Stability problem of equilibrium discrete planar curves
Abstract
In this paper, we study planar polygonal curves from the variational methods. We show an unified interpretation of discrete curvatures and the Steiner-type formula by extracting the notion of the discrete curvature vector from the first variation of the length functional. Moreover, we determine the equilibrium curves for the length functional under the area-constraint condition and study their stability.
1 Introduction
Discrete differential geometry is an active research field in connection with the smooth manifold theory and the visualization on the computer. In this field, from the theoretical point of view, one approach is based on the variational problems and the other is the integrability of equations. We take the former approach and focus on discrete planar curves. Surprisingly, such a discrete curve theory is not well-understood, therefore we try to develop them inspired by the work [10]. Moreover, we consider the stability problem for equilibrium discrete curves. Stability problem for discrete objects have not developed well after the work by Polthier and Rossman [11].
First we derive the first variation formula and extract the vector from the formula which should be called the “discrete curvature vector” in §2. In §3, by using this curvature vector, we show an unifed interpretation which derives various kinds of discrete curvature notions introduced in [7], [8]. The important viewpoint here is that there is no natural notion of the line element on the vertices. In §4, we characterize equilibrium curves for the length functional under the area-constraint condition as regular polygons. In §5, we derive the Steiner-type formula for parallel curves by using the “vertex normal” constructed from the “discrete curvature vector” derived in §2. In §6, we will consider the stability problem of the regular polygons. We can derive the second variation formula similar to the smooth case by decomposing the variation vector field to the “normal” and “tangential” directions as in [1]. Moreover, we show the instability for the non-convex regular polygons by using the second variation formula for “normal” variations in the section 7.
2 The first variation formula
In this section we will consider the variation of discrete curves and extract the “curvature vector” from the first variation formula. We can expect that this vector gives a notion of the curvature and normal at vertices. Let us recall the basic definition of discrete planar curves.
Definition 2.1.
Let be a non-negative integer. A standard (abstract) -path is a simplicial complex formed by
-
abstract points : .
-
the set of edges , .
An standard abstract -circle is the union of a standard -path and the “final” edge . A discrete (planar) curve is a geometric realization of a standard -path or -circle which is a map satisfies for all , where we denote . We denote such a discrete curve as .
For each oriented edge of we can assign an unit normal vector
where is the -rotation or -rotation in . It does not matter whichever we choose but we choose the same for all .
For a discrete curve with an orientation, the length of and the -dimensional volume (area) bounded by are defined by
In these settings, we consider the following question:
What is the unit normal, curvature and line element at the vertices ?
A realization of the dual graph may give an answer for this question, but we do not consider such a realization. In order to approach the problem, we will extract the discrete curvature vector from the first variation of the length. Therefore we first derive the first variation formula of the length functional. In the discrete setting we consider the variation of vertices, that is, piecewise linear variations. We consider a variation
where is the “variation vector field”. If is a boundary point of , then we assume .
We want to find the vector satisfies
where we write . Since this is just a direction derivative in , the following proposition is immediately:
Proposition 2.2.
Let be a discrete closed curve and be an interior vertex. Then the gradient the length can be expressed in the following formula:
(2.1) |
By using this formula we have
where we inserted some auxilary function defined on the vertices. This kind of observation is essentially remarked in the paper [3].
Definition 2.3 (Discrete curvature vector).
For a positive function defined on the vertices, we call the vector
(2.2) |
the discrete curvature vector with respect to .
Remarks .
There are some reasons why we can regard the vector as the curvature vector. First, the vector is independent of the choice of the unit normal, i.e., an intrinsic quantity. Moreover, the second expression (2.2) can be regarded as a discretization of a part of the Frenet-Serret formula. As we will remark below, suitable choices of the function derives various notions of discrete curvature defined in [7], [8]. Non-uniqueness of the function comes from the fact that there is no natural line element, i.e. the metric, at vertices.
3 Relation with other notions of the discrete curvature
In this section, non-uniqueness of the line element at the vertices gives various notions of the discrete curvature defined in [7], [8].
To describe the curvature notions, we have to define the angles at vertices. We define (the absolute value of) the angle between and as , i.e.,
We have to care about the signature of . Let be the -rotation in . We assign the signature depends on the choice of the rotation appeared in the definition of the edge normal:
In this situation the signature of is determined by the equation . We easily see that for some integer for any closed curve. We define the discrete curvature with respect to the choice of by the length of the discrete curvature vector with respect to :
Definition 3.1.
For a positive function defined on the vertices, we call the value
the discrete curvature with respect to .
Remark .
If we use the expression , the discrete curvature with respect to can be written as up to the signature. This can be regarded as a discretization of the curvature for a regular planar curve.
