This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Stabilizer codes for Open Quantum Systems

Francisco Revson F. Pereira111[email protected]; current affiliation: IQM, Nymphenburgerstr. 86, 80636 Munich, Germany. School of Science and Technology, University of Camerino, I-62032 Camerino, Italy INFN, Sezione di Perugia, I-06123 Perugia, Italy Stefano Mancini School of Science and Technology, University of Camerino, I-62032 Camerino, Italy INFN, Sezione di Perugia, I-06123 Perugia, Italy Giuliano G. La Guardia Department of Mathematics and Statistics, State University of Ponta Grossa, 84030-900 Ponta Grossa, PR, Brazil
Abstract

The Lindblad master equation describes the evolution of a large variety of open quantum systems. An important property of some open quantum systems is the existence of decoherence-free subspaces. A quantum state from a decoherence-free subspace will evolve unitarily. However, there is no procedural and optimal method for constructing a decoherence-free subspace. In this paper, we develop tools for constructing decoherence-free stabilizer codes for open quantum systems governed by Lindblad master equation. This is done by pursuing an extension of the stabilizer formalism beyond the celebrated group structure of Pauli error operators. We then show how to utilize decoherence-free stabilizer codes in quantum metrology in order to attain the Heisenberg limit scaling with low computational complexity.

Keywords: Open Quantum Systems, Decoherence-free Subspaces, Stabilizer Codes, Heisenberg Limit Scaling

1 Introduction

The second quantum revolution emerges from the possibility of designing and controlling quantum systems. The complexity of controlling quantum systems can be reduced by decreasing the noise due to system-environment interaction. This can be achieved by resorting to quantum error correcting codes. Among them are the stabilizer codes [18]. These codes were proposed by Gottesman [18]. Several works have extended the original construction method in order to incorporate Hilbert spaces and quantum systems with different structures [9, 19, 32, 5, 23, 8, 7, 14, 31]. As an important result, it was shown that stabilizer codes exist if and only if there exist classical block codes obeying an orthogonality rule; e.g., Euclidean and Hermitian self-orthogonality [23]. Such a duality between stabilizer codes and classical block codes has stimulated several works [23, 8, 7, 20, 14, 35, 33, 31, 34]. Nevertheless, there is still room for novelties. In particular, we can find at least two relevant points not envisioned in previous works.

Firstly, consider the error set and the algebraic structure associated with it. One will see that the errors obey a group structure with the composition of operators as the group operation. However, in several practical cases, one has an additional operation in play, which is the sum of operators. In these applications, a ring or vector space structure is needed. This is the framework we are going to consider in this paper. As a consequence of this new and intricate formulation, the standard dual structure of stabilizer codes will not be block codes in the general case. We need to abandon the idea of classical codes as vector spaces and work with additive groups. For these additive groups, we introduce a new sum operation that corresponds to the sum and composition of operators. A homomorphism is given between operators and additive codes.

Secondly, stabilizer codes are often designed for a specific quantum channel, or anyway their performance vary from channel to channel [6]. Having a dynamical evolution means to deal with time varying Kraus operators, or equivalently with time varying quantum channels. Hence, in such a case it might be not satisfactory to resort to the standard stabilizer codes construction. In this paper, we consider an open quantum system described by a Lindblad master equation. This class of equations is the most general form for the generator of a quantum dynamical semigroup. We construct stabilizer codes able to eliminate the dissipator part of the Lindblad master equation, thus turning the evolution into unitary. As we are going to show, this is possible since the stabilizer code corresponds to a decoherence-free subspace. A state from a decoherence-free subspace will evolve unitarily; i.e., the dissipator part of the Lindblad master equation will not contribute to the evolution of the state [22]. Even though the stabilizer code constructed is a subspace of the corresponding decoherence-free subspace, an important advancement is made here. Using the stabilizer code construction we can derive a procedural and optimal method, in terms of computational complexity, for constructing the decoherence-free subspace that corresponds to the stabilizer code.

Decoherence-free subspace can be regarded as a particular case of subsystem codes [2]. Suppose we decompose the Hilbert space as =(𝒞𝒟)\mathcal{H}=(\mathcal{C}\otimes\mathcal{D})\oplus\mathcal{B}, where the subsystem code belongs to 𝒞\mathcal{C}, 𝒟\mathcal{D} is a second subsystem, and we are partitioning \mathcal{H} into two subspaces, \mathcal{B} and 𝒞𝒟\mathcal{C}\otimes\mathcal{D}. The concept of a noiseless subsystem is that symmetries on the system-environment evolution factor the interaction Hamiltonian with respect to some subsystem structure on the Hilbert space \mathcal{H} [2]. One can describe decoherence-free subspaces as a subsystem code where there is no subsystem 𝒟\mathcal{D} and the code relies on symmetries that factor the interaction Hamiltonian with respect to system and environment.

Quantum metrology aims at using quantum systems in order to improve the estimation of parameters. It is possible to show that the reduction one can obtain in terms of the number of probes a quantum system can achieve is quadratically faster than the best classical strategy [16]. This is characterized by the Heisenberg limit (HL). In this paper, as an application of the developed theory, we present a method to achieve the HL using decoherence-free stabilizer codes. It differs quite significantly from the existing methods in the literature. In previous works, under the hypothesis that the Hamiltonian is not in Lindblad span (HNLS), joint encoding and decoding schemes are presented in order to obtain the Heisenberg limit [10, 37, 25, 17, 11]. In our method, using decoherence-free subspaces for quantum metrology, the dissipator part of the open quantum system does not contribute to the evolution. Hence, under certain hypothesis, we demonstrate that it is possible to achieve the HL using decoherence-free stabilizer codes. Furthermore, since the system evolves unitarily without any interaction between the system and environment, there is no need for a decoding process. Therefore, we are free of any further errors that could arrive in the decoding process. It is also clear that the computational complexity is reduced when compared with other schemes.

This paper is organized as follows. In Section 2 we present the preliminary concepts used to elaborate the results in this paper. The mathematical tools needed to construct the stabilizer codes for noise operators having a tensor product description and a more general description are shown in Sections 3 and 4, respectively. A connection between stabilizer codes and decoherence-free subspaces is made. We also illustrate some of the new structures by presenting several examples. Next, Section 5 demonstrates the applicability of the stabilizer codes in the area of quantum metrology. A condition for probing a quantum system using stabilizer codes in order to obtain the Heisenberg limit scaling is stated and analyzed. The final remarks and future perspectives are given in Section 6.

2 Preliminaries

In this section, we review some formulations needed to understand the main results of the paper. Firstly, we review the evolution of open quantum systems and describe the idea of decoherence-free subspace in Lindblad master equations. Secondly, the stabilizer formalism is presented. We focus on the main aspect considered in this paper, which is the algebraic structure obeyed by the errors. The first result of the paper is also given, connecting decoherence-free subspaces and stabilizer codes.

2.1 Open Quantum Systems and Decoherence-free Subspace

In this paper we deal with open quantum systems evolving by means of a Markovian master equation. Suppose qq is a prime power and let SS be a system modeled by a qq-dimensional Hilbert space S\mathcal{H}_{S} (we also use the notation q\mathcal{H}_{q} when it is clear which system is considered) interacts with a reservoir system RR associated with a Hilbert space R\mathcal{H}_{R}. Then the full Hamiltonian can be decomposed as

H=HS𝕀+𝕀HR+Hint,H=H_{S}\otimes\mathbb{I}+\mathbb{I}\otimes H_{R}+H_{\text{int}}, (1)

with HSH_{S}, HRH_{R}, and HintH_{\text{int}} the system, reservoir, and interaction Hamiltonians, respectively, and 𝕀\mathbb{I} is the identity operator. Instead of analyzing the full system-reservoir evolution, we are only interested in the evolution of a reduced system density operator ρ\rho. This is obtained by tracing over the reservoir in the full density operator. As a result, the dynamics of the reduced density operator ρ\rho is given by [21]

ρt=i[HS,ρ]+LD(ρ),\frac{\partial\rho}{\partial t}=-i[H_{S},\rho]+L_{D}(\rho), (2)

where

LD(ρ)=12l=1Mλl([Jl,ρJl]+[Jlρ,Jl])L_{D}(\rho)=\frac{1}{2}\sum_{l=1}^{M}\lambda_{l}([J_{l},\rho J_{l}^{\dagger}]+[J_{l}\rho,J_{l}^{\dagger}]) (3)

is the decoherence evolution originated from the system-reservoir coupling, with MN21M\leq N^{2}-1 where NN is the number of qudit systems, q=dNq=d^{N}, and {Jl}l=1M\{J_{l}\}_{l=1}^{M} are the Lindblad operators. We call this part of the evolution throughout the paper as the dissipator part.

Definition 1.

[22] Let the time evolution of an open quantum system with Hilbert space S\mathcal{H}_{S} be described by means of a Markovian master equation and D()D(\mathcal{H}) be the set of density matrices of a given Hilbert space \mathcal{H}. Then a decoherence-free subspace (DFS) DFS\mathcal{H}_{\text{DFS}} of S\mathcal{H}_{S} is such that all pure states ρ(t)D(DFS)\rho(t)\in D(\mathcal{H}_{\text{DFS}}) satisfies

dTr{ρ2(t)}dt=0,t0, with Tr{ρ2(0)}=1.\frac{d\text{Tr}\{\rho^{2}(t)\}}{dt}=0,\forall t\geq 0,\qquad\text{ with }\qquad\text{Tr}\{\rho^{2}(0)\}=1. (4)

On the other hand, a subspace sDFS\mathcal{H}_{\text{sDFS}} is called strong decoherence-free subspace (sDFS) if for all pure ρ(t)D(sDFS)\rho(t)\in D(\mathcal{H}_{\text{sDFS}}) one has

LD(ρ(t))=0, and ρ2(t)=ρ(t),t.L_{D}(\rho(t))=0,\qquad\text{ and }\qquad\rho^{2}(t)=\rho(t),\forall t. (5)

From Definition 5, it is clear that strong DFS is a sufficient but not necessary condition to have a DFS.

Proposition 2.

[22, Theorem 4, Proposition 5, Theorem 6] Let the time evolution be given by the Markovian open system dynamics shown in Eq. (2). Assume Γ=l=1MλlJlJl\Gamma=\sum_{l=1}^{M}\lambda_{l}J_{l}^{\dagger}J_{l}. On the one hand, the space 𝒫=span{|ψi}i=1,,K\mathcal{P}=\text{span}\{\ket{\psi_{i}}\}_{i=1,\ldots,K} is a DFS for all time tt if and only if Jl|ψk=cl|ψkJ_{l}\ket{\psi_{k}}=c_{l}\ket{\psi_{k}}, for all l=1,,Ml=1,\ldots,M and k=1,,Kk=1,\ldots,K, and the commutator [Hev,Jl][H_{ev},J_{l}] has eigenvalues equal to zero for all |ψk𝒫\ket{\psi_{k}}\in\mathcal{P}, and l=1,,Ml=1,\ldots,M. Here

Hev=HS+i2l=1Mλl(clJlclJl).H_{ev}=H_{S}+\frac{i}{2}\sum_{l=1}^{M}\lambda_{l}(c_{l}^{*}J_{l}-c_{l}J_{l}^{\dagger}). (6)

On the other hand, 𝒫\mathcal{P} is sDFS if the commutators [HS,Jl][H_{S},J_{l}], for l=1,,Ml=1,...,M, and [HS,Γ][H_{S},\Gamma] have eigenvalues equal to zero for all |ψk𝒫\ket{\psi_{k}}\in\mathcal{P}. Furthermore, Jl|ψk=cl|ψkJ_{l}\ket{\psi_{k}}=c_{l}\ket{\psi_{k}}, and Γ|ψk=g|ψk\Gamma\ket{\psi_{k}}=g\ket{\psi_{k}}, for all l=1,,Ml=1,\ldots,M and k=1,,Kk=1,\ldots,K, where g=l=1Mλl|cl|2g=\sum_{l=1}^{M}\lambda_{l}|c_{l}|^{2}.

We are going to show below a case study in which the operators in the dissipator part of the evolution cannot be described in a tensor product form of Pauli operators. Later, we will show that a stabilizer code can be derived from the (strong) DFS, but one cannot rely on the standard stabilizer formalism, which will be explained in the next subsection, for such codes.

Example 3.

Consider an NN-qubit quantum system with the dynamics described by the master equation

ρt=i[HS,ρ]+γ2(2JρJJJρρJJ),\frac{\partial\rho}{\partial t}=-i[H_{S},\rho]+\frac{\gamma}{2}(2J\rho J^{\dagger}-J^{\dagger}J\rho-\rho J^{\dagger}J), (7)

with

J=j=1NJj and Jj=s+c2(σxj+iσyj+σzj),J=\sum_{j=1}^{N}J_{j}\qquad\text{ and }\qquad J_{j}=\frac{s+c}{2}(\sigma_{xj}+i\sigma_{yj}+\sigma_{zj}), (8)

where σxj,σyj,σzj\sigma_{xj},\sigma_{yj},\sigma_{zj} are the Pauli operators on the jj-th qubit, s=sinh(r)s=\sinh(r), c=cosh(r)c=\cosh(r), and rr is the (real) squeezing parameter derived from the assumption that the reservoir is given by a squeezed vacuum state. For r0r\neq 0, the eigenvectors of JJ are all possible tensor products of |ψ+\ket{\psi_{+}} and |ψ\ket{\psi_{-}}, where |ψ+=|0\ket{\psi_{+}}=\ket{0} and |ψ=|0|12\ket{\psi_{-}}=\frac{\ket{0}-\ket{1}}{\sqrt{2}}. For each JjJ_{j}, the eigenvalue of |ψ±\ket{\psi_{\pm}} is equal to ±(s+c2)\pm(\frac{s+c}{2}). Thus, if the number of |ψ+\ket{\psi_{+}} in the eigenvector of JJ is n+n_{+}, then the eigenvalue of such eigenvector is (n+n)s+c2(n_{+}-n_{-})\frac{s+c}{2}, where n=Nn+n_{-}=N-n_{+}. Notice that it is not possible to describe JJ as only tensor products of Pauli operators. This forbid us to use standard constructions of stabilizer codes in the theory that follows. Therefore, before presenting our main results, we need to extend the stabilizer formulation to a suitable type of errors, in conjunction with the operations allowed between them. Now, to compute the expression for HSH_{S} so that there exists a nonempty (strong) DFS of the eigenspace of JJ, we use the commutativity condition on HSH_{S} given in Proposition 2. From it, one possible solution is to have the system Hamiltonian with the form

HS=j=1Nγ4(n+n)(s+c)2σyj,H_{S}=\sum_{j=1}^{N}\frac{\gamma}{4}(n_{+}-n_{-})(s+c)^{2}\sigma_{yj}, (9)

where n+nn_{+}\neq n_{-}. Observe that the choice of HSH_{S} implies that Hev=0H_{ev}=0 and, therefore, the space spanned by |ψ+\ket{\psi_{+}} and |ψ\ket{\psi_{-}} is sDFS.

2.2 Stabilizer Codes

The theory of stabilizer codes, introduced by Gottesman, has been long studied, analyzed, and extended [13, 29, 27]. However, the physical environment over which the stabilizer code will be used is commonly ignored, relying on the error-correction capability only over the minimal distance of the code. Before presenting the approach taken in this paper, we recall the stabilizer formalism. Actually, we refer to the stabilizer formalism introduced by Gottesman, the connection between the stabilizer group and associated additive code by standard stabilizer formalism.

A stabilizer code 𝒬\mathcal{Q} is a subspace of a NN-qubit system described by 2N\mathbb{C}^{2^{N}} stabilized by the elements of an abelian subgroup SS of the error group GNG_{N} over NN qubits. We can mathematically describe a stabilizer code as

𝒬=ES{|ψq:E|ψ=|ψ}.\mathcal{Q}=\bigcap_{E\in S}\{\ket{\psi}\in\mathcal{H}_{q}\colon E\ket{\psi}=\ket{\psi}\}. (10)

For the characterization of correctable and uncorrectable errors, we need to introduce the concept of centralizer of a subgroup of GNG_{N} and center of GNG_{N}. The subgroup CGN(S)C_{G_{N}}(S) of GNG_{N}, given by

CGN(S)={EGN:EF=FE for all FS},C_{G_{N}}(S)=\{E\in G_{N}\colon EF=FE\text{ for all }F\in S\}, (11)

is called the centralizer of SS in GNG_{N}. Observe that the commutativity property of SS implies SCGN(S)S\leq C_{G_{N}}(S). The center of GNG_{N}, denoted by Z(GN)Z(G_{N}), is the subgroup Z(GN)=CGN(GN)Z(G_{N})=C_{G_{N}}(G_{N}). The group SZ(GN)SZ(G_{N}) is given by the elements EzEz, where ESE\in S and zZ(GN)z\in Z(G_{N}). The following lemma characterizes the relation among correctable errors, stabilizer, centralizer, and the center of a quantum code.

Lemma 4.

[23, Lemma 11] Let SGNS\leq G_{N} be the stabilizer group of a stabilizer code 𝒬\mathcal{Q} of dimension greater than one. An error EGNE\in G_{N} is detectable by the stabilizer code 𝒬\mathcal{Q} if and only if EE is an element of SZ(GN)SZ(G_{N}) or EE does not belong to the centralizer CGN(S)C_{G_{N}}(S).

