This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Stability of strong viscous shock wave under periodic perturbation for 1-D isentropic navier-stokes system in the half space

Lin Chang School of Mathematical Sciences, Beihang University, Beijing, China [email protected] Lin He College of Mathematics, Sichuan University, Chengdu, China [email protected]  and  Jin Ma School of Mathematics and Information Science, Shandong Technology and Business University, Yantai 264005, P. R. China [email protected]
Abstract.

In this paper, a viscous shock wave under space-periodic perturbation of 1-D isentropic Navier-Stokes system in the half space is investigated. It is shown that if the initial periodic perturbation around the viscous shock wave is small, then the solution time asymptotically tends to a viscous shock wave with a shift partially determined by the periodic oscillations. Moreover, the strength of the shock wave could be arbitrarily large. This result essentially improves the previous work ”A. Matsumura, M. Mei, Convergence to travelling fronts of solutions of the p-system with viscosity in the presence of a boundary. Arch. Ration. Mech. Anal. 146 (1999), no. 1, 1-22.” where the strength of shock wave is sufficiently small and the initial periodic oscillations vanish.

Key words and phrases:
Impermeable wall problem, Large amplitude shock, Space-periodic perturbation, Asymptotic stability

1. Introduction

We consider a one-dimensional isentropic Navier-Stokes system for a general viscous gas, i.e.,

{vtux=0,ut+px=(μ(v)uxv)x,\left\{\begin{array}[]{ll}v_{t}-u_{x}=0,&\\ u_{t}+p_{x}=(\mu(v)\frac{u_{x}}{v})_{x},&\end{array}\right. (1.1)

where v(x,t)v(x,t) is the specific volume, u(x,t)u(x,t) the fluid velocity and p=avγp=av^{-\gamma} is the pressure. Constant a>0a>0, γ>1\gamma>1 are adiabatic constants. μ(v)=μ0vα\mu(v)=\mu_{0}v^{-\alpha} is the viscosity coefficient with α0\alpha\geq 0. Without loss of generality, we assume μ0=1\mu_{0}=1 in what follows.

The system (1.1) is a basic system of hydrodynamic equations, it has a variety of wave phenomena, such as viscous shock waves and rarefaction waves. So it is important to study the stability of the viscous shock wave for system (1.1). The stability of viscous shock wave for the Cauchy problem has been extensively studied in a large literature since the pioneer works of [5, 22], see the other interesting works [4, 7, 9, 12, 13, 16, 17, 18, 20, 23, 27, 15] as the shock wave is weak.

Physicists and engineers are more concerned with the stability of large amplitude shock (strong shock). However, the stability of large amplitude shock (strong shock) is challenging in mathematics. There have been no research results of this area until the last few years.

In 2010, Matsumura-Wang [25] proved that the large amplitude shock wave is asymptotically stable by a clever weighted energy method as α>γ12\alpha>\frac{\gamma-1}{2}. In 2016, Vasseur-Yao [28] successfully removed the condition α>γ12\alpha>\frac{\gamma-1}{2} by introducing a new variable called “effective velocity”. Recently, He-Huang [6] extended the result of [28] to general pressure p(v)p(v) and general viscosity μ(v)\mu(v), where μ(v)\mu(v) could be any positive smooth function.

On the other hand, it is also interesting to investigate the stability of viscous shock waves for the initial-boundary value problem. In this paper, we considered an impermeable wall problem of (1.1) in the half space x0x\geq 0, i.e.,

{(v,u)(x,0)=(v0,u0)(x)(v++ζ(x),u++φ(x)),x+,u(0,t)=0,tR+,\left\{\begin{array}[]{ll}(v,u)(x,0)=(v_{0},u_{0})(x)\longrightarrow(v_{+}+\zeta(x),u_{+}+\varphi(x)),~{}x\rightarrow+\infty,&\\ u(0,t)=0,~{}~{}t\in{R_{+}},&\end{array}\right. (1.2)

where v+>0,u+<0v_{+}>0,u_{+}<0. And (ζ,φ)\left(\zeta,\varphi\right) are periodic functions with period π>0\pi>0 and satisfy

0π(ζ,φ)(x)𝑑x=0.\int_{0}^{\pi}\left(\zeta,\varphi\right)(x)dx=0. (1.3)

When the periodic functions (ζ,φ)\left(\zeta,\varphi\right) vanish, Matsumura-Mei [21] considered the impermeable wall problem (1.1), (1.2) in 1999. And recently, an interesting result by [3] considering the multi-dimensional case of this problem.

The impermeable wall means that the velocity at the boundary x=0x=0 must be zero because there is no flow across the boundary. They showed in [21] that when α=0\alpha=0 the solution of (1.1),(1.2) tends to a 2-viscous shock wave connecting the left state (v,0)(v_{-},0) and the right one (v+,u+)(v_{+},u_{+}) provided that both the strength of shock and the initial perturbation are small and the 2-viscous shock is initially far away from the boundary, where vv_{-} is determined by the RH condition, i.e.,

{s2(v+v)(u+u)=0,s2(u+u)+(p(v+)p(v))=0.\displaystyle\left\{\begin{array}[]{ll}-s_{2}(v_{+}-v_{-})-(u_{+}-u_{-})=0,&\\ -s_{2}(u_{+}-u_{-})+(p(v_{+})-p(v_{-}))=0.&\end{array}\right. (1.6)

Moreover, we assume that u=0u_{-}=0. The condition that the strength of shock is small was removed from [2]. The condition that the shock is initially far away from the boundary was removed from [24]. How to remove both these two conditions mentioned above at the same time is still open. Let us briefly recall the idea of [24].

Since u(0,t)=0u(0,t)=0 at the boundary, we can exchange the impermeable wall problem (1.1) and (1.2) in the half space to the Cauchy problem in the whole space by defining (v~(x,t),u~(x,t))=(v(x,t),u(x,t))({{\tilde{v}}}(x,t),\tilde{u}(x,t))=(v(-x,t),-u(-x,t)) as x<0x<0 so that (v~,u~)(x,t)(\tilde{v},\tilde{u})(x,t) still satisfies the system (1.1) in the whole space, i.e.,

{v~tu~x=0,u~t+p(v~)x=(u~xv~α+1)x,xR\left\{\begin{array}[]{ll}\tilde{v}_{t}-\tilde{u}_{x}=0,&\\ \tilde{u}_{t}+p({\tilde{v}})_{x}=(\frac{{\tilde{u}}_{x}}{{\tilde{v}}^{\alpha+1}})_{x},~{}~{}x\in{R}&\end{array}\right. (1.7)

equipped with the initial data

(v~0,u~0)(x)=:(v~,u~)(x,0)={(v0(x),u0(x)),x0,(v0(x),u0(x)),x0,({\tilde{v}_{0}},{\tilde{u}_{0}})(x)=:({\tilde{v}},{\tilde{u}})(x,0)=\left\{\begin{array}[]{ll}(v_{0}(-x),-u_{0}(-x)),&x\leq 0,\\ (v_{0}(x),u_{0}(x)),&x\geq 0,\\ \end{array}\right. (1.8)

satisfying

(v~0,u~0)(x){(v+,u+),(x+),(v+,u+),(x).(\tilde{v}_{0},{\tilde{u}_{0}})(x)\rightarrow\left\{\begin{array}[]{ll}(v_{+},u_{+}),&(x\rightarrow+\infty),\\ (v_{+},-u_{+}),&(x\rightarrow-\infty).\end{array}\right. (1.9)
Refer to caption
(a) Combination of the two shock waves
Refer to caption
(b) The graphs of ViV_{i} and UiU_{i} ,i=1,2

It is obvious that the solution of the Cauchy problem (1.7)-(1.9) confined in the half line x>0x>0 is exactly the one of the impermeable wall problem (1.1),(1.2). In view of the far field states at x=±x=\pm\infty given by (1.9), it is expected that the solution to (1.7)-(1.9) asymptotically tends to a composite wave consisting of 1-viscous shock wave connecting (v+,u+)(v_{+},-u_{+}) at the left and an intermediate state (v,u)(v_{\star},u_{\star}) at the right, and 2-viscous shock wave connecting (v,u)(v_{\star},u_{\star}) at the left and (v+,u+)(v_{+},u_{+}) at the right. Fortunately (v,u)=(v,0)(v_{\star},u_{\star})=(v_{-},0) by the principle of RH condition and (1.9), see Fig (A), where S1(v+,u+)S_{1}(v_{+},-u_{+}) means the 1-shock curve in the phase plane (v,u)(v,u) starting from the left state (v+,u+)(v_{+},-u_{+}) and S2(v,0)S_{2}(v_{-},0) means the 2-shock curve in the phase plane (v,u)(v,u) starting from the left state (v,0)(v_{-},0). The Figure B contains the graphs of the shock waves in the planes (x,v)(x,v) and (x,u)(x,u). The wall x=0x=0 can be regarded as a mirror and the 1-viscous shock is a mirror image of the 2-viscous shock in the plane (x,v)(x,v), and the interaction between the 2-shock and the boundary x=0x=0 for the impermeable wall problem (1.1)-(1.2) is replaced to consider the one between the 2-shock and its mirrored shock for the Cauchy problem (1.7)-(1.9).

In this paper, we want to improve the work of [2] where ζ=φ=0\zeta=\varphi=0. Motivated by [24], the extended initial data in (1.8) satisfies

(v~0,u~0)(x){(v++ζ(x),u++φ(x)),(x+),(v++ζ(x),u+φ(x)),(x).(\tilde{v}_{0},{\tilde{u}_{0}})(x)\rightarrow\left\{\begin{array}[]{ll}(v_{+}+\zeta(x),u_{+}+\varphi(x)),&(x\rightarrow+\infty),\\ (v_{+}+\zeta(-x),-u_{+}-\varphi(-x)),&(x\rightarrow-\infty).\end{array}\right. (1.10)

We outline the strategy as follows. We apply the anti-derivative method to study the stability of the traveling wave solution (V2S,U2S)(xs2t)(V_{2}^{S},U_{2}^{S})(x-s_{2}t), in which the anti-derivative of the perturbation (v~V2S,u~U2S\tilde{v}-V_{2}^{S},\tilde{u}-U_{2}^{S}), namely, (ϕ,ψ)(x,t)=x(v~V2S,u~U2S)(y,t)𝑑y(\phi,\psi)(x,t)=\int_{-\infty}^{x}(\tilde{v}-V_{2}^{S},\tilde{u}-U_{2}^{S})(y,t)dy, “should” belong to some Sobolev spaces like H2()H^{2}(\mathbb{R}). However, the method above can not be applicable directly in this paper since (v~U2S,u~U2S\tilde{v}-U_{2}^{S},\tilde{u}-U_{2}^{S}) oscillates at the far field and hence does not belong to any LpL^{p} space for p1p\geq 1. Motivated by [30], we introduce a suitable ansatz (V,U)(x,t)(V,U)(x,t), which has the same oscillations as the solution (v~,u~)(x,t)(\tilde{v},\tilde{u})(x,t) at the far field, so that x(v~V,u~U)(x,t)𝑑x\int_{-\infty}^{x}(\tilde{v}-V,\tilde{u}-U)(x,t)dx belongs to some Sobolev spaces and the anti-derivative method is still available.

The rest of the paper will be arranged as follows. In Section 2, a suitable ansatz is constructed and the main results are stated. In Section 3, the stability problem is reformulated to a perturbation equation around the ansatz. In Section 4, the a priori estimates are established. In Section 5, the main results are proved. In Section 6, some complementary proofs are provided.

Notation. The functional Lp(Ω)\|\cdot\|_{L^{p}(\Omega)} defined by fLp(Ω)=(Ω|f|p(ξ)𝑑ξ)1p\|f\|_{L^{p}(\Omega)}=(\int_{\Omega}|f|^{p}(\xi){d\xi})^{\frac{1}{p}}. When Ω=(,)\Omega=(-\infty,\infty), the symbol Ω\Omega is often omitted. As p=2p=2, we denote for simplicity,

f=(f2(ξ)𝑑ξ)12.\|f\|=\left(\int_{-\infty}^{\infty}f^{2}(\xi){d\xi}\right)^{\frac{1}{2}}.

In addition, HmH^{m} denotes the mm-th order Sobolev space of functions defined by

fm=(k=0mξkf2)12.\|f\|_{m}=\left(\sum_{k=0}^{m}\|\partial^{k}_{\xi}f\|^{2}\right)^{\frac{1}{2}}.

2. Preliminaries and the Main Theorem

2.1. Preliminaries

As pointed out by [21, 2], when perturbation functions ζ,φ\zeta,\varphi vanish, the solution of the impermeable wall problem (1.1)-(1.2) is expected to tend toward the outgoing viscous shock (V2S,U2S)(ξ2)(V_{2}^{S},U_{2}^{S})(\xi_{2}) satisfying

{s2(V2S)(U2S)=0,s2(U2S)+p(V2S)=((U2S)(V2S)α+1),(V2S,U2S)()=(v,0),(V2S,U2S)(+)=(v+,u+),\left\{\begin{array}[]{ll}{-s_{2}}(V_{2}^{S})^{\prime}-(U_{2}^{S})^{\prime}=0,&\\ {-s_{2}}(U^{S}_{2})^{\prime}+p(V^{S}_{2})^{\prime}=\left(\frac{(U^{S}_{2})^{\prime}}{(V^{S}_{2})^{\alpha+1}}\right)^{\prime},&\\ (V^{S}_{2},U^{S}_{2})(-\infty)=(v_{-},0),\quad(V^{S}_{2},U^{S}_{2})(+\infty)=(v_{+},u_{+}),&\end{array}\right. (2.1)

where =d/dξ2{}^{\prime}=d/d\xi_{2}, ξ2=xs2t\xi_{2}=x-s_{2}t, s2s_{2} is the shock speed determined by the R-H condition (1.6) and v±>0,u+<0v_{\pm}>0,u_{+}<0 are given constants. Using (2.1)1(\ref{2.1})_{1} and (2.1)2(\ref{2.1})_{2}, it follows that

s22(V2S)+p(V2S)=(s2(V2S)(V2S)α+1).\displaystyle\begin{split}&{s}_{2}^{2}(V^{S}_{2})^{\prime}+p(V^{S}_{2})^{\prime}=\left(\frac{-s_{2}(V^{S}_{2})^{\prime}}{(V^{S}_{2})^{\alpha+1}}\right)^{\prime}.\end{split} (2.2)

Integrate (2.2) over (,ξ2)(-\infty,\xi_{2}). one has

s2(V2S)(V2S)α+1=s22(V2S)p(V2S)b:=h(V2S),V2S(±)=v±,\displaystyle\begin{split}&\frac{s_{2}(V^{S}_{2})^{\prime}}{(V^{S}_{2})^{\alpha+1}}=-{s}_{2}^{2}(V^{S}_{2})-p(V^{S}_{2})-b:=h(V^{S}_{2}),\quad V^{S}_{2}(\pm\infty)=v_{\pm},\end{split}
U2S=s2(V2Sv)=s2(V2Sv+)+u+,\displaystyle\begin{split}&U^{S}_{2}=-s_{2}(V^{S}_{2}-v_{-})=-s_{2}(V^{S}_{2}-v_{+})+u_{+},\end{split} (2.3)

where b=s22vp(v)=s22v+p(v+)b=-s_{2}^{2}v_{-}-p(v_{-})=-s_{2}^{2}v_{+}-p(v_{+}). For abbreviation, we denote s2s_{2} by ss. We have the following lemma.

Lemma 2.1 ([21]).

There exists a unique viscous shock (V2S,U2S)(ξ2)(V^{S}_{2},U^{S}_{2})(\xi_{2}) up to a shift satisfying

0<v<V2S(ξ2)<v+,h(V2S)>0,(U2S)<0,\displaystyle 0<v_{-}<V^{S}_{2}(\xi_{2})<v_{+},\quad h(V^{S}_{2})>0,\quad(U^{S}_{2})^{\prime}<0,
|V2S(ξ)v±|=O(1)θec±|ξ2|,\displaystyle\left|V^{S}_{2}(\xi)-v_{\pm}\right|=O(1)\theta e^{-c_{\pm}|\xi_{2}|}, (2.4)

as ξ2±,\xi_{2}\rightarrow\pm\infty, where θ=|v+v|\theta=\left|v_{+}-v_{-}\right|, c±=v±α+1s|p(v±)+s2|c_{\pm}=\frac{v_{\pm}^{\alpha+1}}{s}|p^{\prime}(v_{\pm})+s^{2}|, s=u+v+v.s=\frac{-u_{+}}{v_{+}-v_{-}}.

