)=\cup_{m>1}\mathcal{P}^{m}(a) and we equip it with the inductive limit topology. This is, U𝒫(a)U\subset\mathcal{P}(a) is open if and only U𝒫m(a)U\cap\mathcal{P}^{m}(a) is open in the topology of 𝒫m(a)\mathcal{P}^{m}(a), for all m>1m>1.

If hh is an affine map, we call it an affine configuration. Observe that a limit geometry is a configuration of a piece. Configurations of the type Akθ¯A\circ k^{\underline{\theta}}, where AAff()A\in Aff(\mathbbm{C}) and θ¯Σ\underline{\theta}\in\Sigma^{-}, are of great importance to our work and so are called affine configurations of limit geometries.

The renormalization operators represent a way of looking into smaller parts of the Cantor set.

Definition 2.11.

Let KK and KK^{\prime} be two Cantor sets. Choose any pair of words a¯=(a0,a1,,an)Σfin\underline{a}=(a_{0},\,a_{1},\,\dots,\,a_{n})\in\Sigma^{fin} and a¯=(a0,a1,,am)Σfin\underline{a}^{\prime}=(a^{\prime}_{0},\,a^{\prime}_{1},\,\dots,\,a^{\prime}_{m})\in{\Sigma^{\prime}}^{fin}. Then, the renormalization operator Ta¯Ta¯T_{\underline{a}}T^{\prime}_{\underline{a}^{\prime}} acts on any pair of configurations h:G(a0)h:G(a_{0})\to\mathbbm{C} and h:G(a0)h^{\prime}:G(a^{\prime}_{0})\to\mathbbm{C} by

Ta¯Ta¯(h,h)(hfa¯,hfa¯).T_{\underline{a}}T^{\prime}_{\underline{a}^{\prime}}(h,h^{\prime})\coloneqq(h\circ f_{\underline{a}},h^{\prime}\circ f_{\underline{a}^{\prime}}).

The notation above clearly indicates that we can consider the operators Ta¯T_{\underline{a}} and Ta¯T^{\prime}_{\underline{a^{\prime}}} as separate, each acting on configurations of KK and KK^{\prime} respectively. In a very similar way to the proposition 2.5, the one defining limit geometries, one can show (see Lemma 3.11 of [6]) that the set of affine configurations of limit geometries form an attractor in the space of configurations under the action of renormalizations. Even more, see lemma 3.8 of [6], the renormalization operators act in a very simple manner over limit geometries:

Lemma 2.12.

For any θ¯Σ\underline{\theta}\in\Sigma^{-} and a¯Σfin\underline{a}\in\Sigma^{fin}, a¯=(a0,,am)\underline{a}=(a_{0},...,a_{m}), there is an affine transformation Fa¯θ¯Aff()F^{\underline{\theta}}_{\underline{a}}\in Aff(\mathbbm{C}) such that

kθ¯fa¯=Fa¯θ¯kθ¯a¯.k^{\underline{\theta}}\circ f_{\underline{a}}=F^{\underline{\theta}}_{\underline{a}}\circ k^{\underline{\theta}\underline{a}}.

Moreover, this transformation can be calculated by

DFa¯θ¯\displaystyle DF^{\underline{\theta}}_{\underline{a}} =limn(Dfθ¯n(cθ0))1Df(θ¯a¯)n+m(cam)and\displaystyle=\lim_{n\rightarrow\infty}\left(Df_{\underline{\theta}_{n}}(c_{\theta_{0}})\right)^{-1}\cdot Df_{(\underline{\theta}\underline{a})_{n+m}}(c_{a_{m}})\quad\text{and}
Fa¯θ¯(0)\displaystyle F^{\underline{\theta}}_{\underline{a}}(0) =ca¯θ¯=kθ¯(ca¯).\displaystyle=c^{\underline{\theta}}_{\underline{a}}=k^{\underline{\theta}}(c_{\underline{a}}).

Now we properly establish the notion of stable intersection between Cantor sets. Given two Cantor sets K,KK,\,K^{\prime} and any pair of configurations (ha,ha)𝒫(a)×𝒫(a)(h_{a},h^{\prime}_{a^{\prime}})\in\mathcal{P}(a)\times\mathcal{P}^{\prime}(a^{\prime}) we say that it is:

  • linked whenever ha(G(a))ha(G(a))h_{a}(G(a))\cap h^{\prime}_{a^{\prime}}(G(a^{\prime}))\neq\emptyset.

  • intersecting whenever ha(K(a))ha(K(a))h_{a}(K(a))\cap h^{\prime}_{a^{\prime}}(K^{\prime}(a^{\prime}))\neq\emptyset.

  • has stable intersections whenever h~a(K~(a))h~a(K~(a))\tilde{h}_{a}(\tilde{K}(a))\cap\tilde{h^{\prime}}_{a^{\prime}}(\tilde{K^{\prime}}(a^{\prime}))\neq\emptyset for any pairs of Cantor sets (K~,K~)ΩΣ×ΩΣ(\tilde{K},\tilde{K^{\prime}})\in\Omega_{\Sigma}\times\Omega_{\Sigma^{\prime}} in a small neighbourhood of (K,K)(K,K^{\prime}) and any configuration pair (h~a,h~a)(\tilde{h}_{a},\tilde{h^{\prime}}_{a^{\prime}}) that is sufficiently close to (ha,ha)(h_{a},h^{\prime}_{a^{\prime}}) in the topology of 𝒫(a)×𝒫(a)\mathcal{P}(a)\times\mathcal{P}^{\prime}(a^{\prime}).

The set s(K,K)\mathcal{I}_{s}(K,K^{\prime}) in the statement of theorem 1.1 represents the set of all λ\lambda\in\mathbbm{C} such that (τλ,Id)(\tau_{\lambda},Id) is a pair of configurations having stable intersections in the sense just described, where τz\tau_{z} is the translation by zz on \mathbbm{C}.

The main theorem in the introduction is a consequence of theorem 2.23, because it guarantees stable intersections for affine configurations of Cantor sets. In turn, theorem 2.23 is a consequence of theorem 2.22. The statement of this theorem requires that we recall some more concepts. First, notice that the space of affine configurations of limit geometries of a Cantor set can be seen as the image of the continuous association

I:𝒜Aff()×Σ\displaystyle I:\mathcal{A}\coloneqq Aff(\mathbbm{C})\times\Sigma^{-} 𝒫\displaystyle\to\mathcal{P}
(A,θ¯)\displaystyle(A,\underline{\theta}) Akθ¯.\displaystyle\mapsto A\circ k^{\underline{\theta}}.
Definition 2.13.

The space of relative affine configurations of limit geometries will be denoted by 𝒞\mathcal{C}. It is the quotient of 𝒜×𝒜\mathcal{A}\times\mathcal{A^{\prime}} by the action of the affine group by composition on the left, that is, ((A,θ¯),(A,θ¯))((BA,θ¯),(BA,θ¯))\left((A,\underline{\theta}),(A^{\prime},\underline{\theta}^{\prime})\right)\mapsto\left((B\circ A,\underline{\theta}),(B\circ A^{\prime},\underline{\theta}^{\prime})\right), where BB ranges in Aff()Aff(\mathbbm{C}).

The concepts of linking, intersection and stable intersection were well defined for pairs of affine configurations of limit geometries, and since they are invariant by the action of Aff()Aff(\mathbbm{C}), they are also defined for relative configurations in 𝒞\mathcal{C}.

Also, since the renormalization operator acts by composition on the right on (A,θ¯)(A,\underline{\theta}), its action commutes with the multiplication on the left by affine transformations and so it can be naturally defined on 𝒞\mathcal{C}. This space can be identified with Σ×Σ×Aff()\Sigma^{-}\times{\Sigma^{\prime}}^{-}\times Aff(\mathbbm{C}) by the identification [(A,θ¯),(A,θ¯)](θ¯,θ¯,A1A)[(A,\underline{\theta}),(A^{\prime},\underline{\theta}^{\prime})]\equiv(\underline{\theta},\underline{\theta}^{\prime},{A^{\prime}}^{-1}\circ A) and, in this manner, the topology on 𝒞\mathcal{C} is the product topology on Σ×Σ×Aff()\Sigma^{-}\times{\Sigma^{\prime}}^{-}\times Aff(\mathbbm{C}). The action of the renormalization operator on a relative configuration can be described by

Ta¯Ta¯(θ¯,θ¯,A)=(θ¯a¯,θ¯a¯,(Fa¯θ¯)1AFa¯θ¯),T_{\underline{a}}T^{\prime}_{\underline{a}^{\prime}}(\underline{\theta},\underline{\theta}^{\prime},A)=(\underline{\theta}\underline{a},\underline{\theta}^{\prime}\underline{a}^{\prime},\left(F^{\underline{\theta}^{\prime}}_{\underline{a}^{\prime}}\right)^{-1}\circ A\circ F^{\underline{\theta}}_{\underline{a}}),

and if A=sz+tA=sz+t, then

(3) (Fa¯θ¯)1AFa¯θ¯(z)=DFa¯θ¯DFa¯θ¯sz+1DFa¯θ¯(sca¯θ¯+tca¯θ¯).\left(F^{\underline{\theta}^{\prime}}_{\underline{a}^{\prime}}\right)^{-1}\circ A\circ F^{\underline{\theta}}_{\underline{a}}(z)=\frac{DF^{\underline{\theta}}_{\underline{a}}}{DF^{\underline{\theta}^{\prime}}_{\underline{a}^{\prime}}}\,sz+\frac{1}{DF^{\underline{\theta}^{\prime}}_{\underline{a}^{\prime}}}\left(sc^{\underline{\theta}}_{\underline{a}}+t-c^{{\underline{\theta}}^{\prime}}_{\underline{a}^{\prime}}\right).

It is more convenient to see the space 𝒞\mathcal{C} through one more identification:

Σ×Σ×Aff()\displaystyle\Sigma^{-}\times{\Sigma^{\prime}}^{-}\times Aff(\mathbbm{C}) Σ×Σ××\displaystyle\equiv\Sigma^{-}\times{\Sigma^{\prime}}^{-}\times\mathbbm{C}^{*}\times\mathbbm{C}
(θ¯,θ¯,A)\displaystyle(\underline{\theta},\underline{\theta}^{\prime},A) (θ¯,θ¯,s,t),\displaystyle\equiv(\underline{\theta},\underline{\theta}^{\prime},s,t),

where A(z)=sz+tA(z)=sz+t. We will call ss the scale part of the relative configuration and tt the translation part. The equation (3) provides to us a formula for the renormalization under this identification if we analyse the scale and translation parts separately:

sDFa¯θ¯DFa¯θ¯sandt1DFa¯θ¯(sca¯θ¯+tca¯θ¯).s\mapsto\frac{DF^{\underline{\theta}}_{\underline{a}}}{DF^{\underline{\theta}^{\prime}}_{\underline{a}^{\prime}}}\,s\qquad\text{and}\qquad t\mapsto\frac{1}{DF^{\underline{\theta}^{\prime}}_{\underline{a}^{\prime}}}\left(sc^{\underline{\theta}}_{\underline{a}}+t-c^{{\underline{\theta}}^{\prime}}_{\underline{a}^{\prime}}\right).

The space of relative scales is given by 𝒮=Σ×Σ×J\mathcal{S}=\Sigma^{-}\times{\Sigma^{\prime}}^{-}\times J, where J=J=\mathbbm{C}^{*}. We identify JJ with ×𝕋\mathbbm{R}\times\mathbbm{T} through the map (t,v)et+iv(t,v)\to e^{t+iv}. It acts on \mathbbm{C} by complex multiplication. The space 𝒞\mathcal{C} of relative configurations projects to 𝒮\mathcal{S} by the map

𝒞\displaystyle\mathcal{C} 𝒮\displaystyle\to\mathcal{S}
[(θ¯,A),(θ¯,A)]\displaystyle[(\underline{\theta},A),(\underline{\theta}^{\prime},A^{\prime})] (θ¯,θ¯,DA/DA),\displaystyle\to(\underline{\theta},\underline{\theta}^{\prime},DA/DA^{\prime}),

where DADA means derivative of the affine map AA (which is an element in JJ). We trivialize 𝒞𝒮\mathcal{C}\to\mathcal{S} in the following way: we map [(θ¯,A),(θ¯,A)]𝒞[(\underline{\theta},A),(\underline{\theta}^{\prime},A^{\prime})]\in\mathcal{C} to (θ¯,θ¯,s,λ)(\underline{\theta},\underline{\theta}^{\prime},s,\lambda) such that s=DA/DAs=DA/DA^{\prime} and λ=(A)1A(0)\lambda=(A^{\prime})^{-1}\circ A(0). In this sense we can think of 𝒞\mathcal{C} as 𝒮×\mathcal{S}\times\mathbbm{C}. The renormalization operators act on the space of relative scales by

Ta¯Ta¯(θ¯,θ¯,s)=(θ¯a¯,θ¯a¯,s(DFa¯θ¯/DFa¯θ¯)).T_{\underline{a}}T^{\prime}_{\underline{a}^{\prime}}(\underline{\theta},\underline{\theta}^{\prime},s)=\left(\underline{\theta}\underline{a},\underline{\theta}^{\prime}\underline{a}^{\prime},s\cdot(DF^{\underline{\theta}}_{\underline{a}}/DF^{\underline{\theta}^{\prime}}_{\underline{a}^{\prime}})\right).

Most of the time we will work with scales which are bounded away from zero and infinity, for this purpose we introduce the notation

JR={sJ:eR|s|eR},J_{R}=\{s\in J:\,e^{-R}\leq|s|\leq e^{R}\},

where RR is a positive real number.

The object which we present in the following definition will play a central role in the proof of our main theorems. It is a useful tool to get stable intersection between pairs of Cantor sets.

Definition 2.14 (Recurrent compact).

Let KK and KK^{\prime} be a pair of Cantor sets. Let \mathcal{L} be a compact set in 𝒞\mathcal{C}. We say that \mathcal{L} is recurrent (for the pair (K,K)(K,K^{\prime})) if for any relative affine configuration of limit geometries vv\in\mathcal{L}, there are finite words a¯\underline{a}, a¯\underline{a}^{\prime} such that u=Ta¯Ta¯(v)u=T_{\underline{a}}T^{\prime}_{\underline{a^{\prime}}}(v) satisfies uint u\in\text{int }\mathcal{L}, where the Ta¯Ta¯T_{\underline{a}}T^{\prime}_{\underline{a^{\prime}}} are renormalization operators associated to the pair of Cantor sets KK and KK^{\prime}.

If such a renormalization can be done using words a¯\underline{a} and a¯\underline{a}^{\prime} such that their total size combined is equal to one, we say that such a set is immediately recurrent.

Theorem B of [6] states that if uu belongs to a recurrent compact set associated to a pair of Cantor sets KK and KK^{\prime}, then it represents pairs of affine configurations of limit geometries of these Cantor sets that have stable intersections. For the convenience of the reader, we copy its statement below.

Theorem.

The following properties are true:

  1. (1)

    Every recurrent compact set is contained in an immediately recurrent compact set.

  2. (2)

    Given a recurrent compact set \mathcal{L} (resp. immediately recurrent) for gg, gg^{\prime}, for any g~\tilde{g}, g~\tilde{g}^{\prime} in a small neighbourhood of (g,g)ΩΣ×ΩΣ(g,g^{\prime})\in\Omega_{\Sigma}\times\Omega_{{\Sigma}^{\prime}} we can choose base points c~aG~(a)K~\tilde{c}_{a}\in\tilde{G}(a)\cap\tilde{K} and c~aG~(a)K~\tilde{c}_{a^{\prime}}\in\tilde{G}(a^{\prime})\cap\tilde{K}^{\prime} respectively close to the pre-fixed cac_{a} and cac_{a^{\prime}}, for all a𝔸a\in\mathbb{A} and a𝔸a^{\prime}\in\mathbb{A^{\prime}}, in a manner that \mathcal{L} is also a recurrent compact set for g~\tilde{g} and g~\tilde{g}^{\prime}.

  3. (3)

    Any relative configuration contained in a recurrent compact set has stable intersections.

Remark 2.15.

For each pair of maps (g~,g~)(\tilde{g},\tilde{g}^{\prime}) in the small neighbourhood of (g,g)(g,g^{\prime}) in the theorem above, let H~\tilde{H} and H~\tilde{H}^{\prime} be the corresponding homeomorphisms defined in 2.3. The base points c~aG~(a)K~\tilde{c}_{a}\in\tilde{G}(a)\cap\tilde{K} and c~aG~(a)K~\tilde{c}_{a^{\prime}}\in\tilde{G}(a^{\prime})\cap\tilde{K}^{\prime} in the theorem above are chosen so that H~(c~a)=H(ca)\tilde{H}(\tilde{c}_{a})=H(c_{a}) and H~(c~a)=H(ca)\tilde{H}^{\prime}(\tilde{c}_{a^{\prime}})=H^{\prime}(c_{a^{\prime}}) for all a𝔸a\in\mathbb{A} and all a𝔸a^{\prime}\in\mathbb{A}^{\prime}, meaning that their itineraries under the action of g~\tilde{g} and g~\tilde{g}^{\prime} are the same for all pairs of maps in this neighbourhood. In subsequent contexts, the base points will be chosen in the same way.

2.5. Perturbation of Conformal Cantor Sets

Let KK be a conformal Cantor set defined by a CmC^{m} map gg. We show that if KK is non-essentially real then arbitrarily close to KK, in the C[m]C^{[m]} topology, there is a CC^{\infty} conformal Cantor set K~\tilde{K} defined by a map g~\tilde{g} that is holomorphic on a small open neighbourhood of K~\tilde{K}. This is an important property that will allow us to perturb more freely the conformal Cantor sets and adapt the random perturbation argument from [1] to our context.

We begin with the following lemma:

Lemma 2.16.

Let KK be a CmC^{m} conformal Cantor set given by gg. For xKx\in K consider the set

Kxdir:=δ>0{yx|yx|:yB(x,δ)(K{x})}¯.K^{dir}_{x}:=\bigcap_{\delta>0}\overline{\left\{\frac{y-x}{|y-x|}:y\in B(x,\delta)\cap(K\setminus\{x\})\right\}}.

Assume that, for all xKx\in K, KxdirK^{dir}_{x} has two linearly independent vectors (over \mathbbm{R}). Then, for all 1l[m]1\leq l\leq[m] and xKx\in K the ll-linear map Dxlg:2××22D^{l}_{x}g:\mathbbm{R}^{2}\times...\times\mathbbm{R}^{2}\to\mathbbm{R}^{2} is conformal, i.e. there is a complex number cxlc^{l}_{x} such that

Dxlg(z1,,zl)=cxlz1z2zl.D^{l}_{x}g(z_{1},...,z_{l})=c^{l}_{x}\cdot z_{1}\cdot z_{2}\cdot\dots\cdot z_{l}.

The operation \cdot in the right hand side of the last equality corresponds to complex multiplication.

Proof.

Notice that the case l=1l=1 is just the definition of conformality for the Cantor set. Now we proceed by induction, assume the result for l1l-1. Let wKxdirw\in K^{dir}_{x}, then there are sequences tn0t_{n}\to 0 and wnww_{n}\to w such that x+tnwnKx+t_{n}w_{n}\in K. Hence

Dxlg(w,z1,zl1)\displaystyle D^{l}_{x}g(w,z_{1}...,z_{l-1}) =limnDx+tnwnl1g(z1,,zl1)Dxl1g(z1,,zl1)tn\displaystyle=\lim_{n\to\infty}\frac{D^{l-1}_{x+t_{n}w_{n}}g(z_{1},...,z_{l-1})-D^{l-1}_{x}g(z_{1},...,z_{l-1})}{t_{n}}
=limncx+tnwnl1z1zl1cxl1z1zl1tn\displaystyle=\lim_{n\to\infty}\frac{c^{l-1}_{x+t_{n}w_{n}}\cdot z_{1}\cdots z_{l-1}-c^{l-1}_{x}\cdot z_{1}\cdots z_{l-1}}{t_{n}}
=(limncx+tnwnl1cxl1tn)z1zl1.\displaystyle=\left(\lim_{n\to\infty}\frac{c^{l-1}_{x+t_{n}w_{n}}-c^{l-1}_{x}}{t_{n}}\right)\cdot z_{1}\cdots z_{l-1}.

This shows that the limit limncx+tnwnl1cxl1tn\lim_{n\to\infty}\frac{c^{l-1}_{x+t_{n}w_{n}}-c^{l-1}_{x}}{t_{n}} exists, denote it by cxl(w)c^{l}_{x}(w). Moreover

Dxlg(w,z1,zl1)=cxl(w)z1zl1.D^{l}_{x}g(w,z_{1}...,z_{l-1})=c^{l}_{x}(w)\cdot z_{1}\cdots z_{l-1}.

If we take another vector w~Kxdir\tilde{w}\in K^{dir}_{x}, and using the symmetry of the operator DxlgD^{l}_{x}g, we would have

cxl(w)w~=Dxlg(w,w~,1,,1)=Dxlg(w~,w,1,,1)=cxl(w~)w.c^{l}_{x}(w)\tilde{w}=D^{l}_{x}g(w,\tilde{w},1,...,1)=D^{l}_{x}g(\tilde{w},w,1,...,1)=c^{l}_{x}(\tilde{w})w.

This shows that cxl(w)w\frac{c^{l}_{x}(w)}{w} does not depend on ww, denote it by cxlc^{l}_{x}. Since we can choose w,w~w,\tilde{w} generating 2\mathbbm{R}^{2}, we conclude that

Dxlg(z1,zl)=cxlz1zl.D^{l}_{x}g(z_{1}...,z_{l})=c^{l}_{x}\cdot z_{1}\cdots z_{l}.

To use this lemma we need to consider Cantor sets that are indeed two dimensional. This concept is precised by the following definition.

Definition 2.17.

We will say that a Cantor set KK is essentially real if there exists θ¯Σ\underline{\theta}\in\Sigma^{-} such that the limit Cantor set Kθ¯(θ0)K^{\underline{\theta}}(\theta_{0}) is contained in a straight line. Otherwise, we say it is non-essentially real.

It is not difficult to prove that KK is essentially real if and only if for every θ¯Σ\underline{\theta}\in\Sigma^{-} the limit Cantor set Kθ¯(θ0)K^{\underline{\theta}}(\theta_{0}) is contained in a straight line. Moreover, one can prove that KK being essentially real is equivalent to KK being contained in a C1C^{1} one dimensional manifold embedded on the plane.

Lemma 1.4.1 from [8] can be adapted to our context and it can be used to prove that every point xx belonging to a non-essentially real Cantor set KK verifies that KxdirK^{dir}_{x} has two linearly independent vectors (over \mathbbm{R}). We now show that being non-essentially real is an open property.

Lemma 2.18.

Let KK be a CmC^{m} non-essentially real conformal Cantor set. Every conformal Cantor set, close enough to KK in the CmC^{m} topology, is also non-essentially real.

Proof.

If the lemma does not hold, we would have a sequence KnK_{n} of conformal Cantor sets converging to KK and such that every KnK_{n} is essentially real. Let θ¯Σ\underline{\theta}\in\Sigma^{-}, denote by kθ¯,nk^{\underline{\theta},n} the limit geometry associated to θ¯\underline{\theta} and the Cantor set KnK_{n}. Since all KnK_{n} are essentially real then, for all nn, Kθ¯,n(θ0)=kθ¯,n(Kn)K^{\underline{\theta},n}(\theta_{0})=k^{\underline{\theta},n}(K_{n}) is contained in a line passing through the origin. Taking a subsequence we can assume that, as nn goes to infinity, Kθ¯,n(θ0)K^{\underline{\theta},n}(\theta_{0}) converges to a a set contained in a line passing through the origin. Using the fact that limit geometries depend continuously on the Cantor set, we conclude that Kθ¯(θ0)K^{\underline{\theta}}(\theta_{0}) is contained in a line and therefore KK is essentially real, contradicting the hypothesis in the lemma. ∎

Lemma 2.19.

Let (K,g)(K,g) be a CmC^{m} non-essentially real conformal Cantor set. Arbitrarily close to KK, in the C[m]C^{[m]} topology, we can construct a CC^{\infty} conformal Cantor set (K~,g~)(\tilde{K},\tilde{g}) such that g~\tilde{g} is holomorphic on a neighbourhood of K~\tilde{K}.

Proof.

Since KK is non-essentially real then the ll-derivative DxlgD^{l}_{x}g, at a point xx in the Cantor set, is determined by a complex number, which we denote by g(l)(x)g^{(l)}(x), i.e.

Dxlg(z1,zl)=g(l)(x)z1zl.D^{l}_{x}g(z_{1}...,z_{l})=g^{(l)}(x)\cdot z_{1}\cdots z_{l}.

In this situation, the Taylor approximation of gg at the point xx is

g(x+z)\displaystyle g(x+z) =g(x)+j=1[m]1j!(Dxjg)(z,,z)+\displaystyle=g(x)+\sum_{j=1}^{[m]}\dfrac{1}{j!}\left(D^{j}_{x}g\right)(z,\dots,z)\;+
+[0,1][m]t1[m]1t2[m]2t[m]1([Dx+t1t2t[m]z[m]Dx[m]]g)(z,,z)𝑑t1𝑑t[m]\displaystyle+\int_{[0,1]^{[m]}}t^{[m]-1}_{1}t^{[m]-2}_{2}\cdots t_{[m]-1}\left(\left[D^{[m]}_{x+t_{1}t_{2}\dots t_{[m]}z}-D^{[m]}_{x}\right]g\right)(z,\dots,z)dt_{1}\dots dt_{[m]}
=g(x)+j=1[m]1j!g(j)(x)zj+\displaystyle=g(x)+\sum_{j=1}^{[m]}\dfrac{1}{j!}g^{(j)}(x)z^{j}\;+
+[0,1][m]t1[m]1t2[m]2t[m]1([Dx+t1t2t[m]z[m]Dx[m]]g)(z,,z)𝑑t1𝑑t[m].\displaystyle+\int_{[0,1]^{[m]}}t^{[m]-1}_{1}t^{[m]-2}_{2}\cdots t_{[m]-1}\left(\left[D^{[m]}_{x+t_{1}t_{2}\dots t_{[m]}z}-D^{[m]}_{x}\right]g\right)(z,\dots,z)dt_{1}\dots dt_{[m]}.

Hence, gg is approximated (close to xx) by a complex polynomial, which is an holomorphic function. Now, to globally aproximate gg by a function g~\tilde{g} which is holomorphic in a neighborhood of its Cantor set K~\tilde{K}, we are going to take many of the previous polynomial approximations and glue them together.

Choose any real number ρ\rho larger than zero. Consider ΛΣ(ρ)\Lambda\subset\Sigma(\rho) such that {G(a¯)K}a¯Λ\{G(\underline{a})\cap K\}_{\underline{a}\in\Lambda} is a partition of KK. For each a¯Λ\underline{a}\in\Lambda we choose a point xa¯G(a¯)Kx_{\underline{a}}\in G(\underline{a})\cap K and define the polynomial

pa¯(z)=j=0[m]1j!g(j)(xa¯)(zxa¯)j.p_{\underline{a}}(z)=\sum_{j=0}^{[m]}\dfrac{1}{j!}g^{(j)}(x_{\underline{a}})(z-x_{\underline{a}})^{j}.

We can also consider CC^{\infty} functions ϕa¯:\phi_{\underline{a}}:\mathbbm{C}\to\mathbbm{R}, a¯Λ\underline{a}\in\Lambda, with the following properties:

  • ϕa¯(z)=1\phi_{\underline{a}}(z)=1 for all zG(a¯)z\in G(\underline{a}).

  • supp(ϕa¯)Vc~ρ(G(a¯))supp(\phi_{\underline{a}})\subset V_{\tilde{c}\rho}(G(\underline{a})), for a constant c~\tilde{c} independent of ρ\rho.

  • supp(ϕa¯)supp(ϕb¯)=supp(\phi_{\underline{a}})\cap supp(\phi_{\underline{b}})=\emptyset, for all a¯b¯\underline{a}\neq\underline{b}.

  • Djϕa¯C~ρj\|D^{j}\phi_{\underline{a}}\|\leq\tilde{C}\rho^{-j}, for a constant C~\tilde{C} independent of ρ\rho.

Indeed, to be able to construct these bump functions, we only need to show that given a¯0a¯1\underline{a}^{0}\neq\underline{a}^{1} both in ΛΣ(ρ)\Lambda\subset\Sigma(\rho), the distance between the pieces G(a¯0)G(\underline{a}^{0}) and G(a¯1)G(\underline{a}^{1}) is at least 3c~ρ3\tilde{c}\rho for some constant c~>0\tilde{c}>0 independent of ρ\rho. For that, we can suppose that a¯0=a¯a0\underline{a}^{0}=\underline{a}a_{0} and a¯1=a¯a1\underline{a}^{1}=\underline{a}a_{1} for some a0a1𝔸a_{0}\neq a_{1}\in\mathbb{A}, since this would be the worst scenario. If θ¯Σ\underline{\theta}\in\Sigma^{-} ends with a¯\underline{a}, the distance between these sets is comparable to

diam(G(a¯))d(kθ¯(G(a0)),kθ¯(G(a1))).\text{diam}\left(G(\underline{a})\right)\cdot d\left(k^{\underline{\theta}}(G(a_{0})),k^{\underline{\theta}}(G(a_{1}))\right).

Hence the existence of c~\tilde{c} follows from the compactness of the space of limit geometries.

Now, let g^\hat{g} be CC^{\infty} and very close, in the C[m]C^{[m]} topology, to gg. Define g~\tilde{g}, with the same domain as gg, by

g~(z)=a¯Λϕa¯(z)pa¯(z)+(1a¯Λϕa¯(z))g^(z).\tilde{g}(z)=\sum_{\underline{a}\in\Lambda}\phi_{\underline{a}}(z)p_{\underline{a}}(z)+\left(1-\sum_{\underline{a}\in\Lambda}\phi_{\underline{a}}(z)\right)\hat{g}(z).

Notice that

g^g~=a¯Λϕa¯(g^pa¯).\hat{g}-\tilde{g}=\sum_{\underline{a}\in\Lambda}\phi_{\underline{a}}\cdot(\hat{g}-p_{\underline{a}}).

Therefore, the C[m]C^{[m]} norm of g^g~\hat{g}-\tilde{g} will be small provided

Djϕa¯Dkj(g^pa¯)|Vc~ρ(G(a¯))Djϕa¯[Dkj(gpa¯)|Vc~ρ(G(a¯))+Dkj(gg^)|Vc~ρ(G(a¯))]\|D^{j}\phi_{\underline{a}}\|\cdot\|D^{k-j}(\hat{g}-p_{\underline{a}})|_{V_{\tilde{c}\rho}(G(\underline{a}))}\|\leq\|D^{j}\phi_{\underline{a}}\|\cdot\left[\|D^{k-j}(g-p_{\underline{a}})|_{V_{\tilde{c}\rho}(G(\underline{a}))}\|+\|D^{k-j}(g-\hat{g})|_{V_{\tilde{c}\rho}(G(\underline{a}))}\|\right]

is small, for all 0k[m]0\leq k\leq[m], 0jk0\leq j\leq k (remember that support of ϕa¯\phi_{\underline{a}} is contained in Vc~ρ(G(a¯))V_{\tilde{c}\rho}(G(\underline{a}))). We already know that Djϕa¯C~ρj\|D^{j}\phi_{\underline{a}}\|\leq\tilde{C}\rho^{-j}. On the other hand, Taylor approximation implies that

limρ0supa¯ΛDkj(gpa¯)|Vc~ρ(G(a¯))ρj=0.\lim_{\rho\to 0}\sup_{\underline{a}\in\Lambda}\frac{\|D^{k-j}(g-p_{\underline{a}})|_{V_{\tilde{c}\rho}(G(\underline{a}))}\|}{\rho^{j}}=0.

We conclude that taking ρ\rho small enough and g^\hat{g} close enough to gg, we get g~\tilde{g} as C[m]C^{[m]} close to gg as we want. Notice that thanks to the way in which we defined g~\tilde{g}, it is CC^{\infty} and by lemma 2.18 we can suppose it is non-essentially real. Moreover, in the set a¯ΛG(a¯)\sqcup_{\underline{a}\in\Lambda}G(\underline{a}) the function g~\tilde{g} is holomorpic. We can also guarantee that g~\tilde{g} verifies the hypothesis necessary to define a dynamically defined Cantor set (with the same sets G(a)G(a), a𝔸a\in\mathbb{A}), we just need to take g~\tilde{g} C1C^{1}-close enough to gg. Even more, the Cantor set K~\tilde{K}, generated by g~\tilde{g}, is contained in a¯ΛG(a¯)\sqcup_{\underline{a}\in\Lambda}G(\underline{a}). ∎

To prove our main theorems we will use the scale recurrence lemma (see subsection 2.7). To use this lemma we need that our Cantor sets are non-essentially affine. A CmC^{m} Cantor set KK, with m2m\geq 2, is said to be non-essentially affine when there is a pair of limit geometries θ¯0\underline{\theta}^{0} and θ¯1\underline{\theta}^{1} in Σ\Sigma^{-} such that θ00=θ01\theta^{0}_{0}=\theta^{1}_{0} and a point x0Kθ¯0(θ0)x_{0}\in K^{\underline{\theta}^{0}}(\theta_{0}) such that

D2[kθ¯1(kθ¯0)1](x0)0.D^{2}\left[k^{\underline{\theta}^{1}}\circ(k^{\underline{\theta}^{0}})^{-1}\right](x_{0})\neq 0.

The following lemma allow us to perturb and get a non-essentially affine Cantor set.

Lemma 2.20.

Let KK be a CmC^{m} non-essentially real conformal Cantor set. Arbitrarly close to KK, in the C[m]C^{[m]} topology, there is a CC^{\infty} Cantor set K~\tilde{K} which is non-essentially real, non-essentially affine and such that its expanding function g~\tilde{g} is holomorphic in a neighborhood of K~\tilde{K}.

Proof.

Let (K^,g^)(\hat{K},\hat{g}) be the perturbed Cantor set from lemma 2.19. If K^\hat{K} is non-essentially affine we are done. Otherwise, choose a piece G(a)G(a), a𝔸a\in\mathbb{A}, and let cac_{a} be the corresponding base point. As previously mentioned, it is pre-periodic.

Claim.

If ρ>0\rho>0 is sufficiently small, we can chose a¯Σ(ρ)\underline{a}\in\Sigma(\rho) ending with aa so that no word in Σ(ρ1/3)\Sigma(\rho^{1/3}) appears more than once in a¯\underline{a}. Given any word a¯\underline{a} with this property, if ρ>0\rho>0 is sufficiently small, there is θ¯0Σ\underline{\theta}^{0}\in\Sigma^{-} ending with a¯\underline{a} and such that a¯\underline{a} does not appear elsewhere in θ¯0\underline{\theta}^{0}. Furthermore, there is θ¯1Σ\underline{\theta}^{1}\in\Sigma^{-} ending with aa such that no subword of a¯\underline{a} belonging to Σ(ρ1/3)\Sigma(\rho^{1/3}) appears in it.

Proof.

Since the shift is mixing over Σ\Sigma, there must be at least two sequences of distinct lengths (both larger than 1) a¯1,a¯2Σfin\underline{a}^{1},\underline{a}^{2}\in\Sigma^{fin} such that both end and begin with aa and no other letter in these words is aa. Now construct a¯\underline{a} as

a¯=a¯1a¯1a¯1N1 timesa¯1a¯2a¯1a¯2N2 timesa¯1a¯2a¯2a¯1a¯2a¯2N3 timesa¯2a¯2a¯2N4 times.\underline{a}=\underbrace{\underline{a}^{1}\,\underline{a}^{1}\,\dots\,\underline{a}^{1}}_{N_{1}\text{ times}}\underbrace{\underline{a}^{1}\,\underline{a}^{2}\,\dots\,\underline{a}^{1}\underline{a}^{2}}_{N_{2}\text{ times}}\underbrace{\underline{a}^{1}\,\underline{a}^{2}\underline{a}^{2}\,\dots\,\underline{a}^{1}\underline{a}^{2}\underline{a}^{2}}_{N_{3}\text{ times}}\underbrace{\underline{a}^{2}\,\dots\underline{a}^{2}\underline{a}^{2}}_{N_{4}\text{ times}}.

If ρ\rho is sufficiently small, a suitable choice of N1N_{1}, N2N_{2}, N3N_{3} and N4N_{4} can be done so that no subword in Σ(ρ1/3)\Sigma(\rho^{1/3}) appears more than once. This can be seen by analysing the behaviour of the distance between two consecutive letters aa in any two subwords of a¯\underline{a}.

Now, choose a subword a¯Σ(ρ1/3)\underline{a}^{\prime}\in\Sigma(\rho^{1/3}) such that a¯\underline{a} begins with a¯\underline{a}^{\prime}. If a¯\underline{a}^{\prime} never appears in θ¯Σ\underline{\theta}^{\prime}\in\Sigma^{-}, then we can make θ¯0=θ¯a¯\underline{\theta}^{0}=\underline{\theta}^{\prime}\underline{a}. Indeed, for a¯\underline{a} to appear more than once, the word a¯/a¯\underline{a}/\underline{a}^{\prime} must be contained in a¯\underline{a} but in another position. This implies that a subword in Σ(ρ1/3)\Sigma(\rho^{1/3}), corresponding to the beginning of a¯/a¯\underline{a}/\underline{a}^{\prime} for example, appears more than once in a¯\underline{a}. But this does not happen.

Now, suppose we are given a word b¯Σ(ρ)\underline{b}\in\Sigma(\rho). We want to prove there is some θ¯Σ\underline{\theta}\in\Sigma^{-} such that b¯\underline{b} never appears in θ¯\underline{\theta}. Choose a beginning b¯1Σ(ρ1/3)\underline{b}_{1}\in\Sigma({\rho}^{1/3}) of b¯\underline{b} and an ending b¯2Σ(ρ1/3)\underline{b}_{2}\in\Sigma({\rho}^{1/3}). Let b¯Σ(ρ2)\underline{b}^{\prime}\in\Sigma({\rho}^{2}) be such that b¯1\underline{b}_{1} and b¯2\underline{b}_{2} never appear in it and also suppose that the first letter of b¯\underline{b}^{\prime} is the same as its last letter. Then, similarly to the analysis before, we can make θ¯=b¯b¯Σ\underline{\theta}=\dots\underline{b}^{\prime}\dots\underline{b}^{\prime}\in\Sigma^{-}.

The existence of b¯\underline{b}^{\prime} comes from a counting argument, in which we show that the words in which b¯1\underline{b}_{1} or b¯2\underline{b}_{2} appear do not account for all possible words b¯Σ(ρ2)\underline{b}^{\prime}\in\Sigma(\rho^{2}). Remember that if dd is the Hausdorff dimension of KK, then #Σ(ρ)ρd\#\Sigma(\rho)\approx\rho^{-d}.

The number of words in Σ(ρ2)\Sigma(\rho^{2}) ending with b¯1\underline{b}_{1} is ρ5d/3\lesssim\rho^{-5d/3}. More than that, if we fix a starting position for the appearance of b¯1\underline{b}_{1}, such as it beginning in the 1000th1000^{th} letter of b¯\underline{b}^{\prime} (remember ρ\rho is very small), then the same estimate remains true. Notice however that the number of letters of b¯\underline{b}^{\prime} is logρ1\lesssim\log{\rho^{-1}}, and so the number of words in Σ(ρ)\Sigma(\rho) that fail our requirements is ρ5d/3logρ1\lesssim\rho^{-5d/3}\log{\rho^{-1}}, thus, for ρ\rho small enough, there must be b¯Σ(ρ2)\underline{b^{\prime}}\in\Sigma(\rho^{2}) that satisfies our requirements.

To construct θ¯1\underline{\theta}^{1}, we can use the same argument, all we need to observe is that the number of subwords of a¯\underline{a} in Σ(ρ1/3)\Sigma(\rho^{1/3}) is also logρ\lesssim\log{\rho}.

By maybe shrinking ρ\rho even further, we can assume that the periodic part of the itinerary of cac_{a} is a word very small when compared to a¯\underline{a}. The combinatorial conditions above imply that fθ¯n0(ca)f_{\underline{\theta}^{0}_{n}}(c_{a}) belongs to G(a¯)G(\underline{a}) only when θ¯n0=a¯\underline{\theta}^{0}_{n}=\underline{a}. Besides, fθ¯n1(ca)f_{\underline{\theta}^{1}_{n}}(c_{a}) never belongs to this set.

Let ϕ:G(a¯)\phi:G(\underline{a})\to\mathbbm{C} be an holomorphic map C[m]C^{[m]} close to the identity, and suppose it fixes the point ca¯c_{\underline{a}} and has derivative equal to the identity at this point. Similar to the construction on lemma 2.19, define a new Cantor set given by an expanding map g~\tilde{g} that is equal to g^\hat{g} outside a small neighborhood of G(a¯)G(\underline{a}) and equal to g^ϕ\hat{g}\circ\phi in G(a¯)G(\underline{a}). Note that the perturbed base point c~a\tilde{c}_{a} is equal to cac_{a}, thanks to the pre-periodicity of cac_{a} and the combinatorial properties of a¯\underline{a}. Moreover, the limit geometry corresponding to θ¯1\underline{\theta}^{1} stays the same close to cac_{a}, that is, we can choose a neighbourhood V=G(b¯)V=G(\underline{b}) of the base point c~a=ca\tilde{c}_{a}=c_{a}, with b¯Σfin\underline{b}\in\Sigma^{fin} sufficiently large, such that k~θ¯1|V=k^θ¯1|V\tilde{k}^{\underline{\theta}^{1}}|_{V}=\hat{k}^{\underline{\theta}^{1}}|_{V}. On the other hand, for θ¯0\underline{\theta}^{0},

k~θ¯0|V=k^θ¯0|Vfa¯1ϕ1fa¯,\tilde{k}^{\underline{\theta}^{0}}|_{V}=\hat{k}^{\underline{\theta}^{0}}|_{V}\circ f_{\underline{a}}^{-1}\circ\phi^{-1}\circ f_{\underline{a}},

since the affine reescalings Φθ¯n0\Phi_{\underline{\theta}_{n}^{0}} stay the same. Notice that the map g~\tilde{g} is still holomorphic in a neighbourhood of K~\tilde{K} and, because of lemma 2.18, it is non-essentially real if ϕ\phi is C1C^{1} sufficiently close to the identity. However, we can still choose ϕ\phi so that

D2(fa¯1ϕ1fa¯)(ca)0.D^{2}\left(f_{\underline{a}}^{-1}\circ\phi^{-1}\circ f_{\underline{a}}\right)(c_{a})\neq 0.

