This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Stability problem of equilibrium discrete planar curves

Yoshiki Jikumaru 111 Key words and phrases: discrete planar curve, variational problem, discrete curvature, Steiner formula, stability
Abstract

In this paper, we study planar polygonal curves from the variational methods. We show an unified interpretation of discrete curvatures and the Steiner-type formula by extracting the notion of the discrete curvature vector from the first variation of the length functional. Moreover, we determine the equilibrium curves for the length functional under the area-constraint condition and study their stability.

1 Introduction

Discrete differential geometry is an active research field in connection with the smooth manifold theory and the visualization on the computer. In this field, from the theoretical point of view, one approach is based on the variational problems and the other is the integrability of equations. We take the former approach and focus on discrete planar curves. Surprisingly, such a discrete curve theory is not well-understood, therefore we try to develop them inspired by the work [10]. Moreover, we consider the stability problem for equilibrium discrete curves. Stability problem for discrete objects have not developed well after the work by Polthier and Rossman [11].

First we derive the first variation formula and extract the vector from the formula which should be called the “discrete curvature vector” in §2. In §3, by using this curvature vector, we show an unifed interpretation which derives various kinds of discrete curvature notions introduced in [7], [8]. The important viewpoint here is that there is no natural notion of the line element on the vertices. In §4, we characterize equilibrium curves for the length functional under the area-constraint condition as regular polygons. In §5, we derive the Steiner-type formula for parallel curves by using the “vertex normal” constructed from the “discrete curvature vector” derived in §2. In §6, we will consider the stability problem of the regular polygons. We can derive the second variation formula similar to the smooth case by decomposing the variation vector field to the “normal” and “tangential” directions as in [1]. Moreover, we show the instability for the non-convex regular polygons by using the second variation formula for “normal” variations in the section 7.

2 The first variation formula

In this section we will consider the variation of discrete curves and extract the “curvature vector” from the first variation formula. We can expect that this vector gives a notion of the curvature and normal at vertices. Let us recall the basic definition of discrete planar curves.

Definition 2.1.

Let nn be a non-negative integer. A standard (abstract) nn-path is a simplicial complex G=(V,E)G=(V,E) formed by

  1. (1)(1)

    (n+1)(n+1) abstract points : V={v0,,vn}V=\{v_{0},\ldots,v_{n}\}.

  2. (2)(2)

    the set of nn edges ek=[vk,vk+1]e_{k}=[v_{k},v_{k+1}], k=0,,n1k=0,\ldots,n-1.

An standard abstract nn-circle is the union of a standard nn-path and the “final” edge en=[vn,v0]e_{n}=[v_{n},v_{0}]. A discrete (planar) curve is a geometric realization of a standard (n1)(n-1)-path or (n1)(n-1)-circle which is a map X:V2X:V\to\mathbb{R}^{2} satisfies lk:=|pk+1pk|0l_{k}:=|p_{k+1}-p_{k}|\neq 0 for all k=0,1,,n1k=0,1,\ldots,n-1, where we denote pk:=X(vk)p_{k}:=X(v_{k}). We denote such a discrete curve as Γh={pk}k\Gamma_{h}=\{p_{k}\}_{k}.

For each oriented edge ek:=[pk,pk+1]e_{k}:=[p_{k},p_{k+1}] of Γh\Gamma_{h} we can assign an unit normal vector

νk:=R(pk+1pklk):=R(pk+1pk|pk+1pk|),k=0,,n1,\nu_{k}:=R\left(\frac{p_{k+1}-p_{k}}{l_{k}}\right):=R\left(\frac{p_{k+1}-p_{k}}{|p_{k+1}-p_{k}|}\right),\quad k=0,\ldots,n-1,

where RR is the π/2\pi/2-rotation or π/2-\pi/2-rotation in 2\mathbb{R}^{2}. It does not matter whichever we choose but we choose the same RR for all kk.

For a discrete curve Γh={pk}k\Gamma_{h}=\{p_{k}\}_{k} with an orientation, the length of Γh\Gamma_{h} and the 22-dimensional volume (area) bounded by Γh\Gamma_{h} are defined by

L(Γh):=klk=k|pk+1pk|,Vol(Γh):= 12kpk,νk|pk+1pk|L(\Gamma_{h}):=\sum_{k}l_{k}=\sum_{k}|p_{k+1}-p_{k}|,\quad\operatorname{Vol}(\Gamma_{h}):=\frac{\,1\,}{2}\sum_{k}\langle p_{k},\nu_{k}\rangle|p_{k+1}-p_{k}|

In these settings, we consider the following question:

What is the unit normal, curvature and line element at the vertices ?

A realization of the dual graph may give an answer for this question, but we do not consider such a realization. In order to approach the problem, we will extract the discrete curvature vector from the first variation of the length. Therefore we first derive the first variation formula of the length functional. In the discrete setting we consider the variation of vertices, that is, piecewise linear variations. We consider a variation

pk(t)=pk+tvk+O(t2),k=0,,n1p_{k}(t)=p_{k}+tv_{k}+O(t^{2}),\quad k=0,\ldots,n-1

where vt=(v0t,,vn1t)2n{}^{t}\vec{v}=({}^{t}v_{0},\ldots,{}^{t}v_{n-1})\in\mathbb{R}^{2n} is the “variation vector field”. If pkp_{k} is a boundary point of Γh\Gamma_{h}, then we assume vk=0v_{k}=0.

We want to find the vector tL2n{}^{t}\nabla L\in\mathbb{R}^{2n} satisfies

δL:=ddt|t=0L=v,L2n=kvk,pkL2,\delta L:=\frac{d}{dt}_{|t=0}L=\langle\vec{v},\nabla L\rangle_{\mathbb{R}^{2n}}=\sum_{k}\langle v_{k},\nabla_{p_{k}}L\rangle_{\mathbb{R}^{2}},

where we write tL=(p1tL,,pntL)2n{}^{t}\nabla L=({}^{t}\nabla_{p_{1}}L,\ldots,{}^{t}\nabla_{p_{n}}L)\in\mathbb{R}^{2n}. Since this is just a direction derivative in 2n\mathbb{R}^{2n}, the following proposition is immediately:

Proposition 2.2.

Let Γh={pk}k\Gamma_{h}=\{p_{k}\}_{k} be a discrete closed curve and pkp_{k} be an interior vertex. Then the gradient the length can be expressed in the following formula:

pkL=R(νkνk1)=pk+1pklk+pkpk1lk1.\nabla_{p_{k}}L=R(\nu_{k}-\nu_{k-1})=-\frac{p_{k+1}-p_{k}}{l_{k}}+\frac{p_{k}-p_{k-1}}{l_{k-1}}. (2.1)

By using this formula we have

δL=kpkL,vk=k 1LkpkL,vkLk,\delta L=\sum_{k}\langle\nabla_{p_{k}}L,v_{k}\rangle=-\sum_{k}\left\langle-\frac{\,1\,}{L_{k}}\nabla_{p_{k}}L,v_{k}\right\rangle L_{k},

where we inserted some auxilary function LkL_{k} defined on the vertices. This kind of observation is essentially remarked in the paper [3].

Definition 2.3 (Discrete curvature vector).

For a positive function LkL_{k} defined on the vertices, we call the vector

N~k= 1LkpkL= 1Lk(pk+1pklkpkpk1lk1)\widetilde{N}_{k}=-\frac{\,1\,}{L_{k}}\nabla_{p_{k}}L=\frac{\,1\,}{L_{k}}\left(\frac{p_{k+1}-p_{k}}{l_{k}}-\frac{p_{k}-p_{k-1}}{l_{k-1}}\right) (2.2)

the discrete curvature vector with respect to LkL_{k}.

Remarks .

There are some reasons why we can regard the vector N~k\widetilde{N}_{k} as the curvature vector. First, the vector N~k\widetilde{N}_{k} is independent of the choice of the unit normal, i.e., an intrinsic quantity. Moreover, the second expression (2.2) can be regarded as a discretization of a part of the Frenet-Serret formula. As we will remark below, suitable choices of the function LkL_{k} derives various notions of discrete curvature defined in [7], [8]. Non-uniqueness of the function LkL_{k} comes from the fact that there is no natural line element, i.e. the metric, at vertices.

3 Relation with other notions of the discrete curvature

In this section, non-uniqueness of the line element at the vertices gives various notions of the discrete curvature defined in [7], [8].

To describe the curvature notions, we have to define the angles at vertices. We define (the absolute value of) the angle between νk1\nu_{k-1} and νk\nu_{k} as θk\theta_{k}, i.e.,

cosθk:=νk,νk1=pk+1pk,pkpk1|pk+1pk||pkpk1|.\cos\theta_{k}:=\langle\nu_{k},\nu_{k-1}\rangle=\frac{\langle p_{k+1}-p_{k},p_{k}-p_{k-1}\rangle}{|p_{k+1}-p_{k}|\cdot|p_{k}-p_{k-1}|}.

We have to care about the signature of θk\theta_{k}. Let RθR_{\theta} be the θ\theta-rotation in 2\mathbb{R}^{2}. We assign the signature depends on the choice of the rotation RR appeared in the definition of the edge normal:

σ:={+1ifR=Rπ/21ifR=Rπ/2\sigma:=\begin{cases}+1\quad&{\rm if}\quad R=R_{\pi/2}\\ -1\quad&{\rm if}\quad R=R_{-\pi/2}\end{cases}

In this situation the signature of θk\theta_{k} is determined by the equation Rσθk(νk1)=νkR_{\sigma\theta_{k}}(\nu_{k-1})=\nu_{k}. We easily see that kθk=2mπ\sum_{k}\theta_{k}=2m\pi for some integer mm\in\mathbb{Z} for any closed curve. We define the discrete curvature with respect to the choice of LkL_{k} by the length of the discrete curvature vector with respect to LkL_{k}:

Definition 3.1.

For a positive function LkL_{k} defined on the vertices, we call the value

κ(pk):=2sin(θk/2)Lk\kappa(p_{k}):=\frac{2\sin(\theta_{k}/2)}{L_{k}}

the discrete curvature with respect to LkL_{k}.