The initial data are assumed to satisfied

v0(x)ζ(x)V2S(xβ1)L1H1(R+),u0(x)φ(x)U2S(xβ1)L1H1(R+),\displaystyle\begin{split}&v_{0}(x)-\zeta(x)-V_{2}^{S}(x-\beta_{1})\in L^{1}\cap H^{1}(R_{+}),\\ &u_{0}(x)-\varphi(x)-U_{2}^{S}(x-\beta_{1})\in L^{1}\cap H^{1}(R_{+}),\end{split} (2.5)

and

u0(0)=0u_{0}(0)=0 (2.6)

as compatibility condition, where β1>0\beta_{1}>0 is a constant. Set

(A0,B0)(x):=x(v0(y)ζ(y)V2S(yβ1),u0(y)φ(y)U2S(yβ1))𝑑y.\displaystyle(A_{0},B_{0})(x):=-\int_{x}^{\infty}(v_{0}(y)-\zeta(y)-V_{2}^{S}(y-\beta_{1}),u_{0}(y)-\varphi(y)-U_{2}^{S}(y-\beta_{1}))dy.

We further assume that

(A0,B0)L2(R+).\displaystyle(A_{0},B_{0})\in L^{2}(R_{+}). (2.7)

Borrowing from the idea of [24], we construct a composite wave. By [24], the mirrored shock (V1S,U1S)(ξ1),ξ1=xs1t,s1=s(V^{S}_{1},U^{S}_{1})(\xi_{1}),\xi_{1}=x-s_{1}t,s_{1}=-s, satisfies

{s(V1S)U1S=0,s(U1S)+p(V1S)=((U1S)(V1S)α+1),(V1S,U1S)()=(v+,u+),(V1S,U1S)(+)=(v,0).\left\{\begin{array}[]{ll}{s}(V^{S}_{1})^{\prime}-{U^{S}_{1}}^{\prime}=0,&\\ {s}(U^{S}_{1})^{\prime}+p(V^{S}_{1})^{\prime}=(\frac{(U^{S}_{1})^{\prime}}{(V^{S}_{1})^{\alpha+1}})^{\prime},&\\ (V^{S}_{1},U^{S}_{1})(-\infty)=(v_{+},-u_{+}),\quad(V^{S}_{1},U^{S}_{1})(+\infty)=(v_{-},0).&\end{array}\right. (2.8)

Thanks [21], one has

V1S(ξ)=V2S(ξ),U1S(ξ)=U2S(ξ),ξR.V^{S}_{1}(\xi)=V^{S}_{2}(-\xi),\quad U^{S}_{1}(\xi)=-U^{S}_{2}(-\xi),~{}~{}\forall\xi\in{R}. (2.9)

The composite wave by two viscous shock weaves is defined as

V~(x,t;β):=V1S(x+st+β)+V2S(xstβ)v,U~(x,t;β):=U1S(x+st+β)+U2S(xstβ),\displaystyle\begin{split}\tilde{V}(x,t;\beta):=&V_{1}^{S}(x+st+\beta)+V^{S}_{2}(x-st-\beta)-v_{-},\\ \tilde{U}(x,t;\beta):=&U_{1}^{S}(x+st+\beta)+U^{S}_{2}(x-st-\beta),\end{split} (2.10)

where β\beta is a constant. Motivated by [10, 8, 14, 11], we need two periodic solutions to (1.1) to establish the ansatz. Some properties of the solution are listed.

Lemma 2.2.

[11] Assume that (v0,u0)(x)Hk(0,π)(v_{0},u_{0})(x)\in H^{k}(0,\pi) with k2k\geq 2 is periodic with period π>0\pi>0 and average (v¯,u¯).(\bar{v},\bar{u}). Then there exists ε0>0\varepsilon_{0}>0 such that if

ε1:=(v0,u0)(v¯,u¯)Hk(0,π)ε0,\varepsilon_{1}:=\|{(v_{0},u_{0})-({\bar{v}},{\bar{u}})}\|_{H^{k}(0,\pi)}\leq\varepsilon_{0},

there exits a unique periodic solution

(v,u)(x,t)C(0,+;Hk(0,π))(v,u)(x,t)\in C\big{(}0,+\infty;H^{k}(0,\pi)\big{)}

to (1.1) with the initial data (v,u)(x,0)=(v0,u0)(x),(v,u)(x,0)=(v_{0},u_{0})(x), which has the average (v¯,u¯),({\bar{v}},{\bar{u}}), and satisfies

(v,u)(v¯,u¯)Hk(0,π)(t)Cε1e2σ0t,t0,\|{(v,u)-({\bar{v}},{\bar{u}})}\|_{H^{k}(0,\pi)}(t)\leq C\varepsilon_{1}e^{-2\sigma_{0}t},\quad t\geq 0,

where the constants C>0C>0 and σ0>0\sigma_{0}>0 are independent of ε1\varepsilon_{1} and t.t.

2.2. Ansatz

In order to make the anti-derivative method is available, we choose a suitable pair of ansatz (V,U)(V,U) such that limx±(vV,uU)(x,t)=(0,0)\lim_{x\rightarrow\pm\infty}(v-V,u-U)(x,t)=(0,0) for any t0t\geq 0. Motivated by [29], we define that the periodic solutions (vl,r,ul,r)\left(v_{l,r},u_{l,r}\right) of (1.1) as xx\rightarrow\mp\infty for all t0,t\geq 0, which have the periodic initial data:

(vr,ur)(x,0)=(v+,u+)+(ζ,φ)(x),(vl,ul)(x,0)=(v+,u+)+(ζ,φ)(x).\displaystyle\begin{split}&\left(v_{r},u_{r}\right)(x,0)=(v_{+},u_{+})+\left(\zeta,\varphi\right)(x),\\ &\left(v_{l},u_{l}\right)(x,0)=(v_{+},-u_{+})+\left(\zeta,-\varphi\right)(-x).\end{split}

For the viscous shocks (V1S,U1S)\left(V^{S}_{1},U^{S}_{1}\right) and (V2S,U2S),\left(V^{S}_{2},U^{S}_{2}\right), define

g1(x):=V1S(x)v+vv+=U1S(x)+u+u+,g2(x):=V2S(x)vv+v=U2S(x)u+,\displaystyle\begin{split}g_{1}(x)&:=\frac{V^{S}_{1}(x)-v_{+}}{v_{-}-v_{+}}=\frac{U^{S}_{1}(x)+u_{+}}{u_{+}},\\ g_{2}(x)&:=\frac{V^{S}_{2}(x)-v_{-}}{v_{+}-v_{-}}=\frac{U^{S}_{2}(x)}{u_{+}},\end{split} (2.11)

where we have used the R-H condition (1.6). It is straightforward to check that 0gi(x)10\leq g_{i}(x)\leq 1 and gi(x)>0g_{i}^{\prime}(x)>0 for i=1,2.i=1,2. With functions vl,r,ul,r,g1,2v_{l,r},u_{l,r},g_{1,2} in hand, we are ready to construct the ansatz. Let 𝒳(t),𝒴(t)\mathcal{X}(t),\mathcal{Y}(t) are two C1C^{1} curves on [0,+)[0,+\infty) which will be determined later. Set

V(x,t):=\displaystyle V(x,t):={} vl(x,t)[1g1(x+st+𝒳)]+v[g1(x+st+𝒳)g2(xst𝒳)]\displaystyle v_{l}(x,t)\left[1-g_{1}(x+st+{\mathcal{X}})\right]+v_{-}\left[g_{1}(x+st+{\mathcal{X}})-g_{2}(x-st-{\mathcal{X}})\right]
+vr(x,t)g2(xst𝒳),\displaystyle+v_{r}(x,t)g_{2}(x-st-{\mathcal{X}}),
U(x,t):=\displaystyle U(x,t):={} ul(x,t)[1g1(x+st+𝒴)]+ur(x,t)g2(xst𝒴).\displaystyle u_{l}(x,t)\left[1-g_{1}(x+st+{\mathcal{Y}})\right]+u_{r}(x,t)g_{2}(x-st-{\mathcal{Y}}).

Plugging the ansatz (V,U)(V,U) into (1.1), we have

{VtUx=(F1,1+F1,2+𝒳F1,3)x,Ut+p(V)xμ(xUV)x=(F2,1+F2,2+𝒴F2,3)x,\begin{cases}V_{t}-U_{x}=(F_{1,1}+F_{1,2}+\mathcal{X}^{\prime}F_{1,3})_{x},&\\ U_{t}+p(V)_{x}-\mu\big{(}\frac{\partial_{x}U}{V}\big{)}_{x}=(F_{2,1}+F_{2,2}+\mathcal{Y}^{\prime}F_{2,3})_{x},&\end{cases} (2.12)

where

Fi,j=xfi,j(y,t)𝑑y;i=1,2;j=2,3,F_{i,j}=\int_{-\infty}^{x}f_{i,j}(y,t)dy;i=1,2;\quad j=2,3,
{F1,1=ul[g1(x+st+𝒴)g1(x+st+𝒳)]ur[g2(xst𝒴)g2(xst𝒳)],f1,2=[s(vlv+)+(ul+u+)]g1(x+st+𝒳)[s(vrv+)+(uru+)]g2(xst𝒳),f1,3=(vvl)g1(x+st+𝒳)+(vvr)g2(xst𝒳),\begin{cases}F_{1,1}=u_{l}\left[g_{1}(x+st+{\mathcal{Y}})-g_{1}(x+st+{\mathcal{X}})\right]\\ \qquad\quad-u_{r}\left[g_{2}(x-st-{\mathcal{Y}})-g_{2}(x-st-{\mathcal{X}})\right],\\ f_{1,2}=\left[-s(v_{l}-v_{+})+(u_{l}+u_{+})\right]g_{1}^{\prime}(x+st+{\mathcal{X}})\\ \qquad\quad-\left[s(v_{r}-v_{+})+(u_{r}-u_{+})\right]g_{2}^{\prime}(x-st-{\mathcal{X}}),\\ f_{1,3}=(v_{-}-v_{l})g_{1}^{\prime}(x+st+{\mathcal{X}})\\ \qquad\quad+(v_{-}-v_{r})g_{2}^{\prime}(x-st-{\mathcal{X}}),\end{cases}

and

{F2,1=p(V)p(vl)[1g1(x+st+𝒴)]p(vr)g2(xst𝒴)[UxVα+1ulxvlα+1(1g1(x+st+𝒴))urxvrα+1g2(xst𝒴)],f2,2=[sulp(vl)+ulxvlα+1]g1(x+st+𝒴))[surp(vr)+urxvrα+1]g2(xst𝒴),f2,3=ulg1(x+st+𝒴))urg2(xst𝒴).\begin{cases}F_{2,1}=p(V)-p(v_{l})\left[1-g_{1}(x+st+{\mathcal{Y}})\right]-p(v_{r})g_{2}(x-st-{\mathcal{Y}})\\ \qquad\quad-\big{[}\frac{U_{x}}{V^{\alpha+1}}-\frac{u_{lx}}{v_{l}^{\alpha+1}}(1-g_{1}(x+st+{\mathcal{Y}}))-\frac{u_{rx}}{v_{r}^{\alpha+1}}g_{2}(x-st-{\mathcal{Y}})\big{]},\\ f_{2,2}=\big{[}-su_{l}-p(v_{l})+\frac{u_{lx}}{v_{l}^{\alpha+1}}\big{]}g^{\prime}_{1}(x+st+{\mathcal{Y}}))\\ \qquad\quad-\big{[}su_{r}-p(v_{r})+\frac{u_{rx}}{v_{r}^{\alpha+1}}\big{]}g_{2}^{\prime}(x-st-{\mathcal{Y}}),\\ f_{2,3}=-u_{l}g^{\prime}_{1}(x+st+{\mathcal{Y}}))-u_{r}g_{2}^{\prime}(x-st-{\mathcal{Y}}).\end{cases}

2.3. Location of The Shift 𝒳(t){\mathcal{X}}(t) and 𝒴(t){\mathcal{Y}}(t).

To apply the anti-derivative method which is always used to study the stability of viscous shock, introduced in [26], we expect that

0=(v~(x,t)V(x,t)u~(x,t)U(x,t)),t0.\displaystyle\begin{split}0=&\int_{-\infty}^{\infty}\left(\begin{array}[]{cccc}{\tilde{v}}(x,t)-V(x,t)\\ \tilde{u}(x,t)-U(x,t)\end{array}\right),\quad\forall t\geq 0.\end{split}

When t=0t=0, the shifts 𝒳(0)\mathcal{X}(0) and 𝒴(0)\mathcal{Y}(0) should satisfy

0=(v~0(x)V(x,0)u~0(x)U(x,0))𝑑x:=(I1(𝒳(0))I2(𝒴(0))).\displaystyle\begin{split}0=&\int_{-\infty}^{\infty}\left(\begin{array}[]{cccc}\tilde{v}_{0}(x)-V(x,0)\\ \tilde{u}_{0}(x)-U(x,0)\end{array}\right)dx:=\left(\begin{array}[]{cccc}I_{1}(\mathcal{X}(0))\\ I_{2}(\mathcal{Y}(0))\end{array}\right).\end{split} (2.13)

Our next task is to show 𝒳(t),𝒴(t)\mathcal{X}(t),\mathcal{Y}(t) when t>0t>0. To make the system (2.12) as a conservative form, the curves 𝒳(t)\mathcal{X}(t) and 𝒴(t)\mathcal{Y}(t) should satisfy

𝒳(t)=limxF1,2(x,t)F1,3(x,t),𝒴(t)=limxF2,2(x,t)F2,3(x,t),\displaystyle\mathcal{X}^{\prime}(t)=-\lim_{x\rightarrow\infty}\frac{F_{1,2}(x,t)}{F_{1,3}(x,t)},~{}\mathcal{Y}^{\prime}(t)=-\lim_{x\rightarrow\infty}\frac{F_{2,2}(x,t)}{F_{2,3}(x,t)}, (2.14)

With the aid of (2.2), we know F1,30,F2,30F_{1,3}\neq 0,F_{2,3}\neq 0, provided that the initial periodic perturbations (ζ,φ)\left(\zeta,\varphi\right) are small. Due to (1.8) and (2.9), u~0(x),U(x,0)\tilde{u}_{0}(x),U(x,0) are odd functions and v~0(x),V(x,0){\tilde{v}}_{0}(x),V(x,0) are even functions, thus I02=0I_{02}=0, i.e, we can choose any 𝒴0\mathcal{Y}_{0} to guarantee that I2(𝒴0)=0I_{2}(\mathcal{Y}_{0})=0. For I2(𝒳0)=0I_{2}(\mathcal{X}_{0})=0, using (2.4) and (2.9), one gets that

I1(ω)=20[v0(x)q~(x)V2S(xω)]+[vV1S(x+ω)]dx=20[v0(x)q~(x)V2S(xω)]𝑑x201sU1S(x+ω)𝑑x=20[v0(x)q~(x)V2S(xω)]𝑑x+201sU2S(xω)𝑑x=20[v0(x)q~(x)V2S(xω)]𝑑x+20U2S(stω)𝑑t.\displaystyle\begin{split}I_{1}(\omega)=2&\int_{0}^{\infty}[v_{0}(x)-\tilde{q}(x)-V^{S}_{2}(x-\omega)]+[v_{-}-V^{S}_{1}(x+\omega)]dx\\ =2&\int_{0}^{\infty}[v_{0}(x)-\tilde{q}(x)-V^{S}_{2}(x-\omega)]dx-2\int_{0}^{\infty}\frac{1}{s}U^{S}_{1}(x+\omega)dx\\ =2&\int_{0}^{\infty}[{v}_{0}(x)-\tilde{q}(x)-V^{S}_{2}(x-\omega)]dx+2\int_{0}^{\infty}\frac{1}{s}U^{S}_{2}(-x-\omega)dx\\ =2&\int_{0}^{\infty}[{v}_{0}(x)-\tilde{q}(x)-V^{S}_{2}(x-\omega)]dx+2\int_{0}^{\infty}U^{S}_{2}(-st-\omega)dt.\end{split} (2.15)

where

q~(x)=ζ(x)[1g1(x+ω)]+ζ(x)[g2(xω)].\displaystyle\begin{split}\tilde{q}(x)=&\zeta(-x)\left[1-g_{1}(x+\omega)\right]+\zeta(x)\left[g_{2}(x-\omega)\right].\end{split} (2.16)

By directly calculate, we have I1()=I_{1}(\infty)=\infty, I1()=I_{1}(-\infty)=-\infty.