Hence D2k~θ¯0(ca)D2k^θ¯0(ca)D^{2}\tilde{k}^{\underline{\theta}^{0}}(c_{a})\neq D^{2}\hat{k}^{\underline{\theta}^{0}}(c_{a}). This implies that

D2[k~θ¯1(k~θ¯0)1](0)0D^{2}\left[\tilde{k}^{\underline{\theta}^{1}}\circ(\tilde{k}^{\underline{\theta}^{0}})^{-1}\right](0)\neq 0

and so the new Cantor set is also non-essentially affine.

Remark 2.21.

We observe that the CC^{\infty} Cantor set K~\tilde{K} constructed in lemma 2.19 can be also assumed to be close to KK in the CmC^{m^{\prime}} topology for all m(1,m)m^{\prime}\in(1,m). All one needs to do is to choose g^\hat{g} close to gg in this topology. This can be done using a mollifier φ\varphi supported in a very small neighbourhood of the origin and making g^=gφ\hat{g}=g*\varphi. Notice that the CmC^{m} proximity between the maps pa¯p_{\underline{a}} and gg in supp(ϕa¯)supp(\phi_{\underline{a}}) comes from the fact that gg is CmC^{m} and supp(ϕa¯)supp(\phi_{\underline{a}}) has diameter of order ρ\rho. Moreover, using the fact that D[m]gD^{[m]}g is ε\varepsilon-Holder, for ε=m[m]\varepsilon=m-[m], one gets the improved estimate Dmj(gpa¯)|Vc~ρ(G(a¯))=O(ρj+ε)\|D^{m-j}(g-p_{\underline{a}})|_{V_{\tilde{c}\rho}(G(\underline{a}))}\|=O(\rho^{j+\varepsilon}) for all 0j[m]0\leq j\leq[m]. This can be seen analysing the Taylor approximation of the derivatives of gg in this domain.

It follows that, given any Cantor set KΩΣK\in\Omega_{\Sigma}, essentially real or not, arbitrarily close to KK in the topology of ΩΣ\Omega_{\Sigma}, there is a Cantor set K~ΩΣΩΣ\tilde{K}\in\Omega^{\infty}_{\Sigma}\subset\Omega_{\Sigma} that satisfies the conclusion of lemma 2.20. Indeed, suppose that KK is C1+εC^{1+\varepsilon} for some ε(0,1)\varepsilon\in(0,1). Then the only part of the argument (polynomial approximation in the C1+εC^{1+\varepsilon} topology) in lemma 2.19 which uses the non-essentially real hypothesis can be done using the conformality of the Cantor set. Moreover, one can also choose K~\tilde{K} to be non-essentially real. To do so, we first suppose that the expanding function g~\tilde{g} is already holomorphic in a neighborhood of K~\tilde{K}. Then one chooses a periodic point pK~p\in\tilde{K}, of period nn, and observes that if Dg~n(p)D\tilde{g}^{n}(p)\notin\mathbbm{R} then K~\tilde{K} can not be essentially real. Thus, if Dg~n(p)D\tilde{g}^{n}(p)\notin\mathbbm{R} we are done, otherwise we perturb K~\tilde{K} along the periodic orbit {p,,g~n1(p)}\{p,...,\tilde{g}^{n-1}(p)\} to get such property. One execution of this idea of perturbing along a periodic orbit can be found in the proof of theorem 2.23.

2.6. Main theorems

Here we state our main theorems. The proof of theorem 2.22 will be given throughout the remaining sections. Using this theorem we will prove theorem 2.23. In particular, we will get that there is an open and dense set, among pairs of conformal Cantor sets KK, KK^{\prime} with HD(K)+HD(K)>2HD(K)+HD(K^{\prime})>2, such that all elements in this set verify int(KK)\text{int}(K-K^{\prime})\neq\emptyset. Before stating the theorems, we remark that the Hausdorff dimension varies continuously with the Cantor set. This is proven in [9] for Cantor sets in the real line and the argument there can be adapted to our context.

Theorem 2.22.

Given a pair of non-essentially real conformal Cantor sets (K,K)(K,K^{\prime}) in ΩΣ×ΩΣ\Omega^{\infty}_{\Sigma}\times\Omega^{\infty}_{\Sigma^{\prime}}, such that HD(K)+HD(K)>2HD(K)+HD(K^{\prime})>2. Arbitrarily close to KK, KK^{\prime}, in the CC^{\infty} topology, we can find conformal Cantor sets K~\tilde{K}, K~\tilde{K}^{\prime} in ΩΣ\Omega^{\infty}_{\Sigma}, ΩΣ\Omega^{\infty}_{\Sigma^{\prime}} respectively, such that K~\tilde{K}, K~\tilde{K}^{\prime} has a non empty recurrent compact set.

Define the set UU as the pairs of conformal Cantor sets (K,K)(K,K^{\prime}) in ΩΣ×ΩΣ\Omega_{\Sigma}\times\Omega_{\Sigma^{\prime}} such that for every relative configuration (θ¯,θ¯,s,t)(\underline{\theta},\underline{\theta}^{\prime},s,t), there is t~\tilde{t}\in\mathbbm{C} such that the configuration (θ¯,θ¯,s,t~)(\underline{\theta},\underline{\theta}^{\prime},s,\tilde{t}) has stable intersection.

Theorem 2.23.

The set UU is open in ΩΣ×ΩΣ\Omega_{\Sigma}\times\Omega_{\Sigma^{\prime}} and UΩΣ×ΩΣU\cap\Omega^{\infty}_{\Sigma}\times\Omega^{\infty}_{\Sigma^{\prime}} is dense, in the CC^{\infty} topology, in {(K,K)ΩΣ×ΩΣ:HD(K)+HD(K)>2,K,K are non-essentially real}\{(K,K^{\prime})\in\Omega^{\infty}_{\Sigma}\times\Omega^{\infty}_{\Sigma^{\prime}}:\,HD(K)+HD(K^{\prime})>2,\,K,\,K^{\prime}\text{ are non-essentially real}\}. Moreover, for any (K,K)(K,K^{\prime}) in UU and (h,h)𝒫×𝒫(h,h^{\prime})\in\mathcal{P}\times\mathcal{P^{\prime}} such that Dh(z)Dh(z) and Dh(z)Dh^{\prime}(z^{\prime}) are conformal for all (z,z)K×K(z,z^{\prime})\in K\times K^{\prime}, the set

s={λ:(h+λ,h) has stable intersection}\mathcal{I}_{s}=\{\lambda\in\mathbbm{C}:(h+\lambda,h^{\prime})\text{ has stable intersection}\}

is dense in

={λ:(h+λ,h) is intersecting}.\mathcal{I}=\{\lambda\in\mathbbm{C}:(h+\lambda,h^{\prime})\text{ is intersecting}\}.

In particular, int(KK)\text{int}(K-K^{\prime})\neq\emptyset.

Proof.

The proof is very similar to the one for the corresponding result in [1], except for the use of lemma 2.25. For the openness of UU, one observes that, if RR is big enough, then any relative configuration (θ¯,θ¯,s,t)(\underline{\theta},\underline{\theta}^{\prime},s,t) can be transported, using a renormalization operator, to the set Σ×Σ×{eR|s|eR}×\Sigma^{-}\times\Sigma^{\prime-}\times\{e^{-R}\leq|s|\leq e^{R}\}\times\mathbbm{C}. Given (K,K)(K,K^{\prime}) in UU, from compactness of the set Σ×Σ×{eR|s|eR}\Sigma^{-}\times\Sigma^{\prime-}\times\{e^{-R}\leq|s|\leq e^{R}\} one sees that there is a neighborhood of (K,K)(K,K^{\prime}) such that for any pair in this neighborhood, we have (θ¯,θ¯,s,t)Σ×Σ×{eR|s|eR}×(\underline{\theta},\underline{\theta}^{\prime},s,t)\in\Sigma^{-}\times\Sigma^{\prime-}\times\{e^{-R}\leq|s|\leq e^{R}\}\times\mathbbm{C} implies there is t~\tilde{t}\in\mathbbm{C} such that (θ¯,θ¯,s,t~)(\underline{\theta},\underline{\theta}^{\prime},s,\tilde{t}) has stable intersection. Thus the same happens for the whole Σ×Σ××\Sigma^{-}\times\Sigma^{\prime-}\times\mathbbm{C}^{*}\times\mathbbm{C}, and the neighborhood is contained in UU.

Furthermore, in the same context of the previous paragraph, from compactness of the set Σ×Σ×{eR|s|eR}\Sigma^{-}\times\Sigma^{\prime-}\times\{e^{-R}\leq|s|\leq e^{R}\}, for each r>1r>1 there is some δ>0\delta>0 such that if h~\tilde{h} and h~\tilde{h}^{\prime} are maps δ\delta-close to the identity in the CrC^{r} metric, then (h~Bkθ¯,h~kθ¯)(\tilde{h}\circ B\circ k^{\underline{\theta}},\tilde{h}^{\prime}\circ k^{\underline{\theta}^{\prime}}) has stable intersections, where B(z)=sz+t~B(z)=sz+\tilde{t} and eR|s|eRe^{-R}\leq|s|\leq e^{R}. We will need this later.

For the denseness we use theorem 2.22. Given (K~,K~)ΩΣ×ΩΣ(\tilde{K},\tilde{K}^{\prime})\in\Omega^{\infty}_{\Sigma}\times\Omega^{\infty}_{\Sigma^{\prime}}, with HD(K)+HD(K)>2HD(K)+HD(K^{\prime})>2 and both of them non-essentially real, arbitrarily close to it there is (K,K)ΩΣ×ΩΣ(K,K^{\prime})\in\Omega^{\infty}_{\Sigma}\times\Omega^{\infty}_{\Sigma^{\prime}} having a non empty recurrent compact set \mathcal{L}. Perturbing, we may assume that (K,K)(K,K^{\prime}) also has periodic points pp, pp^{\prime}, associated to finite words a¯\underline{a}, a¯\underline{a}^{\prime}, that is fa¯(p)=pf_{\underline{a}}(p)=p, fa¯(p)=pf_{\underline{a}^{\prime}}(p^{\prime})=p^{\prime}, such that if we write

ai,j=Dfa¯i(p)/Dfa¯j(p)=DFa¯iθ¯0/DFa¯jθ¯0,a_{i,j}=Df_{\underline{a}^{i}}(p)/Df_{\underline{a}^{\prime j}}(p^{\prime})=DF^{\underline{\theta}_{0}}_{\underline{a}^{i}}/DF^{\underline{\theta}_{0}^{\prime}}_{\underline{a}^{\prime j}}\in\mathbbm{C}^{*},

where a¯i\underline{a}^{i} is concatenation of a¯\underline{a} with itself ii times, similarly for a¯\underline{a}^{\prime}, θ¯0=(,a¯,a¯)\underline{\theta}_{0}=(...,\underline{a},\underline{a}) and θ¯0=(,a¯,a¯)\underline{\theta}^{\prime}_{0}=(...,\underline{a}^{\prime},\underline{a}^{\prime}), then the set {ai,j}i,j+\{a_{i,j}\}_{i,j\in\mathbbm{Z}^{+}} is dense in \mathbbm{C}^{*} (see lemma 2.25).

More precisely, in order to get the density of {ai,j}\{a_{i,j}\}, we need to perturb (g,g)(g,g^{\prime}) such that Dgm(p),Dgm(p)×𝕋Dg^{m}(p),\,Dg^{\prime m^{\prime}}(p^{\prime})\in\mathbbm{C}^{*}\approx\mathbbm{R}\times\mathbbm{T} have the property in lemma 2.25, where mm, mm^{\prime} are the periods of pp, pp^{\prime}, respectively. To do this, we define a family of conformal Cantor sets given by expanding functions (gx,gy)(g_{x},g^{\prime}_{y}) depending in complex parameters xx, yy, such that the pairs (Dgxm(px),Dgym(py))×(Dg_{x}^{m}(p_{x}),Dg_{y}^{\prime m^{\prime}}(p_{y}))\in\mathbbm{C}^{*}\times\mathbbm{C}^{*} form an open set. Choose a word d¯Σ(α)\underline{d}\in\Sigma(\alpha) such that pG(d¯)p\in G(\underline{d}), α\alpha is small enough such that there are not more points of the periodic orbit of pp contained in G(d¯)G(\underline{d}) and gg is holomorphic in Vα(K)V_{\alpha}(K) (by lemma 2.19 we may assume this). For 0<c<10<c<1 small enough one has that KVcα(G(d¯))=KG(d¯)K\cap V_{c\alpha}(G(\underline{d}))=K\cap G(\underline{d}). We choose a CC^{\infty} function ψx\psi_{x} such that

ψx(z)={x(zp)+p if zVcα/3(G(d¯)),z if zV2cα/3(G(d¯)),\psi_{x}(z)=\begin{cases}x\cdot(z-p)+p&\text{ if }z\in V_{c\alpha/3}(G(\underline{d})),\\ z&\text{ if }z\notin V_{2c\alpha/3}(G(\underline{d})),\end{cases}

where xx is in the ball of center 11 and radius δ\delta^{\prime} in \mathbbm{C}. Define gx=gψxg_{x}=g\circ\psi_{x}, notice that we can take gxg_{x} as close as we want to gg in the CC^{\infty} topology by choosing δ\delta^{\prime} small enough. If we choose δ\delta^{\prime} small enough then we can guarantee that the Cantor set KxK_{x}, associated to gxg_{x}, and the set ψx(Kx)\psi_{x}(K_{x}) are contained in Vcα/3(K)V_{c\alpha/3}(K) and therefore KxV2cα/3(G(d¯))Vcα/3(G(d¯))=K_{x}\cap V_{2c\alpha/3}(G(\underline{d}))\setminus V_{c\alpha/3}(G(\underline{d}))=\emptyset, which implies that

Dgx(z)=Dg(ψx(z))Dψx(z)Dg_{x}(z)=Dg(\psi_{x}(z))\cdot D\psi_{x}(z)

is conformal for all zKxz\in K_{x}. This proves that KxK_{x} is a conformal Cantor set. Moreover, notice that px=pp_{x}=p is still a periodic point of gxg_{x} with the same period mm, and Dgxm(px)=xDgm(p)Dg_{x}^{m}(p_{x})=x\cdot Dg^{m}(p). Doing the same construction for gg^{\prime} one sees that for some value of xx, yy the pair (Dgxm(px),Dgym(py))(Dg_{x}^{m}(p_{x}),Dg_{y}^{\prime m^{\prime}}(p^{\prime}_{y})) satisfy the hypothesis of lemma 2.25.

Using equation (3), the denseness of the set {an,m}n,m+\{a_{n,m}\}_{n,m\in\mathbbm{Z}^{+}} and the fact that \mathcal{L} has non-empty interior, one concludes that for any (θ¯,θ¯,s,t)(\underline{\theta},\underline{\theta}^{\prime},s,t) there is m,n+m,\,n\in\mathbbm{Z}^{+}, b¯\underline{b}, b¯\underline{b}^{\prime} in Σfin\Sigma^{fin}, Σfin\Sigma^{\prime fin}, respectively, and λ\lambda\in\mathbbm{C} such that Ta¯nb¯Ta¯mb¯(θ¯,θ¯,s,t+λ)T_{\underline{a}^{n}\underline{b}}T^{\prime}_{\underline{a}^{\prime m}\underline{b}^{\prime}}(\underline{\theta},\underline{\theta}^{\prime},s,t+\lambda)\in\mathcal{L}. Therefore (K,K)UΩΣ×ΩΣ(K,K^{\prime})\in U\cap\Omega^{\infty}_{\Sigma}\times\Omega^{\infty}_{\Sigma}.

For the final part, let λ\lambda\in\mathbbm{C} be such that (h+λ,h)(h+\lambda,h^{\prime}) is intersecting and take any ε>0\varepsilon>0. Then there is at least one pair of words a¯=(a0,a1,,an)Σfin\underline{a}=(a_{0},\,a_{1},\,\dots,\,a_{n})\in\Sigma^{fin} and a¯=(a0,,a1,,am)Σfin\underline{a}^{\prime}=(a^{\prime}_{0},\,,a^{\prime}_{1},\,\dots,\,a^{\prime}_{m})\in{\Sigma^{\prime}}^{fin} sufficiently large such that ((h+λ)fa¯,hfa¯)((h+\lambda)\circ f_{\underline{a}},h^{\prime}\circ f_{\underline{a}^{\prime}}) are still intersecting and the diameters of the sets G(a¯)G(\underline{a}) and G(a¯)G(\underline{a}^{\prime}) are smaller than ε\varepsilon. Indeed, if it was not the case, the sets (h+λ)(G(a¯))(h+\lambda)(G(\underline{a})) and h(G(a¯))h^{\prime}(G(\underline{a})) would be disjoint for all a¯\underline{a} and a¯\underline{a}^{\prime} sufficiently large, a contradiction with the intersecting hypothesis. We will prove that if ε\varepsilon is small there exists λ~\tilde{\lambda}\in\mathbbm{C} such that |λ~λ|ε|\tilde{\lambda}-\lambda|\lesssim\varepsilon and (h+λ~,h)(h+\tilde{\lambda},h^{\prime}) has stable intersections.

Now, following definition 3.10 of [6], we can scale these pairs of configurations by normalizing in the second coordinate, obtaining another pair with intersection. More precisely, we choose AAff()A^{\prime}\in Aff(\mathbbm{C}) such that

(Ahfa¯)(cam)=0 and D(Ahfa¯)(cam)=Id(A^{\prime}\circ h^{\prime}\circ f_{\underline{a}^{\prime}})(c_{a^{\prime}_{m}})=0\quad\text{ and }\quad D(A^{\prime}\circ h^{\prime}\circ f_{\underline{a}^{\prime}})(c_{a^{\prime}_{m}})=Id

and consider now the pair of configurations (A(h+λ)fa¯,Ahfa¯)(A^{\prime}\circ(h+\lambda)\circ f_{\underline{a}},A^{\prime}\circ h^{\prime}\circ f_{\underline{a}^{\prime}}). This pair of configurations is intersecting, because this property is clearly preserved under composition on the left by affine transformations.

Let r(1,2)r\in(1,2) be such that hh and hh^{\prime} are both CrC^{r}. Reasoning as in the proof of lemma 3.11 of [6] (see claim 3.12), we observe that this pair of configurations can be written as

(A(h+λ)fa¯,Ahfa¯)=(h~Bkθ¯,h~kθ¯),(A^{\prime}\circ(h+\lambda)\circ f_{\underline{a}},A^{\prime}\circ h^{\prime}\circ f_{\underline{a}^{\prime}})=(\tilde{h}\circ B\circ k^{\underline{\theta}},\tilde{h}^{\prime}\circ k^{\underline{\theta}^{\prime}}),

where: θ¯Σ\underline{\theta}\in\Sigma^{-} ends with a¯\underline{a}; θ¯Σ\underline{\theta}^{\prime}\in{\Sigma^{\prime}}^{-} ends with a¯\underline{a}^{\prime}; the maps h~\tilde{h} and h~\tilde{h}^{\prime} are close to the identity in the CrC^{r} topology, and BB is a bounded affine transformation in Aff()Aff(\mathbbm{C}). More precisely, if we set111Notice that if Dh(x),Dh(y)Dh(x),\,Dh^{\prime}(y) were not conformal for all xK,yKx\in K,\,y\in K^{\prime} we could not guarantee that BAff()B\in Aff(\mathbbm{C}).

DB=DADh(ca¯)Dfa¯(can)=sandB(0)=A(h+λ)fa¯(can)=t,DB=DA^{\prime}\cdot Dh(c_{\underline{a}})\cdot Df_{\underline{a}}(c_{a_{n}})=s\in\mathbbm{C}\quad\text{and}\quad B(0)=A^{\prime}\circ(h+\lambda)\circ f_{\underline{a}}(c_{a_{n}})=t\in\mathbbm{C},

and choose a¯\underline{a} and a¯\underline{a}^{\prime} with appropriate lengths, then eR|s|eRe^{-R}\leq\left\lvert s\right\rvert\leq e^{R} and there is some constant c>0c>0 (independent from ε\varepsilon) such that |B(0)|<ceR\left\lvert B(0)\right\rvert<c\,e^{R} and the distance of the maps h~\tilde{h} and h~\tilde{h}^{\prime} to the identity is bounded by cdiam(G(a¯))r1c\,\text{diam}(G(\underline{a}))^{r-1} and cdiam(G(a¯))r1c\,\text{diam}(G(\underline{a}^{\prime}))^{r-1}

Consider now the relative configuration (θ¯,θ¯,s,t)(\underline{\theta},\underline{\theta}^{\prime},s,t). By the previous part, there is some t~\tilde{t}\in\mathbbm{C} such that, writing B~(z)=sz+t~\tilde{B}(z)=sz+\tilde{t}, the pair of configurations (h^B~kθ¯,h^kθ¯)(\hat{h}\circ\tilde{B}\circ k^{\underline{\theta}},\hat{h}^{\prime}\circ k^{\underline{\theta}^{\prime}}) has stable intersections for every pair of maps h^,h^\hat{h},\hat{h}^{\prime} δ\delta-close to the identity in the CrC^{r} metric. Notice that, since (h~Bkθ¯,h~kθ¯)(\tilde{h}\circ B\circ k^{\underline{\theta}},\tilde{h}^{\prime}\circ k^{\underline{\theta}^{\prime}}) is intersecting, |tt~|\left\lvert t-\tilde{t}\right\rvert is bounded by eR(diam(kθ¯)+diam(kθ¯))e^{R}\left(\text{diam}(k^{\underline{\theta}})+\text{diam}(k^{\underline{\theta}^{\prime}})\right). Therefore, by compactness of the set of all pairs of limit geometries (kθ¯,kθ¯)(k^{\underline{\theta}},k^{\underline{\theta}^{\prime}}), we may enlarge cc, still independently of ε\varepsilon, so that |tt~|\left\lvert t-\tilde{t}\right\rvert is bounded by ceRc\,e^{R}.

Now we choose λ~\tilde{\lambda} such that A(h(ca¯)+λ~)=t~A^{\prime}(h(c_{\underline{a}})+\tilde{\lambda})=\tilde{t}; it follows that

(A(h+λ~)fa¯,Ahfa¯)=(h^B~kθ¯,h~kθ¯),(A^{\prime}\circ(h+\tilde{\lambda})\circ f_{\underline{a}},A^{\prime}\circ h^{\prime}\circ f_{\underline{a}^{\prime}})=(\hat{h}\circ\tilde{B}\circ k^{\underline{\theta}},\tilde{h}^{\prime}\circ k^{\underline{\theta}^{\prime}}),

where DB~=sD\tilde{B}=s, B~(0)=t~\tilde{B}(0)=\tilde{t}, and the distances of h^\hat{h} and h~\tilde{h}^{\prime} to the identity are bounded from above by cdiam(G(a¯))r1c\,\text{diam}(G(\underline{a}))^{r-1} and cdiam(G(a¯))r1c\,\text{diam}(G(\underline{a}^{\prime}))^{r-1}. Choosing ε\varepsilon sufficiently small, and so a¯\underline{a} and a¯\underline{a}^{\prime} very big, these distances to the identity are less than δ\delta. This implies that (h+λ~,h)(h+\tilde{\lambda},h^{\prime}) have stable intersections. Notice, finally, that

|λ~λ||DA|1|t~t|diam(G(a¯))ceRεceR.\left\lvert\tilde{\lambda}-\lambda\right\rvert\leq\left\lvert{DA^{\prime}}\right\rvert^{-1}\cdot\left\lvert\tilde{t}-t\right\rvert\lesssim\text{diam}(G(\underline{a}^{\prime}))c\,e^{R}\lesssim\varepsilon c\,e^{R}.

Hence, making ε\varepsilon very small, we approximate (h+λ,h)(h+\lambda,h^{\prime}) by (h+λ~,h)(h+\tilde{\lambda},h^{\prime}) that has stable intersections, completing the proof. ∎

Remark 2.24.

Notice that thanks to remark 2.21, the set UΩΣ×ΩΣU\subset\Omega_{\Sigma}\times\Omega_{\Sigma^{\prime}} is dense, with respect to the topology of ΩΣ×ΩΣ\Omega_{\Sigma}\times\Omega_{\Sigma^{\prime}}, inside the set {(K,K):HD(K)+HD(K)>2}\{(K,K^{\prime}):HD(K)+HD(K^{\prime})>2\}.

Lemma 2.25.

Let (t,v),(t,v)({0})×(/(2π))(t,v),(t^{\prime},v^{\prime})\in(\mathbbm{R}\setminus\{0\})\times(\mathbbm{R}/(2\pi\mathbbm{Z})), and consider the subgroup E={m(t,v)+n(t,v):m,n}E=\{m(t,v)+n(t^{\prime},v^{\prime}):\,m,n\in\mathbbm{Z}\}. Let w,ww,\,w^{\prime}\in\mathbbm{R} be representatives of v,vv,\,v^{\prime}, respectively. Then E×𝕋E\subset\mathbbm{R}\times\mathbbm{T} is dense if and only there is not (β1,β2)2{0}(\beta_{1},\beta_{2})\in\mathbbm{Z}^{2}\setminus\{0\} such that

β1tt+β2(wwtt).\beta_{1}\cdot\frac{t}{t^{\prime}}+\beta_{2}\left(w-w^{\prime}\frac{t}{t^{\prime}}\right)\in\mathbbm{Z}.

Moreover, if EE is dense and t/t>0t/t^{\prime}>0 then {m(t,v)n(t,v):m,n+}\{m(t,v)-n(t^{\prime},v^{\prime}):\,m,n\in\mathbbm{Z}^{+}\} is dense. The set of pairs ((t,v),(t,v))(×𝕋)2((t,v),(t^{\prime},v^{\prime}))\in(\mathbbm{R}\times\mathbbm{T})^{2} such that EE is dense is a countable intersection of open and dense sets.

Proof.

The lemma is proved using Kronecker’s theorem. It states that a vector (w1,,wk)𝕋k(w_{1},...,w_{k})\in\mathbbm{T}^{k} generates a dense subgroup if and only if there is not (a1,,ak)k{0}(a_{1},...,a_{k})\in\mathbbm{Z}^{k}\setminus\{0\} such that a1w1++akwk=0a_{1}w_{1}+...+a_{k}w_{k}=0.

Let p:𝕋p:\mathbbm{R}\to\mathbbm{T} be the canonical projection and choose w,ww,\,w^{\prime}\in\mathbbm{R} such that p(w)=vp(w)=v, p(w)=vp(w^{\prime})=v^{\prime}. Note that EE is dense if and only if the set

{(t,w),(t,w),(0,1)}\{(t,w),(t^{\prime},w^{\prime}),(0,1)\}

generates a dense subgroup in 2\mathbbm{R}^{2}.

Moreover, this last property is invariant under invertible linear transformations in 2\mathbbm{R}^{2}. Let A:22A:\mathbbm{R}^{2}\to\mathbbm{R}^{2} be the linear map such that A(t,w)=(1,0)A(t^{\prime},w^{\prime})=(1,0) and A(0,1)=(0,1)A(0,1)=(0,1). Then, EE is dense if and only if the set

{A(t,w),(1,0),(0,1)}\{A(t,w),(1,0),(0,1)\}

generates a dense subgroup in 2\mathbbm{R}^{2}. It is clear that this happens if and only if the projection of A(t,w)A(t,w) to 𝕋2\mathbbm{T}^{2} generates a dense subgroup in 𝕋2\mathbbm{T}^{2}. Thus, using Kronecker’s theorem we see that EE is dense if and only if there is not (β1,β2)2{0}(\beta_{1},\beta_{2})\in\mathbbm{Z}^{2}\setminus\{0\} such that

(β1,β2),A(t,w).\langle(\beta_{1},\beta_{2}),A(t,w)\rangle\in\mathbbm{Z}.

Moreover, it is not difficult to see that A(t,w)=(t/t,w(wt/t))A(t,w)=(t/t^{\prime},w-(w^{\prime}t/t^{\prime})). This proves the first part of the lemma.

Notice that the set of pairs ((t,v),(t,v))((t,v),(t^{\prime},v^{\prime})) such that EE is dense corresponds to the intersection, varying a2{0}a\in\mathbbm{Z}^{2}\setminus\{0\}, of the sets

{((t,p(w)),(t,p(w))):a,A(t,w)},\{((t,p(w)),(t^{\prime},p(w^{\prime}))):\langle a,A(t,w)\rangle\notin\mathbbm{Z}\},

and each one of these sets is open and dense.

Finally, {m(t,v)n(t,v):m,n+}\{m(t,v)-n(t^{\prime},v^{\prime}):\,m,n\in\mathbbm{Z}^{+}\} will be dense if and only if

{mA(t,w)n(1,0)+r(0,1):m,n+,r}\{mA(t,w)-n(1,0)+r(0,1):\,m,n\in\mathbbm{Z}^{+},\,r\in\mathbbm{Z}\}

is dense in 2\mathbbm{R}^{2}. If EE is dense, then the projection of {mA(t,w):m+}\{mA(t,w):\,m\in\mathbbm{Z}^{+}\} to 𝕋2\mathbbm{T}^{2} is dense. If we also have t/t>0t/t^{\prime}>0, then from the expression

mA(t,w)n(1,0)+r(0,1)=(m(t/t)n,m[ww(t/t)]+r),mA(t,w)-n(1,0)+r(0,1)=(m(t/t^{\prime})-n,m[w-w^{\prime}(t/t^{\prime})]+r),

it is not difficult to see that {m(t,v)n(t,v):m,n+}\{m(t,v)-n(t^{\prime},v^{\prime}):\,m,n\in\mathbbm{Z}^{+}\} is dense in this case. ∎

2.7. Scale Recurrence Lemma

In this section we will see how to adapt the scale recurrence lemma from [7] to our context. First we note that limit geometries in [7] were defined slightly different, they were defined as the limit of the function

k~nθ¯=Φ~θ¯nfθ¯n,\tilde{k}^{\underline{\theta}}_{n}=\tilde{\Phi}_{\underline{\theta}_{n}}\circ f_{\underline{\theta}_{n}},

where Φ~θ¯n\tilde{\Phi}_{\underline{\theta}_{n}} is the unique affine function satisfying diam(Φ~θ¯n(G(θ¯n)))=1diam(\tilde{\Phi}_{\underline{\theta}_{n}}(G(\underline{\theta}_{n})))=1, DΦ~θ¯nDfθ¯n(cθ0)+D\tilde{\Phi}_{\underline{\theta}_{n}}\cdot Df_{\underline{\theta}_{n}}(c_{\theta_{0}})\in\mathbbm{R}^{+} and Φ~θ¯n(fθ¯n(cθ0))=0\tilde{\Phi}_{\underline{\theta}_{n}}(f_{\underline{\theta}_{n}}(c_{\theta_{0}}))=0. Denote those limit geometries by k~θ¯\tilde{k}^{\underline{\theta}}. It is clear that there is a complex number R(θ¯n)R(\underline{\theta}_{n}) such that k~nθ¯=R(θ¯n)knθ¯\tilde{k}^{\underline{\theta}}_{n}=R(\underline{\theta}_{n})\cdot k^{\underline{\theta}}_{n}. It is not difficult to prove that one can go to the limit and find a complex number R(θ¯)R(\underline{\theta}) such that k~θ¯=R(θ¯)kθ¯\tilde{k}^{\underline{\theta}}=R(\underline{\theta})\cdot k^{\underline{\theta}}. Moreover, R(θ¯)R(\underline{\theta}) is uniformly bounded from above and below, i.e there is c>0c>0 such that c1|R(θ¯)|cc^{-1}\leq|R(\underline{\theta})|\leq c. One can also show that R(θ¯)R(\underline{\theta}) depends Lipschitz in θ¯\underline{\theta} in the sense that there is a constant CC such that

|R(θ¯1)R(θ¯2)1|Cd(θ¯1,θ¯2).\left|\frac{R(\underline{\theta}^{1})}{R(\underline{\theta}^{2})}-1\right|\leq Cd(\underline{\theta}^{1},\underline{\theta}^{2}).

We will denote by F~a¯θ¯\tilde{F}^{\underline{\theta}}_{\underline{a}} the affine function defined by

k~θ¯fa¯=F~a¯θ¯k~θ¯a¯.\tilde{k}^{\underline{\theta}}\circ f_{\underline{a}}=\tilde{F}^{\underline{\theta}}_{\underline{a}}\circ\tilde{k}^{\underline{\theta}\underline{a}}.

This affine function can be written in terms of the numbers r~a¯θ¯+\tilde{r}^{\underline{\theta}}_{\underline{a}}\in\mathbbm{R}^{+}, v~a¯θ¯𝕋\tilde{v}^{\underline{\theta}}_{\underline{a}}\in\mathbbm{T} and c~a¯θ¯\tilde{c}^{\underline{\theta}}_{\underline{a}}\in\mathbbm{C} by the formula

F~a¯θ¯(z)=r~a¯θ¯exp(iv~a¯θ¯)z+c~a¯θ¯.\tilde{F}^{\underline{\theta}}_{\underline{a}}(z)=\tilde{r}^{\underline{\theta}}_{\underline{a}}\exp(i\tilde{v}^{\underline{\theta}}_{\underline{a}})z+\tilde{c}^{\underline{\theta}}_{\underline{a}}.

The maps F~a¯θ¯\tilde{F}^{\underline{\theta}}_{\underline{a}} and Fa¯θ¯F^{\underline{\theta}}_{\underline{a}} are related by the equations

DFa¯θ¯=R(θ¯a¯)R(θ¯)DF~a¯θ¯,Fa¯θ¯(0)=1R(θ¯)F~a¯θ¯(0).DF^{\underline{\theta}}_{\underline{a}}=\frac{R(\underline{\theta}\underline{a})}{R(\underline{\theta})}D\tilde{F}^{\underline{\theta}}_{\underline{a}},\,\,F^{\underline{\theta}}_{\underline{a}}(0)=\frac{1}{R(\underline{\theta})}\tilde{F}^{\underline{\theta}}_{\underline{a}}(0).

Now we assume we have two Cantor sets, KK and KK^{\prime}, and discuss how to go from the renormalization operators in [7] to ours. Define ϕθ¯,θ¯:JJ\phi_{\underline{\theta},\underline{\theta}^{\prime}}:J\to J and L:×𝕋2JL:\mathbbm{R}\times\mathbbm{T}^{2}\to J by

ϕθ¯,θ¯(s)=R(θ¯)R(θ¯)s,L(t,v,v)=(t,vv).\phi_{\underline{\theta},\underline{\theta}^{\prime}}(s)=\frac{R(\underline{\theta})}{R^{\prime}(\underline{\theta}^{\prime})}\cdot s,\,\,\,L(t,v,v^{\prime})=(t,v-v^{\prime}).

Remember that we identify J=J=\mathbbm{C}^{*} with ×𝕋\mathbbm{R}\times\mathbbm{T} through (t,v)et+iv(t,v)\to e^{t+iv}, and define ϕ:Σ×Σ××𝕋2Σ×Σ×J\phi:\Sigma^{-}\times\Sigma^{\prime-}\times\mathbbm{R}\times\mathbbm{T}^{2}\to\Sigma^{-}\times\Sigma^{\prime-}\times J given by

ϕ(θ¯,θ¯,t,v,v)=(θ¯,θ¯,ϕθ¯,θ¯(L(t,v,v))).\phi(\underline{\theta},\underline{\theta}^{\prime},t,v,v^{\prime})=(\underline{\theta},\underline{\theta}^{\prime},\phi_{\underline{\theta},\underline{\theta}^{\prime}}(L(t,v,v^{\prime}))).

From the previous equations, one easily proves that the renormalization operators of [7], which are given by

Ta¯,a¯(θ¯,θ¯,t,v,v)=(θ¯a¯,θ¯a¯,t+logr~a¯θ¯r~a¯θ¯,v+v~a¯θ¯,v+v~a¯θ¯)T_{\underline{a},\underline{a}^{\prime}}(\underline{\theta},\underline{\theta}^{\prime},t,v,v^{\prime})=(\underline{\theta}\underline{a},\underline{\theta}^{\prime}\underline{a}^{\prime},t+\log\frac{\tilde{r}^{\underline{\theta}}_{\underline{a}}}{\tilde{r}^{\underline{\theta}^{\prime}}_{\underline{a}^{\prime}}},v+\tilde{v}^{\underline{\theta}}_{\underline{a}},v^{\prime}+\tilde{v}^{\underline{\theta}^{\prime}}_{\underline{a}^{\prime}})

and act on Σ×Σ××𝕋2\Sigma^{-}\times\Sigma^{\prime-}\times\mathbbm{R}\times\mathbbm{T}^{2}, are related to our renormalization operators Ta¯Ta¯T_{\underline{a}}T^{\prime}_{\underline{a}^{\prime}} by the “semiconjugacy” ϕ\phi, i.e. ϕTa¯,a¯=Ta¯Ta¯ϕ\phi\circ T_{\underline{a},\underline{a}^{\prime}}=T_{\underline{a}}T^{\prime}_{\underline{a}^{\prime}}\circ\phi. Using ϕ\phi, it is not difficult to transport the scale recurrence lemma from [7] to one for Ta¯Ta¯T_{\underline{a}}T^{\prime}_{\underline{a}^{\prime}}:

Lemma 2.26.

Suppose that KK, KK^{\prime} are non-essentially affine and non-essentially real. If R,c0R,c_{0} are conveniently large, there exist c1,c2,c3,c4,ρ0>0c_{1},c_{2},c_{3},c_{4},\rho_{0}>0 with the following properties: given 0<ρ<ρ00<\rho<\rho_{0}, and a family E(a¯,a¯)E(\underline{a},\underline{a}^{\prime}) of subsets of JRJ_{R}, (a¯,a¯)Σ(ρ)×Σ(ρ)(\underline{a},\underline{a}^{\prime})\in\Sigma(\rho)\times\Sigma^{\prime}(\rho), such that

m(JRE(a¯,a¯))c1,(a¯,a¯),m(J_{R}\setminus E(\underline{a},\underline{a}^{\prime}))\leq c_{1},\forall(\underline{a},\underline{a}^{\prime}),

there is another family E(a¯,a¯)E^{*}(\underline{a},\underline{a}^{\prime}) of subsets of JRJ_{R} satisfying:

  • (i)

    For any (a¯,a¯)(\underline{a},\underline{a}^{\prime}), E(a¯,a¯)E^{*}(\underline{a},\underline{a}^{\prime}) is contained in the c2ρc_{2}\rho-neighborhood of E(a¯,a¯)E(\underline{a},\underline{a}^{\prime}).

  • (ii)

    Let (a¯,a¯)Σ(ρ)×Σ(ρ)(\underline{a},\underline{a}^{\prime})\in\Sigma(\rho)\times\Sigma^{\prime}(\rho), sE(a¯,a¯)s\in E^{*}(\underline{a},\underline{a}^{\prime}); there exist at least c3ρ(d+d)c_{3}\rho^{-(d+d^{\prime})} pairs (b¯,b¯)Σ(ρ)×Σ(ρ)(\underline{b},\underline{b}^{\prime})\in\Sigma(\rho)\times\Sigma^{\prime}(\rho) (with b¯\underline{b}, b¯\underline{b}^{\prime} starting with the last letter of a¯\underline{a}, a¯\underline{a}^{\prime}) such that, if θ¯Σ\underline{\theta}\in\Sigma^{-}, θ¯Σ\underline{\theta}^{\prime}\in\Sigma^{\prime-} end respectively with a¯\underline{a}, a¯\underline{a}^{\prime} and

    Tb¯Tb¯(θ¯,θ¯,s)=(θ¯b¯,θ¯b¯,s~),T_{\underline{b}}T^{\prime}_{\underline{b}^{\prime}}(\underline{\theta},\underline{\theta}^{\prime},s)=(\underline{\theta}\underline{b},\underline{\theta}^{\prime}\underline{b}^{\prime},\tilde{s}),

    the c4ρc_{4}\rho-neighborhood of s~J\tilde{s}\in J is contained in E(b¯,b¯)E^{*}(\underline{b},\underline{b}^{\prime}).

  • (iii)

    m(E(a¯,a¯))m(JR)/c2m(E^{*}(\underline{a},\underline{a}^{\prime}))\geq m(J_{R})/c_{2} for at least half of the (a¯,a¯)Σ(ρ)×Σ(ρ)(\underline{a},\underline{a}^{\prime})\in\Sigma(\rho)\times\Sigma^{\prime}(\rho).

Remark 2.27.

Here mm is the unique measure in ×𝕋\mathbbm{R}\times\mathbbm{T} giving measure 2π2\pi to J1/2J_{1/2} and invariant by translations. We notice that the lemma remains true if we change mm by Lebesgue measure in \mathbbm{C}^{*}\subset\mathbbm{C}. Since all sets are in JRJ_{R}, one just would need to redefine the constants c1c_{1} and c2c_{2}. The same happens for the metric on JJ, we prove the lemma with the metric

d((t,v),(t,v))=max{|tt|,vv}d((t,v),(t^{\prime},v^{\prime}))=\max\{|t-t^{\prime}|,\|v-v^{\prime}\|\}

and [x]=minn|x2πn|\|[x]\|=\min_{n\in\mathbbm{Z}}|x-2\pi n| ([x]𝕋=/(2π)[x]\in\mathbbm{T}=\mathbbm{R}/(2\pi\mathbbm{Z}) is the class generated by xx\in\mathbbm{R}). In JRJ_{R} we can change this metric for the usual metric in \mathbbm{C}.

We remark that it can be assumed the sets E(a¯,a¯)E^{*}(\underline{a},\underline{a}^{\prime}) are closed. To do this we just have to redefine E(a¯,a¯)E^{*}(\underline{a},\underline{a}^{\prime}) by taking their closure and increase the parameter c2c_{2}.

Proof.