Remark .

If we use the expression pk=R(νkνk1)\nabla_{p_{k}}=R(\nu_{k}-\nu_{k-1}), the discrete curvature with respect to LkL_{k} can be written as κ(pk)=|νkνk1|/Lk\kappa(p_{k})=|\nu_{k}-\nu_{k-1}|/L_{k} up to the signature. This can be regarded as a discretization of the curvature for a regular planar curve.

In the lecture note by Tim Hoffmann [8], three kinds of notions of the curvature for discrete curves are introduced:

  1. (1)(1)

    The curvature at vertices by using the vertex osculating circle method,

  2. (2)(2)

    The curvature at edges by using the edge osculating circle method,

  3. (3)(3)

    The curvature at vertices by using edge osculating circle for “arclength parametrized” curve.

Moreover, Hatakeyama [7] also defined the curvature for discrete curves another way. We will show that these curvature notions can be derived from our viewpoint.

Proposition 3.2 (The vertex osculating circle method [8]).

If we choose

Lk=|pk+1pk1|2cos(θk/2)=|pk+1pk+pkpk1|2cos(θk/2),L_{k}=\frac{|p_{k+1}-p_{k-1}|}{2\cos(\theta_{k}/2)}=\frac{|p_{k+1}-p_{k}+p_{k}-p_{k-1}|}{2\cos(\theta_{k}/2)},

then the discrete curvature with respect to LkL_{k} becomes

κ(pk)=2sinθk|pk+1pk1|=2sinθk|pk+1pk+pkpk1|\kappa(p_{k})=\frac{2\sin\theta_{k}}{|p_{k+1}-p_{k-1}|}=\frac{2\sin\theta_{k}}{|p_{k+1}-p_{k}+p_{k}-p_{k-1}|}

and this value coincides with the curvature based on the vertex osculating circle method.

Proposition 3.3 (For the arclength parametrized curves [8]).

Assume lk=lk1=l0l_{k}=l_{k-1}=l_{0}. Then if we choose

Lk=l0cosθk2=lk+lk12cosθk2,L_{k}=l_{0}\cos\frac{\theta_{k}}{2}=\frac{l_{k}+l_{k-1}}{2}\cdot\cos\frac{\theta_{k}}{2},

then the discrete curvature with respect to LkL_{k} becomes

κ(pk)=2l0tanθk2\kappa(p_{k})=\frac{2}{l_{0}}\tan\frac{\theta_{k}}{2}

and this value coincides with the curvature of arclength parametrized curve.

In the paper [7], the discrete curvature at the vertex is defined as

κ(pk):=1|pkpk1||pk+1pk|pk+1pk|pkpk1|pkpk1||=|pkL||pkpk1|.\kappa(p_{k}):=\frac{1}{|p_{k}-p_{k-1}|}\left|\frac{p_{k+1}-p_{k}}{|p_{k+1}-p_{k}|}-\frac{p_{k}-p_{k-1}}{|p_{k}-p_{k-1}|}\right|=-\frac{|\nabla_{p_{k}}L|}{|p_{k}-p_{k-1}|}.

Then we immediately have the following result:

Proposition 3.4.

If we choose Lk=lk1=|pkpk1|L_{k}=l_{k-1}=|p_{k}-p_{k-1}|, then the discrete curvature with respect to LkL_{k} coincides with the discrete curvature defined in [7].

Before considering the edge osculating circle method, we shall modify the first variation formula from the vertex-based expression to the edge-based expression. If we put vk=(wk+wk1)/2v_{k}=(w_{k}+w_{k-1})/2, then we have

δL\displaystyle\delta L =12kpkL,wk+wk1\displaystyle=\frac{1}{2}\sum_{k}\langle\nabla_{p_{k}}L,w_{k}+w_{k-1}\rangle
=12kpkL+pk+1L,wk=kR(νk1νk+1)2Lk,wkLk\displaystyle=\frac{1}{2}\sum_{k}\langle\nabla_{p_{k}}L+\nabla_{p_{k+1}}L,w_{k}\rangle=-\sum_{k}\left\langle\frac{R(\nu_{k-1}-\nu_{k+1})}{2L_{k}^{\prime}},w_{k}\right\rangle L_{k}^{\prime}

where LkL_{k}^{\prime} is some auxiliary function. As in the vertex case, we call the value

κ(ek):=1Lksinθk+θk+12\kappa(e_{k}):=\frac{1}{L_{k}^{\prime}}\cdot\sin\frac{\theta_{k}+\theta_{k+1}}{2}

the discrete curvature at the edge ek=[pk,pk+1]e_{k}=[p_{k},p_{k+1}] with respect to LkL_{k}^{\prime}.

Proposition 3.5 (The edge osculating circle method [8]).

If we choose

Lk=lkcosθk2cosθk+12=|pk+1pk|cosθk2cosθk+12,L_{k}^{\prime}=l_{k}\cos\frac{\theta_{k}}{2}\cos\frac{\theta_{k+1}}{2}=|p_{k+1}-p_{k}|\cos\frac{\theta_{k}}{2}\cos\frac{\theta_{k+1}}{2},

then the discrete curvature with respect to LkL_{k}^{\prime} becomes

κ(ek)=tan(θk/2)+tan(θk+1/2)|pk+1pk|\kappa(e_{k})=\frac{\tan(\theta_{k}/2)+\tan(\theta_{k+1}/2)}{|p_{k+1}-p_{k}|}

and this value coincides with the curvature based on the edge osculating circle method.

Remark .

To define the discrete curvature, we have to choose LkL_{k} (respectively LkL_{k}^{\prime}) properly. That means if lkl_{k}, lk1dsl_{k-1}\to ds and θk0\theta_{k}\to 0, then LkL_{k} (respectively LkL_{k}^{\prime}) must converge to dsds, i.e., LkL_{k} must be a “good” candidate for a discrete line element. We can check that LkL_{k} and LkL_{k}^{\prime} satisfy this condition in the above examples.

Remark (“No free lunch” for the discrete Laplacian, cf. [12]).

We consider these kinds of “no free lunch” story for the discrete Laplacian which will be used in the second variation formula. On a discrete curve Γh\Gamma_{h} with the vertex set VV, we consider a function ψ:V\psi:V\to\mathbb{R}. Then the gradient and the Laplacian of ψ\psi can be defined as

ψk:=ψk+1ψklk,Δψk:=1Lk(ψkψk1)=1Lk(ψk+1ψklkψkψk1lk1),\nabla\psi_{k}:=\frac{\psi_{k+1}-\psi_{k}}{l_{k}},\quad\Delta\psi_{k}:=\frac{1}{L_{k}}(\nabla\psi_{k}-\nabla\psi_{k-1})=\frac{1}{L_{k}}\left(\frac{\psi_{k+1}-\psi_{k}}{l_{k}}-\frac{\psi_{k}-\psi_{k-1}}{l_{k-1}}\right),

where we denote ψk:=ψ(k)\psi_{k}:=\psi(k). Note that the gradient is the “edge-based operator” but the Laplacian is the “vertex-based” operator. In addition, the discrete curvature vector N~k\widetilde{N}_{k} with respect to LkL_{k} can be written as Δpk\Delta p_{k}.

From another point of view, if we define the Dirichlet energy of ψ\psi as

Eh(ψ):=12k|ψk|2lk=12k|ψk+1ψk|2lk,E_{h}(\psi):=\frac{1}{2}\sum_{k}|\nabla\psi_{k}|^{2}\,l_{k}=\frac{1}{2}\sum_{k}\frac{|\psi_{k+1}-\psi_{k}|^{2}}{l_{k}},

then the first variation of the energy becomes

δEh(ψ)=kψk+1ψk,φk+1φklk=kψk1ψk,φk=kΔψk,φkLk,\delta E_{h}(\psi)=\sum_{k}\frac{\langle\psi_{k+1}-\psi_{k},\varphi_{k+1}-\varphi_{k}\rangle}{l_{k}}=\sum_{k}\langle\nabla\psi_{k-1}-\nabla\psi_{k},\varphi_{k}\rangle=-\sum_{k}\langle\Delta\psi_{k},\varphi_{k}\rangle L_{k},

where we take the variation of ψ\psi as ψk(t)=ψk+tφk+O(t2)\psi_{k}(t)=\psi_{k}+t\varphi_{k}+O(t^{2}). Therefore δEh(ψ)=0\delta E_{h}(\psi)=0 if and only if Δψk=0\Delta\psi_{k}=0. Note that the condition Δψk=0\Delta\psi_{k}=0 is independent of the choice of LkL_{k}.

As in the curvature case, the Laplacian can be changed since there is no natural “line element divisor LkL_{k}”. However, with another function φ:V\varphi:V\to\mathbb{R}, we still have the following properties since the quanties ΔψkLk\Delta\psi_{k}L_{k} are independent of LkL_{k}:

  1. (1)(1)

    If ψ\psi is constant, then Δψ=0\Delta\psi=0.

  2. (2)(2)

    The condition Δψ=0\Delta\psi=0 is independent of the choice of LkL_{k} and in this case we have the mean value property:

    ψk=lk1lk+lk1ψk+1+lklk+lk1ψk1.\psi_{k}=\frac{l_{k-1}}{l_{k}+l_{k-1}}\psi_{k+1}+\frac{l_{k}}{l_{k}+l_{k-1}}\psi_{k-1}.
  3. (3)(3)

    L2L^{2} symmetric property:

    kψkΔφkLk=kΔψkφkLk.\sum_{k}\psi_{k}\cdot\Delta\varphi_{k}\cdot L_{k}=\sum_{k}\Delta\psi_{k}\cdot\varphi_{k}\cdot L_{k}.

    Note that the summation is vertex-based.

  4. (4)(4)

    Integration by parts:

    kψkΔφkLk=kψkφklk.-\sum_{k}\psi_{k}\cdot\Delta\varphi_{k}\cdot L_{k}=\sum_{k}\nabla\psi_{k}\cdot\nabla\varphi_{k}\cdot l_{k}.