I1(ω)=2{(v+v)0[ζ(x)g1(x+ω)+ζ(x)g2(xω)]𝑑x}2{(v+v)ζL0[g1(x+ω)+g2(xω)]𝑑x}2{(v+v)2ε}.\displaystyle\begin{split}I_{1}^{\prime}(\omega)&=2\left\{(v_{+}-v_{-})-\int_{0}^{\infty}[\zeta(-x)g_{1}^{\prime}(x+\omega)+\zeta(x)g_{2}^{\prime}(x-\omega)]dx\right\}\\ &\geq 2\left\{(v_{+}-v_{-})-\|\zeta\|_{L_{\infty}}\int_{0}^{\infty}[g_{1}^{\prime}(x+\omega)+g_{2}^{\prime}(x-\omega)]dx\right\}\\ &\geq 2\left\{(v_{+}-v_{-})-2\varepsilon\right\}.\end{split} (2.17)

Moreover, choosing ε\varepsilon suitable small, we have 3(v+v)I1(ω)v+v>03(v_{+}-v_{-})\geq I_{1}^{\prime}(\omega)\geq v_{+}-v_{-}>0 Thus there exists a unique constant 𝒳0\mathcal{X}_{0} such that I1(𝒳0)=0I_{1}(\mathcal{X}_{0})=0. Moreover, using I1(𝒳0)=I1(β1)+β1𝒳0I1(s)𝑑sI_{1}(\mathcal{X}_{0})=I_{1}(\beta_{1})+\int_{\beta_{1}}^{\mathcal{X}_{0}}I_{1}^{\prime}(s)ds, the constant 𝒳0\mathcal{X}_{0} is between 12M~+β1\frac{1}{2}\tilde{M}+\beta_{1} and 32M~+β1\frac{3}{2}\tilde{M}+\beta_{1}, where

M~=1vv+(0[v0(x)q~(x)V2S(xβ1)]𝑑x+0U2S(stβ1)𝑑t)=1vv+(0[v0(x)ζ(x)V2S(xβ1)]𝑑x+0U2S(stβ1)𝑑t)1vv+(0[ζ(x)[g2(xβ1)1]+ζ(x)[1g1(x+β1)]dx)1vv+(0[v0(x)ζ(x)V2S(xβ1)]𝑑x+0U2S(stβ1)𝑑t)+Cε,\displaystyle\begin{split}\tilde{M}=&\frac{1}{v_{-}-v_{+}}\left(\int_{0}^{\infty}[{v}_{0}(x)-\tilde{q}(x)-V^{S}_{2}(x-\beta_{1})]dx+\int_{0}^{\infty}U^{S}_{2}(-st-\beta_{1})dt\right)\\ =&\frac{1}{v_{-}-v_{+}}\left(\int_{0}^{\infty}[{v}_{0}(x)-\zeta(x)-V^{S}_{2}(x-\beta_{1})]dx+\int_{0}^{\infty}U^{S}_{2}(-st-\beta_{1})dt\right)\\ &-\frac{1}{v_{-}-v_{+}}\left(\int_{0}^{\infty}\left[\zeta(x)[g_{2}(x-\beta_{1})-1\right]+\zeta(-x)\left[1-g_{1}(x+\beta_{1})\right]dx\right)\\ \leq&\frac{1}{v_{-}-v_{+}}\left(\int_{0}^{\infty}[{v}_{0}(x)-\zeta(x)-V^{S}_{2}(x-\beta_{1})]dx+\int_{0}^{\infty}U^{S}_{2}(-st-\beta_{1})dt\right)+C\varepsilon,\end{split} (2.18)

where we have used the following inequality

0[ζ(x)[g2(xβ1)1]+ζ(x)[1g1(x+β1)]dx=1(vv+)0ζ(x)[V2S(xβ1)v+]+ζ(x)[V1S(x+β1)v]dxCζ(x)L0|V2S(xβ1)v+|+|V1S(x+β1)v|dxCε.\displaystyle\begin{split}&\int_{0}^{\infty}\left[\zeta(x)[g_{2}(x-\beta_{1})-1\right]+\zeta(-x)\left[1-g_{1}(x+\beta_{1})\right]dx\\ =&\frac{-1}{(v_{-}-v_{+})}\int_{0}^{\infty}\zeta(x)\left[V^{S}_{2}(x-\beta_{1})-v_{+}\right]+\zeta(-x)\left[V^{S}_{1}(x+\beta_{1})-v_{-}\right]dx\\ \leq&C\|\zeta(x)\|_{L_{\infty}}\int_{0}^{\infty}\left|V^{S}_{2}(x-\beta_{1})-v_{+}\right|+\left|V^{S}_{1}(x+\beta_{1})-v_{-}\right|dx\leq C\varepsilon.\end{split} (2.19)

By (2.5), we know M~\tilde{M} exists. Thus we can obtain the curves 𝒳(t)\mathcal{X}(t) and 𝒴(t)\mathcal{Y}(t). More precisely, it holds that

Lemma 2.3.

Assume that (1.3), (1.6) hold. Then there exists an ε0>0\varepsilon_{0}>0 such that if

ζH2(0,π)+φH2(0,π)<ε<ε0,\|{\zeta}\|_{H^{2}(0,\pi)}+\|\varphi\|_{H^{2}(0,\pi)}<\varepsilon<\varepsilon_{0},

there exists a constant pair (𝒳,𝒴)(0)(\mathcal{X},\mathcal{Y})(0) satisfying (2.13) where 𝒳(0)\mathcal{X}(0) is uniquely determined and 𝒴(0)\mathcal{Y}(0) can take any constant. Moreover, there exists a unique solution (𝒳,𝒴)(t)C1(0,+)(\mathcal{X},\mathcal{Y})(t)\in C^{1}(0,+\infty) to the system (2.14) with the fixed initial data (𝒳,𝒴)(0)=(𝒳0,𝒴0(\mathcal{X},\mathcal{Y})(0)=(\mathcal{X}_{0},\mathcal{Y}_{0}) satisfying

|(𝒳,𝒴)(t)|+|(𝒳,𝒴)(t)(𝒳,𝒴)|Cεe2σ0t,t0.|{\left(\mathcal{X}^{\prime},\mathcal{Y}^{\prime}\right)(t)}|+|{\left(\mathcal{X},\mathcal{Y}\right)(t)-\left(\mathcal{X}_{\infty},\mathcal{Y}_{\infty}\right)}|\leq C\varepsilon e^{-2\sigma_{0}t},\qquad t\geq 0.

Moreover, the corresponding constant locations 𝒳,𝒴\mathcal{X}_{\infty},\mathcal{Y}_{\infty} as follows,

𝒳=\displaystyle\mathcal{X}_{\infty}=~{} 𝒳0+12(v+v)π{0π0xζ(y)ζ(y)dydx,\displaystyle\mathcal{X}_{0}+\frac{1}{2(v_{+}-v_{-})\pi}\left\{\int_{0}^{\pi}\int_{0}^{x}\zeta(y)-\zeta(-y)dydx\right., (2.20)
+2π0+[ζ(x)(1g2(x+𝒳0))ζ(x)(1g1(x𝒳0))]dx},\displaystyle\left.+2\pi\int_{0}^{+\infty}\left[\zeta(x)\left(1-g_{2}(x+\mathcal{X}_{0})\right)-\zeta(x)\left(1-g_{1}(x-\mathcal{X}_{0})\right)\right]dx\right\},

and

𝒴=\displaystyle\mathcal{Y}_{\infty}=~{} 𝒴0+12u+π{0π0xφ(y)+φ(y)dydx\displaystyle\mathcal{Y}_{0}+\frac{1}{2u_{+}\pi}\left\{\int_{0}^{\pi}\int_{0}^{x}\varphi(y)+\varphi(-y)dydx\right. (2.21)
0+0π[p(vl)p(vr)]𝑑x𝑑t\displaystyle-\int_{0}^{+\infty}\int_{0}^{\pi}\left[p(v_{l})-p({v}_{r})\right]dxdt
+0πg(v++ζ(x))g(v++ζ(x))dx},\displaystyle\left.+\int_{0}^{\pi}g(v_{+}+\zeta(-x))-g(v_{+}+\zeta(x))dx\right\},

where g(v)=1αvα,g(v)=\frac{1}{\alpha}v^{-\alpha}, if α0\alpha\neq 0; g(v)=lnvg(v)=-\ln v, if α0\alpha\neq 0.

Since the proof of Lemma 2.3 is similar to that in [29, 11], we put it in section 6.

2.4. the Main Result

We define

ϕ0(x)=xv~0(y)V(y,0)dy,ψ0(x)=xu~0(y)U(y,0)dy.\displaystyle\begin{split}&\phi_{0}(x)=-\int^{\infty}_{x}\widetilde{v}_{0}(y)-V(y,0)dy,\\ &\psi_{0}(x)=-\int^{\infty}_{x}\widetilde{u}_{0}(y)-U(y,0)dy.\end{split}

In view of (2.13), we further assume that

(ϕ0,ψ0)H2(R).\displaystyle(\phi_{0},\psi_{0})\in H^{2}(R). (2.22)

Using the arbitrariness of 𝒴0\mathcal{Y}_{0}, one can find a suitable 𝒴0\mathcal{Y}_{0}, such that 𝒳=𝒴\mathcal{X}_{\infty}=\mathcal{Y}_{\infty}. From now on, we denote β:=𝒳=𝒴,V~(x,t;β)=V~(x,t),U~(x,t;β)=U~(x,t)\beta:=\mathcal{X}_{\infty}=\mathcal{Y}_{\infty},\tilde{V}(x,t;\beta)=\tilde{V}(x,t),\tilde{U}(x,t;\beta)=\tilde{U}(x,t) for simple.

Lemma 2.4.

Suppose that (2.22) holds, there exists a positive constant δ1\delta_{1} such that if

ϕ02+ψ02+β11+εδ1,\|\phi_{0}\|_{2}+\|\psi_{0}\|_{2}+\beta_{1}^{-1}+\varepsilon\leq\delta_{1},

then the Cauchy problem (1.7),(1.10) has a unique global solution (v~,u~)(x,t)(\widetilde{v},\widetilde{u})(x,t) satisfying

v~(x,t)V(x,t)C0([0,+);H1)L2([0,+);H2),u~(x,t)U(x,t)C0([0,+);H1)L2([0,+);H1),\displaystyle\begin{split}&{\widetilde{v}(x,t)}-V(x,t)\in C^{0}([0,+\infty);H^{1})\cap L^{2}([0,+\infty);H^{2}),\\ &{\widetilde{u}(x,t)}-U(x,t)\in C^{0}([0,+\infty);H^{1})\cap L^{2}([0,+\infty);H^{1}),\\ \end{split} (2.23)

and

supxR|v~(x,t)V(x,t)|0, as t+,supxR|u~(x,t)U(x,t)|0, as t+.\displaystyle\begin{split}&\sup_{x\in{R}}|{\widetilde{v}(x,t)}-V(x,t)|\rightarrow 0,\text{ as }t\rightarrow+\infty,\\ &\sup_{x\in{R}}|{\widetilde{u}(x,t)}-U(x,t)|\rightarrow 0,\text{ as }t\rightarrow+\infty.\end{split} (2.24)

Now, we turn to the original initial-value problem. Our main theorem is:

Theorem 2.1.

For any given constants u+<0u_{+}<0 and v+>0v_{+}>0, if (2.5)-(2.7) hold. There exists a positive constant δ2\delta_{2} such that if

A0H2(R+)+B0H2(R+)+β11+εδ2,\|A_{0}\|_{H^{2}({R}_{+})}+\|B_{0}\|_{H^{2}({R}_{+})}+\beta_{1}^{-1}+\varepsilon\leq\delta_{2},

then the IBVP (1.1), (1.2) has a unique global solution (v,u)(x,t)(v,u)(x,t), satisfying

supxR+|(v,u)(x,t)(V2S,U2S)(xstβ)|0,as t+,\displaystyle\begin{split}&\sup_{x\in{R}_{+}}|{(v,u)(x,t)}-(V^{S}_{2},U^{S}_{2})(x-st-\beta)|\rightarrow 0,\text{as }t\rightarrow+\infty,\end{split}

where β\beta is determined by (2.20).

3. Reformulation of the Original Problem

Set

ϕ(x,t):=x(v~V)(y,t)𝑑y,ψ(x,t):=x(u~U)(y,t)𝑑y.\displaystyle\begin{split}\phi&(x,t):=\int^{x}_{-\infty}{(\tilde{v}-V)}(y,t){d}y,\\ \psi&(x,t):=\int^{x}_{-\infty}{(\tilde{u}-U)}(y,t){d}y.\end{split}

Thus (v~,u~)(x,t)(\tilde{v},\tilde{u})(x,t) satisfy

v~\displaystyle\tilde{v} (x,t)=ϕx(x,t)+V(x,t),\displaystyle(x,t)=\phi_{x}(x,t)+V(x,t),
u~\displaystyle\tilde{u} (x,t)=ψx(x,t)+U(x,t).\displaystyle(x,t)=\psi_{x}(x,t)+U(x,t).

From (2.12)(\ref{2.8}), we know the ansazt (V,U)(V,U) satisfies

{VtUx=F1x,Ut+p(V)x(UxVα+1)x=F2x,(V,U)(±,t)=(v+,±u+),\left\{\begin{array}[]{ll}{V}_{t}-{U}_{x}=-F_{1x},&\\ U_{t}+p(V)_{x}-\left(\frac{U_{x}}{V^{\alpha+1}}\right)_{x}=-F_{2x},&\\ (V,U)(\pm\infty,t)=(v_{+},\pm u_{+}),&\end{array}\right. (3.1)

where

F1(x,t)\displaystyle F_{1}(x,t) :=F1,1(x,t)F1,2(x,t)𝒳(t)F1,3(x,t),\displaystyle:=-F_{1,1}(x,t)-F_{1,2}(x,t)-\mathcal{X}^{\prime}(t)F_{1,3}(x,t), (3.2)
F2(x,t)\displaystyle F_{2}(x,t) :=F2,1(x,t)F2,2(x,t)𝒴(t)F2,3(x,t).\displaystyle:=-F_{2,1}(x,t)-F_{2,2}(x,t)-\mathcal{Y}^{\prime}(t)F_{2,3}(x,t).

Motivated by [21] and [1], with the help of (3.1) and (1.1), it follows that

{ϕtψx=F1,ψtf(V,Ux)ϕxψxxVα+1=F2+J.\left\{\begin{array}[]{ll}\phi_{t}-\psi_{x}=F_{1},&\\ \psi_{t}-f(V,U_{x})\phi_{x}-\frac{\psi_{xx}}{V^{\alpha+1}}=F_{2}+J.&\end{array}\right. (3.3)

The initial condition satisfies

(ϕ0,ψ0)\displaystyle\left(\phi_{0},\psi_{0}\right) (x)H2,xR,\displaystyle(x)\in{H}^{2},\quad x\in{R}, (3.4)

where

f(V,Ux)=p(V)(α+1)UxVα+2,\displaystyle f(V,U_{x})=-p^{\prime}(V)-(\alpha+1)\frac{U_{x}}{V^{\alpha+2}}, (3.5)
J\displaystyle J =uxvα+1UxVα+1ψxxVα+1+(α+1)UxϕxVα+2[p(v)p(V)p(V)ϕx].\displaystyle=\frac{{u}_{x}}{{v}^{\alpha+1}}-\frac{U_{x}}{V^{\alpha+1}}-\frac{\psi_{xx}}{V^{\alpha+1}}+(\alpha+1)\frac{U_{x}\phi_{x}}{V^{\alpha+2}}-\left[p({v})-p(V)-p^{\prime}(V)\phi_{x}\right]. (3.6)
Lemma 3.1.

Under the assumptions of Theorem 2.1, the anti-derivative variables (3.2) exist and satisfy that

F12Cεeσ0t,F21Cεeσ0t+Cecβ1esct.\|{F_{1}}\|_{2}\leq C\varepsilon e^{-\sigma_{0}t},\|F_{2}\|_{1}\leq C\varepsilon e^{-\sigma_{0}t}+Ce^{-c_{-}\beta_{1}}e^{-sc_{-}t}.

The proof is based on Lemma 2.2, Lemma 2.3 and Lemma 5.2 and we place it in section 6 for brevity.

We will seek the solution in the functional space Xδ(0,T){X}_{\delta}(0,T) for any 0T<+0\leq T<+\infty,

Xδ(0,T):={(ϕ,ψ)C([0,T];H2)|ϕxL2(0,T;H1),ψxL2(0,T;H2)sup0tT(ϕ,ψ)(t)2δ},\displaystyle\begin{split}{X}_{\delta}(0,T):=&\left\{(\phi,\psi)\in C([0,T];{H}^{2})|\phi_{x}\in{L}^{2}(0,T;{H}^{1}),\psi_{x}\in{L}^{2}(0,T;{H}^{2})\right.\\ &\sup_{0\leq t\leq T}\|(\phi,\psi)(t)\|_{2}\leq\delta\},\end{split}

where δ1{\delta}\ll 1 is small.