We are in the hypothesis of the scale recurrence lemma in [7]. Let r~\tilde{r}, c0~\tilde{c_{0}}, c1~\tilde{c_{1}}, c2~\tilde{c_{2}}, c3~\tilde{c_{3}} and ρ~0\tilde{\rho}_{0} be the constants given by the lemma. We choose RR big enough and c1c_{1} small enough such that

ν(J~r~L1(ϕθ¯,θ¯1(E)))<c~1\nu(\tilde{J}_{\tilde{r}}\setminus L^{-1}(\phi_{\underline{\theta},\underline{\theta}^{\prime}}^{-1}(E)))<\tilde{c}_{1}

for any set EJRE\subset J_{R} with m(JRE)<c1m(J_{R}\setminus E)<c_{1}, where J~r~={(t,v,v):|t|r~}\tilde{J}_{\tilde{r}}=\{(t,v,v^{\prime}):|t|\leq\tilde{r}\} and ν\nu is the Haar measure in ×𝕋2\mathbbm{R}\times\mathbbm{T}^{2} such that ν(J~1/2)=1\nu(\tilde{J}_{1/2})=1. This can be done since ϕθ¯,θ¯\phi_{\underline{\theta},\underline{\theta}^{\prime}} is multiplication by a complex number, whose norm is uniformly bounded and away from zero. Indeed, if one chooses RR big such that Jr~ϕθ¯,θ¯1(JR)J_{\tilde{r}}\subset\phi_{\underline{\theta},\underline{\theta}^{\prime}}^{-1}(J_{R}) and c1c_{1} small enough such that m(ϕθ¯,θ¯1(JRE))<c~1m(\phi_{\underline{\theta},\underline{\theta}^{\prime}}^{-1}(J_{R}\setminus E))<\tilde{c}_{1}, then using that Lν=mL_{*}\nu=m one gets

ν(J~r~L1(ϕθ¯,θ¯1(E)))=ν(L1(Jr~ϕθ¯,θ¯1(E)))=m(Jr~ϕθ¯,θ¯1(E))m(ϕθ¯,θ¯1(JRE))<c~1.\nu(\tilde{J}_{\tilde{r}}\setminus L^{-1}(\phi_{\underline{\theta},\underline{\theta}^{\prime}}^{-1}(E)))=\nu(L^{-1}(J_{\tilde{r}}\setminus\phi_{\underline{\theta},\underline{\theta}^{\prime}}^{-1}(E)))=m(J_{\tilde{r}}\setminus\phi_{\underline{\theta},\underline{\theta}^{\prime}}^{-1}(E))\leq m(\phi_{\underline{\theta},\underline{\theta}^{\prime}}^{-1}(J_{R}\setminus E))<\tilde{c}_{1}.

We choose c0=c~0c_{0}=\tilde{c}_{0}, c3=c~3c_{3}=\tilde{c}_{3} and ρ0=ρ~0\rho_{0}=\tilde{\rho}_{0}, the other constants will be chosen along the proof. Suppose we are given a family of sets E(a¯,a¯)E(\underline{a},\underline{a}^{\prime}) as in the setting of the lemma, define a new family E~(a¯,a¯)\tilde{E}(\underline{a},\underline{a}^{\prime}) by

E~(a¯,a¯)=θ¯,θ¯L1(ϕθ¯,θ¯1(E(a¯,a¯)))J~r~,\tilde{E}(\underline{a},\underline{a}^{\prime})=\bigcup_{\underline{\theta},\underline{\theta}^{\prime}}L^{-1}(\phi_{\underline{\theta},\underline{\theta}^{\prime}}^{-1}(E(\underline{a},\underline{a}^{\prime})))\cap\tilde{J}_{\tilde{r}},

where the union is over all θ¯,θ¯\underline{\theta},\,\underline{\theta}^{\prime} finishing in a¯,a¯\underline{a},\,\underline{a}^{\prime}, respectively. Notice that thanks to the previous discussion one gets that ν(J~r~E~(a¯,a¯))<c~1\nu(\tilde{J}_{\tilde{r}}\setminus\tilde{E}(\underline{a},\underline{a}^{\prime}))<\tilde{c}_{1}. Then we can apply the scale recurrence lemma from [7] to get a new family E~(a¯,a¯)\tilde{E}^{*}(\underline{a},\underline{a}^{\prime}), which satisfies the properties given in [7]. Now we go back to the space JRJ_{R}, define a new family E(a¯,a¯)E^{*}(\underline{a},\underline{a}^{\prime}) by

E(a¯,a¯)=θ¯~,θ¯~ϕθ¯~,θ¯~(L(E~(a¯,a¯))),E^{*}(\underline{a},\underline{a}^{\prime})=\bigcup_{\tilde{\underline{\theta}},\tilde{\underline{\theta}}^{\prime}}\phi_{\tilde{\underline{\theta}},\tilde{\underline{\theta}}^{\prime}}(L(\tilde{E}^{*}(\underline{a},\underline{a}^{\prime}))),

where the union is over all pairs ending in a¯\underline{a}, a¯\underline{a}^{\prime} respectively. We will prove that the family E(a¯,a¯)E^{*}(\underline{a},\underline{a}^{\prime}) satisfies the desired properties:

  • (i)

    Note that LL is Lipschitz with constant 22. Enlarging the constants cc, CC we can suppose that ϕθ¯~,θ¯~\phi_{\tilde{\underline{\theta}},\tilde{\underline{\theta}}^{\prime}}, ϕθ¯~,θ¯~1\phi_{\tilde{\underline{\theta}},\tilde{\underline{\theta}}^{\prime}}^{-1} are Lipschitz with constant cc and |ϕθ¯~,θ¯~ϕθ¯,θ¯1Id|C2[d(θ¯,θ¯~)+d(θ¯,θ¯~)]|\phi_{\tilde{\underline{\theta}},\tilde{\underline{\theta}}^{\prime}}\circ\phi_{\underline{\theta},\underline{\theta}^{\prime}}^{-1}-Id|\leq\frac{C}{2}[d(\underline{\theta},\tilde{\underline{\theta}})+d(\underline{\theta}^{\prime},\tilde{\underline{\theta}}^{\prime})]. Using this we get

    E(a¯,a¯)\displaystyle E^{*}(\underline{a},\underline{a}^{\prime}) =θ¯~,θ¯~ϕθ¯~,θ¯~(L(E~(a¯,a¯)))\displaystyle=\bigcup_{\tilde{\underline{\theta}},\tilde{\underline{\theta}}^{\prime}}\phi_{\tilde{\underline{\theta}},\tilde{\underline{\theta}}^{\prime}}(L(\tilde{E}^{*}(\underline{a},\underline{a}^{\prime})))
    θ¯~,θ¯~ϕθ¯~,θ¯~(L(Vc2~ρ(E~(a¯,a¯))))\displaystyle\subset\bigcup_{\tilde{\underline{\theta}},\tilde{\underline{\theta}}^{\prime}}\phi_{\tilde{\underline{\theta}},\tilde{\underline{\theta}}^{\prime}}(L(V_{\tilde{c_{2}}\rho}(\tilde{E}(\underline{a},\underline{a}^{\prime}))))
    θ¯~,θ¯~V2cc2~ρ(ϕθ¯~,θ¯~L(θ¯,θ¯L1ϕθ¯,θ¯1(E(a¯,a¯))))\displaystyle\subset\bigcup_{\tilde{\underline{\theta}},\tilde{\underline{\theta}}^{\prime}}V_{2c\tilde{c_{2}}\rho}\left(\phi_{\tilde{\underline{\theta}},\tilde{\underline{\theta}}^{\prime}}\circ L\left(\bigcup_{\underline{\theta},\underline{\theta}^{\prime}}L^{-1}\circ\phi_{\underline{\theta},\underline{\theta}^{\prime}}^{-1}(E(\underline{a},\underline{a}^{\prime}))\right)\right)
    =θ¯~,θ¯~V2cc2~ρ(θ¯,θ¯ϕθ¯~,θ¯~ϕθ¯,θ¯1(E(a¯,a¯)))\displaystyle=\bigcup_{\tilde{\underline{\theta}},\tilde{\underline{\theta}}^{\prime}}V_{2c\tilde{c_{2}}\rho}\left(\bigcup_{\underline{\theta},\underline{\theta}^{\prime}}\phi_{\tilde{\underline{\theta}},\tilde{\underline{\theta}}^{\prime}}\circ\phi_{\underline{\theta},\underline{\theta}^{\prime}}^{-1}\left(E(\underline{a},\underline{a}^{\prime})\right)\right)
    θ¯~,θ¯~V2cc2~ρ(VRc0Cρ(E(a¯,a¯)))=V(2cc~2+Rc0C)ρ(E(a¯,a¯)).\displaystyle\subset\bigcup_{\tilde{\underline{\theta}},\tilde{\underline{\theta}}^{\prime}}V_{2c\tilde{c_{2}}\rho}\left(V_{Rc_{0}C\rho}\left(E(\underline{a},\underline{a}^{\prime})\right)\right)=V_{(2c\tilde{c}_{2}+Rc_{0}C)\rho}(E(\underline{a},\underline{a}^{\prime})).

    Taking c2>2cc~2+Rc0Cc_{2}>2c\tilde{c}_{2}+Rc_{0}C gives the desired property.

  • (ii)

    Let sE(a¯,a¯)s\in E^{*}(\underline{a},\underline{a}^{\prime}), then sϕθ¯~,θ¯~(L(E~(a¯,a¯)))s\in\phi_{\tilde{\underline{\theta}},\tilde{\underline{\theta}}^{\prime}}(L(\tilde{E}^{*}(\underline{a},\underline{a}^{\prime}))) for some (θ¯~,θ¯~)(\tilde{\underline{\theta}},\tilde{\underline{\theta}}^{\prime}) ending in (a¯,a¯)(\underline{a},\underline{a}^{\prime}). Let s~E~(a¯,a¯)\tilde{s}\in\tilde{E}^{*}(\underline{a},\underline{a}^{\prime}) such that s=ϕθ¯~,θ¯~(L(s~))s=\phi_{\tilde{\underline{\theta}},\tilde{\underline{\theta}}^{\prime}}(L(\tilde{s})). Let (b¯,b¯)(\underline{b},\underline{b}^{\prime}) be one of the c~3ρ(d+d)\tilde{c}_{3}\rho^{-(d+d^{\prime})} pairs, associated to s~\tilde{s}, given by the scale recurrence lemma in [7]. If we write

    Tb¯Tb¯(θ¯~,θ¯~,s)=Tb¯Tb¯ϕ(θ¯~,θ¯~,s~)=ϕTb¯,b¯(θ¯~,θ¯~,s~)=(θ¯~b¯,θ¯~b¯,ϕθ¯~b¯,θ¯~b¯(L(s))),T_{\underline{b}}T^{\prime}_{\underline{b}^{\prime}}(\tilde{\underline{\theta}},\tilde{\underline{\theta}}^{\prime},s)=T_{\underline{b}}T^{\prime}_{\underline{b}^{\prime}}\circ\phi(\tilde{\underline{\theta}},\tilde{\underline{\theta}}^{\prime},\tilde{s})=\phi\circ T_{\underline{b},\underline{b}^{\prime}}(\tilde{\underline{\theta}},\tilde{\underline{\theta}}^{\prime},\tilde{s})=(\tilde{\underline{\theta}}\underline{b},\tilde{\underline{\theta}}^{\prime}\underline{b}^{\prime},\phi_{\tilde{\underline{\theta}}\underline{b},\tilde{\underline{\theta}}^{\prime}\underline{b}^{\prime}}(L(s^{*}))),

    we know that the ball B(s,ρ)B(s^{*},\rho) is contained in E~(b¯,b¯)\tilde{E}^{*}(\underline{b},\underline{b}^{\prime}). This implies

    B(ϕθ¯~b¯,θ¯~b¯(L(s)),c1ρ)\displaystyle B(\phi_{\tilde{\underline{\theta}}\underline{b},\tilde{\underline{\theta}}^{\prime}\underline{b}^{\prime}}(L(s^{*})),c^{-1}\rho) ϕθ¯~b¯,θ¯~b¯(B(L(s),ρ))\displaystyle\subset\phi_{\tilde{\underline{\theta}}\underline{b},\tilde{\underline{\theta}}^{\prime}\underline{b}^{\prime}}(B(L(s^{*}),\rho))
    ϕθ¯~b¯,θ¯~b¯L(B(s,ρ))ϕθ¯~b¯,θ¯~b¯L(E~(b¯,b¯))E(b¯,b¯).\displaystyle\subset\phi_{\tilde{\underline{\theta}}\underline{b},\tilde{\underline{\theta}}^{\prime}\underline{b}^{\prime}}\circ L(B(s^{*},\rho))\subset\phi_{\tilde{\underline{\theta}}\underline{b},\tilde{\underline{\theta}}^{\prime}\underline{b}^{\prime}}\circ L(\tilde{E}^{*}(\underline{b},\underline{b}^{\prime}))\subset E^{*}(\underline{b},\underline{b}^{\prime}).

    Thus it is enough to take c4<c1c_{4}<c^{-1}.

  • (iii)

    Let (a¯,a¯)(\underline{a},\underline{a}^{\prime}) such that ν(E~(a¯,a¯))ν(J~r~)/2\nu(\tilde{E}^{*}(\underline{a},\underline{a}^{\prime}))\geq\nu(\tilde{J}_{\tilde{r}})/2 and (θ¯~,θ¯~)(\tilde{\underline{\theta}},\tilde{\underline{\theta}}^{\prime}) ending in (a¯,a¯)(\underline{a},\underline{a}^{\prime}), we have

    m(E(a¯,a¯))m(ϕθ¯~,θ¯~(L(E~(a¯,a¯))))\displaystyle m(E^{*}(\underline{a},\underline{a}^{\prime}))\geq m(\phi_{\tilde{\underline{\theta}},\tilde{\underline{\theta}}^{\prime}}(L(\tilde{E}^{*}(\underline{a},\underline{a}^{\prime})))) m(L(E~(a¯,a¯)))\displaystyle\gtrsim m(L(\tilde{E}^{*}(\underline{a},\underline{a}^{\prime})))
    =ν(L1(L(E~(a¯,a¯))))\displaystyle=\nu(L^{-1}(L(\tilde{E}^{*}(\underline{a},\underline{a}^{\prime}))))
    ν(E~(a¯,a¯))ν(J~r~)/2.\displaystyle\geq\nu(\tilde{E}^{*}(\underline{a},\underline{a}^{\prime}))\geq\nu(\tilde{J}_{\tilde{r}})/2.

    The fact that ν(E~(a¯,a¯))ν(J~r~)/2\nu(\tilde{E}^{*}(\underline{a},\underline{a}^{\prime}))\geq\nu(\tilde{J}_{\tilde{r}})/2 for at least half of the (a¯,a¯)(\underline{a},\underline{a}^{\prime}) implies immediatly the desired property with c2c_{2} big enough.

3. Random Perturbations of conformal Cantor sets

3.1. Random perturbations

From now on we will focus on the proof of theorem 2.22. Let (K,K)(K,K^{\prime}) be a pair of non-essentially real CC^{\infty} conformal regular Cantor sets such that HD(K)+HD(K)>2HD(K)+HD(K^{\prime})>2. We first perturb, in the CC^{\infty} topology, the pair of Cantor sets (K,K)(K,K^{\prime}) so they satisfy the hypothesis of the Scale Recurrence Lemma and the map gg defining the Cantor set KK is holomorphic on a neighborhood VV of KK. All this can be done thanks to lemma 2.20. Applying now the scale recurrence lemma gives constants R,c0,c1,c2,c3,c4R,\,c_{0},\,c_{1},\,c_{2},\,c_{3},\,c_{4} verifying the conclusions of the lemma. With the aim of reducing the number of constants, we will also assume, without loss of generality, that the diameters of the sets Gθ¯(θ0)=kθ¯(G(θ0))G^{\underline{\theta}}(\theta_{0})=k^{\underline{\theta}}(G(\theta_{0})) are all less than one. This can be achieved by changing the metric. To prove theorem 2.22, we will now only perturb the Cantor set KK, leaving KK^{\prime} unaltered.

Notice that a neighbourhood in ΩΣ\Omega^{\infty}_{\Sigma} contains a neighbourhood in ΩΣk\Omega^{k}_{\Sigma} for some integer k2k\geq 2. So from now on we fix this integer kk. The desired CkC^{k} perturbation for gg will be picked by a probabilistic argument out of a family of random perturbations that we will now construct.

The following constructions and arguments are made having a parameter ρ>0\rho>0 in mind. All constants from now on are independent of this parameter, and everything fits together in the end by choosing ρ\rho sufficiently small.

We first pick a subset Σ0\Sigma_{0} of Σ(ρ1/k)\Sigma(\rho^{1/k}) such that

K=a¯Σ0K(a¯)K=\bigcup_{\underline{a}\in\Sigma_{0}}K(\underline{a})

is a partition of KK into disjoint cylinders.

We then define Σ1\Sigma_{1} as the subset of Σ0\Sigma_{0} formed of the words a¯Σ0\underline{a}\in\Sigma_{0} such that no word in Σ(ρ1/3k)\Sigma(\rho^{1/3k}) appears twice in a¯\underline{a}. To see that Σ1\Sigma_{1}\neq\emptyset check the claim in the proof of lemma 2.20.

Let c~4>0\tilde{c}_{4}>0 be a constant222This constant corresponds to c4c_{4} in [1], since we already used this symbol in the scale recurrence lemma then we changed it to c~4\tilde{c}_{4}. sufficiently close to 0 to have the following: let

G^(a¯)Vc~4diam(G(a¯))(G(a¯)),\hat{G}(\underline{a})\coloneqq V_{\tilde{c}_{4}\cdot\text{diam}(G(\underline{a}))}(G(\underline{a})),

for a¯Σ0\underline{a}\in\Sigma_{0}; then the G^(a¯)\hat{G}(\underline{a}), a¯Σ0\underline{a}\in\Sigma_{0}, are pairwise disjoint.

For each a¯Σ0\underline{a}\in\Sigma_{0} we choose a smooth function χa¯:\chi_{\underline{a}}\colon\mathbbm{C}\to\mathbbm{R} satisfying:

χa¯(z)=1forzVc~42diam(G(a¯))(G(a¯)),\displaystyle\chi_{\underline{a}}(z)=1\quad\text{for}\quad z\in V_{\frac{\tilde{c}_{4}}{2}\cdot\text{diam}(G(\underline{a}))}(G(\underline{a}))\,,
χa¯(z)=0forzG^(a¯).\displaystyle\chi_{\underline{a}}(z)=0\quad\text{for}\quad z\not\in\hat{G}(\underline{a})\,.

Notice that, since a¯Σ(ρ1/k)\underline{a}\in\Sigma(\rho^{1/k}), we can choose these functions in a way that Djχa¯C~ρj/k\|D^{j}\chi_{\underline{a}}\|\leq\tilde{C}\,\rho^{-j/k}, for all 0jk0\leq j\leq k and C~\tilde{C} some constant independent of ρ\rho (but not from c~4\tilde{c}_{4}).

The probability space underlying the family of random perturbations is Ω=𝔻Σ1\Omega=\mathbbm{D}^{\Sigma_{1}}, where 𝔻\mathbbm{D} is the unitary disk in \mathbbm{C}, equipped with the normalized Lebesgue measure.

For ω¯=(ω(a¯))a¯Σ1Ω\underline{\omega}=(\omega(\underline{a}))_{\underline{a}\in\Sigma_{1}}\in\Omega, we define Φω¯\Phi_{\underline{\omega}} to be the time-one map of the vector field

Xω¯(z)=c5ρ(1+1/2k)a¯χa¯(z)ω(a¯),X_{\underline{\omega}}(z)=-c_{5}\,\rho^{(1+1/2k)}\,\sum\limits_{\underline{a}}\chi_{\underline{a}}(z)\,\omega(\underline{a}),

where c5>0c_{5}>0 is a conveniently large constant, to be chosen later. Finally, we define gω¯g^{\underline{\omega}} to be gΦω¯g\circ\Phi_{\underline{\omega}}.

By our previous estimative on Djχa¯\|D^{j}\chi_{\underline{a}}\| we have that Φω¯IdCk\|\Phi_{\underline{\omega}}-Id\|_{C^{k}} is O(ρ1/2k)O(\rho^{1/2k}).

Since Φω¯\Phi_{\underline{\omega}} , for any ω¯Ω\underline{\omega}\in\Omega, is close to the identity in the CkC^{k}-topology, then gω¯g^{\underline{\omega}} is close to gg. Taking ρ\rho small enough we can suppose that gω¯g^{\underline{\omega}} generates a Cantor set (with the same family of sets G(a)G(a), a𝔸a\in\mathbb{A}), which we denote by Kω¯K^{\underline{\omega}}. Moreover, taking ρ\rho small it can be proven that this Cantor set is in fact a conformal Cantor set. Indeed, let VV be the open set containing KK where the function gg is holomorphic. If ρ\rho is sufficiently small then333This is consequence of lemma 3.2 part (ii), note that the proof of this part of the lemma does not use the conformality of gg at the points in the Cantor set. We can also get this from the fact that KK is an hyperbolic set for gg and use continuation of the hyperbolic set (see Theorem 7.8 in [10])., for any xKω¯(a¯)x\in K^{\underline{\omega}}(\underline{a}) and a¯Σ0\underline{a}\in\Sigma_{0}, Φω¯(x)V\Phi_{\underline{\omega}}(x)\in V and xVc~42diam(G(a¯))(G(a¯))x\in V_{\frac{\tilde{c}_{4}}{2}\cdot\text{diam}(G(\underline{a}))}(G(\underline{a})). It follows that

D(gΦω¯)(x)=Dg(Φω¯(x))DΦω¯(x)=Dg(Φω¯(x))D(g\circ\Phi_{\underline{\omega}})(x)=Dg(\Phi_{\underline{\omega}}(x))\cdot D\Phi_{\underline{\omega}}(x)=Dg(\Phi_{\underline{\omega}}(x))

which is a conformal linear transformation.

Our task will be to find ω¯Ω\underline{\omega}\in\Omega such that the pair of Cantor sets determined by (gω¯,g)(g^{\underline{\omega}},g^{\prime}) have a non empty recurrent compact set of relative configurations.

Remark 3.1.

All the objects introduced in section 2 are well defined for the Cantor sets Kω¯K^{\underline{\omega}} and we will denote them by adding a superscript indicating the corresponding value of ω¯Ω\underline{\omega}\in\Omega, such as Gω¯(a¯)G^{\underline{\omega}}(\underline{a}), kθ¯,ω¯k^{\underline{\theta},\underline{\omega}}, ca¯θ¯,ω¯c^{\underline{\theta},\underline{\omega}}_{\underline{a}} and Fa¯θ¯,ω¯F^{\underline{\theta},\underline{\omega}}_{\underline{a}} for example. Notice however that these Cantor sets have the same type as KK, and therefore are close to KK in the CkC^{k} topology. Besides, we consider for each ω¯Ω\underline{\omega}\in\Omega the natural conjugation between the dynamical systems (Kω¯,gω¯|K)(K^{\underline{\omega}},g^{\underline{\omega}}|_{K}) and (Σ,σ)(\Sigma,\sigma)

Hω¯:Kω¯Σ,H^{\underline{\omega}}:K^{\underline{\omega}}\to\Sigma,

which carries each point xKω¯x\in K^{\underline{\omega}} to the sequence {an}n0\{a_{n}\}_{n\geq 0} that satisfies (gω¯)n(x)G(an)(g^{\underline{\omega}})^{n}(x)\in G(a_{n}). For each a𝔸a\in\mathbb{A}, we have a pre-periodic sequence x¯aΣ\underline{x}_{a}\in\Sigma that begins with aa, defined by x¯aH(ca)\underline{x}_{a}\coloneqq H(c_{a}). The set of base points caω¯G(a)c^{\underline{\omega}}_{a}\in G(a) for a𝔸a\in\mathbb{A} satisfies

caω¯=(Hω¯)1(x¯a)c^{\underline{\omega}}_{a}=(H^{\underline{\omega}})^{-1}(\underline{x}_{a})

for every ω¯Ω\underline{\omega}\in\Omega. This is important for the study of limit geometries.

3.2. Some properties of the family gω¯g^{\underline{\omega}}

Let a¯Σ0\underline{a}^{\prime}\in\Sigma_{0} and a1𝔸a_{-1}\in\mathbb{A} be such that (a1,a0)B(a_{-1},a_{0})\in B and a¯\underline{a}^{\prime} begins with (a1,a0)(a_{-1},a_{0}); let (a1,a0)a¯=a¯(a_{-1},a_{0})\underline{a}=\underline{a}^{\prime}. Any perturbed inverse branch fa1,a0ω¯f^{\underline{\omega}}_{a_{-1},a_{0}} is well defined in the neighborhood Vρ(G(a¯))V_{\rho}(G(\underline{a})) and for any xVρ(G(a¯))x\in V_{\rho}(G(\underline{a}))

(4) fa1,a0ω¯(x)={fa1,a0(x)ifa¯Σ0Σ1,fa1,a0(x)+c5ρ1+1/2kω(a¯) if a¯Σ1.f^{\underline{\omega}}_{a_{-1},a_{0}}(x)=\begin{cases}f_{a_{-1},a_{0}}(x)\quad\text{if}\quad\underline{a}^{\prime}\in\Sigma_{0}\setminus\Sigma_{1},\\ f_{a_{-1},a_{0}}(x)+c_{5}\rho^{1+1/2k}\,\omega(\underline{a}^{\prime})\text{ if }\underline{a}^{\prime}\in\Sigma_{1}.\end{cases}

Notice that ΦωIdC0=O(ρ1+1/2k)\|\Phi_{\omega}-Id\|_{C^{0}}=O(\rho^{1+1/2k}), therefore

Vρ(G(a¯))Φω¯(Vc~44diam(G(a¯))(G(a¯)))Vc~42diam(G(a¯))(G(a¯)),V_{\rho}(G(\underline{a}^{\prime}))\subset\Phi_{\underline{\omega}}(V_{\frac{\tilde{c}_{4}}{4}diam(G(\underline{a}^{\prime}))}(G(\underline{a}^{\prime})))\subset V_{\frac{\tilde{c}_{4}}{2}diam(G(\underline{a}^{\prime}))}(G(\underline{a}^{\prime})),

for ρ\rho small enough. This implies that

Vρ(G(a¯))g(Vρ(G(a¯)))gω¯(Vc~44diam(G(a¯))(G(a¯)))V_{\rho}(G(\underline{a}))\subset g(V_{\rho}(G(\underline{a}^{\prime})))\subset g^{\underline{\omega}}(V_{\frac{\tilde{c}_{4}}{4}diam(G(\underline{a}^{\prime}))}(G(\underline{a}^{\prime})))

and

gω¯(z)={g(z)ifa¯Σ0Σ1,g(zc5ρ1+1/2kω(a¯)) if a¯Σ1,g^{\underline{\omega}}(z)=\begin{cases}g(z)\quad\text{if}\quad\underline{a}^{\prime}\in\Sigma_{0}-\Sigma_{1},\\ g(z-c_{5}\rho^{1+1/2k}\,\omega(\underline{a}^{\prime}))\text{ if }\underline{a}^{\prime}\in\Sigma_{1},\end{cases}

for all zVc~44diam(G(a¯))(G(a¯))z\in V_{\frac{\tilde{c}_{4}}{4}diam(G(\underline{a}^{\prime}))}(G(\underline{a}^{\prime})). This in turn immediately implies the formula for fa1,a0ω¯f^{\underline{\omega}}_{a_{-1},a_{0}}.

Lemma 3.2.

Let ω¯Ω\underline{\omega}\in\Omega and Hω¯:Kω¯ΣH^{\underline{\omega}}:K^{\underline{\omega}}\to\Sigma be the homeomorphism defined in remark 3.1. If ρ\rho is sufficiently small,

  • (i)

    for any a¯Σfin\underline{a}\in\Sigma^{fin}, we have fa¯ω¯fa¯C0c18c5ρ1+12k\left\lVert f^{\underline{\omega}}_{\underline{a}}-f_{\underline{a}}\right\rVert_{C^{0}}\leq c_{18}c_{5}\rho^{1+\frac{1}{2k}};

  • (ii)

    for any a¯Σ\underline{a}\in\Sigma, we have |(Hω¯)1(a¯)H1(a¯)|c18c5ρ1+12k\left\lvert(H^{\underline{\omega}})^{-1}(\underline{a})-H^{-1}(\underline{a})\right\rvert\leq c_{18}c_{5}\,\rho^{1+\frac{1}{2k}};

  • (iii)

    for θ¯Σ\underline{\theta}\in\Sigma^{-}, we have

    kθ¯,ω¯kθ¯C0c18c5ρ112k;\left\lVert k^{\underline{\theta},\underline{\omega}}-k^{\underline{\theta}}\right\rVert_{C^{0}}\leq c_{18}c_{5}\,\rho^{1-\frac{1}{2k}};
  • (iv)

    for θ¯Σ\underline{\theta}\in\Sigma^{-} and a word a¯=(a0,a1,,am)\underline{a}=(a_{0},\,a_{1},\,\dots,\,a_{m}) with a0=θ0a_{0}=\theta_{0} such that diam(G(a¯))>c01ρdiam(G(\underline{a}))>c_{0}^{-1}\,\rho, we have

    |DFa¯θ¯DFa¯θ¯,ω¯1|\displaystyle\left\lvert\frac{DF^{\underline{\theta}}_{\underline{a}}}{DF^{\underline{\theta},\,\underline{\omega}}_{\underline{a}}}-1\right\rvert c18c5ρ112k;\displaystyle\leq c_{18}c_{5}\,\rho^{1-\frac{1}{2k}};
    |logra¯θ¯,ω¯logra¯θ¯|\displaystyle\left|\log r^{\underline{\theta},\underline{\omega}}_{\underline{a}}-\log r^{\underline{\theta}}_{\underline{a}}\right| c18c5ρ112k.\displaystyle\leq c_{18}c_{5}\,\rho^{1-\frac{1}{2k}}.

The constant c18c_{18} is independent of θ¯\underline{\theta}, ω¯\underline{\omega}, a¯\underline{a}, ρ\rho, and the size c5c_{5} of the perturbation.

Proof.

(i): Let xn=max|a¯|=nfa¯ω¯fa¯C0\displaystyle{x_{n}=\max_{|\underline{a}|=n}{\left\lVert f^{\underline{\omega}}_{\underline{a}}-f_{\underline{a}}\right\rVert_{C^{0}}}} be the maximum distance between corresponding inverse branches of gng^{n} and (gω¯)n(g^{\underline{\omega}})^{n}. We will prove that xnc18c5ρ1+12kx_{n}\leq c_{18}c_{5}\,\rho^{1+\frac{1}{2k}} by induction on nn. For n=1n=1 we have x1c5ρ1+1/2kx_{1}\leq c_{5}\rho^{1+1/2k}, this is a direct consequence of Φω¯Idc5ρ1+1/2k\|\Phi_{\underline{\omega}}-Id\|\leq c_{5}\rho^{1+1/2k}.

Observe that g(G(a))g(G(a)) covers all the pieces G(b)G(b) it intersects, therefore there exists δ>0\delta>0 sufficiently small such that if (a,b)B(a,b)\in B, then Vδ(G(b))g(G(a))V_{\delta}(G(b))\subset g(G(a)). Consequently, if xG(b)x\in G(b), any point xx^{\prime} such that |xx|<δ\left\lvert x-x^{\prime}\right\rvert<\delta and the line segment joining xx and xx^{\prime} are contained in the extended domain Vδ(G(b))V_{\delta}(G(b)) of f(a,b)=(g|G(a))1|Vδ(G(b))f_{(a,b)}=(g|_{G(a)})^{-1}|_{V_{\delta}(G(b))}. In this domain, Df(a,b)μ1\left\lVert Df_{(a,b)}\right\rVert\leq\mu^{-1}. Suppose xnc18c5ρ1+12kx_{n}\leq c_{18}c_{5}\rho^{1+\frac{1}{2k}}. If ρ\rho is sufficiently small, then xn<δx_{n}<\delta. Given a word b¯=(b0,b1,,bn,bn+1)\underline{b}=(b_{0},b_{1},\dots,b_{n},b_{n+1}), we write b¯=(b1,b2,,bn+1)\underline{b}^{\prime}=(b_{1},b_{2},\dots,b_{n+1}). Given a point xG(bn+1)x\in G(b_{n+1}),

fb¯ω¯(x)fb¯(x)=\displaystyle f^{\underline{\omega}}_{\underline{b}}(x)-f_{\underline{b}}(x)= f(b0,b1)ω¯(fb¯ω¯(x))f(b0,b1)(fb¯(x))=\displaystyle f^{\underline{\omega}}_{(b_{0},b_{1})}(f^{\underline{\omega}}_{\underline{b}^{\prime}}(x))-f_{(b_{0},b_{1})}(f_{\underline{b}^{\prime}}(x))=
f(b0,b1)(fb¯ω¯(x))f(b0,b1)(fb¯(x))+f(b0,b1)ω¯(fb¯ω¯(x))f(b0,b1)(fb¯ω¯(x)).\displaystyle f_{(b_{0},b_{1})}(f^{\underline{\omega}}_{\underline{b}^{\prime}}(x))-f_{(b_{0},b_{1})}(f_{\underline{b}^{\prime}}(x))+f^{\underline{\omega}}_{(b_{0},b_{1})}(f^{\underline{\omega}}_{\underline{b}^{\prime}}(x))-f_{(b_{0},b_{1})}(f^{\underline{\omega}}_{\underline{b}^{\prime}}(x)).

Of course, when writing this, we are assuming that fb¯ω¯(x)f^{\underline{\omega}}_{\underline{b}^{\prime}}(x) belongs to the domain Vδ(G(b1))V_{\delta}(G(b_{1})) of f(b0,b1)f_{(b_{0},b_{1})}. But this is the case when |fb¯ω¯(x)fb¯(x)|xn<δ\left\lvert f^{\underline{\omega}}_{\underline{b}^{\prime}}(x)-f_{\underline{b}^{\prime}}(x)\right\rvert\leq x_{n}<\delta, which is true by hypothesis. More than that, because the segment joining the two points is inside this domain,

|fb¯ω¯(x)fb¯(x)|μ1|fb¯ω¯(x)fb¯(x)|+c5ρ1+12kμ1xn+c5ρ1+12k.|f^{\underline{\omega}}_{\underline{b}}(x)-f_{\underline{b}}(x)|\leq\mu^{-1}|f^{\underline{\omega}}_{\underline{b}^{\prime}}(x)-f_{\underline{b}^{\prime}}(x)|+c_{5}\rho^{1+\frac{1}{2k}}\leq\mu^{-1}x_{n}+c_{5}\rho^{1+\frac{1}{2k}}.

In this manner, choosing c1811μ1c_{18}\geq\frac{1}{1-\mu^{-1}}, we obtain xn+1c18c5ρ1+12kx_{n+1}\leq c_{18}c_{5}\rho^{1+\frac{1}{2k}}, finishing this part.

(ii): Let a¯=(a0,a1,)Σ\underline{a}=(a_{0},\,a_{1},\,\dots)\in\Sigma. It follows that H1(a¯)=limnfa¯n(G(an))H^{-1}(\underline{a})=\lim_{n\rightarrow\infty}{f_{\underline{a}_{n}}(G(a_{n}))} and (Hω¯)1(a¯)=limnfa¯nω¯(G(an))(H^{\underline{\omega}})^{-1}(\underline{a})=\lim_{n\rightarrow\infty}{f^{\underline{\omega}}_{\underline{a}_{n}}(G(a_{n}))}. As the diameters of these sets converge exponentially to zero, the result follows from (i).

(iii): We now study the perturbed limit geometries. Notice that the base point used to define kθ¯,ω¯k^{\underline{\theta},\underline{\omega}} is not the same as the one for kθ¯k^{\underline{\theta}}, but the estimate of (ii) gives us control over this displacement.

Fix θ¯Σ\underline{\theta}\in\Sigma^{-} and let zG(θ0)=Gω¯(θ0)z\in G(\theta_{0})=G^{\underline{\omega}}(\theta_{0}). Let the base point cθ0K(θ0)c_{\theta_{0}}\in K(\theta_{0}) be given by cθ0=H1(x¯a)c_{\theta_{0}}=H^{-1}(\underline{x}_{a}) and the base point cθ0ω¯Kω¯(θ0)c^{\underline{\omega}}_{\theta_{0}}\in K^{\underline{\omega}}(\theta_{0}) be given by cθ0ω¯=(Hω¯)1(x¯a)c^{\underline{\omega}}_{\theta_{0}}=(H^{\underline{\omega}})^{-1}(\underline{x}_{a}) for some fixed sequence x¯aΣ\underline{x}_{a}\in\Sigma. From (ii),

|cθ0ω¯cθ0|c18c5ρ1+12k.\left\lvert c^{\underline{\omega}}_{\theta_{0}}-c_{\theta_{0}}\right\rvert\leq c_{18}c_{5}\rho^{1+\frac{1}{2k}}.

Write cn=fθ¯n(cθ0)c_{n}=f_{\underline{\theta}_{n}}(c_{\theta_{0}}) and zn=fθ¯n(z)z_{n}=f_{\underline{\theta}_{n}}(z); and cnω¯=fθ¯nω¯(cθ0ω¯)c^{\underline{\omega}}_{n}=f^{\underline{\omega}}_{\underline{\theta}_{n}}(c^{\underline{\omega}}_{\theta_{0}}) and znω¯=fθ¯nω¯(z)z^{\underline{\omega}}_{n}=f^{\underline{\omega}}_{\underline{\theta}_{n}}(z) for n1n\geq 1. Notice that

|znω¯zn|=|(fθ¯nω¯fθ¯n)(z)|c18c5ρ1+12k\left\lvert z^{\underline{\omega}}_{n}-z_{n}\right\rvert=\left\lvert(f^{\underline{\omega}}_{\underline{\theta}_{n}}-f_{\underline{\theta}_{n}})(z)\right\rvert\leq c_{18}c_{5}\rho^{1+\frac{1}{2k}}

by (i). Likewise, seeing that cθ0ω¯Vδ(G(θ0))c^{\underline{\omega}}_{\theta_{0}}\in V_{\delta}(G(\theta_{0})),

(5) |cnω¯cn||(fθ¯nω¯fθ¯n)(cθ0ω¯)|+|fθ¯n(cθ0ω¯)fθ¯n(cθ0)|c5ρ1+12k,\left\lvert c^{\underline{\omega}}_{n}-c_{n}\right\rvert\leq\left\lvert(f^{\underline{\omega}}_{\underline{\theta}_{n}}-f_{\underline{\theta}_{n}})(c^{\underline{\omega}}_{\theta_{0}})\right\rvert+\left\lvert f_{\underline{\theta}_{n}}(c^{\underline{\omega}}_{\theta_{0}})-f_{\underline{\theta}_{n}}(c_{\theta_{0}})\right\rvert\lesssim c_{5}\rho^{1+\frac{1}{2k}},

by (i) again and the estimate for |cθ0ω¯cθ0|\left\lvert c^{\underline{\omega}}_{\theta_{0}}-c_{\theta_{0}}\right\rvert above (fθ¯nf_{\underline{\theta}_{n}} is a contraction).

Remember that knθ¯=Φθ¯nfθ¯nk^{\underline{\theta}}_{n}=\Phi_{\underline{\theta}_{n}}\circ f_{{\underline{\theta}_{n}}}, where Φθ¯n\Phi_{\underline{\theta}_{n}} is an affine transformation, and kθ¯=limnknθ¯k^{\underline{\theta}}=\lim_{n\rightarrow\infty}{k^{\underline{\theta}}_{n}}. Hence

knθ¯(z)=Φθ¯n(zn)Φθ¯n(cn)=(Dfθ¯n(cθ0))1(zncn)k^{\underline{\theta}}_{n}(z)=\Phi_{\underline{\theta}_{n}}(z_{n})-\Phi_{\underline{\theta}_{n}}(c_{n})=\left(Df_{\underline{\theta}_{n}}(c_{\theta_{0}})\right)^{-1}(z_{n}-c_{n})

and similarly

knθ¯,ω¯(z)=Φθ¯nω¯(znω¯)Φθ¯nω¯(cnω¯)=(Dfθ¯nω¯(cθ0ω¯))1(znω¯cnω¯).k^{\underline{\theta},\underline{\omega}}_{n}(z)=\Phi^{\underline{\omega}}_{\underline{\theta}_{n}}(z^{\underline{\omega}}_{n})-\Phi^{\underline{\omega}}_{\underline{\theta}_{n}}(c^{\underline{\omega}}_{n})=\left(Df^{\underline{\omega}}_{\underline{\theta}_{n}}(c^{\underline{\omega}}_{\theta_{0}})\right)^{-1}(z^{\underline{\omega}}_{n}-c^{\underline{\omega}}_{n}).

The difference knθ¯,ω¯(z)knθ¯(z)k^{\underline{\theta},\underline{\omega}}_{n}(z)-k^{\underline{\theta}}_{n}(z) is thus equal to

(6) (Dfθ¯n(cθ0))1(znω¯zn+cncnω¯)+[(Dfθ¯nω¯(cθ0ω¯))1(Dfθ¯n(cθ0))1](znω¯cnω¯).\left(Df_{\underline{\theta}_{n}}(c_{\theta_{0}})\right)^{-1}(z^{\underline{\omega}}_{n}-z_{n}+c_{n}-c^{\underline{\omega}}_{n})+\left[\left(Df^{\underline{\omega}}_{\underline{\theta}_{n}}(c^{\underline{\omega}}_{\theta_{0}})\right)^{-1}-\left(Df_{\underline{\theta}_{n}}(c_{\theta_{0}})\right)^{-1}\right](z^{\underline{\omega}}_{n}-c^{\underline{\omega}}_{n}).

Let us analyze this expression for nn not very large. Define

An\displaystyle A_{n} (Dfθ¯n(cθ0))1=Dgn(cn),\displaystyle\coloneqq\left(Df_{\underline{\theta}_{n}}(c_{\theta_{0}})\right)^{-1}=Dg^{n}(c_{n}),
Bn\displaystyle B_{n} (Dfθ¯nω¯(cθ0ω¯))1=D(gω¯)n(cnω¯),\displaystyle\coloneqq\left(Df^{\underline{\omega}}_{\underline{\theta}_{n}}(c^{\underline{\omega}}_{\theta_{0}})\right)^{-1}=D(g^{\underline{\omega}})^{n}(c^{\underline{\omega}}_{n}),

for n1n\geq 1. If nn is such that |An|c0c0ρ1/k\left\lvert A_{n}\right\rvert\leq c_{0}c^{\prime}_{0}\rho^{-1/k} (remember that c0c_{0}^{\prime} was defined in eq. (2)), then, by the previous estimates, the first term of (6) is ρ1/kc5ρ1+1/2k=c5ρ11/2k\lesssim\rho^{-1/k}c_{5}\rho^{1+1/2k}=c_{5}\rho^{1-1/2k}. On the other hand, for every m0m\geq 0,

Am+1=AmDg(cm+1)andBm+1=BmDgω¯(cm+1ω¯),A_{m+1}=A_{m}\cdot Dg(c_{m+1})\qquad\text{and}\qquad B_{m+1}=B_{m}\cdot Dg^{\underline{\omega}}(c^{\underline{\omega}}_{m+1}),

therefore

Am+1Bm+1=(AmBm)Dg(cm+1)+Bm(Dg(cm+1)Dgω¯(cm+1ω¯)),A_{m+1}-B_{m+1}=(A_{m}-B_{m})\cdot Dg(c_{m+1})+B_{m}\cdot(Dg(c_{m+1})-Dg^{\underline{\omega}}(c^{\underline{\omega}}_{m+1})),

from which one can deduce, by induction on nn, that for any m,n0m,\,n\geq 0,

(7) (Am+nBm+n)(AmBm)Dgn(cm+n)=j=0n1Bm+j(Dg(cm+j+1)Dgω¯(cm+j+1ω¯))Dgn1j(cm+n)=j=0n1Bm+j(Dg(cm+j+1)Dgω¯(cm+j+1ω¯))Am+j+11Am+n.\displaystyle\begin{split}(A_{m+n}-B_{m+n})-&(A_{m}-B_{m})\cdot Dg^{n}(c_{m+n})\\ &=\sum_{j=0}^{n-1}B_{m+j}\cdot\left(Dg(c_{m+j+1})-Dg^{\underline{\omega}}(c^{\underline{\omega}}_{m+j+1})\right)\cdot Dg^{n-1-j}(c_{m+n})\\ &=\sum_{j=0}^{n-1}B_{m+j}\cdot\left(Dg(c_{m+j+1})-Dg^{\underline{\omega}}(c^{\underline{\omega}}_{m+j+1})\right)\cdot{A_{m+j+1}}^{-1}\cdot A_{m+n}.\end{split}

By (5), the fact that DΦω¯(cm+j+1ω¯)=IdD\Phi_{\underline{\omega}}(c^{\underline{\omega}}_{m+j+1})=Id, and the fact that the maps are CC^{\infty},

|Dg(cm+j+1)Dgω¯(cm+j+1ω¯)|=|Dg(cm+j+1)Dg(Φω¯(cm+j+1ω¯))DΦω¯(cm+j+1ω¯)|c5ρ1+12k.\left\lvert Dg(c_{m+j+1})-Dg^{\underline{\omega}}(c^{\underline{\omega}}_{m+j+1})\right\rvert=\left\lvert Dg(c_{m+j+1})-Dg(\Phi_{\underline{\omega}}(c^{\underline{\omega}}_{m+j+1}))\cdot D\Phi_{\underline{\omega}}(c^{\underline{\omega}}_{m+j+1})\right\rvert\lesssim c_{5}\rho^{1+\frac{1}{2k}}.