An important achievement of standard stabilizer formalism is showing the equivalence of stabilizer codes and additive classical codes. For a KK-dimensional quantum code with minimum distance dd and living in the Hilbert space qN\mathcal{H}_{q}^{\otimes N}; i.e., with parameters ((N,K,d))q((N,K,d))_{q}, there exists an additive classical code CC (and its symplectic dual CsC^{\perp_{s}}) which is equivalent to the stabilizer code. As shown in Proposition 5, the minimum distance of the stabilizer code is computed from the symplectic weight. We define the symplectic weight of a vector (𝒂|𝒃)𝔽q2N(\bm{a}|\bm{b})\in\mathbb{F}_{q}^{2N} as swt((𝒂|𝒃))=|{k:(ak,bk)(0,0)}|.\text{swt}((\bm{a}|\bm{b}))=|\{k\colon(a_{k},b_{k})\neq(0,0)\}|. One of the main results of this paper is the extension the equivalence between classical codes and quantum stabilizer codes to more general errors, in particular non-Pauli errors. Due to the complex algebraic structure describing the errors, we show sufficient conditions for a classical code to be equivalent to a stabilizer code.

Proposition 5.

[23, Theorem 13] An ((N,K,d))q((N,K,d))_{q} stabilizer code exists if and only if there exists an additive code C𝔽q2NC\subseteq\mathbb{F}_{q}^{2N} of size |C|=qN/K|C|=q^{N}/K such that CCsC\subseteq C^{\perp_{s}} and swt(CsC)=d\text{swt}(C^{\perp_{s}}\setminus C)=d if K>1K>1 (and swt(Cs)=d\text{swt}(C^{\perp_{s}})=d if K=1K=1), where swt denotes the symplectic weight, and the symplectic weight of a set is the minimum symplectic weight of the elements in the set.

Now, we are going to describe in detail the error basis and error vector space used through the paper. A set \mathcal{E} of operators on 2\mathbb{C}^{2} is denoted a nice error basis if it attains three conditions: (a) it contains the identity operator, (b) it is closed under the composition of operators, (c) the trace Tr{AB}=0\text{Tr}\{A^{\dagger}B\}=0 for distinct elements A,BA,B\in\mathcal{E}. In this paper, we consider the error basis

={𝕀,σx,σy,σz},\mathcal{E}=\{\mathbb{I},\sigma_{x},\sigma_{y},\sigma_{z}\}, (12)

where 𝕀\mathbb{I} is the identity operator and σi\sigma_{i}, for i=1,2,3i=1,2,3, are the Pauli matrices. The inner product of two distinct elements A,BA,B in \mathcal{E} is given by

A,B=Tr{AB}.\langle A,B\rangle=\text{Tr}\{A^{\dagger}B\}. (13)

Clearly, \mathcal{E} is a nice error basis. Additionally, we have that if 1\mathcal{E}_{1} and 2\mathcal{E}_{2} are nice error bases, then 2={𝖤𝟣𝖤𝟤:𝖤𝟣𝟣,𝖤𝟤𝟤}\mathcal{E}^{2}=\{\sf{E_{1}}\otimes\sf{E_{2}}\colon E_{1}\in\mathcal{E}_{1},E_{2}\in\mathcal{E}_{2}\} is a nice error basis as well.

Proposition 6.

Let A=a0𝕀+a1σx+a2σy+a3σzA=a_{0}\mathbb{I}+a_{1}\sigma_{x}+a_{2}\sigma_{y}+a_{3}\sigma_{z} and B=b0𝕀+b1σx+b2σy+b3σzB=b_{0}\mathbb{I}+b_{1}\sigma_{x}+b_{2}\sigma_{y}+b_{3}\sigma_{z} be two elements generated by \mathcal{E}. Then

[A,B]=2i((a2b3b2a3)σx+(a3b1b3a1)σy+(a1b2b1a2)σz).[A,B]=2i\Big{(}(a_{2}b_{3}-b_{2}a_{3})\sigma_{x}+(a_{3}b_{1}-b_{3}a_{1})\sigma_{y}+(a_{1}b_{2}-b_{1}a_{2})\sigma_{z}\Big{)}. (14)
Proof.

It follows from the commutation relations of the Pauli operators [σi,σj]=2iϵijkσk[\sigma_{i},\sigma_{j}]=2i\epsilon_{ijk}\sigma_{k}, for i,j,k=1,2,3i,j,k=1,2,3. ∎

Definition 7.

Let N\mathcal{E}^{N} be the error basis constructed as NN-fold tensor product of the Pauli matrices shown in Eq. (12). The error group, denoted by GNG_{N}, is the vector space over \mathbb{C} consisting of elements in N\mathcal{E}^{N}.

For explicit examples of the error vector space GNG_{N}, see Section 4.

In the definition of error set and operations allowed among its elements, there is a significant turn concerning the one utilized in standard stabilizer formalism. There, only the composition of operators is considered. Here, we also have the sum of operators, thus obtaining a vector space structure for the error set. Notice, however, that to define the stabilizer set in both approaches (the standard one and the one used in this paper) only composition of operators is necessary, besides the commutativity of its elements.

Suppose the evolution of a state ρ(t)\rho(t) is given by a Markovian master equation with dissipator part described by operators from the set 𝒥={Jl:l=1,,M}\mathcal{J^{\prime}}=\{J_{l}\colon l=1,\dots,M\}. Add the operator Γ=l=1MλlJlJl\Gamma=\sum_{l=1}^{M}\lambda_{l}J_{l}^{\dagger}J_{l} to the set 𝒥\mathcal{J^{\prime}} so that 𝒥=𝒥Γ\mathcal{J}=\mathcal{J^{\prime}}\cup\Gamma. Assume the existence of a DFS or sDFS satisfying the assumptions of Proposition 2. Then we can construct the following stabilizer sets

𝒮sDFS:=S1,,SM+1:Sl=cl1Jl, for l=1,,M+1, where Jl𝒥,\mathcal{S}_{\text{sDFS}}:=\langle S_{1},\ldots,S_{M+1}\colon S_{l}=c_{l}^{-1}J_{l},\text{ for }l=1,\ldots,M+1,\text{ where }J_{l}\in\mathcal{J}\rangle, (15)

or

𝒮DFS:=S1,,SM:Sl=cl1Jl, for l=1,,M, where Jl𝒥.\mathcal{S}_{\text{DFS}}:=\langle S_{1},\ldots,S_{M}\colon S_{l}=c_{l}^{-1}J_{l},\text{ for }l=1,\ldots,M,\text{ where }J_{l}\in\mathcal{J^{\prime}}\rangle. (16)

Suppose 𝒬\mathcal{Q} is the joint eigenspace with eigenvalue +1+1 for every element in 𝒮sDFS\mathcal{S}_{\text{sDFS}}; i.e., 𝒮sDFS\mathcal{S}_{\text{sDFS}} stabilizes 𝒬\mathcal{Q}. If [Si,Sj]=0[S_{i},S_{j}]=0, for all i,j=1,,M+1i,j=1,\ldots,M+1, then 𝒮sDFS\mathcal{S}_{\text{sDFS}} is an abelian group. Furthermore, if the system Hamiltonian HSH_{S} belongs to the centralizer CGN(𝒮sDFS)C_{G_{N}}(\mathcal{S}_{\text{sDFS}}), then we can conclude from Proposition 2 that 𝒬\mathcal{Q} is sDFS. Similar arguments can be used for DFS, where the stabilizer group is given by 𝒮DFS\mathcal{S}_{\text{DFS}} and the commutativity condition is imposed over HevH_{ev}. A stabilizer code that is also (sDFS) DFS will be called a (strong) decoherence-free stabilizer code.

Theorem 8.

Let the time evolution of the quantum system be given by the Markovian master equation shown in Eq. (2). Suppose there exists a nontrivial maximal joint +1+1-eigenspace 𝒬\mathcal{Q} of the abelian group 𝒮sDFS\mathcal{S}_{\text{sDFS}} or 𝒮DFS\mathcal{S}_{\text{DFS}} constructed in Eq. (15) and (16), respectively. If

  1. 1.

    HS+i2l=1Mλl(clJlclJl)H_{S}+\frac{i}{2}\sum_{l=1}^{M}\lambda_{l}(c_{l}^{*}J_{l}-c_{l}J_{l}^{\dagger}) belongs to CGN(𝒮DFS)C_{G_{N}}(\mathcal{S}_{\text{DFS}}), then 𝒬\mathcal{Q} is a stabilizer code and a decoherence-free subspace;

  2. 2.

    HSH_{S} belongs to CGN(𝒮sDFS)C_{G_{N}}(\mathcal{S}_{\text{sDFS}}) and SM+1𝒮sDFSS_{M+1}\in\mathcal{S}_{\text{sDFS}} stabilizes 𝒬\mathcal{Q}, then 𝒬\mathcal{Q} is a stabilizer code and a strong decoherence-free subspace.

We call 𝒬\mathcal{Q} a (strong) decoherence-free stabilizer code.

Proof.

Consider Claim 11. First of all, notice that the claim 𝒬\mathcal{Q} is a stabilizer code of 𝒮DFS\mathcal{S}_{\text{DFS}} follows from the fact that 𝒬\mathcal{Q} is the nontrivial maximal +1+1-eigenspace of 𝒮DFS\mathcal{S}_{\text{DFS}}. Secondly, for any |ψ𝒬\ket{\psi}\in\mathcal{Q} and Sl𝒮sDFSS_{l}\in\mathcal{S}_{\text{sDFS}} we have

Jl|ψ=clSl|ψ=cl|ψ.J_{l}\ket{\psi}=c_{l}S_{l}\ket{\psi}=c_{l}\ket{\psi}. (17)

Since HS+i2l=1Mλl(clJlclJl)H_{S}+\frac{i}{2}\sum_{l=1}^{M}\lambda_{l}(c_{l}^{*}J_{l}-c_{l}J_{l}^{\dagger}) belongs to CGN(𝒮DFS)C_{G_{N}}(\mathcal{S}_{\text{DFS}}), then the commutator of HS+i2l=1Mλl(clJlclJl)H_{S}+\frac{i}{2}\sum_{l=1}^{M}\lambda_{l}(c_{l}^{*}J_{l}-c_{l}J_{l}^{\dagger}) with any element in 𝒮DFS\mathcal{S}_{\text{DFS}} has eigenvalue equal to zero. Therefore, from Eq. (17) and Proposition 2, we have that 𝒬\mathcal{Q} is also a decoherence-free subspace.

Claim 22 follows the same reasoning. ∎

A connection between stabilizer codes and decoherence-free subspace is given in Theorem 8. Differently from previous works, such as Ref. [26], we give a direct algebraic relation between the Lindblad operators, DFSs, and stabilizer codes. It is shown in Ref. [26] that DFSs are a specific class of quantum error correcting codes, but no constructive method to derive the stabilizer set from the Lindblad operators is shown. Furthermore, as will be shown in the following sections, we extend the stabilizer description to classical error-correcting codes defined over the complex number field. More precisely, the standard theory of quantum error-correcting code contains quantum codes derived from classical codes, i.e., codes defined over finite fields. In this new context, we consider classical codes defined over \mathbb{C}, the complex field which has characteristic zero, and this fact modifies completely the techniques to be applied in the constructions of our results. To the best of the author’s knowledge, this is the first work presenting such a formulation. In particular, there are DFS that have a stabilizer code as subspace. This inclusion may or may not be proper. However, dealing with stabilizer codes can produce results that we could not obtain otherwise. In fact, one can find encoding methods for stabilizer codes that are procedural and optimum algorithms for creating the corresponding code space. Additionally, set membership can be optimally implemented by decoding methods. Later in the paper we construct an algorithm for quantum metrology that uses set membership as one of the important steps. Therefore, dealing with decoherence-free stabilizer code instead of the whole decoherence-free subspace is computationally relevant for several applications.

The connection between decoherence-free subspaces and stabilizer codes is expanded in the following two sections. Firstly, errors with a particular structure are considered. The considered structure simplifies the stabilizer formalism and the connection between stabilizers and classical codes. Afterwards, the restriction is relaxed and generalized errors are considered.

3 Decoherence-Free Stabilizer Codes for Tensor-Product Noise

We have seen necessary and sufficient conditions for a subspace 𝒫S\mathcal{P}\subseteq\mathcal{H}_{S} to be decoherence-free or strong decoherence-free in Proposition 2. Additionally, we established conditions for a (strong) decoherence-free subspace to be a stabilizer code. In this section we are going to elaborate over these conditions in order to connect (strong) decoherence-free stabilizer code, defined over a particular type of errors, with classical code. For this purpose, this section is divided in three parts. In the first part, we present some motivations for the tools constructed in the second part. Then, in the second part, it is put forward a vector space where the sum of vectors is related to the composition of operators. Lastly, part three connects stabilizer codes to these vector spaces by means of an isomorphism.

3.1 Motivation

In order to illustrate the connection between DFS (sDFS) and 𝒮DFS\mathcal{S}_{\text{DFS}} (𝒮sDFS\mathcal{S}_{\text{sDFS}}), we present the example below.

Example 9.

Consider the same evolution as in Example 3, but with

J=s+c2j=15(σxj+iσyj+σzj),J=\frac{s+c}{2}\bigotimes_{j=1}^{5}(\sigma_{xj}+i\sigma_{yj}+\sigma_{zj}), (18)

For r0r\neq 0, the eigenvectors of JJ are all possible tensor products of |ψ+\ket{\psi_{+}} and |ψ\ket{\psi_{-}}, where |ψ+=|0\ket{\psi_{+}}=\ket{0} and |ψ=|0|12\ket{\psi_{-}}=\frac{\ket{0}-\ket{1}}{\sqrt{2}}. The eigenvalue of |ψ±\ket{\psi_{\pm}} is equal to ±(s+c2)\pm(\frac{s+c}{2}). Thus, if the number of |ψ±\ket{\psi_{\pm}} in the eigenvector of JJ is n±n_{\pm}, the eigenvalue of such eigenvector is s+c2\frac{s+c}{2} if n+>nn_{+}>n_{-} or s+c2-\frac{s+c}{2} if n+<nn_{+}<n_{-}. For n+>nn_{+}>n_{-}, the stabilizer set is given by

𝒮DFS=2Js+c={(2Js+c)i:i}.\mathcal{S}_{\text{DFS}}=\Big{\langle}\frac{2J}{s+c}\Big{\rangle}=\Big{\{}\Big{(}\frac{2J}{s+c}\Big{)}^{i}\colon i\in\mathbb{N}\Big{\}}. (19)

It is clear that 𝒮DFS\mathcal{S}_{\text{DFS}} is abelian. Hence, we can construct a stabilizer code form 𝒮DFS\mathcal{S}_{\text{DFS}}. Additionally, from the commutation relation of Proposition 14 and J=s+c2j=15(σxj+iσyj+σzj)J=\frac{s+c}{2}\bigotimes_{j=1}^{5}\Big{(}\sigma_{xj}+i\sigma_{yj}+\sigma_{zj}\Big{)}, the system Hamiltonian with the form

HS=j=15η0σyj,H_{S}=\bigotimes_{j=1}^{5}\eta_{0}\sigma_{yj}, (20)

where η0=γ(s+c)24\eta_{0}=\frac{\gamma(s+c)^{2}}{4}, belongs to CGN(𝒮DFS)C_{G_{N}}(\mathcal{S}_{\text{DFS}}). Observe that if we have derived the form of HSH_{S} in a similar way as the method in Example 3; i.e., by imposing that the eigenvalue of [HS+iγ(s+c)4(JJ),J][H_{S}+\frac{i\gamma(s+c)}{4}(J-J^{\dagger}),J] over the subspace 𝒬\mathcal{Q} is equal to zero, we would obtain the same result as in the current example, which imposes the stronger condition [HS+iγ(s+c)4(JJ),J]=0[H_{S}+\frac{i\gamma(s+c)}{4}(J-J^{\dagger}),J]=0. This means that for the model of NN qubits considered, the existence of a decoherence-free subspace is equivalent to the existence of a decoherence-free stabilizer code.

There are several interesting aspects of dealing with stabilizer groups. One is the complexity reduction in defining the stabilizer code, i.e., instead of using vector space basis we can use the group generator of the stabilizer group. Encoding, error detection, error correction, and decoding schemes can also be computationally-efficient constructed from the stabilizer group. Another one is the connection between stabilizer groups and additive codes. This connection is implemented by means of an isomorphism. Thus, statements over the equivalent additive code are directly translated to the stabilizer group and, more importantly, to the stabilizer code. This approach is largely utilized to show existence or non-existence of stabilizer codes with specific parameters or properties. In the following, we sketch the connection between stabilizer groups constructed from open quantum systems and additive codes. In particular, the isomorphism utilized to connect them is introduced.

Example 10.