Remark 3.1.

The function space is well defined because the Dirac function will not appear in ϕ,ϕx,ϕxx,ψ,ψx,ψxx,ψxxx\phi,\phi_{x},\phi_{xx},\psi,\psi_{x},\psi_{xx},\psi_{xxx}, which can be guaranteed by u(0)=0u(0)=0.

Proposition 3.1.

(A priori estimate) For some time T>0T>0, if (ϕ,ψ)Xδ(0,T)(\phi,\psi)\in{X}_{\delta}(0,T) is the solution of (3.3), (3.4). Then there exists a positive constant δ0\delta_{0} independent of TT, such that if

sup0tT(ϕ,ψ)(t)2δδ0,\sup_{0\leq t\leq T}\|(\phi,\psi)(t)\|_{{2}}\leq\delta\leq\delta_{0},

for t[0,T]t\in[0,T], then

(ϕ,ψ)(t)22+0t(ϕx(t)12+ψx(t)22)𝑑tC0((ϕ0,ψ0)22+ecβ1+ε),\displaystyle\|(\phi,\psi)(t)\|_{{2}}^{2}+\int_{0}^{t}(\|\phi_{x}(t)\|^{2}_{1}+\|\psi_{x}(t)\|_{2}^{2}){d}t\leq C_{0}(\|(\phi_{0},\psi_{0})\|_{{2}}^{2}+e^{-c_{-}\beta_{1}}+\varepsilon),

where C0>1C_{0}>1 ia a constant independent of TT.

Once Proposition 3.1 is obtained, the local solution (ϕ,ψ)(\phi,\psi) can be extend to T=+.T=+\infty. See the following lemma.

Lemma 3.2.

If (ϕ0,ψ0)H2(\phi_{0},\psi_{0})\in{H}^{2}, there exists a positive constant δ1=δ0C0\delta_{1}=\frac{\delta_{0}}{\sqrt{C_{0}}}, such that if

(ϕ0,ψ0)22+ecβ1+εδ12,\|(\phi_{0},\psi_{0})\|_{{2}}^{2}+e^{-c_{-}\beta_{1}}+\varepsilon\leq\delta_{1}^{2},

then the initial value problem (3.3), (3.4) has a unique global solution (ϕ,ψ)Xδ0(0,)(\phi,\psi)\in{X}_{\delta_{0}}(0,\infty) satisfying

supt0(ϕ,ψ)(t)22+0(ϕx(t)12+ψx(t)22)𝑑tC0((ϕ0,ψ0)22+ecβ1+ε).\displaystyle\sup_{t\geq 0}\|(\phi,\psi)(t)\|_{{2}}^{2}+\int_{0}^{\infty}(\|\phi_{x}(t)\|^{2}_{1}+\|\psi_{x}(t)\|_{2}^{2}){d}t\leq C_{0}(\|(\phi_{0},\psi_{0})\|_{{2}}^{2}+e^{-c_{-}\beta_{1}}+\varepsilon).

4. A Priori Estimate

For some T>0T>0, the problem (3.3),(3.4)(\ref{3.3}),(\ref{3.4}) is assumed that has a solution (ϕ,ψ)Xδ(0,T)(\phi,\psi)\in{X}_{\delta}(0,T) in this section.

sup0tT(ϕ,ψ)(t)2δ.\displaystyle\sup_{0\leq t\leq T}\|(\phi,\psi)(t)\|_{2}\leq\delta. (4.1)

The Sobolev inequality gives that 12vv32v+\frac{1}{2}v_{-}\leq v\leq\frac{3}{2}v_{+}, and

sup0tT{(ϕ,ψ)(t)L+(ϕx,ψx)(t)L}δ.\displaystyle\sup_{0\leq t\leq T}\{\|(\phi,\psi)(t)\|_{{L}^{\infty}}+\|(\phi_{x},\psi_{x})(t)\|_{{L}^{\infty}}\}\leq{\delta}.

Motivated by [28], we introduce the new effective velocity h~=u~v~(α+1)v~x\widetilde{h}=\widetilde{u}-\widetilde{v}^{-(\alpha+1)}\widetilde{v}_{x}. It holds that

{v~th~x=(v~xv~α+1)x,h~t+p~x=0.\left\{\begin{array}[]{ll}\widetilde{v}_{t}-\widetilde{h}_{x}=(\frac{\widetilde{v}_{x}}{\widetilde{v}^{\alpha+1}})_{x},&\\ \widetilde{h}_{t}+\widetilde{p}_{x}=0.&\end{array}\right. (4.2)

Similarly, we define H=UV(α+1)VxH=U-V^{-(\alpha+1)}V_{x}, then (3.1) becomes

{VtHx=(VxVα+1)xF1,x,Ht+p(V)x=F2,x.\left\{\begin{array}[]{ll}V_{t}-H_{x}=\left(\frac{V_{x}}{V^{\alpha+1}}\right)_{x}-F_{1,x},&\\ H_{t}+p(V)_{x}=-F_{2,x}.&\end{array}\right. (4.3)

We define

x(h~H)𝑑x=Ψ.\displaystyle\int_{-\infty}^{x}(\widetilde{h}-H){dx}=\Psi. (4.4)

Substitute (4.3) from (4.2) and integrate the resulting system with respect to xx. Using (4.4), we have

{ϕtΨxϕxxVα+1=G+F1,Ψt+p(V)ϕx=p(v~|V)+F2F1xVα+1,\left\{\begin{array}[]{ll}\phi_{t}-\Psi_{x}-\frac{\phi_{xx}}{V^{\alpha+1}}=G+{F}_{1},&\\ \Psi_{t}+p^{\prime}(V)\phi_{x}=-p(\tilde{v}|V)+F_{2}-\frac{F_{1x}}{V^{\alpha+1}},&\end{array}\right. (4.5)

where

G=v~xv~α+1VxVα+1ϕxxVα+1,p(v~|V)=(p(v~)p(V))p(V)ϕx.\displaystyle G=\frac{\widetilde{v}_{x}}{\widetilde{v}^{\alpha+1}}-\frac{V_{x}}{V^{\alpha+1}}-\frac{\phi_{xx}}{V^{\alpha+1}},\quad p(\widetilde{v}|V)=\left(p(\widetilde{v})-p(V)\right)-p^{\prime}(V)\phi_{x}.

Now we give some lemmas that are useful in energy estimate.

Lemma 4.1.

([6, 21]) Under the assumption of (4.1), we have

p(v~|V)Cϕx2,|p(v~|V)x|C(|ϕxxϕx|+|Vx|ϕx2),|G|C(|ϕxxϕx|+|Vx|ϕx),\displaystyle\begin{split}&p(\widetilde{v}|V)\leq C\phi_{x}^{2},\quad|p(\widetilde{v}|V)_{x}|\leq C(|\phi_{xx}\phi_{x}|+|V_{x}|\phi_{x}^{2}),\\ &|G|\leq C(|\phi_{xx}\phi_{x}|+|V_{x}|\phi_{x}),\\ \end{split} (4.6)

and

|J|C(ϕx2+|ϕxψxx|),|Jx|C(ϕx2+|ϕxϕxx|+|ψxxϕxx|+|ψxxxϕx|+|ϕxψxx|).\displaystyle\begin{split}&|J|\leq C(\phi_{x}^{2}+|\phi_{x}\psi_{xx}|),\\ &|J_{x}|\leq C(\phi_{x}^{2}+|\phi_{x}\phi_{xx}|+|\psi_{xx}\phi_{xx}|+|\psi_{xxx}\phi_{x}|+|\phi_{x}\psi_{xx}|).\end{split} (4.7)
Lemma 4.2.

The error terms

q(x,t):=V(x,t)V~(x,t);z(x,t):=U(x,t)U~(x,t),\displaystyle\begin{split}q(x,t):=V(x,t)-\tilde{V}(x,t);\quad z(x,t):=U(x,t)-\tilde{U}(x,t),\end{split} (4.8)

satisfy

(z,q)(.,t)2Cεe2σ0t.\|(z,q)(.,t)\|_{2}\leq C\varepsilon e^{-2\sigma_{0}t}.
Proof.

By direct calculate, one gets that

q(x,t):=(vlv+)(x,t)[1g1(x+st+𝒳)]+(vrv+)(x,t)g2(xst𝒳)+V1S(x+st+𝒳)+V2S(xst𝒳)V1S(x+st+β)V2S(xstβ)C(|vlv+|+|vrv+|+|𝒳β|),\displaystyle\begin{split}q(x,t):=&(v_{l}-v_{+})(x,t)\left[1-g_{1}(x+st+{\mathcal{X}})\right]+(v_{r}-v_{+})(x,t)g_{2}(x-st-{\mathcal{X}})\\ &+V_{1}^{S}(x+st+{\mathcal{X}})+V^{S}_{2}(x-st-{\mathcal{X}})-V_{1}^{S}(x+st+\beta)-V^{S}_{2}(x-st-\beta)\\ \leq&C(|v_{l}-{v}_{+}|+|v_{r}-{v}_{+}|+|{\mathcal{X}}-\beta|),\end{split} (4.9)

and

kqxkC(|kvlxk|+|kvrxk|+|𝒳β|),k=1,2.\displaystyle\begin{split}\frac{\partial^{k}q}{\partial x^{k}}\leq C\left(\left|\frac{\partial^{k}v_{l}}{\partial x^{k}}\right|+\left|\frac{\partial^{k}v_{r}}{\partial x^{k}}\right|+\left|{\mathcal{X}}-\beta\right|\right),\quad k=1,2.\end{split} (4.10)

With the aid of Lemma 2.2 and Lemma 2.3, one gets that

q2Cεe2σ0t.\|q\|_{2}\leq C\varepsilon e^{-2\sigma_{0}t}. (4.11)

Similar, we obtain

z2Cεe2σ0t.\|z\|_{2}\leq C\varepsilon e^{-2\sigma_{0}t}. (4.12)

4.1. Low Order Estimates.

Lemma 4.3.

Under the same assumptions of Proposition 3.1, we have

(ϕ,Ψ)2(t)+0tU~xΨ2𝑑x𝑑t+0tϕx2𝑑tC(ϕ0,Ψ0)2+Cδ0tϕxx2𝑑t+Cecβ1+Cε.\displaystyle\begin{split}&\|(\phi,\Psi)\|^{2}(t)+\int_{0}^{t}\int_{-\infty}^{\infty}\sqrt{-\tilde{U}_{x}}\Psi^{2}dxdt+\int_{0}^{t}\|\phi_{x}\|^{2}dt\\ \leq&C\|(\phi_{0},\Psi_{0})\|^{2}+C{\delta}\int_{0}^{t}\|\phi_{xx}\|^{2}dt+Ce^{-c_{-}\beta_{1}}+C\varepsilon.\end{split}
Proof.

We multiply (4.5)1(\ref{4.5})_{1} and (4.5)2(\ref{4.5})_{2} by ϕ\phi and Ψp(V)\frac{\Psi}{-p^{\prime}(V)}, respectively, sum them up, and intergrading result with respect to tt and xx over [0,t]×R[0,t]\times{R}, we have

12(ϕ2Ψ2p(V))𝑑x+0tp′′(V)2(p(V))2U~xΨ2+ϕx2Vα+1dxdt\displaystyle\frac{1}{2}\int_{-\infty}^{\infty}\left(\phi^{2}-\frac{\Psi^{2}}{p^{\prime}(V)}\right)dx+\int_{0}^{t}\int_{-\infty}^{\infty}\frac{-p^{\prime\prime}(V)}{2(p^{\prime}(V))^{2}}\tilde{U}_{x}\Psi^{2}+\frac{\phi_{x}^{2}}{V^{\alpha+1}}dxdt
=\displaystyle= 12(ϕ2Ψ2p(V))𝑑x|t=0\displaystyle\frac{1}{2}\left.\int_{-\infty}^{\infty}\left(\phi^{2}-\frac{\Psi^{2}}{p^{\prime}(V)}\right)dx\right|_{t=0}
+0t[G+(α+1)VxϕxVα+2]ϕ+p(v~|V)Ψp(V)dxdt\displaystyle+\int_{0}^{t}\int_{-\infty}^{\infty}\left[G+(\alpha+1)\frac{V_{x}\phi_{x}}{V^{\alpha+2}}\right]\phi+\frac{p(\tilde{v}|V)\Psi}{p^{\prime}(V)}dxdt (4.13)
+0tF1ϕΨp(V)(F2F1xVα+1)dxdt\displaystyle+\int_{0}^{t}\int_{-\infty}^{\infty}F_{1}\phi-\frac{\Psi}{p^{\prime}(V)}\left(F_{2}-\frac{F_{1x}}{V^{\alpha+1}}\right)dxdt
+120tp′′(V)p(V)2(zF1)xΨ2𝑑x𝑑t\displaystyle+\frac{1}{2}\int_{0}^{t}\int_{-\infty}^{\infty}\frac{p^{\prime\prime}(V)}{p^{\prime}(V)^{2}}(z-F_{1})_{x}\Psi^{2}dxdt
:=\displaystyle:= 12(ϕ2Ψ2p(V))𝑑x|t=0+i=13Ai.\displaystyle\frac{1}{2}\left.\int_{-\infty}^{\infty}\left(\phi^{2}-\frac{\Psi^{2}}{p^{\prime}(V)}\right)dx\right|_{t=0}+\sum_{i=1}^{3}A_{i}. (4.14)

By direct calculate, one gets that

|G+(α+1)VxϕxVα+2|C|ϕx|(ϕx2+ϕxx2).\left|G+(\alpha+1)\frac{V_{x}\phi_{x}}{V^{\alpha+2}}\right|\leq C|\phi_{x}|(\phi_{x}^{2}+\phi_{xx}^{2}). (4.15)

Due to (4.6), (4.15), we can get

A1C0tϕLϕx(ϕx2+ϕxx2)L1𝑑t+C0tΨLϕx2L1𝑑tCδ0tϕx2+ϕxx2dt.\displaystyle\begin{split}A_{1}\leq&C\int_{0}^{t}\|\phi\|_{L^{\infty}}\left\|\phi_{x}(\phi_{x}^{2}+\phi_{xx}^{2})\right\|_{L^{1}}dt+C\int_{0}^{t}\|\Psi\|_{L^{\infty}}\|\phi_{x}^{2}\|_{L^{1}}dt\\ \leq&C\delta\int_{0}^{t}\|\phi_{x}\|^{2}+\|\phi_{xx}\|^{2}dt.\end{split} (4.16)

With the aid of Lemma 3.1, Ho¨\mathrm{\ddot{o}}lder inequality, we have

A2C0tϕ,Ψ(F11+F2)dtCsupτ[0,t](ϕ,Ψ2+1)0tF11+F2dtC(ε+ecβ1).\begin{split}A_{2}\leq&C\int_{0}^{t}\|\phi,\Psi\|(\|F_{1}\|_{1}+\|F_{2}\|)dt\\ \leq&C\sup_{\tau\in[0,t]}(\|\phi,\Psi\|^{2}+1)\int_{0}^{t}\|F_{1}\|_{1}+\|F_{2}\|dt\\ \leq&C(\varepsilon+e^{-c_{-}\beta_{1}}).\end{split} (4.17)

Using Ho¨\mathrm{\ddot{o}}lder inequality, Sobolev inequality, combining Lemma 3.1, Lemma 4.2, one gets

A3C0t(zF1)xLΨ2L1𝑑tCsupτ[0,t]Ψ(τ)20t(zF1)xH1𝑑tCε.\displaystyle\begin{split}A_{3}\leq&C\int_{0}^{t}\|(z-F_{1})_{x}\|_{L^{\infty}}\|\Psi^{2}\|_{L^{1}}dt\\ \leq&C\sup_{\tau\in[0,t]}\|\Psi(\tau)\|^{2}\int_{0}^{t}\|(z-F_{1})_{x}\|_{H^{1}}dt\leq C\varepsilon.\end{split} (4.18)

Inserting (4.16)-(4.18) into (4.13), using the smallness of δ\delta, we obtain the proof of Lemma 4.3. ∎

Lemma 4.4.

Under the same assumptions of Proposition 3.1, we have

(ϕ,Ψ)(t)12+0tϕx12𝑑tC(ϕ0,Ψ0)12+Cecβ1+Cε.\displaystyle\|(\phi,\Psi)(t)\|_{1}^{2}+\int_{0}^{t}\|\phi_{x}\|_{1}^{2}{dt}\leq C\|(\phi_{0},\Psi_{0})\|_{1}^{2}+Ce^{-c_{-}\beta_{1}}+C\varepsilon.
Proof.