Now write Cn(AnBn)(An)1C_{n}\coloneqq-(A_{n}-B_{n})\cdot(A_{n})^{-1}. It follows that Bn=(Cn+Id)AnB_{n}=(C_{n}+Id)\cdot A_{n}. Then, making m=0m=0 in (7) and dividing it by |An|\left\lvert A_{n}\right\rvert, we get that

(8) |Cn|j=0n1c5ρ1+12k|Id+Cj||Aj||Aj+1|1c5ρ1+12kj=0n11+|Cj|.\left\lvert C_{n}\right\rvert\lesssim\sum_{j=0}^{n-1}c_{5}\rho^{1+\frac{1}{2k}}\cdot|Id+C_{j}|\cdot|A_{j}|\cdot|{A_{j+1}}|^{-1}\lesssim c_{5}\rho^{1+\frac{1}{2k}}\cdot\sum_{j=0}^{n-1}{1+|C_{j}|}.

Let m0m_{0} be the largest value such that |Am0|c0c0ρ1/k\left\lvert A_{m_{0}}\right\rvert\leq c_{0}c^{\prime}_{0}\rho^{-1/k}. Thus m01klogρm_{0}\lesssim-\frac{1}{k}\log{\rho} and, again by induction on nn, |Cn|1|C_{n}|\lesssim 1 for nm0n\leq m_{0}. Indeed, if it is true for all jn1j\leq n-1, then

|Cn|c5ρ1+12kj=0n11+|Cj|c5ρ1+12knm0c5ρ1+12k1klogρc5ρ1+12k1,|C_{n}|\lesssim c_{5}\rho^{1+\frac{1}{2k}}\cdot\sum_{j=0}^{n-1}{1+|C_{j}|}\lesssim c_{5}\rho^{1+\frac{1}{2k}}\cdot n\leq m_{0}c_{5}\rho^{1+\frac{1}{2k}}\lesssim-\frac{1}{k}\log{\rho}\cdot c_{5}\rho^{1+\frac{1}{2k}}\lesssim 1,

if ρ\rho is sufficiently small. Plugging this estimate for |Cj||C_{j}| with 0jn10\leq j\leq n-1 in (8) again yields |Cn|c5ρ112k|C_{n}|\lesssim c_{5}\rho^{1-\frac{1}{2k}} for nm0n\leq m_{0} if ρ\rho is sufficiently small. We also know that |zncn||An|1|z_{n}-c_{n}|\lesssim|A_{n}|^{-1} and hence |znω¯cnω¯||An|1|z^{\underline{\omega}}_{n}-c^{\underline{\omega}}_{n}|\lesssim|A_{n}|^{-1} for nm0n\leq m_{0}. Hence the second term in (6) is |Cn|c5ρ112k\lesssim|C_{n}|\lesssim c_{5}\rho^{1-\frac{1}{2k}}.

We are left with controlling the difference knθ¯,ω¯(z)knθ¯(z)k^{\underline{\theta},\underline{\omega}}_{n}(z)-k^{\underline{\theta}}_{n}(z) for n>m0n>m_{0}. Notice that if |An|>c0c0ρ1k\left\lvert A_{n}\right\rvert>c_{0}c^{\prime}_{0}\rho^{-\frac{1}{k}}, then the four points znz_{n}, cnc_{n}, znω¯z^{\underline{\omega}}_{n} and cnω¯c^{\underline{\omega}}_{n} belong to the same piece G(a¯)G(\underline{a}) where a¯Σ0\underline{a}\in\Sigma_{0}. Thus,

zn+1ω¯cn+1ω¯=f(θn1,θn)ω¯(znω¯)f(θn1,θn)ω¯(cnω¯)=f(θn1,θn)(znω¯)f(θn1,θn)(cnω¯).z^{\underline{\omega}}_{n+1}-c^{\underline{\omega}}_{n+1}=f^{\underline{\omega}}_{(\theta_{-n-1},\theta_{-n})}(z^{\underline{\omega}}_{n})-f^{\underline{\omega}}_{(\theta_{-n-1},\theta_{-n})}(c^{\underline{\omega}}_{n})=f_{(\theta_{-n-1},\theta_{-n})}(z^{\underline{\omega}}_{n})-f_{(\theta_{-n-1},\theta_{-n})}(c^{\underline{\omega}}_{n}).

This way, if ρ\rho is small enough so that the segments joining znω¯z^{\underline{\omega}}_{n} to cnω¯c^{\underline{\omega}}_{n} and znz_{n} to cnc_{n} belong to the domain of f(θn1,θn)f_{(\theta_{-n-1},\theta_{-n})},

kn+1θ¯,ω¯(z)\displaystyle k^{\underline{\theta},\underline{\omega}}_{n+1}(z) =Bn+101Df(θn1,θn)(cnω¯+(znω¯cnω¯)t)𝑑t(znω¯cnω¯)\displaystyle=B_{n+1}\cdot\int_{0}^{1}{Df_{(\theta_{-n-1},\theta_{-n})}(c^{\underline{\omega}}_{n}+(z^{\underline{\omega}}_{n}-c^{\underline{\omega}}_{n})t)dt}\cdot(z^{\underline{\omega}}_{n}-c^{\underline{\omega}}_{n})
=Bn+101Df(θn1,θn)(cnω¯+(znω¯cnω¯)t)𝑑tBn1knθ¯,ω¯(z),\displaystyle=B_{n+1}\cdot\int_{0}^{1}{Df_{(\theta_{-n-1},\theta_{-n})}(c^{\underline{\omega}}_{n}+(z^{\underline{\omega}}_{n}-c^{\underline{\omega}}_{n})t)dt}\cdot B_{n}^{-1}\cdot k^{\underline{\theta},\underline{\omega}}_{n}(z),
kn+1θ¯(z)\displaystyle k^{\underline{\theta}}_{n+1}(z) =An+101Df(θn1,θn)(cn+(zncn)t)𝑑tAn1knθ¯(z).\displaystyle=A_{n+1}\cdot\int_{0}^{1}{Df_{(\theta_{-n-1},\theta_{-n})}(c_{n}+(z_{n}-c_{n})t)dt}\cdot A_{n}^{-1}\cdot k^{\underline{\theta}}_{n}(z).

Write

In\displaystyle I_{n} 01Df(θn1,θn)(cn+(zncn)t)𝑑t,\displaystyle\coloneqq\int_{0}^{1}{Df_{(\theta_{-n-1},\theta_{-n})}(c_{n}+(z_{n}-c_{n})t)dt},
Inω¯\displaystyle I^{\underline{\omega}}_{n} 01Df(θn1,θn)(cnω¯+(znω¯cnω¯)t)𝑑t.\displaystyle\coloneqq\int_{0}^{1}{Df_{(\theta_{-n-1},\theta_{-n})}(c^{\underline{\omega}}_{n}+(z^{\underline{\omega}}_{n}-c^{\underline{\omega}}_{n})t)dt}.

Notice that InI_{n} and Inω¯I^{\underline{\omega}}_{n} are both conformal matrices. This happens because cn+(zncn)tc_{n}+(z_{n}-c_{n})t and cnω¯+(znω¯cnω¯)tc^{\underline{\omega}}_{n}+(z^{\underline{\omega}}_{n}-c^{\underline{\omega}}_{n})t belong, for every t[0,1]t\in[0,1], to the domain in which f(θn1,θn)f_{(\theta_{-n-1},\theta_{-n})} is holomorphic, provided ρ\rho is sufficiently small. Besides, the difference between these two integrals is c5ρ1+12k\lesssim c_{5}\rho^{1+\frac{1}{2k}}, because ff is CC^{\infty} and

|(1t)(cnω¯cn)+t(znω¯znω¯)|c5ρ1+12k.\left\lvert(1-t)(c^{\underline{\omega}}_{n}-c_{n})+t(z^{\underline{\omega}}_{n}-z^{\underline{\omega}}_{n})\right\rvert\lesssim c_{5}\rho^{1+\frac{1}{2k}}.

Furthermore, Df(θn1,θn)(cnω¯)=Df(θn1,θn)ω¯(cnω¯)Df_{(\theta_{-n-1},\theta_{-n})}(c^{\underline{\omega}}_{n})=Df^{\underline{\omega}}_{(\theta_{-n-1},\theta_{-n})}(c^{\underline{\omega}}_{n}) by (4) and so

|Inω¯Df(θn1,θn)(cnω¯)|=|Inω¯Df(θn1,θn)ω¯(cnω¯)||znω¯cnω¯||Bn|1 and\left\lvert I^{\underline{\omega}}_{n}-Df_{(\theta_{-n-1},\theta_{-n})}(c^{\underline{\omega}}_{n})\right\rvert=\left\lvert I^{\underline{\omega}}_{n}-Df^{\underline{\omega}}_{(\theta_{-n-1},\theta_{-n})}(c^{\underline{\omega}}_{n})\right\rvert\lesssim|z^{\underline{\omega}}_{n}-c^{\underline{\omega}}_{n}|\lesssim\left\lvert B_{n}\right\rvert^{-1}\text{ and}
|InDf(θn1,θn)(cn)||zncn||An|1\left\lvert I_{n}-Df_{(\theta_{-n-1},\theta_{-n})}(c_{n})\right\rvert\lesssim|z_{n}-c_{n}|\lesssim\left\lvert A_{n}\right\rvert^{-1}

respectively. This implies that there exists some constant c>0c>0 independent of c5c_{5} such that

|An+1InAn1Id|\displaystyle\left\lvert A_{n+1}\cdot I_{n}\cdot A_{n}^{-1}-Id\right\rvert c2|An|1,\displaystyle\leq\frac{c}{2}\left\lvert A_{n}\right\rvert^{-1},
|Bn+1Inω¯Bn1Id|\displaystyle\left\lvert B_{n+1}\cdot I^{\underline{\omega}}_{n}\cdot B_{n}^{-1}-Id\right\rvert c2|Bn|1 and\displaystyle\leq\frac{c}{2}\left\lvert B_{n}\right\rvert^{-1}\qquad\text{ and }
|An+1InAn1Bn+1Inω¯Bn1|\displaystyle\left\lvert A_{n+1}\cdot I_{n}\cdot A_{n}^{-1}-B_{n+1}\cdot I^{\underline{\omega}}_{n}\cdot B_{n}^{-1}\right\rvert |In(An1An+1Bn1Bn+1)|+|(InInω¯)Bn1Bn+1|\displaystyle\leq\left\lvert I_{n}(A_{n}^{-1}\cdot A_{n+1}-B_{n}^{-1}\cdot B_{n+1})\right\rvert+\left\lvert(I_{n}-I^{\underline{\omega}}_{n})B_{n}^{-1}\cdot B_{n+1}\right\rvert
|In||Dg(cn+1)Dgω¯(cn+1ω¯)|+|InInω¯||Dgω¯(cn+1ω¯)|\displaystyle\leq\left\lvert I_{n}\right\rvert\cdot\left\lvert Dg(c_{n+1})-Dg^{\underline{\omega}}(c^{\underline{\omega}}_{n+1})\right\rvert+\left\lvert I_{n}-I^{\underline{\omega}}_{n}\right\rvert\cdot\left\lvert Dg^{\underline{\omega}}(c^{\underline{\omega}}_{n+1})\right\rvert
cc5ρ1+12k,\displaystyle\leq cc_{5}\rho^{1+\frac{1}{2k}},

since the matrices An1A_{n}^{-1}, Bn1B_{n}^{-1}, An+1A_{n+1}, Bn+1B_{n+1} and InI_{n} commute (they are all conformal). Therefore, defining an|knθ¯,ω¯(z)knθ¯(z)|a_{n}\coloneqq\left\lvert k^{\underline{\theta},\underline{\omega}}_{n}(z)-k^{\underline{\theta}}_{n}(z)\right\rvert, for nm0n\geq m_{0}

an+1=\displaystyle a_{n+1}= |kn+1θ¯,ω¯(z)kn+1θ¯(z)|\displaystyle\left\lvert k^{\underline{\theta},\underline{\omega}}_{n+1}(z)-k^{\underline{\theta}}_{n+1}(z)\right\rvert
|An+1InAn1(knθ¯,ω¯(z)knθ¯(z))|+|(An+1InAn1Bn+1Inω¯Bn1)knθ¯,ω¯(z)|\displaystyle\leq\left\lvert A_{n+1}\cdot I_{n}\cdot A_{n}^{-1}\cdot\left(k^{\underline{\theta},\underline{\omega}}_{n}(z)-k^{\underline{\theta}}_{n}(z)\right)\right\rvert+\left\lvert(A_{n+1}\cdot I_{n}\cdot A_{n}^{-1}-B_{n+1}\cdot I^{\underline{\omega}}_{n}\cdot B_{n}^{-1})\cdot k^{\underline{\theta},\underline{\omega}}_{n}(z)\right\rvert
(1+c|An|1)|knθ¯,ω¯(z)knθ¯(z)|+cmin{c5ρ1+12k,max{|An|1,|Bn|1}}\displaystyle\leq(1+c|A_{n}|^{-1})\left\lvert k^{\underline{\theta},\underline{\omega}}_{n}(z)-k^{\underline{\theta}}_{n}(z)\right\rvert+c\min{\{c_{5}\rho^{1+\frac{1}{2k}},\max{\{\left\lvert A_{n}\right\rvert^{-1},\left\lvert B_{n}\right\rvert^{-1}\}}\}}
=(1+c|An|1)an+cmin{c5ρ1+12k,max{|An|1,|Bn|1}}.\displaystyle=(1+c|A_{n}|^{-1})a_{n}+c\min{\{c_{5}\rho^{1+\frac{1}{2k}},\max{\{\left\lvert A_{n}\right\rvert^{-1},\left\lvert B_{n}\right\rvert^{-1}\}}\}}.

For n(1+12k)logρn\gtrsim-(1+\frac{1}{2k})\log\rho the minimum above is equal to max{|An|1,|Bn|1}\max{\{\left\lvert A_{n}\right\rvert^{-1},\left\lvert B_{n}\right\rvert^{-1}\}}, which decays exponentially. Up to such a value, the formula above implies that anam0+c5ρ1+12k(logρ)a_{n}\lesssim a_{m_{0}}+c_{5}\rho^{1+\frac{1}{2k}}(-\log\rho). Using the fact shown before that am0c5ρ112ka_{m_{0}}\lesssim c_{5}\rho^{1-\frac{1}{2k}} and choosing ρ\rho sufficiently small, it follows that the sequence ana_{n} is c5ρ112k\lesssim c_{5}\rho^{1-\frac{1}{2k}}. Making nn\rightarrow\infty we conclude (iii).

(iv) By lemma 2.12,

ra¯θ¯=diam(kθ¯fa¯(G(am)))=diam(Fa¯θ¯kθ¯(G(am)))=|DFa¯θ¯|diam(kθ¯(G(am)))r^{\underline{\theta}}_{\underline{a}}=\text{diam}(k^{\underline{\theta}}\circ f_{\underline{a}}(G(a_{m})))=\text{diam}(F^{\underline{\theta}}_{\underline{a}}\circ k^{\underline{\theta}}(G(a_{m})))=\left\lvert DF^{\underline{\theta}}_{\underline{a}}\right\rvert\text{diam}(k^{\underline{\theta}}(G(a_{m})))

and the analogous relation is valid for the perturbed version. To show that |logra¯θ¯,ω¯logra¯θ¯|c18c5ρ112k\left|\log r^{\underline{\theta},\underline{\omega}}_{\underline{a}}-\log r^{\underline{\theta}}_{\underline{a}}\right|\leq c_{18}c_{5}\,\rho^{1-\frac{1}{2k}} it is thus sufficient to prove that

||DFa¯θ¯|diam(kθ¯(G(am)))|DFa¯θ¯,ω¯|diam(kθ¯,ω¯(G(am)))1|c5ρ11/2k.\left\lvert\frac{\left\lvert DF^{\underline{\theta}}_{\underline{a}}\right\rvert\text{diam}(k^{\underline{\theta}}(G(a_{m})))}{\left\lvert DF^{\underline{\theta},\,\underline{\omega}}_{\underline{a}}\right\rvert\text{diam}(k^{\underline{\theta},\underline{\omega}}(G(a_{m})))}-1\right\rvert\lesssim c_{5}\,\rho^{1-1/2k}.

Notice that by (iii),

diam(kθ¯(G(am)))diam(kθ¯,ω¯(G(am)))c5ρ11/2k,\text{diam}(k^{\underline{\theta}}(G(a_{m})))-\text{diam}(k^{\underline{\theta},\underline{\omega}}(G(a_{m})))\lesssim c_{5}\,\rho^{1-1/2k},

and so, as these diameters are uniformly bounded away from zero,

|diam(kθ¯,ω¯(G(am)))diam(kθ¯(G(am)))1|c5ρ11/2k.\left\lvert\frac{\text{diam}(k^{\underline{\theta},\underline{\omega}}(G(a_{m})))}{\text{diam}(k^{\underline{\theta}}(G(a_{m})))}-1\right\rvert\lesssim c_{5}\,\rho^{1-1/2k}.

This way, we are left with analysing the derivatives of the affine maps Fa¯θ¯F^{\underline{\theta}}_{\underline{a}} and Fθ¯a¯,ω¯F^{\underline{\theta}\,\underline{a},\underline{\omega}}. Also from lemma 2.12,

DFa¯θ¯\displaystyle DF^{\underline{\theta}}_{\underline{a}} =limn(Dfθ¯n(cθ0))1Df(θ¯a¯)n+m(cam)\displaystyle=\lim_{n\rightarrow\infty}\left(Df_{\underline{\theta}_{n}}(c_{\theta_{0}})\right)^{-1}\cdot Df_{(\underline{\theta}\underline{a})_{n+m}}(c_{a_{m}})
DFa¯θ¯,ω¯\displaystyle DF^{\underline{\theta},\,\underline{\omega}}_{\underline{a}} =limn(Dfθ¯nω¯(cθ0ω¯))1Df(θ¯a¯)n+mω¯(camω¯).\displaystyle=\lim_{n\rightarrow\infty}\left(Df^{\underline{\omega}}_{\underline{\theta}_{n}}(c^{\underline{\omega}}_{\theta_{0}})\right)^{-1}\cdot Df^{\underline{\omega}}_{(\underline{\theta}\underline{a})_{n+m}}(c^{\underline{\omega}}_{a_{m}}).

To meet our objectives we need only to show that for all n0n\geq 0

(9) |(Dfθ¯n(cθ0))1Df(θ¯a¯)n+m(cam)(Dfθ¯nω¯(cθ0ω¯))1Df(θ¯a¯)n+mω¯(camω¯)1|c5ρ11/2k.\left\lvert\frac{\left(Df_{\underline{\theta}_{n}}(c_{\theta_{0}})\right)^{-1}\cdot Df_{(\underline{\theta}\underline{a})_{n+m}}(c_{a_{m}})}{\left(Df^{\underline{\omega}}_{\underline{\theta}_{n}}(c^{\underline{\omega}}_{\theta_{0}})\right)^{-1}\cdot Df^{\underline{\omega}}_{(\underline{\theta}\underline{a})_{n+m}}(c^{\underline{\omega}}_{a_{m}})}-1\right\rvert\lesssim c_{5}\,\rho^{1-1/2k}.

To each θ¯Σ\underline{\theta}^{\prime}\in\Sigma^{-} let n0(θ¯)n_{0}(\underline{\theta}^{\prime}) be the largest integer nn such that |Dfθ¯n(cθ0)|c01(c0)1ρ1/k\left\lvert Df_{\underline{\theta}^{\prime}_{n}}(c_{{\theta^{\prime}_{0}}})\right\rvert\geq c_{0}^{-1}(c_{0}^{\prime})^{-1}\rho^{1/k}. The analysis of CnC_{n} in (iii) implies that, uniformly on θ¯Σ\underline{\theta}^{\prime}\in\Sigma^{-},

|(Dfθ¯nω¯(cθ0ω¯))1(Dfθ¯n(cθ0))1||Dfθ¯n(cθ0)|1c5ρ11/2k.\frac{\left\lvert\left(Df^{\underline{\omega}}_{\underline{\theta}^{\prime}_{n}}(c^{\underline{\omega}}_{\theta^{\prime}_{0}})\right)^{-1}-\left(Df_{\underline{\theta}^{\prime}_{n}}(c_{\theta^{\prime}_{0}})\right)^{-1}\right\rvert}{\left\lvert Df_{\underline{\theta}^{\prime}_{n}}(c_{\theta^{\prime}_{0}})\right\rvert^{-1}}\lesssim c_{5}\,\rho^{1-1/2k}.

for all nn0(θ¯)n\leq n_{0}(\underline{\theta}^{\prime}). This also implies that for all nn0(θ¯)n\leq n_{0}(\underline{\theta}^{\prime})

|Dfθ¯nω¯(cθ0ω¯)Dfθ¯n(cθ0)||Dfθ¯n(cθ0)|c5ρ11/2k.\frac{\left\lvert Df^{\underline{\omega}}_{\underline{\theta}^{\prime}_{n}}(c^{\underline{\omega}}_{\theta^{\prime}_{0}})-Df_{\underline{\theta}^{\prime}_{n}}(c_{\theta^{\prime}_{0}})\right\rvert}{\left\lvert Df_{\underline{\theta}^{\prime}_{n}}(c_{\theta^{\prime}_{0}})\right\rvert}\lesssim c_{5}\,\rho^{1-1/2k}.

Let us now show that these estimates remain valid for a much larger value of nn, that is, n1=ρ1/kn_{1}=\lceil\rho^{-1/k}\rceil when ρ\rho is sufficiently small. Define for each θ¯Σ\underline{\theta}^{\prime}\in\Sigma^{-} and n0n\geq 0

xn(θ¯)Dfθ¯nω¯(cθ0ω¯)Dfθ¯n(cθ0),cnω¯(θ¯)fθ¯nω¯(cθ0ω¯),cn(θ¯)fθ¯n(cθ0).x_{n}(\underline{\theta}^{\prime})\coloneqq\frac{Df^{\underline{\omega}}_{\underline{\theta}^{\prime}_{n}}(c^{\underline{\omega}}_{\theta^{\prime}_{0}})}{Df_{\underline{\theta}^{\prime}_{n}}(c_{\theta^{\prime}_{0}})},\quad c^{\underline{\omega}}_{n}(\underline{\theta}^{\prime})\coloneqq f^{\underline{\omega}}_{\underline{\theta}^{\prime}_{n}}(c^{\underline{\omega}}_{\theta^{\prime}_{0}}),\quad c_{n}(\underline{\theta}^{\prime})\coloneqq f_{\underline{\theta}^{\prime}_{n}}(c_{\theta^{\prime}_{0}}).

Notice that for nn0(θ¯)n\geq n_{0}(\underline{\theta}^{\prime}), the points cnω¯(θ¯)c^{\underline{\omega}}_{n}(\underline{\theta}^{\prime}) and cn(θ¯)c_{n}(\underline{\theta}^{\prime}) are always on the same piece G(b¯)G(\underline{b}), with b¯Σ(ρ1/k)\underline{b}\in\Sigma(\rho^{1/k}), because of the definition of this number. Thus, in a neighborhood of cnω¯(θ¯)c^{\underline{\omega}}_{n}(\underline{\theta}^{\prime}), f(θn1,θn)ω¯f^{\underline{\omega}}_{(\theta_{-n-1},\theta_{-n})} is just f(θn1,θn)f_{(\theta_{-n-1},\theta_{-n})} composed with a translation (see (4)), and therefore

|xn+1(θ¯)xn(θ¯)1|\displaystyle\left\lvert\frac{x_{n+1}(\underline{\theta}^{\prime})}{x_{n}(\underline{\theta}^{\prime})}-1\right\rvert =|Df(θn1,θn)ω¯(cnω¯(θ¯))Df(θn1,θn)(cn(θ¯))1|\displaystyle=\left\lvert\frac{Df^{\underline{\omega}}_{(\theta_{-n-1},\theta_{-n})}(c^{\underline{\omega}}_{n}(\underline{\theta}^{\prime}))}{Df_{(\theta_{-n-1},\theta_{-n})}(c_{n}(\underline{\theta}^{\prime}))}-1\right\rvert
=|Df(θn1,θn)(cnω¯(θ¯))Df(θn1,θn)(cn(θ¯))Df(θn1,θn)(cn(θ¯))|c5ρ1+1/2k,\displaystyle=\left\lvert\frac{Df_{(\theta_{-n-1},\theta_{-n})}(c^{\underline{\omega}}_{n}(\underline{\theta}^{\prime}))-Df_{(\theta_{-n-1},\theta_{-n})}(c_{n}(\underline{\theta}^{\prime}))}{Df_{(\theta_{-n-1},\theta_{-n})}(c_{n}(\underline{\theta}^{\prime}))}\right\rvert\lesssim c_{5}\,\rho^{1+1/2k},

because of (i) and the fact that the f(θn1,θn)f_{(\theta_{-n-1},\theta_{-n})} are CC^{\infty} with uniformly bounded derivatives. It follows that for every nn such that n0(θ¯)nn1n_{0}(\underline{\theta}^{\prime})\leq n\leq n_{1}

|xn(θ¯)xn0(θ¯)(θ¯)1|c5ρ1+1/2kρ1/kc5ρ11/2k.\left\lvert\frac{x_{n}(\underline{\theta}^{\prime})}{x_{n_{0}(\underline{\theta}^{\prime})}(\underline{\theta}^{\prime})}-1\right\rvert\lesssim c_{5}\,\rho^{1+1/2k}\rho^{-1/k}\lesssim c_{5}\,\rho^{1-1/2k}.

Hence |xn(θ¯)1|c5ρ11/2k\left\lvert x_{n}(\underline{\theta}^{\prime})-1\right\rvert\lesssim c_{5}\,\rho^{1-1/2k} for all nn1n\leq n_{1}, because |xn(θ¯)1|c5ρ11/2k\left\lvert x_{n}(\underline{\theta}^{\prime})-1\right\rvert\lesssim c_{5}\,\rho^{1-1/2k} for all nn0(θ¯)n\leq n_{0}(\underline{\theta}^{\prime}) by the discussion above. Moreover, since mlogρm\lesssim\log{\rho}, the same estimations imply that |xn(θ¯)1|c5ρ11/2k\left\lvert x_{n}(\underline{\theta}^{\prime})-1\right\rvert\lesssim c_{5}\,\rho^{1-1/2k} for all nn1+mn\leq n_{1}+m (this is the only part we use diam(G(a¯))c01ρ\text{diam}(G(\underline{a}))\geq c_{0}^{-1}\rho).

Observe that n1max{n0(θ¯),n0(θ¯a¯)}logρn_{1}\gg\max{\{n_{0}(\underline{\theta}),n_{0}(\underline{\theta}\underline{a})\}}\approx\log{\rho} if ρ\rho is sufficiently small. The estimates above imply that

|(Dfθ¯n(cθ0))1Df(θ¯a¯)n+m(cam)(Dfθ¯nω¯(cθ0ω¯))1Df(θ¯a¯)n+mω¯(camω¯)1|=|xn(θ¯)xn+m(θ¯a¯)1|c5ρ11/2k,\left\lvert\frac{\left(Df_{\underline{\theta}_{n}}(c_{\theta_{0}})\right)^{-1}\cdot Df_{(\underline{\theta}\underline{a})_{n+m}}(c_{a_{m}})}{\left(Df^{\underline{\omega}}_{\underline{\theta}_{n}}(c^{\underline{\omega}}_{\theta_{0}})\right)^{-1}\cdot Df^{\underline{\omega}}_{(\underline{\theta}\underline{a})_{n+m}}(c^{\underline{\omega}}_{a_{m}})}-1\right\rvert=\left\lvert\frac{x_{n}(\underline{\theta})}{x_{n+m}(\underline{\theta}\underline{a})}-1\right\rvert\lesssim c_{5}\,\rho^{1-1/2k},

and so (9) is true for nn1n\leq n_{1}.

For nn1n\geq n_{1}, let

yn=(Dfθ¯n(cθ0))1Df(θ¯a¯)n+m(cam) and ynω¯=(Dfθ¯nω¯(cθ0ω¯))1Df(θ¯a¯)n+mω¯(camω¯).y_{n}=\left(Df_{\underline{\theta}_{n}}(c_{\theta_{0}})\right)^{-1}\cdot Df_{(\underline{\theta}\underline{a})_{n+m}}(c_{a_{m}})\quad\text{ and }\quad y^{\underline{\omega}}_{n}=\left(Df^{\underline{\omega}}_{\underline{\theta}_{n}}(c^{\underline{\omega}}_{\theta_{0}})\right)^{-1}\cdot Df^{\underline{\omega}}_{(\underline{\theta}\underline{a})_{n+m}}(c^{\underline{\omega}}_{a_{m}}).

Following this notation,

|yn+1yn1|=|Df(θn1,θn)(cn+m(θ¯a¯))Df(θn1,θn)(cn(θ¯))1||cn+m(θ¯a¯)cn(θ¯)|diam(G(θ¯n))\left\lvert\frac{y_{n+1}}{y_{n}}-1\right\rvert=\left\lvert\frac{Df_{(\theta_{-n-1},\theta_{-n})}(c_{n+m}(\underline{\theta}\underline{a}))}{Df_{(\theta_{-n-1},\theta_{-n})}(c_{n}(\underline{\theta}))}-1\right\rvert\lesssim\left\lvert c_{n+m}(\underline{\theta}\underline{a})-c_{n}(\underline{\theta})\right\rvert\leq\text{diam}(G(\underline{\theta}_{n}))

and the analogous relation is valid for the perturbed versions. However, remember that there is C>0C>0 such that diam(G(θ¯n)),diam(Gω¯(θ¯n))Cμn\text{diam}(G(\underline{\theta}_{n})),\text{diam}(G^{\underline{\omega}}(\underline{\theta}_{n}))\leq C\mu^{-n}. This geometric control implies that there is a positive constant CC^{\prime} such that

|ynynω¯1|C(μn1+c5ρ11/2k),\left\lvert\frac{y_{n}}{y^{\underline{\omega}}_{n}}-1\right\rvert\leq C^{\prime}(\mu^{-n_{1}}+c_{5}\rho^{1-1/2k}),

for every nn1n\geq n_{1}. Since n1ρ1/kn_{1}\geq\rho^{-1/k}, if ρ\rho is sufficiently small, then μn1c5ρ11/2k\mu^{-n_{1}}\ll c_{5}\,\rho^{1-1/2k}, and so the estimate (9) is valid for all n0n\geq 0, concluding the first part of the proof.

Remark 3.3.

Some remarks relating the perturbation:

  • Note that since fa¯ω¯fa¯C0c5ρ1+1/2k\|f^{\underline{\omega}}_{\underline{a}}-f_{\underline{a}}\|_{C^{0}}\lesssim c_{5}\rho^{1+1/2k} then, supposing ρ\rho is small enough, we have Gω¯(a¯)Vρ(G(a¯))G^{\underline{\omega}}(\underline{a})\subset V_{\rho}(G(\underline{a})).

  • Remember that we assume the base points cac_{a}, a𝔸a\in\mathbb{A}, are pre-periodic. From this, it is easy to prove that the base points do not depend on ω¯\underline{\omega}, i.e. caω¯=cac^{\underline{\omega}}_{a}=c_{a}. Indeed, let α¯β¯β¯β¯\underline{\alpha}\underline{\beta}\underline{\beta}...\underline{\beta}... be the symbolic sequence associated to the points caω¯c^{\underline{\omega}}_{a}. Then we can write

    caω¯=limnfα¯β¯nω¯(x),c^{\underline{\omega}}_{a}=\lim_{n\to\infty}f^{\underline{\omega}}_{\underline{\alpha}\underline{\beta}^{n}}(x),

    where xx is any element in G(β)G(\beta), and β\beta is the last letter of β¯\underline{\beta}. Notice that if n0n_{0} is big enough then β¯n0\underline{\beta}^{n_{0}} contains a word of Σ(ρ1/3k)\Sigma(\rho^{1/3k}) repeated twice, thus any γ¯Σ(ρ1/k)\underline{\gamma}\in\Sigma(\rho^{1/k}) containing β¯n0\underline{\beta}^{n_{0}} can not be in Σ1\Sigma_{1}. This implies that

    fα¯β¯nω¯(x)=fα¯β¯nn0(fβ¯n0ω¯(x)),f^{\underline{\omega}}_{\underline{\alpha}\underline{\beta}^{n}}(x)=f_{\underline{\alpha}\underline{\beta}^{n-n_{0}}}(f^{\underline{\omega}}_{\underline{\beta}^{n_{0}}}(x)),

    for all n>n0n>n_{0}. Making nn go to infinity we conclude that caω¯c^{\underline{\omega}}_{a} does not depend on ω¯\underline{\omega}.

  • If diam(G(a¯))c01ρdiam(G(\underline{a}))\geq c_{0}^{-1}\rho then |DFa¯θ¯||DFa¯θ¯,ω¯||DF^{\underline{\theta}}_{\underline{a}}|\approx|DF^{\underline{\theta},\underline{\omega}}_{\underline{a}}| and using

    DFa¯θ¯,ω¯=Dkθ¯,ω¯(ca¯)Dfa¯ω¯(ca)DF^{\underline{\theta},\underline{\omega}}_{\underline{a}}=Dk^{\underline{\theta},\underline{\omega}}(c_{\underline{a}})\cdot Df^{\underline{\omega}}_{\underline{a}}(c_{a})

    one sees that |Dfa¯(ca)||Dfa¯ω¯(ca)||Df_{\underline{a}}(c_{a})|\approx|Df^{\underline{\omega}}_{\underline{a}}(c_{a})| and then diam(G(a¯))dim(Gω¯(a¯))diam(G(\underline{a}))\approx dim(G^{\underline{\omega}}(\underline{a})). On can arrive to a similar estimate if diam(G(a¯))c01ρ3diam(G(\underline{a}))\geq c_{0}^{-1}\rho^{3}, in this case we can decompose a¯\underline{a} as a concatenation of at most 44 words in Σ(ρ)\Sigma(\rho) and use the fact that diam(G(a¯1a¯2))diam(G(a¯1))diam(G(a¯2))diam(G(\underline{a}_{1}\underline{a}_{2}))\approx diam(G(\underline{a}_{1}))diam(G(\underline{a}_{2})). Notice that with this approach the constants get worse if we increase the power of ρ\rho in which we are interested, ρ3\rho^{3} will be enough for us.

  • Let ω¯1,ω¯2Ω\underline{\omega}_{1},\underline{\omega}_{2}\in\Omega and θ¯Σ\underline{\theta}\in\Sigma^{-}, suppose that

    fθ¯nω¯1(z)=fθ¯nω¯2(z)f^{\underline{\omega}_{1}}_{\underline{\theta}_{n}}(z)=f^{\underline{\omega}_{2}}_{\underline{\theta}_{n}}(z)

    for all nNn\leq N and all zz in a neighborhood of z0z_{0}, and in a neighborhood of cθ0c_{\theta_{0}}. Remember that limit geometries are defined by kθ¯,ω¯=limnknθ¯,ω¯k^{\underline{\theta},\underline{\omega}}=\lim_{n\to\infty}k^{\underline{\theta},\underline{\omega}}_{n}, where

    knθ¯,ω¯(z)=Dfθ¯nω¯(cθ0)1(fθ¯nω¯(z)fθ¯nω¯(cθ0)).k^{\underline{\theta},\underline{\omega}}_{n}(z)=Df^{\underline{\omega}}_{\underline{\theta}_{n}}(c_{\theta_{0}})^{-1}(f^{\underline{\omega}}_{\underline{\theta}_{n}}(z)-f^{\underline{\omega}}_{\underline{\theta}_{n}}(c_{\theta_{0}})).

    By our assumption we have knθ¯,ω¯1(z)=knθ¯,ω¯2(z)k^{\underline{\theta},\underline{\omega}_{1}}_{n}(z)=k^{\underline{\theta},\underline{\omega}_{2}}_{n}(z), for all nNn\leq N and zz in a neighborhood of z0z_{0}. From the proof of the existence of limit geometries (see [6]) one has that there is a constant CC such that

    kθ¯,ω¯knθ¯,ω¯Cdiam(Gω¯(θ¯n))\|k^{\underline{\theta},\underline{\omega}}-k^{\underline{\theta},\underline{\omega}}_{n}\|\leq Cdiam(G^{\underline{\omega}}(\underline{\theta}_{n}))

    and

    D(kθ¯,ω¯(knθ¯,ω¯)1)IdCdiam(Gω¯(θ¯n)),\|D(k^{\underline{\theta},\underline{\omega}}\circ(k^{\underline{\theta},\underline{\omega}}_{n})^{-1})-Id\|\leq Cdiam(G^{\underline{\omega}}(\underline{\theta}_{n})),

    the same constant CC works for all Cantor sets Kω¯K^{\underline{\omega}}, since they depend continuously on ω¯\underline{\omega}. It follows easily that there is a constant CC^{\prime} such that

    |kθ¯,ω¯1(z)kθ¯,ω¯2(z)|Cdiam(Gω¯1(θ¯N))|k^{\underline{\theta},\underline{\omega}_{1}}(z)-k^{\underline{\theta},\underline{\omega}_{2}}(z)|\leq C^{\prime}diam(G^{\underline{\omega}_{1}}(\underline{\theta}_{N}))

    and

    |Dkθ¯,ω¯1(z)Dkθ¯,ω¯2(z)|Cdiam(Gω¯1(θ¯N)),|Dk^{\underline{\theta},\underline{\omega}_{1}}(z)-Dk^{\underline{\theta},\underline{\omega}_{2}}(z)|\leq C^{\prime}diam(G^{\underline{\omega}_{1}}(\underline{\theta}_{N})),

    for all zz in a neighborhood of z0z_{0}. Notice that since diam(Gω¯j(θ¯n))|Dfθ¯nω¯j(cθ0)|diam(G^{\underline{\omega}_{j}}(\underline{\theta}_{n}))\approx|Df^{\underline{\omega}_{j}}_{\underline{\theta}_{n}}(c_{\theta_{0}})|, j=1,2j=1,2, and Dfθ¯Nω¯1(cθ0)=Dfθ¯Nω¯2(cθ0)Df^{\underline{\omega}_{1}}_{\underline{\theta}_{N}}(c_{\theta_{0}})=Df^{\underline{\omega}_{2}}_{\underline{\theta}_{N}}(c_{\theta_{0}}) then diam(Gω¯1(θ¯N))diam(Gω¯2(θ¯N))diam(G^{\underline{\omega}_{1}}(\underline{\theta}_{N}))\approx diam(G^{\underline{\omega}_{2}}(\underline{\theta}_{N})).

4. Proof of theorem 2.22

In this section we will define the set of relative configurations =ω¯\mathcal{L}=\mathcal{L}_{\underline{\omega}}, which will be a recurrent compact set for at least one of the Cantor sets in the family of random perturbations. We first give a primary description of \mathcal{L} and prove that assuming a probabilistic estimate, proposition 4.1, then we can prove theorem 2.22. The proof of the probabilistic estimate will be given in later sections.

4.1. The recurrent compact set

The set =ω¯\mathcal{L}=\mathcal{L}_{\underline{\omega}} will depend on ω¯\underline{\omega}, but only the translation coordinate tt. The image of ω¯\mathcal{L}_{\underline{\omega}} under the projection map: 𝒞𝒮\mathcal{C}\to\mathcal{S} will be a subset ~\tilde{\mathcal{L}} of 𝒮\mathcal{S} independent of ω¯\underline{\omega}.

We will choose a subset of Σ\Sigma^{-} with good combinatorial properties, this will be crucial to prove the estimate of proposition 4.1. First, let Σnr(ρ3)\Sigma_{nr}(\rho^{3}) be the subset of Σ(ρ3)\Sigma(\rho^{3}) formed by words a¯\underline{a} such that:

  1. (1)

    no word b¯Σ(ρ1/3k)\underline{b}\in\Sigma(\rho^{1/3k}) appears twice in a¯\underline{a};

  2. (2)

    if c¯Σ(ρ1/6k)\underline{c}\in\Sigma(\rho^{1/6k}) appears at the end of a¯\underline{a}, then it does not appear elsewhere in a¯\underline{a}.

We next define Σnr\Sigma_{nr}^{-} as the subset of Σ\Sigma^{-} formed by θ¯\underline{\theta} which end with a word in Σnr(ρ3)\Sigma_{nr}(\rho^{3}). This is an open and closed subset in Σ\Sigma^{-}.

A family of subsets E(a¯,a¯)E(\underline{a},\underline{a}^{\prime}) of JRJ_{R} , for (a¯,a¯)Σ(ρ1/2)×Σ(ρ1/2)(\underline{a},\underline{a}^{\prime})\in\Sigma(\rho^{1/2})\times\Sigma^{\prime}(\rho^{1/2}) will be constructed in subsection 4.2, in relation to Marstrand’s theorem, and it will satisfy the hypothesis

Leb(JRE(a¯,a¯))c1,(a¯,a¯).Leb(J_{R}\setminus E(\underline{a},\underline{a}^{\prime}))\leq c_{1}\,,\quad\forall(\underline{a},\underline{a}^{\prime}).