Following Example 9, the stabilizer elements S1S_{1} and S2S_{2} in 𝒮DFS\mathcal{S}_{\text{DFS}} can be written as

S1\displaystyle S_{1} =\displaystyle= j=15(σxj+iσyj+σzj),\displaystyle\bigotimes_{j=1}^{5}\Big{(}\sigma_{xj}+i\sigma_{yj}+\sigma_{zj}\Big{)}, (21)
S2\displaystyle S_{2} =\displaystyle= 𝕀𝕀𝕀𝕀𝕀.\displaystyle\mathbb{I}\otimes\mathbb{I}\otimes\mathbb{I}\otimes\mathbb{I}\otimes\mathbb{I}. (22)

Now, we can create a map that represents errors as vectors. Let us consider

ζ:G~N\displaystyle\zeta\colon\tilde{G}_{N} \displaystyle\rightarrow 4N,\displaystyle\mathbb{C}^{4N},
j=1N(a0j𝕀j+a1jσxj+a2jσyj+a3jσzj)\displaystyle\bigotimes_{j=1}^{N}\Big{(}a_{0j}\mathbb{I}_{j}+a_{1j}\sigma_{xj}+a_{2j}\sigma_{yj}+a_{3j}\sigma_{zj}\Big{)} \displaystyle\mapsto (a01,,a0N,a11,,a1N,a21,,a2N,a31,a3N),\displaystyle(a_{01},\ldots,a_{0N},a_{11},\ldots,a_{1N},a_{21},\ldots,a_{2N},a_{31},\ldots a_{3N}), (23)

where G~NGN\tilde{G}_{N}\subseteq{G}_{N} has elements with the above description. As an example, applying the map ζ\zeta to the generators of 𝒮DFS\mathcal{S}_{\text{DFS}} gives

𝒗S1=ζ(S1)=\displaystyle\bm{v}_{S_{1}}=\zeta(S_{1})= (0,0,0,0,0,1,1,1,1,1,i,i,i,i,i,1,1,1,1,1)\displaystyle\setcounter{MaxMatrixCols}{20}\begin{pmatrix}0,&0,&0,&0,&0,&1,&1,&1,&1,&1,&i,&i,&i,&i,&i,&1,&1,&1,&1,&1\end{pmatrix} (24)

and 𝐯S2=ζ(S2)=(1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)\bm{v}_{S_{2}}=\zeta(S_{2})=(1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0). We can also examine the image of HSH_{S}, given in Eq. (20), by the map ζ\zeta,

𝒗=ζ(HS)=\displaystyle\bm{v}=\zeta(H_{S})= (0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0).\displaystyle\setcounter{MaxMatrixCols}{20}\begin{pmatrix}0,&0,&0,&0,&0,&0,&0,&0,&0,&0,&1,&1,&1,&1,&1,&0,&0,&0,&0,&0\end{pmatrix}. (25)

The commutativity property between HevH_{ev} and JJ can also be described using our representation. Let 𝐯Hev=ζ(HS+iγ2sc(JJ))\bm{v}_{H_{ev}}=\zeta(H_{S}+\frac{i\gamma}{2}\sqrt{sc}(J-J^{\dagger})) and write it as

𝒗Hev=(𝒃0,𝒃1,𝒃2,𝒃3),\bm{v}_{H_{ev}}=\begin{pmatrix}\bm{b}_{0},&\bm{b}_{1},&\bm{b}_{2},&\bm{b}_{3}\end{pmatrix}, (26)

where 𝐛j5\bm{b}_{j}\in\mathbb{C}^{5}, for all j=0,1,2,3j=0,1,2,3. Similarly, 𝐯S1\bm{v}_{S_{1}} is given by

𝒗S1=(𝒂0,𝒂1,𝒂2,𝒂3),\bm{v}_{S_{1}}=\begin{pmatrix}\bm{a}_{0},&\bm{a}_{1},&\bm{a}_{2},&\bm{a}_{3}\end{pmatrix}, (27)

where 𝐚j5\bm{a}_{j}\in\mathbb{C}^{5}, for all j=0,1,2,3j=0,1,2,3. Then the commutation relation of Proposition 14 can be extended by defining

𝒗Hev,𝒗S1ζ(1,j)\displaystyle\langle\bm{v}_{H_{ev}},\bm{v}_{S_{1}}\rangle_{\zeta_{(1,j)}} :=\displaystyle:= (a2jb3ja3jb2j),\displaystyle(a_{2j}b_{3j}-a_{3j}b_{2j}), (28)
𝒗Hev,𝒗S1ζ(2,j)\displaystyle\langle\bm{v}_{H_{ev}},\bm{v}_{S_{1}}\rangle_{\zeta_{(2,j)}} :=\displaystyle:= (a3jb1ja1jb3j),\displaystyle(a_{3j}b_{1j}-a_{1j}b_{3j}), (29)
𝒗Hev,𝒗S1ζ(3,j)\displaystyle\langle\bm{v}_{H_{ev}},\bm{v}_{S_{1}}\rangle_{\zeta_{(3,j)}} :=\displaystyle:= (a1jb2ja2jb1j),\displaystyle(a_{1j}b_{2j}-a_{2j}b_{1j}), (30)

for j=1,,Nj=1,\ldots,N. We can see that [Hev,J]=0[H_{ev},J]=0 if and only if 𝐯Hev,𝐯S1ζ(1,j)=𝐯Hev,𝐯S1ζ(2,j)=𝐯Hev,𝐯S1ζ(3,j)=0\langle\bm{v}_{H_{ev}},\bm{v}_{S_{1}}\rangle_{\zeta_{(1,j)}}=\langle\bm{v}_{H_{ev}},\bm{v}_{S_{1}}\rangle_{\zeta_{(2,j)}}=\langle\bm{v}_{H_{ev}},\bm{v}_{S_{1}}\rangle_{\zeta_{(3,j)}}=0, for j=1,,Nj=1,\ldots,N. In our example, we have 𝐯Hev=(0,0,,0)20\bm{v}_{H_{ev}}=(0,0,\ldots,0)\in\mathbb{C}^{20}, which gives 𝐯Hev,𝐯S1ζ(1,j)=𝐯Hev,𝐯S1ζ(2,j)=𝐯Hev,𝐯S1ζ(3,j)=0\langle\bm{v}_{H_{ev}},\bm{v}_{S_{1}}\rangle_{\zeta_{(1,j)}}=\langle\bm{v}_{H_{ev}},\bm{v}_{S_{1}}\rangle_{\zeta_{(2,j)}}=\langle\bm{v}_{H_{ev}},\bm{v}_{S_{1}}\rangle_{\zeta_{(3,j)}}=0, for j=1,,Nj=1,\ldots,N.

Consider the composition of operators. Let E1,E2GNE_{1},E_{2}\in G^{N} be two errors written as

E1\displaystyle E_{1} =\displaystyle= j=1N(a0j𝕀j+a1jσxj+a2jσyj+a3jσzj),\displaystyle\bigotimes_{j=1}^{N}\Big{(}a_{0j}\mathbb{I}_{j}+a_{1j}\sigma_{xj}+a_{2j}\sigma_{yj}+a_{3j}\sigma_{zj}\Big{)}, (31)
E2\displaystyle E_{2} =\displaystyle= j=1N(b0j𝕀j+b1jσxj+b2jσyj+b3jσzj).\displaystyle\bigotimes_{j=1}^{N}\Big{(}b_{0j}\mathbb{I}_{j}+b_{1j}\sigma_{xj}+b_{2j}\sigma_{yj}+b_{3j}\sigma_{zj}\Big{)}. (32)

Then,

E1E2=j=1N(c0j𝕀j+c1jσxj+c2jσyj+c3jσzj),E_{1}E_{2}=\bigotimes_{j=1}^{N}\Big{(}c_{0j}\mathbb{I}_{j}+c_{1j}\sigma_{xj}+c_{2j}\sigma_{yj}+c_{3j}\sigma_{zj}\Big{)}, (33)

where

c0j\displaystyle c_{0j} =\displaystyle= a0jb0j+a1jb1j+a2jb2j+a3jb3j,\displaystyle a_{0j}b_{0j}+a_{1j}b_{1j}+a_{2j}b_{2j}+a_{3j}b_{3j}, (34a)
c1j\displaystyle c_{1j} =\displaystyle= (a1jb0j+a0jb1j)+i(a2jb3ja3jb2j),\displaystyle(a_{1j}b_{0j}+a_{0j}b_{1j})+i(a_{2j}b_{3j}-a_{3j}b_{2j}), (34b)
c2j\displaystyle c_{2j} =\displaystyle= (a2jb0j+a0jb2j)+i(a3jb1ja1jb3j),\displaystyle(a_{2j}b_{0j}+a_{0j}b_{2j})+i(a_{3j}b_{1j}-a_{1j}b_{3j}), (34c)
c3j\displaystyle c_{3j} =\displaystyle= (a3jb0j+a0jb3j)+i(a1jb2ja2jb1j),\displaystyle(a_{3j}b_{0j}+a_{0j}b_{3j})+i(a_{1j}b_{2j}-a_{2j}b_{1j}), (34d)

for j=1,,Nj=1,\ldots,N. Thus, we need to impose over the map ζ\zeta the following condition for composition of operators

ζ(E1E2)=(c01,,c0N,c11,,c1N,c21,,c2N,c31,,c3N),\displaystyle\zeta(E_{1}E_{2})=\setcounter{MaxMatrixCols}{12}\begin{pmatrix}c_{01},&\ldots,&c_{0N},&c_{11},&\ldots,&c_{1N},&c_{21},&\ldots,&c_{2N},&c_{31},&\ldots,&c_{3N}\end{pmatrix}, (35)

where cijc_{ij}, for i{0,1,2,3}i\in\{0,1,2,3\} and j{1,,N}j\in\{1,\ldots,N\}, is defined in Eq. (34). Further details of this operation will be given below and in the following subsections.

Let us introduce the map ζ\zeta in formal terms and derive an additive operation from this definition.

Definition 11.

Let E1,E2GNE_{1},E_{2}\in G^{N} be two errors written as

E1\displaystyle E_{1} =\displaystyle= j=1N(a0j𝕀j+a1jσxj+a2jσyj+a3jσzj),\displaystyle\bigotimes_{j=1}^{N}\Big{(}a_{0j}\mathbb{I}_{j}+a_{1j}\sigma_{xj}+a_{2j}\sigma_{yj}+a_{3j}\sigma_{zj}\Big{)}, (36)
E2\displaystyle E_{2} =\displaystyle= j=1N(b0j𝕀j+b1jσxj+b2jσyj+b3jσzj).\displaystyle\bigotimes_{j=1}^{N}\Big{(}b_{0j}\mathbb{I}_{j}+b_{1j}\sigma_{xj}+b_{2j}\sigma_{yj}+b_{3j}\sigma_{zj}\Big{)}. (37)

Then we define the map

ζ:G~N\displaystyle\zeta\colon\tilde{G}_{N} \displaystyle\rightarrow 4N,\displaystyle\mathbb{C}^{4N},
j=1N(a0j𝕀j+a1jσxj+a2jσyj+a3jσzj)\displaystyle\bigotimes_{j=1}^{N}\Big{(}a_{0j}\mathbb{I}_{j}+a_{1j}\sigma_{xj}+a_{2j}\sigma_{yj}+a_{3j}\sigma_{zj}\Big{)} \displaystyle\mapsto (a01,,a0N,a11,,a1N,a21,,a2N,a31,a3N)\displaystyle(a_{01},\ldots,a_{0N},a_{11},\ldots,a_{1N},a_{21},\ldots,a_{2N},a_{31},\ldots a_{3N}) (38)

via the operation

ζ(E1E2)=(c01,,c0N,c11,,c1N,c21,,c2N,c31,,c3N),\displaystyle\zeta(E_{1}E_{2})=\setcounter{MaxMatrixCols}{12}\begin{pmatrix}c_{01},&\ldots,&c_{0N},&c_{11},&\ldots,&c_{1N},&c_{21},&\ldots,&c_{2N},&c_{31},&\ldots,&c_{3N}\\ \end{pmatrix}, (39)

where

c0j\displaystyle c_{0j} =\displaystyle= a0jb0j+a1jb1j+a2jb2j+a3jb3j,\displaystyle a_{0j}b_{0j}+a_{1j}b_{1j}+a_{2j}b_{2j}+a_{3j}b_{3j}, (40a)
c1j\displaystyle c_{1j} =\displaystyle= (a1jb0j+a0jb1j)+i(a2jb3ja3jb2j),\displaystyle(a_{1j}b_{0j}+a_{0j}b_{1j})+i(a_{2j}b_{3j}-a_{3j}b_{2j}), (40b)
c2j\displaystyle c_{2j} =\displaystyle= (a2jb0j+a0jb2j)+i(a3jb1ja1jb3j),\displaystyle(a_{2j}b_{0j}+a_{0j}b_{2j})+i(a_{3j}b_{1j}-a_{1j}b_{3j}), (40c)
c3j\displaystyle c_{3j} =\displaystyle= (a3jb0j+a0jb3j)+i(a1jb2ja2jb1j),\displaystyle(a_{3j}b_{0j}+a_{0j}b_{3j})+i(a_{1j}b_{2j}-a_{2j}b_{1j}), (40d)

for j=1,,Nj=1,\ldots,N.

Definition 12.

Let NN be a positive integer, and 𝐯1,𝐯24N\bm{v}_{1},\bm{v}_{2}\in\mathbb{C}^{4N} be two vectors given, respectively, by

𝒗1\displaystyle\bm{v}_{1} =\displaystyle= (a01,,a0N,a11,,a1N,a21,,a2N,a31,,a3N),\displaystyle\setcounter{MaxMatrixCols}{12}\begin{pmatrix}a_{01},&\ldots,&a_{0N},&a_{11},&\ldots,&a_{1N},&a_{21},&\ldots,&a_{2N},&a_{31},&\ldots,&a_{3N}\end{pmatrix}, (41)
𝒗2\displaystyle\bm{v}_{2} =\displaystyle= (b01,,b0N,b11,,b1N,b21,,b2N,b31,,b3N).\displaystyle\setcounter{MaxMatrixCols}{12}\begin{pmatrix}b_{01},&\ldots,&b_{0N},&b_{11},&\ldots,&b_{1N},&b_{21},&\ldots,&b_{2N},&b_{31},&\ldots,&b_{3N}\end{pmatrix}. (42)

Define the binary operation +ζ+_{\zeta} as

𝒗1+ζ𝒗2:=(c01,,c0N,c11,,c1N,c21,,c2N,c31,,c3N),\bm{v}_{1}+_{\zeta}\bm{v}_{2}:=\setcounter{MaxMatrixCols}{12}\begin{pmatrix}c_{01},&\ldots,&c_{0N},&c_{11},&\ldots,&c_{1N},&c_{21},&\ldots,&c_{2N},&c_{31},&\ldots,&c_{3N}\end{pmatrix}, (43)

where

c0j\displaystyle c_{0j} =\displaystyle= a0jb0j+a1jb1j+a2jb2j+a3jb3j,\displaystyle a_{0j}b_{0j}+a_{1j}b_{1j}+a_{2j}b_{2j}+a_{3j}b_{3j}, (44a)
c1j\displaystyle c_{1j} =\displaystyle= (a1jb0j+a0jb1j)+i(a2jb3ja3jb2j),\displaystyle(a_{1j}b_{0j}+a_{0j}b_{1j})+i(a_{2j}b_{3j}-a_{3j}b_{2j}), (44b)
c2j\displaystyle c_{2j} =\displaystyle= (a2jb0j+a0jb2j)+i(a3jb1ja1jb3j),\displaystyle(a_{2j}b_{0j}+a_{0j}b_{2j})+i(a_{3j}b_{1j}-a_{1j}b_{3j}), (44c)
c3j\displaystyle c_{3j} =\displaystyle= (a3jb0j+a0jb3j)+i(a1jb2ja2jb1j),\displaystyle(a_{3j}b_{0j}+a_{0j}b_{3j})+i(a_{1j}b_{2j}-a_{2j}b_{1j}), (44d)

for j=1,,Nj=1,\ldots,N.

Considering the +ζ+_{\zeta} operation defined above as the sum operation of the additive codes, we derive some constraint over the coordinates of the elements in these codes.

Proposition 13.

Let CC be an +ζ+_{\zeta}-additive code. If 𝐯1=(𝐚0,𝐚1,𝐚2,𝐚3)\bm{v}_{1}=(\bm{a}_{0},\bm{a}_{1},\bm{a}_{2},\bm{a}_{3}) and 𝐯2=(𝐛0,𝐛1,𝐛2,𝐛3)\bm{v}_{2}=(\bm{b}_{0},\bm{b}_{1},\bm{b}_{2},\bm{b}_{3}) are elements in CC, then

a2jb3j\displaystyle a_{2j}b_{3j} =\displaystyle= a3jb2j,\displaystyle a_{3j}b_{2j}, (45a)
a3jb1j\displaystyle a_{3j}b_{1j} =\displaystyle= a1jb3j,\displaystyle a_{1j}b_{3j}, (45b)
a1jb2j\displaystyle a_{1j}b_{2j} =\displaystyle= a2jb1j,\displaystyle a_{2j}b_{1j}, (45c)

and the following system of equations must also be satisfied

alj\displaystyle a_{lj} =\displaystyle= 0,\displaystyle 0, (46a)
aij\displaystyle a_{ij} =\displaystyle= ±iakj,\displaystyle\pm ia_{kj}, (46b)

for pairwise distinct l,i,k{1,2,3}l,i,k\in\{1,2,3\} and each j=1,,Nj=1,\ldots,N.