We multiply (4.5)1(\ref{4.5})_{1} and (4.5)2(\ref{4.5})_{2} by ϕxx-\phi_{xx} and Ψxxp(V)\frac{\Psi_{xx}}{p^{\prime}(V)}, respectively and sum over the result, intergrade the result with respect to tt and xx over [0,t]×R[0,t]\times{R}, we have

12(ϕx2Ψx2p(V))𝑑x+0tp′′(V)2(p(V))2U~xΨx2+ϕxx2Vα+1dxdt\displaystyle\frac{1}{2}\int_{-\infty}^{\infty}\left(\phi_{x}^{2}-\frac{\Psi_{x}^{2}}{p^{\prime}(V)}\right)dx+\int_{0}^{t}\int_{-\infty}^{\infty}\frac{-p^{\prime\prime}(V)}{2(p^{\prime}(V))^{2}}\tilde{U}_{x}\Psi_{x}^{2}+\frac{\phi^{2}_{xx}}{V^{\alpha+1}}dxdt
=\displaystyle= 12(ϕx2Ψx2p(V))𝑑x|t=0+0tp′′(V)p(V)V~xΨxϕx𝑑x𝑑t\displaystyle\frac{1}{2}\int_{-\infty}^{\infty}\left.\left(\phi_{x}^{2}-\frac{\Psi_{x}^{2}}{p^{\prime}(V)}\right)dx\right|_{t=0}+\int_{0}^{t}\int_{-\infty}^{\infty}\frac{p^{\prime\prime}(V)}{p^{\prime}(V)}\tilde{V}_{x}\Psi_{x}\phi_{x}dxdt
+0tp(v~|V)xp(V)ΨxGϕxxdxdt\displaystyle+\int_{0}^{t}\int_{-\infty}^{\infty}\frac{p(\tilde{v}|V)_{x}}{p^{\prime}(V)}\Psi_{x}-G\phi_{xx}dxdt
+0tp′′(V)2p(V)2(zF1)xΨx2+p′′(V)p(V)qxΨxϕxdxdt\displaystyle+\int_{0}^{t}\int_{-\infty}^{\infty}\frac{p^{\prime\prime}(V)}{2p^{\prime}(V)^{2}}(z-F_{1})_{x}\Psi_{x}^{2}+\frac{p^{\prime\prime}(V)}{p^{\prime}(V)}q_{x}\Psi_{x}\phi_{x}dxdt (4.19)
0tF1ϕxx+Ψxp(V)(F2F1xVα+1)xdxdt\displaystyle-\int_{0}^{t}\int_{-\infty}^{\infty}F_{1}\phi_{xx}+\frac{\Psi_{x}}{p^{\prime}(V)}\left(F_{2}-\frac{F_{1x}}{V^{\alpha+1}}\right)_{x}dxdt
:=\displaystyle:= 12(ϕx2Ψx2p(V))𝑑x|t=0+i=14Bi.\displaystyle\frac{1}{2}\int_{-\infty}^{\infty}\left.\left(\phi_{x}^{2}-\frac{\Psi_{x}^{2}}{p^{\prime}(V)}\right)dx\right|_{t=0}+\sum_{i=1}^{4}B_{i}.

With the aid of the Cauchy inequality, we have

B1s40tp′′(V)(p(V))2|V~x|Ψx2𝑑x𝑑t+C0tp′′(V)|V~x|ϕx2𝑑x𝑑t140tp′′(V)(p(V))2|V~t|Ψx2Ψx2𝑑x𝑑t+C0tϕx2𝑑t.\displaystyle\begin{split}B_{1}\leq&\frac{s}{4}\int_{0}^{t}\int_{-\infty}^{\infty}\frac{p^{\prime\prime}(V)}{(p^{\prime}(V))^{2}}|\tilde{V}_{x}|\Psi_{x}^{2}dxdt+C\int_{0}^{t}\int_{-\infty}^{\infty}{p^{\prime\prime}(V)}|\tilde{V}_{x}|\phi_{x}^{2}dxdt\\ \leq&-\frac{1}{4}\int_{0}^{t}\int_{-\infty}^{\infty}\frac{p^{\prime\prime}(V)}{(p^{\prime}(V))^{2}}|\tilde{V}_{t}|{\Psi_{x}^{2}}\Psi_{x}^{2}dxdt+C\int_{0}^{t}\|\phi_{x}\|^{2}dt.\end{split} (4.20)

The last inequality is based on the following inequality

V~t=(V1S(x+st+β)+V2S(xstβ))t=s(V1S(x+st+β)V2S(xstβ))x>s|V1xS(x+st+β)+V2xS(xstβ)|=s|V~x|,\displaystyle\begin{split}-\tilde{V}_{t}=&-(V^{S}_{1}(x+st+\beta)+V^{S}_{2}(x-st-\beta))_{t}=-s(V^{S}_{1}(x+st+\beta)-V^{S}_{2}(x-st-\beta))_{x}\\ >&s|V^{S}_{1x}(x+st+\beta)+V^{S}_{2x}(x-st-\beta)|=s|\tilde{V}_{x}|,\end{split}

where we have used (V1S)<0(V^{S}_{1})^{\prime}<0, (V2S)>0(V^{S}_{2})^{\prime}>0, s>0s>0.

The Cauchy inequality and the Sobolev inequality gives that

B2C0t(|ϕxxϕx|+|Vxϕx|)|ϕxx|+|1p(V)p(v~|V)xΨx|dxdt(Cδ+η)0tϕxx2𝑑t+(Cη+Cδ)0tϕx2𝑑t.\displaystyle\begin{split}B_{2}&\leq C\int_{0}^{t}\int_{-\infty}^{\infty}(|\phi_{xx}\phi_{x}|+|V_{x}\phi_{x}|)|{\phi_{xx}}|+\left|\frac{1}{p^{\prime}(V)}p(\tilde{v}|V)_{x}\Psi_{x}\right|dxdt\\ &\leq(C\delta+\eta)\int_{0}^{t}\|\phi_{xx}\|^{2}dt+(C_{\eta}+C\delta)\int_{0}^{t}\|\phi_{x}\|^{2}dt.\end{split}

Similar like (4.17) and (4.18), the error terms B3,B4B_{3},B_{4} can be estimated as

B3+B4Cecβ1+Cε.B_{3}+B_{4}\leq Ce^{-c_{-}\beta_{1}}+C\varepsilon. (4.21)

Inserting (4.20)-(4.21) into (4.1), we get

12(ϕx2Ψx2p(V))𝑑x140tp′′(V)(p(V))2|V~t|Ψx2Ψx2𝑑x𝑑t+0tϕxx2Vα+1𝑑x𝑑tC(ϕ0x2+Ψ0x2)+(C+Cδ+Cη)0tϕx2𝑑t+(Cδ+η)0tϕxx2𝑑t+Cecβ1+Cε.\displaystyle\begin{split}&\frac{1}{2}\int_{-\infty}^{\infty}\left(\phi_{x}^{2}-\frac{\Psi_{x}^{2}}{p^{\prime}(V)}\right)dx-\frac{1}{4}\int_{0}^{t}\int_{-\infty}^{\infty}\frac{p^{\prime\prime}(V)}{(p^{\prime}(V))^{2}}|\tilde{V}_{t}|{\Psi_{x}^{2}}\Psi_{x}^{2}dxdt+\int_{0}^{t}\int_{-\infty}^{\infty}\frac{\phi^{2}_{xx}}{V^{\alpha+1}}dxdt\\ \leq&C\left(\|\phi_{0x}\|^{2}+\|\Psi_{0x}\|^{2}\right)+(C+C\delta+C_{\eta})\int_{0}^{t}\|\phi_{x}\|^{2}dt+(C\delta+\eta)\int_{0}^{t}\|\phi_{xx}\|^{2}dt\\ &+Ce^{-c_{-}\beta_{1}}+C\varepsilon.\end{split}

Choosing η\eta appropriately small and δ\delta sufficient small, together with Lemma 4.3 we get the proof of Lemma 4.4. ∎

Lemma 4.5.

Under the same assumptions of Proposition 3.1, we have

0tΨx(t)2𝑑tC(ϕ0,Ψ0)12+Cecβ1+Cε.\displaystyle\int_{0}^{t}\|\Psi_{x}(t)\|^{2}dt\leq C\|(\phi_{0},\Psi_{0})\|_{1}^{2}+Ce^{-c_{-}\beta_{1}}+C\varepsilon.
Proof.

We multiply (4.5)1(\ref{4.5})_{1} by Ψx\Psi_{x} and make use of (4.5)2(\ref{4.5})_{2}, we get

Ψx2=ΨxGΨxF1ΨxϕxxVα+1+(ϕΨx)tϕ[(p(V)p(v~)+F2F1xVα+1]x.\displaystyle\Psi_{x}^{2}=-\Psi_{x}G-\Psi_{x}F_{1}-\frac{\Psi_{x}\phi_{xx}}{V^{\alpha+1}}+(\phi\Psi_{x})_{t}-\phi\left[(p(V)-p(\widetilde{v})+F_{2}-\frac{F_{1x}}{V^{\alpha+1}}\right]_{x}. (4.22)

Intergrade (4.22)(\ref{b6}) with respect to tt and xx over [0,t]×R[0,t]\times{R}, we have

0tΨx2𝑑x𝑑t=0tΨxG𝑑x𝑑t+ϕΨx𝑑xϕΨx𝑑x|t=00tΨxϕxxVα+1𝑑x𝑑t0tϕx(p(v~)p(V))𝑑x𝑑t+0tϕx[F2F1xVα+1]ΨxF1dxdt:=i=16Hi.\displaystyle\begin{split}&\int_{0}^{t}\int_{-\infty}^{\infty}\Psi_{x}^{2}dxdt\\ =&-\int_{0}^{t}\int_{-\infty}^{\infty}\Psi_{x}Gdxdt+\left.\int_{-\infty}^{\infty}\phi\Psi_{x}dx-\int_{-\infty}^{\infty}\phi\Psi_{x}dx\right|_{t=0}\\ &-\int_{0}^{t}\int_{-\infty}^{\infty}\frac{\Psi_{x}\phi_{xx}}{V^{\alpha+1}}dxdt-\int_{0}^{t}\int_{-\infty}^{\infty}\phi_{x}\left(p(\tilde{v})-p(V)\right)dxdt\\ &+\int_{0}^{t}\int_{-\infty}^{\infty}\phi_{x}[F_{2}-\frac{F_{1x}}{V^{\alpha+1}}]-\Psi_{x}F_{1}dxdt:=\sum_{i=1}^{6}H_{i}.\end{split}

We estimate HiH_{i} term by term. By the Cauchy inequality, it follows that

H1C0tΨx(|ϕxϕxx|+|Vxϕx|)𝑑x𝑑tη0tΨx2𝑑t+Cη0t(ϕxx2+ϕx2)𝑑t.\displaystyle\begin{split}H_{1}&\leq C\int_{0}^{t}\int_{-\infty}^{\infty}\Psi_{x}(|\phi_{x}\phi_{xx}|+|V_{x}\phi_{x}|)dxdt\\ &\leq\eta\int_{0}^{t}\|\Psi_{x}\|^{2}dt+C_{\eta}\int_{0}^{t}(\|\phi_{xx}\|^{2}+\|\phi_{x}\|^{2})dt.\end{split} (4.23)

In addition, it is straightforward to imply that

H2+H3=ϕΨxϕΨ0xdx(ϕ,Ψx)2+(ϕ0,Ψ0,x)2,\displaystyle\begin{split}H_{2}+H_{3}=\int_{-\infty}^{\infty}\phi\Psi_{x}-\phi\Psi_{0x}dx\leq\|(\phi,\Psi_{x})\|^{2}+\|(\phi_{0},\Psi_{0,x})\|^{2},\end{split} (4.24)
H4η0tΨx2𝑑t+Cη0tϕxx2𝑑t,H5C0tϕx2𝑑t,\displaystyle\begin{split}H_{4}\leq\eta\int_{0}^{t}\|\Psi_{x}\|^{2}{dt}+C_{\eta}\int_{0}^{t}\|\phi_{xx}\|^{2}dt,\quad H_{5}\leq C\int_{0}^{t}\|\phi_{x}\|^{2}dt,\end{split} (4.25)

and

H6η0tϕx,Ψx2dt+Cη0tF22+F112dtη0tϕx,Ψx2dt+Cη(ecβ1+ε).\displaystyle\begin{split}H_{6}&\leq\eta\int_{0}^{t}\|\phi_{x},\Psi_{x}\|^{2}dt+C_{\eta}\int_{0}^{t}\|F_{2}\|^{2}+\|F_{1}\|_{1}^{2}dt\\ &\leq\eta\int_{0}^{t}\|\phi_{x},\Psi_{x}\|^{2}dt+C_{\eta}(e^{-c_{-}\beta_{1}}+\varepsilon).\end{split} (4.26)

Thanks to (4.23)-(4.26) and Lemma 4.4, taking η\eta sufficient small, we obtain the proof of Lemma 4.5. ∎

Combining Lemma 4.3-Lemma 4.5, we obtain the following low-order estimate

(ϕ,Ψ)12(t)+0tΨx2+ϕx12dtC(ϕ0,Ψ0)12+Cecβ+Cε,\displaystyle\|(\phi,\Psi)\|_{1}^{2}(t)+\int_{0}^{t}\|\Psi_{x}\|^{2}+\|\phi_{x}\|_{1}^{2}dt\leq C\|(\phi_{0},\Psi_{0})\|_{1}^{2}+Ce^{-c_{-}\beta}+C\varepsilon, (4.27)

4.2. High Order Estimates.

If we continue to get the estimates of second order derivative ϕxx,Ψxx\phi_{xx},\Psi_{xx}, new difficulties arise. In fact, in order to close the a priori estimate, Ψxx2\|\Psi_{xx}\|_{2} should be sufficiently small. Unfortunately, it means that we have to add an additional condition “v′′(0)=0v^{\prime\prime}(0)=0” which can guarantee that the Dirac function will not appear. Next, we need change variables (ϕ,Ψ)(\phi,\Psi) to (ϕ,ψ)(\phi,\psi).

Lemma 4.6.

Under the same assumptions of Proposition 3.1, for 0tT0\leq t\leq T, it holds that:

Ψ012ψ012+Cϕ022,ψ2Ψ2+Cϕ12,ψx2Ψx2+Cϕx12.\displaystyle\begin{split}\|\Psi_{0}\|_{1}^{2}\leq&\|\psi_{0}\|_{1}^{2}+C\|\phi_{0}\|_{2}^{2},\quad\|\psi\|^{2}\leq\|\Psi\|^{2}+C\|\phi\|_{1}^{2},\\ \|\psi_{x}\|^{2}\leq&\|\Psi_{x}\|^{2}+C\|\phi_{x}\|_{1}^{2}.\end{split}
Proof.

This lemma is similar like [1] and the proof is omitted. ∎

Using this lemma, low order estimate (4.27) can be rewritten as

Lemma 4.7.

Under the same assumptions of Proposition 3.1, it holds that

(ϕ12+ψ2)(t)+0tψx2+ϕx12dtCϕ022+Cψ012+Cecβ1+Cε.\displaystyle\begin{split}&(\|\phi\|_{1}^{2}+\|\psi\|^{2})(t)+\int_{0}^{t}\|\psi_{x}\|^{2}+\|\phi_{x}\|_{1}^{2}dt\leq C\|\phi_{0}\|_{2}^{2}+C\|\psi_{0}\|_{1}^{2}+Ce^{-c_{-}\beta_{1}}+C\varepsilon.\end{split}

Next, we turn to the original equation (3.3) to study the higher order estimates.

Lemma 4.8.

Under the same assumptions of Proposition 3.1, it holds that

ψx2(t)+0tψxx2𝑑tCϕ022+Cψ012+Cecβ1+Cε.\displaystyle\begin{split}&\|\psi_{x}\|^{2}(t)+\int_{0}^{t}\|\psi_{xx}\|^{2}dt\leq C\|\phi_{0}\|_{2}^{2}+C\|\psi_{0}\|_{1}^{2}+Ce^{-c_{-}\beta_{1}}+C\varepsilon.\end{split} (4.28)
Proof.