Then, the Scale recurrence Lemma gives us another family E(a¯,a¯)E^{*}(\underline{a},\underline{a}^{\prime}), (a¯,a¯)Σ(ρ1/2)×Σ(ρ1/2)(\underline{a},\underline{a}^{\prime})\in\Sigma(\rho^{1/2})\times\Sigma^{\prime}(\rho^{1/2}), with the properties indicated in the statement of the lemma.

The set ~\widetilde{\mathcal{L}} is defined to be the subset of 𝒮R\mathcal{S}_{R} formed by the (θ¯,θ¯,s)(\underline{\theta},\underline{\theta}^{\prime},s) such that θ¯Σnr\underline{\theta}\in\Sigma_{nr}^{-} , and there exists a¯Σ(ρ1/2)\underline{a}\in\Sigma(\rho^{1/2}), a¯Σ(ρ1/2)\underline{a}^{\prime}\in\Sigma^{\prime}(\rho^{1/2}) with sE(a¯,a¯)s\in E^{*}(\underline{a},\underline{a}^{\prime}) and θ¯\underline{\theta}, θ¯\underline{\theta}^{\prime} ending with a¯\underline{a}, a¯\underline{a}^{\prime} respectively.

For every (θ¯,θ¯,s)(\underline{\theta},\underline{\theta}^{\prime},s) in ~\widetilde{\mathcal{L}}, we will define in subsection 4.3, considering the properties given by Marstrand’s theorem, a non empty subset Lω¯0(θ¯,θ¯,s)L_{\underline{\omega}}^{0}(\underline{\theta},\underline{\theta}^{\prime},s), depending on ω¯Ω\underline{\omega}\in\Omega, of the fiber of 𝒞\mathcal{C} over (θ¯,θ¯,s)(\underline{\theta},\underline{\theta}^{\prime},s).

Let

ω¯0={(θ¯,θ¯,s,t):(θ¯,θ¯,s)~,tLω¯0(θ¯,θ¯,s)};\mathcal{L}_{\underline{\omega}}^{0}=\{(\underline{\theta},\underline{\theta}^{\prime},s,t):\,(\underline{\theta},\underline{\theta}^{\prime},s)\in\widetilde{\mathcal{L}},t\in L_{\underline{\omega}}^{0}(\underline{\theta},\underline{\theta}^{\prime},s)\};

consider next the ρ\rho-neighbourhood ω¯1\mathcal{L}_{\underline{\omega}}^{1} of ω¯0\mathcal{L}_{\underline{\omega}}^{0} in ~×\widetilde{\mathcal{L}}\times\mathbbm{C}:

ω¯1={(θ¯,θ¯,s,t):(θ¯,θ¯,s)~ and (θ¯0,θ¯0,s0,t0)ω¯0\displaystyle\quad\mathcal{L}_{\underline{\omega}}^{1}=\{(\underline{\theta},\underline{\theta}^{\prime},s,t):\,(\underline{\theta},\underline{\theta}^{\prime},s)\in\widetilde{\mathcal{L}}\text{ and }\exists\,(\underline{\theta}_{0},\underline{\theta}_{0}^{\prime},s_{0},t_{0})\in\mathcal{L}_{\underline{\omega}}^{0}
with d(θ¯,θ¯0)<2ρ5/2,d(θ¯,θ¯0)<2ρ5/2,|ss0|<ρ,|tt0|<ρ}.\displaystyle\text{with }d(\underline{\theta},\underline{\theta}_{0})<2\rho^{5/2},d(\underline{\theta}^{\prime},\underline{\theta}_{0}^{\prime})<2\rho^{5/2},|s-s_{0}|<\rho,|t-t_{0}|<\rho\}.

Fix u=(θ¯,θ¯,s,t)~×u=(\underline{\theta},\underline{\theta}^{\prime},s,t)\in\widetilde{\mathcal{L}}\times\mathbbm{C}. We define two subsets Ω0(u)\Omega^{0}(u), Ω1(u)\Omega^{1}(u) of Ω\Omega. First,

Ω1(u)={ω¯Ω:(θ¯,θ¯,s,t)ω¯1}.\Omega^{1}(u)=\{\underline{\omega}\in\Omega:\,(\underline{\theta},\underline{\theta}^{\prime},s,t)\in\mathcal{L}_{\underline{\omega}}^{1}\}.

Second, Ω0(u)\Omega^{0}(u) is the set of ω¯Ω\underline{\omega}\in\Omega such that there exists b¯Σ(ρ)\underline{b}\in\Sigma(\rho), b¯Σ(ρ)\underline{b}^{\prime}\in\Sigma^{\prime}(\rho), with b0=θ0b_{0}=\theta_{0}, b0=θ0b_{0}^{\prime}=\theta_{0}^{\prime} and the image Tb¯ω¯Tb¯(u)=(θ¯~,θ¯~,s~,t~T^{\underline{\omega}}_{\underline{b}}T^{\prime}_{\underline{b}^{\prime}}(u)=(\tilde{\underline{\theta}},\tilde{\underline{\theta}}^{\prime},\tilde{s},\tilde{t}) satisfies:

  • (i)

    for any s~1\tilde{s}_{1} with |s~s~1|<12c4ρ1/2|\tilde{s}-\tilde{s}_{1}|<\dfrac{1}{2}c_{4}\rho^{1/2}, we have (θ¯~,θ¯~,s~1)~(\tilde{\underline{\theta}},\tilde{\underline{\theta}}^{\prime},\tilde{s}_{1})\in\widetilde{\mathcal{L}};

  • (ii)

    t~Lω¯0(θ¯~,θ¯~,s~)\tilde{t}\in L_{\underline{\omega}}^{0}(\tilde{\underline{\theta}},\tilde{\underline{\theta}}^{\prime},\tilde{s}).

The following crucial estimate will be proven in section 6.

Proposition 4.1.

Assume that c5c_{5} is chosen conveniently large. Then there exists c7>0c_{7}>0, such that, for any u~×u\in{\widetilde{\mathcal{L}}}\times\mathbbm{C}, one has

(Ω1(u)Ω0(u))exp(c7ρ12k(d+d2)).\mathbb{P}(\Omega^{1}(u)\setminus\Omega^{0}(u))\leq\exp\big{(}-c_{7}\rho^{-\frac{1}{2k}(d+d^{\prime}-2)}\big{)}.

Using the previous estimate, we will prove that for some ω¯\underline{\omega} the pair Kω¯,KK^{\underline{\omega}},\,K has a recurrent compact set, thus obtaining theorem 2.22. We proceed as in [1]. We discretize the set ~×{t:|t|<4(1+eR)}\tilde{\mathcal{L}}\times\{t:|t|<4(1+e^{R})\}, i.e. we choose subsets Δi\Delta_{i}, iIi\in I, such that

~×{t:|t|<4(1+eR)}=iIΔi,\tilde{\mathcal{L}}\times\{t:|t|<4(1+e^{R})\}=\bigcup_{i\in I}\Delta_{i},

and for all (θ¯1,θ¯1,s1,t1),(θ¯2,θ¯2,s2,t2)Δi(\underline{\theta}_{1},\underline{\theta}^{\prime}_{1},s_{1},t_{1}),\,(\underline{\theta}_{2},\underline{\theta}^{\prime}_{2},s_{2},t_{2})\in\Delta_{i} one has

d(θ¯1,θ¯2)<ρ5/2,d(θ¯1,θ¯2)<ρ5/2,|s1s2|<ρ3,|t1t2|<ρ3.d(\underline{\theta}_{1},\underline{\theta}_{2})<\rho^{5/2},\,d(\underline{\theta}^{\prime}_{1},\underline{\theta}^{\prime}_{2})<\rho^{5/2},\,|s_{1}-s_{2}|<\rho^{3},\,|t_{1}-t_{2}|<\rho^{3}.

It is not difficult to see that this can be done in such a way that #I\#I is polynomial in ρ1\rho^{-1}. For each iIi\in I, choose uiΔiu_{i}\in\Delta_{i}. If ρ\rho is small enough, we have

(iIΩ1(ui)Ω0(ui))#Iexp(c7ρ12k(d+d2))<1.\mathbb{P}(\cup_{i\in I}\Omega^{1}(u_{i})\setminus\Omega^{0}(u_{i}))\leq\#I\cdot\exp\left(-c_{7}\rho^{-\frac{1}{2k}(d+d^{\prime}-2)}\right)<1.

Therefore, the set iIΩ1(ui)Ω0(ui)\cup_{i\in I}\Omega^{1}(u_{i})\setminus\Omega^{0}(u_{i}) is not the whole Ω\Omega and we can choose ω¯0\underline{\omega}_{0} outside of it. Observe that for all iIi\in I we have that ω¯0Ω1(ui)\underline{\omega}_{0}\in\Omega^{1}(u_{i}) implies ω¯0Ω0(ui)\underline{\omega}_{0}\in\Omega^{0}(u_{i}). Now define

ω¯0={\displaystyle\mathcal{L}_{\underline{\omega}_{0}}=\{ (θ¯,θ¯,s,t)~×:(~θ¯,~θ¯,s~,t~)ω¯00\displaystyle(\underline{\theta},\underline{\theta}^{\prime},s,t)\in\tilde{\mathcal{L}}\times\mathbbm{C}:\,\exists(\tilde{}\underline{\theta},\tilde{}\underline{\theta}^{\prime},\tilde{s},\tilde{t})\in\mathcal{L}^{0}_{\underline{\omega}_{0}}
with d(θ¯,~θ¯)ρ5/2,d(θ¯,~θ¯)ρ5/2,|ss~|ρ/2,|tt~|ρ/2}.\displaystyle\text{with }d(\underline{\theta},\tilde{}\underline{\theta})\leq\rho^{5/2},\,d(\underline{\theta}^{\prime},\tilde{}\underline{\theta}^{\prime})\leq\rho^{5/2},\,|s-\tilde{s}|\leq\rho/2,\,|t-\tilde{t}|\leq\rho/2\}.

We will prove that ω¯0\mathcal{L}_{\underline{\omega}_{0}} is a recurrent compact set for Kω¯0,KK^{\underline{\omega}_{0}},\,K^{\prime}. First, notice that ω¯00ω¯0ω¯01\mathcal{L}^{0}_{\underline{\omega}_{0}}\subset\mathcal{L}_{\underline{\omega}_{0}}\subset\mathcal{L}^{1}_{\underline{\omega}_{0}}. Then ω¯0\mathcal{L}_{\underline{\omega}_{0}} is not empty. Now, let u=(θ¯,θ¯,s,t)ω¯0u=(\underline{\theta},\underline{\theta}^{\prime},s,t)\in\mathcal{L}_{\underline{\omega}_{0}}, we have that there is (~θ¯,~θ¯,s~,t~)ω¯00(\tilde{}\underline{\theta},\tilde{}\underline{\theta}^{\prime},\tilde{s},\tilde{t})\in\mathcal{L}^{0}_{\underline{\omega}_{0}} with the properties in the definition of ω¯0\mathcal{L}_{\underline{\omega}_{0}}. Since t~Lω¯00(~θ¯,~θ¯,s~)\tilde{t}\in L^{0}_{\underline{\omega}_{0}}(\tilde{}\underline{\theta},\tilde{}\underline{\theta}^{\prime},\tilde{s}) then |t~|3(1+eR)|\tilde{t}|\leq 3(1+e^{R}) (this is clear from the definition of L0L^{0} in subsection 4.3 and equation (3)). Thus |t|<4(1+eR)|t|<4(1+e^{R}) and uΔiu\in\Delta_{i} for some iIi\in I. For ui=(θ¯i,θ¯i,si,ti)u_{i}=(\underline{\theta}_{i},\underline{\theta}^{\prime}_{i},s_{i},t_{i}) we have that

d(θ¯,θ¯i)<ρ5/2,d(θ¯,θ¯i)<ρ5/2,|ssi|<ρ3,|tti|<ρ3.d(\underline{\theta},\underline{\theta}_{i})<\rho^{5/2},\,d(\underline{\theta}^{\prime},\underline{\theta}^{\prime}_{i})<\rho^{5/2},\,|s-s_{i}|<\rho^{3},\,|t-t_{i}|<\rho^{3}.

Therefore uiω¯01u_{i}\in\mathcal{L}^{1}_{\underline{\omega}_{0}} and ω¯0Ω1(ui)\underline{\omega}_{0}\in\Omega^{1}(u_{i}), this implies that ω¯0Ω0(ui)\underline{\omega}_{0}\in\Omega^{0}(u_{i}) and there is some pair (b¯,b¯)Σ(ρ)×Σ(ρ)(\underline{b},\underline{b}^{\prime})\in\Sigma(\rho)\times\Sigma^{\prime}(\rho) such that Tb¯ω¯0Tb¯(ui)=(θ¯~i,θ¯~i,s~i,t~i)T^{\underline{\omega}_{0}}_{\underline{b}}T^{\prime}_{\underline{b}^{\prime}}(u_{i})=(\tilde{\underline{\theta}}_{i},\tilde{\underline{\theta}}^{\prime}_{i},\tilde{s}_{i},\tilde{t}_{i}) satisfies the properties (i) and (ii) described above.

We will prove that Tb¯ω¯0Tb¯(u)T^{\underline{\omega}_{0}}_{\underline{b}}T^{\prime}_{\underline{b}^{\prime}}(u) is in the interior of ω¯0\mathcal{L}_{\underline{\omega}_{0}}. Write Tb¯ω¯0Tb¯(u)=(θ¯b¯,θ¯b¯,s^,t^)T^{\underline{\omega}_{0}}_{\underline{b}}T^{\prime}_{\underline{b}^{\prime}}(u)=(\underline{\theta}\underline{b},\underline{\theta}^{\prime}\underline{b}^{\prime},\hat{s},\hat{t}), using equation (3) we have

t~i=(DFb¯θ¯i)1(ti+sicb¯θ¯i,ω¯0cb¯θ¯i), and t^=(DFb¯θ¯)1(t+scb¯θ¯,ω¯0cb¯θ¯).\tilde{t}_{i}=\left(DF^{\underline{\theta}^{\prime}_{i}}_{\underline{b}^{\prime}}\right)^{-1}\cdot(t_{i}+s_{i}c^{\underline{\theta}_{i},\underline{\omega}_{0}}_{\underline{b}}-c^{\underline{\theta}^{\prime}_{i}}_{\underline{b}^{\prime}}),\text{ and }\hat{t}=\left(DF^{\underline{\theta}^{\prime}}_{\underline{b}^{\prime}}\right)^{-1}\cdot(t+sc^{\underline{\theta},\underline{\omega}_{0}}_{\underline{b}}-c^{\underline{\theta}^{\prime}}_{\underline{b}^{\prime}}).

Therefore |t~it^|ρ3/2|\tilde{t}_{i}-\hat{t}|\lesssim\rho^{3/2}. Analogously one has

s^=DFb¯θ¯,ω¯0DFb¯θ¯s, and s~i=DFb¯θ¯i,ω¯0DFb¯θ¯isi.\hat{s}=\frac{DF^{\underline{\theta},\underline{\omega}_{0}}_{\underline{b}}}{DF^{\underline{\theta}^{\prime}}_{\underline{b}^{\prime}}}\cdot s,\text{ and }\tilde{s}_{i}=\frac{DF^{\underline{\theta}_{i},\underline{\omega}_{0}}_{\underline{b}}}{DF^{\underline{\theta}^{\prime}_{i}}_{\underline{b}^{\prime}}}\cdot s_{i}.

In this case we get |s~is^|ρ5/2|\tilde{s}_{i}-\hat{s}|\lesssim\rho^{5/2}. One also has d(θ¯b¯,~θ¯i)ρ7/2d(\underline{\theta}\underline{b},\tilde{}\underline{\theta}_{i})\lesssim\rho^{7/2} and d(θ¯b¯,θ¯~i)ρ7/2d(\underline{\theta}^{\prime}\underline{b}^{\prime},\tilde{\underline{\theta}}^{\prime}_{i})\lesssim\rho^{7/2}.

Thanks to property (ii), we know that (θ¯~i,θ¯~i,s~i,t~i)ω¯00(\tilde{\underline{\theta}}_{i},\tilde{\underline{\theta}}^{\prime}_{i},\tilde{s}_{i},\tilde{t}_{i})\in\mathcal{L}^{0}_{\underline{\omega}_{0}}. Moreover, for any (η¯,η¯,r,x)(\underline{\eta},\underline{\eta}^{\prime},r,x) such that

d(η¯,θ¯b¯)<ρ7/2,d(η¯,θ¯b¯)<ρ7/2,|rs^|<ρ/4,|xt^|<ρ/4,d(\underline{\eta},\underline{\theta}\underline{b})<\rho^{7/2},\,d(\underline{\eta}^{\prime},\underline{\theta}^{\prime}\underline{b}^{\prime})<\rho^{7/2},\,|r-\hat{s}|<\rho/4,\,|x-\hat{t}|<\rho/4,

we have

d(η¯,~θ¯i)ρ5/2,d(η¯,~θ¯i)ρ5/2,|rs~i|ρ/2,|xt~i|ρ/2.d(\underline{\eta},\tilde{}\underline{\theta}_{i})\leq\rho^{5/2},\,d(\underline{\eta}^{\prime},\tilde{}\underline{\theta}^{\prime}_{i})\leq\rho^{5/2},\,|r-\tilde{s}_{i}|\leq\rho/2,\,|x-\tilde{t}_{i}|\leq\rho/2.

To conclude that (η¯,η¯,r,x)ω¯0(\underline{\eta},\underline{\eta}^{\prime},r,x)\in\mathcal{L}_{\underline{\omega}_{0}} we only need to show that (η¯,η¯,r)~(\underline{\eta},\underline{\eta}^{\prime},r)\in\tilde{\mathcal{L}}. Property (i) above implies that (~θ¯i,~θ¯i,r)~(\tilde{}\underline{\theta}_{i},\tilde{}\underline{\theta}^{\prime}_{i},r)\in\tilde{\mathcal{L}}, by the definition of the set ~\tilde{\mathcal{L}} this means that ~θ¯iΣnr\tilde{}\underline{\theta}_{i}\in\Sigma^{-}_{nr} and rE(a¯,a¯)r\in E^{*}(\underline{a},\underline{a}^{\prime}) for a pair (a¯,a¯)(\underline{a},\underline{a}^{\prime}) in Σ(ρ1/2)×Σ(ρ1/2)\Sigma(\rho^{1/2})\times\Sigma^{\prime}(\rho^{1/2}) such that (~θ¯i,~θ¯i)(\tilde{}\underline{\theta}_{i},\tilde{}\underline{\theta}^{\prime}_{i}) ends in it. However, since d(η¯,~θ¯i)ρ7/2,d(η¯,~θ¯i)ρ7/2d(\underline{\eta},\tilde{}\underline{\theta}_{i})\lesssim\rho^{7/2},\,d(\underline{\eta}^{\prime},\tilde{}\underline{\theta}^{\prime}_{i})\lesssim\rho^{7/2} then η¯Σnr\underline{\eta}\in\Sigma^{-}_{nr} and (η¯,η¯)(\underline{\eta},\underline{\eta}^{\prime}) also ends in (a¯,a¯)(\underline{a},\underline{a}^{\prime}). Therefore (η¯,η¯,r)~(\underline{\eta},\underline{\eta}^{\prime},r)\in\tilde{\mathcal{L}} and (η¯,η¯,r,x)ω¯0(\underline{\eta},\underline{\eta}^{\prime},r,x)\in\mathcal{L}_{\underline{\omega}_{0}}, which shows that Tb¯ω¯0Tb¯(u)T^{\underline{\omega}_{0}}_{\underline{b}}T^{\prime}_{\underline{b}^{\prime}}(u) is in the interior of ω¯0\mathcal{L}_{\underline{\omega}_{0}}. From the fact that the sets E(a¯,a¯)E^{*}(\underline{a},\underline{a}^{\prime}) are closed and the definition of the sets Lω¯0L^{0}_{\underline{\omega}}, it is not difficult to prove that ω¯0\mathcal{L}_{\underline{\omega}_{0}} is a compact set. Therefore, ω¯0\mathcal{L}_{\underline{\omega}_{0}} is a recurrent compact set for the pair Kω¯0,KK^{\underline{\omega}_{0}},\,K^{\prime}.

4.2. Set of good scales

In this subsection we will define the sets E(a¯,a¯)E(\underline{a},\underline{a}^{\prime}) which we use to construct ~\tilde{\mathcal{L}}. Let (θ¯,θ¯,s)(\underline{\theta},\underline{\theta}^{\prime},s) in the space of relative scales, and points xK(θ0)x\in K(\theta_{0}), xK(θ0)x^{\prime}\in K^{\prime}(\theta_{0}^{\prime}). Consider

λ\displaystyle\lambda =πθ¯,θ¯,s(x,x):=kθ¯(x)skθ¯(x).\displaystyle=\pi_{\underline{\theta},\underline{\theta}^{\prime},s}(x,x^{\prime}):=k^{\underline{\theta}^{\prime}}(x^{\prime})-sk^{\underline{\theta}}(x).

Then (θ¯,θ¯,s,λ)(\underline{\theta},\underline{\theta}^{\prime},s,\lambda) is the unique relative configuration above (θ¯,θ¯,s)(\underline{\theta},\underline{\theta}^{\prime},s) such that

A(kθ¯(x))=A(kθ¯(x)),A(k^{\underline{\theta}}(x))=A^{\prime}(k^{\underline{\theta}^{\prime}}(x^{\prime})),

(where (θ¯,A),(θ¯,A)(\underline{\theta},A),(\underline{\theta}^{\prime},A^{\prime}) represents this relative configuration).

Remember that, for some previously fixed R>0R>0 (given by the scale recurrence lemma),

JR={sJ:eR|s|eR}J_{R}=\{s\in J:e^{-R}\leq|s|\leq e^{R}\}

and 𝒮R=Σ×Σ×JR\mathcal{S}_{R}=\Sigma^{-}\times{\Sigma^{\prime}}^{-}\times J_{R}.

Let dd, dd^{\prime} be the Hausdorff dimension of KK, KK^{\prime}, respectively. We equip each set K(θ0)K(\theta_{0}) (resp. K(θ0))K^{\prime}(\theta_{0}^{\prime})) with the dd-dimensional (resp. dd^{\prime}-dimensional) Hausdorff measure μd\mu_{d} (resp. μd\mu_{d^{\prime}}).

Then, for (θ¯,θ¯,s)𝒮(\underline{\theta},\underline{\theta}^{\prime},s)\in\mathcal{S}, we denote by μ(θ¯,θ¯,s)\mu(\underline{\theta},\underline{\theta}^{\prime},s) the image under πθ¯,θ¯,s\pi_{\underline{\theta},\underline{\theta}^{\prime},s} of μd×μd\mu_{d}\times\mu_{d^{\prime}} on K(θ0)×K(θ0)K(\theta_{0})\times K^{\prime}(\theta_{0}^{\prime}).

As in the theory of Cantor sets in the real line, there are constants c11>c10>0c_{11}>c_{10}>0 such that, for θ0𝔸\theta_{0}\in\mathbb{A}, θ0𝔸\theta_{0}^{\prime}\in\mathbb{A}^{\prime}:

c10<μd×μd(K(θ0)×K(θ0))<c11.c_{10}<\mu_{d}\times\mu_{d^{\prime}}(K(\theta_{0})\times K^{\prime}(\theta_{0}^{\prime}))<c_{11}\,.

This can be proven using the results appearing in Zamudio’s thesis ([8]). Indeed, for a given conformal Cantor set KK of dimension dd, using equation (1), one can find a sequence of coverings with size converging to zero and dd-volume bounded by Cc0dCc_{0}^{d}, namely the covering by the pieces of Σ(ρ)\Sigma(\rho), showing that μd(K)<\mu_{d}(K)<\infty.

On the other hand, lemma 1.2.3 of [8] gives that there exist constants C1>0C_{1}>0, L>0L>0, r0>0r_{0}>0, independent of ρ\rho, such that for all a¯Σ(ρ)\underline{a}\in\Sigma(\rho)

C11(ρr)d#{b¯Σ(ρ):rld(G(a¯),G(b¯))<r}C1(ρr)d,C_{1}^{-1}\left(\frac{\rho}{r}\right)^{-d}\leq\#\{\underline{b}\in\Sigma(\rho):\frac{r}{l}\leq d(G(\underline{a}),G(\underline{b}))<r\}\leq C_{1}\left(\frac{\rho}{r}\right)^{-d},

for all lLl\geq L, r<r0r<r_{0}. Using this lemma, we conclude that given a finite cover of KK by balls UiU_{i} of radii ri>0r_{i}>0, i=1,,ni=1,\dots,n, each UiU_{i} intersects at most C1ρdridC_{1}\rho^{-d}r_{i}^{d} pieces G(a¯)G(\underline{a}) of Σ(ρ)\Sigma(\rho) if ρ\rho and rir_{i} are sufficiently small. Since UiU_{i} is a cover and #Σ(ρ)>C1ρd\#\Sigma(\rho)>C^{-1}\rho^{-d}, summing for all ii yields:

C1ρd(rid)C1ρdC_{1}\rho^{-d}\left(\sum r_{i}^{d}\right)\geq C^{-1}\rho^{-d}

and so rid\sum r_{i}^{d} (and μd(K)\mu_{d}(K)) is always bounded from zero. To obtain the statement just restrict the arguments to K(θ0)K(\theta_{0}) and K(θ0){K^{\prime}}(\theta^{\prime}_{0}) and take their product.

Notice that the same lemma 1.2.3 implies that there is a constant c>0c>0 such that for μ:=μd×μd\mu:=\mu_{d}\times\mu_{d^{\prime}}, the product measure in 2\mathbbm{C}^{2},

μ(B(x,r))<crd+d\mu(B(x,r))<cr^{d+d^{\prime}}

for any ball of radius r>0r>0. If d+d>2d+d^{\prime}>2 this condition implies that:

I2(μ):=|uv|2𝑑μ(u)𝑑μ(v)<I_{2}(\mu):=\int\int|u-v|^{-2}d\mu(u)d\mu(v)<\infty

This way, the proof of Theorem 9.7 in Mattila’s book (a Marstrand-type theorem) [11] can be adapted444all one needs to verify is that for any points u,v2u,v\in\mathbbm{C}^{2}, Leb({s:sJR,|πθ¯,θ¯,s(u)πθ¯,θ¯,s(v)|<δ})<cδ2|uv|2Leb(\{s:s\in J_{R},\,|\pi_{\underline{\theta},\underline{\theta}^{\prime},s}(u)-\pi_{\underline{\theta},\underline{\theta}^{\prime},s}(v)|<\delta\})<c\delta^{2}|u-v|^{-2}, where c>0c>0 is some constant depending only on RR. Notice that πθ¯,θ¯,s=πsFθ¯,θ¯\pi_{\underline{\theta},\underline{\theta}^{\prime},s}=\pi_{s}\circ F_{\underline{\theta},\underline{\theta}^{\prime}}, where πs(u)=u2su1\pi_{s}(u)=u_{2}-s\cdot u_{1} for u=(u1,u2)u=(u_{1},u_{2}) and Fθ¯,θ¯=(kθ¯,kθ¯)F_{\underline{\theta},\underline{\theta}^{\prime}}=(k^{\underline{\theta}},k^{\underline{\theta}^{\prime}}) are diffeomorphisms that distort area in a uniformly bounded way. A simple manipulation shows that the measure is bounded above by cδ2|u1v1|2c\delta^{2}|u_{1}-v_{1}|^{-2}. If |u1v1|δ|u_{1}-v_{1}|\leq\delta then δ2|uv|2>c~\delta^{2}|u-v|^{-2}>\tilde{c} for some constant c~\tilde{c} and the desired inequality follows choosing cc big enough. If |u1v1|>δ|u_{1}-v_{1}|>\delta, using that ss is in JRJ_{R} a bounded set, one sees that |u1v1|1|u_{1}-v_{1}|^{-1} is bounded by cR|uv|1c_{R}|u-v|^{-1}, for some constant cRc_{R} depending on RR. to our context to show that for fixed (θ¯,θ¯)(\underline{\theta},\underline{\theta}^{\prime}) the measure μ(θ¯,θ¯,s)\mu(\underline{\theta},\underline{\theta}^{\prime},s) is absolutely continuous with respect to the Lebesgue measure for Lebesgue almost every ss, with density χθ¯,θ¯,s\chi_{\underline{\theta},\underline{\theta}^{\prime},s} in L2L^{2} satisfying

JRχθ¯,θ¯,sL22𝑑sc12(R),\int_{J_{R}}\|\chi_{\underline{\theta},\underline{\theta}^{\prime},s}\|_{L^{2}}^{2}\,ds\leq c_{12}(R),

where c12(R)c_{12}(R) is independent of θ¯\underline{\theta}, θ¯\underline{\theta}^{\prime}.

When one controls χθ¯,θ¯,sL2\|\chi_{\underline{\theta},\underline{\theta}^{\prime},s}\|_{L^{2}} , this gives, by Cauchy-Schwarz inequality, a lower bound for the Lebesgue measure of πθ¯,θ¯,s(X)\pi_{\underline{\theta},\underline{\theta}^{\prime},s}(X),   XX being a subset of K×KK\times K^{\prime} with positive (d+d)(d+d^{\prime})-dimensional Hausdorff measure; indeed we have:

μd×μd(X)\displaystyle\mu_{d}\times\mu_{d^{\prime}}(X) πθ¯,θ¯,s(X)χθ¯,θ¯,s(t)𝑑t\displaystyle\leq\int_{\pi_{\underline{\theta},\underline{\theta}^{\prime},s}(X)}\chi_{\underline{\theta},\underline{\theta}^{\prime},s}(t)\,dt
Leb(πθ¯,θ¯,s(X))1/2χθ¯,θ¯,sL2\displaystyle\leq Leb(\pi_{\underline{\theta},\underline{\theta}^{\prime},s}(X))^{1/2}\|\chi_{\underline{\theta},\underline{\theta}^{\prime},s}\|_{L^{2}}

and therefore

(10) Leb(πθ¯,θ¯,s(X))(μd×μd(X))2χθ¯,θ¯,sL22.Leb(\pi_{\underline{\theta},\underline{\theta}^{\prime},s}(X))\geq(\mu_{d}\times\mu_{d^{\prime}}(X))^{2}\|\chi_{\underline{\theta},\underline{\theta}^{\prime},s}\|_{L^{2}}^{-2}\,.

Fix (θ¯,θ¯)(\underline{\theta},\underline{\theta}^{\prime}) in Σ×Σ\Sigma^{-}\times\Sigma^{\prime-}. Let a¯Σ(ρ1/2k)\underline{a}\in\Sigma(\rho^{1/2k}), a¯Σ(ρ1/2k)\underline{a}^{\prime}\in\Sigma^{\prime}(\rho^{1/2k}), with a0=θ0a_{0}=\theta_{0} , a0=θ0a_{0}^{\prime}=\theta_{0}^{\prime} . One has

Ta¯Ta¯(θ¯,θ¯,s)=(θ¯a¯,θ¯a¯,sDFa¯θ¯/DFa¯θ¯)T_{\underline{a}}T^{\prime}_{\underline{a}^{\prime}}(\underline{\theta},\underline{\theta}^{\prime},s)=\left(\underline{\theta}\underline{a},\underline{\theta}^{\prime}\underline{a}^{\prime},s\cdot DF^{\underline{\theta}}_{\underline{a}}/DF^{\underline{\theta}^{\prime}}_{\underline{a}^{\prime}}\right)

and

c131|DFa¯θ¯||DFa¯θ¯|c13.c_{13}^{-1}\leq\frac{|DF^{\underline{\theta}}_{\underline{a}}|}{|DF^{\underline{\theta}^{\prime}}_{\underline{a}^{\prime}}|}\leq c_{13}\,.

We therefore have

JRχTa¯Ta¯(θ¯,θ¯,s)L22𝑑sc12(R),\int_{J_{R}}\lVert\chi_{{T_{\underline{a}}T^{\prime}_{\underline{a}^{\prime}}(\underline{\theta},\underline{\theta}^{\prime},s)}}\rVert_{L^{2}}^{2}\,ds\leq c_{12}^{\prime}(R),

with c12(R)c_{12}^{\prime}(R) independent of θ¯\underline{\theta}, θ¯\underline{\theta}^{\prime}, a¯\underline{a}, a¯\underline{a}^{\prime}. On the other hand, one has

#Σ(ρ1/2k)c14ρd/2k,\displaystyle\#\,\Sigma(\rho^{1/2k})\leq c_{14}\,\rho^{-d/2k}\,,
#Σ(ρ1/2k)c14ρd/2k.\displaystyle\#\,\Sigma^{\prime}(\rho^{1/2k})\leq c_{14}\,\rho^{-d^{\prime}/2k}\,.

We conclude that

JRa¯,a¯χTa¯Ta¯(θ¯,θ¯,s)L22dsc142ρd+d2kc12(R).\int_{J_{R}}\sum_{\underline{a},\underline{a}^{\prime}}\|\chi_{{T_{\underline{a}}T^{\prime}_{\underline{a}^{\prime}}(\underline{\theta},\underline{\theta}^{\prime},s)}}\|_{L^{2}}^{2}\,ds\leq c_{14}^{2}\,\rho^{-\frac{d+d^{\prime}}{2k}}\,c_{12}^{\prime}(R).

We now define, with c15>0c_{15}>0 conveniently large to be determined later:

E(θ¯,θ¯)\displaystyle E(\underline{\theta},\underline{\theta}^{\prime}) ={sJR:χθ¯,θ¯,sL22c15\displaystyle=\bigg{\{}s\in J_{R}:\,\|\chi_{\underline{\theta},\underline{\theta}^{\prime},s}\|_{L^{2}}^{2}\leq c_{15}
and a¯,a¯χTa¯Ta¯(θ¯,θ¯,s)L22c15ρd+d2k}.\displaystyle\quad\text{and }\quad\sum_{\underline{a},\underline{a}^{\prime}}\|\chi_{{T_{\underline{a}}T^{\prime}_{\underline{a}^{\prime}}(\underline{\theta},\underline{\theta}^{\prime},s)}}\|_{L^{2}}^{2}\leq c_{15}\,\rho^{-\frac{d+d^{\prime}}{2k}}\bigg{\}}.

For c¯Σ(ρ1/2)\underline{c}\in\Sigma(\rho^{1/2}), c¯Σ(ρ1/2)\underline{c}^{\prime}\in\Sigma^{\prime}(\rho^{1/2}), we define E(c¯,c¯)E(\underline{c},\underline{c}^{\prime}) as the set of sJRs\in J_{R} such that there exists θ¯\underline{\theta}, θ¯\underline{\theta}^{\prime} ending respectively with c¯\underline{c}, c¯\underline{c}^{\prime} such that sE(θ¯,θ¯)s\in E(\underline{\theta},\underline{\theta}^{\prime}).

One has, for any θ¯Σ\underline{\theta}\in\Sigma^{-}, θ¯Σ\underline{\theta}^{\prime}\in\Sigma^{\prime-}:

Leb(JRE(θ¯,θ¯))c151(c12(R)+c142c12(R));Leb(J_{R}\setminus E(\underline{\theta},\underline{\theta}^{\prime}))\leq c_{15}^{-1}(c_{12}(R)+c_{14}^{2}\,c_{12}^{\prime}(R));

therefore, provided that

c15>c11(c12(R)+c142c12(R)),c_{15}>c_{1}^{-1}(c_{12}(R)+c_{14}^{2}\,c_{12}^{\prime}(R)),

we will have

Leb(JRE(c¯,c¯))c1Leb(J_{R}\setminus E(\underline{c},\underline{c}^{\prime}))\leq c_{1}

for all c¯Σ(ρ1/2)\underline{c}\in\Sigma(\rho^{1/2}), c¯Σ(ρ1/2)\underline{c}^{\prime}\in\Sigma^{\prime}(\rho^{1/2}). This means that we can apply the Scale recurrence Lemma with the family E(c¯,c¯)E(\underline{c},\underline{c}^{\prime}) of subsets of JRJ_{R}. The sets E(c¯,c¯)E^{*}(\underline{c},\underline{c}^{\prime}) are then defined using this lemma (see section 2.7), we can assume they are closed, this is justified in the remark after the lemma.

4.3. Construction of Lω¯0L^{0}_{\underline{\omega}}

We now consider the family of random perturbations gω¯g^{\underline{\omega}} again and proceed to construct the sets Lω¯0(θ¯,θ¯,s)L_{\underline{\omega}}^{0}(\underline{\theta},\underline{\theta}^{\prime},s), for (θ¯,θ¯,s)~(\underline{\theta},\underline{\theta}^{\prime},s)\in\tilde{\mathcal{L}}. For a¯Σ(ρ1/2k)\underline{a}\in\Sigma(\rho^{1/2k}), let Σ(a¯)\Sigma^{-}(\underline{a}) be the open and closed subset of Σ\Sigma^{-} formed by the θ¯\underline{\theta} ending with a¯\underline{a}. Choose a subset Σ2\Sigma_{2}^{-} of Σ(ρ1/2k)\Sigma(\rho^{1/2k}) such that

Σ=Σ2Σ(a¯)\Sigma^{-}=\bigcup_{\Sigma_{2}^{-}}\Sigma^{-}(\underline{a})

is a partition of Σ\Sigma^{-}.

For a¯Σ2\underline{a}\in\Sigma_{2}^{-}, define a subset Σ1(a¯)\Sigma_{1}(\underline{a}) of the subset Σ1\Sigma_{1} (recall Σ1Σ(ρ1/k)\Sigma_{1}\subset\Sigma(\rho^{1/k})), as the set of words in Σ1\Sigma_{1} starting with a¯\underline{a}. For θ¯Σ(a¯)\underline{\theta}\in\Sigma^{-}(\underline{a}), we also define Σ1(θ¯)=Σ1(a¯)\Sigma_{1}(\underline{\theta})=\Sigma_{1}(\underline{a}).

Let θ¯Σ\underline{\theta}\in\Sigma^{-}. We write

Ω\displaystyle\Omega =[1,+1]Σ1(θ¯)×[1,+1]Σ1Σ1(θ¯),\displaystyle=[-1,+1]^{\Sigma_{1}(\underline{\theta})}\times[-1,+1]^{\Sigma_{1}\setminus\Sigma_{1}(\underline{\theta})},
ω¯\displaystyle\underline{\omega} =(ω¯,ω¯′′)\displaystyle=(\underline{\omega}^{\prime},\underline{\omega}^{\prime\prime})
and for such an ω¯\underline{\omega}, we set
ω¯\displaystyle\underline{\omega}^{*} =(0¯,ω¯′′).\displaystyle=(\underline{0},\underline{\omega}^{\prime\prime}).

This depends on θ¯\underline{\theta}, but nearby θ¯^\underline{\widehat{\theta}} (with d(θ¯,θ¯^)<c01ρ1/2kd(\underline{\theta},\underline{\widehat{\theta}})<c_{0}^{-1}\,\rho^{1/2k}) will belong to the same Σ(a¯)\Sigma^{-}(\underline{a}) and give the same projection ω¯\underline{\omega}^{*} of ω¯\underline{\omega}.

For (θ¯,θ¯,s)~(\underline{\theta},\underline{\theta}^{\prime},s)\in\tilde{\mathcal{L}}, the set Lω¯0(θ¯,θ¯,s)L_{\underline{\omega}}^{0}(\underline{\theta},\underline{\theta}^{\prime},s) will actually only depend (as far as ω¯\underline{\omega} is concerned) on the projection ω¯\underline{\omega}^{*} of ω¯\underline{\omega} associated to θ¯\underline{\theta}.

We will say that two words b¯0,b¯1Σ(ρ)\underline{b}^{0},\underline{b}^{1}\in\Sigma(\rho) are independent if there is no word b¯Σ(ρ1/2k)\underline{b}\in\Sigma(\rho^{1/2k}) such that both b¯0\underline{b}^{0} and b¯1\underline{b}^{1} start with b¯\underline{b}.

With c16>0c_{16}>0 conveniently small, to be chosen in the following, let

N=[c162ρ12k(d+d2)].N=\bigg{[}c_{16}^{2}\,\rho^{-\frac{1}{2k}(d+d^{\prime}-2)}\bigg{]}.

Let (θ¯,θ¯,s)~(\underline{\theta},\underline{\theta}^{\prime},s)\in\tilde{\mathcal{L}} and ω¯Ω\underline{\omega}\in\Omega.

We define Lω¯0(θ¯,θ¯,s)L_{\underline{\omega}}^{0}(\underline{\theta},\underline{\theta}^{\prime},s) to be the set of points (θ¯,θ¯,s,t)(\underline{\theta},\underline{\theta}^{\prime},s,t) in the fiber for which there exist pairs (b¯1,b¯1),,(b¯N,b¯N)(\underline{b}^{1},\underline{b}^{\prime 1}),\dots,(\underline{b}^{N},\underline{b}^{\prime N}) in Σ(ρ)×Σ(ρ)\Sigma(\rho)\times\Sigma^{\prime}(\rho), with b0i=θ0b_{0}^{i}=\theta_{0} ,   b0i=θ0b_{0}^{\prime i}=\theta_{0}^{\prime} such that, if we set

Tb¯iω¯Tb¯i(θ¯,θ¯,s,t)=(θ¯i,θ¯i,si,ti),T_{\underline{b}^{i}}^{\underline{\omega}^{*}}\,T^{\prime}_{\underline{b}^{\prime i}}(\underline{\theta},\underline{\theta}^{\prime},s,t)=(\underline{\theta}^{i},\underline{\theta}^{\prime i},s_{i},t_{i}),

the following hold:

  • (i)

    the words b¯1,,b¯N\underline{b}^{1},\dots,\underline{b}^{N} are pairwise independent;

  • (ii)

    for 1iN1\leq i\leq N,     θ¯iΣnr\underline{\theta}^{i}\in\Sigma_{nr}^{-} ;

  • (iii)

    for 1iN1\leq i\leq N, and |s~si|23c4ρ1/2|\tilde{s}-s_{i}|\leq\dfrac{2}{3}c_{4}\rho^{1/2},   (θ¯i,θ¯i,s~)~(\underline{\theta}^{i},\underline{\theta}^{\prime i},\tilde{s})\in\tilde{\mathcal{L}};

  • (iv)

    for 1iN1\leq i\leq N,    |ti|2(1+eR)|t_{i}|\leq 2(1+e^{R}).