Proof.

The set of conditions presented in Eq. (45) follows by imposing commutativity of 𝒗1+ζ𝒗2\bm{v}_{1}+_{\zeta}\bm{v}_{2} and 𝒗2+ζ𝒗1\bm{v}_{2}+_{\zeta}\bm{v}_{1} in Eq. (44). To derive the conditions in Eq. (46), notice that Eq. (45) can be described as

a2jb3ja3jb2j\displaystyle a_{2j}b_{3j}-a_{3j}b_{2j} =\displaystyle= 0,\displaystyle 0, (47a)
a3jb1ja1jb3j\displaystyle a_{3j}b_{1j}-a_{1j}b_{3j} =\displaystyle= 0,\displaystyle 0, (47b)
a1jb2ja2jb1j\displaystyle a_{1j}b_{2j}-a_{2j}b_{1j} =\displaystyle= 0,\displaystyle 0, (47c)

which has nontrivial solution if and only if a1ja2ja3j=0a_{1j}a_{2j}a_{3j}=0. Substituting this condition in Eq. (47) and imposing nontriviality to the solution again, we obtain aij2=akj2a_{ij}^{2}=-a_{kj}^{2} and alj=0a_{lj}=0 for pairwise distinct l,i,k{1,2,3}l,i,k\in\{1,2,3\}. Notice that for each jj, we have independent conditions. ∎

We have presented some intuitions on how to relate operators and vectors. Some constraints on the coordinates of the vectors have been presented. However, we need to develop further tools and properties to derive a stabilizer formalism connecting stabilizer code and additive codes. In particular, three points are covered in the following subsection. Firstly, we demonstrate that the map ,ζ\langle\cdot,\cdot\rangle_{\zeta} is a symplectic form. Using this fact, we show that the map ζ\zeta is an isomorphism between abelian sets of operators and additive codes. Lastly, we introduce symplectic dual codes and the stabilizer formalism connecting quantum stabilizer codes with +ζ+_{\zeta}-additive codes.

3.2 Symplectic form and Additive Codes

A symplectic form connects the centralizer of a stabilizer group to the dual code of the classical code corresponding to the stabilizer group. Symplectic forms can be defined over vector spaces or groups. In the following we consider a symplectic form over groups. Thus, the dual code obtained is an additive code.

Definition 14.

A symplectic form over an additive group 𝒢\mathcal{G} to a field FF is a function

f:𝒢×𝒢\displaystyle f\colon\mathcal{G}\times\mathcal{G} \displaystyle\rightarrow F\displaystyle F (48)
(g1,g2)\displaystyle(g_{1},g_{2}) \displaystyle\mapsto f(g1,g2),\displaystyle f(g_{1},g_{2}), (49)

such that

f(g1+g2,g3)\displaystyle f(g_{1}+g_{2},g_{3}) =\displaystyle= f(g1,g3)+f(g2,g3),\displaystyle f(g_{1},g_{3})+f(g_{2},g_{3}), (50a)
f(g1,g2)\displaystyle f(g_{1},g_{2}) =\displaystyle= f(g2,g1),\displaystyle-f(g_{2},g_{1}), (50b)
f(g1,g1)\displaystyle f(g_{1},g_{1}) =\displaystyle= 0,\displaystyle 0, (50c)

for all g1,g2,g3𝒢g_{1},g_{2},g_{3}\in\mathcal{G}.

For the operation in Eq. (30) to be a symplectic form, the first point we need to show is that the image of ζ\zeta equipped with a proper additive operation forms an additive group.

We claim that the set 𝒱=ζ(CGN(𝒮))\mathcal{V}=\zeta(C_{G_{N}}(\mathcal{S})), where 𝒮\mathcal{S} is a stabilizer group, equipped with +ζ+_{\zeta} operation from Definition 12 is an additive group. Indeed, let 𝒗A,𝒗B,𝒗C𝒱\bm{v}_{A},\bm{v}_{B},\bm{v}_{C}\in\mathcal{V}, then the following axioms are satisfied:

  1. 1.

    𝒱\mathcal{V} is closed under +ζ+_{\zeta};

  2. 2.

    𝒗A+ζ𝒗B=𝒗B+ζ𝒗A\bm{v}_{A}+_{\zeta}\bm{v}_{B}=\bm{v}_{B}+_{\zeta}\bm{v}_{A};

  3. 3.

    (𝒗A+ζ𝒗B)+ζ𝒗C=𝒗A+ζ(𝒗B+ζ𝒗C)(\bm{v}_{A}+_{\zeta}\bm{v}_{B})+_{\zeta}\bm{v}_{C}=\bm{v}_{A}+_{\zeta}(\bm{v}_{B}+_{\zeta}\bm{v}_{C});

  4. 4.

    there exists an element 𝒗𝕀\bm{v}_{\mathbb{I}} such that 𝒗A+ζ𝒗𝕀=𝒗A\bm{v}_{A}+_{\zeta}\bm{v}_{\mathbb{I}}=\bm{v}_{A};

  5. 5.

    For each 𝒗A𝒱\bm{v}_{A}\in\mathcal{V}, there exists an element 𝒗B𝒱\bm{v}_{B}\in\mathcal{V} such that 𝒗A+ζ𝒗B=𝒗𝕀=𝒗B+ζ𝒗A\bm{v}_{A}+_{\zeta}\bm{v}_{B}=\bm{v}_{\mathbb{I}}=\bm{v}_{B}+_{\zeta}\bm{v}_{A}.

The first point is clearly true. For the second point, we have that 𝒱\mathcal{V} is the image of ζ\zeta over CGN(𝒮)C_{G_{N}}(\mathcal{S}). From Proposition 14, we have

a2jb3ja3jb2j=0,\displaystyle a_{2j}b_{3j}-a_{3j}b_{2j}=0, (51a)
a3jb1ja1jb3j=0,\displaystyle a_{3j}b_{1j}-a_{1j}b_{3j}=0, (51b)
a1jb2ja2jb1j=0,\displaystyle a_{1j}b_{2j}-a_{2j}b_{1j}=0, (51c)

for j=1,,Nj=1,\ldots,N, where alja_{lj} and bpjb_{pj} are the coordinates of the vectors 𝒗A\bm{v}_{A} and 𝒗B\bm{v}_{B}, respectively, for l,p=1,2,3l,p=1,2,3. Thus, we can see from Definition 12 that +ζ+_{\zeta} is abelian. For the third point, let 𝒗D=𝒗A+ζ𝒗B\bm{v}_{D}=\bm{v}_{A}+_{\zeta}\bm{v}_{B} and 𝒗E=𝒗B+ζ𝒗C\bm{v}_{E}=\bm{v}_{B}+_{\zeta}\bm{v}_{C}, where each coordinate is given by

d0j=a0jb0j+a1jb1j+a2jb2j+a3jb3j,\displaystyle d_{0j}=a_{0j}b_{0j}+a_{1j}b_{1j}+a_{2j}b_{2j}+a_{3j}b_{3j}, (52a)
d1j=a1jb0j+a0jb1j,\displaystyle d_{1j}=a_{1j}b_{0j}+a_{0j}b_{1j}, (52b)
d2j=a2jb0j+a0jb2j,\displaystyle d_{2j}=a_{2j}b_{0j}+a_{0j}b_{2j}, (52c)
d3j=a3jb0j+a0jb3j,\displaystyle d_{3j}=a_{3j}b_{0j}+a_{0j}b_{3j}, (52d)

and

e0j=b0jc0j+b1jc1j+b2jc2j+b3jc3j,\displaystyle e_{0j}=b_{0j}c_{0j}+b_{1j}c_{1j}+b_{2j}c_{2j}+b_{3j}c_{3j}, (53a)
e1j=b1jc0j+b0jc1j,\displaystyle e_{1j}=b_{1j}c_{0j}+b_{0j}c_{1j}, (53b)
e2j=b2jc0j+b0jc2j,\displaystyle e_{2j}=b_{2j}c_{0j}+b_{0j}c_{2j}, (53c)
e3j=b3jc0j+b0jc3j,\displaystyle e_{3j}=b_{3j}c_{0j}+b_{0j}c_{3j}, (53d)

for j=1,,Nj=1,\ldots,N. Then, the result of the sum 𝒗F=𝒗D+𝒗C\bm{v}_{F}=\bm{v}_{D}+\bm{v}_{C} can be described by

f0j\displaystyle f_{0j} =\displaystyle= (a0jb0j+a1jb1j+a2jb2j+a3jb3j)c0j+(a1jb0j+a0jb1j)c1j\displaystyle(a_{0j}b_{0j}+a_{1j}b_{1j}+a_{2j}b_{2j}+a_{3j}b_{3j})c_{0j}+(a_{1j}b_{0j}+a_{0j}b_{1j})c_{1j}
+\displaystyle+ (a2jb0j+a0jb2j)c2j+(a3jb0j+a0jb3j)c3j,\displaystyle(a_{2j}b_{0j}+a_{0j}b_{2j})c_{2j}+(a_{3j}b_{0j}+a_{0j}b_{3j})c_{3j},
f1j\displaystyle f_{1j} =\displaystyle= (a1jb0j+a0jb1j)c0j+(a0jb0j+a1jb1j+a2jb2j+a3jb3j)c1j,\displaystyle(a_{1j}b_{0j}+a_{0j}b_{1j})c_{0j}+(a_{0j}b_{0j}+a_{1j}b_{1j}+a_{2j}b_{2j}+a_{3j}b_{3j})c_{1j},
f2j\displaystyle f_{2j} =\displaystyle= (a2jb0j+a0jb2j)c0j+(a0jb0j+a1jb1j+a2jb2j+a3jb3j)c2j,\displaystyle(a_{2j}b_{0j}+a_{0j}b_{2j})c_{0j}+(a_{0j}b_{0j}+a_{1j}b_{1j}+a_{2j}b_{2j}+a_{3j}b_{3j})c_{2j},
f3j\displaystyle f_{3j} =\displaystyle= (a3jb0j+a0jb3j)c0j+(a0jb0j+a1jb1j+a2jb2j+a3jb3j)c3j.\displaystyle(a_{3j}b_{0j}+a_{0j}b_{3j})c_{0j}+(a_{0j}b_{0j}+a_{1j}b_{1j}+a_{2j}b_{2j}+a_{3j}b_{3j})c_{3j}. (54)

Similarly, it follows that the sum 𝒗F=𝒗A+𝒗E\bm{v}_{F^{\prime}}=\bm{v}_{A}+\bm{v}_{E} is equal to

f0j\displaystyle f^{\prime}_{0j} =\displaystyle= a0j(b0jc0j+b1jc1j+b2jc2j+b3jc3j)+a1j(b1jc0j+b0jc1j)\displaystyle a_{0j}(b_{0j}c_{0j}+b_{1j}c_{1j}+b_{2j}c_{2j}+b_{3j}c_{3j})+a_{1j}(b_{1j}c_{0j}+b_{0j}c_{1j})
+\displaystyle+ a2j(b2jc0j+b0jc2j)+a3j(b3jc0j+b0jc3j),\displaystyle a_{2j}(b_{2j}c_{0j}+b_{0j}c_{2j})+a_{3j}(b_{3j}c_{0j}+b_{0j}c_{3j}),
f1j\displaystyle f^{\prime}_{1j} =\displaystyle= a1j(b0jc0j+b1jc1j+b2jc2j+b3jc3j)+a0j(b1jc0j+b0jc1j),\displaystyle a_{1j}(b_{0j}c_{0j}+b_{1j}c_{1j}+b_{2j}c_{2j}+b_{3j}c_{3j})+a_{0j}(b_{1j}c_{0j}+b_{0j}c_{1j}),
f2j\displaystyle f^{\prime}_{2j} =\displaystyle= a2j(b0jc0j+b1jc1j+b2jc2j+b3jc3j)+a0j(b2jc0j+b0jc2j),\displaystyle a_{2j}(b_{0j}c_{0j}+b_{1j}c_{1j}+b_{2j}c_{2j}+b_{3j}c_{3j})+a_{0j}(b_{2j}c_{0j}+b_{0j}c_{2j}),
f3j\displaystyle f^{\prime}_{3j} =\displaystyle= a3j(b0jc0j+b1jc1j+b2jc2j+b3jc3j)+a0j(b3jc0j+b0jc3j).\displaystyle a_{3j}(b_{0j}c_{0j}+b_{1j}c_{1j}+b_{2j}c_{2j}+b_{3j}c_{3j})+a_{0j}(b_{3j}c_{0j}+b_{0j}c_{3j}). (55)

Rearranging the terms in Eq. (55) and utilizing the relation from Eq. (51), we see that fij=fijf_{ij}=f^{\prime}_{ij} for i=0,1,2,3i=0,1,2,3 and j=1,,Nj=1,\ldots,N. Therefore, we have proven Property 3. From the definition of +ζ+_{\zeta} and the relation from Eq. (51), we have that the identity element exists. In particular, the identity element is given by 𝒗𝕀=(𝟏N,𝟎N,𝟎N,𝟎N)\bm{v}_{\mathbb{I}}=(\bm{1}_{N},\bm{0}_{N},\bm{0}_{N},\bm{0}_{N}), where 𝟏N\bm{1}_{N} and 𝟎N\bm{0}_{N} are NN-dimensional vectors with all coordinates equal to 11 and 0, respectively. The same approach can be used to show Property 5.

Now, we can use the previous algebraic structure to show that the expression given in Eq. (30) is a symplectic form.

Proposition 15.

Let NN be a positive integer and 𝒱={𝐯4N|𝐯=(𝐱0,𝐱1,𝐱2,𝐱3) where 𝐱0=(1,1,,1)N and 𝐱1,𝐱2,𝐱3N}\mathcal{V}=\{\bm{v}\in\mathbb{C}^{4N}|\bm{v}=(\bm{x}_{0},\bm{x}_{1},\bm{x}_{2},\bm{x}_{3})\text{ where }\bm{x}_{0}=(1,1,\ldots,1)\in\mathbb{C}^{N}\text{ and }\bm{x}_{1},\bm{x}_{2},\bm{x}_{3}\in\mathbb{C}^{N}\} be a group under +ζ+_{\zeta}. Then the maps

,ζ(1,j):4N×4N\displaystyle\langle\cdot,\cdot\rangle_{\zeta_{(1,j)}}\colon\mathbb{C}^{4N}\times\mathbb{C}^{4N} \displaystyle\rightarrow \displaystyle\mathbb{C}
(𝒗A,𝒗B)\displaystyle(\bm{v}_{A},\bm{v}_{B}) \displaystyle\mapsto 𝒗A,𝒗Bζ(1,j)=(a2jb3ja3jb2j),\displaystyle\langle\bm{v}_{A},\bm{v}_{B}\rangle_{\zeta_{(1,j)}}=(a_{2j}b_{3j}-a_{3j}b_{2j}), (56)
,ζ(2,j):4N×4N\displaystyle\langle\cdot,\cdot\rangle_{\zeta_{(2,j)}}\colon\mathbb{C}^{4N}\times\mathbb{C}^{4N} \displaystyle\rightarrow \displaystyle\mathbb{C}
(𝒗A,𝒗B)\displaystyle(\bm{v}_{A},\bm{v}_{B}) \displaystyle\mapsto 𝒗A,𝒗Bζ(2,j)=(a3jb1ja1jb3j),\displaystyle\langle\bm{v}_{A},\bm{v}_{B}\rangle_{\zeta_{(2,j)}}=(a_{3j}b_{1j}-a_{1j}b_{3j}), (57)
,ζ(3,j):4N×4N\displaystyle\langle\cdot,\cdot\rangle_{\zeta_{(3,j)}}\colon\mathbb{C}^{4N}\times\mathbb{C}^{4N} \displaystyle\rightarrow \displaystyle\mathbb{C}
(𝒗A,𝒗B)\displaystyle(\bm{v}_{A},\bm{v}_{B}) \displaystyle\mapsto 𝒗A,𝒗Bζ(3,j)=(a1jb2ja2jb1j),\displaystyle\langle\bm{v}_{A},\bm{v}_{B}\rangle_{\zeta_{(3,j)}}=(a_{1j}b_{2j}-a_{2j}b_{1j}), (58)

are symplectic forms over 𝒱\mathcal{V}, where 𝐯A=(𝐱0,𝐚1,𝐚2,𝐚3)\bm{v}_{A}=(\bm{x}_{0},\bm{a}_{1},\bm{a}_{2},\bm{a}_{3}), 𝐯B=(𝐱0,𝐛1,𝐛2,𝐛3)\bm{v}_{B}=(\bm{x}_{0},\bm{b}_{1},\bm{b}_{2},\bm{b}_{3}), and j=1,,Nj=1,\ldots,N.

Proof.