Multiplying (3.3)2(\ref{3.3})_{2} by ψxx-\psi_{xx}, integrating the result with respect to tt and xx over [0,t]×R[0,t]\times{R} gives

12ψx2(t)+0tψxx2Vα+1𝑑x𝑑t=12ψ0x20tF2ψxx𝑑x𝑑t0tf(V,Ux)ϕxψxx𝑑x𝑑t0tJψxx𝑑x𝑑t=:12ψ0x2+i=13Mi.\displaystyle\begin{split}&\frac{1}{2}\|\psi_{x}\|^{2}(t)+\int_{0}^{t}\int_{-\infty}^{\infty}\frac{{\psi_{xx}^{2}}}{V^{\alpha+1}}dxdt\\ =&\frac{1}{2}\|\psi_{0x}\|^{2}-\int_{0}^{t}\int_{-\infty}^{\infty}F_{2}\psi_{xx}dxdt\\ &-\int_{0}^{t}\int_{-\infty}^{\infty}f(V,U_{x})\phi_{x}\psi_{xx}dxdt-\int_{0}^{t}\int_{-\infty}^{\infty}J\psi_{xx}dxdt\\ =:&\frac{1}{2}\|\psi_{0x}\|^{2}+\sum_{i=1}^{3}M_{i}.\end{split} (4.29)

Making use of Lemma 3.1, we have

M1η0tψxx2𝑑t+Cη0tF22𝑑tη0tψxx2𝑑t+Cη(ecβ1+ε).\displaystyle\begin{split}M_{1}&\leq\eta\int_{0}^{t}\|\psi_{xx}\|^{2}dt+C_{\eta}\int_{0}^{t}\|F_{2}\|^{2}dt\\ &\leq\eta\int_{0}^{t}\|\psi_{xx}\|^{2}dt+C_{\eta}(e^{-c_{-}\beta_{1}}+\varepsilon).\end{split} (4.30)

The Cauchy inequality implies that

M2η0tψxx2𝑑t+Cη0tϕx2𝑑t.\displaystyle M_{2}\leq\eta\int_{0}^{t}\|\psi_{xx}\|^{2}dt+C_{\eta}\int_{0}^{t}\|\phi_{x}\|^{2}dt. (4.31)

By (4.7)1(\ref{4.7})_{1} and the Sobolev inequality, yields

M3C0t(|ϕx|2+|ϕx||ψxx|)|ψxx|𝑑x𝑑tC0t|ϕx|(|ϕx|2+|ψxx|2)𝑑x𝑑tCδ0t(ϕx2+ψxx2)𝑑t.\displaystyle\begin{split}M_{3}&\leq C\int_{0}^{t}\int_{-\infty}^{\infty}\left(\left|\phi_{x}\right|^{2}+\left|\phi_{x}\right|\left|\psi_{xx}\right|\right)\left|\psi_{xx}\right|dxdt\\ &\leq C\int_{0}^{t}\int_{-\infty}^{\infty}\left|\phi_{x}\right|\left(\left|\phi_{x}\right|^{2}+\left|\psi_{xx}\right|^{2}\right)dxdt\\ &\leq C\delta\int_{0}^{t}\left(\left\|\phi_{x}\right\|^{2}+\left\|\psi_{xx}\right\|^{2}\right)dt.\end{split} (4.32)

Substituting (4.30)-(4.32) into (4.29)(\ref{4.26}) and using Lemma 4.7, we obtain (4.28). ∎

Lemma 4.9.

Under the same assumptions of Proposition 3.1, it holds that

ϕxx2+0tϕxx2𝑑tCϕ022+Cψ012+Cδ0tψxxx2𝑑t+Cecβ1+Cε.\displaystyle\begin{split}&\|\phi_{xx}\|^{2}+\int_{0}^{t}\|\phi_{xx}\|^{2}dt\leq C\|\phi_{0}\|_{2}^{2}+C\|\psi_{0}\|_{1}^{2}+C\delta\int_{0}^{t}\left\|\psi_{xxx}\right\|^{2}dt+Ce^{-c_{-}\beta_{1}}+C\varepsilon.\end{split} (4.33)
Proof.

Differentiating (3.3)1(\ref{3.3})_{1} with respect to xx, using (3.3)2(\ref{3.3})_{2}, we have

ϕxtVα+1+f(V,Ux)ϕx=ψtJ+F1xVα+1F2.\displaystyle\begin{split}\frac{\phi_{xt}}{V^{\alpha+1}}+f(V,U_{x})\phi_{x}=\psi_{t}-J+\frac{F_{1x}}{V^{\alpha+1}}-F_{2}.\end{split} (4.34)

Differentiating (4.34)(\ref{4.31}) in respect of xx and multiplying the derivative by ϕxx\phi_{xx}, integrating the result in respect of tt and xx over [0,t]×R[0,t]\times{R}, one has

12ϕxx2Vα+1𝑑x+0t(f(V~,U~x)+α+12U~xV~α+2)ϕxx2𝑑x𝑑t\displaystyle\frac{1}{2}\int_{-\infty}^{\infty}\frac{\phi_{xx}^{2}}{V^{\alpha+1}}dx+\int_{0}^{t}\int_{-\infty}^{\infty}\left(f(\tilde{V},\tilde{U}_{x})+\frac{\alpha+1}{2}\frac{\tilde{U}_{x}}{\tilde{V}^{\alpha+2}}\right)\phi_{xx}^{2}dxdt
=\displaystyle= 12ϕxx2Vα+1𝑑x|t=0ψxϕxx𝑑x|t=0+ψxϕxx𝑑x\displaystyle\frac{1}{2}\left.\int_{-\infty}^{\infty}\frac{\phi_{xx}^{2}}{V^{\alpha+1}}dx\right|_{t=0}-\left.\int_{-\infty}^{\infty}\psi_{x}\phi_{xx}dx\right|_{t=0}+\int_{-\infty}^{\infty}\psi_{x}\phi_{xx}dx
+0t{F1xVα+1F2}xϕxx𝑑x𝑑t+0tψxx2𝑑t0tJxϕxx𝑑x𝑑t\displaystyle+\int_{0}^{t}\int_{-\infty}^{\infty}\left\{\frac{F_{1x}}{V^{\alpha+1}}-F_{2}\right\}_{x}\phi_{xx}dxdt+\int_{0}^{t}\|\psi_{xx}\|^{2}dt-\int_{0}^{t}\int_{-\infty}^{\infty}J_{x}\phi_{xx}dxdt (4.35)
+(α+1)0tVxVα+2ψxxϕxx𝑑x𝑑t0tf(V,Ux)xϕxϕxx𝑑x𝑑t\displaystyle+(\alpha+1)\int_{0}^{t}\int_{-\infty}^{\infty}\frac{V_{x}}{V^{\alpha+2}}\psi_{xx}\phi_{xx}dxdt-\int_{0}^{t}\int_{-\infty}^{\infty}f(V,U_{x})_{x}\phi_{x}\phi_{xx}dxdt
0t[f(V,Ux)f(V~,U~x)+α+12(UxVα+2U~xV~α+2)]ϕxx2𝑑x𝑑t\displaystyle-\int_{0}^{t}\int_{-\infty}^{\infty}\left[f(V,U_{x})-f(\tilde{V},\tilde{U}_{x})+\frac{\alpha+1}{2}\left(\frac{U_{x}}{V^{\alpha+2}}-\frac{\tilde{U}_{x}}{\tilde{V}^{\alpha+2}}\right)\right]\phi_{xx}^{2}dxdt
=:\displaystyle=: 12ϕxx2Vα+1𝑑x|t=0ψxϕxx|t=0dx+i=17Ni.\displaystyle\frac{1}{2}\left.\int_{-\infty}^{\infty}\frac{\phi_{xx}^{2}}{V^{\alpha+1}}dx\right|_{t=0}-\left.\int_{-\infty}^{\infty}\psi_{x}\phi_{xx}\right|_{t=0}dx+\sum_{i=1}^{7}N_{i}.

By U~x<0\tilde{U}_{x}<0, one has

f(V~,U~x)+α+12U~xVα+2=p(V~)α+12U~xV~α+2p(v)>0.\displaystyle\begin{split}&f(\tilde{V},\tilde{U}_{x})+\frac{\alpha+1}{2}\frac{\tilde{U}_{x}}{V^{\alpha+2}}\\ =&-p^{\prime}(\tilde{V})-\frac{\alpha+1}{2}\frac{\tilde{U}_{x}}{\tilde{V}^{\alpha+2}}\geq-p^{\prime}(v_{-})>0.\end{split} (4.36)

The Cauchy inequality yields

N1ηϕxx2+Cηψx2.\displaystyle N_{1}\leq\eta\|\phi_{xx}\|^{2}+C_{\eta}\|\psi_{x}\|^{2}. (4.37)

Similar to (4.30), we get

N2η0tϕxx2𝑑t+Cη(ecβ1+ε).\displaystyle N_{2}\leq\eta\int_{0}^{t}\|\phi_{xx}\|^{2}dt+C_{\eta}(e^{-c_{-}\beta_{1}}+\varepsilon). (4.38)

N3N_{3} can be controlled by (4.28). Using (4.7)2(\ref{4.7})_{2}, and Cauchy inequality, we have

N4η0tϕxx2𝑑t+Cη0tJx2𝑑tη0tϕxx2𝑑t+Cηδ0t(ϕx12+ψx22)𝑑t.\displaystyle\begin{split}N_{4}\leq&\eta\int_{0}^{t}\|\phi_{xx}\|^{2}dt+C_{\eta}\int_{0}^{t}\left\|J_{x}\right\|^{2}dt\\ \leq&\eta\int_{0}^{t}\|\phi_{xx}\|^{2}dt+C_{\eta}\delta\int_{0}^{t}\left(\left\|\phi_{x}\right\|_{1}^{2}+\left\|\psi_{x}\right\|_{2}^{2}\right)dt.\end{split}

The Cauchy inequality yields

N5C0t|ψxxϕxx|𝑑x𝑑tη0tϕxx2𝑑t+Cη0tψxx2𝑑t.\displaystyle\begin{split}N_{5}\leq C&\int_{0}^{t}\int_{-\infty}^{\infty}\left|\psi_{xx}\phi_{xx}\right|dxdt\leq\eta\int_{0}^{t}\|\phi_{xx}\|^{2}dt+C_{\eta}\int_{0}^{t}\left\|\psi_{xx}\right\|^{2}dt.\end{split} (4.39)

With the help of

f(V,Ux)x=p′′(V)Vx(α+1)UxxVα+2+(α+1)(α+2)UxVα+3Vx<C,f(V,U_{x})_{x}=-p^{\prime\prime}(V)V_{x}-(\alpha+1)\frac{U_{xx}}{V^{\alpha+2}}+(\alpha+1)(\alpha+2)\frac{U_{x}}{V^{\alpha+3}}V_{x}<C,

one gets

|N6|η0tϕxx2𝑑t+Cη0tϕx2𝑑t.\displaystyle\begin{split}|N_{6}|\leq&\eta\int_{0}^{t}\|\phi_{xx}\|^{2}dt+C_{\eta}\int_{0}^{t}\left\|\phi_{x}\right\|^{2}dt.\end{split} (4.40)

Similar like (4.18), one gets that

N7C0tq+zxLϕ2L1𝑑tCsupτ[0,t]Ψ(τ)20tzx+qH1𝑑tCε.\displaystyle\begin{split}N_{7}\leq&C\int_{0}^{t}\|q+z_{x}\|_{L^{\infty}}\|\phi^{2}\|_{L^{1}}dt\\ \leq&C\sup_{\tau\in[0,t]}\|\Psi(\tau)\|^{2}\int_{0}^{t}\|z_{x}+q\|_{H^{1}}dt\leq C\varepsilon.\end{split} (4.41)

Choosing η\eta small, substituting (4.36)-(4.41) into (4.2) and using Lemma 4.7, Lemma 4.8, we have (4.33). ∎

On the other hand, differentiating the second equation of (3.3) with respect to xx, multiplying the derivative by ψxxx-\psi_{xxx}, integrating the resulting equality over (,)×[0,t](-\infty,\infty){\times}[0,t], using Lemma 4.7 - Lemma 4.9, we can get the highest order estimate in the same way, which is listed as follows and the proof is omitted.

Lemma 4.10.

Under the same assumptions of Proposition 3.1, it holds that

ψxx(t)2+0tψxxx2𝑑tC(ϕ0,ψ0)22+Cecβ1+Cε.\displaystyle\|\psi_{xx}(t)\|^{2}+\int_{0}^{t}\|\psi_{xxx}\|^{2}dt\leq C\|(\phi_{0},\psi_{0})\|_{2}^{2}+Ce^{-c_{-}\beta_{1}}+C\varepsilon.

Finally, Proposition 3.1 is obtained by Lemma 4.7-Lemma4.10.

5. Proof of Theorem 2.1

It is straightforward to imply (2.23) from Lemma 3.2. It remains to show (2.24). The following useful lemma will be used.

Lemma 5.1.

([22]) Assume that the function f(t)0L1(0,+)BV(0,+)f(t)\geq 0\in{L}^{1}(0,+\infty)\cap{BV}(0,+\infty), then it holds that f(t)0f(t)\rightarrow 0 as tt\rightarrow\infty.

Let us turn to the system (3.3). Differentiating (3.3)1 with respect to xx, multiplying the resulting equation by ϕx\phi_{x} and integrating it with respect to x{x} on (,)(-\infty,\infty), we have

|ddt(ϕx2)|C(ϕx2+ψxx2).\left|\frac{d}{dt}\left(\|\phi_{x}\|^{2}\right)\right|\leq C(\|\phi_{x}\|^{2}+\|\psi_{xx}\|^{2}).

With the aid of Lemma 3.2, we have

|ddt(ϕxx2)|𝑑tC,\int_{-\infty}^{\infty}\left|\frac{d}{dt}\left(\|\phi_{xx}\|^{2}\right)\right|dt\leq C,

which implies ϕx2L1(0,+)BV(0,+)\|\phi_{x}\|^{2}\in{L}^{1}(0,+\infty)\cap{BV}(0,+\infty). By Lemma 5.1, we have

ϕx0ast+.\|\phi_{x}\|\rightarrow 0\quad\text{as}\quad t\rightarrow+\infty.

Since ϕxx\|\phi_{xx}\| is bounded, the Sobolev inequality implies that

v~V2=ϕx22ϕx(t)ϕxx(t)0.\displaystyle\|{\tilde{v}}-V\|_{\infty}^{2}=\|\phi_{x}\|_{\infty}^{2}\leq 2\|\phi_{x}(t)\|\|\phi_{xx}(t)\|\rightarrow 0.

Similarly, we have

u~U2=ψx22ψx(t)ψxx(t)0.\displaystyle\|{\tilde{u}}-U\|_{\infty}^{2}=\|\psi_{x}\|_{\infty}^{2}\leq 2\|\psi_{x}(t)\|\|\psi_{xx}(t)\|\rightarrow 0.

Therefore, the proof of Lemma 2.4 is completed.

5.1. Proof of Theorem 2.1

Lemma 5.2.

Under the assumptions (2.5)-(2.7), when ϕ0,ψ0\phi_{0},\psi_{0} and β\beta satisfy

ββ1,ϕ0H2(R+)+ψ0H2(R+)0,asA0,B0H2(R+)+β11+ε0.\quad\beta\rightarrow\beta_{1},\quad\|\phi_{0}\|_{H^{2}({R}_{+})}+\|\psi_{0}\|_{H^{2}({R}_{+})}\rightarrow 0,\quad\text{as}\quad\|A_{0},B_{0}\|_{H^{2}({R}_{+})}+\beta_{1}^{-1}+\varepsilon\rightarrow 0.
Proof.

Using (2.5) and (2.7), we know (A0,B0)H2(R+)\left(A_{0},B_{0}\right)\in H^{2}(R_{+})

With the aid of 0<0< U(stβ1)Cec(st+β1)-U(-st-\beta_{1})\leq Ce^{-c-(st+\beta_{1})} (see Lemma 2.1) and β1>0\beta_{1}>0, it follows that |0U(stβ1)𝑑t|Cecβ1\left|\int_{0}^{\infty}U(-st-\beta_{1})dt\right|\leq Ce^{-c-\beta_{1}}. Thus if β11+ε0\beta_{1}^{-1}+\varepsilon\rightarrow 0 and A0H2(R+)0\left\|A_{0}\right\|_{H^{2}({R}_{+})}\rightarrow 0, using (2.18), we obtain

|M~|C(A0H2(R+)+ecβ1+ε)0.|\tilde{M}|\leq C\left(\left\|A_{0}\right\|_{H^{2}({R}_{+})}+e^{-c-\beta_{1}}+\varepsilon\right)\rightarrow 0.

Similar, with the help of (2.20), we have

|β𝒳0|0.|\beta-\mathcal{X}_{0}|\rightarrow 0.