We will use also a slightly smaller set Lω¯1(θ¯,θ¯,s)L_{\underline{\omega}}^{-1}(\underline{\theta},\underline{\theta}^{\prime},s); it is defined in the same way than Lω¯0(θ¯,θ¯,s)L_{\underline{\omega}}^{0}(\underline{\theta},\underline{\theta}^{\prime},s), but with (iii), (iv) replaced by:

  • (iii)’

    for 1iN1\leq i\leq N, and |s~si|34c4ρ1/2|\tilde{s}-s_{i}|\leq\dfrac{3}{4}c_{4}\rho^{1/2}, (θ¯i,θ¯i,s~)~(\underline{\theta}^{i},\underline{\theta}^{\prime i},\tilde{s})\in\tilde{\mathcal{L}}

  • (iv)’

    for 1iN1\leq i\leq N,    |ti|1+eR|t_{i}|\leq 1+e^{R}.

In the next section, we will prove the following estimate.

Proposition 4.2.

If c16c_{16} has been chosen sufficiently small, there exists c17>0c_{17}>0 such that, for any (θ¯,θ¯,s)~(\underline{\theta},\underline{\theta}^{\prime},s)\in\tilde{\mathcal{L}} and any ω¯Ω\underline{\omega}\in\Omega, the Lebesgue measure of Lω¯1(θ¯,θ¯,s)L_{\underline{\omega}}^{-1}(\underline{\theta},\underline{\theta}^{\prime},s) is >c17>c_{17} .

5. Proof of proposition 4.2

In this section we will prove proposition 4.2. First we prove some lemmas that are necessary for the proposition. We follow the same argument as [1] sections 4.8-4.12 with some modifications.

Fix (θ¯,θ¯,s)~(\underline{\theta},\underline{\theta}^{\prime},s)\in\tilde{\mathcal{L}}, we will work with this triple throughout this section and at the end we will prove that Leb(Lω¯1(θ¯,θ¯,s))>c17Leb(L^{-1}_{\underline{\omega}}(\underline{\theta},\underline{\theta}^{\prime},s))>c_{17}.

Choose a subfamily Σ2\Sigma_{2} of Σ(ρ1/2k)\Sigma(\rho^{1/2k}) of words starting with θ0\theta_{0} such that

K(θ0)=Σ2K(a¯)K(\theta_{0})=\bigcup_{\Sigma_{2}}K(\underline{a})

is a partition of K(θ0)K(\theta_{0}). Similarly, choose a subfamily Σ2\Sigma_{2}^{\prime} of Σ(ρ1/2k)\Sigma^{\prime}(\rho^{1/2k}) of words starting with θ0\theta_{0}^{\prime} such that

K(θ0)=Σ2K(a¯).K^{\prime}(\theta_{0}^{\prime})=\bigcup_{\Sigma_{2}^{\prime}}K^{\prime}(\underline{a}^{\prime}).

There is a constant c19>0c_{19}>0 such that, for each (a¯,a¯)Σ2×Σ2(\underline{a},\underline{a}^{\prime})\in\Sigma_{2}\times\Sigma_{2}^{\prime}, we have

c191ρ12k(d+d)μd×μd(K(a¯)×K(a¯))c19ρ12k(d+d).c_{19}^{-1}\,\rho^{\frac{1}{2k}(d+d^{\prime})}\leq\mu_{d}\times\mu_{d^{\prime}}(K(\underline{a})\times K^{\prime}(\underline{a}^{\prime}))\leq c_{19}\,\rho^{\frac{1}{2k}(d+d^{\prime})}\,.

Let J(a¯,a¯):=πθ¯,θ¯,s(G(a¯)×G(a¯))J(\underline{a},\underline{a}^{\prime}):=\pi_{\underline{\theta},\underline{\theta}^{\prime},s}(G(\underline{a})\times G(\underline{a}^{\prime})) and c(a¯,a¯)πθ¯,θ¯,s(ca¯,ca¯)c(\underline{a},\underline{a}^{\prime})\coloneqq\pi_{\underline{\theta},\underline{\theta}^{\prime},s}(c_{\underline{a}},c_{\underline{a}^{\prime}})\in\mathbbm{C} for a¯Σ2\underline{a}\in\Sigma_{2} and a¯Σ2\underline{a}^{\prime}\in\Sigma^{\prime}_{2}. Since ss is bounded above and below, we have

(11) B(c(a¯,a¯),c191ρ12k)J(a¯,a¯)B(c(a¯,a¯),c19ρ12k),B(c(\underline{a},\underline{a}^{\prime}),c_{19}^{-1}\,\rho^{\frac{1}{2k}})\subset J(\underline{a},\underline{a}^{\prime})\subset B(c(\underline{a},\underline{a}^{\prime}),c_{19}\,\rho^{\frac{1}{2k}})\,,

if c19c_{19} is sufficiently large. We assume that the previous relations involving c19c_{19} hold for any other triples in Σ×Σ×JR\Sigma^{-}\times\Sigma^{\prime-}\times J_{R} and for any value of ω¯\underline{\omega}, choosing c19c_{19} large enough this can be easily guaranteed.

Say (a¯,a¯)(\underline{a},\underline{a}^{\prime}) is good if there are no more than c161ρ1/2k(d+d2)c_{16}^{-1}\,\rho^{-1/2k(d+d^{\prime}-2)} pairs (a¯~,a¯~)(\underline{\tilde{a}},\underline{\tilde{a}}^{\prime}) such that the distance between the points c(a¯,a¯)c(\underline{a},\underline{a}^{\prime}) and c(a¯~,a¯~)c(\underline{\tilde{a}},\underline{\tilde{a}}^{\prime}) is less than (2+1/10)c19ρ1/2k(2+1/10)c_{19}\,\rho^{1/2k}. Otherwise, say it is bad.

Lemma 5.1.

The number of bad pairs (a¯,a¯)(\underline{a},\underline{a}^{\prime}) is less than 22212πc194c15c16ρ1/2k(d+d)2^{2}\cdot 21^{2}\cdot\pi\,c_{19}^{4}\,c_{15}\,c_{16}\,\rho^{-1/2k(d+d^{\prime})}.

Before begining the proof, we remember the Vitali covering lemma. Let B1,B2,,BndB_{1},\,B_{2},\,\dots,\,B_{n}\subset\mathbbm{R}^{d} be a finite collection of balls. For i=1,,ni=1,\,\dots,n, denote by 3Bi3B_{i} the ball with same center as BiB_{i} but having radius three times larger. The lemma states that there exists a subcollection of balls Bj1,Bj2,,BjkB_{j_{1}},\,B_{j_{2}},\,\dots,\,B_{j_{k}} with the Vitali property, this is

  • The balls Bj1,Bj2,,BjkB_{j_{1}},\,B_{j_{2}},\,\dots,\,B_{j_{k}} are pairwise disjoint and

  • The union B1B2BnB_{1}\cup B_{2}\cup\dots\cup B_{n} is contained in 3Bj13Bj23Bjk3B_{j_{1}}\cup 3B_{j_{2}}\cup\dots\cup 3B_{j_{k}}.

In the case that the balls BiB_{i} are subsets of the complex plane and have the same radius RR, one can see that every point zz\in\mathbbm{C} is covered by no more than 1616 of the balls 3Bj1, 3Bj2,, 3Bjk3B_{j_{1}},\,3B_{j_{2}},\,\dots,\,3B_{j_{k}}. Indeed, consider the ball BB centered at zz with radius 4R4R. It contains all the balls Bi1,,BilB_{i_{1}},\,\dots,\,B_{i_{l}} such that 3Bi1,, 3Bil3B_{i_{1}},\,\dots,\,3B_{i_{l}} cover zz. However, the balls Bi1,,BilB_{i_{1}},\,\dots,\,B_{i_{l}} are pairwise disjoint, and so there are no more than (4R)2/R2=16(4R)^{2}/R^{2}=16 of them inside BB, otherwise they would overlap.

Proof.

By construction of ~\widetilde{\mathcal{L}}, there exists θ¯~\widetilde{\underline{\theta}}, θ¯~\widetilde{\underline{\theta}}^{\prime}, s~\tilde{s} with d(θ¯,θ¯~)c0ρ1/2d(\underline{\theta},\widetilde{\underline{\theta}})\leq c_{0}\rho^{1/2}, d(θ¯,θ¯~)c0ρ1/2d(\underline{\theta}^{\prime},\widetilde{\underline{\theta}}^{\prime})\leq c_{0}\rho^{1/2}, |ss~|c2ρ1/2|s-\tilde{s}|\leq c_{2}\,\rho^{1/2} such that

χθ¯~,θ¯~,s~L22c15.\left\|\chi_{\widetilde{\underline{\theta}},\widetilde{\underline{\theta}}^{\prime},\tilde{s}}\right\|_{L^{2}}^{2}\leq c_{15}\,.

Because of remark 2.6, the distance between the points kθ¯(ca¯)k^{\underline{\theta}}(c_{\underline{a}}) and kθ¯~(ca¯)k^{\tilde{\underline{\theta}}}(c_{\underline{a}}) is of order ρ1/2\rho^{1/2} for every (a¯,a¯)Σ2×Σ2(\underline{a},\underline{a}^{\prime})\in\Sigma_{2}\times\Sigma^{\prime}_{2} and the same is true for their KK^{\prime} versions. Thus, if c19c_{19} is sufficiently large, for each bad pair (a¯,a¯)(\underline{a},\underline{a}^{\prime}) there are more than c161ρ1/2k(d+d2)c_{16}^{-1}\,\rho^{-1/2k(d+d^{\prime}-2)} pairs (a¯~,a¯~)(\tilde{\underline{a}},\underline{\tilde{a}}^{\prime}) satisfying

|πθ¯~,θ¯~,s~(ca¯,ca¯)πθ¯~,θ¯~,s~(ca¯~,ca¯~)|52c19ρ12k.|\pi_{\tilde{\underline{\theta}},{\tilde{\underline{\theta}}}^{\prime},\tilde{s}}(c_{\underline{a}},c_{\underline{a}^{\prime}})-\pi_{\tilde{\underline{\theta}},\tilde{\underline{\theta}}^{\prime},\tilde{s}}(c_{\underline{\tilde{a}}},c_{{\underline{\tilde{a}}^{\prime}}})|\leq\frac{5}{2}c_{19}\rho^{\frac{1}{2k}}.

From now on, we denote πθ¯~,θ¯~,s~(ca¯,ca¯)\pi_{\tilde{\underline{\theta}},{\tilde{\underline{\theta}}}^{\prime},\tilde{s}}(c_{\underline{a}},c_{\underline{a}^{\prime}}) as c~(a¯,a¯)\tilde{c}(\underline{a},\underline{a}^{\prime}) for any (a¯,a¯)Σ2×Σ2(\underline{a},\underline{a}^{\prime})\in\Sigma_{2}\times\Sigma^{\prime}_{2}.

For each bad pair (a¯,a¯)(\underline{a},\underline{a}^{\prime}), consider the disk J(a¯,a¯)J^{*}(\underline{a},\underline{a}^{\prime}) of radius 72c19ρ12k\frac{7}{2}\,c_{19}\rho^{\frac{1}{2k}} and center at c~(a¯,a¯)\tilde{c}(\underline{a},\underline{a}^{\prime}). Then the corresponding c161ρ1/2k(d+d2)c_{16}^{-1}\,\rho^{-1/2k(d+d^{\prime}-2)} sets πθ¯~,θ¯~,s~(G(a¯~)×G(a¯~))\pi_{\tilde{\underline{\theta}},{\tilde{\underline{\theta}}}^{\prime},\tilde{s}}(G(\tilde{\underline{a}})\times G(\tilde{\underline{a}}^{\prime})) are subsets of J(a¯,a¯)J^{*}(\underline{a},\underline{a}^{\prime}). This way,

J(a¯,a¯)χθ¯~,θ¯~,s~𝑑s=(μd×μd)(πθ¯~,θ¯~,s~1(J(a¯,a¯)))(a¯~,a¯~)(μd×μd)(G(a¯~)×G(a¯~))\displaystyle\int_{J^{*}(\underline{a},\underline{a}^{\prime})}{\chi_{\tilde{\underline{\theta}},\tilde{\underline{\theta}}^{\prime},\tilde{s}}ds}=(\mu_{d}\times\mu_{d^{\prime}})\left(\pi^{-1}_{\tilde{\underline{\theta}},\tilde{\underline{\theta}}^{\prime},\tilde{s}}(J^{*}(\underline{a},\underline{a}^{\prime}))\right)\geq\sum_{(\tilde{\underline{a}},\tilde{\underline{a}}^{\prime})}{(\mu_{d}\times\mu_{d^{\prime}})(G(\tilde{\underline{a}})\times G(\tilde{\underline{a}}^{\prime}))}
c161ρ1/2k(d+d2)c191ρd+d2k=(c16c19)1ρ1/k.\displaystyle\geq c_{16}^{-1}\,\rho^{-1/2k(d+d^{\prime}-2)}\cdot c_{19}^{-1}\rho^{\frac{d+d^{\prime}}{2k}}=(c_{16}c_{19})^{-1}\rho^{1/k}.

Let JJ^{*} be the union of all the disks J(a¯,a¯)J^{*}(\underline{a},\underline{a}^{\prime}) corresponding to bad pairs and BB be the number of these pairs. Choose a subcover of JJ^{*} as in the Vitali lemma, indexed by the pairs (a¯,a¯)(\underline{a},\underline{a}^{\prime}) belonging to a subset VV of the set of bad pairs. It follows that

Bc191ρ(d+d)2k(μd×μd)(π(θ¯~,θ¯~,s~)1(J))=Jχθ¯~,θ¯~,s~𝑑s(a¯,a¯)V3J(a¯,a¯)χθ¯~,θ¯~,s~𝑑s.B\cdot c_{19}^{-1}\rho^{\frac{(d+d^{\prime})}{2k}}\leq(\mu_{d}\times\mu_{d^{\prime}})(\pi^{-1}_{(\tilde{\underline{\theta}},\tilde{\underline{\theta}}^{\prime},\tilde{s})}(J^{*}))=\int_{J^{*}}{\chi_{\tilde{\underline{\theta}},\tilde{\underline{\theta}}^{\prime},\tilde{s}}ds}\leq\sum_{(\underline{a},\underline{a}^{\prime})\in V}\int_{3\,J^{*}(\underline{a},\underline{a}^{\prime})}{\chi_{\tilde{\underline{\theta}},\tilde{\underline{\theta}}^{\prime},\tilde{s}}ds}.

On the other hand, by Cauchy-Schwartz theorem,

(3J(a¯,a¯)χθ¯~,θ¯~,s~𝑑s)(c16c19)1ρ1/k\displaystyle\left(\int_{3\,J^{*}(\underline{a},\underline{a}^{\prime})}{\chi_{\tilde{\underline{\theta}},\tilde{\underline{\theta}}^{\prime},\tilde{s}}ds}\right)\cdot(c_{16}c_{19})^{-1}\rho^{1/k} (3J(a¯,a¯)χθ¯~,θ¯~,s~𝑑s)2\displaystyle\leq\left(\int_{3\,J^{*}(\underline{a},\underline{a}^{\prime})}{\chi_{\tilde{\underline{\theta}},\tilde{\underline{\theta}}^{\prime},\tilde{s}}ds}\right)^{2}
Leb(3J(a¯,a¯))\displaystyle\leq\text{Leb}(3\,J^{*}(\underline{a},\underline{a}^{\prime}))\cdot 3J(a¯,a¯)χθ¯~,θ¯~,s~2𝑑s=21222πc192ρ1/k3J(a¯,a¯)χθ¯~,θ¯~,s~2𝑑s,\displaystyle\int_{3\,J^{*}(\underline{a},\underline{a}^{\prime})}{\chi^{2}_{\tilde{\underline{\theta}},\tilde{\underline{\theta}}^{\prime},\tilde{s}}ds}=\frac{21^{2}}{2^{2}}\pi c^{2}_{19}\rho^{1/k}\cdot\int_{3\,J^{*}(\underline{a},\underline{a}^{\prime})}{\chi^{2}_{\tilde{\underline{\theta}},\tilde{\underline{\theta}}^{\prime},\tilde{s}}ds},

for every bad pair (a¯,a¯)(\underline{a},\underline{a}^{\prime}). But the Vitali covering covers each point zz\in\mathbbm{C} at most 1616 times, so

(a¯,a¯)V3J(a¯,a¯)χθ¯~,θ¯~,s~𝑑s21222πc193c16(a¯,a¯)V3J(a¯,a¯)χθ¯~,θ¯~,s~2𝑑s22212πc193c16χθ¯~,θ¯~,s~2𝑑s.\sum_{(\underline{a},\underline{a}^{\prime})\in V}\int_{3\,J^{*}(\underline{a},\underline{a}^{\prime})}{\chi_{\tilde{\underline{\theta}},\tilde{\underline{\theta}}^{\prime},\tilde{s}}ds}\leq\frac{21^{2}}{2^{2}}\pi\,c^{3}_{19}\,c_{16}\sum_{(\underline{a},\underline{a}^{\prime})\in V}\int_{3\,J^{*}(\underline{a},\underline{a}^{\prime})}{\chi^{2}_{\tilde{\underline{\theta}},\tilde{\underline{\theta}}^{\prime},\tilde{s}}ds}\leq 2^{2}\cdot 21^{2}\cdot\pi\,c^{3}_{19}\,c_{16}\int_{\mathbbm{C}}{\chi^{2}_{\tilde{\underline{\theta}},\tilde{\underline{\theta}}^{\prime},\tilde{s}}ds}.

It follows that B22212πc194c16c15ρ(d+d)/2kB\leq 2^{2}\cdot 21^{2}\cdot\pi\,c_{19}^{4}\,c_{16}\,c_{15}\,\rho^{-(d+d^{\prime})/2k}, concluding the proof. ∎

Now, we construct the pairs (b¯,b¯)(\underline{b},\underline{b}^{\prime}) amongst which the pairs (b¯i,b¯i)(\underline{b}^{i},\underline{b}^{\prime i}) of 4.2 must be looked for. We make the following observation:

Lemma 5.2.

Let θ¯Σnr\underline{\theta}\in\Sigma_{nr}^{-}. The number of words c¯Σ(ρ1/2)\underline{c}\in\Sigma(\rho^{1/2}) with c0=θ0c_{0}=\theta_{0}, such that θ¯c¯Σnr\underline{\theta}\underline{c}\notin\Sigma_{nr}^{-} is o(ρd/2)o(\rho^{-d/2}) as ρ0\rho\to 0, uniformly in θ¯\underline{\theta}.

Remember that (θ¯,θ¯,s)~(\underline{\theta},\underline{\theta}^{\prime},s)\in\widetilde{\mathcal{L}}. It follows from conclusion (ii) of the Scale recurrence Lemma (lemma 2.26) and the last observation that we can find at least 12c3ρ1/2(d+d)\frac{1}{2}c_{3}\,\rho^{-1/2(d+d^{\prime})} pairs (c¯i,c¯i)Σ(ρ1/2)×Σ(ρ1/2)(\underline{c}^{i},\underline{c}^{\prime i})\in\Sigma(\rho^{1/2})\times\Sigma^{\prime}(\rho^{1/2}) such that, writing Tc¯iTc¯i(θ¯,θ¯,s)=(θ¯i,θ¯i,si)T_{\underline{c}^{i}}T^{\prime}_{\underline{c}^{\prime i}}(\underline{\theta},\underline{\theta}^{\prime},s)=(\underline{\theta}^{i},\underline{\theta}^{\prime i},s_{i}), we have:

  • θ¯iΣnr\underline{\theta}^{i}\in\Sigma_{nr}^{-} ;

  • B(si,c4ρ1/2)E(c¯i,c¯i)B(s_{i},c_{4}\rho^{1/2})\subset E^{*}(\underline{c}^{i},\underline{c}^{\prime i}).

As (θ¯i,θ¯i,si)(\underline{\theta}^{i},\underline{\theta}^{\prime i},s_{i}) again belongs to ~\widetilde{\mathcal{L}}, we can for each ii find at least 12c3ρ1/2(d+d)\frac{1}{2}c_{3}\,\rho^{-1/2(d+d^{\prime})} pairs (d¯ij,d¯ij)Σ(ρ1/2)×Σ(ρ1/2)(\underline{d}^{ij},\underline{d}^{\prime ij})\in\Sigma(\rho^{1/2})\times\Sigma^{\prime}(\rho^{1/2}) (with the first letter of d¯ij\underline{d}^{ij}, d¯ij\underline{d}^{\prime ij} being the last one of c¯i\underline{c}^{i}, c¯i\underline{c}^{\prime i} respectively), such that writing Td¯ijTd¯ij(θ¯i,θ¯i,si)=(θ¯ij,θ¯ij,sij)T_{\underline{d}^{ij}}T^{\prime}_{\underline{d}^{\prime ij}}(\underline{\theta}^{i},\underline{\theta}^{\prime i},s_{i})=(\underline{\theta}^{ij},\underline{\theta}^{\prime ij},s_{ij}), we have

  • θ¯ijΣnr\underline{\theta}^{ij}\in\Sigma_{nr}^{-} ;

  • B(sij,c4ρ1/2)E(d¯ij,d¯ij)B(s_{ij},c_{4}\rho^{1/2})\subset E^{*}(\underline{d}^{ij},\underline{d}^{\prime ij}).

Concatenation of the c¯i\underline{c}^{i}, c¯i\underline{c}^{\prime i} and d¯ij,d¯ij\underline{d}^{ij},\underline{d}^{\prime ij} gives a family of words (b¯ij,b¯ij)(\underline{b}^{ij},\underline{b}^{\prime ij}) in Σ(ρ)×Σ(ρ)\Sigma(\rho)\times\Sigma^{\prime}(\rho) with at least 14c32ρ(d+d)\frac{1}{4}c_{3}^{2}\,\rho^{-(d+d^{\prime})} elements.

We now consider the perturbed operators. In this case Tc¯iω¯Tc¯i(θ¯,θ¯,s)=(θ¯i,θ¯i,si(ω¯))T^{\underline{\omega}}_{\underline{c}^{i}}T^{\prime}_{\underline{c}^{\prime i}}(\underline{\theta},\underline{\theta}^{\prime},s)=(\underline{\theta}^{i},\underline{\theta}^{\prime i},s_{i}(\underline{\omega})) and by lemma 3.2 the distance between si(ω¯)s_{i}(\underline{\omega}) and sis_{i} is of order c5ρ11/2kc_{5}\rho^{1-1/2k}. Similarly one has

Td¯ijω¯Td¯ij(θ¯i,θ¯i,si(ω¯))=(θ¯ij,θ¯ij,sij(ω¯))T^{\underline{\omega}}_{\underline{d}^{ij}}T^{\prime}_{\underline{d}^{\prime ij}}(\underline{\theta}^{i},\underline{\theta}^{\prime i},s_{i}(\underline{\omega}))=(\underline{\theta}^{ij},\underline{\theta}^{\prime ij},s_{ij}(\underline{\omega}))

and again the distance between sij(ω¯)s_{ij}(\underline{\omega}) and sijs_{ij} is of order c5ρ11/2kc_{5}\rho^{1-1/2k}.

Now we fix (θ¯~,θ¯~,s~)(\underline{\widetilde{\theta}},\underline{\widetilde{\theta}}^{\prime},\tilde{s}) such that d(θ¯,θ¯~)c0ρ1/2d(\underline{\theta},\underline{\widetilde{\theta}})\leq c_{0}\rho^{1/2}, d(θ¯,θ¯~)c0ρ1/2d(\underline{\theta}^{\prime},\underline{\widetilde{\theta}}^{\prime})\leq c_{0}\rho^{1/2}, |ss~|c2ρ1/2|s-\tilde{s}|\leq c_{2}\,\rho^{1/2} and s~E(θ¯~,θ¯~)\tilde{s}\in E(\widetilde{\underline{\theta}},\widetilde{\underline{\theta}}^{\prime}).

Lemma 5.3.

If c16c_{16} has been chosen sufficiently small, there are at least 16c3c192ρd+d2k\frac{1}{6}c_{3}\,c_{19}^{-2}\,\rho^{-\frac{d+d^{\prime}}{2k}} pairs (a¯,a¯)Σ2×Σ2(\underline{a},\underline{a}^{\prime})\in\Sigma_{2}\times\Sigma_{2}^{\prime} which are good and satisfy

χTa¯Ta¯(θ¯~,θ¯~,s~)L22c161\left\|\chi_{T_{\underline{a}}T^{\prime}_{\underline{a}^{\prime}}(\widetilde{\underline{\theta}},\widetilde{\underline{\theta}}^{\prime},\tilde{s})}\right\|_{L^{2}}^{2}\leq c_{16}^{-1}

and such that at least 16c3c191ρ(d+d)(1212k)\frac{1}{6}c_{3}c_{19}^{-1}\,\rho^{-(d+d^{\prime})(\frac{1}{2}-\frac{1}{2k})} pairs (c¯i,c¯i)(\underline{c}^{i},\underline{c}^{\prime i}) start with (a¯,a¯)(\underline{a},\underline{a}^{\prime}).

Proof.

The proof is the same as in [1], bearing in mind the different but similar bound in the number of bad pairs. ∎

We call the pairs verifying the properties of the previous lemma excellent pairs. The following general lemma will be used later to estimate the measure of the union of the perturbed version of the sets J(b¯ij,b¯ij)J(\underline{b}^{ij},\underline{b}^{\prime ij}).

Lemma 5.4.

Let Jα,Jα,KαJ_{\alpha},J_{\alpha}^{\prime},K_{\alpha}, αA\alpha\in A, be families of sets in \mathbbm{C} such that for some λ,ε,ν,σ+\lambda,\varepsilon,\nu,\sigma\in\mathbbm{R}^{+}, and cα,cαc_{\alpha},c_{\alpha}^{\prime}\in\mathbbm{C}:

  • B(cα,ε)JαB(cα,λε)B(c_{\alpha},\varepsilon)\subset J_{\alpha}\subset B(c_{\alpha},\lambda\varepsilon), KαJαK_{\alpha}\subset J_{\alpha}, B(cα,ε)JαB(c_{\alpha}^{\prime},\varepsilon)\subset J_{\alpha}^{\prime}.

  • d(cα,cα)νεd(c_{\alpha},c_{\alpha}^{\prime})\leq\nu\varepsilon, Leb(Kα)σ1Leb(Jα)Leb(K_{\alpha})\geq\sigma^{-1}Leb(J_{\alpha}).

Then

Leb(αAJα)19(λ+ν)2Leb(αAJα),Leb\left(\bigcup_{\alpha\in A}J_{\alpha}^{\prime}\right)\geq\frac{1}{9(\lambda+\nu)^{2}}Leb\left(\bigcup_{\alpha\in A}J_{\alpha}\right),

and

Leb(αAKα)σ19λ2Leb(αAJα).Leb\left(\bigcup_{\alpha\in A}K_{\alpha}\right)\geq\frac{\sigma^{-1}}{9\lambda^{2}}Leb\left(\bigcup_{\alpha\in A}J_{\alpha}\right).
Proof.

Notice that JαB(cα,(λ+ν)ε)J_{\alpha}\subset B(c_{\alpha}^{\prime},(\lambda+\nu)\varepsilon). Let A~\tilde{A} be a subset of AA such that the balls {B(cα,(λ+ν)ε)}αA~\{B(c_{\alpha}^{\prime},(\lambda+\nu)\varepsilon)\}_{\alpha\in\tilde{A}} have the Vitali property. Thus

Leb(αAJα)\displaystyle Leb\left(\bigcup_{\alpha\in A}J_{\alpha}\right) Leb(αAB(cα,(λ+ν)ε))\displaystyle\leq Leb\left(\bigcup_{\alpha\in A}B(c_{\alpha}^{\prime},(\lambda+\nu)\varepsilon)\right)
Leb(αA~B(cα,3(λ+ν)ε))\displaystyle\leq Leb\left(\bigcup_{\alpha\in\tilde{A}}B(c_{\alpha}^{\prime},3(\lambda+\nu)\varepsilon)\right)
[3(λ+ν)]2Leb(αA~B(cα,ε))\displaystyle\leq[3(\lambda+\nu)]^{2}Leb\left(\bigcup_{\alpha\in\tilde{A}}B(c_{\alpha}^{\prime},\varepsilon)\right)
9(λ+ν)2Leb(αAB(cα,ε))9(λ+ν)2Leb(αAJα),\displaystyle\leq 9(\lambda+\nu)^{2}Leb\left(\bigcup_{\alpha\in A}B(c_{\alpha}^{\prime},\varepsilon)\right)\leq 9(\lambda+\nu)^{2}Leb\left(\bigcup_{\alpha\in A}J_{\alpha}^{\prime}\right),

where in the passage from the second to the third line we use the fact that the sets B(cα,ε)B(c_{\alpha}^{\prime},\varepsilon), αA~\alpha\in\tilde{A}, are disjoint. This proves the first inequality. For the second, use again Vitali to find a subset AA^{\prime} of AA such that the balls {B(cα,λε)}αA\{B(c_{\alpha},\lambda\varepsilon)\}_{\alpha\in A^{\prime}} have the Vitali property. Then

Leb(αAJα)\displaystyle Leb\left(\bigcup_{\alpha\in A}J_{\alpha}\right) Leb(αAB(cα,3λε))\displaystyle\leq Leb\left(\bigcup_{\alpha\in A^{\prime}}B(c_{\alpha},3\lambda\varepsilon)\right)
9λ2αALeb(B(cα,ε))\displaystyle\leq 9\lambda^{2}\sum_{\alpha\in A^{\prime}}Leb\left(B(c_{\alpha},\varepsilon)\right)
9λ2σαALeb(Kα)=9λ2σLeb(αAKα)9λ2σLeb(αAKα).\displaystyle\leq 9\lambda^{2}\sigma\sum_{\alpha\in A^{\prime}}Leb\left(K_{\alpha}\right)=9\lambda^{2}\sigma\cdot Leb\left(\bigcup_{\alpha\in A^{\prime}}K_{\alpha}\right)\leq 9\lambda^{2}\sigma\cdot Leb\left(\bigcup_{\alpha\in A}K_{\alpha}\right).

Lemma 5.5.

Let (a¯,a¯)(\underline{a},\underline{a}^{\prime}) be an excellent pair. Consider all the pairs (c¯i,c¯i)(\underline{c}^{i},\underline{c}^{\prime i}) described above which begin with (a¯,a¯)(\underline{a},\underline{a}^{\prime}), and for each pair (c¯i,c¯i)(\underline{c}^{i},\underline{c}^{\prime i}) consider the corresponding pairs (b¯ij,b¯ij)(\underline{b}^{ij},\underline{b}^{\prime ij}). Define the sets

Jω¯(b¯ij,b¯ij)\displaystyle J^{\underline{\omega}}(\underline{b}^{ij},\underline{b}^{\prime ij}) =πθ¯,θ¯,sω¯(Gω¯(b¯ij)×G(b¯ij)),\displaystyle=\pi^{\underline{\omega}}_{\underline{\theta},\underline{\theta}^{\prime},s}(G^{\underline{\omega}}(\underline{b}^{ij})\times G(\underline{b}^{\prime ij})),
J2ω¯(a¯,a¯)\displaystyle J_{2}^{\underline{\omega}}(\underline{a},\underline{a}^{\prime}) =(c¯i,c¯i)(b¯ij,b¯ij)Jω¯(b¯ij,b¯ij).\displaystyle=\bigcup_{(\underline{c}^{i},\underline{c}^{\prime i})}\bigcup_{(\underline{b}^{ij},\underline{b}^{\prime ij})}J^{\underline{\omega}}(\underline{b}^{ij},\underline{b}^{\prime ij}).

Then

Leb(J2ω¯(a¯,a¯))c16ρ1/k,Leb\left(J_{2}^{\underline{\omega}}(\underline{a},\underline{a}^{\prime})\right)\gtrsim c_{16}\rho^{1/k},

and the constant can be chosen to be independent of ω¯\underline{\omega}.

Proof.

First we make the following observation:

(12) πη¯,η¯,w(fd¯,fd¯)=AπTd¯Td¯(η¯,η¯,w),\pi_{\underline{\eta},\underline{\eta}^{\prime},w}\circ(f_{\underline{d}},f_{\underline{d}^{\prime}})=A\circ\pi_{T_{\underline{d}}T^{\prime}_{\underline{d}^{\prime}}(\underline{\eta},\underline{\eta}^{\prime},w)},

where AA is an affine function with |DA|diam(G(d¯))|DA|\approx diam(G(\underline{d})), and this holds for any (d¯,d¯)Σ(α)×Σ(α)(\underline{d},\underline{d}^{\prime})\in\Sigma(\alpha)\times\Sigma^{\prime}(\alpha), for some α+\alpha\in\mathbbm{R}^{+}, and any (η¯,η¯,w)(\underline{\eta},\underline{\eta}^{\prime},w).

For an excellent pair (a¯,a¯)(\underline{a},\underline{a}^{\prime}) we consider the associated pairs (c¯i,c¯i)(\underline{c}^{i},\underline{c}^{\prime i}) and the sets

Jω¯(c¯i,c¯i)\displaystyle J^{\underline{\omega}}(\underline{c}^{i},\underline{c}^{\prime i}) =πθ¯,θ¯,sω¯(Gω¯(c¯i)×G(c¯i)),\displaystyle=\pi^{\underline{\omega}}_{\underline{\theta},\underline{\theta}^{\prime},s}(G^{\underline{\omega}}(\underline{c}^{i})\times G(\underline{c}^{\prime i})),
J(c¯i,c¯i)\displaystyle J(\underline{c}^{i},\underline{c}^{\prime i}) =πθ¯,θ¯,s(G(c¯i)×G(c¯i)),\displaystyle=\pi_{\underline{\theta},\underline{\theta}^{\prime},s}(G(\underline{c}^{i})\times G(\underline{c}^{\prime i})),
J~(c¯i,c¯i)\displaystyle\tilde{J}(\underline{c}^{i},\underline{c}^{\prime i}) =π~θ¯,~θ¯,s~(G(c¯i)×G(c¯i)),\displaystyle=\pi_{\tilde{}\underline{\theta},\tilde{}\underline{\theta}^{\prime},\tilde{s}}(G(\underline{c}^{i})\times G(\underline{c}^{\prime i})),
J1ω¯(a¯,a¯)\displaystyle J_{1}^{\underline{\omega}}(\underline{a},\underline{a}^{\prime}) =(c¯i,c¯i)Jω¯(c¯i,c¯i).\displaystyle=\bigcup_{(\underline{c}^{i},\underline{c}^{\prime i})}J^{\underline{\omega}}(\underline{c}^{i},\underline{c}^{\prime i}).

We will prove that the measure of J1ω¯(a¯,a¯)J^{\underline{\omega}}_{1}(\underline{a},\underline{a}^{\prime}) is at least of the order c16ρ1/kc_{16}\rho^{1/k}. To do this, we use lemma 5.4 to see that the measures of the sets Jω¯(c¯i,c¯i)\bigcup J^{\underline{\omega}}(\underline{c}^{i},\underline{c}^{\prime i}), J(c¯i,c¯i)\bigcup J(\underline{c}^{i},\underline{c}^{\prime i}) and J~(c¯i,c¯i)\bigcup\tilde{J}(\underline{c}^{i},\underline{c}^{\prime i}) are of the same order. It is clear from equation (11) that the sets Jω¯(c¯i,c¯i)J^{\underline{\omega}}(\underline{c}^{i},\underline{c}^{\prime i}), J(c¯i,c¯i)J(\underline{c}^{i},\underline{c}^{\prime i}) and J~(c¯i,c¯i)\tilde{J}(\underline{c}^{i},\underline{c}^{\prime i}) are all contained in, and contain, balls with radius of order ρ1/2\rho^{1/2}, and centered at the points πθ¯,θ¯,sω¯(cc¯iω¯,cc¯i)\pi^{\underline{\omega}}_{\underline{\theta},\underline{\theta}^{\prime},s}(c^{\underline{\omega}}_{\underline{c}^{i}},c_{\underline{c}^{\prime i}}), πθ¯,θ¯,s(cc¯i,cc¯i)\pi_{\underline{\theta},\underline{\theta}^{\prime},s}(c_{\underline{c}^{i}},c_{\underline{c}^{\prime i}}) and π~θ¯,~θ¯,s~(cc¯i,cc¯i)\pi_{\tilde{}\underline{\theta},\tilde{}\underline{\theta}^{\prime},\tilde{s}}(c_{\underline{c}^{i}},c_{\underline{c}^{\prime i}}) respectively. We remark that

|πθ¯,θ¯,sω¯(cc¯iω¯,cc¯i)πθ¯,θ¯,s(cc¯i,cc¯i)|\displaystyle|\pi^{\underline{\omega}}_{\underline{\theta},\underline{\theta}^{\prime},s}(c^{\underline{\omega}}_{\underline{c}^{i}},c_{\underline{c}^{\prime i}})-\pi_{\underline{\theta},\underline{\theta}^{\prime},s}(c_{\underline{c}^{i}},c_{\underline{c}^{\prime i}})| =|s||kθ¯(cc¯i)kθ¯,ω¯(cc¯iω¯)|\displaystyle=|s|\cdot|k^{\underline{\theta}}(c_{\underline{c}^{i}})-k^{\underline{\theta},\underline{\omega}}(c^{\underline{\omega}}_{\underline{c}^{i}})|
|s|[|kθ¯(cc¯i)kθ¯,ω¯(cc¯i)|+|kθ¯,ω¯(cc¯i)kθ¯,ω¯(cc¯iω¯)|]\displaystyle\leq|s|\cdot\left[|k^{\underline{\theta}}(c_{\underline{c}^{i}})-k^{\underline{\theta},\underline{\omega}}(c_{\underline{c}^{i}})|+|k^{\underline{\theta},\underline{\omega}}(c_{\underline{c}^{i}})-k^{\underline{\theta},\underline{\omega}}(c^{\underline{\omega}}_{\underline{c}^{i}})|\right]
c5ρ11/2kρ1/2,\displaystyle\lesssim c_{5}\rho^{1-1/2k}\lesssim\rho^{1/2},

we also have

|π~θ¯,~θ¯,s~(cc¯i,cc¯i)πθ¯,θ¯,s(cc¯i,cc¯i)|\displaystyle|\pi_{\tilde{}\underline{\theta},\tilde{}\underline{\theta}^{\prime},\tilde{s}}(c_{\underline{c}^{i}},c_{\underline{c}^{\prime i}})-\pi_{\underline{\theta},\underline{\theta}^{\prime},s}(c_{\underline{c}^{i}},c_{\underline{c}^{\prime i}})| |k~θ¯(cc¯i)kθ¯(cc¯i)|+|ss~||kθ¯(cc¯i)|+|s~||kθ¯(cc¯i)k~θ¯(cc¯i)|\displaystyle\leq|k^{\tilde{}\underline{\theta}^{\prime}}(c_{\underline{c}^{\prime i}})-k^{\underline{\theta}^{\prime}}(c_{\underline{c}^{\prime i}})|+|s-\tilde{s}|\cdot|k^{\underline{\theta}}(c_{\underline{c}^{i}})|+|\tilde{s}|\cdot|k^{\underline{\theta}}(c_{\underline{c}^{i}})-k^{\tilde{}\underline{\theta}}(c_{\underline{c}^{i}})|
ρ1/2,\displaystyle\lesssim\rho^{1/2},

given that d(θ¯,~θ¯)c0ρ1/2d(\underline{\theta},\tilde{}\underline{\theta})\leq c_{0}\rho^{1/2}, d(θ¯,~θ¯)c0ρ1/2d(\underline{\theta}^{\prime},\tilde{}\underline{\theta}^{\prime})\leq c_{0}\rho^{1/2} and |ss~|c2ρ1/2|s-\tilde{s}|\leq c_{2}\rho^{1/2}. All this allows us to conclude that we can use lemma 5.4.

Now we can estimate the measure of J1ω¯(a¯,a¯)J^{\underline{\omega}}_{1}(\underline{a},\underline{a}^{\prime}). In the following lines of equations we will be using: lemma 5.4 for the first three lines, observation in equation (12) for the fifth and sixth line, equation (10) in the seventh line, in the last line we use that (a¯,a¯)(\underline{a},\underline{a}^{\prime}) is an excellent pair and the fact that diam(G(c¯i/a¯))diam(G(\underline{c}^{i}/\underline{a})) is of order ρ1212k\rho^{\frac{1}{2}-\frac{1}{2k}}.

Leb(J1ω¯(a¯,a¯))\displaystyle Leb\left(J^{\underline{\omega}}_{1}(\underline{a},\underline{a}^{\prime})\right) =Leb(Jω¯(c¯i,c¯i))\displaystyle=Leb\left(\bigcup J^{\underline{\omega}}(\underline{c}^{i},\underline{c}^{\prime i})\right)
Leb(J(c¯i,c¯i))\displaystyle\gtrsim Leb\left(\bigcup J(\underline{c}^{i},\underline{c}^{\prime i})\right)
Leb(J~(c¯i,c¯i))\displaystyle\gtrsim Leb\left(\bigcup\tilde{J}(\underline{c}^{i},\underline{c}^{\prime i})\right)
=Leb(π~θ¯,~θ¯,s~(G(c¯i)×G(c¯i)))\displaystyle=Leb\left(\pi_{\tilde{}\underline{\theta},\tilde{}\underline{\theta}^{\prime},\tilde{s}}\left(\bigcup G(\underline{c}^{i})\times G(\underline{c}^{\prime i})\right)\right)
=Leb(AπTa¯Ta¯(~θ¯,~θ¯,s~)(G(c¯i/a¯)×G(c¯i/a¯)))\displaystyle=Leb\left(A\circ\pi_{T_{\underline{a}}T^{\prime}_{\underline{a}^{\prime}}(\tilde{}\underline{\theta},\tilde{}\underline{\theta}^{\prime},\tilde{s})}\left(\bigcup G(\underline{c}^{i}/\underline{a})\times G(\underline{c}^{\prime i}/\underline{a}^{\prime})\right)\right)
diam(G(a¯))2Leb(πTa¯Ta¯(~θ¯,~θ¯,s~)(G(c¯i/a¯)×G(c¯i/a¯)))\displaystyle\approx diam(G(\underline{a}))^{2}\cdot Leb\left(\pi_{T_{\underline{a}}T^{\prime}_{\underline{a}^{\prime}}(\tilde{}\underline{\theta},\tilde{}\underline{\theta}^{\prime},\tilde{s})}\left(\bigcup G(\underline{c}^{i}/\underline{a})\times G(\underline{c}^{\prime i}/\underline{a}^{\prime})\right)\right)
diam(G(a¯))2μd×μd(G(c¯i/a¯)×G(c¯i/a¯))2χTa¯Ta¯(~θ¯,~θ¯,s~)L22\displaystyle\gtrsim diam(G(\underline{a}))^{2}\cdot\mu_{d}\times\mu_{d^{\prime}}\left(\bigcup G(\underline{c}^{i}/\underline{a})\times G(\underline{c}^{\prime i}/\underline{a}^{\prime})\right)^{2}\cdot\left\|\chi_{T_{\underline{a}}T^{\prime}_{\underline{a}^{\prime}}(\tilde{}\underline{\theta},\tilde{}\underline{\theta}^{\prime},\tilde{s})}\right\|_{L^{2}}^{-2}
c16ρ1/k(ρ(1212k)(d+d)ρ(d+d)(1212k))2c16ρ1/k\displaystyle\gtrsim c_{16}\rho^{1/k}\cdot\left(\rho^{\left(\frac{1}{2}-\frac{1}{2k}\right)(d+d^{\prime})}\cdot\rho^{-(d+d^{\prime})(\frac{1}{2}-\frac{1}{2k})}\right)^{2}\approx c_{16}\rho^{1/k}

We now consider the sets

Jω¯(b¯ij,b¯ij)\displaystyle J^{\underline{\omega}}(\underline{b}^{ij},\underline{b}^{\prime ij}) =πθ¯,θ¯,sω¯(Gω¯(b¯ij)×G(b¯ij)),\displaystyle=\pi^{\underline{\omega}}_{\underline{\theta},\underline{\theta}^{\prime},s}(G^{\underline{\omega}}(\underline{b}^{ij})\times G(\underline{b}^{\prime ij})),
J1ω¯(c¯i,c¯i)\displaystyle J_{1}^{\underline{\omega}}(\underline{c}^{i},\underline{c}^{\prime i}) =(b¯ij,b¯ij)Jω¯(b¯ij,b¯ij),\displaystyle=\bigcup_{(\underline{b}^{ij},\underline{b}^{\prime ij})}J^{\underline{\omega}}(\underline{b}^{ij},\underline{b}^{\prime ij}),
J2ω¯(a¯,a¯)\displaystyle J_{2}^{\underline{\omega}}(\underline{a},\underline{a}^{\prime}) =(c¯i,c¯i)J1ω¯(c¯i,c¯i).\displaystyle=\bigcup_{(\underline{c}^{i},\underline{c}^{\prime i})}J^{\underline{\omega}}_{1}(\underline{c}^{i},\underline{c}^{\prime i}).