Let 𝒗A=(𝒙0,𝒂1,𝒂2,𝒂3),𝒗B=(𝒙0,𝒃1,𝒃2,𝒃3),\bm{v}_{A}=(\bm{x}_{0},\bm{a}_{1},\bm{a}_{2},\bm{a}_{3}),\bm{v}_{B}=(\bm{x}_{0},\bm{b}_{1},\bm{b}_{2},\bm{b}_{3}), and 𝒗C=(𝒙0,𝒄1,𝒄2,𝒄3)𝒱\bm{v}_{C}=(\bm{x}_{0},\bm{c}_{1},\bm{c}_{2},\bm{c}_{3})\in\mathcal{V}. From the clear relation between Eqs. (56-58), we only need to show that one of these functions is a symplectic form. Then,

𝒗A+ζ𝒗B,𝒗Cζ(1,j)\displaystyle\langle\bm{v}_{A}+_{\zeta}\bm{v}_{B},\bm{v}_{C}\rangle_{\zeta_{(1,j)}} =\displaystyle= (a2jx0j+x0jb2j)c3j(a3jx0j+a0jx3j)c2j\displaystyle(a_{2j}x_{0j}+x_{0j}b_{2j})c_{3j}-(a_{3j}x_{0j}+a_{0j}x_{3j})c_{2j} (59)
=\displaystyle= (a2jc3ja3jc2j)x0j+(b2jc3jb3jc2j)x0j\displaystyle(a_{2j}c_{3j}-a_{3j}c_{2j})x_{0j}+(b_{2j}c_{3j}-b_{3j}c_{2j})x_{0j}
=\displaystyle= 𝒗A,𝒗Cζ(1,j)+𝒗B,𝒗Cζ(1,j),\displaystyle\langle\bm{v}_{A},\bm{v}_{C}\rangle_{\zeta_{(1,j)}}+\langle\bm{v}_{B},\bm{v}_{C}\rangle_{\zeta_{(1,j)}},

where j=1,,Nj=1,\ldots,N and we have used the fact that 𝒙0=(1,1,,1)\bm{x}_{0}=(1,1,\ldots,1). It is also possible to see that

𝒗A,𝒗Bζ(1,j)\displaystyle\langle\bm{v}_{A},\bm{v}_{B}\rangle_{\zeta_{(1,j)}} =\displaystyle= a2jb3ja3jb2j\displaystyle a_{2j}b_{3j}-a_{3j}b_{2j} (60)
=\displaystyle= (a3jb2ja2jb3j)\displaystyle-(a_{3j}b_{2j}-a_{2j}b_{3j})
=\displaystyle= 𝒗B,𝒗Aζ(1,j),\displaystyle-\langle\bm{v}_{B},\bm{v}_{A}\rangle_{\zeta_{(1,j)}},

and 𝒗A,𝒗Aζ(1,j)=0\langle\bm{v}_{A},\bm{v}_{A}\rangle_{\zeta_{(1,j)}}=0. Thus, we have shown that ,ζ(1,j)\langle\cdot,\cdot\rangle_{\zeta_{(1,j)}} is, in fact, a symplectic form. ∎

Example 16.

Let G3G_{3} be the error set for three qubit systems and A,BG3A,B\in G_{3} be operators given by

A\displaystyle A =\displaystyle= (𝕀+iσy+σz)(𝕀+σxiσy)𝕀\displaystyle(\mathbb{I}+i\sigma_{y}+\sigma_{z})\otimes(\mathbb{I}+\sigma_{x}-i\sigma_{y})\otimes\mathbb{I} (61)
B\displaystyle B =\displaystyle= 𝕀𝕀(𝕀+σxiσz).\displaystyle\mathbb{I}\otimes\mathbb{I}\otimes(\mathbb{I}+\sigma_{x}-i\sigma_{z}). (62)

Then, on the one hand, we have that

AB=(𝕀+iσy+σz)(𝕀+σxiσy)(𝕀+σxiσz),AB=(\mathbb{I}+i\sigma_{y}+\sigma_{z})\otimes(\mathbb{I}+\sigma_{x}-i\sigma_{y})\otimes(\mathbb{I}+\sigma_{x}-i\sigma_{z}), (63)

which implies

ζ(AB)=(1,1,1,0,1,1,i,i,0,1,0,i).\displaystyle\zeta(AB)=(1,1,1,0,1,1,i,-i,0,1,0,-i). (64)

On the other hand, the action of ζ\zeta on AA and BB is given by

𝒗A\displaystyle\bm{v}_{A} =\displaystyle= ζ(A)=(1,1,1,0,1,0,i,i,0,1,0,0)\displaystyle\zeta(A)=(1,1,1,0,1,0,i,-i,0,1,0,0) (65)
𝒗B\displaystyle\bm{v}_{B} =\displaystyle= ζ(B)=(1,1,1,0,0,1,0,0,0,0,0,i).\displaystyle\zeta(B)=(1,1,1,0,0,1,0,0,0,0,0,-i). (66)

Therefore,

𝒗A+ζ𝒗B=(1,1,1,0,1,1,i,i,0,1,0,i),\displaystyle\bm{v}_{A}+_{\zeta}\bm{v}_{B}=(1,1,1,0,1,1,i,-i,0,1,0,-i), (67)

where we used Definition 12. From Eqs. (64) and (67) we see that

ζ(AB)=𝒗A+ζ𝒗B.\zeta(AB)=\bm{v}_{A}+_{\zeta}\bm{v}_{B}. (68)

Now, we have the tools to define the symplectic dual of a +ζ+_{\zeta}-additive code.

Definition 17.

Let NN be a positive integer and C={𝐜4N|𝐜=(𝐜0,𝐜1,𝐜2,𝐜3), where 𝐜0=(1,1,,1)N and 𝐜1,𝐜2,𝐜3N}C=\{\bm{c}\in\mathbb{C}^{4N}|\bm{c}=(\bm{c}_{0},\bm{c}_{1},\bm{c}_{2},\bm{c}_{3}),\text{ where }\bm{c}_{0}=(1,1,\ldots,1)\in\mathbb{C}^{N}\text{ and }\bm{c}_{1},\bm{c}_{2},\bm{c}_{3}\in\mathbb{C}^{N}\} be an +ζ+_{\zeta}-additive code. The symplectic dual of CC is given by

Cζ:={𝒄4N:𝒄,𝒅ζ(l,j)=0, for all 𝒅C,l=1,2,3, and j=1,,N}.C^{\perp_{\zeta}}:=\{\bm{c}\in\mathbb{C}^{4N}\colon\langle\bm{c},\bm{d}\rangle_{\zeta_{(l,j)}}=0,\text{ for all }\bm{d}\in C,l=1,2,3,\text{ and }j=1,\ldots,N\}. (69)

Similar to previous works on stabilizer codes, we are going to derive a connection between stabilizer codes and classical error-correcting codes. This approach enables us to derive algebraic conditions for the construction and existence of decoherence-free stabilizer codes. We can use it to show nonexistence of decoherence-free stabilizer codes with some specific parameters.

Theorem 18.

Let 𝒱𝒮DFS=ζ(𝒮DFS)\mathcal{V}_{\mathcal{S}_{\text{DFS}}}=\zeta(\mathcal{S}_{\text{DFS}}) or 𝒱𝒮sDFS=ζ(𝒮sDFS)\mathcal{V}_{\mathcal{S}_{\text{sDFS}}}=\zeta(\mathcal{S}_{\text{sDFS}}) be a basis of the +ζ+_{\zeta}-additive code of the form C={𝐜4N|𝐜=(𝐜0,𝐜1,𝐜2,𝐜3) where 𝐜0=(1,1,,1)N and 𝐜1,𝐜2,𝐜3N}C=\{\bm{c}\in\mathbb{C}^{4N}|\bm{c}=(\bm{c}_{0},\bm{c}_{1},\bm{c}_{2},\bm{c}_{3})\text{ where }\bm{c}_{0}=(1,1,\ldots,1)\in\mathbb{C}^{N}\text{ and }\bm{c}_{1},\bm{c}_{2},\bm{c}_{3}\in\mathbb{C}^{N}\}. Then,

  1. 1.

    A decoherence-free stabilizer code 𝒬\mathcal{Q} exists if there exists an +ζ+_{\zeta}-additive code CC over \mathbb{C} generated by 𝒱𝒮DFS\mathcal{V}_{\mathcal{S}_{\text{DFS}}} such that CCζC\leq C^{\perp_{\zeta}} and ζ(Hev)Cζ\zeta(H_{ev})\in C^{\perp_{\zeta}};

  2. 2.

    A strong decoherence-free stabilizer code 𝒬\mathcal{Q} exists if there exists an +ζ+_{\zeta}-additive code CC over \mathbb{C} generated by 𝒱𝒮sDFS\mathcal{V}_{\mathcal{S}_{\text{sDFS}}} such that CCζC\leq C^{\perp_{\zeta}} and ζ(HS)Cζ\zeta(H_{S})\in C^{\perp_{\zeta}}.

Proof.

First of all, since CCζC\leq C^{\perp_{\zeta}}, then for all S1,S2𝒮DFSS_{1},S_{2}\in\mathcal{S}_{\text{DFS}} we have [S1,S2]=0[S_{1},S_{2}]=0. This implies the existence of a maximum jointly eigenspace of all operators in 𝒮DFS\mathcal{S}_{\text{DFS}}. Let us denote it by 𝒬\mathcal{Q}. In particular, 𝒬\mathcal{Q} is a stabilizer code with stabilizer given by 𝒮DFS\mathcal{S}_{\text{DFS}}. On the other hand, the hypothesis ζ(Hev)Cζ\zeta(H_{ev})\in C^{\perp_{\zeta}} leads to [Hev,Si]=0[H_{ev},S_{i}]=0 for any Si𝒮DFSS_{i}\in\mathcal{S}_{\text{DFS}}. Therefore, the eigenvalue of the commutator of HevH_{ev} with any operator in 𝒮DFS\mathcal{S}_{\text{DFS}} is equal to zero. Using Proposition 2, we have that 𝒬\mathcal{Q} is also a decoherence-free subspace.

The same strategy can be used to deduce the second claim. ∎

4 Decoherence-Free Stabilizer Codes for General Noise

This section extends the previous results to general error operators. The approach followed to connect operators and classical codes is based on matrix vectorization. After showing the corresponding vectorized operations, we demonstrate that the formulation of Section 3 is indeed a particular case of the current formulation. Additionally, the standard stabilizer formalism can also be derived from our formalism.

4.1 Motivation

Suppose we wish to extend the formulation of the previous section to operators of the form

E=l=1Lj=1N(a0jl𝕀j+a1jlσxj+a2jlσyj+a3jlσzj),E=\sum_{l=1}^{L}\bigotimes_{j=1}^{N}(a_{0j}^{l}\mathbb{I}_{j}+a_{1j}^{l}\sigma_{xj}+a_{2j}^{l}\sigma_{yj}+a_{3j}^{l}\sigma_{zj}), (70)

where LL is the number of terms in the sum describing the operator EE, and NN is the number of physical systems. A naïve approach would be to map operators to matrices. There are some problems with this strategy. First of all, one should impose an ordering over the terms in the sum going from l=1,,Ll=1,\ldots,L as a means to make a uniquely correspondence between each term in the sum and a row in the matrix. Secondly, the composition of errors could result in a sum of matrices giving a matrix with more rows than the original matrices that are being summed; e.g., suppose we have E1E_{1} with L1L_{1} terms in the sum and E2E_{2} with L2L_{2} terms in the sum, then E1E2E_{1}\circ E_{2} can produce up to L1×L2L_{1}\times L_{2} terms. This can be solved since there is a maximum LL^{\prime} of terms with which any operator can be described. Third, and more importantly, the above representation is not unique. To see this, consider the operator

A=(𝕀+σx+σz)σy+σzσx,A=(\mathbb{I}+\sigma_{x}+\sigma_{z})\otimes\sigma_{y}+\sigma_{z}\otimes\sigma_{x}, (71)

which can also be written as

A=(𝕀+σx)σy+σz(σx+σy).A=(\mathbb{I}+\sigma_{x})\otimes\sigma_{y}+\sigma_{z}\otimes(\sigma_{x}+\sigma_{y}). (72)

The issue of uniqueness in representing an operator and, consequently, its matrix representation may be solved by introducing equivalence classes over matrix spaces similar to the equivalence classes utilized in the definition of tensor product of vector spaces [24]. Even tough these problem may be solved, the formulation seems not straightforward. Therefore, in the following we use matrix vectorization to avoid all these complications.

Let {|i}i=1q\{\ket{i}\}_{i=1}^{q} be a basis of a Hilbert space q\mathcal{H}_{q}, and |ij|(q)\outerproduct{i}{j}\in\mathcal{L}(\mathcal{H}_{q}) be a linear operator over the Hilbert space q\mathcal{H}_{q}. Vectorization is a bijective linear map from (q)\mathcal{L}(\mathcal{H}_{q}) to q2\mathcal{H}_{q}^{\otimes 2} defined as [1]

vec(|ij|):=|i|j.\text{vec}(\outerproduct{i}{j}):=\ket{i}\ket{j}. (73)

Vectorization can be extended to any operator space. Let |i1j1||i2j2||iNjN|(qN)\outerproduct{i_{1}}{j_{1}}\otimes\outerproduct{i_{2}}{j_{2}}\otimes\cdots\otimes\outerproduct{i_{N}}{j_{N}}\in\mathcal{L}(\mathcal{H}_{q}^{\otimes N}), then

vec(|i1j1||i2j2||iNjN|)=|i1|i2|iN|j1|j2|jN.\text{vec}(\outerproduct{i_{1}}{j_{1}}\otimes\outerproduct{i_{2}}{j_{2}}\otimes\cdots\otimes\outerproduct{i_{N}}{j_{N}})=\ket{i_{1}}\otimes\ket{i_{2}}\otimes\cdots\otimes\ket{i_{N}}\otimes\ket{j_{1}}\otimes\ket{j_{2}}\otimes\cdots\otimes\ket{j_{N}}. (74)

Since |i1j1||i2j2||iNjN|\outerproduct{i_{1}}{j_{1}}\otimes\outerproduct{i_{2}}{j_{2}}\otimes\cdots\otimes\outerproduct{i_{N}}{j_{N}} forms a basis for the space and the vectorization is a bijective linear map, it can be applied to any operator in (qN)\mathcal{L}(\mathcal{H}_{q}^{\otimes N}).

Several properties can be derived for matrix vectorization. Two operations we have used are composition and commutation of operators. For the first, we can use the relation

vec(ABC)=(ACT)vec(B).\text{vec}(ABC)=(A\otimes C^{T})\text{vec}(B). (75)

In particular, we have vec(AB)=(A𝕀)vec(B)\text{vec}(AB)=(A\otimes\mathbb{I})\text{vec}(B). The commutator can be easily obtained from the above relation and the linearity of the vectorization. We have

vec([A,B])=(A𝕀𝕀AT)vec(B).\text{vec}([A,B])=(A\otimes\mathbb{I}-\mathbb{I}\otimes A^{T})\text{vec}(B). (76)
Definition 19.

Let A,B(qN)A,B\in\mathcal{L}(\mathcal{H}_{q}^{N}) be operators. We define the sum of the vectors vec(A)\text{vec}(A) and vec(B)\text{vec}(B) by

vec(A)+vecvec(B)=(A𝕀)vec(B).\text{vec}(A)+_{\text{vec}}\text{vec}(B)=(A\otimes\mathbb{I})\text{vec}(B). (77)

If AA commutes with BB, then it is clear that vec(A)+vecvec(B)=vec(B)+vecvec(A)\text{vec}(A)+_{\text{vec}}\text{vec}(B)=\text{vec}(B)+_{\text{vec}}\text{vec}(A). Note that +vec+_{\text{vec}} is not the traditional sum of vectors, which always commutes.

We utilize this relation to show that the result from the previous section and the standard stabilizer formalism can be derived from the formulation presented below. Furthermore, the vectorization of the commutator between two operators is used later to construct the symplectic form and the dual code of the additive code.

Proposition 20.

Let 𝒮\mathcal{S} be a stabilizer set with operators satisfying the structure of the previous section. Assume that 𝒞ζ=ζ(𝒮)\mathcal{C}_{\zeta}=\zeta(\mathcal{S}) and 𝒞vec=vec(𝒮)\mathcal{C}_{\text{vec}}=\text{vec}(\mathcal{S}), where the composition of operators in 𝒮\mathcal{S} corresponds to the respective operation of the additive group. Then 𝒞ζ𝒞vec\mathcal{C}_{\zeta}\equiv\mathcal{C}_{\text{vec}}.

Proof.