    Note that the right hand side is the edge-based summation but the left hand side is the vertex-based summation. As a corollary, the operator Δ-\Delta is positive semi-definite.

4 Equilibrium curves of the length functional

In the previous section, we showed that non-uniqueness of the line element at vertices gives various discrete curvature notions. However, the equilibrium curves for the length functional under the area-constraint condition should be characterized as some “constant curvature” objects by virture of the smooth case. In this section, we show that such equilibrium curves can be characterized as regular polygons and that they are certainly regarded as “constant curvature” objects.

By a direct calculation we have the following result.

Lemma 4.1.

For any vertex pkp_{k} of Γh\Gamma_{h} the gradient of the area pkVol\nabla_{p_{k}}\operatorname{Vol} is given by

pkVol=12R(pk+1pk1).\nabla_{p_{k}}\operatorname{Vol}=\frac{1}{2}R(p_{k+1}-p_{k-1}).
Remark (Another “no free lunch” story).

We can modify the first variation formula of the volume as follows:

δVol=12kR(pk+1pk+pkpk1),vk=klkνk+lk1νk12Lk,vkLk.\delta\operatorname{Vol}=\frac{1}{2}\sum_{k}\langle R(p_{k+1}-p_{k}+p_{k}-p_{k-1}),v_{k}\rangle=\sum_{k}\left\langle\frac{l_{k}\nu_{k}+l_{k-1}\nu_{k-1}}{2L_{k}},v_{k}\right\rangle L_{k}.

At a glance, it seems like a natural to choose 2Lk=lk+lk1=Length(star(p))2L_{k}=l_{k}+l_{k-1}=\operatorname{Length}({\rm star}\,(p)) and this is also frequently used as a “vertex normal” (a weighted sum of the edge normals):

NkV:=lkνk+lk1νk1lk+lk1.N_{k}^{V}:=\frac{l_{k}\nu_{k}+l_{k-1}\nu_{k-1}}{l_{k}+l_{k-1}}.

In addition, we have

pkL=R(νk1νk)=sinθk1+cosθk(νk+νk1)=2tanθk2νk+νk12.-\nabla_{p_{k}}L=R(\nu_{k-1}-\nu_{k})=\frac{\sin\theta_{k}}{1+\cos\theta_{k}}(\nu_{k}+\nu_{k-1})=2\tan\frac{\theta_{k}}{2}\cdot\frac{\nu_{k}+\nu_{k-1}}{2}.

by a simple calculation. Therefore, unless the curve is arclength parameterized, there are (at least) two choices of the “vertex normal” from the variational viewpoint: using the length gradient (length descent direction) or using the volume gradient (volume descent direction). This suggests that, in contrast to the smooth case, we have to choose the “prefered” vertex normal according to the energy in question. \Box

Example 4.2 (Regular polygons).

Let us take a discrete curve Γhm,n={pk}k\Gamma_{h}^{m,n}=\{p_{k}\}_{k} as in the following way (including non-convex regular nn-gon with radius aa):

pk=aexp(2π1mk/n),k=0,,n1,1mn1,p_{k}=a\exp(2\pi\sqrt{-1}mk/n),\quad k=0,\ldots,n-1,\quad 1\leq m\leq n-1,

where we assume that m/n1/2m/n\neq 1/2. In particular, we sometimes call the curve Γh1,n\Gamma_{h}^{1,n} as a convex regular nn-gon. Note that Γhn1,n\Gamma_{h}^{n-1,n} is also convex but it has an opposite unit normal with Γh1,n\Gamma_{h}^{1,n} (usually we assume that Γh1,n\Gamma_{h}^{1,n} has the outward-pointing unit normal).

Refer to caption
(a) κ=1/cos(π/5)\kappa=-1/\cos(\pi/5)
Refer to caption
(b) κ=1/cos(2π/5)\kappa=-1/\cos(2\pi/5)
Refer to caption
(c) κ=1/cos(3π/5)\kappa=-1/\cos(3\pi/5)
Refer to caption
(d) κ=1/cos(4π/5)\kappa=-1/\cos(4\pi/5)
Figure 1: Convex and non-convex regular 55-gons with radii a=1a=1.

Then the curve Γhm,n\Gamma_{h}^{m,n} is a critical point of the functional Length+κVol\operatorname{Length}+\kappa\operatorname{Vol} with κ=1/(acos(mπ/n))\kappa=-1/(a\cos(m\pi/n)). This value is the reciprocal of the radius of the inscribed circle of the polygon (up to the signature). We sometimes say that a convex regular nn-gon with radius aa (and outward-pointing unit normal) has constant curvature κn=1/(acos(π/n))\kappa_{n}=-1/(a\cos(\pi/n)). Note that cos(πm/n)=cos(π(nm)/n)\cos(\pi m/n)=-\cos(\pi(n-m)/n) and κn1/a\kappa_{n}\to-1/a when nn\to\infty.

We will show that these regular polygons are the only equilibrium curves for the functional L+κVolL+\kappa\operatorname{Vol}.

Theorem 4.3.

Let Γh={pk}k=1n\Gamma_{h}=\{p_{k}\}_{k=1}^{n} be a closed discrete curve and take κ{0}\kappa\in\mathbb{R}\setminus\{0\}. Then the following two conditions are equivalent:

  1. (1)(1)

    Γh\Gamma_{h} is an equilibrium curve of the functional L+κVolL+\kappa\operatorname{Vol}.

  2. (2)(2)

    There exist numbers l0l_{0} and θ0\theta_{0} such that lkl0l_{k}\equiv l_{0} and θkθ0\theta_{k}\equiv\theta_{0} satisfying κl0=2tan(θ0/2)\kappa l_{0}=2\tan(\theta_{0}/2), i.e., Γh\Gamma_{h} must be a regular polygon.

Proof .

We put

Ak:=(νkνk1)+κ2(pk+1pk1),k=1,,n.A_{k}:=(\nu_{k}-\nu_{k-1})+\frac{\kappa}{2}(p_{k+1}-p_{k-1}),\quad k=1,\ldots,n.

Then the discrete curve Γh\Gamma_{h} is a critical point of the functional Length+κVol\operatorname{Length}+\kappa\operatorname{Vol} if and only if Ak=0A_{k}=0 for all kk. By a simple calculation we have

Ak,νk1\displaystyle\langle A_{k},\nu_{k-1}\rangle =sinθk(κlk2tanθk2),\displaystyle=\sin\theta_{k}\left(\frac{\kappa l_{k}}{2}-\tan\frac{\theta_{k}}{2}\right), (4.1)
Ak,νk\displaystyle\langle A_{k},\nu_{k}\rangle =sinθk(tanθk2κlk12),\displaystyle=\sin\theta_{k}\left(\tan\frac{\theta_{k}}{2}-\frac{\kappa l_{k-1}}{2}\right), (4.2)
Ak+1,νk+1\displaystyle\langle A_{k+1},\nu_{k+1}\rangle =sinθk+1(tanθk+12κlk2).\displaystyle=\sin\theta_{k+1}\left(\tan\frac{\theta_{k+1}}{2}-\frac{\kappa l_{k}}{2}\right). (4.3)

For the necessity, that is, if we assume Ak=0A_{k}=0 for all kk, then it follows from (4.1) and (4.2) that κlk=2tan(θk/2)=κlk1\kappa l_{k}=2\tan(\theta_{k}/2)=\kappa l_{k-1}. And it also follows from (4.2), (4.3) and using lk=lk1l_{k}=l_{k-1} that

tanθk2=κlk2=κlk12=tanθk12.\tan\frac{\theta_{k}}{2}=\frac{\kappa l_{k}}{2}=\frac{\kappa l_{k-1}}{2}=\tan\frac{\theta_{k-1}}{2}.

To prove the sufficiency, since νk\nu_{k} and pkpk1p_{k}-p_{k-1} forms a basis of 2\mathbb{R}^{2} and Ak,νk=0\langle A_{k},\nu_{k}\rangle=0 by using (4.1) and the assumption, all we have to prove is Ak,pkpk1=0\langle A_{k},p_{k}-p_{k-1}\rangle=0 for all kk. By using the assumption lk=lk1=l0l_{k}=l_{k-1}=l_{0} and θk=θ0\theta_{k}=\theta_{0}, we have

Ak,pkpk1lk\displaystyle\left\langle A_{k},\frac{p_{k}-p_{k-1}}{l_{k}}\right\rangle =sinθk+κ2(lkcosθk+lk1)\displaystyle=-\sin\theta_{k}+\frac{\kappa}{2}(l_{k}\cos\theta_{k}+l_{k-1})
=(1+cosθ0)(κl02sinθ01+cosθ0)=(1+cosθ0)(κl02tanθ02)=0.\displaystyle=(1+\cos\theta_{0})\left(\frac{\kappa l_{0}}{2}-\frac{\sin\theta_{0}}{1+\cos\theta_{0}}\right)=(1+\cos\theta_{0})\left(\frac{\kappa l_{0}}{2}-\tan\frac{\theta_{0}}{2}\right)=0.

This shows Ak=0A_{k}=0 and proves the statement. \Box

Remark .

The equilibrium condition Ak=νkνk1+(κ/2)(pk+1pk1)=0A_{k}=\nu_{k}-\nu_{k-1}+(\kappa/2)(p_{k+1}-p_{k-1})=0 is equivalent to the condition νk+(κ/2)(pk+1+pk)c\nu_{k}+(\kappa/2)(p_{k+1}+p_{k})\equiv c for some constant vector c2c\in\mathbb{R}^{2}. The latter condition can be considered as a conservation law for the Euler-Lagrange equation Ak=0A_{k}=0. Since the vector c2c\in\mathbb{R}^{2} is just a translation of the curve, we can put c=0c=0 and in this case we have (pk+1+pk)/2=νk/κ(p_{k+1}+p_{k})/2=-\nu_{k}/\kappa. Therefore, the edge midpoints must be tangent to the unit circle.