In the lecture note by Tim Hoffmann [8], three kinds of notions of the curvature for discrete curves are introduced:
-
The curvature at vertices by using the vertex osculating circle method,
-
The curvature at edges by using the edge osculating circle method,
-
The curvature at vertices by using edge osculating circle for “arclength parametrized” curve.
Moreover, Hatakeyama [7] also defined the curvature for discrete curves another way. We will show that these curvature notions can be derived from our viewpoint.
Proposition 3.2 (The vertex osculating circle method [8]).
If we choose
then the discrete curvature with respect to becomes
and this value coincides with the curvature based on the vertex osculating circle method.
Proposition 3.3 (For the arclength parametrized curves [8]).
Assume . Then if we choose
then the discrete curvature with respect to becomes
and this value coincides with the curvature of arclength parametrized curve.
In the paper [7], the discrete curvature at the vertex is defined as
Then we immediately have the following result:
Proposition 3.4.
If we choose , then the discrete curvature with respect to coincides with the discrete curvature defined in [7].
Before considering the edge osculating circle method, we shall modify the first variation formula from the vertex-based expression to the edge-based expression. If we put , then we have
where is some auxiliary function. As in the vertex case, we call the value
the discrete curvature at the edge with respect to .
Proposition 3.5 (The edge osculating circle method [8]).
If we choose
then the discrete curvature with respect to becomes
and this value coincides with the curvature based on the edge osculating circle method.
Remark .
To define the discrete curvature, we have to choose (respectively ) properly. That means if , and , then (respectively ) must converge to , i.e., must be a “good” candidate for a discrete line element. We can check that and satisfy this condition in the above examples.
Remark (“No free lunch” for the discrete Laplacian, cf. [12]).
We consider these kinds of “no free lunch” story for the discrete Laplacian which will be used in the second variation formula. On a discrete curve with the vertex set , we consider a function . Then the gradient and the Laplacian of can be defined as
where we denote . Note that the gradient is the “edge-based operator” but the Laplacian is the “vertex-based” operator. In addition, the discrete curvature vector with respect to can be written as .
From another point of view, if we define the Dirichlet energy of as
then the first variation of the energy becomes
where we take the variation of as . Therefore if and only if . Note that the condition is independent of the choice of .
As in the curvature case, the Laplacian can be changed since there is no natural “line element divisor ”. However, with another function , we still have the following properties since the quanties are independent of :
-
If is constant, then .
-
The condition is independent of the choice of and in this case we have the mean value property:
-
symmetric property:
Note that the summation is vertex-based.
-
Integration by parts:
Note that the right hand side is the edge-based summation but the left hand side is the vertex-based summation. As a corollary, the operator is positive semi-definite.
4 Equilibrium curves of the length functional
In the previous section, we showed that non-uniqueness of the line element at vertices gives various discrete curvature notions. However, the equilibrium curves for the length functional under the area-constraint condition should be characterized as some “constant curvature” objects by virture of the smooth case. In this section, we show that such equilibrium curves can be characterized as regular polygons and that they are certainly regarded as “constant curvature” objects.
By a direct calculation we have the following result.
Lemma 4.1.
For any vertex of the gradient of the area is given by
Remark (Another “no free lunch” story).
We can modify the first variation formula of the volume as follows:
At a glance, it seems like a natural to choose and this is also frequently used as a “vertex normal” (a weighted sum of the edge normals):
In addition, we have
by a simple calculation. Therefore, unless the curve is arclength parameterized, there are (at least) two choices of the “vertex normal” from the variational viewpoint: using the length gradient (length descent direction) or using the volume gradient (volume descent direction). This suggests that, in contrast to the smooth case, we have to choose the “prefered” vertex normal according to the energy in question.
Example 4.2 (Regular polygons).
Let us take a discrete curve as in the following way (including non-convex regular -gon with radius ):
where we assume that . In particular, we sometimes call the curve as a convex regular -gon. Note that is also convex but it has an opposite unit normal with (usually we assume that has the outward-pointing unit normal).
![]() ![]() ![]() ![]() |
Then the curve is a critical point of the functional with . This value is the reciprocal of the radius of the inscribed circle of the polygon (up to the signature). We sometimes say that a convex regular -gon with radius (and outward-pointing unit normal) has constant curvature . Note that and when .
We will show that these regular polygons are the only equilibrium curves for the functional .
Theorem 4.3.
Let be a closed discrete curve and take . Then the following two conditions are equivalent:
-
is an equilibrium curve of the functional .
-
There exist numbers and such that and satisfying , i.e., must be a regular polygon.
Proof .