First of all, consider a quantum system with N=1N=1. An operator EE can be written as E=e01𝕀+e11σx+e21σy+e31σzE=e_{01}\mathbb{I}+e_{11}\sigma_{x}+e_{21}\sigma_{y}+e_{31}\sigma_{z} or E=e001|00|+e011|01|+e101|10|+e111|11|E=e_{00}^{1}\outerproduct{0}{0}+e_{01}^{1}\outerproduct{0}{1}+e_{10}^{1}\outerproduct{1}{0}+e_{11}^{1}\outerproduct{1}{1}, where ei1e_{i1}, i=0,1,2,3i=0,1,2,3, and epq1e_{pq}^{1}, p,q=0,1p,q=0,1, satisfy the relations

e001\displaystyle e_{00}^{1} =\displaystyle= e01+e31,\displaystyle e_{01}+e_{31}, (78a)
e011\displaystyle e_{01}^{1} =\displaystyle= e11ie21,\displaystyle e_{11}-ie_{21}, (78b)
e101\displaystyle e_{10}^{1} =\displaystyle= e11+ie21,\displaystyle e_{11}+ie_{21}, (78c)
e111\displaystyle e_{11}^{1} =\displaystyle= e01e31,\displaystyle e_{01}-e_{31}, (78d)

and

e01\displaystyle e_{01} =\displaystyle= (e001+e111)/2,\displaystyle(e_{00}^{1}+e_{11}^{1})/2, (79a)
e11\displaystyle e_{11} =\displaystyle= (e011+e101)/2,\displaystyle(e_{01}^{1}+e_{10}^{1})/2, (79b)
e21\displaystyle e_{21} =\displaystyle= (e101e011)/2i,\displaystyle(e_{10}^{1}-e_{01}^{1})/2i, (79c)
e31\displaystyle e_{31} =\displaystyle= (e001e111)/2.\displaystyle(e_{00}^{1}-e_{11}^{1})/2. (79d)

Extending these relations to any positive integer NN, taking into account that the relations are independent from one to another qubit, we obtain

e00l\displaystyle e_{00}^{l} =\displaystyle= e0l+e3l,\displaystyle e_{0l}+e_{3l}, (80a)
e01l\displaystyle e_{01}^{l} =\displaystyle= e1lie2l,\displaystyle e_{1l}-ie_{2l}, (80b)
e10l\displaystyle e_{10}^{l} =\displaystyle= e1l+ie2l,\displaystyle e_{1l}+ie_{2l}, (80c)
e11l\displaystyle e_{11}^{l} =\displaystyle= e0le3l,\displaystyle e_{0l}-e_{3l}, (80d)

and

e0l\displaystyle e_{0l} =\displaystyle= (e00l+e11l)/2,\displaystyle(e_{00}^{l}+e_{11}^{l})/2, (81a)
e1l\displaystyle e_{1l} =\displaystyle= (e01l+e10l)/2,\displaystyle(e_{01}^{l}+e_{10}^{l})/2, (81b)
e2l\displaystyle e_{2l} =\displaystyle= (e10le01l)/2i,\displaystyle(e_{10}^{l}-e_{01}^{l})/2i, (81c)
e3l\displaystyle e_{3l} =\displaystyle= (e00le11l)/2.\displaystyle(e_{00}^{l}-e_{11}^{l})/2. (81d)

for l=1,,Nl=1,\ldots,N.Thus, it is clear that one can describe a vector in the vec formulation in terms of the coordinates of the vector in the ζ\zeta formulation. In order to show that these two formulations are equivalent, we need to show that the additive operation in one formulation can be described by the vectors in the other formulation. Let

A\displaystyle A =\displaystyle= i1,j1iN,jNai1j11aiNjNN|i1j1||iNjN|,\displaystyle\sum_{i_{1},j_{1}}\cdots\sum_{i_{N},j_{N}}a^{1}_{i_{1}j_{1}}\cdots a^{N}_{i_{N}j_{N}}\outerproduct{i_{1}}{j_{1}}\cdots\outerproduct{i_{N}}{j_{N}}, (82)
B\displaystyle B =\displaystyle= p1,r1pN,rNbp1r11bpNrNN|p1r1||pNrN|.\displaystyle\sum_{p_{1},r_{1}}\cdots\sum_{p_{N},r_{N}}b^{1}_{p_{1}r_{1}}\cdots b^{N}_{p_{N}r_{N}}\outerproduct{p_{1}}{r_{1}}\cdots\outerproduct{p_{N}}{r_{N}}. (83)

Then,

vec(AB)\displaystyle\text{vec}(AB) =\displaystyle= p1,r1pN,rNbp1r11bpNrNN(A|p1|pN)|r1|rN\displaystyle\sum_{p_{1},r_{1}}\cdots\sum_{p_{N},r_{N}}b^{1}_{p_{1}r_{1}}\cdots b^{N}_{p_{N}r_{N}}(A\ket{p_{1}}\cdots\ket{p_{N}})\ket{r_{1}}\cdots\ket{r_{N}} (84)
=\displaystyle= i1,,iNr1,,rN(p1,,pNai1p11bp1r11aiNpNNbpNrNN)|i1|iN)|r1|rN\displaystyle\sum_{i_{1},\ldots,i_{N}}\sum_{r_{1},\ldots,r_{N}}\Big{(}\sum_{p_{1},\ldots,p_{N}}a^{1}_{i_{1}p_{1}}b^{1}_{p_{1}r_{1}}\cdots a^{N}_{i_{N}p_{N}}b^{N}_{p_{N}r_{N}}\Big{)}\ket{i_{1}}\cdots\ket{i_{N}})\ket{r_{1}}\cdots\ket{r_{N}}
=\displaystyle= i1,,iNr1,,rN[(p1ai1p11bp1r11)(pNaiNpNNbpNrNN)]|i1|iN)|r1|rN.\displaystyle\sum_{i_{1},\ldots,i_{N}}\sum_{r_{1},\ldots,r_{N}}\Big{[}(\sum_{p_{1}}a^{1}_{i_{1}p_{1}}b^{1}_{p_{1}r_{1}})\cdots(\sum_{p_{N}}a^{N}_{i_{N}p_{N}}b^{N}_{p_{N}r_{N}})\Big{]}\ket{i_{1}}\cdots\ket{i_{N}})\ket{r_{1}}\cdots\ket{r_{N}}.

We can describe each coordinate by

vec(AB)i1,,iN,r1,,rN=(p1ai1p11bp1r11)(pNaiNpNNbpNrNN).\text{vec}(AB)_{i_{1},\ldots,i_{N},r_{1},\ldots,r_{N}}=(\sum_{p_{1}}a^{1}_{i_{1}p_{1}}b^{1}_{p_{1}r_{1}})\cdots(\sum_{p_{N}}a^{N}_{i_{N}p_{N}}b^{N}_{p_{N}r_{N}}). (85)

From Eq. (80), denoting λi2,,iN,r2,,rN=(p2ai2p22bp2r22)(pNaiNpNNbpNrNN)\lambda_{i_{2},\ldots,i_{N},r_{2},\ldots,r_{N}}=(\sum_{p_{2}}a^{2}_{i_{2}p_{2}}b^{2}_{p_{2}r_{2}})\cdots(\sum_{p_{N}}a^{N}_{i_{N}p_{N}}b^{N}_{p_{N}r_{N}}), we obtain

vec(AB)0,i2,,iN,0,r2,,rN\displaystyle\text{vec}(AB)_{0,i_{2},\ldots,i_{N},0,r_{2},\ldots,r_{N}} =\displaystyle= [(a01+a31)(b01+b31)+(a11ia21)(b11+ib21)]λi2,,iN,r2,,rN,\displaystyle[(a_{01}+a_{31})(b_{01}+b_{31})+(a_{11}-ia_{21})(b_{11}+ib_{21})]\lambda_{i_{2},\ldots,i_{N},r_{2},\ldots,r_{N}}, (86a)
vec(AB)0,i2,,iN,1,r2,,rN\displaystyle\text{vec}(AB)_{0,i_{2},\ldots,i_{N},1,r_{2},\ldots,r_{N}} =\displaystyle= [(a01+a31)(b11ib21)+(a11ia21)(b01b31)]λi2,,iN,r2,,rN,\displaystyle[(a_{01}+a_{31})(b_{11}-ib_{21})+(a_{11}-ia_{21})(b_{01}-b_{31})]\lambda_{i_{2},\ldots,i_{N},r_{2},\ldots,r_{N}}, (86b)
vec(AB)1,i2,,iN,0,r2,,rN\displaystyle\text{vec}(AB)_{1,i_{2},\ldots,i_{N},0,r_{2},\ldots,r_{N}} =\displaystyle= [(a11+ia21)(b01+b31)+(a01a31)(b11+ib21)]λi2,,iN,r2,,rN,\displaystyle[(a_{11}+ia_{21})(b_{01}+b_{31})+(a_{01}-a_{31})(b_{11}+ib_{21})]\lambda_{i_{2},\ldots,i_{N},r_{2},\ldots,r_{N}}, (86c)
vec(AB)1,i2,,iN,1,r2,,rN\displaystyle\text{vec}(AB)_{1,i_{2},\ldots,i_{N},1,r_{2},\ldots,r_{N}} =\displaystyle= [(a11+ia21)(b11ib21)+(a01a31)(b01b31)]λi2,,iN,r2,,rN.\displaystyle[(a_{11}+ia_{21})(b_{11}-ib_{21})+(a_{01}-a_{31})(b_{01}-b_{31})]\lambda_{i_{2},\ldots,i_{N},r_{2},\ldots,r_{N}}. (86d)

Expanding λi2,,iN,r2,,rN\lambda_{i_{2},\ldots,i_{N},r_{2},\ldots,r_{N}} in terms of aija_{ij} and bijb_{ij}, we see that vec(AB)\text{vec}(AB) can be computed from the vector representation given in Definition 11. Similarly, Eq. (81) can be applied in order to describe ζ(AB)\zeta(AB) in terms of vec(A)\text{vec}(A) and vec(B)\text{vec}(B). ∎

Proposition 21.

Let 𝒮\mathcal{S} be a stabilizer group with operators satisfying the structure of the standard stabilizer formalism. Assume that 𝒞\mathcal{C} is the additive group constructed using the standard stabilizer formalism and 𝒞vec=vec(𝒮)\mathcal{C}_{\text{vec}}=\text{vec}(\mathcal{S}), where the composition of operators in 𝒮\mathcal{S} corresponds to the respective operation of the additive group. Then 𝒞𝒞vec\mathcal{C}\equiv\mathcal{C}_{\text{vec}}.

Proof.

Consider the single qubit N=1N=1 case. Let A=X(a)Z(b)A=X(a)Z(b), for a,b2a,b\in\mathbb{Z}_{2}. Then we can write

A=A00|00|+A01|01|+A10|10|+A11|11|,A=A_{00}\outerproduct{0}{0}+A_{01}\outerproduct{0}{1}+A_{10}\outerproduct{1}{0}+A_{11}\outerproduct{1}{1}, (87)

where A00=1aA_{00}=1-a, A01=(1)baA_{01}=(-1)^{b}a, A10=aA_{10}=a, A11=(1)b(1a)A_{11}=(-1)^{b}(1-a). These equalities are clearly invertible. Now, consider the case where N>1N>1. The coordinates of vec(AB)\text{vec}(AB) are given by

vec(AB)i1,,iN,r1,,rN\displaystyle\text{vec}(AB)_{i_{1},\ldots,i_{N},r_{1},\ldots,r_{N}} =\displaystyle= (p1ai1p11bp1r11)(pNaiNpNNbpNrNN)\displaystyle(\sum_{p_{1}}a^{1}_{i_{1}p_{1}}b^{1}_{p_{1}r_{1}})\cdots(\sum_{p_{N}}a^{N}_{i_{N}p_{N}}b^{N}_{p_{N}r_{N}}) (88)
=\displaystyle= ABi1r11ABiNrNN.\displaystyle AB_{i_{1}r_{1}}^{1}\cdots AB_{i_{N}r_{N}}^{N}. (89)

Then we can see that

AB00j\displaystyle AB_{00}^{j} =\displaystyle= (1a1j)(1(1)b1j)+(1)b1ja2ja1j,\displaystyle(1-a_{1}^{j})(1-(-1)^{b_{1}^{j}})+(-1)^{b_{1}^{j}}a_{2}^{j}a_{1}^{j}, (90a)
AB01j\displaystyle AB_{01}^{j} =\displaystyle= (1a1j)(1)b1j+b2j+(1(1)b1j)(1)b2ja2ja1j,\displaystyle(1-a_{1}^{j})(-1)^{b_{1}^{j}+b_{2}^{j}}+(1-(-1)^{b_{1}^{j}})(-1)^{b_{2}^{j}}a_{2}^{j}a_{1}^{j}, (90b)
AB10j\displaystyle AB_{10}^{j} =\displaystyle= (1(1)b1j)a1j+(1)b1ja2j(1a1j),\displaystyle(1-(-1)^{b_{1}^{j}})a_{1}^{j}+(-1)^{b_{1}^{j}}a_{2}^{j}(1-a_{1}^{j}), (90c)
AB11j\displaystyle AB_{11}^{j} =\displaystyle= a1j(1)b1j+b2j+(1(1)b1j)(1)b2j(1a1j)a2j.\displaystyle a_{1}^{j}(-1)^{b_{1}^{j}+b_{2}^{j}}+(1-(-1)^{b_{1}^{j}})(-1)^{b_{2}^{j}}(1-a_{1}^{j})a_{2}^{j}. (90d)

Since the above equalities are invertible, we have that both formulations are equivalent. ∎

Example 22.

Consider the operator A=X𝕀+𝕀XA=X\otimes\mathbb{I}+\mathbb{I}\otimes X. The operator A can be written in the computational basis as

A\displaystyle A =\displaystyle= (|01|+|10|)(|00|+|11|)+(|00|+|11|)(|01|+|10|)\displaystyle(\outerproduct{0}{1}+\outerproduct{1}{0})\otimes(\outerproduct{0}{0}+\outerproduct{1}{1})+(\outerproduct{0}{0}+\outerproduct{1}{1})\otimes(\outerproduct{0}{1}+\outerproduct{1}{0})
=\displaystyle= |00||01|+|01||00|+|00||10|+|01||11|\displaystyle\outerproduct{0}{0}\otimes\outerproduct{0}{1}+\outerproduct{0}{1}\otimes\outerproduct{0}{0}+\outerproduct{0}{0}\otimes\outerproduct{1}{0}+\outerproduct{0}{1}\otimes\outerproduct{1}{1}
+\displaystyle+ |10||00|+|11||01|+|10||11|+|11||10|.\displaystyle\outerproduct{1}{0}\otimes\outerproduct{0}{0}+\outerproduct{1}{1}\otimes\outerproduct{0}{1}+\outerproduct{1}{0}\otimes\outerproduct{1}{1}+\outerproduct{1}{1}\otimes\outerproduct{1}{0}. (92)

Thus, the vectorization of AA is given by

vec(A)\displaystyle\text{vec}(A) =\displaystyle= |0001+|0010+|0100+|0111\displaystyle\ket{0001}+\ket{0010}+\ket{0100}+\ket{0111} (93)
+\displaystyle+ |1000+|1011+|1101+|1110.\displaystyle\ket{1000}+\ket{1011}+\ket{1101}+\ket{1110}.
Example 23.

In this example we show the equivalence between the vectorization representation and the ζ\zeta-representation. Consider A=X𝕀A=X\otimes\mathbb{I} and B=𝕀ZB=\mathbb{I}\otimes Z. It is clear that AB=XZAB=X\otimes Z. The ζ\zeta and vec representations of AA, BB, and ABAB are

ζ(A)\displaystyle\zeta(A) =\displaystyle= (0,1,1,0,0,0,0,0),\displaystyle(0,1,1,0,0,0,0,0), (94)
vec(A)\displaystyle\text{vec}(A) =\displaystyle= (0,0,1,0,0,0,0,1,1,0,0,0,0,1,0,0),\displaystyle(0,0,1,0,0,0,0,1,1,0,0,0,0,1,0,0), (95)
ζ(B)\displaystyle\zeta(B) =\displaystyle= (1,0,0,0,0,0,0,1),\displaystyle(1,0,0,0,0,0,0,1), (96)
vec(B)\displaystyle\text{vec}(B) =\displaystyle= (1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1),\displaystyle(1,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,-1), (97)

and

ζ(AB)\displaystyle\zeta(AB) =\displaystyle= (0,0,1,0,0,0,0,1),\displaystyle(0,0,1,0,0,0,0,1), (98)
vec(AB)\displaystyle\text{vec}(AB) =\displaystyle= (0,0,1,0,0,0,0,1,1,0,0,1,0,0,0,0).\displaystyle(0,0,1,0,0,0,0,-1,1,0,0,-1,0,0,0,0). (99)