We found that equilibrium closed curves of the functional L+κVolL+\kappa\operatorname{Vol} must satisfy lkl0l_{k}\equiv l_{0}, i.e., they must have “good coordinates (arclength parameter)”. If we note that we can define the curvature at vertices for an arclength parametrized curve, the previous result can be restated as follows:

Corollary 4.4.

Let Γh\Gamma_{h} be an arclength parametrized discrete closed curve, i.e., lkl0l_{k}\equiv l_{0}, and take κ{0}\kappa\in\mathbb{R}\setminus\{0\}. Then the following two conditions are equivalent:

  1. (1)(1)

    Γh\Gamma_{h} is an equilibrium curve of the functional Length+κVol\operatorname{Length}+\kappa\operatorname{Vol}.

  2. (2)(2)

    The discrete curvature (2/l0)tan(θk/2)(2/l_{0})\tan(\theta_{k}/2) is constant κ\kappa.

5 Parallel curves and Steiner-type formula

In this section we will derive the discrete version of the Steiner-type formula in order to show an effectiveness of the vertex normal which we will define. The following type of Steiner formula is essentially appeared in some papers, e.g. [2], [4]. Although they try to find the curvature notion from the Steiner-type formula, we will derive the Steiner-type formula by using our vertex normal and connect with the well-known curvature notion.

Let Γh={pk}k\Gamma_{h}=\{p_{k}\}_{k} be a discrete curve and take an interior vertex pkp_{k}. We can expect that if we normalize the discrete curvature vector, then we have the “vertex normal”. Recall that the length of the length gradient pkL\nabla_{p_{k}}L can be computed as 2sin(θk/2)2\sin(\theta_{k}/2) up to the signature. In the discrete case, we should consider another factor 2sin(θk/2)cos(θk/2)=sinθk2\sin(\theta_{k}/2)\cos(\theta_{k}/2)=\sin\theta_{k} and put

Nk:=pkLengthsinθk=R(νk1νk)sinθk=11+cosθk(νk+νk1),N_{k}:=-\frac{\nabla_{p_{k}}\operatorname{Length}}{\sin\theta_{k}}=\frac{R(\nu_{k-1}-\nu_{k})}{\sin\theta_{k}}=\frac{1}{1+\cos\theta_{k}}(\nu_{k}+\nu_{k-1}), (5.1)

then we shall call the vector NkN_{k} as the vertex normal at the vertex pkp_{k}. The second expression in (5.1) allows us to define the vertex normal even if θk=0\theta_{k}=0. Then we consider the following deformation of the curve:

pk(t)=pk+tNk,k=1,,n.p_{k}(t)=p_{k}+tN_{k},\quad k=1,\ldots,n.
Lemma 5.1.

We have pk+1(t)pk(t),νk=0\langle p_{k+1}(t)-p_{k}(t),\nu_{k}\rangle=0, therefore we call this deformation parallel curves.

Proof .

This is a direct calculation.

pk+1(t)pk(t),νk\displaystyle\langle p_{k+1}(t)-p_{k}(t),\nu_{k}\rangle =(pk+1pk)+t(Nk+1Nk),νk\displaystyle=\langle(p_{k+1}-p_{k})+t(N_{k+1}-N_{k}),\nu_{k}\rangle
=t(νk+1+νk,νk1+cosθk+1νk+νk1),νk1+cosθk)\displaystyle=t\left(\frac{\langle\nu_{k+1}+\nu_{k},\nu_{k}\rangle}{1+\cos\theta_{k+1}}-\frac{\langle\nu_{k}+\nu_{k-1}),\nu_{k}\rangle}{1+\cos\theta_{k}}\right)
=t(1+cosθk+11+cosθk+11+cosθk1+cosθk)=0.\displaystyle=t\left(\frac{1+\cos\theta_{k+1}}{1+\cos\theta_{k+1}}-\frac{1+\cos\theta_{k}}{1+\cos\theta_{k}}\right)=0.

\Box

Theorem 5.2 (Discrete Steriner-type formula).

For parallel curves {pk(t)}k\{p_{k}(t)\}_{k}, we have

|pk+1(t)pk(t)|=|pk+1pk|(1tκ(ek)),|p_{k+1}(t)-p_{k}(t)|=|p_{k+1}-p_{k}|(1-t\cdot\kappa(e_{k})),

where κ(ek)\kappa(e_{k}) is the discrete curvature based on the edge osculating circle method [8]:

κ(ek)=tan(θk/2)+tan(θk+1/2)|pk+1pk|.\kappa(e_{k})=\frac{\tan(\theta_{k}/2)+\tan(\theta_{k+1}/2)}{|p_{k+1}-p_{k}|}.

Before giving the proof, we give an intuitive explanation for a special case.

Refer to caption
Figure 2: Parallel curves

In the Figure 2, the similarity ratio of the triangles gives

|pk+1(t)pk(t)|:|pk+1pk|=(rk+t):rk|pk+1(t)pk(t)|=|pk+1pk|(1tκ(ek)).\displaystyle|p_{k+1}(t)-p_{k}(t)|:|p_{k+1}-p_{k}|=(-r_{k}+t):-r_{k}\iff|p_{k+1}(t)-p_{k}(t)|=|p_{k+1}-p_{k}|(1-t\cdot\kappa(e_{k})).

Note that the signature of the curvature radius rkr_{k} is negative in the figure.

Proof .

By a calculation we have

pk+1pk|pk+1pk|,Nk+1Nk\displaystyle\left\langle\frac{p_{k+1}-p_{k}}{|p_{k+1}-p_{k}|},N_{k+1}-N_{k}\right\rangle =Rνk,νk+νk+11+cosθk+1νk1+νk1+cosθk\displaystyle=\left\langle-R\nu_{k},\frac{\nu_{k}+\nu_{k+1}}{1+\cos\theta_{k+1}}-\frac{\nu_{k-1}+\nu_{k}}{1+\cos\theta_{k}}\right\rangle
=(sinθk+11+cosθk+1+sinθk1+cosθk)=(tanθk+12+tanθk2),\displaystyle=-\left(\frac{\sin\theta_{k+1}}{1+\cos\theta_{k+1}}+\frac{\sin\theta_{k}}{1+\cos\theta_{k}}\right)=-\left(\tan\frac{\theta_{k+1}}{2}+\tan\frac{\theta_{k}}{2}\right),
|Nk+1Nk|2\displaystyle|N_{k+1}-N_{k}|^{2} =1cos2(θk+1/2)+1cos2(θk/2)2Nk,Nk+1\displaystyle=\frac{1}{\cos^{2}(\theta_{k+1}/2)}+\frac{1}{\cos^{2}(\theta_{k}/2)}-2\langle N_{k},N_{k+1}\rangle
=2+tan2θk+12+tan2θk221+cosθk+cosθk+1+cos(θk+θk+1)(1+cosθk)(1+cosθk+1)\displaystyle=2+\tan^{2}\frac{\theta_{k+1}}{2}+\tan^{2}\frac{\theta_{k}}{2}-2\cdot\frac{1+\cos\theta_{k}+\cos\theta_{k+1}+\cos(\theta_{k}+\theta_{k+1})}{(1+\cos\theta_{k})(1+\cos\theta_{k+1})}
=(tanθk2+tanθk+12)2.\displaystyle=\left(\tan\frac{\theta_{k}}{2}+\tan\frac{\theta_{k+1}}{2}\right)^{2}.

Therefore we conclude

|pk+1(t)pk(t)|2\displaystyle\qquad|p_{k+1}(t)-p_{k}(t)|^{2}
=|pk+1pk|2+2tpk+1pk,Nk+1Nk+t2|Nk+1Nk|2\displaystyle=|p_{k+1}-p_{k}|^{2}+2t\langle p_{k+1}-p_{k},N_{k+1}-N_{k}\rangle+t^{2}|N_{k+1}-N_{k}|^{2}
=|pk+1pk|22t|pk+1pk|(tanθk2+tanθk+12)+t2(tanθk2+tanθk+12)2\displaystyle=|p_{k+1}-p_{k}|^{2}-2t|p_{k+1}-p_{k}|\left(\tan\frac{\theta_{k}}{2}+\tan\frac{\theta_{k+1}}{2}\right)+t^{2}\left(\tan\frac{\theta_{k}}{2}+\tan\frac{\theta_{k+1}}{2}\right)^{2}
=|pk+1pk|2(1ttan(θk/2)+tan(θk+1/2)|pk+1pk|)2.\displaystyle=|p_{k+1}-p_{k}|^{2}\left(1-t\cdot\frac{\tan(\theta_{k}/2)+\tan(\theta_{k+1}/2)}{|p_{k+1}-p_{k}|}\right)^{2}.

\Box

Remark .

This formula itself is already appeared some papers to find the discrete curvature at the vertices by using the offsets, see [2], [4]. If we take the offset of the edges, then we have the following (at least) three possiblities.

Refer to caption
(a) Γh,t(1)\Gamma_{h,t}^{(1)}, connect by a segment
Refer to caption
(b) Γh,t(2)\Gamma_{h,t}^{(2)}, connect by an arc
Refer to caption
(c) Γh,t(3)\Gamma_{h,t}^{(3)}, connect by a wedge
Figure 3: Three possibilities to construct a new curve

By computing the length of dotted curves in the figure, we can write the total length of each offsets as follows:

Length(Γh,t(1))\displaystyle\operatorname{Length}(\Gamma_{h,t}^{(1)}) =Length(Γh)tk2sinθk2,Length(Γh,t(2))=Length(Γh)tkθk,\displaystyle=\operatorname{Length}(\Gamma_{h})-t\sum_{k}2\sin\frac{\theta_{k}}{2},\quad\operatorname{Length}(\Gamma_{h,t}^{(2)})=\operatorname{Length}(\Gamma_{h})-t\sum_{k}\theta_{k},
Length(Γh,t(3))\displaystyle\operatorname{Length}(\Gamma_{h,t}^{(3)}) =Length(Γh)tk2tanθk2.\displaystyle=\operatorname{Length}(\Gamma_{h})-t\sum_{k}2\tan\frac{\theta_{k}}{2}.