We will estimate the measure of J2ω¯(a¯,a¯)J_{2}^{\underline{\omega}}(\underline{a},\underline{a}^{\prime}). Notice that J1ω¯(c¯i,c¯i)Jω¯(c¯i,c¯i)J^{\underline{\omega}}_{1}(\underline{c}^{i},\underline{c}^{\prime i})\subset J^{\underline{\omega}}(\underline{c}^{i},\underline{c}^{\prime i}) and if we are able to prove that Leb(J1ω¯(c¯i,c¯i))σ1Leb(Jω¯(c¯i,c¯i))Leb\left(J^{\underline{\omega}}_{1}(\underline{c}^{i},\underline{c}^{\prime i})\right)\geq\sigma^{-1}\cdot Leb\left(J^{\underline{\omega}}(\underline{c}^{i},\underline{c}^{\prime i})\right), for some constant σ\sigma, then we can use lemma 5.4 with KαK_{\alpha} being J1ω¯(c¯i,c¯i)J^{\underline{\omega}}_{1}(\underline{c}^{i},\underline{c}^{\prime i}) and JαJ_{\alpha} being Jω¯(c¯i,c¯i)J^{\underline{\omega}}(\underline{c}^{i},\underline{c}^{\prime i}) to conclude that

Leb(J2ω¯(a¯,a¯))=Leb(J1ω¯(c¯i,c¯i))Leb(Jω¯(c¯i,c¯i))c16ρ1/k.Leb\left(J_{2}^{\underline{\omega}}(\underline{a},\underline{a}^{\prime})\right)=Leb\left(\bigcup J^{\underline{\omega}}_{1}(\underline{c}^{i},\underline{c}^{\prime i})\right)\gtrsim Leb\left(\bigcup J^{\underline{\omega}}(\underline{c}^{i},\underline{c}^{\prime i})\right)\gtrsim c_{16}\rho^{1/k}.

To prove that there is such σ\sigma we will proceed similarly to what we did when estimating Leb(J1ω¯(a¯,a¯))Leb\left(J^{\underline{\omega}}_{1}(\underline{a},\underline{a}^{\prime})\right). Note that Tc¯iTc¯i(θ¯,θ¯,s)=(θ¯i,θ¯i,si)~T_{\underline{c}^{i}}T^{\prime}_{\underline{c}^{\prime i}}(\underline{\theta},\underline{\theta}^{\prime},s)=(\underline{\theta}^{i},\underline{\theta}^{\prime i},s_{i})\in\tilde{\mathcal{L}} and then there exists (θ¯~i,θ¯~i,s~i)(\tilde{\underline{\theta}}^{i},\tilde{\underline{\theta}}^{\prime i},\tilde{s}_{i}) such that |sis~i|c2ρ1/2|s_{i}-\tilde{s}_{i}|\leq c_{2}\rho^{1/2}, d(θ¯~i,θ¯i)c0ρ1/2d(\tilde{\underline{\theta}}^{i},\underline{\theta}^{i})\leq c_{0}\rho^{1/2}, d(θ¯~i,θ¯i)c0ρ1/2d(\tilde{\underline{\theta}}^{\prime i},\underline{\theta}^{\prime i})\leq c_{0}\rho^{1/2} and

(13) χθ¯~i,θ¯~i,s~iL22c15.\left\|\chi_{\tilde{\underline{\theta}}^{i},\tilde{\underline{\theta}}^{\prime i},\tilde{s}_{i}}\right\|_{L^{2}}^{2}\leq c_{15}.

The sets

πθ¯i,θ¯i,si(ω¯)ω¯(Gω¯(d¯ij)×G(d¯ij)),πθ¯i,θ¯i,si(G(d¯ij)×G(d¯ij)) and πθ¯~i,θ¯~i,s~i(G(d¯ij)×G(d¯ij))\pi^{\underline{\omega}}_{\underline{\theta}^{i},\underline{\theta}^{\prime i},s_{i}(\underline{\omega})}\left(G^{\underline{\omega}}(\underline{d}^{ij})\times G(\underline{d}^{\prime ij})\right),\pi_{\underline{\theta}^{i},\underline{\theta}^{\prime i},s_{i}}\left(G(\underline{d}^{ij})\times G(\underline{d}^{\prime ij})\right)\text{ and }\pi_{\tilde{\underline{\theta}}^{i},\tilde{\underline{\theta}}^{\prime i},\tilde{s}_{i}}\left(G(\underline{d}^{ij})\times G(\underline{d}^{\prime ij})\right)

are all contained in, and contain, balls with radius of order ρ1/2\rho^{1/2}, and centered at the points

πθ¯i,θ¯i,si(ω¯)ω¯(cd¯ijω¯,cd¯ij),πθ¯i,θ¯i,si(cd¯ij,cd¯ij) and πθ¯~i,θ¯~i,s~i(cd¯ij,cd¯ij)\pi^{\underline{\omega}}_{\underline{\theta}^{i},\underline{\theta}^{\prime i},s_{i}(\underline{\omega})}(c_{\underline{d}^{ij}}^{\underline{\omega}},c_{\underline{d}^{\prime ij}}),\pi_{\underline{\theta}^{i},\underline{\theta}^{\prime i},s_{i}}(c_{\underline{d}^{ij}},c_{\underline{d}^{\prime ij}})\text{ and }\pi_{\tilde{\underline{\theta}}^{i},\tilde{\underline{\theta}}^{\prime i},\tilde{s}_{i}}(c_{\underline{d}^{ij}},c_{\underline{d}^{\prime ij}})

respectively. By lemma 3.2 we know that

kθ¯i,ω¯kθ¯iC0c5ρ11/2k,|cd¯ijω¯cd¯ij|c5ρ1+1/2k,\|k^{\underline{\theta}^{i},\underline{\omega}}-k^{\underline{\theta}^{i}}\|_{C^{0}}\lesssim c_{5}\rho^{1-1/2k},\,\,|c_{\underline{d}^{ij}}^{\underline{\omega}}-c_{\underline{d}^{ij}}|\lesssim c_{5}\rho^{1+1/2k},

on the other hand we also have |sisi(ω¯)|ρ1/2|s_{i}-s_{i}(\underline{\omega})|\lesssim\rho^{1/2}, kθ¯ikθ¯~iC0ρ1/2\|k^{\underline{\theta}^{i}}-k^{\tilde{\underline{\theta}}^{i}}\|_{C^{0}}\lesssim\rho^{1/2} and kθ¯ikθ¯~iC0ρ1/2\|k^{\underline{\theta}^{\prime i}}-k^{\tilde{\underline{\theta}}^{\prime i}}\|_{C^{0}}\lesssim\rho^{1/2}, thus we can conclude that the distance between any two centers is of order less than ρ1/2\rho^{1/2}. Therefore, we can apply lemma 5.4 taking JαJ_{\alpha} as one of the families

πθ¯i,θ¯i,si(ω¯)ω¯(Gω¯(d¯ij)×G(d¯ij)),πθ¯i,θ¯i,si(G(d¯ij)×G(d¯ij)),πθ¯~i,θ¯~i,s~i(G(d¯ij)×G(d¯ij))\pi^{\underline{\omega}}_{\underline{\theta}^{i},\underline{\theta}^{\prime i},s_{i}(\underline{\omega})}\left(G^{\underline{\omega}}(\underline{d}^{ij})\times G(\underline{d}^{\prime ij})\right),\,\,\pi_{\underline{\theta}^{i},\underline{\theta}^{\prime i},s_{i}}\left(G(\underline{d}^{ij})\times G(\underline{d}^{\prime ij})\right),\,\,\pi_{\tilde{\underline{\theta}}^{i},\tilde{\underline{\theta}}^{\prime i},\tilde{s}_{i}}\left(G(\underline{d}^{ij})\times G(\underline{d}^{\prime ij})\right)

and JαJ_{\alpha}^{\prime} as another of these families.

Using the previous analysis together with equations (12), (10), (13) and the fact that the number of (d¯ij,d¯ij)(\underline{d}^{ij},\underline{d}^{\prime ij}) is a positive proportion of Σ(ρ1/2)×Σ(ρ1/2)\Sigma(\rho^{1/2})\times\Sigma^{\prime}(\rho^{1/2}) we obtain

Leb(J1ω¯(c¯i,c¯i))\displaystyle Leb\left(J^{\underline{\omega}}_{1}(\underline{c}^{i},\underline{c}^{\prime i})\right) =Leb(Jω¯(b¯ij,b¯ij))\displaystyle=Leb\left(\bigcup J^{\underline{\omega}}(\underline{b}^{ij},\underline{b}^{\prime ij})\right)
=Leb(πθ¯,θ¯,sω¯(Gω¯(b¯ij)×G(b¯ij)))\displaystyle=Leb\left(\pi^{\underline{\omega}}_{\underline{\theta},\underline{\theta}^{\prime},s}\left(\bigcup G^{\underline{\omega}}(\underline{b}^{ij})\times G(\underline{b}^{\prime ij})\right)\right)
=Leb(AπTc¯iω¯Tc¯i(θ¯,θ¯,s)ω¯(Gω¯(d¯ij)×G(d¯ij)))\displaystyle=Leb\left(A\circ\pi^{\underline{\omega}}_{T^{\underline{\omega}}_{\underline{c}^{i}}T^{\prime}_{\underline{c}^{\prime i}}(\underline{\theta},\underline{\theta}^{\prime},s)}\left(\bigcup G^{\underline{\omega}}(\underline{d}^{ij})\times G(\underline{d}^{\prime ij})\right)\right)
Leb(J(c¯i,c¯i))Leb(πθ¯i,θ¯i,si(ω¯)ω¯(Gω¯(d¯ij)×G(d¯ij)))\displaystyle\approx Leb\left(J(\underline{c}^{i},\underline{c}^{\prime i})\right)\cdot Leb\left(\bigcup\pi^{\underline{\omega}}_{\underline{\theta}^{i},\underline{\theta}^{\prime i},s_{i}(\underline{\omega})}\left(G^{\underline{\omega}}(\underline{d}^{ij})\times G(\underline{d}^{\prime ij})\right)\right)
Leb(J(c¯i,c¯i))Leb(πθ¯i,θ¯i,si(G(d¯ij)×G(d¯ij)))\displaystyle\approx Leb\left(J(\underline{c}^{i},\underline{c}^{\prime i})\right)\cdot Leb\left(\bigcup\pi_{\underline{\theta}^{i},\underline{\theta}^{\prime i},s_{i}}\left(G(\underline{d}^{ij})\times G(\underline{d}^{\prime ij})\right)\right)
Leb(J(c¯i,c¯i))Leb(πθ¯~i,θ¯~i,s~i(G(d¯ij)×G(d¯ij)))\displaystyle\approx Leb\left(J(\underline{c}^{i},\underline{c}^{\prime i})\right)\cdot Leb\left(\bigcup\pi_{\tilde{\underline{\theta}}^{i},\tilde{\underline{\theta}}^{\prime i},\tilde{s}_{i}}\left(G(\underline{d}^{ij})\times G(\underline{d}^{\prime ij})\right)\right)
Leb(J(c¯i,c¯i))μd×μd(G(d¯ij)×G(d¯ij))2χθ¯~i,θ¯~i,s~iL22\displaystyle\gtrsim Leb\left(J(\underline{c}^{i},\underline{c}^{\prime i})\right)\cdot\mu_{d}\times\mu_{d^{\prime}}\left(\bigcup G(\underline{d}^{ij})\times G(\underline{d}^{\prime ij})\right)^{2}\cdot\left\|\chi_{\tilde{\underline{\theta}}^{i},\tilde{\underline{\theta}}^{\prime i},\tilde{s}_{i}}\right\|_{L^{2}}^{-2}
Leb(J(c¯i,c¯i))(ρ12(d+d)ρ12(d+d))2Leb(J(c¯i,c¯i)).\displaystyle\gtrsim Leb\left(J(\underline{c}^{i},\underline{c}^{\prime i})\right)\cdot\left(\rho^{\frac{1}{2}(d+d^{\prime})}\cdot\rho^{-\frac{1}{2}(d+d^{\prime})}\right)^{2}\approx Leb\left(J(\underline{c}^{i},\underline{c}^{\prime i})\right).

This guarantees the existence of the desired constant σ\sigma and finishes the proof of the lemma. ∎

Now we can prove proposition 4.2. Consider the function

φ2ω¯=(a¯,a¯)1J2ω¯(a¯,a¯),\varphi^{\underline{\omega}}_{2}=\sum_{(\underline{a},\underline{a}^{\prime})}1_{J^{\underline{\omega}}_{2}(\underline{a},\underline{a}^{\prime})},

where 1B1_{B} means indicator function of the set BB and the sum is over all excellent pairs. We want to estimate the measure of the set

Xω¯={t:φ2ω¯(t)c′′c162ρ12k(d+d2)},X^{\underline{\omega}}=\{t\in\mathbbm{C}:\varphi^{\underline{\omega}}_{2}(t)\geq c^{\prime\prime}c_{16}^{2}\rho^{-\frac{1}{2k}(d+d^{\prime}-2)}\},

where c′′c^{\prime\prime} is a constant defined in the following way. Suppose that we have two excellent pairs with the same first coordinate (a¯,a¯)(\underline{a},\underline{a}^{\prime}), (a¯,a¯~)(\underline{a},\tilde{\underline{a}}^{\prime}) and such that Jω¯(a¯,a¯)Jω¯(a¯,a¯~)J^{\underline{\omega}}(\underline{a},\underline{a}^{\prime})\cap J^{\underline{\omega}}(\underline{a},\tilde{\underline{a}}^{\prime})\neq\emptyset. Then

kθ¯(y)skθ¯,ω¯(x)=kθ¯(y~)skθ¯,ω¯(x~),k^{\underline{\theta}^{\prime}}(y)-sk^{\underline{\theta},\underline{\omega}}(x)=k^{\underline{\theta}^{\prime}}(\tilde{y})-sk^{\underline{\theta},\underline{\omega}}(\tilde{x}),

for some (x,y)Gω¯(a¯)×G(a¯)(x,y)\in G^{\underline{\omega}}(\underline{a})\times G(\underline{a}^{\prime}), (x~,y~)Gω¯(a¯)×G(a¯~)(\tilde{x},\tilde{y})\in G^{\underline{\omega}}(\underline{a})\times G(\tilde{\underline{a}}^{\prime}). Thus

|yy~||xx~|ρ1/2k,|y-\tilde{y}|\approx|x-\tilde{x}|\lesssim\rho^{1/2k},

which shows that

d(G(a¯),G(a¯~))ρ1/2k.d(G(\underline{a}^{\prime}),G(\tilde{\underline{a}}^{\prime}))\lesssim\rho^{1/2k}.

This implies that if we fix (a¯,a¯)(\underline{a},\underline{a}^{\prime}), then the number of possible pairs (a¯,a¯~)(\underline{a},\tilde{\underline{a}}^{\prime}) such that Jω¯(a¯,a¯)Jω¯(a¯,a¯~)J^{\underline{\omega}}(\underline{a},\underline{a}^{\prime})\cap J^{\underline{\omega}}(\underline{a},\tilde{\underline{a}}^{\prime})\neq\emptyset is bounded by a uniform constant, independent of ρ\rho and (a¯,a¯)(\underline{a},\underline{a}^{\prime}), we denote this constant by c′′c^{\prime\prime} (this last statement is a consequence of lemma 1.2.3 in [8]).

Notice that since sJRs\in J_{R} then φ2ω¯\varphi^{\underline{\omega}}_{2} is supported in a ball of radius proportional to 1+eR1+e^{R} centered at 0, thus there is a constant cc such that

φ2ω¯𝑑t(supφ2ω¯)Leb(Xω¯)+cc′′c162ρ12k(d+d2).\int\varphi^{\underline{\omega}}_{2}dt\leq(\sup\varphi^{\underline{\omega}}_{2})\cdot Leb(X^{\underline{\omega}})+cc^{\prime\prime}c_{16}^{2}\rho^{-\frac{1}{2k}(d+d^{\prime}-2)}.

Now we estimate supφ2ω¯\sup\varphi^{\underline{\omega}}_{2} from above and φ2ω¯𝑑t\int\varphi^{\underline{\omega}}_{2}dt from below. By lemmas 5.5 and 5.3 there is a constant cc^{\prime} such that

(14) φ2ω¯𝑑tcc16ρ1/kρd+d2k=cc16ρ12k(d+d2).\int\varphi^{\underline{\omega}}_{2}dt\geq c^{\prime}c_{16}\rho^{1/k}\cdot\rho^{-\frac{d+d^{\prime}}{2k}}=c^{\prime}c_{16}\rho^{-\frac{1}{2k}(d+d^{\prime}-2)}.

Let xx\in\mathbbm{C} and excellent pairs (a¯,a¯)(\underline{a},\underline{a}^{\prime}), (a¯~,a¯~)(\tilde{\underline{a}},\tilde{\underline{a}}^{\prime}) such that xJω¯(a¯,a¯)Jω¯(a¯~,a¯~)x\in J^{\underline{\omega}}(\underline{a},\underline{a}^{\prime})\cap J^{\underline{\omega}}(\tilde{\underline{a}},\tilde{\underline{a}}^{\prime}). Remember that

|πθ¯,θ¯,sω¯(ca¯ω¯,ca¯)πθ¯,θ¯,s(ca¯,ca¯)|c5ρ11/2k=o(ρ1/2k),|\pi^{\underline{\omega}}_{\underline{\theta},\underline{\theta}^{\prime},s}(c^{\underline{\omega}}_{\underline{a}},c_{\underline{a}^{\prime}})-\pi_{\underline{\theta},\underline{\theta}^{\prime},s}(c_{\underline{a}},c_{\underline{a}^{\prime}})|\lesssim c_{5}\rho^{1-1/2k}=o(\rho^{1/2k}),

where the oo notation means that, once we have chosen c5c_{5}, we can choose any ε>0\varepsilon>0 and c5ρ11/2kερ1/2kc_{5}\rho^{1-1/2k}\leq\varepsilon\rho^{1/2k} will hold provided ρ\rho is small enough. With this in mind we obtain

|πθ¯,θ¯,s(ca¯,ca¯)πθ¯,θ¯,s(ca¯~,ca¯~)|\displaystyle|\pi_{\underline{\theta},\underline{\theta}^{\prime},s}(c_{\underline{a}},c_{\underline{a}^{\prime}})-\pi_{\underline{\theta},\underline{\theta}^{\prime},s}(c_{\tilde{\underline{a}}},c_{\tilde{\underline{a}}^{\prime}})| o(ρ1/2k)+|πθ¯,θ¯,sω¯(ca¯ω¯,ca¯)x|+|xπθ¯,θ¯,sω¯(ca¯~ω¯,ca¯~)|\displaystyle\leq o(\rho^{1/2k})+|\pi^{\underline{\omega}}_{\underline{\theta},\underline{\theta}^{\prime},s}(c^{\underline{\omega}}_{\underline{a}},c_{\underline{a}^{\prime}})-x|+|x-\pi^{\underline{\omega}}_{\underline{\theta},\underline{\theta}^{\prime},s}(c^{\underline{\omega}}_{\tilde{\underline{a}}},c_{\tilde{\underline{a}}^{\prime}})|
o(ρ1/2k)+2c19ρ1/2k.\displaystyle\leq o(\rho^{1/2k})+2c_{19}\rho^{1/2k}.

Given that (a¯,a¯)(\underline{a},\underline{a}^{\prime}), (a¯~,a¯~)(\tilde{\underline{a}},\tilde{\underline{a}}^{\prime}) are excellent, we conclude that there can be no more than c161ρ12k(d+d2)c_{16}^{-1}\rho^{-\frac{1}{2k}(d+d^{\prime}-2)} excellent pairs intersecting at xx. Since φ2ω¯=(a¯,a¯)1Jω¯(a¯,a¯)\varphi^{\underline{\omega}}_{2}=\sum_{(\underline{a},\underline{a}^{\prime})}1_{J^{\underline{\omega}}(\underline{a},\underline{a}^{\prime})} we get that

φ2ω¯(x)c161ρ12k(d+d2).\varphi^{\underline{\omega}}_{2}(x)\leq c_{16}^{-1}\rho^{-\frac{1}{2k}(d+d^{\prime}-2)}.

We are ready to bound Leb(Xω¯)Leb(X^{\underline{\omega}}), using equation (14) and the previous estimates

c161ρ12k(d+d2)Leb(Xω¯)+cc′′c162ρ12k(d+d2)cc16ρ12k(d+d2),c_{16}^{-1}\rho^{-\frac{1}{2k}(d+d^{\prime}-2)}Leb(X^{\underline{\omega}})+cc^{\prime\prime}c_{16}^{2}\rho^{-\frac{1}{2k}(d+d^{\prime}-2)}\geq c^{\prime}c_{16}\rho^{-\frac{1}{2k}(d+d^{\prime}-2)},

and from this we get

Leb(Xω¯)c162(ccc′′c16).Leb(X^{\underline{\omega}})\geq c_{16}^{2}(c^{\prime}-cc^{\prime\prime}c_{16}).

We fix c16c_{16} small enough such that c17:=c162(ccc′′c16)>0c_{17}:=c_{16}^{2}(c^{\prime}-cc^{\prime\prime}c_{16})>0.

To finish the proof of the proposition we will show that {(θ¯,θ¯,s,t):tXω¯}Lω¯1(θ¯,θ¯,s)\{(\underline{\theta},\underline{\theta}^{\prime},s,t):t\in X^{\underline{\omega}^{*}}\}\subset L_{\underline{\omega}}^{-1}(\underline{\theta},\underline{\theta}^{\prime},s). Let tXω¯t\in X^{\underline{\omega}^{*}}, then there are at least [c′′c162ρ12k(d+d2)]\left[c^{\prime\prime}c_{16}^{2}\rho^{-\frac{1}{2k}(d+d^{\prime}-2)}\right] excellent pairs (a¯,a¯)(\underline{a},\underline{a}^{\prime}), each one with an associated pair (b¯ij,b¯ij)(\underline{b}^{ij},\underline{b}^{\prime ij}) which starts with (a¯,a¯)(\underline{a},\underline{a}^{\prime}) and such that tJω¯(b¯ij,b¯ij)t\in J^{\underline{\omega}^{*}}(\underline{b}^{ij},\underline{b}^{\prime ij}). By the definition of c′′c^{\prime\prime}, we can extract from this family of excellent pairs a subfamily (a¯l,a¯l)(\underline{a}^{l},\underline{a}^{\prime l}), l=1,,[c162ρ12k(d+d2)]l=1,...,\left[c_{16}^{2}\rho^{-\frac{1}{2k}(d+d^{\prime}-2)}\right], such that all firsts coordinates are different. For (a¯l,a¯l)(\underline{a}^{l},\underline{a}^{\prime l}) we denote the associated pair (b¯ij,b¯ij)(\underline{b}^{ij},\underline{b}^{\prime ij}) by (b¯l,b¯l)(\underline{b}^{l},\underline{b}^{\prime l}). We will prove the pairs (b¯1,b¯1),,(b¯N,b¯N)(\underline{b}^{1},\underline{b}^{\prime 1}),...,(\underline{b}^{N},\underline{b}^{\prime N}) have the properties necessary to guarantee that (θ¯,θ¯,s,t)Lω¯1(θ¯,θ¯,s)(\underline{\theta},\underline{\theta}^{\prime},s,t)\in L_{\underline{\omega}}^{-1}(\underline{\theta},\underline{\theta}^{\prime},s). Write

Tb¯lω¯Tb¯l(θ¯,θ¯,s,t)=(θ¯l,θ¯l,sl,tl)T^{\underline{\omega}^{*}}_{\underline{b}^{l}}T^{\prime}_{\underline{b}^{\prime l}}(\underline{\theta},\underline{\theta}^{\prime},s,t)=(\underline{\theta}^{l},\underline{\theta}^{\prime l},s_{l},t_{l})

then:

  • (i)

    Since all firsts coordinates of the excellent pairs are different we conclude that b¯1,,b¯N\underline{b}^{1},...,\underline{b}^{N} are pairwise independent.

  • (ii)

    By the way in which d¯ij\underline{d}^{ij} was defined we get that all θ¯lΣnr\underline{\theta}^{l}\in\Sigma^{-}_{nr}.

  • (iii)’

    By the scale recurrence lemma we know that B(sij,c4ρ1/2)E(dij,dij)B(s_{ij},c_{4}\rho^{1/2})\subset E^{*}(d^{ij},d^{\prime ij}). We also know that |sijsij(ω¯)|c5ρ11/2k=o(ρ1/2)|s_{ij}-s_{ij}(\underline{\omega}^{*})|\lesssim c_{5}\rho^{1-1/2k}=o(\rho^{1/2}), then, if ρ\rho is small enough, we have

    {s~:|s~sij(ω¯)|34c4ρMissing Operator}E(dij,dij).\{\tilde{s}:|\tilde{s}-s_{ij}(\underline{\omega}^{*})|\leq\frac{3}{4}c_{4}\rho^{1/2}\}\subset E^{*}(d^{ij},d^{\prime ij}).

    We conclude that (θ¯l,θ¯l,s~)~(\underline{\theta}^{l},\underline{\theta}^{\prime l},\tilde{s})\in\tilde{\mathcal{L}} if |s~sl|34c4ρ1/2|\tilde{s}-s_{l}|\leq\frac{3}{4}c_{4}\rho^{1/2} (remember that for every ll there is i,ji,j such that sl=sij(ω¯)s_{l}=s_{ij}(\underline{\omega}^{*})).

  • (iv)’

    Given that tJω¯(b¯l,b¯l)t\in J^{\underline{\omega}^{*}}(\underline{b}^{l},\underline{b}^{\prime l}), there is (x,y)2(x,y)\in\mathbbm{C}^{2} such that

    t\displaystyle t =kθ¯(fb¯lω¯(y))skθ¯,ω¯(fb¯lω¯(x))\displaystyle=k^{\underline{\theta}^{\prime}}(f_{\underline{b}^{\prime l}}^{\underline{\omega}^{*}}(y))-sk^{\underline{\theta},\underline{\omega}^{*}}(f_{\underline{b}^{l}}^{\underline{\omega}^{*}}(x))
    Fθ¯b¯l(kθ¯b¯l(y))\displaystyle F^{\underline{\theta}^{\prime}}_{\underline{b}^{\prime l}}(k^{\underline{\theta}^{\prime}\underline{b}^{\prime l}}(y)) =t+sFθ¯,ω¯b¯l(kθ¯b¯l,ω¯(x))\displaystyle=t+s\cdot F^{\underline{\theta},\underline{\omega}^{*}}_{\underline{b}^{l}}(k^{\underline{\theta}\underline{b}^{l},\underline{\omega}^{*}}(x))
    kθ¯b¯l(y)\displaystyle k^{\underline{\theta}^{\prime}\underline{b}^{\prime l}}(y) =(Fθ¯b¯l)1(t+sFθ¯,ω¯b¯l(kθ¯b¯l,ω¯(x)))\displaystyle=\left(F^{\underline{\theta}^{\prime}}_{\underline{b}^{\prime l}}\right)^{-1}\left(t+s\cdot F^{\underline{\theta},\underline{\omega}^{*}}_{\underline{b}^{l}}(k^{\underline{\theta}\underline{b}^{l},\underline{\omega}^{*}}(x))\right)
    kθ¯b¯l(y)\displaystyle k^{\underline{\theta}^{\prime}\underline{b}^{\prime l}}(y) =tl+slkθ¯b¯l,ω¯(x).\displaystyle=t_{l}+s_{l}\cdot k^{\underline{\theta}\underline{b}^{l},\underline{\omega}^{*}}(x).

    Since slJRs_{l}\in J_{R} we conclude that |tl|1+eR|t_{l}|\leq 1+e^{R}.

6. Proof of Proposition 4.1

In this section we will prove proposition 4.1. Given u=(θ¯,θ¯,s,t)~×u=(\underline{\theta},\underline{\theta}^{\prime},s,t)\in\tilde{\mathcal{L}}\times\mathbbm{C}, remember the decomposition ω¯=(ω¯,ω¯)\underline{\omega}=(\underline{\omega}^{\prime},\underline{\omega}^{\prime\prime}) where ω¯𝔻Σ1(θ¯)\underline{\omega}^{\prime}\in\mathbb{D}^{\Sigma_{1}(\underline{\theta})} and ω¯𝔻Σ1Σ1(θ¯)\underline{\omega}^{\prime\prime}\in\mathbb{D}^{\Sigma_{1}\setminus\Sigma_{1}(\underline{\theta})}. Recall that the set Σ1(θ¯)\Sigma_{1}(\underline{\theta}) is given by the words in Σ1\Sigma_{1} starting with the same word, in Σ(ρ1/2k)\Sigma(\rho^{1/2k}), in which θ¯\underline{\theta} finishes. In the same way as in [1], one uses Fubini’s theorem to reduce the proof of proposition 4.1 to proving

(15) (ΩΩ0(u))exp(c7ρ12k(d+d2)),\mathbb{P}^{\prime}(\Omega^{\prime}\setminus\Omega^{\prime 0}(u))\leq\exp(-c_{7}\rho^{-\frac{1}{2k}(d+d^{\prime}-2)}),

where we have fixed ω¯\underline{\omega}^{\prime\prime} such that u1(0¯,ω¯)u\in\mathcal{L}^{1}_{(\underline{0},\underline{\omega}^{\prime\prime})} and Ω=𝔻Σ1(θ¯)\Omega^{\prime}=\mathbb{D}^{\Sigma_{1}(\underline{\theta})}, Ω0(u)={ω¯:(ω¯,ω¯)Ω0(u)}\Omega^{\prime 0}(u)=\{\underline{\omega}^{\prime}:(\underline{\omega}^{\prime},\underline{\omega}^{\prime\prime})\in\Omega^{0}(u)\}, \mathbb{P}^{\prime} is normalized Lebesgue measure in Ω\Omega^{\prime}.

The fact that u=(θ¯,θ¯,s,t)1(0¯,ω¯)u=(\underline{\theta},\underline{\theta}^{\prime},s,t)\in\mathcal{L}^{1}_{(\underline{0},\underline{\omega}^{\prime\prime})} means that (θ¯,θ¯,s)~(\underline{\theta},\underline{\theta}^{\prime},s)\in\tilde{\mathcal{L}} and there is (~θ¯,θ¯~,s~,t~)(\tilde{}\underline{\theta},\tilde{\underline{\theta}}^{\prime},\tilde{s},\tilde{t}) for which

d(θ¯,~θ¯)<2ρ5/2,d(θ¯,θ¯~)<2ρ5/2,|ss~|<ρ,|tt~|<ρ,d(\underline{\theta},\tilde{}\underline{\theta})<2\rho^{5/2},\,d(\underline{\theta}^{\prime},\tilde{\underline{\theta}}^{\prime})<2\rho^{5/2},\,|s-\tilde{s}|<\rho,\,|t-\tilde{t}|<\rho,

(~θ¯,θ¯~,s~)~(\tilde{}\underline{\theta},\tilde{\underline{\theta}}^{\prime},\tilde{s})\in\tilde{\mathcal{L}} and t~L(0¯,ω¯)0(~θ¯,θ¯~,s~)\tilde{t}\in L_{(\underline{0},\underline{\omega}^{\prime\prime})}^{0}(\tilde{}\underline{\theta},\tilde{\underline{\theta}}^{\prime},\tilde{s}). Notice that Σ1(θ¯)=Σ1(~θ¯)\Sigma_{1}(\underline{\theta})=\Sigma_{1}(\tilde{}\underline{\theta}), moreover u1(0¯,ω¯)u\in\mathcal{L}^{1}_{(\underline{0},\underline{\omega}^{\prime\prime})} if and only if u1(ω¯,ω¯)u\in\mathcal{L}^{1}_{(\underline{\omega}^{\prime},\underline{\omega}^{\prime\prime})} for any ω¯Σ1(θ¯)\underline{\omega}^{\prime}\in\Sigma_{1}(\underline{\theta}).

Next, t~L(0¯,ω¯)0(~θ¯,θ¯~,s~)\tilde{t}\in L_{(\underline{0},\underline{\omega}^{\prime\prime})}^{0}(\tilde{}\underline{\theta},\tilde{\underline{\theta}}^{\prime},\tilde{s}) means that there are pairs (b¯1,b¯1),,(b¯N,b¯N)(\underline{b}^{1},\underline{b}^{\prime 1}),...,\,(\underline{b}^{N},\underline{b}^{\prime N}) in Σ(ρ)×Σ(ρ)\Sigma(\rho)\times\Sigma^{\prime}(\rho) such that if we set

T(0¯,ω¯)b¯iTb¯i(~θ¯,θ¯~,s~,t~)=(θ¯~i,θ¯~i,s~i,t~i)T^{(\underline{0},\underline{\omega}^{\prime\prime})}_{\underline{b}^{i}}T^{\prime}_{\underline{b}^{\prime i}}(\tilde{}\underline{\theta},\tilde{\underline{\theta}}^{\prime},\tilde{s},\tilde{t})=(\tilde{\underline{\theta}}^{i},\tilde{\underline{\theta}}^{\prime i},\tilde{s}_{i},\tilde{t}_{i})

then:

  • (i)

    the words b¯1,,b¯N\underline{b}^{1},...,\,\underline{b}^{N} are pairwise independent;

  • (ii)

    θ¯~iΣnr\tilde{\underline{\theta}}^{i}\in\Sigma^{-}_{nr};

  • (iii)

    (θ¯~i,θ¯~i,s~i)~(\tilde{\underline{\theta}}^{i},\tilde{\underline{\theta}}^{\prime i},\tilde{s}_{i}^{\prime})\in\tilde{\mathcal{L}} if |s~is~i|<23c4ρ1/2|\tilde{s}_{i}-\tilde{s}_{i}^{\prime}|<\frac{2}{3}c_{4}\rho^{1/2};

  • (iv)

    |t~i|2(1+eR)|\tilde{t}_{i}|\leq 2(1+e^{R}).

Let a¯\underline{a} be the word in Σ(ρ1/2k)\Sigma(\rho^{1/2k}) in which θ¯\underline{\theta} ends, for each b¯i\underline{b}^{i} define a¯i\underline{a}^{i} in Σ1(θ¯)\Sigma_{1}(\underline{\theta}) given by the concatenation of a¯\underline{a} and a word at the beginning of b¯i\underline{b}^{i}, in such a way that a¯iΣ1(θ¯)\underline{a}^{i}\in\Sigma_{1}(\underline{\theta}) (this can be done since θ¯b¯iΣnr\underline{\theta}\underline{b}^{i}\in\Sigma_{nr}^{-}). Notice that the independence of the words b¯i\underline{b}^{i} imply that the words a¯i\underline{a}^{i} are all different.

Now we consider the decomposition of ω¯Ω\underline{\omega}^{\prime}\in\Omega^{\prime} as ω¯=(ω1,,ωN,ω¯~)\underline{\omega}^{\prime}=(\omega_{1},...,\omega_{N},\tilde{\underline{\omega}}^{\prime}), where ω¯~𝔻Σ1(θ¯){a1,,aN}\tilde{\underline{\omega}}^{\prime}\in\mathbb{D}^{\Sigma_{1}(\underline{\theta})\setminus\{a_{1},...,a_{N}\}} and ωi\omega_{i} is the component of ω¯\underline{\omega}^{\prime} corresponding to a¯i\underline{a}^{i}. We use again Fubini’s theorem to reduce the proof of equation (15) to a similar formula in a smaller space. For ω¯~\tilde{\underline{\omega}}^{\prime} fixed, we will prove that the set of (ω1,..,ωN)(\omega_{1},..,\omega_{N}) such that ω¯Ω0(u)\underline{\omega}^{\prime}\notin\Omega^{\prime 0}(u) has measure exp(c7ρ12k(d+d2))\leq\exp(-c_{7}\rho^{-\frac{1}{2k}(d+d^{\prime}-2)}).

To prove the desired inequality, we will prove that for each ωi\omega_{i} there is a set with positive measure such that whenever ωi\omega_{i} is in this set we have ω¯Ω0(u)\underline{\omega}^{\prime}\in\Omega^{\prime 0}(u) (no matter the value of ωj\omega_{j}, jij\neq i). More precisely, we will prove that if ωi\omega_{i} is in this set then b¯i\underline{b}^{i}, b¯i\underline{b}^{\prime i} verify that if we set

Tb¯iω¯Tb¯i(u)=(θ¯i,θ¯i,si(ω¯),ti(ω¯))T_{\underline{b}^{i}}^{\underline{\omega}}T^{\prime}_{\underline{b}^{\prime i}}(u)=(\underline{\theta}^{i},\underline{\theta}^{\prime i},s_{i}(\underline{\omega}),t_{i}(\underline{\omega}))

then:

  • (i)

    (θ¯i,θ¯i,si)~(\underline{\theta}^{i},\underline{\theta}^{\prime i},s_{i}^{\prime})\in\tilde{\mathcal{L}} if |sisi(ω¯)|<12c4ρ1/2|s_{i}^{\prime}-s_{i}(\underline{\omega})|<\frac{1}{2}c_{4}\rho^{1/2};

  • (ii)

    ti(ω¯)L0ω¯(θ¯i,θ¯i,si(ω¯))t_{i}(\underline{\omega})\in L^{0}_{\underline{\omega}}(\underline{\theta}^{i},\underline{\theta}^{\prime i},s_{i}(\underline{\omega})).

The first property can be easily obtained. In fact, we already know (from (iii) above) that (θ¯~i,θ¯~i,s~i)~(\tilde{\underline{\theta}}^{i},\tilde{\underline{\theta}}^{\prime i},\tilde{s}_{i}^{\prime})\in\tilde{\mathcal{L}} if |s~is~i|<23c4ρ1/2|\tilde{s}_{i}-\tilde{s}_{i}^{\prime}|<\frac{2}{3}c_{4}\rho^{1/2}. Notice that since d(θ¯i,θ¯~i)ρ7/2d(\underline{\theta}^{i},\tilde{\underline{\theta}}^{i})\lesssim\rho^{7/2}, d(θ¯i,θ¯~i)ρ7/2d(\underline{\theta}^{\prime i},\tilde{\underline{\theta}}^{\prime i})\lesssim\rho^{7/2} then θ¯~iΣnr\tilde{\underline{\theta}}^{i}\in\Sigma^{-}_{nr} and the fiber of ~\tilde{\mathcal{L}} over (θ¯i,θ¯i)(\underline{\theta}^{i},\underline{\theta}^{\prime i}) is the same as the one over (θ¯~i,θ¯~i)(\tilde{\underline{\theta}}^{i},\tilde{\underline{\theta}}^{\prime i}), thus we only need to estimate |s~isi(ω¯)||\tilde{s}_{i}-s_{i}(\underline{\omega})|. Using that |ss~|<ρ|s-\tilde{s}|<\rho, d(θ¯,θ¯~)<2ρ5/2d(\underline{\theta},\tilde{\underline{\theta}})<2\rho^{5/2}, d(θ¯,θ¯~)<2ρ5/2d(\underline{\theta}^{\prime},\tilde{\underline{\theta}}^{\prime})<2\rho^{5/2} and lemma 3.2 one gets that |s~isi(ω¯)|=o(ρ1/2)|\tilde{s}_{i}-s_{i}(\underline{\omega})|=o(\rho^{1/2}), then choosing ρ\rho sufficiently small gives the desired property (for any value of ωi\omega_{i}).

For the second property we choose θ¯¯Σ\overline{\underline{\theta}}\in\Sigma^{-} such that d(θ¯¯,θ¯)<ρ5/2d(\overline{\underline{\theta}},\underline{\theta})<\rho^{5/2} (then θ¯¯\overline{\underline{\theta}} ends with a¯\underline{a}) and such that it does not contain a¯\underline{a} anywhere else (this is possible since θ¯Σnr\underline{\theta}\in\Sigma^{-}_{nr}). Set

Tω¯b¯iTb¯i(θ¯¯,θ¯,s,t)=(θ¯¯i,θ¯i,s¯i(ω¯),t¯i(ω¯)).T^{\underline{\omega}}_{\underline{b}^{i}}T^{\prime}_{\underline{b}^{\prime i}}(\overline{\underline{\theta}},\underline{\theta}^{\prime},s,t)=(\overline{\underline{\theta}}^{i},\underline{\theta}^{\prime i},\overline{s}_{i}(\underline{\omega}),\overline{t}_{i}(\underline{\omega})).

We will prove the following lemmas:

Lemma 6.1.

Once ω¯\underline{\omega}^{\prime\prime} has been fixed, the number t¯i(ω¯)\overline{t}_{i}(\underline{\omega}) only depends on ωi\omega_{i}, not in ω¯~\tilde{\underline{\omega}}^{\prime} or ωj\omega_{j} for jij\neq i. Moreover, if c5c_{5} is big enough then there is a constant c7>0c_{7}^{\prime}>0 such that

Leb({ωi:t¯i(ω¯)L1ω¯^(θ¯i,θ¯i,si(ω¯^))})c7,Leb\left(\{\omega_{i}:\,\overline{t}_{i}(\underline{\omega})\in L^{-1}_{\hat{\underline{\omega}}}(\underline{\theta}^{i},\underline{\theta}^{\prime i},s_{i}(\hat{\underline{\omega}}))\}\right)\geq c_{7}^{\prime},

where ω¯^=(0¯,ω¯~,ω¯)\hat{\underline{\omega}}=(\underline{0},\tilde{\underline{\omega}}^{\prime},\underline{\omega}^{\prime\prime}).