We put
Then the discrete curve is a critical point of the functional if and only if for all . By a simple calculation we have
(4.1) | ||||
(4.2) | ||||
(4.3) |
For the necessity, that is, if we assume for all , then it follows from (4.1) and (4.2) that . And it also follows from (4.2), (4.3) and using that
To prove the sufficiency, since and forms a basis of and by using (4.1) and the assumption, all we have to prove is for all . By using the assumption and , we have
This shows and proves the statement.
Remark .
The equilibrium condition is equivalent to the condition for some constant vector . The latter condition can be considered as a conservation law for the Euler-Lagrange equation . Since the vector is just a translation of the curve, we can put and in this case we have . Therefore, the edge midpoints must be tangent to the unit circle.
We found that equilibrium closed curves of the functional must satisfy , i.e., they must have “good coordinates (arclength parameter)”. If we note that we can define the curvature at vertices for an arclength parametrized curve, the previous result can be restated as follows:
Corollary 4.4.
Let be an arclength parametrized discrete closed curve, i.e., , and take . Then the following two conditions are equivalent:
-
is an equilibrium curve of the functional .
-
The discrete curvature is constant .
5 Parallel curves and Steiner-type formula
In this section we will derive the discrete version of the Steiner-type formula in order to show an effectiveness of the vertex normal which we will define. The following type of Steiner formula is essentially appeared in some papers, e.g. [2], [4]. Although they try to find the curvature notion from the Steiner-type formula, we will derive the Steiner-type formula by using our vertex normal and connect with the well-known curvature notion.
Let be a discrete curve and take an interior vertex . We can expect that if we normalize the discrete curvature vector, then we have the “vertex normal”. Recall that the length of the length gradient can be computed as up to the signature. In the discrete case, we should consider another factor and put
(5.1) |
then we shall call the vector as the vertex normal at the vertex . The second expression in (5.1) allows us to define the vertex normal even if . Then we consider the following deformation of the curve:
Lemma 5.1.
We have , therefore we call this deformation parallel curves.
Proof .
This is a direct calculation.
Theorem 5.2 (Discrete Steriner-type formula).
For parallel curves , we have
where is the discrete curvature based on the edge osculating circle method [8]:
Before giving the proof, we give an intuitive explanation for a special case.

In the Figure 2, the similarity ratio of the triangles gives
Note that the signature of the curvature radius is negative in the figure.
Proof .
By a calculation we have
Therefore we conclude
Remark .
This formula itself is already appeared some papers to find the discrete curvature at the vertices by using the offsets, see [2], [4]. If we take the offset of the edges, then we have the following (at least) three possiblities.
![]() ![]() ![]() |
By computing the length of dotted curves in the figure, we can write the total length of each offsets as follows:
Note the signature of the angles. The second curve is nothing but the normal cone method (or the boundary of the Minkowski sum with the disk) known in the convex geometry. However, the only possible way to unchange the number of the vertices during the offset procedure is the third one, and by modifying the third formula gives our Steiner-type formula:
where we put .
Remark (Discrete Frenet-Serret formula).
In §2, we remarked that the relation
can be considered as a part of the Frenet-Serret formula. On the other hand, by some calculation we have
Note that the former formula is the formula on the vertex while the latter formula is the formula on the edge .
6 The second variation formula
In this section we consider the second variation formula of the length functional. We will follow the argument developed in [11].
Let be an equilibrium closed curve for the functional . We say a variation is admissible (or permissible) if the variation is volume-preserving and fixes the boundary. We recall the first variation formula of the length and the -dimensional volume:
Note that if the variation is admissible, then we have
Lemma 6.1.
Let be an equilibrium closed curve for the functional and be an admissible variation. Then we have
Definition 6.2 (Stability of discrete curves).
Let be a closed equilibrium curve for the functional . Then is said to be stable if for any admissible variation.
We introduce the matrix and as follows:
Then we can write .
Lemma 6.3.
.
Proof .
The proof follows from the direct computation:
Proposition 6.4 (Second variation formula for the length functional).
therefore we have the following second variation formula for the length functional:
(6.1) |
Proof .
By using the fact , we have
In the section of the Steiner-type formula, we used the vector
as the “normal vector” at the vertex . If we define the “tangent vector” as , then we can decompose the variation vector as
where is some functions on the vertices. If for all , we call the variation the normal variation. In the following we will use this notation.
Lemma 6.5.
The first variation formula of the volume can be written as
In particular, if the curve satisfies , then a variation is volume-preserving if .
Proof .
Using the first variation formula, we have
Remark .
For a function satisfying , we can find a variation whose variation vector field is . The proof is completely the same as in [1].
Recall that if is an equilibrium curve of the functional , then we have , and .
Lemma 6.6.
Therefore we have
Proof .