Thus, it follows that

|ββ1||β𝒳0|+|𝒳0β1||β𝒳0|+32|M~|0.|\beta-\beta_{1}|\leq|\beta-\mathcal{X}_{0}|+|\mathcal{X}_{0}-\beta_{1}|\leq|\beta-\mathcal{X}_{0}|+\frac{3}{2}|\tilde{M}|\rightarrow 0.

Set

(A~0,B~0)(x):=x(v0(y)ζ(y)V2S(yβ),u0(y)φ(y)U2S(yβ))𝑑y,χ1(x):=0β1β[v+V(xβ1+θ)]𝑑θ.\displaystyle\begin{split}(\tilde{A}_{0},\tilde{B}_{0})(x)&:=-\int_{x}^{\infty}(v_{0}(y)-\zeta(y)-V_{2}^{S}(y-\beta),u_{0}(y)-\varphi(y)-U_{2}^{S}(y-\beta))dy,\\ \chi_{1}(x)&:=\int_{0}^{\beta_{1}-\beta}\left[v_{+}-V(x-\beta_{1}+\theta)\right]d\theta.\end{split} (5.1)

Make full use of (2.4), when |β1β|<1|\beta_{1}-\beta|<1, we have

|v+V(xβ1+θ)|Cec+|xβ1+θ|Cec+|xβ1|ec+|β1β|Cec+|xβ1|\left|v_{+}-V(x-\beta_{1}+\theta)\right|\leq Ce^{-c+|x-\beta_{1}+\theta|}\leq Ce^{-c_{+}|x-\beta_{1}|}e^{c_{+}|\beta_{1}-\beta|}\leq Ce^{-c_{+}|x-\beta_{1}|}

Thus, we have

χ1(R+)2\displaystyle\left\|\chi_{1}\right\|^{2}_{({R}_{+})} C0(β1β)2e2c+|xβ1|𝑑xC(β1β)2\displaystyle\leq C\int_{0}^{\infty}(\beta_{1}-\beta)^{2}e^{-2c_{+}|x-\beta_{1}|}dx\leq C(\beta_{1}-\beta)^{2}

where CC is independent of (β1β)(\beta_{1}-\beta) and β\beta. Similarly, we can prove that χ1(R+)2C(β1β)2\left\|\chi_{1}^{\prime}\right\|_{({R}_{+})}^{2}\leq C(\beta_{1}-\beta)^{2} and χ1′′(R+)2C(β1β)2\left\|\chi_{1}^{\prime\prime}\right\|_{({R}_{+})}^{2}\leq C(\beta_{1}-\beta)^{2}. Thus, we proved χ1H2(R+)C|(β1β)|\left\|\chi_{1}\right\|_{H^{2}(R_{+})}\leq C|(\beta_{1}-\beta)|. In the same way, we have that

χ2H2(R+):=0β1β[u+U(x+θβ)]𝑑θH2(R+)C|β1β|.\|\chi_{2}\|_{H^{2}(R_{+})}:=\left\|\int_{0}^{\beta_{1}-\beta}\left[u_{+}-U(x+\theta-\beta)\right]d\theta\right\|_{H^{2}(R_{+})}\leq C|\beta_{1}-\beta|.

Thus, we obtain

(A~0,B~0)H2(R+)(A0,B0)H2(R+)+(χ1,χ2)H2(R+)C((A0,B0)H2(R+)+|β1β|).\displaystyle\begin{split}&\|(\tilde{A}_{0},\tilde{B}_{0})\|_{H^{2}(R_{+})}\leq\left\|\left(A_{0},B_{0}\right)\right\|_{H^{2}(R_{+})}+\left\|\left(\chi_{1},\chi_{2}\right)\right\|_{H^{2}(R_{+})}\\ \leq&C(\left\|\left(A_{0},B_{0}\right)\right\|_{H^{2}(R_{+})}+|\beta_{1}-\beta|).\end{split} (5.2)

It follows from |ϕ0|,|ψ0||\phi_{0}|,|\psi_{0}| are all even functions that

ϕ0H2(R+)=12ϕ0H2(R),ψ0H2(R+)=12ψ0H2(R).\|\phi_{0}\|_{H^{2}(R_{+})}=\frac{1}{2}\|\phi_{0}\|_{H^{2}(R)},\|\psi_{0}\|_{H^{2}(R_{+})}=\frac{1}{2}\|\psi_{0}\|_{H^{2}(R)}. (5.3)

Using (2.9), (4.8) and (2.10)1(\ref{{2.6}})_{1}, when xR+x\in R_{+}, one gets

V(x,0)ζ(x)V2S(xβ)\displaystyle V(x,0)-\zeta(x)-V^{S}_{2}(x-\beta)
=\displaystyle= [V(x,0)V~(x,0)ζ(x)]+[V~(x,0)V2S(xβ)]\displaystyle[V(x,0)-\tilde{V}(x,0)-\zeta(x)]+[\tilde{V}(x,0)-V^{S}_{2}(x-\beta)]
=\displaystyle= q(x,0)ζ(x)+[V2S(xβ)v]\displaystyle q(x,0)-\zeta(x)+[V^{S}_{2}(-x-\beta)-v_{-}]
\displaystyle\leq |ζ(x)[g2(xβ1)g1(x+β1)]|+|V1S(xβ)V1S(x𝒳)|\displaystyle|\zeta(x)\left[g_{2}(x-\beta_{1})-g_{1}(x+\beta_{1})\right]|+|V^{S}_{1}(x-\beta)-V^{S}_{1}(x-\mathcal{X})|
+|V2S(x+β)V2S(x+𝒳)|+|V2S(xβ)v|.\displaystyle+|V^{S}_{2}(x+\beta)-V^{S}_{2}(x+\mathcal{X})|+|V^{S}_{2}(-x-\beta)-v_{-}|.

With the aid of (2.19), Lemma 2.1 and Lemma 2.3, it follows that

ϕ0A~0H2(R+)ε+ecβ.\|\phi_{0}-\tilde{A}_{0}\|_{H^{2}(R_{+})}\leq\varepsilon+e^{-c_{-}\beta}. (5.4)

Similar, we have

ψ0B~0H2(R+)ε+ecβ.\|\psi_{0}-\tilde{B}_{0}\|_{H^{2}(R_{+})}\leq\varepsilon+e^{-c_{-}\beta}. (5.5)

Combining (5.2)-(5.5), one gets that ϕ0H2(R+)+ψ0H2(R+)0\|\phi_{0}\|_{H^{2}({R}_{+})}+\|\psi_{0}\|_{H^{2}({R}_{+})}\rightarrow 0. ∎

Once this lemma is proved , we begin the proof of our main result. Using (2.9), (4.8) and (2.10)1(\ref{{2.6}})_{1}, when xR+x\in R_{+}, one gets

v(x,t)V2S(xstβ)\displaystyle v(x,t)-V^{S}_{2}(x-st-\beta)
=\displaystyle= [v(x,t)V(x,t)]+[V(x,t)V~(x,t)]+[V~(x,t)V2S(xstβ)]\displaystyle[v(x,t)-V(x,t)]+[V(x,t)-\tilde{V}(x,t)]+[\tilde{V}(x,t)-V^{S}_{2}(x-st-\beta)]
=\displaystyle= [v~(x,t)V(x,t)]+q(x,t)+[V2S(xstβ)v]\displaystyle[{\widetilde{v}(x,t)}-V(x,t)]+q(x,t)+[V^{S}_{2}(-x-st-\beta)-v_{-}]
\displaystyle\leq |v~(x,t)V(x,t)|+|q(x,t)|+|V2S(xstβ)v|.\displaystyle|{\widetilde{v}(x,t)}-V(x,t)|+|q(x,t)|+|V^{S}_{2}(-x-st-\beta)-v_{-}|.

We obtain that

v(x,t)V2S(xstβ)Lv~(x,t)V(x,t)L+q(x,t)L+V2S(xstβ)vL.\displaystyle\begin{split}&\|v(x,t)-V^{S}_{2}(x-st-\beta)\|_{L^{\infty}}\\ \leq&\|{\widetilde{v}(x,t)}-V(x,t)\|_{L^{\infty}}+\|q(x,t)\|_{L^{\infty}}+\|V^{S}_{2}(-x-st-\beta)-v_{-}\|_{L^{\infty}}.\end{split}

Together with (5.3), Lemma 2.1-Lemma 2.4 and Lemma 5.2 we obtain the proof of Theorem 2.1.

6. Proof of Lemma 2.3 and Lemma 3.1

6.1. Proof of Lemma 2.3

Proof.

By Lemma 2.2, we have |𝒳(t)|,|𝒴(t)|Cεe2σ0t|{\mathcal{X}^{\prime}(t)}|,|{\mathcal{Y}^{\prime}(t)}|\leq C\varepsilon e^{-2\sigma_{0}t} for all t>0t>0. Thus limt+𝒳(t)\lim\limits_{t\rightarrow+\infty}\mathcal{X}(t) and limt+𝒴(t)\lim\limits_{t\rightarrow+\infty}\mathcal{Y}(t) are all exist. In the following part of this subsection, we compute the two limits. Motivated by [11], we define the domain

{ΩyN(t):={(x,τ):0<τ<t,ΓlN(τ)<x<ΓrN(t)},ΓlN(τ):=sτ𝒳(τ)+(N+y)π,ΓrN(τ):=sτ+𝒳(τ)+(N+y)π,\begin{cases}\Omega_{y}^{N}(t):=\left\{(x,\tau):0<\tau<t,\quad\Gamma_{l}^{N}(\tau)<x<\Gamma_{r}^{N}(t)\right\},\\ \Gamma_{l}^{N}(\tau):=-s\tau-\mathcal{X}(\tau)+(-N+y)\pi,\\ \Gamma_{r}^{N}(\tau):=s\tau+\mathcal{X}(\tau)+(N+y)\pi,\end{cases} (6.1)

where y[0,1],NNy\in[0,1],N\in N^{*}. Using (3.1)1(\ref{3.1})_{1}, we have

limN+01ΩyN(t)(VtUx)𝑑x𝑑τ𝑑y=0.\lim_{N\rightarrow+\infty}\int_{0}^{1}\iint_{\Omega_{y}^{N}(t)}(V_{t}-U_{x})dxd\tau dy=0.

With the aid of Green formula, one gets

limN+01𝔣(N,y)𝑑y=0.\displaystyle\begin{split}\lim_{N\rightarrow+\infty}\int_{0}^{1}\mathfrak{f}(N,y)dy=0.\end{split} (6.2)

where

𝔣(N,y)=ΓlN(0)ΓrN(0)V(x,0)𝑑x+0t[(s+𝒳)V+U](ΓrN(τ),τ)𝑑τΓlN(t)ΓrN(t)V(x,t)𝑑x0t[(s𝒳)V+U](ΓlN(τ),τ)𝑑τ:=i=14Si(N,y).\displaystyle\begin{split}\mathfrak{f}(N,y)=&\int_{\Gamma_{l}^{N}(0)}^{\Gamma_{r}^{N}(0)}V(x,0)dx+\int_{0}^{t}[(s+\mathcal{X}^{\prime})V+U](\Gamma_{r}^{N}(\tau),\tau)d\tau\\ &-\int_{\Gamma_{l}^{N}(t)}^{\Gamma_{r}^{N}(t)}V(x,t)dx-\int_{0}^{t}[(-s-\mathcal{X}^{\prime})V+U](\Gamma_{l}^{N}(\tau),\tau)d\tau:=\sum_{i=1}^{4}S_{i}(N,y).\end{split}

We rewrite S1+S3S_{1}+S_{3} as:

S1+S3=i=14Ii,\displaystyle S_{1}+S_{3}=\sum_{i=1}^{4}I_{i},

where

I1\displaystyle I_{1} =ΓlN(0)ΓrN(0)ζ(x)(1g1(x+𝒳0))+ζ(x)g2(x𝒳0)dx,\displaystyle=\int_{\Gamma_{l}^{N}(0)}^{\Gamma_{r}^{N}(0)}\zeta(-x)(1-g_{1}(x+\mathcal{X}_{0}))+\zeta(x)g_{2}(x-\mathcal{X}_{0})dx,
I2\displaystyle I_{2} =ΓlN(0)ΓrN(0)V1S(x+𝒳0)v+V2S(x𝒳0)dx,\displaystyle=\int_{\Gamma_{l}^{N}(0)}^{\Gamma_{r}^{N}(0)}V^{S}_{1}(x+{\mathcal{X}_{0}})-{v}_{-}+V^{S}_{2}(x-{\mathcal{X}_{0}})dx,
I3\displaystyle I_{3} =ΓlN(t)ΓrN(t)ζl(x,t)(1g1(x+st+𝒳))+ζr(x,t)g2(xst𝒳)dx,\displaystyle=-\int_{\Gamma_{l}^{N}(t)}^{\Gamma_{r}^{N}(t)}\zeta_{l}(x,t)(1-g_{1}(x+st+{\mathcal{X}}))+\zeta_{r}(x,t)g_{2}(x-st-{\mathcal{X}})dx,
I4\displaystyle I_{4} =ΓlN(t)ΓrN(t)V1S(x+st+𝒳)v+V2S(xst𝒳)dx.\displaystyle=-\int_{\Gamma_{l}^{N}(t)}^{\Gamma_{r}^{N}(t)}V^{S}_{1}(x+st+{{\mathcal{X}}})-{v}_{-}+V^{S}_{2}(x-st-{{\mathcal{X}}})dx.

Here

ζi=viv¯i;i=l,r.\displaystyle\zeta_{i}=v_{i}-\bar{v}_{i};\quad i=l,r.

Moreover, I1I_{1} can be rewrite as

I1=\displaystyle I_{1}= 0ΓrN(0)[ζ(x)(1g1(x+𝒳0))ζ(x)(1g2(x𝒳0))]𝑑x+0ΓrN(0)ζ(x)𝑑x,\displaystyle\int_{0}^{\Gamma_{r}^{N}(0)}[\zeta(-x)(1-g_{1}(x+\mathcal{X}_{0}))-\zeta(x)(1-g_{2}(x-\mathcal{X}_{0}))]dx+\int_{0}^{\Gamma_{r}^{N}(0)}\zeta(x)dx,
+ΓlN(0)0[ζ(x)g1(x+𝒳0)+ζ(x)g2(x𝒳0)]𝑑x+ΓlN(0)0ζ(x)𝑑x.\displaystyle+\int_{\Gamma_{l}^{N}(0)}^{0}[-\zeta(-x)g_{1}(x+\mathcal{X}_{0})+\zeta(x)g_{2}(x-\mathcal{X}_{0})]dx+\int_{\Gamma_{l}^{N}(0)}^{0}\zeta(-x)dx.

Since 0πζ(x)𝑑x=0\int_{0}^{\pi}\zeta(x)dx=0, then

010𝒳0+yπζ(x)𝑑x𝑑y\displaystyle\int_{0}^{1}\int_{0}^{\mathcal{X}_{0}+y\pi}\zeta(x)dxdy =1π0π0𝒳0+zζ(x)𝑑x𝑑z=1π0π0yζ(x)𝑑x𝑑y,\displaystyle=\frac{1}{\pi}\int_{0}^{\pi}\int_{0}^{\mathcal{X}_{0}+z}\zeta(x)dxdz=\frac{1}{\pi}\int_{0}^{\pi}\int_{0}^{y}\zeta(x)dxdy,
01𝒳0+yπ0ζ(x)𝑑x𝑑y\displaystyle\int_{0}^{1}\int_{\mathcal{X}_{0}+y\pi}^{0}\zeta(-x)dxdy =1π0π0𝒳0+zζ(x)𝑑x𝑑z=1π0π0yζ(x)𝑑x𝑑y.\displaystyle=-\frac{1}{\pi}\int_{0}^{\pi}\int_{0}^{\mathcal{X}_{0}+z}\zeta(-x)dxdz=-\frac{1}{\pi}\int_{0}^{\pi}\int_{0}^{y}\zeta(-x)dxdy.