Lemma 6.2.

If t¯i(ωi)L1ω¯^(θ¯i,θ¯i,si(ω¯^))\overline{t}_{i}(\omega_{i})\in L^{-1}_{\hat{\underline{\omega}}}(\underline{\theta}^{i},\underline{\theta}^{\prime i},s_{i}(\hat{\underline{\omega}})) then ti(ω¯)L0ω¯(θ¯i,θ¯i,si(ω¯))t_{i}(\underline{\omega})\in L^{0}_{\underline{\omega}}(\underline{\theta}^{i},\underline{\theta}^{\prime i},s_{i}(\underline{\omega})).

These two lemmas imply that

Leb({(ω1,,ωN):(ω1,,ωN,~ω¯,ω¯)Ω0(u)})(1c7)N=eNlog(1c7),Leb(\{(\omega_{1},...,\omega_{N}):\,\,(\omega_{1},...,\omega_{N},\tilde{}\underline{\omega}^{\prime},\underline{\omega}^{\prime\prime})\notin\Omega^{0}(u)\})\leq(1-c_{7}^{\prime})^{N}=e^{N\log(1-c_{7}^{\prime})},

this finishes the proof of proposition 4.1.

Proof of lemma 6.1:.

From equation (3) we know that

t¯i(ω¯)=(DFθ¯b¯i)1(t+scθ¯¯,ω¯b¯icθ¯b¯i).\overline{t}_{i}(\underline{\omega})=\left(DF^{\underline{\theta}^{\prime}}_{\underline{b}^{\prime i}}\right)^{-1}\cdot(t+sc^{\overline{\underline{\theta}},\underline{\omega}}_{\underline{b}^{i}}-c^{\underline{\theta}^{\prime}}_{\underline{b}^{\prime i}}).

The dependency on ω¯\underline{\omega} is on the term cθ¯¯,ω¯b¯ic^{\overline{\underline{\theta}},\underline{\omega}}_{\underline{b}^{i}}. Let θ¯^\hat{\underline{\theta}} such that θ¯¯=θ¯^a¯\overline{\underline{\theta}}=\hat{\underline{\theta}}\underline{a}, note that θ¯^\hat{\underline{\theta}} does not contain the word a¯\underline{a}, let bb be the last letter of b¯i\underline{b}^{i}, we have

(16) cθ¯¯,ω¯b¯i=kθ¯¯,ω¯(cω¯b¯i)=kθ¯^a¯,ω¯(fω¯b¯i(cω¯b))=(Fθ¯^,ω¯a¯)1kθ¯^,ω¯(fω¯a¯b¯i(cω¯b)).c^{\overline{\underline{\theta}},\underline{\omega}}_{\underline{b}^{i}}=k^{\overline{\underline{\theta}},\underline{\omega}}(c^{\underline{\omega}}_{\underline{b}^{i}})=k^{\hat{\underline{\theta}}\underline{a},\underline{\omega}}(f^{\underline{\omega}}_{\underline{b}^{i}}(c^{\underline{\omega}}_{b}))=\left(F^{\hat{\underline{\theta}},\underline{\omega}}_{\underline{a}}\right)^{-1}\circ k^{\hat{\underline{\theta}},\underline{\omega}}(f^{\underline{\omega}}_{\underline{a}\underline{b}^{i}}(c^{\underline{\omega}}_{b})).

We will prove that, assuming ω¯\underline{\omega}^{\prime\prime} is fixed, this expression only depends on ωi\omega_{i} and not in ωj\omega_{j} for jij\neq i or ω¯~\tilde{\underline{\omega}}^{\prime}, and it depends in a very specific way. Remember, see remark 3.3, that the base points cω¯ac^{\underline{\omega}}_{a} were chosen to be pre-periodic points and that in fact they do not depend on ω¯\underline{\omega}, i.e. cω¯a=cac^{\underline{\omega}}_{a}=c_{a}. Notice that θ¯¯i=θ¯¯b¯i\overline{\underline{\theta}}^{i}=\overline{\underline{\theta}}\underline{b}^{i} and d(θ¯¯i,θ¯i)ρ7/2d(\overline{\underline{\theta}}^{i},\underline{\theta}^{i})\lesssim\rho^{7/2}, then θ¯¯iΣnr\overline{\underline{\theta}}^{i}\in\Sigma^{-}_{nr} and a¯\underline{a} appears only once in θ¯¯i\overline{\underline{\theta}}^{i}. We will study the dependency on ωi\omega_{i} for the different terms in equation (16):

  • Let α¯\underline{\alpha} be a finite word at the end of θ¯¯i\overline{\underline{\theta}}^{i} strictly shorter than a¯b¯i\underline{a}\underline{b}^{i}. It is easy to prove by induction that fω¯α¯(cωb)f^{\underline{\omega}}_{\underline{\alpha}}(c^{\omega}_{b}) does not depend on ω¯\underline{\omega}^{\prime}. Indeed, suppose that α¯\underline{\alpha} and β¯=(c,d)α¯\underline{\beta}=(c,d)\underline{\alpha} are two such consecutive words. Assume fω¯α¯(cωb)f^{\underline{\omega}}_{\underline{\alpha}}(c^{\omega}_{b}) does not depend on ω¯\underline{\omega}^{\prime}, we have

    fω¯β¯(cωb)=fω¯(c,d)(fω¯α¯(cωb)).f^{\underline{\omega}}_{\underline{\beta}}(c^{\omega}_{b})=f^{\underline{\omega}}_{(c,d)}\left(f^{\underline{\omega}}_{\underline{\alpha}}(c^{\omega}_{b})\right).

    If the word β¯\underline{\beta} is shorter than some word in Σ(ρ1/2k)\Sigma(\rho^{1/2k}), then fω¯α¯(cωb)Gω¯(γ¯)Vρ(G(γ¯))f^{\underline{\omega}}_{\underline{\alpha}}(c^{\omega}_{b})\in G^{\underline{\omega}}(\underline{\gamma})\subset V_{\rho}(G(\underline{\gamma})) such that (c,d)γ¯Σ(ρ1/k)(c,d)\underline{\gamma}\in\Sigma(\rho^{1/k}) and γ¯\underline{\gamma} contains a word in Σ(ρ1/3k)\Sigma(\rho^{1/3k}) repeated (remember that cωbc^{\omega}_{b} is pre-periodic, with a uniform bounded period). Thus (c,d)γ¯(c,d)\underline{\gamma} cannot belong to Σ1\Sigma_{1} and using equation (4) one gets that fω¯β¯(cωb)f^{\underline{\omega}}_{\underline{\beta}}(c^{\omega}_{b}) does not depend on ω¯\underline{\omega}^{\prime} (in fact, in this case it does not depend on ω¯\underline{\omega}).

    If the word β¯\underline{\beta} is longer than any word in Σ(ρ1/2k)\Sigma(\rho^{1/2k}) then it begins with a word in Σ(ρ1/2k)\Sigma(\rho^{1/2k}) which can not be a¯\underline{a}. This implies that fω¯α¯(cωb)Gω¯(γ¯)Vρ(G(γ¯))f^{\underline{\omega}}_{\underline{\alpha}}(c^{\omega}_{b})\in G^{\underline{\omega}}(\underline{\gamma})\subset V_{\rho}(G(\underline{\gamma})) such that (c,d)γ¯Σ(ρ1/k)(c,d)\underline{\gamma}\in\Sigma(\rho^{1/k}), and the word (c,d)γ¯(c,d)\underline{\gamma} is not in Σ1(θ¯)\Sigma_{1}(\underline{\theta}). Thus fω¯β¯(cωb)f^{\underline{\omega}}_{\underline{\beta}}(c^{\omega}_{b}) does not depend on ω¯\underline{\omega}^{\prime}.

  • Let (a0,a1)(a_{0},a_{1}) be the first two letters of a¯\underline{a} and define α¯0\underline{\alpha}_{0} by a¯b¯i=(a0,a1)α¯0\underline{a}\underline{b}^{i}=(a_{0},a_{1})\underline{\alpha}_{0}. Define x0=fa0,a1(fω¯α¯0(cω¯b))x_{0}=f_{a_{0},a_{1}}(f^{\underline{\omega}}_{\underline{\alpha}_{0}}(c^{\underline{\omega}}_{b})), we already proved that x0x_{0} does not depend on ω¯\underline{\omega}^{\prime}. We have

    fω¯a¯b¯i(cω¯b)=fω¯a0,a1(fω¯α¯0(cω¯b))=x0+c5ρ1+1/2kωi.f^{\underline{\omega}}_{\underline{a}\underline{b}^{i}}(c^{\underline{\omega}}_{b})=f^{\underline{\omega}}_{a_{0},a_{1}}(f^{\underline{\omega}}_{\underline{\alpha}_{0}}(c^{\underline{\omega}}_{b}))=x_{0}+c_{5}\rho^{1+1/2k}\omega_{i}.
  • We now study kθ¯^,ω¯k^{\hat{\underline{\theta}},\underline{\omega}}. By definition

    kθ¯^,ω¯(z)=limnDfω¯θ¯^n(cθ^0)1(fω¯θ¯^n(z)fω¯θ¯^n(cθ^0)).k^{\hat{\underline{\theta}},\underline{\omega}}(z)=\lim_{n\to\infty}Df^{\underline{\omega}}_{\hat{\underline{\theta}}_{n}}(c_{\hat{\theta}_{0}})^{-1}(f^{\underline{\omega}}_{\hat{\underline{\theta}}_{n}}(z)-f^{\underline{\omega}}_{\hat{\underline{\theta}}_{n}}(c_{\hat{\theta}_{0}})).

    Using the same arguments as before we see that, since θ¯^\hat{\underline{\theta}} does not contain a¯\underline{a} and cθ^0c_{\hat{\theta}_{0}} is pre-periodic, fω¯θ¯^n(cθ^0)f^{\underline{\omega}}_{\hat{\underline{\theta}}_{n}}(c_{\hat{\theta}_{0}}) does not depend on ω¯\underline{\omega}^{\prime}. This also happens for zz in a neighborhood of cθ^0c_{\hat{\theta}_{0}}, hence Dfω¯θ¯^n(cθ^0)Df^{\underline{\omega}}_{\hat{\underline{\theta}}_{n}}(c_{\hat{\theta}_{0}}) is independent of ω¯\underline{\omega}^{\prime}. Again, the same arguments prove that if zGω¯(a¯)z\in G^{\underline{\omega}}(\underline{a}) then fω¯θ¯^n(z)=f(0¯,ω¯)θ¯^n(z)f^{\underline{\omega}}_{\hat{\underline{\theta}}_{n}}(z)=f^{(\underline{0},\underline{\omega}^{\prime\prime})}_{\hat{\underline{\theta}}_{n}}(z). We conclude that

    kθ¯^,ω¯(z)=kθ¯^,(0¯,ω¯)(z), and Dkθ¯^,ω¯(z)=Dkθ¯^,(0¯,ω¯)(z),k^{\hat{\underline{\theta}},\underline{\omega}}(z)=k^{\hat{\underline{\theta}},(\underline{0},\underline{\omega}^{\prime\prime})}(z),\text{ and }Dk^{\hat{\underline{\theta}},\underline{\omega}}(z)=Dk^{\hat{\underline{\theta}},(\underline{0},\underline{\omega}^{\prime\prime})}(z),

    for all zGω¯(a¯)z\in G^{\underline{\omega}}(\underline{a}).

  • We now treat Fθ¯^,ω¯a¯F^{\hat{\underline{\theta}},\underline{\omega}}_{\underline{a}}. One has that

    Fθ¯^,ω¯a¯(0)=cθ¯^,ω¯a¯=kθ¯^,ω¯(cω¯a¯),DFθ¯^,ω¯a¯=Dkθ¯^,ω¯(cω¯a¯)Dfω¯a¯(cω¯a),F^{\hat{\underline{\theta}},\underline{\omega}}_{\underline{a}}(0)=c^{\hat{\underline{\theta}},\underline{\omega}}_{\underline{a}}=k^{\hat{\underline{\theta}},\underline{\omega}}(c^{\underline{\omega}}_{\underline{a}}),\,\,DF^{\hat{\underline{\theta}},\underline{\omega}}_{\underline{a}}=Dk^{\hat{\underline{\theta}},\underline{\omega}}(c^{\underline{\omega}}_{\underline{a}})\cdot Df^{\underline{\omega}}_{\underline{a}}(c^{\underline{\omega}}_{a}),

    where aa is the last letter in a¯\underline{a}. Given that a¯Σ(ρ1/2k)\underline{a}\in\Sigma(\rho^{1/2k}) and cω¯a=cac^{\underline{\omega}}_{a}=c_{a} is pre-periodic we conclude that cω¯a¯=fω¯a¯(cω¯a)c^{\underline{\omega}}_{\underline{a}}=f^{\underline{\omega}}_{\underline{a}}(c^{\underline{\omega}}_{a}) and Dfω¯a¯(cω¯a)Df^{\underline{\omega}}_{\underline{a}}(c^{\underline{\omega}}_{a}) are independent of ω¯\underline{\omega}. On the other hand, given that cω¯a¯Gω¯(a¯)c^{\underline{\omega}}_{\underline{a}}\in G^{\underline{\omega}}(\underline{a}) and θ¯^\hat{\underline{\theta}} does not contain a¯\underline{a} we obtain that kθ¯^,ω¯(cω¯a¯)k^{\hat{\underline{\theta}},\underline{\omega}}(c^{\underline{\omega}}_{\underline{a}}) does not depend on ω¯\underline{\omega}^{\prime}. We conclude that Fθ¯^,ω¯a¯F^{\hat{\underline{\theta}},\underline{\omega}}_{\underline{a}} is independent of ω¯\underline{\omega}^{\prime}.

From the previous analysis we get that t¯i(ω¯)\overline{t}_{i}(\underline{\omega}) only depends on ωi\omega_{i} and not in ωj\omega_{j} for jij\neq i or ω¯\underline{\omega}^{\prime}. Moreover, we have

cθ¯¯,ω¯b¯i=(Fθ¯^,(0¯,ω¯)a¯)1kθ¯^,(0¯,ω¯)(x0+c5ρ1+1/2kωi),c^{\overline{\underline{\theta}},\underline{\omega}}_{\underline{b}^{i}}=\left(F^{\hat{\underline{\theta}},(\underline{0},\underline{\omega}^{\prime\prime})}_{\underline{a}}\right)^{-1}\circ k^{\hat{\underline{\theta}},(\underline{0},\underline{\omega}^{\prime\prime})}(x_{0}+c_{5}\rho^{1+1/2k}\omega_{i}),

taking derivative respect to ωi\omega_{i} we get

Dωicθ¯¯,ω¯b¯i=(DFθ¯^,(0¯,ω¯)a¯)1Dkθ¯^,(0¯,ω¯)(x0+c5ρ1+1/2kωi)c5ρ1+1/2k.D_{\omega_{i}}c^{\overline{\underline{\theta}},\underline{\omega}}_{\underline{b}^{i}}=\left(DF^{\hat{\underline{\theta}},(\underline{0},\underline{\omega}^{\prime\prime})}_{\underline{a}}\right)^{-1}\cdot Dk^{\hat{\underline{\theta}},(\underline{0},\underline{\omega}^{\prime\prime})}(x_{0}+c_{5}\rho^{1+1/2k}\omega_{i})\cdot c_{5}\rho^{1+1/2k}.

Observe that since x0+c5ρ1+1/2kωi=fω¯a¯b¯i(cω¯b)x_{0}+c_{5}\rho^{1+1/2k}\omega_{i}=f^{\underline{\omega}}_{\underline{a}\underline{b}^{i}}(c^{\underline{\omega}}_{b}) belongs to the Cantor set Kω¯K^{\underline{\omega}} then the matrix Dkθ¯^,(0¯,ω¯)(x0+c5ρ1+1/2kωi)Dk^{\hat{\underline{\theta}},(\underline{0},\underline{\omega}^{\prime\prime})}(x_{0}+c_{5}\rho^{1+1/2k}\omega_{i}) is conformal. Moreover

Dωit¯i(ω¯)=(DFθ¯b¯i)1sDωicθ¯¯,ω¯b¯i,D_{\omega_{i}}\overline{t}_{i}(\underline{\omega})=\left(DF^{\underline{\theta}^{\prime}}_{\underline{b}^{\prime i}}\right)^{-1}\cdot sD_{\omega_{i}}c^{\overline{\underline{\theta}},\underline{\omega}}_{\underline{b}^{i}},

therefore ωit¯i(ω¯)\omega_{i}\to\overline{t}_{i}(\underline{\omega}) defines a holomorphic function, which we will denote by t¯i(ωi)\overline{t}_{i}(\omega_{i}). From the previous formulas it is not difficult to see that Dωit¯i(ωi)c5\|D_{\omega_{i}}\overline{t}_{i}(\omega_{i})\|\approx c_{5}.

Now we show that t¯i(0)=t¯i(0¯,ω¯)\overline{t}_{i}(0)=\overline{t}_{i}(\underline{0},\underline{\omega}^{\prime\prime}) is uniformly bounded. We already know that |t~i|2(1+eR)|\tilde{t}_{i}|\leq 2(1+e^{R}), using this inequality together with d(θ¯¯,θ¯~)<3ρ5/2d(\overline{\underline{\theta}},\tilde{\underline{\theta}})<3\rho^{5/2}, d(θ¯,θ¯~)<2ρ5/2d(\underline{\theta}^{\prime},\tilde{\underline{\theta}}^{\prime})<2\rho^{5/2}, |tt~|<ρ|t-\tilde{t}|<\rho, |ss~|<ρ|s-\tilde{s}|<\rho and equation (3) one gets that |t¯i(0)|1|\overline{t}_{i}(0)|\lesssim 1. Therefore, choosing c5c_{5} big enough one guarantees that the image of t¯i(ωi)\overline{t}_{i}(\omega_{i}) contains L1ω¯^(θ¯i,θ¯i,si(ω¯^))L^{-1}_{\hat{\underline{\omega}}}(\underline{\theta}^{i},\underline{\theta}^{\prime i},s_{i}(\hat{\underline{\omega}})) (see lemma 6.3). Having chosen c5c_{5} this way, the fact that Dωit¯i(ωi)c5\|D_{\omega_{i}}\overline{t}_{i}(\omega_{i})\|\approx c_{5} and proposition 4.2 gives that there is a constant c7c_{7}^{\prime} such that

Leb({ωi:t¯i(ω¯)L1ω¯^(θ¯i,θ¯i,si(ω¯^))})c7.Leb\left(\{\omega_{i}:\,\overline{t}_{i}(\underline{\omega})\in L^{-1}_{\hat{\underline{\omega}}}(\underline{\theta}^{i},\underline{\theta}^{\prime i},s_{i}(\hat{\underline{\omega}}))\}\right)\geq c_{7}^{\prime}.

In the previous proof we used the following lemma, it is proven using standard arguments in analysis, for completeness we present the proof.

Lemma 6.3.

Let f:B(0,1)nnf:B(0,1)\subset\mathbbm{R}^{n}\to\mathbbm{R}^{n} be C1C^{1} on B(0,1)B(0,1) and such that m(Df(x))>c5m(Df(x))>c_{5} for all xB(0,1)x\in B(0,1). Given rr, if c5c_{5} is big enough, depending on rr, then B(0,r)f(B(0,1))B(0,r)\subset f(B(0,1)).

Proof.

Redefining ff as ff(0)f-f(0) and taking rr as r+f(0)r+f(0), one can assume f(0)=0f(0)=0. Since ff is C1C^{1} and m(Df(x))>c5>0m(Df(x))>c_{5}>0 then ff is a C1C^{1} local diffeomorphism, hence its image f(B(0,1))f(B(0,1)) is open. Let hh be a point in nf(B(0,1/2))\mathbbm{R}^{n}\setminus f(B(0,1/2)) which is closest to 0, thus λhf(B(0,1/2))\lambda h\in f(B(0,1/2)) for all 0λ<10\leq\lambda<1. We can cover B¯(0,1/2)\overline{B}(0,1/2) by a finite number of open sets such that in each one of these sets ff is a diffeomorphism onto its image. We can use this cover to lift curves in f(B(0,1/2))¯\overline{f(B(0,1/2))} (In fact, one can prove that f|B(0,1/2):B(0,1/2)f(B(0,1/2))f|_{B(0,1/2)}:B(0,1/2)\to f(B(0,1/2)) is a covering map). Consider α:[0,1]f(B(0,1/2))¯\alpha:[0,1]\to\overline{f(B(0,1/2))} given by α(t)=th\alpha(t)=th. Denote by β\beta a lifting of α\alpha, i.e. fβ=αf\circ\beta=\alpha, such that β(0)=0\beta(0)=0. The curve β\beta is C1C^{1} and β(1)B(0,1/2)\beta(1)\notin B(0,1/2), otherwise this would contradict the choice of hh. Therefore

|h|=length(α)=01|ddt(fβ)|dt01m(Df(β(t)))|ddtβ|dtc501|ddtβ|dtc5/2.|h|=length(\alpha)=\int_{0}^{1}\left|\frac{d}{dt}(f\circ\beta)\right|dt\geq\int_{0}^{1}m(Df(\beta(t)))\left|\frac{d}{dt}\beta\right|dt\geq c_{5}\int_{0}^{1}\left|\frac{d}{dt}\beta\right|dt\geq c_{5}/2.

If c5>2rc_{5}>2r then |h|>r|h|>r and the desired result follows. ∎

Proof of lemma 6.2:.

Let t¯i(ωi)L1ω¯^(θ¯i,θ¯i,si(ω¯^))\overline{t}_{i}(\omega_{i})\in L^{-1}_{\hat{\underline{\omega}}}(\underline{\theta}^{i},\underline{\theta}^{\prime i},s_{i}(\hat{\underline{\omega}})), then there exists pairs (d¯j,d¯j)(\underline{d}^{j},\underline{d}^{\prime j}), 1jN1\leq j\leq N, such that if we write

Tω¯^(i)d¯jTd¯j(θ¯i,θ¯i,si(ω¯^),t¯i(ωi))=(θ¯id¯j,θ¯id¯j,s^(j),t^(j)),T^{\hat{\underline{\omega}}(i)}_{\underline{d}^{j}}T^{\prime}_{\underline{d}^{\prime j}}(\underline{\theta}^{i},\underline{\theta}^{\prime i},s_{i}(\hat{\underline{\omega}}),\overline{t}_{i}(\omega_{i}))=(\underline{\theta}^{i}\underline{d}^{j},\underline{\theta}^{\prime i}\underline{d}^{\prime j},\hat{s}_{(j)},\hat{t}_{(j)}),

where ω¯^(i)\hat{\underline{\omega}}(i) is obtained from ω¯^\hat{\underline{\omega}} by setting the value 0 in the coordinates belonging to Σ1(θ¯i)\Sigma_{1}(\underline{\theta}^{i}), then

  • (i)

    d¯1\underline{d}^{1},…,d¯N\underline{d}^{N} are pairwise disjoint.

  • (ii)

    θ¯id¯jΣnr\underline{\theta}^{i}\underline{d}^{j}\in\Sigma^{-}_{nr}.

  • (iii)’

    |ss^(j)|<34c4ρ1/2|s^{*}-\hat{s}_{(j)}|<\frac{3}{4}c_{4}\rho^{1/2} implies (θ¯id¯j,θ¯id¯j,s)~(\underline{\theta}^{i}\underline{d}^{j},\underline{\theta}^{\prime i}\underline{d}^{\prime j},s^{*})\in\tilde{\mathcal{L}}.

  • (iv)’

    |t^(j)|<1+eR|\hat{t}_{(j)}|<1+e^{R}.

We will prove that ti(ω¯)L0ω¯(θ¯i,θ¯i,si(ω¯))t_{i}(\underline{\omega})\in L^{0}_{\underline{\omega}}(\underline{\theta}^{i},\underline{\theta}^{\prime i},s_{i}(\underline{\omega})). To do this, we will prove that if write

Tω¯(i)d¯jTd¯j(θ¯i,θ¯i,si(ω¯),ti(ω¯))=(θ¯id¯j,θ¯id¯j,s(j),t(j)),T^{\underline{\omega}(i)}_{\underline{d}^{j}}T^{\prime}_{\underline{d}^{\prime j}}(\underline{\theta}^{i},\underline{\theta}^{\prime i},s_{i}(\underline{\omega}),t_{i}(\underline{\omega}))=(\underline{\theta}^{i}\underline{d}^{j},\underline{\theta}^{\prime i}\underline{d}^{\prime j},s_{(j)},t_{(j)}),

where ω¯(i)\underline{\omega}(i) is obtained from ω¯\underline{\omega} by setting the value 0 in the coordinates belonging to Σ1(θ¯i)\Sigma_{1}(\underline{\theta}^{i}), then

  • (iii)

    |ss(j)|<23c4ρ1/2|s^{*}-s_{(j)}|<\frac{2}{3}c_{4}\rho^{1/2} implies (θ¯id¯j,θ¯id¯j,s)~(\underline{\theta}^{i}\underline{d}^{j},\underline{\theta}^{\prime i}\underline{d}^{\prime j},s^{*})\in\tilde{\mathcal{L}}.

  • (iv)

    |t(j)|<2(1+eR)|t_{(j)}|<2(1+e^{R}).

First, notice that by lemma 3.2 we have that |si(ω¯)si(ω¯^)|ρ11/2k|s_{i}(\underline{\omega})-s_{i}(\hat{\underline{\omega}})|\lesssim\rho^{1-1/2k}. To obtain s(j)s_{(j)} and s^(j)\hat{s}_{(j)} we applied the same renormalizations, with the same limit geometries but with different values of the perturbation parameter, therefore |s(j)s^(j)|ρ11/2k=o(ρ1/2)|s_{(j)}-\hat{s}_{(j)}|\lesssim\rho^{1-1/2k}=o(\rho^{1/2}). We conclude that, taking ρ\rho small enough, item (iii)’ implies item (iii).

Now, to prove that (iv)’ implies (iv) we need stronger estimates. We have

t^(j)\displaystyle\hat{t}_{(j)} =(DFθ¯id¯j)1(t¯i(ωi)+si(ω¯^)cθ¯i,ω¯^(i)d¯jcθ¯id¯j),\displaystyle=\left(DF^{\underline{\theta}^{\prime i}}_{\underline{d}^{\prime j}}\right)^{-1}\cdot(\bar{t}_{i}(\omega_{i})+s_{i}(\hat{\underline{\omega}})c^{\underline{\theta}^{i},\hat{\underline{\omega}}(i)}_{\underline{d}^{j}}-c^{\underline{\theta}^{\prime i}}_{\underline{d}^{\prime j}}),
t(j)\displaystyle t_{(j)} =(DFθ¯id¯j)1(ti(ω¯)+si(ω¯)cθ¯i,ω¯(i)d¯jcθ¯id¯j).\displaystyle=\left(DF^{\underline{\theta}^{\prime i}}_{\underline{d}^{\prime j}}\right)^{-1}\cdot(t_{i}(\underline{\omega})+s_{i}(\underline{\omega})c^{\underline{\theta}^{i},\underline{\omega}(i)}_{\underline{d}^{j}}-c^{\underline{\theta}^{\prime i}}_{\underline{d}^{\prime j}}).

We will compare the corresponding terms:

  • Using that d(θ¯,θ¯¯)<ρ5/2d(\underline{\theta},\overline{\underline{\theta}})<\rho^{5/2}, one has

    |t¯i(ωi)ti(ω¯)|=|(DFθ¯b¯i)1s[cθ¯¯,ω¯b¯icθ¯,ω¯b¯i]|ρ3/2.|\overline{t}_{i}(\omega_{i})-t_{i}(\underline{\omega})|=\left|\left(DF^{\underline{\theta}^{\prime}}_{\underline{b}^{\prime i}}\right)^{-1}\cdot s\left[c^{\overline{\underline{\theta}},\underline{\omega}}_{\underline{b}^{i}}-c^{\underline{\theta},\underline{\omega}}_{\underline{b}^{i}}\right]\right|\lesssim\rho^{3/2}.
  • Notice that ω¯(i)\underline{\omega}(i) and ^ω¯(i)\hat{}\underline{\omega}(i) only differ at their values in the coordinates (ω¯1,,ω¯N)(\underline{\omega}_{1},...,\underline{\omega}_{N}). Using that θ¯id¯jΣnr\underline{\theta}^{i}\underline{d}^{j}\in\Sigma_{nr}^{-} one sees that a¯\underline{a} is not contained in d¯j\underline{d}^{j}. Then, from the arguments used in lemma 6.1, we see that cω¯(i)d¯j=c^ω¯(i)d¯jc^{\underline{\omega}(i)}_{\underline{d}^{j}}=c^{\hat{}\underline{\omega}(i)}_{\underline{d}^{j}}. Moreover, since θ¯i\underline{\theta}^{i} ends in a¯b¯i\underline{a}\underline{b}^{i} and θ¯id¯jΣnr\underline{\theta}^{i}\underline{d}^{j}\in\Sigma^{-}_{nr} then

    fω¯(i)θ¯in(cω¯(i)d¯j)=f^ω¯(i)θ¯in(c^ω¯(i)d¯j)f^{\underline{\omega}(i)}_{\underline{\theta}^{i}_{n}}(c^{\underline{\omega}(i)}_{\underline{d}^{j}})=f^{\hat{}\underline{\omega}(i)}_{\underline{\theta}^{i}_{n}}(c^{\hat{}\underline{\omega}(i)}_{\underline{d}^{j}})

    for all nn such that θ¯in\underline{\theta}^{i}_{n} is strictly shorter that a¯b¯i\underline{a}\underline{b}^{i}. For the same reasons we also have

    fω¯(i)θ¯in(cθ0)=f^ω¯(i)θ¯in(cθ0)f^{\underline{\omega}(i)}_{\underline{\theta}^{i}_{n}}(c_{\theta_{0}})=f^{\hat{}\underline{\omega}(i)}_{\underline{\theta}^{i}_{n}}(c_{\theta_{0}})

    for all nn such that θ¯in\underline{\theta}^{i}_{n} is strictly shorter than a¯b¯i\underline{a}\underline{b}^{i}. Both equalities still hold for zz in a neighborhood of either of the points. Thus we can use remark 3.3 and lemma 3.2 to obtain that

    |cθ¯i,ω¯(i)d¯jcθ¯i,^ω¯(i)d¯j|\displaystyle|c^{\underline{\theta}^{i},\underline{\omega}(i)}_{\underline{d}^{j}}-c^{\underline{\theta}^{i},\hat{}\underline{\omega}(i)}_{\underline{d}^{j}}| =|kθ¯i,ω¯(i)(cω¯(i)d¯j)kθ¯i,^ω¯(i)(c^ω¯(i)d¯j)|\displaystyle=|k^{\underline{\theta}^{i},\underline{\omega}(i)}(c^{\underline{\omega}(i)}_{\underline{d}^{j}})-k^{\underline{\theta}^{i},\hat{}\underline{\omega}(i)}(c^{\hat{}\underline{\omega}(i)}_{\underline{d}^{j}})|
    diam(Gω¯(i)(a¯b¯i))diam(Gω¯(i)(a¯))diam(Gω¯(i)(b¯i))\displaystyle\lesssim diam(G^{\underline{\omega}(i)}(\underline{a}\underline{b}^{i}))\lesssim diam(G^{\underline{\omega}(i)}(\underline{a}))diam(G^{\underline{\omega}(i)}(\underline{b}^{i}))
    diam(G(a¯))diam(G(b¯i))ρ1+1/2k.\displaystyle\lesssim diam(G(\underline{a}))diam(G(\underline{b}^{i}))\approx\rho^{1+1/2k}.
  • Notice that ω¯\underline{\omega} and ^ω¯\hat{}\underline{\omega} only differ in the values associated to the coordinates (ω1,,ωN)(\omega_{1},...,\omega_{N}). We will use θ¯¯\overline{\underline{\theta}} again. Consider

    Tω¯b¯iTb¯i(¯θ¯,θ¯,s)=(θ¯¯b¯i,θ¯b¯i,s¯i(ω¯))T^{\underline{\omega}}_{\underline{b}^{i}}T^{\prime}_{\underline{b}^{\prime i}}(\overline{}\underline{\theta},\underline{\theta}^{\prime},s)=(\overline{\underline{\theta}}\underline{b}^{i},\underline{\theta}^{\prime}\underline{b}^{\prime i},\overline{s}_{i}(\underline{\omega}))

    and

    T^ω¯b¯iTb¯i(¯θ¯,θ¯,s)=(θ¯¯b¯i,θ¯b¯i,s¯i(^ω¯)).T^{\hat{}\underline{\omega}}_{\underline{b}^{i}}T^{\prime}_{\underline{b}^{\prime i}}(\overline{}\underline{\theta},\underline{\theta}^{\prime},s)=(\overline{\underline{\theta}}\underline{b}^{i},\underline{\theta}^{\prime}\underline{b}^{\prime i},\overline{s}_{i}(\hat{}\underline{\omega})).

    Since d(θ¯,¯θ¯)<ρ5/2d(\underline{\theta},\overline{}\underline{\theta})<\rho^{5/2} one gets |si(ω¯)s¯i(ω¯)|ρ5/2|s_{i}(\underline{\omega})-\overline{s}_{i}(\underline{\omega})|\lesssim\rho^{5/2} and |si(^ω¯)s¯i(^ω¯)|ρ5/2|s_{i}(\hat{}\underline{\omega})-\overline{s}_{i}(\hat{}\underline{\omega})|\lesssim\rho^{5/2}. Thus we only need to estimate |s¯i(ω¯)s¯i(^ω¯)||\overline{s}_{i}(\underline{\omega})-\overline{s}_{i}(\hat{}\underline{\omega})|. Remember θ¯^\hat{\underline{\theta}} which verified ¯θ¯=^θ¯a¯\overline{}\underline{\theta}=\hat{}\underline{\theta}\underline{a}, write

    kθ¯¯,ω¯=(F^θ¯,ω¯a¯)1k^θ¯,ω¯fω¯a¯,k^{\overline{\underline{\theta}},\underline{\omega}}=(F^{\hat{}\underline{\theta},\underline{\omega}}_{\underline{a}})^{-1}\circ k^{\hat{}\underline{\theta},\underline{\omega}}\circ f^{\underline{\omega}}_{\underline{a}},

    then

    Dkθ¯¯,ω¯=(DF^θ¯,ω¯a¯)1(Dk^θ¯,ω¯fω¯a¯)Dfω¯a¯.Dk^{\overline{\underline{\theta}},\underline{\omega}}=(DF^{\hat{}\underline{\theta},\underline{\omega}}_{\underline{a}})^{-1}\cdot(Dk^{\hat{}\underline{\theta},\underline{\omega}}\circ f^{\underline{\omega}}_{\underline{a}})\cdot Df^{\underline{\omega}}_{\underline{a}}.

    Using the analysis and notation from lemma 6.1 we see that: F^θ¯,ω¯a¯F^{\hat{}\underline{\theta},\underline{\omega}}_{\underline{a}} does not depend on ω¯\underline{\omega}^{\prime}, Dk^θ¯,ω¯(z)=Dk^θ¯,^ω¯(z)Dk^{\hat{}\underline{\theta},\underline{\omega}}(z)=Dk^{\hat{}\underline{\theta},\hat{}\underline{\omega}}(z) for all zGω¯(a¯)G^ω¯(a¯)z\in G^{\underline{\omega}}(\underline{a})\cup G^{\hat{}\underline{\omega}}(\underline{a}) (in particular cω¯a¯b¯ic^{\underline{\omega}}_{\underline{a}\underline{b}^{i}} and c^ω¯a¯b¯ic^{\hat{}\underline{\omega}}_{\underline{a}\underline{b}^{i}}). We also have

    c^ω¯a¯b¯i=x0,cω¯a¯b¯i=x0+c5ρ1+1/2kωic^{\hat{}\underline{\omega}}_{\underline{a}\underline{b}^{i}}=x_{0},\,\,c^{\underline{\omega}}_{\underline{a}\underline{b}^{i}}=x_{0}+c_{5}\rho^{1+1/2k}\omega_{i}

    and Dfω¯a¯(cω¯b¯i)=Df^ω¯a¯(c^ω¯b¯i)Df^{\underline{\omega}}_{\underline{a}}(c^{\underline{\omega}}_{\underline{b}^{i}})=Df^{\hat{}\underline{\omega}}_{\underline{a}}(c^{\hat{}\underline{\omega}}_{\underline{b}^{i}}). Therefore

    |Dkθ¯¯,ω¯(cω¯b¯i)Dkθ¯¯,^ω¯(c^ω¯b¯i)|\displaystyle|Dk^{\overline{\underline{\theta}},\underline{\omega}}(c^{\underline{\omega}}_{\underline{b}^{i}})-Dk^{\overline{\underline{\theta}},\hat{}\underline{\omega}}(c^{\hat{}\underline{\omega}}_{\underline{b}^{i}})| =|Dfω¯a¯(cω¯b¯i)||DF^θ¯,ω¯a¯||Dk^θ¯,ω¯(x0+c5ρ1+1/2kωi)Dk^θ¯,ω¯(x0)|\displaystyle=\frac{|Df^{\underline{\omega}}_{\underline{a}}(c^{\underline{\omega}}_{\underline{b}^{i}})|}{|DF^{\hat{}\underline{\theta},\underline{\omega}}_{\underline{a}}|}\cdot|Dk^{\hat{}\underline{\theta},\underline{\omega}}(x_{0}+c_{5}\rho^{1+1/2k}\omega_{i})-Dk^{\hat{}\underline{\theta},\underline{\omega}}(x_{0})|
    ρ1+1/2k,\displaystyle\lesssim\rho^{1+1/2k},

    Here we used that limit geometries are C2C^{2} and the norm of D2kθ¯^,ω¯D^{2}k^{\hat{\underline{\theta}},\underline{\omega}} can be uniformly bounded. Using that DFθ¯,ω¯d¯=Dkθ¯,ω¯(cω¯d¯)Dfω¯d¯(cd)DF^{\underline{\theta},\underline{\omega}}_{\underline{d}}=Dk^{\underline{\theta},\underline{\omega}}(c^{\underline{\omega}}_{\underline{d}})\cdot Df^{\underline{\omega}}_{\underline{d}}(c_{d}) for any word d¯Σfin\underline{d}\in\Sigma^{fin} that ends with the letter dd, one can conclude that

    |DF¯θ¯,ω¯b¯iDF¯θ¯,^ω¯b¯i|\displaystyle|DF^{\overline{}\underline{\theta},\underline{\omega}}_{\underline{b}^{i}}-DF^{\overline{}\underline{\theta},\hat{}\underline{\omega}}_{\underline{b}^{i}}| =|Dfω¯b¯i(cbi)||Dk¯θ¯,ω¯(cω¯b¯i)Dk¯θ¯,^ω¯(c^ω¯b¯i)|ρ2+1/2k.\displaystyle=|Df^{\underline{\omega}}_{\underline{b}^{i}}(c_{b^{i}})|\cdot|Dk^{\overline{}\underline{\theta},\underline{\omega}}(c^{\underline{\omega}}_{\underline{b}^{i}})-Dk^{\overline{}\underline{\theta},\hat{}\underline{\omega}}(c^{\hat{}\underline{\omega}}_{\underline{b}^{i}})|\lesssim\rho^{2+1/2k}.

    And from this

    |DF¯θ¯,ω¯b¯iDFθ¯b¯iDF¯θ¯,^ω¯b¯iDFθ¯b¯i|ρ1+1/2k,\left|\frac{DF^{\overline{}\underline{\theta},\underline{\omega}}_{\underline{b}^{i}}}{DF^{\underline{\theta}^{\prime}}_{\underline{b}^{\prime i}}}-\frac{DF^{\overline{}\underline{\theta},\hat{}\underline{\omega}}_{\underline{b}^{i}}}{DF^{\underline{\theta}^{\prime}}_{\underline{b}^{\prime i}}}\right|\lesssim\rho^{1+1/2k},

    therefore |s¯i(ω¯)s¯i(ω¯^)|ρ1+1/2k|\overline{s}_{i}(\underline{\omega})-\overline{s}_{i}(\hat{\underline{\omega}})|\lesssim\rho^{1+1/2k} and |si(ω¯)si(ω¯^)|ρ1+1/2k|s_{i}(\underline{\omega})-s_{i}(\hat{\underline{\omega}})|\lesssim\rho^{1+1/2k}.

From the previous estimates we conclude that |t^(j)t(j)|ρ1/2k|\hat{t}_{(j)}-t_{(j)}|\lesssim\rho^{1/2k}, then if ρ\rho is small enough (iv)’ implies (iv). ∎

References

  • [1] C. Moreira and J.-C. Yoccoz. Stable intersections of regular cantor sets with large hausdorff dimensions. Annals of Mathematics, 154(1):45–96, 2001.
  • [2] Jacob Palis and Floris Takens. Cycles and measure of bifurcation sets for two-dimensional diffeomorphisms. Inventiones mathematicae, 82(3):397–422, 1985.
  • [3] Jacob Palis and Floris Takens. Hyperbolicity and the creation of homoclinic orbits. Annals of Mathematics, 125(2):337–374, 1987.
  • [4] Gregery T. Buzzard. Infinitely many periodic attractors for holomorphic maps of 2 variables. Annals of Mathematics, 145(2):389–417, 1997.
  • [5] C. G. Moreira and J.-C. Yoccoz. Tangences homoclines stables pour des ensembles hyperboliques de grande dimension fractale. Annales scientifiques de l’École Normale Supérieure, 4e série, 43(1):1–68, 2010.
  • [6] H. Araújo and C. G. Moreira. Stable intersections of conformal Cantor sets. arXiv e-prints, page arXiv:1910.03715, Oct 2019.
  • [7] C. G. Moreira and A. Zamudio. Scale Recurrence Lemma and Dimension Formula for Cantor Sets in the Complex Plane. arXiv e-prints, page arXiv:1911.03041, Nov 2019.
  • [8] A. Zamudio. Complex Cantor sets: scale recurrence lemma and dimension formula. PhD thesis, Instituto Nacional de Matematica Pura e Aplicada, 2017.
  • [9] J. Palis and F. Takens. Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations: fractal dimensions and infinitely many attractors in dynamics. Number 35 in Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1995.
  • [10] Michael Shub. Global Stability of Dynamical Systems. Springer, 1987.
  • [11] Pertti Mattila. Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1995.