Note the signature of the angles. The second curve Γh(2)\Gamma_{h}^{(2)} is nothing but the normal cone method (or the boundary of the Minkowski sum with the disk) known in the convex geometry. However, the only possible way to unchange the number of the vertices during the offset procedure is the third one, and by modifying the third formula gives our Steiner-type formula:

Length(Γh,t(3))\displaystyle\operatorname{Length}(\Gamma_{h,t}^{(3)}) =k(lk2ttan(θk/2))\displaystyle=\sum_{k}(l_{k}-2t\tan(\theta_{k}/2))
=k(lkt(tan(θk/2)+tan(θk+1/2)))=klk(1tκ(ek)),\displaystyle=\sum_{k}(l_{k}-t(\tan(\theta_{k}/2)+\tan(\theta_{k+1}/2)))=\sum_{k}l_{k}(1-t\kappa(e_{k})),

where we put κ(ek)=(tan(θk/2)+tan(θk+1/2))/lk\kappa(e_{k})=(\tan(\theta_{k}/2)+\tan(\theta_{k+1}/2))/l_{k}.

Remark (Discrete Frenet-Serret formula).

In §2, we remarked that the relation

N~k= 1Lk(tktk1),tk=pk+1pk|pk+1pk|\widetilde{N}_{k}=\frac{\,1\,}{L_{k}}(t_{k}-t_{k-1}),\quad t_{k}=\frac{p_{k+1}-p_{k}}{|p_{k+1}-p_{k}|}

can be considered as a part of the Frenet-Serret formula. On the other hand, by some calculation we have

1|pk+1pk|(Nk+1Nk)=tan(θk/2)+tan(θk+1/2)|pk+1pk|tk=κ(ek)tk.\frac{1}{|p_{k+1}-p_{k}|}(N_{k+1}-N_{k})=-\frac{\tan(\theta_{k}/2)+\tan(\theta_{k+1}/2)}{|p_{k+1}-p_{k}|}t_{k}=-\kappa(e_{k})t_{k}.

Note that the former formula is the formula on the vertex pkp_{k} while the latter formula is the formula on the edge [pk,pk+1][p_{k},p_{k+1}].

6 The second variation formula

In this section we consider the second variation formula of the length functional. We will follow the argument developed in [11].

Let Γh={pk}k\Gamma_{h}=\{p_{k}\}_{k} be an equilibrium closed curve for the functional L+κVolL+\kappa\operatorname{Vol}. We say a variation is admissible (or permissible) if the variation is volume-preserving and fixes the boundary. We recall the first variation formula of the length and the 22-dimensional volume:

ddtL\displaystyle\frac{d}{dt}L =kpkL,pk,pkL=R(νkνk1),\displaystyle=\sum_{k}\langle\nabla_{p_{k}}L,p_{k}^{\prime}\rangle,\quad\nabla_{p_{k}}L=R(\nu_{k}-\nu_{k-1}),
ddtVol\displaystyle\frac{d}{dt}\operatorname{Vol} =kpkVol,pk,pkVol=12R(pk+1pk1).\displaystyle=\sum_{k}\langle\nabla_{p_{k}}\operatorname{Vol},p_{k}^{\prime}\rangle,\quad\nabla_{p_{k}}\operatorname{Vol}=\frac{1}{2}R(p_{k+1}-p_{k-1}).

Note that if the variation is admissible, then we have

0=δ2Vol=kδ(pkVol),δpk+pkVol,δ2pk.0=\delta^{2}\operatorname{Vol}=\sum_{k}\langle\delta(\nabla_{p_{k}}\operatorname{Vol}),\delta p_{k}\rangle+\langle\nabla_{p_{k}}\operatorname{Vol},\delta^{2}p_{k}\rangle.
Lemma 6.1.

Let Γh={pk}k\Gamma_{h}=\{p_{k}\}_{k} be an equilibrium closed curve for the functional L+κVolL+\kappa\operatorname{Vol} and pk(t)=pk+tvk+O(t2)p_{k}(t)=p_{k}+tv_{k}+O(t^{2}) be an admissible variation. Then we have

δ2L:=d2dt2|t=0L=kδ(pkL+κpkVol),vk.\delta^{2}L:=\frac{d^{2}}{dt^{2}}_{|t=0}L=\sum_{k}\langle\delta(\nabla_{p_{k}}L+\kappa\nabla_{p_{k}}\operatorname{Vol}),v_{k}\rangle.
Definition 6.2 (Stability of discrete curves).

Let Γh={pk}k\Gamma_{h}=\{p_{k}\}_{k} be a closed equilibrium curve for the functional L+κVolL+\kappa\operatorname{Vol}. Then Γh\Gamma_{h} is said to be stable if δ2L0\delta^{2}L\geq 0 for any admissible variation.

We introduce the matrix QLQ^{L} and QVQ^{V} as follows:

vtQLv=kδpkL,vk,vtQVv=kδpkVol,vk.{}^{t}\vec{v}Q^{L}\vec{v}=\sum_{k}\langle\delta\nabla_{p_{k}}L,v_{k}\rangle,\quad{}^{t}\vec{v}Q^{V}\vec{v}=\sum_{k}\langle\delta\nabla_{p_{k}}\operatorname{Vol},v_{k}\rangle.

Then we can write δ2L=vt(QL+κQV)v\delta^{2}L={}^{t}\vec{v}(Q^{L}+\kappa Q^{V})\vec{v}.

Lemma 6.3.

vtQVv=kvk,Rvk+1{}^{t}\vec{v}Q^{V}\vec{v}=\sum_{k}\langle v_{k},Rv_{k+1}\rangle.

Proof .

The proof follows from the direct computation:

vtQVv\displaystyle{}^{t}\vec{v}Q^{V}\vec{v} =kδpkVol,vk=12kδR(pk+1pk1),vk\displaystyle=\sum_{k}\langle\delta\nabla_{p_{k}}\operatorname{Vol},v_{k}\rangle=\frac{1}{2}\sum_{k}\langle\delta R(p_{k+1}-p_{k-1}),v_{k}\rangle
=12kR(vk+1vk1),vk=kvk,Rvk+1.\displaystyle=\frac{1}{2}\sum_{k}\langle R(v_{k+1}-v_{k-1}),v_{k}\rangle=\sum_{k}\langle v_{k},Rv_{k+1}\rangle.

\Box

Proposition 6.4 (Second variation formula for the length functional).
QL=k1lk(|vk+1vk|2vk+1vk,Rνk2)=k(|vk|2vk,Rνk2)lk,Q^{L}=\sum_{k}\frac{1}{l_{k}}(|v_{k+1}-v_{k}|^{2}-\langle v_{k+1}-v_{k},R\nu_{k}\rangle^{2})=\sum_{k}(|\nabla v_{k}|^{2}-\langle\nabla v_{k},R\nu_{k}\rangle^{2})l_{k},

therefore we have the following second variation formula for the length functional:

δ2L=k(|vk|2vk,Rνk2)lk+κvk,Rvk+1.\delta^{2}L=\sum_{k}(|\nabla v_{k}|^{2}-\langle\nabla v_{k},R\nu_{k}\rangle^{2})l_{k}+\kappa\langle v_{k},Rv_{k+1}\rangle. (6.1)
Proof .

By using the fact lkδνk=R(vk+1vk)R(vk+1vk),νkνkl_{k}\delta\nu_{k}=R(v_{k+1}-v_{k})-\langle R(v_{k+1}-v_{k}),\nu_{k}\rangle\nu_{k}, we have

QL\displaystyle Q^{L} =kδνk,R(vk+1vk)=kR(vk)R(vk),νkνk,R(vk)lk\displaystyle=\sum_{k}\langle\delta\nu_{k},R(v_{k+1}-v_{k})\rangle=\sum_{k}\langle R(\nabla v_{k})-\langle R(\nabla v_{k}),\nu_{k}\rangle\nu_{k},R(\nabla v_{k})\rangle l_{k}
=k(|vk|2R(vk),νk2)lk=k(|vk|2vk,Rνk2)lk.\displaystyle=\sum_{k}(|\nabla v_{k}|^{2}-\langle R(\nabla v_{k}),\nu_{k}\rangle^{2})l_{k}=\sum_{k}(|\nabla v_{k}|^{2}-\langle\nabla v_{k},R\nu_{k}\rangle^{2})l_{k}.

\Box

In the section of the Steiner-type formula, we used the vector

Nk:=R(νk1νk)sinθk=11+cosθk(νk+νk1)N_{k}:=\frac{R(\nu_{k-1}-\nu_{k})}{\sin\theta_{k}}=\frac{1}{1+\cos\theta_{k}}(\nu_{k}+\nu_{k-1})

as the “normal vector” at the vertex pkp_{k}. If we define the “tangent vector” TkT_{k} as Tk=RNkT_{k}=-RN_{k}, then we can decompose the variation vector vkv_{k} as

vk=ψkNk+ηkTk=ψkNkηkRNk,v_{k}=\psi_{k}N_{k}+\eta_{k}T_{k}=\psi_{k}N_{k}-\eta_{k}RN_{k},

where ψ,η:V\psi,\eta:V\to\mathbb{R} is some functions on the vertices. If ηk=0\eta_{k}=0 for all kk, we call the variation the normal variation. In the following we will use this notation.

Lemma 6.5.

The first variation formula of the volume can be written as

δVol=12k(ψk(lk+lk1)+ηk(lklk1)tanθk2).\delta\operatorname{Vol}=\frac{1}{2}\sum_{k}\left(\psi_{k}(l_{k}+l_{k-1})+\eta_{k}(l_{k}-l_{k-1})\tan\frac{\theta_{k}}{2}\right).

In particular, if the curve Γh={pk}k\Gamma_{h}=\{p_{k}\}_{k} satisfies lkl0l_{k}\equiv l_{0}, then a variation pk(t)=pk+t(ψkNk+ηkTk)+O(t2)p_{k}(t)=p_{k}+t(\psi_{k}N_{k}+\eta_{k}T_{k})+O(t^{2}) is volume-preserving if kψk=0\sum_{k}\psi_{k}=0.