To show the correspondence between these two representations, we are going to describe vec(AB)\text{vec}(AB) in terms of the elements in ζ(A)\zeta(A) and ζ(B)\zeta(B) using Eq. (86). In particular, we have

vec(AB)0,0,0,0\displaystyle\text{vec}(AB)_{0,0,0,0} =\displaystyle= [(a01+a31)(b01+b31)+(a11ia21)(b11+ib21)]\displaystyle[(a_{01}+a_{31})(b_{01}+b_{31})+(a_{11}-ia_{21})(b_{11}+ib_{21})]
×\displaystyle\times [(a02+a32)(b02+b32)+(a12ia22)(b12+ib22)],\displaystyle[(a_{02}+a_{32})(b_{02}+b_{32})+(a_{12}-ia_{22})(b_{12}+ib_{22})],
vec(AB)0,0,0,1\displaystyle\text{vec}(AB)_{0,0,0,1} =\displaystyle= [(a01+a31)(b01+b31)+(a11ia21)(b11+ib21)]\displaystyle[(a_{01}+a_{31})(b_{01}+b_{31})+(a_{11}-ia_{21})(b_{11}+ib_{21})]
×\displaystyle\times [(a02+a32)(b12ib22)+(a12ia22)(b02b32)],\displaystyle[(a_{02}+a_{32})(b_{12}-ib_{22})+(a_{12}-ia_{22})(b_{02}-b_{32})],
vec(AB)0,1,0,0\displaystyle\text{vec}(AB)_{0,1,0,0} =\displaystyle= [(a01+a31)(b01+b31)+(a11ia21)(b11+ib21)]\displaystyle[(a_{01}+a_{31})(b_{01}+b_{31})+(a_{11}-ia_{21})(b_{11}+ib_{21})]
×\displaystyle\times [(a12+ia22)(b02+b32)+(a02a32)(b12+ib22)],\displaystyle[(a_{12}+ia_{22})(b_{02}+b_{32})+(a_{02}-a_{32})(b_{12}+ib_{22})],
vec(AB)0,1,0,1\displaystyle\text{vec}(AB)_{0,1,0,1} =\displaystyle= [(a01+a31)(b01+b31)+(a11ia21)(b11+ib21)]\displaystyle[(a_{01}+a_{31})(b_{01}+b_{31})+(a_{11}-ia_{21})(b_{11}+ib_{21})]
×\displaystyle\times [(a12+ia22)(b12ib22)+(a02a32)(b02b32)],\displaystyle[(a_{12}+ia_{22})(b_{12}-ib_{22})+(a_{02}-a_{32})(b_{02}-b_{32})],
vec(AB)0,0,1,0\displaystyle\text{vec}(AB)_{0,0,1,0} =\displaystyle= [(a01+a31)(b11ib21)+(a11ia21)(b01b31)]\displaystyle[(a_{01}+a_{31})(b_{11}-ib_{21})+(a_{11}-ia_{21})(b_{01}-b_{31})]
×\displaystyle\times [(a02+a32)(b02+b32)+(a12ia22)(b12+ib22)],\displaystyle[(a_{02}+a_{32})(b_{02}+b_{32})+(a_{12}-ia_{22})(b_{12}+ib_{22})],
vec(AB)0,0,1,1\displaystyle\text{vec}(AB)_{0,0,1,1} =\displaystyle= [(a01+a31)(b11ib21)+(a11ia21)(b01b31)]\displaystyle[(a_{01}+a_{31})(b_{11}-ib_{21})+(a_{11}-ia_{21})(b_{01}-b_{31})]
×\displaystyle\times [(a02+a32)(b12ib22)+(a12ia22)(b02b32)],\displaystyle[(a_{02}+a_{32})(b_{12}-ib_{22})+(a_{12}-ia_{22})(b_{02}-b_{32})],
vec(AB)0,1,1,0\displaystyle\text{vec}(AB)_{0,1,1,0} =\displaystyle= [(a01+a31)(b11ib21)+(a11ia21)(b01b31)]\displaystyle[(a_{01}+a_{31})(b_{11}-ib_{21})+(a_{11}-ia_{21})(b_{01}-b_{31})]
×\displaystyle\times [(a12+ia22)(b02+b32)+(a02a32)(b12+ib22)],\displaystyle[(a_{12}+ia_{22})(b_{02}+b_{32})+(a_{02}-a_{32})(b_{12}+ib_{22})],
vec(AB)0,1,1,1\displaystyle\text{vec}(AB)_{0,1,1,1} =\displaystyle= [(a01+a31)(b11ib21)+(a11ia21)(b01b31)]\displaystyle[(a_{01}+a_{31})(b_{11}-ib_{21})+(a_{11}-ia_{21})(b_{01}-b_{31})]
×\displaystyle\times [(a12+ia22)(b12ib22)+(a02a32)(b02b32)],\displaystyle[(a_{12}+ia_{22})(b_{12}-ib_{22})+(a_{02}-a_{32})(b_{02}-b_{32})],
vec(AB)1,0,0,0\displaystyle\text{vec}(AB)_{1,0,0,0} =\displaystyle= [(a11+ia21)(b01+b31)+(a01a31)(b11+ib21)]\displaystyle[(a_{11}+ia_{21})(b_{01}+b_{31})+(a_{01}-a_{31})(b_{11}+ib_{21})]
×\displaystyle\times [(a02+a32)(b02+b32)+(a12ia22)(b12+ib22)],\displaystyle[(a_{02}+a_{32})(b_{02}+b_{32})+(a_{12}-ia_{22})(b_{12}+ib_{22})],
vec(AB)1,0,0,1\displaystyle\text{vec}(AB)_{1,0,0,1} =\displaystyle= [(a11+ia21)(b01+b31)+(a01a31)(b11+ib21)]\displaystyle[(a_{11}+ia_{21})(b_{01}+b_{31})+(a_{01}-a_{31})(b_{11}+ib_{21})]
×\displaystyle\times [(a02+a32)(b12ib22)+(a12ia22)(b02b32)],\displaystyle[(a_{02}+a_{32})(b_{12}-ib_{22})+(a_{12}-ia_{22})(b_{02}-b_{32})],
vec(AB)1,1,0,0\displaystyle\text{vec}(AB)_{1,1,0,0} =\displaystyle= [(a11+ia21)(b01+b31)+(a01a31)(b11+ib21)]\displaystyle[(a_{11}+ia_{21})(b_{01}+b_{31})+(a_{01}-a_{31})(b_{11}+ib_{21})]
×\displaystyle\times [(a12+ia22)(b02+b32)+(a02a32)(b12+ib22)],\displaystyle[(a_{12}+ia_{22})(b_{02}+b_{32})+(a_{02}-a_{32})(b_{12}+ib_{22})],
vec(AB)1,1,0,1\displaystyle\text{vec}(AB)_{1,1,0,1} =\displaystyle= [(a11+ia21)(b01+b31)+(a01a31)(b11+ib21)]\displaystyle[(a_{11}+ia_{21})(b_{01}+b_{31})+(a_{01}-a_{31})(b_{11}+ib_{21})]
×\displaystyle\times [(a12+ia22)(b12ib22)+(a02a32)(b02b32)],\displaystyle[(a_{12}+ia_{22})(b_{12}-ib_{22})+(a_{02}-a_{32})(b_{02}-b_{32})],
vec(AB)1,0,1,0\displaystyle\text{vec}(AB)_{1,0,1,0} =\displaystyle= [(a11+ia21)(b11ib21)+(a01a31)(b01b31)]\displaystyle[(a_{11}+ia_{21})(b_{11}-ib_{21})+(a_{01}-a_{31})(b_{01}-b_{31})]
×\displaystyle\times [(a02+a32)(b02+b32)+(a12ia22)(b12+ib22)],\displaystyle[(a_{02}+a_{32})(b_{02}+b_{32})+(a_{12}-ia_{22})(b_{12}+ib_{22})],
vec(AB)1,0,1,1\displaystyle\text{vec}(AB)_{1,0,1,1} =\displaystyle= [(a11+ia21)(b11ib21)+(a01a31)(b01b31)]\displaystyle[(a_{11}+ia_{21})(b_{11}-ib_{21})+(a_{01}-a_{31})(b_{01}-b_{31})]
×\displaystyle\times [(a02+a32)(b12ib22)+(a12ia22)(b02b32)],\displaystyle[(a_{02}+a_{32})(b_{12}-ib_{22})+(a_{12}-ia_{22})(b_{02}-b_{32})],
vec(AB)1,1,1,0\displaystyle\text{vec}(AB)_{1,1,1,0} =\displaystyle= [(a11+ia21)(b11ib21)+(a01a31)(b01b31)]\displaystyle[(a_{11}+ia_{21})(b_{11}-ib_{21})+(a_{01}-a_{31})(b_{01}-b_{31})]
×\displaystyle\times [(a12+ia22)(b02+b32)+(a02a32)(b12+ib22)],\displaystyle[(a_{12}+ia_{22})(b_{02}+b_{32})+(a_{02}-a_{32})(b_{12}+ib_{22})],
vec(AB)1,1,1,1\displaystyle\text{vec}(AB)_{1,1,1,1} =\displaystyle= [(a11+ia21)(b11ib21)+(a01a31)(b01b31)]\displaystyle[(a_{11}+ia_{21})(b_{11}-ib_{21})+(a_{01}-a_{31})(b_{01}-b_{31})]
×\displaystyle\times [(a12+ia22)(b12ib22)+(a02a32)(b02b32)].\displaystyle[(a_{12}+ia_{22})(b_{12}-ib_{22})+(a_{02}-a_{32})(b_{02}-b_{32})].

From the above relations and the representation ζ(A)\zeta(A) and ζ(B)\zeta(B), we see that the same result for vec(AB)\text{vec}(AB) is obtained.

In the previous two examples we have seen vectorization applied to operators and that the ζ()\zeta(\cdot) and vec()\text{vec}(\cdot) are indeed equivalent. As can be noticed, the computations to implement the representations and to show equivalence are not complicate but tedious. Therefore, such task can be delegated to a computer.

4.2 Additive Codes

As explained in the previous section, we need to have a symplectic form in order to construct the additive code related to the stabilizer code and its centralizer. We can use Eq. (76) to construct the symplectic form used through this section.

Definition 24.

Let A,B(2N)A,B\in\mathcal{L}(\mathcal{H}_{2}^{\otimes N}) be linear operators. We define the map

,vec:2N×2N\displaystyle\langle\cdot,\cdot\rangle_{\text{vec}}\colon\mathbb{C}^{2N}\times\mathbb{C}^{2N} \displaystyle\rightarrow ,\displaystyle\mathbb{C}, (100)
(vec(A),vec(B))\displaystyle(\text{vec}(A),\text{vec}(B)) \displaystyle\mapsto vec(A),vec(B)vec=i=12N[(A𝕀𝕀AT)vec(B)]i.\displaystyle\langle\text{vec}(A),\text{vec}(B)\rangle_{\text{vec}}=\sum_{i=1}^{2N}[(A\otimes\mathbb{I}-\mathbb{I}\otimes A^{T})\text{vec}(B)]_{i}. (101)
Proposition 25.

The map from Definition 24 is a symplectic form over \mathbb{C}.

Proof.

We show that the properties of Definition 24 are satisfied. Let A,B,C(2N)A,B,C\in\mathcal{L}(\mathcal{H}_{2}^{\otimes N}) be operators. First of all, we see that

vec(A)+vec(B),vec(C)vec\displaystyle\langle\text{vec}(A)+\text{vec}(B),\text{vec}(C)\rangle_{\text{vec}} =\displaystyle= i=12N([(A+B)𝕀𝕀(A+B)T]vec(C))i\displaystyle\sum_{i=1}^{2N}([(A+B)\otimes\mathbb{I}-\mathbb{I}\otimes(A+B)^{T}]\text{vec}(C))_{i} (102)
=\displaystyle= i=12N[(A𝕀𝕀AT)vec(C)]i+i=12N[(B𝕀𝕀BT)vec(C)]i\displaystyle\sum_{i=1}^{2N}[(A\otimes\mathbb{I}-\mathbb{I}\otimes A^{T})\text{vec}(C)]_{i}+\sum_{i=1}^{2N}[(B\otimes\mathbb{I}-\mathbb{I}\otimes B^{T})\text{vec}(C)]_{i}
=\displaystyle= vec(A),vec(C)vec+vec(B),vec(C)vec.\displaystyle\langle\text{vec}(A),\text{vec}(C)\rangle_{\text{vec}}+\langle\text{vec}(B),\text{vec}(C)\rangle_{\text{vec}}.

The second point follows from

vec(A),vec(B)vec\displaystyle\langle\text{vec}(A),\text{vec}(B)\rangle_{\text{vec}} =\displaystyle= i=12N[vec([A,B])]i\displaystyle\sum_{i=1}^{2N}[\text{vec}([A,B])]_{i} (103)
=\displaystyle= i=12N[vec(AB)vec(BA)]i\displaystyle\sum_{i=1}^{2N}[\text{vec}(AB)-\text{vec}(BA)]_{i} (104)
=\displaystyle= i=12N(vec(BA)vec(AB))i\displaystyle-\sum_{i=1}^{2N}(\text{vec}(BA)-\text{vec}(AB))_{i} (105)
=\displaystyle= i=12N[vec([B,A])]i\displaystyle-\sum_{i=1}^{2N}[\text{vec}([B,A])]_{i} (106)
=\displaystyle= vec(B),vec(A)vec.\displaystyle-\langle\text{vec}(B),\text{vec}(A)\rangle_{\text{vec}}. (107)

We used the linearity of the vectorization in the second equality. The last point follows by expanding an operator AA in an eigenbasis and computing (A𝕀𝕀AT)vec(A)(A\otimes\mathbb{I}-\mathbb{I}\otimes A^{T})\text{vec}(A). ∎

Since the Definition 24 gives a symplectic form, we can define the dual code of an additive code. Furthermore, we can extend the stabilizer formulation presented in the previous section to a larger set of errors.

Definition 26.

Let CC be an +vec+_{\text{vec}}-additive code. The symplectic dual of CC is given by

Cvec:={𝒄2N:𝒄,𝒅vec=0, for all 𝒅C}.C^{\perp_{\text{vec}}}:=\{\bm{c}\in\mathbb{C}^{2N}\colon\langle\bm{c},\bm{d}\rangle_{\text{vec}}=0,\text{ for all }\bm{d}\in C\}. (108)
Theorem 27.

Let 𝒱𝒮DFS=vec(𝒮DFS)\mathcal{V}_{\mathcal{S}_{\text{DFS}}}=\text{vec}(\mathcal{S}_{\text{DFS}}) or 𝒱𝒮sDFS=vec(𝒮sDFS)\mathcal{V}_{\mathcal{S}_{\text{sDFS}}}=\text{vec}(\mathcal{S}_{\text{sDFS}}) be a basis of the +vec+_{\text{vec}}-additive code CC. Then,

  1. 1.

    A decoherence-free stabilizer code 𝒬\mathcal{Q} exists if there exists an +vec+_{\text{vec}}-additive code CC over \mathbb{C} generated by 𝒱𝒮DFS\mathcal{V}_{\mathcal{S}_{\text{DFS}}} such that CCvecC\leq C^{\perp_{\text{vec}}} and vec(Hev)Cvec\text{vec}(H_{ev})\in C^{\perp_{\text{vec}}};

  2. 2.

    A strong decoherence-free stabilizer code 𝒬\mathcal{Q} exists if there exists an +vec+_{\text{vec}}-additive code CC over \mathbb{C} generated by 𝒱𝒮sDFS\mathcal{V}_{\mathcal{S}_{\text{sDFS}}} such that CCvecC\leq C^{\perp_{\text{vec}}} and vec(HS)Cvec\text{vec}(H_{S})\in C^{\perp_{\text{vec}}}.

Proof.

It follows the same reasoning used in the proof of Theorem 18. ∎

5 Application to Parameter Estimation

In this section we consider the framework of quantum metrology and see how the stabilizer codes introduced previously can be used as a tool within it. As it will be shown, one can reach the Heisenberg limit once the stabilizer codes attain an eigenvector condition.

Suppose we have an unitary evolution given by U=exp(iHS)U=\exp(-iH_{S}), where HS=ηHH_{S}=\eta H, η\eta is a parameter to be estimated, and HH is the generator of UU. One of the goals of quantum metrology is to reduce the variance obtained in estimating η\eta when compared to classical strategies. To attain this goal, we need to optimize the probing and measuring strategies. To decrease the estimating variance, we use NN identical and independent probes, measure them in the channel output, and average the results. Such scheme has the estimation precision lower bounded by [4, 3]

ΔηΔh12,\Delta\eta\Delta h\geq\frac{1}{2}, (109)

where ΔA\Delta A is the variance of the random variable AA, and h=j=1NHjh=\sum_{j=1}^{N}H_{j}, HjH_{j} acting on the jj-th probe, stands for the generator of the unitary evolution UNU^{\otimes N}. Furthermore, it is shown in Ref. [16] that there exists a probing state and a measurement strategy such that

Δη1N(λMaxλMin),\Delta\eta\geq\frac{1}{N(\lambda_{\text{Max}}-\lambda_{\text{Min}})}, (110)

where λMax\lambda_{\text{Max}} and λMin\lambda_{\text{Min}} are the maximum and minimum eigenvalues of hh. This is accomplished with the use of general probe states, which may be entangled states, and local or joint measurements, after the unitary evolution UNU^{\otimes N}. When the variance (110) scales like 1/N1/N, we say that it attains the Heisenberg limit (HL) scaling.

A crucial assumption used in the above methodology to attain the HL is that the evolution is unitary. For Markovian noise, one alternative approach is to use a quantum error-correcting code to achieve the HL under the assumption that the Hamiltonian is not in the spanned space generated by the Lindblad operators [36, 10, 37, 25, 17]. Refs [36, 10] show that lower bounds can be constructed from a simple algebraic condition involving solely the operators appearing in the quantum master equation. a preliminary protocol considering the requirements that quantum error-correcting codes must satisfy in order to achieve HL is also described in Ref. [10]. This protocol has been extended considering necessary and sufficient conditions for achieving the HL when the probing system has a Markovian noise and noiseless ancilla systems are available. This proposal has been further extended for general adaptive multi-parameter estimation schemes in presence of Markovian noise [17]. Lastly, Ref. [25] gives a semidefinite program for finding optimal ancilla-free sensing codes.