Recall that
If we note , then
Similarly since
we have
Substracting these factors we have
Lemma 6.7.
Proof .
This is also a simple calculation:
Theorem 6.8 (Second variation formula for the length functional).
In particular, for the normal variation we have
where we use the integration by parts and take the line element at the vertex as .
Proof .
By using the previous lemmas, we have
Taking the summation, we have the desired result.
7 Instability of non-convex regular polygons
In this section we will prove that non-convex regular polygons and convex regular polygons with multiplicity are unstable. To prove this, we find a special variation with a help of the following discrete version of Wirtinger’s inequality:
Theorem 7.1 (Discrete Wirtinger’s inequality, [6]).
Let be real numbers such that
Then we have
(7.1) |
and the equality holds if and only if there exist such that
In the following, we will consider the normal variation, i.e., the variation which have the form:
where satisfies . By the second variation formula (Theorem 6.8) we have
for any admissible variations, where we use the relation and put for some and assume that .
Theorem 7.2 (Instability of non-convex regular polygons).
Let . By taking , , we have
In particular, for , i.e., non-convex regular polygons are unstable.
Proof.
By the discrete Wirtinger’s inequality we have
In the following we use the equality condition and put . Then we have
If we note the fact , then
If or , then
On the other hand, for and we have
where we use the fact if , and if . This proves the statement.
8 Appendix
We observe the second variation formula from the analysis of the Jacobi operator. We can modify the equation (7.1) as follows:
where we put and
Since the matrix is the circulant matrix, the eigenvalues can be calculated explicitly, see e.g. [5]:
The corresponding eigenvectors are
(8.1) |
The condition is equivalent to the condition that is perpendicular to . Therefore we only consider the eigenvalues .
Lemma 8.1.
For , we have . In particular, for if , i.e., the convex regular polygon case.
Proof .
This is a direct calculation:
Theorem 8.2.
Assume . For or , we have . Therefore, the index of a non-convex regular polygon or a convex polygon with multiplicity is at least .
Proof .
Under the above conditions, we have
Remark .
More precisely, for .
Remark .
From another point of view, a non-convex regular polygon is the high-frequency component of the discrete Fourier expansion of the polygon. More precisely, any polygon in with -vertices can be regarded as a point in . Each eigenvector in (8.1) corresponds to the regular -gon and forms a basis of . Therefore, any polygon in can be written as a linear combination of the regular -gons and this fact corresponds to the discrete Fourier expansion.
Acknowledgements
The author would like to experess his gratitude to Professor Miyuki Koiso and Professor Hisashi Naito for invaluable comments and friutful discussions.
References
- [1] Barbosa, J. L. and do Carmo, M.: Stability of hypersurfaces with constant mean curvature, Math. Z. 185 (1984), 339–353.
- [2] Bauer, U., Polthier, K., and Wardetzky, M.: Uniform convergence of discrete curvatures from nets of curvature lines, Discrete comput. geom. 43 (2010), 798–823.
- [3] Chow B., and Glickenstein, D.: Semidiscrete Geometric Flow of Polygon, Amer. Math. Monthly 114, No. 4 (2007), 316–328.
- [4] Crane, K., and Wardetzky, M.: A Glimpse into Discrete Differential Geometry, Notices of American Mathematical Society 64 (2017), 1153–1159.
- [5] Davis, P. J.: Circulant Matrices, Wiley-Interscience, New York, 1979.
- [6] Fan, K., Taussky, O., and Todd, J.: Discrete analogs of inequalities of Wirtinger, Monatsh. Math., 59 (1955), 73–90.
- [7] Hatakeyama, Y.: Some attempts to construct geometric theories to represent and explicate physical phenomenons, PhD dissertation, Kyushu University, 2019.
- [8] Hoffmann, T.: Discrete Differential Geometry of Curves and Surfaces, MI Lecture Notes Series Vol. 18, Faculty of Mathematics, Kyushu University, 2008.
- [9] Pinkall, U. and Polthier, K.: Computing Discrete Minimal Surfaces and Their Conjugates, Experim. Math., 2(1) (1993), 15–36.
- [10] Polthier, K.: Polyhedral surfaces with constant mean curvature, TU-Berlin, Habilitationsschrift, 2002.
- [11] Polthier, K. and Rossman, W.: Discrete constant mean curvature surfaces and their index, J. reine angew. Math., 549 (2002), 47–77.
- [12] Wardetzky, M., Mathur, S., Kälberer, F., and Grinspun, E.: Discrete Laplace operators: No free lunch, Eurographics Symposium on Geometry Processing (2007), Alexander Belyaev, Michael Garlad (Editors).
Yoshiki JIKUMARU
Institute of Mathematics for Industry, Kyushu University
744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
E-mail: [email protected]