Proof .

Using the first variation formula, we have

δVol\displaystyle\delta\operatorname{Vol} =12kR(pk+1pk1),vk=12kR(pk+1pk1),ψkNk+ηkTk\displaystyle=\frac{1}{2}\sum_{k}\langle R(p_{k+1}-p_{k-1}),v_{k}\rangle=\frac{1}{2}\sum_{k}\langle R(p_{k+1}-p_{k-1}),\psi_{k}N_{k}+\eta_{k}T_{k}\rangle
=12k[ψklkνk,Rνk1sinθk+ψklk1νk1,Rνksinθk+ηksinθk(lklk1)(1cosθk)]\displaystyle=\frac{1}{2}\sum_{k}\left[\psi_{k}l_{k}\frac{\langle\nu_{k},R\nu_{k-1}\rangle}{\sin\theta_{k}}+\psi_{k}l_{k-1}\frac{\langle\nu_{k-1},-R\nu_{k}\rangle}{\sin\theta_{k}}+\frac{\eta_{k}}{\sin\theta_{k}}(l_{k}-l_{k-1})(1-\cos\theta_{k})\right]
=12k(ψk(lk+lk1)+ηk(lklk1)tanθk2).\displaystyle=\frac{1}{2}\sum_{k}\left(\psi_{k}(l_{k}+l_{k-1})+\eta_{k}(l_{k}-l_{k-1})\tan\frac{\theta_{k}}{2}\right).

\Box

Remark .

For a function ψk\psi_{k} satisfying kψk=0\sum_{k}\psi_{k}=0, we can find a variation whose variation vector field is ψkNk\psi_{k}N_{k}. The proof is completely the same as in [1].

Recall that if {pk}k\{p_{k}\}_{k} is an equilibrium curve of the functional L+κVolL+\kappa\operatorname{Vol}, then we have lkl0l_{k}\equiv l_{0}, θkθ0\theta_{k}\equiv\theta_{0} and κl0=2tan(θ0/2)\kappa l_{0}=2\tan(\theta_{0}/2).

Lemma 6.6.
|vk+1vk|2vk+1vk,Rνk2=[(ψk+1ψk)+tan(θ0/2)(ηk+1+ηk)]2.|v_{k+1}-v_{k}|^{2}-\langle v_{k+1}-v_{k},R\nu_{k}\rangle^{2}=[(\psi_{k+1}-\psi_{k})+\tan(\theta_{0}/2)(\eta_{k+1}+\eta_{k})]^{2}.

Therefore we have

|vk|2vk,Rνk2=(ψk+κ2(ηk+ηk+1))2|\nabla v_{k}|^{2}-\langle\nabla v_{k},R\nu_{k}\rangle^{2}=\left(\nabla\psi_{k}+\frac{\kappa}{2}(\eta_{k}+\eta_{k+1})\right)^{2}
Proof .

Recall that

Nk,RNk+1\displaystyle\langle N_{k},-RN_{k+1}\rangle =tanθk2+tanθk+12=2tanθ02,\displaystyle=\tan\frac{\theta_{k}}{2}+\tan\frac{\theta_{k+1}}{2}=2\tan\frac{\theta_{0}}{2},
Nk,Nk+1\displaystyle\langle N_{k},N_{k+1}\rangle =1tanθk2tanθk+12=1tan2θ02.\displaystyle=1-\tan\frac{\theta_{k}}{2}\tan\frac{\theta_{k+1}}{2}=1-\tan^{2}\frac{\theta_{0}}{2}.

If we note |Nk|=1/cos(θ0/2)|N_{k}|=1/\cos(\theta_{0}/2), then

|vk+1vk|2\displaystyle\qquad|v_{k+1}-v_{k}|^{2}
=|ψk+1Nk+1ψkNk|2+2ψk+1Nk+1ψkNk,ηk+1Tk+1ηkTk+|ηk+1Tk+1ηkTk|2\displaystyle=|\psi_{k+1}N_{k+1}-\psi_{k}N_{k}|^{2}+2\langle\psi_{k+1}N_{k+1}-\psi_{k}N_{k},\eta_{k+1}T_{k+1}-\eta_{k}T_{k}\rangle+|\eta_{k+1}T_{k+1}-\eta_{k}T_{k}|^{2}
=ψk+12cos2(θ0/2)2ψkψk+1(1tan2(θ0/2))+ψk2cos2(θ0/2)2Nk,RNk+1(ψk+1ηkψkηk+1)\displaystyle=\frac{\psi_{k+1}^{2}}{\cos^{2}(\theta_{0}/2)}-2\psi_{k}\psi_{k+1}(1-\tan^{2}(\theta_{0}/2))+\frac{\psi_{k}^{2}}{\cos^{2}(\theta_{0}/2)}-2\langle N_{k},RN_{k+1}\rangle(\psi_{k+1}\eta_{k}-\psi_{k}\eta_{k+1})
+ηk+12cos2(θ0/2)2ηkηk+1(1tan2(θ0/2))+ηk2cos2(θ0/2)\displaystyle\qquad+\frac{\eta_{k+1}^{2}}{\cos^{2}(\theta_{0}/2)}-2\eta_{k}\eta_{k+1}(1-\tan^{2}(\theta_{0}/2))+\frac{\eta_{k}^{2}}{\cos^{2}(\theta_{0}/2)}
=(1+tan2(θ0/2))(ψk+12+ψk2+ηk+12+ηk2)\displaystyle=(1+\tan^{2}(\theta_{0}/2))(\psi_{k+1}^{2}+\psi_{k}^{2}+\eta_{k+1}^{2}+\eta_{k}^{2})
2(ψkψk+1+ηkηk+1)(1tan2(θ0/2))+4tan(θ0/2)(ηkψk+1ηk+1ψk).\displaystyle\qquad-2(\psi_{k}\psi_{k+1}+\eta_{k}\eta_{k+1})(1-\tan^{2}(\theta_{0}/2))+4\tan(\theta_{0}/2)(\eta_{k}\psi_{k+1}-\eta_{k+1}\psi_{k}).

Similarly since

vk+1vk,Rνk\displaystyle\qquad\langle v_{k+1}-v_{k},R\nu_{k}\rangle
=ψk+1Nk+1ψkNk+ηk+1Tk+1ηkTk,Rνk\displaystyle=\langle\psi_{k+1}N_{k+1}-\psi_{k}N_{k}+\eta_{k+1}T_{k+1}-\eta_{k}T_{k},R\nu_{k}\rangle
=ψk+1νkνk+1,νksinθk+1ψkνk1νk,νksinθkηk+1νk+1νk,Rνksinθk+1+ηkνkνk1,Rνksinθk\displaystyle=\psi_{k+1}\frac{\langle\nu_{k}-\nu_{k+1},\nu_{k}\rangle}{\sin\theta_{k+1}}-\psi_{k}\frac{\langle\nu_{k-1}-\nu_{k},\nu_{k}\rangle}{\sin\theta_{k}}-\eta_{k+1}\frac{\langle\nu_{k+1}-\nu_{k},R\nu_{k}\rangle}{\sin\theta_{k+1}}+\eta_{k}\frac{\langle\nu_{k}-\nu_{k-1},R\nu_{k}\rangle}{\sin\theta_{k}}
=(ψk+1+ψk)tanθ02(ηk+1ηk),\displaystyle=(\psi_{k+1}+\psi_{k})\tan\frac{\theta_{0}}{2}-(\eta_{k+1}-\eta_{k}),

we have

vk+1vk,Rνk2=(ψk+1+ψk)2tan2θ022tanθ02(ψk+1+ψk)(ηk+1ηk)+(ηk+1ηk)2.\langle v_{k+1}-v_{k},R\nu_{k}\rangle^{2}=(\psi_{k+1}+\psi_{k})^{2}\tan^{2}\frac{\theta_{0}}{2}-2\tan\frac{\theta_{0}}{2}(\psi_{k+1}+\psi_{k})(\eta_{k+1}-\eta_{k})+(\eta_{k+1}-\eta_{k})^{2}.

Substracting these factors we have

|vk+1vk|2vk+1vk,Rνk2\displaystyle\qquad|v_{k+1}-v_{k}|^{2}-\langle v_{k+1}-v_{k},R\nu_{k}\rangle^{2}
=ψk+12+ψk2+tan2θ02(ηk+12+ηk2)2ψkψk+1tan2θ02+2ηkηk+1\displaystyle=\psi_{k+1}^{2}+\psi_{k}^{2}+\tan^{2}\frac{\theta_{0}}{2}(\eta_{k+1}^{2}+\eta_{k}^{2})-2\psi_{k}\psi_{k+1}\tan^{2}\frac{\theta_{0}}{2}+2\eta_{k}\eta_{k+1}
+2tanθ02(2ηkψk+12ηk+1ψk+ψk+1ηk+1ψk+1ηk+ψkηk+1ψkηk)\displaystyle\qquad+2\tan\frac{\theta_{0}}{2}(2\eta_{k}\psi_{k+1}-2\eta_{k+1}\psi_{k}+\psi_{k+1}\eta_{k+1}-\psi_{k+1}\eta_{k}+\psi_{k}\eta_{k+1}-\psi_{k}\eta_{k})
2(ψkψk+1+ηkηk+1)+2tan2θ02(ψkψk+1+ηkηk+1)\displaystyle\qquad\qquad-2(\psi_{k}\psi_{k+1}+\eta_{k}\eta_{k+1})+2\tan^{2}\frac{\theta_{0}}{2}(\psi_{k}\psi_{k+1}+\eta_{k}\eta_{k+1})
=(ψk+1ψk)2+tan2θ02(ηk+1+ηk)2+2tanθ02(ψk+1ψk)(ηk+1+ηk)\displaystyle=(\psi_{k+1}-\psi_{k})^{2}+\tan^{2}\frac{\theta_{0}}{2}(\eta_{k+1}+\eta_{k})^{2}+2\tan\frac{\theta_{0}}{2}(\psi_{k+1}-\psi_{k})(\eta_{k+1}+\eta_{k})
=[(ψk+1ψk)+tanθ02(ηk+1+ηk)]2\displaystyle=[(\psi_{k+1}-\psi_{k})+\tan\frac{\theta_{0}}{2}(\eta_{k+1}+\eta_{k})]^{2}

\Box

Lemma 6.7.
vk,Rvk+1=2tanθ02(ψkψk+1+ηkηk+1)(1tan2θ22)(ηkψk+1ηk+1ψk).\langle v_{k},Rv_{k+1}\rangle=-2\tan\frac{\theta_{0}}{2}(\psi_{k}\psi_{k+1}+\eta_{k}\eta_{k+1})-(1-\tan^{2}\frac{\theta_{2}}{2})(\eta_{k}\psi_{k+1}-\eta_{k+1}\psi_{k}).
Proof .