The proposed protocol of this paper is described as follows. The first part is the construction of the stabilizer code from the open quantum system evolution. Let ρMax-Min\rho_{\text{Max-Min}} be the equally weighted superposition of the eigenvectors relative to the maximum and minimum eigenvalues of i=1N𝟙Si1HS𝟙SNi\sum_{i=1}^{N}\mathbbm{1}^{\otimes i-1}_{S}\otimes H_{S}\otimes\mathbbm{1}^{\otimes N-i}_{S}. Next, we see if the stabilizer code contains the state ρMax-Min\rho_{\text{Max-Min}}. If so, then we use it to probe the quantum system. As shown in Theorem 8, we are going to have an unitary evolution described by HSH_{S}. Therefore, using the optimal measurement described in Ref. [16] over the channel outputs, one obtains the HL scaling.

Refer to caption
Figure 1: Flowchart of the proposed protocol for achieving HL limit using the stabilizer codes of previous section.

The present idea differs from the literature on the use of quantum codes to attain the HL [36, 10, 17, 37] in terms of computational complexity. Here, we do not need to implement a decoding process, which is the case of Refs. [36, 10, 37, 25]. However, this decoder-free approach is not novel in the literature, e.g. Ref. [17] proposes a semidefinite program design to identify the optimal quantum error-correcting protocol, without the need for a decoding algorithm, to achieve the best estimation precision in the case where the Heisenberg scaling is achievable. The quantum state will not change by the environmental noise since it belongs to the DFS. Therefore, there is no error to be detected or corrected. Removing the decoder from the picture, we have a reduced number of operations to be implemented and a faster probing strategy.

Theorem 28.

Consider a quantum system with evolution given by a Markovian master equation with Lindblad operators {Jl}\{J_{l}\}. Let 𝒮\mathcal{S} be a stabilizer set constructed from the Lindblad operators. Let |ψmax\ket{\psi_{\text{max}}} and |ψmin\ket{\psi_{\text{min}}} be eigenvectors of the system Hamiltonian HSH_{S} with maximum and minimum eigenvalues, respectively. Then, Heisenberg limit scaling is achievable if

|ψ(N)=12(|ψmaxN+|ψminN)\ket{\psi^{(N)}}=\frac{1}{\sqrt{2}}(\ket{\psi_{\text{max}}}^{\otimes N}+\ket{\psi_{\text{min}}}^{\otimes N})

belongs to the stabilizer code for any N>NN>N^{*}, where NN^{*}\in\mathbb{N}.

Proof.

Since |ψ(N)\ket{\psi^{(N)}} belongs to the stabilizer code, then it also belongs to the DFS, hence its evolution is unitary and the technique of Ref. [16] can be applied. ∎

We use Theorem 28 in the example below to show achievability of the HL using the protocol of Fig. 1. The proposed protocol relies on ρMax-Min\rho_{\text{Max-Min}} as a codeword of the DFS stabilizer code. The existence of a DFS stabilizer code is equivalent to the commutativity between the Lindblad operators and the system Hamiltonian. This is satisfied whenever we have environments acting locally on each subsystem. Therefore, we expect that the proposed protocol can be applied to most of the relevant physical systems.

Example 29.

Consider a quantum system with a similar dynamics as in the previous examples,

ρt=i[HS,ρ]+γ2(2JρJJJρρJJ),\frac{\partial\rho}{\partial t}=-i[H_{S},\rho]+\frac{\gamma}{2}(2J\rho J^{\dagger}-J^{\dagger}J\rho-\rho J^{\dagger}J), (111)

with

J=s+c2(𝕀𝕀+σzσz),J=\frac{s+c}{2}(\mathbb{I}\otimes\mathbb{I}+\sigma_{z}\otimes\sigma_{z}), (112)

and

HS=γ(s+c)24(σxσx).H_{S}=\frac{\gamma(s+c)^{2}}{4}(\sigma_{x}\otimes\sigma_{x}). (113)

where s=sinh(r)s=\sinh(r), c=cosh(r)c=\cosh(r), and rr is the (real) squeezing parameter. The stabilizer set constructed from the dissipator part is given by 𝒮=(𝕀𝕀+σzσz)i:i=0,1\mathcal{S}=\langle(\mathbb{I}\otimes\mathbb{I}+\sigma_{z}\otimes\sigma_{z})^{i}\colon i=0,1\rangle. Consider an eigenvector with maximum eigenvalue and an eigenvector with minimum eigenvalue of the operator HSH_{S}. Such a pair is

|ψMax=12(|00+|11)and|ψMin=12(|00|11).\ket{\psi_{\text{Max}}}=\frac{1}{\sqrt{2}}(\ket{00}+\ket{11})\qquad\text{and}\qquad\ket{\psi_{\text{Min}}}=\frac{1}{\sqrt{2}}(\ket{00}-\ket{11}). (114)

Suppose we are going to probe the system NN times with the state

ρMax-Min=|ψ(N)ψ(N)|=12(|ψMaxN+|ψMinN)(ψMax|N+ψMin|N).\rho_{\text{Max-Min}}=\ket{\psi^{(N)}}\bra{\psi^{(N)}}=\frac{1}{2}\Big{(}\ket{\psi_{\text{Max}}}^{\otimes N}+\ket{\psi_{\text{Min}}}^{\otimes N}\Big{)}\Big{(}\bra{\psi_{\text{Max}}}^{\otimes N}+\bra{\psi_{\text{Min}}}^{\otimes N}\Big{)}. (115)

It is possible to see that |ψ(N)\ket{\psi^{(N)}} is a codeword of the stabilizer code 𝒬\mathcal{Q}, since S|ψMax=|ψMaxS\ket{\psi_{\text{Max}}}=\ket{\psi_{\text{Max}}} and S|ψMin=|ψMinS\ket{\psi_{\text{Min}}}=\ket{\psi_{\text{Min}}}, for all S𝒮S\in\mathcal{S}. Now, the achievability of the HL scaling can by seen in two ways. Firstly from Theorem 28, where state membership in the stabilizer code is verified in the quantum or classical realms using the tools presented previously in this paper. Secondly from Eq. (111), where we have that the dissipator part does not contribute to the evolution since

2JρMax-MinJJJρMax-MinρMax-MinJJ=2ρMax-MinρMax-MinρMax-Min=0.2J\rho_{\text{Max-Min}}J^{\dagger}-J^{\dagger}J\rho_{\text{Max-Min}}-\rho_{\text{Max-Min}}J^{\dagger}J=2\rho_{\text{Max-Min}}-\rho_{\text{Max-Min}}-\rho_{\text{Max-Min}}=0. (116)

6 Final Remarks

In this work we have constructed stabilizer codes for open quantum systems governed by Lindblad master equations. To achieve this goal, we had to go beyond the tools that exist for stabilizer codes in the literature. As an important step, we have extended the formulation of stabilizer codes under the influence of errors forming a group to those forming a vector space. Using stabilizer codes as tools, we were able to determine conditions under which decoherence-free subspaces exist. As an application of the results shown, a novel algebraic method for attaining the Heisenberg limit scaling is given by means of stabilizer codes. Explanations of tools and codes created in the paper are illustrated through a variety of examples. The algebraic approach developed to attain the Heisenberg limit scaling paves the way to attack this quantum metrology problem by reservoir engineering.

This paper suggests future lines of investigation from coding theory perspective. Firstly, by considering the construction of parameter bounds by connecting the physical constraints over Lindblad operators to the stabilizer code parameters. A quantification of goodness for decoherence-free subspaces can be obtained from this topic. One could also show the non-existence of decoherence-free subspaces, which could lead to a more effective approach to investigate open quantum systems. Secondly, identifying decoherence-free subspaces as stabilizer codes generates the possibility to classify some evolutions of open quantum systems. One approach is connecting some evolutions to families of classical codes. Lastly, because of the novel approach presented, we expect quantum evolutions with decoherence-free stabilizer codes leading to classical codes that have not been discovered yet.

7 Acknowledgments

The authors acknowledge the funding from the European Union’s Horizon 2020 research and innovation programme, under grant agreement QUARTET No 862644.

References

  • [1] Karim M. Abadir and Jan R. Magnus “Matrix Algebra” Cambridge University Press, 2005, pp. 464
  • [2] Dave Bacon “Operator quantum error-correcting subsystems for self-correcting quantum memories” In Physical Review A 73.1 American Physical Society (APS), 2006, pp. 012340 DOI: 10.1103/physreva.73.012340
  • [3] Samuel L. Braunstein and Carlton M. Caves “Statistical distance and the geometry of quantum states” In Physical Review Letters 72.22 American Physical Society (APS), 1994, pp. 3439–3443 DOI: 10.1103/physrevlett.72.3439
  • [4] Samuel L. Braunstein, Carlton M. Caves and Gerard J. Milburn “Generalized Uncertainty Relations: Theory, Examples, and Lorentz Invariance” In Annals of Physics 247.1 Elsevier BV, 1996, pp. 135–173 DOI: 10.1006/aphy.1996.0040
  • [5] Todd Brun, Igor Devetak and Min-Hsiu Hsieh “Correcting Quantum Errors with Entanglement” In Science 314.5798 American Association for the Advancement of Science (AAAS), 2006, pp. 436–439 DOI: 10.1126/science.1131563
  • [6] Carlo Cafaro, Sonia L’Innocente, Cosmo Lupo and Stefano Mancini “Quantifying the Performance of Quantum Codes” In Open Systems & Information Dynamics 18.01 World Scientific Pub Co Pte Lt, 2011, pp. 1–31 DOI: 10.1142/s1230161211000029
  • [7] Carlo Cafaro, Federico Maiolini and Stefano Mancini “Quantum stabilizer codes embedding qubits into qudits” In Physical Review A 86.2 American Physical Society (APS), 2012 DOI: 10.1103/physreva.86.022308
  • [8] Carlo Cafaro and Stefano Mancini “Quantum stabilizer codes for correlated and asymmetric depolarizing errors” In Physical Review A 82.1 American Physical Society (APS), 2010 DOI: 10.1103/physreva.82.012306
  • [9] A. Robert Calderbank, Eric M. Rains, Peter M. Shor and Neil J.A. Sloane “Quantum error correction via codes over GF(4)” In IEEE Transactions on Information Theory 44.4 Institute of ElectricalElectronics Engineers (IEEE), 1998, pp. 1369–1387 DOI: 10.1109/18.681315
  • [10] Rafał Demkowicz-Dobrzański, Jan Czajkowski and Pavel Sekatski “Adaptive Quantum Metrology under General Markovian Noise” In Physical Review X 7.4 American Physical Society (APS), 2017 DOI: 10.1103/physrevx.7.041009
  • [11] Rafał Demkowicz-Dobrzański, Wojciech Górecki and Mădălin Guţă “Multi-parameter estimation beyond quantum Fisher information” In Journal of Physics A: Mathematical and Theoretical 53.36 IOP Publishing, 2020, pp. 363001 DOI: 10.1088/1751-8121/ab8ef3
  • [12] Robert H. Dicke “Coherence in Spontaneous Radiation Processes” In Physical Review 93.1 American Physical Society (APS), 1954, pp. 99–110 DOI: 10.1103/physrev.93.99
  • [13] Frank Gaitan “Quantum error correction and fault tolerant quantum computing” Boca Raton, FL: CRC Press, 2008 URL: https://www.routledge.com/Quantum-Error-Correction-and-Fault-Tolerant-Quantum-Computing/Gaitan/p/book/9780849371998
  • [14] Carlos Galindo, Fernando Hernando, Ryutaroh Matsumoto and Diego Ruano “Entanglement-assisted quantum error-correcting codes over arbitrary finite fields” In Quantum Information Processing 18.4 Springer ScienceBusiness Media LLC, 2019 DOI: 10.1007/s11128-019-2234-5
  • [15] Vittorio Giovannetti, Seth Lloyd and Lorenzo Maccone “Advances in quantum metrology” In Nature Photonics 5.4 Springer ScienceBusiness Media LLC, 2011, pp. 222–229 DOI: 10.1038/nphoton.2011.35
  • [16] Vittorio Giovannetti, Seth Lloyd and Lorenzo Maccone “Quantum Metrology” In Physical Review Letters 96.1 American Physical Society (APS), 2006 DOI: 10.1103/physrevlett.96.010401
  • [17] Wojciech Górecki, Sisi Zhou, Liang Jiang and Rafał Demkowicz-Dobrzański “Optimal probes and error-correction schemes in multi-parameter quantum metrology” In Quantum 4 Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften, 2020, pp. 288 DOI: 10.22331/q-2020-07-02-288
  • [18] Daniel Gottesman “Stabilizer codes and quantum error correction”, 1997
  • [19] Daniel Gottesman, Alexei Kitaev and John Preskill “Encoding a qubit in an oscillator” In Physical Review A 64.1 American Physical Society (APS), 2001 DOI: 10.1103/physreva.64.012310
  • [20] Giuliano G. La Guardia and Francisco Revson F. Pereira “Good and asymptotically good quantum codes derived from algebraic geometry” In Quantum Information Processing 16.6 Springer ScienceBusiness Media LLC, 2017 DOI: 10.1007/s11128-017-1618-7
  • [21] Francesco Petruccione Heinz-Peter Breuer “The Theory of Open Quantum Systems” Oxford University Press, 2007 URL: https://www.ebook.de/de/product/6212122/heinz_peter_breuer_francesco_petruccione_the_theory_of_open_quantum_systems.html
  • [22] Raisa I. Karasik, Karl-Peter Marzlin, Barry C. Sanders and K. Birgitta Whaley “Criteria for dynamically stable decoherence-free subspaces and incoherently generated coherences” In Physical Review A 77.5 American Physical Society (APS), 2008 DOI: 10.1103/physreva.77.052301
  • [23] Avanti Ketkar, Andreas Klappenecker, Santosh Kumar and Pradeep K. Sarvepalli “Nonbinary Stabilizer Codes Over Finite Fields” In IEEE Transactions on Information Theory 52.11 Institute of ElectricalElectronics Engineers (IEEE), 2006, pp. 4892–4914 DOI: 10.1109/tit.2006.883612
  • [24] Serge Lang “Algebra” Springer New York, 2005 URL: https://www.ebook.de/de/product/3251791/serge_lang_algebra.html
  • [25] David Layden, Sisi Zhou, Paola Cappellaro and Liang Jiang “Ancilla-Free Quantum Error Correction Codes for Quantum Metrology” In Physical Review Letters 122.4 American Physical Society (APS), 2019 DOI: 10.1103/physrevlett.122.040502
  • [26] D. A. Lidar, D. Bacon and K. B. Whaley “Concatenating Decoherence-Free Subspaces with Quantum Error Correcting Codes” In Physical Review Letters 82.22 American Physical Society (APS), 1999, pp. 4556–4559 DOI: 10.1103/physrevlett.82.4556
  • [27] “Quantum Error Correction” Cambridge University Press, 2014 URL: https://www.ebook.de/de/product/20579019/quantum_error_correction.html
  • [28] Alfredo Luis “Breaking the weak Heisenberg limit” In Physical Review A 95.3 American Physical Society (APS), 2017 DOI: 10.1103/physreva.95.032113
  • [29] Stefano Mancini and Andreas Winter “A Quantum Leap in Information Theory” WORLD SCIENTIFIC, 2020 DOI: 10.1142/11314
  • [30] Isaac L. Chuang Michael A. Nielsen “Quantum Computation and Quantum Information” Cambridge University Pr., 2010 URL: https://www.ebook.de/de/product/13055864/michael_a_nielsen_isaac_l_chuang_quantum_computation_and_quantum_information.html
  • [31] Kyungjoo Noh and Christopher Chamberland “Fault-tolerant bosonic quantum error correction with the surface–Gottesman-Kitaev-Preskill code” In Physical Review A 101.1 American Physical Society (APS), 2020 DOI: 10.1103/physreva.101.012316
  • [32] Harold Ollivier and Jean-Pierre Tillich “Description of a Quantum Convolutional Code” In Physical Review Letters 91.17 American Physical Society (APS), 2003 DOI: 10.1103/physrevlett.91.177902
  • [33] Francisco Revson F. Pereira and Stefano Mancini “Entanglement-Assisted Quantum Codes from Cyclic Codes” In Entropy 25.1 MDPI AG, 2022, pp. 37 DOI: 10.3390/e25010037
  • [34] Francisco Revson F. Pereira, Ruud Pellikaan, Giuliano Gadioli La Guardia and Francisco Marcos Assis “Entanglement-Assisted Quantum Codes From Algebraic Geometry Codes” In IEEE Transactions on Information Theory 67.11 Institute of ElectricalElectronics Engineers (IEEE), 2021, pp. 7110–7120 DOI: 10.1109/tit.2021.3113367
  • [35] Francisco Revson Fernandes Pereira, Giuliano Gadioli La Guardia and Francisco Marcos Assis “Classical and Quantum Convolutional Codes Derived From Algebraic Geometry Codes” In IEEE Transactions on Communications 67.1 Institute of ElectricalElectronics Engineers (IEEE), 2019, pp. 73–82 DOI: 10.1109/tcomm.2018.2875754
  • [36] Pavel Sekatski, Michalis Skotiniotis, Janek Kołodyński and Wolfgang Dür “Quantum metrology with full and fast quantum control” In Quantum 1 Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften, 2017, pp. 27 DOI: 10.22331/q-2017-09-06-27
  • [37] Sisi Zhou, Mengzhen Zhang, John Preskill and Liang Jiang “Achieving the Heisenberg limit in quantum metrology using quantum error correction” In Nature Communications 9.1 Springer ScienceBusiness Media LLC, 2018 DOI: 10.1038/s41467-017-02510-3