This is also a simple calculation:

vk,Rvk+1\displaystyle\langle v_{k},Rv_{k+1}\rangle =ψkNkηkRNk,ψk+1RNk+1+ηk+1Nk+1\displaystyle=\langle\psi_{k}N_{k}-\eta_{k}RN_{k},\psi_{k+1}RN_{k+1}+\eta_{k+1}N_{k+1}\rangle
=(ψkψk+1+ηkηk+1)Nk,RNk+1(ηkψk+1ηk+1ψk)Nk,Nk+1\displaystyle=(\psi_{k}\psi_{k+1}+\eta_{k}\eta_{k+1})\langle N_{k},RN_{k+1}\rangle-(\eta_{k}\psi_{k+1}-\eta_{k+1}\psi_{k})\langle N_{k},N_{k+1}\rangle
=2tanθ02(ψkψk+1+ηkηk+1)(1tan2θ02)(ηkψk+1ηk+1ψk).\displaystyle=-2\tan\frac{\theta_{0}}{2}(\psi_{k}\psi_{k+1}+\eta_{k}\eta_{k+1})-(1-\tan^{2}\frac{\theta_{0}}{2})(\eta_{k}\psi_{k+1}-\eta_{k+1}\psi_{k}).

\Box

Theorem 6.8 (Second variation formula for the length functional).
δ2L=k[|ψk|2κ2ψkψk+1+tan2θ02(κψk(ηk+1+ηk)+|ηk|2)]l0\displaystyle\delta^{2}L=\sum_{k}\left[|\nabla\psi_{k}|^{2}-\kappa^{2}\psi_{k}\psi_{k+1}+\tan^{2}\frac{\theta_{0}}{2}(\kappa\nabla\psi_{k}(\eta_{k+1}+\eta_{k})+|\nabla\eta_{k}|^{2})\right]l_{0}

In particular, for the normal variation we have

δ2L=k(|ψk|2κ2ψkψk+1)l0=kψk(Δψk+κ2ψk+1)l0,\delta^{2}L=\sum_{k}(|\nabla\psi_{k}|^{2}-\kappa^{2}\psi_{k}\psi_{k+1})l_{0}=-\sum_{k}\psi_{k}(\Delta\psi_{k}+\kappa^{2}\psi_{k+1})l_{0},

where we use the integration by parts and take the line element at the vertex as Lk=(lk+lk1)/2=l0L_{k}=(l_{k}+l_{k-1})/2=l_{0}.

Proof .

By using the previous lemmas, we have

(|vk|2vk,Rνk2)lk+κvk,Rvk+1\displaystyle\qquad(|\nabla v_{k}|^{2}-\langle\nabla v_{k},R\nu_{k}\rangle^{2})l_{k}+\kappa\langle v_{k},Rv_{k+1}\rangle
=(|ψk|2+κψk(ηk+1+ηk)+κ24(ηk+1+ηk)2)l0\displaystyle=\left(|\nabla\psi_{k}|^{2}+\kappa\nabla\psi_{k}(\eta_{k+1}+\eta_{k})+\frac{\kappa^{2}}{4}(\eta_{k+1}+\eta_{k})^{2}\right)l_{0}
κ2l0(ψkψk+1+ηkηk+1)κ(1tan2θ02)(ηkψk+1ηk+1ψk)\displaystyle\qquad-\kappa^{2}l_{0}(\psi_{k}\psi_{k+1}+\eta_{k}\eta_{k+1})-\kappa(1-\tan^{2}\frac{\theta_{0}}{2})(\eta_{k}\psi_{k+1}-\eta_{k+1}\psi_{k})
=|ψk|2l0+κψk(ηk+1+ηk)l0+κ24(ηk+1ηk)2l0κ2ψkψk+1l0\displaystyle=|\nabla\psi_{k}|^{2}l_{0}+\kappa\nabla\psi_{k}(\eta_{k+1}+\eta_{k})l_{0}+\frac{\kappa^{2}}{4}(\eta_{k+1}-\eta_{k})^{2}l_{0}-\kappa^{2}\psi_{k}\psi_{k+1}l_{0}
κ(1tan2θ22)((ψk+1ψk)(ηk+1+ηk)(ψk+1ηk+1ψkηk))\displaystyle\qquad-\kappa(1-\tan^{2}\frac{\theta_{2}}{2})((\psi_{k+1}-\psi_{k})(\eta_{k+1}+\eta_{k})-(\psi_{k+1}\eta_{k+1}-\psi_{k}\eta_{k}))
=|ψk|2l0+κtan2θ02ψk(ηk+1+ηk)l0+κ24(ηk+1ηk)2l0κ2ψkψk+1l0\displaystyle=|\nabla\psi_{k}|^{2}l_{0}+\kappa\tan^{2}\frac{\theta_{0}}{2}\nabla\psi_{k}(\eta_{k+1}+\eta_{k})l_{0}+\frac{\kappa^{2}}{4}(\eta_{k+1}-\eta_{k})^{2}l_{0}-\kappa^{2}\psi_{k}\psi_{k+1}l_{0}
+κ(1tan2θ02)(ψk+1ηk+1ψkηk).\displaystyle\qquad+\kappa(1-\tan^{2}\frac{\theta_{0}}{2})(\psi_{k+1}\eta_{k+1}-\psi_{k}\eta_{k}).

Taking the summation, we have the desired result. \Box

7 Instability of non-convex regular polygons

In this section we will prove that non-convex regular polygons and convex regular polygons with multiplicity are unstable. To prove this, we find a special variation with a help of the following discrete version of Wirtinger’s inequality:

Theorem 7.1 (Discrete Wirtinger’s inequality, [6]).

Let ψ0,,ψn\psi_{0},\ldots,\psi_{n} be (n+1)(n+1) real numbers such that

ψ0=ψn,k=0n1ψk=0.\psi_{0}=\psi_{n},\quad\sum_{k=0}^{n-1}\psi_{k}=0.

Then we have

k=0n1(ψk+1ψk)24sin2πnk=0n1ψk2\sum_{k=0}^{n-1}(\psi_{k+1}-\psi_{k})^{2}\geq 4\sin^{2}\frac{\,\pi\,}{n}\sum_{k=0}^{n-1}\psi_{k}^{2} (7.1)

and the equality holds if and only if there exist A,BA,B\in\mathbb{R} such that

ψk=Acos 2πkn+Bsin 2πkn.\psi_{k}=A\cos\frac{\,2\pi k\,}{n}+B\sin\frac{\,2\pi k\,}{n}.

In the following, we will consider the normal variation, i.e., the variation which have the form:

pk(t)=pk+tψkNk+O(t2),Nk=(νk+νk1)/(1+cosθ0),p_{k}(t)=p_{k}+t\psi_{k}N_{k}+O(t^{2}),\quad N_{k}=(\nu_{k}+\nu_{k-1})/(1+\cos\theta_{0}),

where ψk\psi_{k} satisfies kψk=0\sum_{k}\psi_{k}=0. By the second variation formula (Theorem 6.8) we have

δ2L=k(|ψk|2κ2ψkψk+1)l0=k 1l0[(ψk+1ψk)24ψkψk+1tan2mπn]\delta^{2}L=\sum_{k}(|\nabla\psi_{k}|^{2}-\kappa^{2}\psi_{k}\psi_{k+1})l_{0}=\sum_{k}\frac{\,1\,}{l_{0}}\left[(\psi_{k+1}-\psi_{k})^{2}-4\psi_{k}\psi_{k+1}\tan^{2}\frac{\,m\pi\,}{n}\right]

for any admissible variations, where we use the relation κl0=2tan(θ0/2)\kappa l_{0}=2\tan(\theta_{0}/2) and put θ0=2mπ/n\theta_{0}=2m\pi/n for some mm\in\mathbb{Z} and assume that m/n1/2m/n\neq 1/2.

Theorem 7.2 (Instability of non-convex regular polygons).

Let n5n\geq 5. By taking ψk=Acos(2πk/n)+Bsin(2πk/n)\psi_{k}=A\cos(2\pi k/n)+B\sin(2\pi k/n), (A,B)(0,0)(A,B)\neq(0,0), we have

δ2Length= 4l0[sin2πncos 2πntan2mπn]kψk2.\delta^{2}\operatorname{Length}=\frac{\,4\,}{l_{0}}\left[\sin^{2}\frac{\,\pi\,}{n}-\cos\frac{\,2\pi\,}{n}\tan^{2}\frac{\,m\pi\,}{n}\right]\sum_{k}\psi_{k}^{2}.

In particular, δ2Length<0\delta^{2}\operatorname{Length}<0 for 2mn22\leq m\leq n-2, i.e., non-convex regular polygons are unstable.

Proof.

By the discrete Wirtinger’s inequality we have

δ2Lengthk 4l0(ψk2sin2πnψkψk+1tan2mπn).\delta^{2}\operatorname{Length}\geq\sum_{k}\frac{\,4\,}{l_{0}}(\psi_{k}^{2}\sin^{2}\frac{\pi}{n}-\psi_{k}\psi_{k+1}\tan^{2}\frac{m\pi}{n}).

In the following we use the equality condition ψk=Acos(2πk/n)+Bsin(2πk/n)\psi_{k}=A\cos(2\pi k/n)+B\sin(2\pi k/n) and put φk=Asin(2πk/n)+Bcos(2πk/n)\varphi_{k}=-A\sin(2\pi k/n)+B\cos(2\pi k/n). Then we have

ψk+1=ψkcos(2π/n)+φksin(2π/n),ψkφk= 12(B2A2)sin4kπn+ABcos4kπn.\psi_{k+1}=\psi_{k}\cos(2\pi/n)+\varphi_{k}\sin(2\pi/n),\quad\psi_{k}\varphi_{k}=\frac{\,1\,}{2}(B^{2}-A^{2})\sin\frac{4k\pi}{n}+AB\cos\frac{4k\pi}{n}.

If we note the fact kψkφk=0\sum_{k}\psi_{k}\varphi_{k}=0, then

δ2Length\displaystyle\delta^{2}\operatorname{Length} =k 4l0[ψk2sin2πnψk(ψkcos2πn+φksin2πn)tan2mπn]\displaystyle=\sum_{k}\frac{\,4\,}{l_{0}}\left[\psi_{k}^{2}\sin^{2}\frac{\,\pi\,}{n}-\psi_{k}\left(\psi_{k}\cos\frac{2\pi}{n}+\varphi_{k}\sin\frac{2\pi}{n}\right)\tan^{2}\frac{m\pi}{n}\right]
= 4l0[sin2πncos2πntan2mπn]kψk2.\displaystyle=\frac{\,4\,}{l_{0}}\left[\sin^{2}\frac{\,\pi\,}{n}-\cos\frac{2\pi}{n}\tan^{2}\frac{m\pi}{n}\right]\sum_{k}\psi_{k}^{2}.

If m=1m=1 or m=n1m=n-1, then

δ2Length 4l0sin2πntan2πnkψk20.\delta^{2}\operatorname{Length}\geq\frac{\,4\,}{l_{0}}\sin^{2}\frac{\,\pi\,}{n}\tan^{2}\frac{\,\pi\,}{n}\sum_{k}\psi_{k}^{2}\geq 0.

On the other hand, for 2mn22\leq m\leq n-2 and (A,B)(0,0)(A,B)\neq(0,0) we have

δ2Length 4sin2(π/n)(1+2cos2(π/n))l0cos(2π/n)kψk2<0,\delta^{2}\operatorname{Length}\leq-\frac{\,4\sin^{2}(\pi/n)(1+2\cos^{2}(\pi/n))\,}{l_{0}\cos(2\pi/n)}\sum_{k}\psi_{k}^{2}<0,

where we use the fact tan2(mπ/n)tan2(2π/n)\tan^{2}(m\pi/n)\geq\tan^{2}(2\pi/n) if 2mn22\leq m\leq n-2, and cos(2π/n)>0\cos(2\pi/n)>0 if n5n\geq 5. This proves the statement. \Box

8 Appendix

We observe the second variation formula from the analysis of the Jacobi operator. We can modify the equation (7.1) as follows:

δ2L= 1l0k(αψk1+2ψkαψk+1)ψk= 1l0HΨ,Ψ,\displaystyle\delta^{2}L=\frac{\,1\,}{l_{0}}\sum_{k}(-\alpha\psi_{k-1}+2\psi_{k}-\alpha\psi_{k+1})\psi_{k}=\frac{\,1\,}{l_{0}}\langle H\Psi,\Psi\rangle,

where we put α=1+2tan2(mπ/n)\alpha=1+2\tan^{2}(m\pi/n) and

H=(2α00αα2α000α2000002αα00α2),Ψ=(ψ1ψ2ψ3ψn).H=\begin{pmatrix}2&-\alpha&0&\cdots&0&-\alpha\\ -\alpha&2&-\alpha&\cdots&0&0\\ 0&-\alpha&2&\cdots&0&0\\ \vdots&\vdots&\vdots&\ddots&\vdots&\vdots\\ 0&0&0&\cdots&2&-\alpha\\ -\alpha&0&0&\cdots&-\alpha&2\\ \end{pmatrix},\quad\Psi=\begin{pmatrix}\psi_{1}\\ \psi_{2}\\ \psi_{3}\\ \vdots\\ \psi_{n}\end{pmatrix}.

Since the matrix HH is the circulant matrix, the eigenvalues λj\lambda_{j} can be calculated explicitly, see e.g. [5]:

λj=22αcos2πjn=4cos2(jπ/n)cos2(mπ/n)(tan2jπnsin2mπn),j=1,,n.\lambda_{j}=2-2\alpha\cos\frac{2\pi j}{n}=\frac{4\cos^{2}(j\pi/n)}{\cos^{2}(m\pi/n)}\left(\tan^{2}\frac{j\pi}{n}-\sin^{2}\frac{m\pi}{n}\right),\quad j=1,\ldots,n.

The corresponding eigenvectors are

ej=(1,ωj,,ωj(n1))tn,ω=exp(2π1/n).e_{j}={}^{t}(1,\omega^{j},\ldots,\omega^{j(n-1)})\in\mathbb{C}^{n},\quad\omega=\exp(2\pi\sqrt{-1}/n). (8.1)

The condition kψk=0\sum_{k}\psi_{k}=0 is equivalent to the condition that Ψ=(ψ1,,ψn)t\Psi={}^{t}(\psi_{1},\ldots,\psi_{n}) is perpendicular to en=(1,,1)te_{n}={}^{t}(1,\ldots,1). Therefore we only consider the eigenvalues λ1,,λn1\lambda_{1},\ldots,\lambda_{n-1}.

Lemma 8.1.

For mjnmm\leq j\leq n-m, we have λj>0\lambda_{j}>0. In particular, λj>0\lambda_{j}>0 for 1jn11\leq j\leq n-1 if m=1m=1, i.e., the convex regular polygon case.

Proof .

This is a direct calculation:

tan2jπnsin2mπntan2mπnsin2mπn=sin2mπntan2mπn>0.\tan^{2}\frac{j\pi}{n}-\sin^{2}\frac{m\pi}{n}\geq\tan^{2}\frac{m\pi}{n}-\sin^{2}\frac{m\pi}{n}=\sin^{2}\frac{m\pi}{n}\tan^{2}\frac{m\pi}{n}>0.
Theorem 8.2.

Assume m2m\geq 2. For 1jm/21\leq j\leq m/2 or nm/2jn1n-m/2\leq j\leq n-1, we have λj<0\lambda_{j}<0. Therefore, the index of a non-convex regular polygon or a convex polygon with multiplicity is at least m/2\lfloor m/2\rfloor.

Proof .

Under the above conditions, we have

tan2jπnsin2mπntan2jπnsin22jπn<0.\tan^{2}\frac{j\pi}{n}-\sin^{2}\frac{m\pi}{n}\leq\tan^{2}\frac{j\pi}{n}-\sin^{2}\frac{2j\pi}{n}<0.

\Box

Remark .

More precisely, λj<0\lambda_{j}<0 for j<(n/π)arctan(sin(mπ/n))j<(n/\pi)\arctan(\sin(m\pi/n)).

Remark .

From another point of view, a non-convex regular polygon is the high-frequency component of the discrete Fourier expansion of the polygon. More precisely, any polygon in 2\mathbb{R}^{2} with nn-vertices can be regarded as a point in 2nn\mathbb{R}^{2n}\simeq\mathbb{C}^{n}. Each eigenvector eke_{k} in (8.1) corresponds to the regular nn-gon and {e1,,en}\{e_{1},\ldots,e_{n}\} forms a basis of n\mathbb{C}^{n}. Therefore, any polygon in 2\mathbb{R}^{2} can be written as a linear combination of the regular nn-gons and this fact corresponds to the discrete Fourier expansion.

Acknowledgements

The author would like to experess his gratitude to Professor Miyuki Koiso and Professor Hisashi Naito for invaluable comments and friutful discussions.

References

  • [1] Barbosa, J. L. and do Carmo, M.: Stability of hypersurfaces with constant mean curvature, Math. Z. 185 (1984), 339–353.
  • [2] Bauer, U., Polthier, K., and Wardetzky, M.: Uniform convergence of discrete curvatures from nets of curvature lines, Discrete comput. geom. 43 (2010), 798–823.
  • [3] Chow B., and Glickenstein, D.: Semidiscrete Geometric Flow of Polygon, Amer. Math. Monthly 114, No. 4 (2007), 316–328.
  • [4] Crane, K., and Wardetzky, M.: A Glimpse into Discrete Differential Geometry, Notices of American Mathematical Society 64 (2017), 1153–1159.
  • [5] Davis, P. J.: Circulant Matrices, Wiley-Interscience, New York, 1979.
  • [6] Fan, K., Taussky, O., and Todd, J.: Discrete analogs of inequalities of Wirtinger, Monatsh. Math., 59 (1955), 73–90.
  • [7] Hatakeyama, Y.: Some attempts to construct geometric theories to represent and explicate physical phenomenons, PhD dissertation, Kyushu University, 2019.
  • [8] Hoffmann, T.: Discrete Differential Geometry of Curves and Surfaces, MI Lecture Notes Series Vol. 18, Faculty of Mathematics, Kyushu University, 2008.
  • [9] Pinkall, U. and Polthier, K.: Computing Discrete Minimal Surfaces and Their Conjugates, Experim. Math., 2(1) (1993), 15–36.
  • [10] Polthier, K.: Polyhedral surfaces with constant mean curvature, TU-Berlin, Habilitationsschrift, 2002.
  • [11] Polthier, K. and Rossman, W.: Discrete constant mean curvature surfaces and their index, J. reine angew. Math., 549 (2002), 47–77.
  • [12] Wardetzky, M., Mathur, S., Kälberer, F., and Grinspun, E.: Discrete Laplace operators: No free lunch, Eurographics Symposium on Geometry Processing (2007), Alexander Belyaev, Michael Garlad (Editors).

Yoshiki JIKUMARU

Institute of Mathematics for Industry, Kyushu University

744 Motooka Nishi-ku, Fukuoka 819-0395, Japan

E-mail: [email protected]