So we obtain

limN+01I1𝑑y=\displaystyle\lim_{N\rightarrow+\infty}\int_{0}^{1}I_{1}dy= 0ζ(x)(1g1(x+𝒳0))ζ(x)(1g2(x𝒳0))dx,\displaystyle\int_{0}^{\infty}\zeta(-x)(1-g_{1}(x+\mathcal{X}_{0}))-\zeta(x)(1-g_{2}(x-\mathcal{X}_{0}))dx,
+0ζ(x)g1(x+𝒳0)+ζ(x)g2(x𝒳0)dx,\displaystyle+\int_{-\infty}^{0}-\zeta(-x)g_{1}(x+\mathcal{X}_{0})+\zeta(x)g_{2}(x-\mathcal{X}_{0})dx,
+1π0π0yζ(x)ζ(x)dxdy,\displaystyle+\frac{1}{\pi}\int_{0}^{\pi}\int_{0}^{y}\zeta(x)-\zeta(-x)dxdy,
=\displaystyle= 20ζ(x)(1g1(x+𝒳0))ζ(x)(1g2(x𝒳0))dx,\displaystyle 2\int_{0}^{\infty}\zeta(-x)(1-g_{1}(x+\mathcal{X}_{0}))-\zeta(x)(1-g_{2}(x-\mathcal{X}_{0}))dx,
+1π0π0yζ(x)ζ(x)dxdy,\displaystyle+\frac{1}{\pi}\int_{0}^{\pi}\int_{0}^{y}\zeta(x)-\zeta(-x)dxdy, (6.3)

where we have used (2.9),(2.11)in the last equality. With the aid of Lemma 2.2, one gets that

|limN+01I3𝑑y|Ce2σ0t.\displaystyle\left|\lim_{N\rightarrow+\infty}\int_{0}^{1}I_{3}dy\right|\leq Ce^{-2\sigma_{0}t}. (6.4)

By directly calculate, we have

I2+I4=\displaystyle I_{2}+I_{4}= v[ΓrN(0)ΓlN(0)]+v[ΓrN(t)ΓlN(t)]\displaystyle-v_{-}[\Gamma_{r}^{N}(0)-\Gamma_{l}^{N}(0)]+v_{-}[\Gamma_{r}^{N}(t)-\Gamma_{l}^{N}(t)]
\displaystyle- (N+y)π+2𝒳02st+2𝒳+(N+y)πV1S(x)𝑑x+(N+y)π2𝒳02st2𝒳+(N+y)πV2S(x)𝑑x.\displaystyle\int_{(N+y)\pi+2\mathcal{X}_{0}}^{2st+2{\mathcal{X}}+(N+y)\pi}V^{S}_{1}(x)dx+\int_{(-N+y)\pi-2\mathcal{X}_{0}}^{-2st-2{\mathcal{X}}+(-N+y)\pi}V^{S}_{2}(x)dx.

Using (2.8) (2.9), one gets that

limN+01(I2+I4)𝑑y=2v(st+𝒳𝒳0).\displaystyle\lim_{N\rightarrow+\infty}\int_{0}^{1}(I_{2}+I_{4})dy=-2v_{-}(st+{\mathcal{X}}-\mathcal{X}_{0}). (6.5)

The integral on ΓrN\Gamma_{r}^{N} in (6.2) satisfies that

limN+01S2(N,y)𝑑y\displaystyle\lim_{N\rightarrow+\infty}\int_{0}^{1}S_{2}(N,y)dy
=\displaystyle= limN+0t01[(s+𝒳)vr+ur](ΓrN(τ),τ)𝑑y𝑑τ\displaystyle\lim_{N\rightarrow+\infty}\int_{0}^{t}\int_{0}^{1}[(s+\mathcal{X}^{\prime})v_{r}+u_{r}](\Gamma_{r}^{N}(\tau),\tau)dyd\tau
=\displaystyle= (st+𝒳𝒳0)v++u+t.\displaystyle(st+{\mathcal{X}}-\mathcal{X}_{0})v_{+}+u_{+}t. (6.6)

Here we have used Since (V,U)(vr,ur)(V,U)\rightarrow(v_{r},u_{r}) as x+x\rightarrow+\infty. By same method, we obtain

limN+01S4(N,y)𝑑y=[(st𝒳+𝒳0)v+u+t].\lim_{N\rightarrow+\infty}\int_{0}^{1}S_{4}(N,y)dy=-[(-st-{\mathcal{X}}+\mathcal{X}_{0})v_{+}-u_{+}t]. (6.7)

Collecting (6.2)-(6.7), it follows that

20+[ζ(x)(1g1(x+𝒳0))ζ(x)(1g2(x𝒳0))]𝑑x\displaystyle 2\int_{0}^{+\infty}\left[\zeta(-x)\left(1-g_{1}(x+\mathcal{X}_{0})\right)-\zeta(x)\left(1-g_{2}(x-\mathcal{X}_{0})\right)\right]dx
+\displaystyle\quad+ 1π0π0yζ(x)ζ(x)dxdy\displaystyle\frac{1}{\pi}\int_{0}^{\pi}\int_{0}^{y}\zeta(x)-\zeta(-x)dxdy
+\displaystyle\quad+ 2(v+v)(st+𝒳𝒳0)+2u+t=O(e2σ0t),\displaystyle 2(v_{+}-v_{-})(st+\mathcal{X}-\mathcal{X}_{0})+2u_{+}t=O(e^{-2\sigma_{0}t}),

Thus we obtain (2.20) where we have used R-H conditions (1.6)1. We omit the proof of (2.21), since it is similar with (2.20). ∎

6.2. Proof of Lemma 3.1

We only give the proof of F1F_{1}, due to the fact that the proof of F2F_{2} is similar.

Case 1. For x<st,x<st, we rewrite F1(x,t)F_{1}(x,t) as follows.

F1(x,t):=D1,1(x,t)+D1,2(x,t),F_{1}(x,t):=D_{1,1}^{-}(x,t)+D_{1,2}^{-}(x,t),

where

D1,1(x,t):=\displaystyle D_{1,1}^{-}(x,t):= θ{(𝒳)g1(x+st+𝒳)+(s)(g1(x+st+𝒳)g1(x+st+𝒴))}\displaystyle\theta\left\{(-\mathcal{X}^{\prime})g_{1}(x+st+{\mathcal{X}})+(-s)\left(g_{1}(x+st+{\mathcal{X}})-g_{1}(x+st+{\mathcal{Y}})\right)\right\}
θ{(𝒳)g2(xst𝒳)+s(g2(xst𝒳)g2(xst𝒴))},\displaystyle-\theta\left\{(\mathcal{X}^{\prime})g_{2}(x-st-\mathcal{X})+s\left(g_{2}(x-st-\mathcal{X})-g_{2}(x-st-{\mathcal{Y}})\right)\right\},
D1,2(x,t):=\displaystyle D_{1,2}^{-}(x,t):= ζl(x,t)[g1(x+st+𝒴)g1(x+st+𝒳)]+xφl(y,t)g1(y+st+𝒳)𝑑y\displaystyle\zeta_{l}(x,t)\left[g_{1}(x+st+\mathcal{Y})-g_{1}(x+st+\mathcal{X})\right]+\int_{-\infty}^{x}\varphi_{l}(y,t)g^{\prime}_{1}(y+st+\mathcal{X})dy
+(s+𝒳)xζl(y,t)g1(y+st+𝒳)𝑑y\displaystyle+(s+\mathcal{X}^{\prime})\int_{-\infty}^{x}\zeta_{l}(y,t)g^{\prime}_{1}(y+st+\mathcal{X})dy
ζr(x,t)[g2(xst𝒴)g2(xst𝒳)]xφr(y,t)g2(yst𝒳)𝑑y\displaystyle-\zeta_{r}(x,t)\left[g_{2}(x-st-\mathcal{Y})-g_{2}(x-st-\mathcal{X})\right]-\int_{-\infty}^{x}\varphi_{r}(y,t)g^{\prime}_{2}(y-st-\mathcal{X})dy
(s+𝒳)xζr(y,t)g2(yst𝒳)𝑑y.\displaystyle-(s+\mathcal{X}^{\prime})\int_{-\infty}^{x}\zeta_{r}(y,t)g^{\prime}_{2}(y-st-\mathcal{X})dy.

It follows that

k=02st|xkF1(x,t)|2𝑑xCε2e4σ0tk=02st|g1(k)(x+st+𝒳)|2+|g2(k)(xst𝒳)|2dxCε2e4σ0tstθ(eθ|x+st|+eθ|xst|)𝑑x+stst(1+θeθ|xst|)𝑑xCε2e4σ0t[C+2st]Cε2e2σ0t.\displaystyle\begin{split}&\sum_{k=0}^{2}\int_{-\infty}^{st}|\partial_{x}^{k}F_{1}(x,t)|^{2}dx\\ \leq&C\varepsilon^{2}e^{-4\sigma_{0}t}\sum_{k=0}^{2}\int_{-\infty}^{st}\left|g_{1}^{(k)}(x+st+{\mathcal{X}})\right|^{2}+\left|{g_{2}^{(k)}}(x-st-{\mathcal{X}})\right|^{2}dx\\ \leq&C\varepsilon^{2}e^{-4\sigma_{0}t}\int_{-\infty}^{-st}\theta(e^{-\theta|{x+st}|}+e^{-\theta|{x-st}|})dx+\int_{-st}^{st}(1+\theta e^{-\theta|{x-st}|})dx\\ \leq&C\varepsilon^{2}e^{-4\sigma_{0}t}\big{[}C+2st\big{]}\leq C\varepsilon^{2}e^{-2\sigma_{0}t}.\end{split} (6.8)

Here we have used Lemma 2.2, (2.4), (2.9), (2.11). Moreover, F2F_{2} can be rewritten as as follows.

F2:=W+D2,1(x,t)+D2,2(x,t),,\displaystyle\begin{split}F_{2}:=W+D_{2,1}^{-}(x,t)+D_{2,2}^{-}(x,t),,\end{split} (6.9)

where

W:=p(V~)+p(v)p(V1S(x+st+β))p(V2S(xstβ))+U2xS(xstβ)V2S(xstβ)α+1+U1xS(x+st+β)V1S(x+st+β)α+1U~xV~α+1,\displaystyle\begin{split}W:=&p(\tilde{V})+p(v_{-})-p(V^{S}_{1}(x+st+{\beta}))-p(V^{S}_{2}(x-st-{\beta}))\\ &+\frac{U^{S}_{2x}(x-st-{\beta})}{V^{S}_{2}(x-st-\beta)^{\alpha+1}}+\frac{U^{S}_{1x}(x+st+{\beta})}{V^{S}_{1}(x+st+\beta)^{\alpha+1}}-\frac{\tilde{U}_{x}}{\tilde{V}^{\alpha+1}},\end{split} (6.10)
D2,1(x,t):=\displaystyle D_{2,1}^{-}(x,t):= [p(V1S(x+st+𝒴))p(V1S(x+st+β))]\displaystyle-\left[p(V^{S}_{1}(x+st+{\mathcal{Y}}))-p(V^{S}_{1}(x+st+{\beta}))\right]
[p(V2S(xst𝒴))p(V2S(xstβ))]\displaystyle-\left[p(V^{S}_{2}(x-st-{\mathcal{Y}}))-p(V^{S}_{2}(x-st-{\beta}))\right]
+[U2xS(xst𝒴)V2S(xst𝒴)α+1U2xS(xstβ)V2S(xstβ)α+1]\displaystyle+\left[\frac{U^{S}_{2x}(x-st-{\mathcal{Y}})}{V^{S}_{2}(x-st-{\mathcal{Y}})^{\alpha+1}}-\frac{U^{S}_{2x}(x-st-{\beta})}{V^{S}_{2}(x-st-\beta)^{\alpha+1}}\right]
+[U1xS(x+st+𝒴)V1S(x+st+𝒴)α+1U1xS(x+st+β)V1S(x+st+β)α+1]\displaystyle+\left[\frac{U^{S}_{1x}(x+st+{\mathcal{Y}})}{V^{S}_{1}(x+st+{\mathcal{Y}})^{\alpha+1}}-\frac{U^{S}_{1x}(x+st+{\beta})}{V^{S}_{1}(x+st+\beta)^{\alpha+1}}\right]
[UxVα+1U~xV~α+1]+p(V)p(V~),\displaystyle-\left[\frac{U_{x}}{V^{\alpha+1}}-\frac{\tilde{U}_{x}}{\tilde{V}^{\alpha+1}}\right]+p(V)-p(\tilde{V}),

and

D2,2(x,t):=\displaystyle D_{2,2}^{-}(x,t):= x[s(ul+u+)𝒴ul+p(v+)p(vl)+ulxvlα+1]g1(x+st+𝒴))dx\displaystyle\int_{-\infty}^{x}\big{[}-s(u_{l}+u_{+})-\mathcal{Y}^{\prime}u_{l}+p(v_{+})-p(v_{l})+\frac{u_{lx}}{v_{l}^{\alpha+1}}\big{]}g^{\prime}_{1}(x+st+{\mathcal{Y}}))dx
x[s(uru+)+𝒴urp(vr)+p(v+)+urxvrα+1]g2(xst𝒴)𝑑x.\displaystyle-\int_{-\infty}^{x}\big{[}s(u_{r}-u_{+})+\mathcal{Y}^{\prime}u_{r}-p(v_{r})+p(v_{+})+\frac{u_{rx}}{v_{r}^{\alpha+1}}\big{]}g_{2}^{\prime}(x-st-{\mathcal{Y}})dx.
|W||(1(V1S(x+st+β))α+11V~α+1)U1xS(x+st+β)|+|(1(V2S(xstβ))α+11V~α+1)U2xS(xstβ)|+|p(V1S(x+st+β)+V2S(xstβ)v)p(V1S(x+st+β))|+|p(v)p(V2S(xstβ))|C{|(V2S(xstβ)v)|+|U2xS(xstβ)|}.\displaystyle\begin{split}|W|\leq&\left|\left(\frac{1}{(V^{S}_{1}(x+st+\beta))^{\alpha+1}}-\frac{1}{\tilde{V}^{\alpha+1}}\right)U^{S}_{1x}(x+st+\beta)\right|\\ &+\left|\left(\frac{1}{(V^{S}_{2}(x-st-\beta))^{\alpha+1}}-\frac{1}{\tilde{V}^{\alpha+1}}\right)U^{S}_{2x}(x-st-\beta)\right|\\ &+\left|p(V^{S}_{1}(x+st+\beta)+V^{S}_{2}(x-st-\beta)-v_{-})-p(V^{S}_{1}(x+st+\beta))\right|\\ &+\left|p(v_{-})-p(V^{S}_{2}(x-st-\beta))\right|\\ \leq&C\{|(V^{S}_{2}(x-st-\beta)-v_{-})|+|U^{S}_{2x}(x-st-\beta)|\}.\end{split} (6.11)

By (2.1)(\ref{2.1}), we get

|jU2S(xstβ)xj|,|j(V2S(xstβ)v)xj|C|V2S(xstβ)v|,j.\displaystyle\begin{split}&\left|\frac{\partial^{j}U^{S}_{2}(x-st-\beta)}{\partial x^{j}}\right|,\left|\frac{\partial^{j}(V^{S}_{2}(x-st-\beta)-v_{-})}{\partial x^{j}}\right|\\ \leq C&|V^{S}_{2}(x-st-\beta)-v_{-}|,\forall j\in\mathbb{N}.\end{split} (6.12)

On the other hand, in the same way, it is still true to replace (V2S(xstβ),U2S(xstβ)V^{S}_{2}(x-st-\beta),U^{S}_{2}(x-st-\beta)) with (V1S(x+st+β),U1S(x+st+β)V^{S}_{1}(x+st+\beta),U^{S}_{1}(x+st+\beta)) in (6.12). We get |nWxn|C|ViS(x+(stβ)i+1)v|,i=1,2;n.\left|\frac{\partial^{n}W}{\partial x^{n}}\right|\leq C|V_{i}^{S}(x+(-st-\beta)^{i+1})-v_{-}|,i=1,2;\forall n\in\mathbb{N}. If we choose β>0\beta>0 sufficiently large, for n=0,1n=0,1, it follows that:

|nWxn|2𝑑x=0|nWxn|2dx+0|nWxn|2𝑑xC0|V2(xstβ)v|2𝑑x+C0|V1(x+st+β)v|2𝑑xCθ20exp[2c(xstβ)]𝑑x+Cθ20exp[2c(x+st+β)]𝑑xCe2cste2cβ=Ce2cste2cβ1e2c(ββ1)Ce2cste2cβ1,\displaystyle\begin{split}\int_{-\infty}^{\infty}\left|\frac{\partial^{n}W}{\partial{x}^{n}}\right|^{2}dx=&\int_{-\infty}^{0}\left|\frac{\partial^{n}W}{\partial{x}^{n}}\right|^{2}\operatorname{d}x+\int_{0}^{\infty}\left|\frac{\partial^{n}W}{\partial{x}^{n}}\right|^{2}dx\\ \leq&C\int_{-\infty}^{0}|V_{2}(x-st-\beta)-v_{-}|^{2}dx+C\int_{0}^{\infty}|V_{1}(x+st+\beta)-v_{-}|^{2}dx\\ \leq&C\theta^{2}\int_{-\infty}^{0}\exp[2c_{-}(x-st-\beta)]dx+C\theta^{2}\int_{0}^{\infty}\exp[-2c_{-}(x+st+\beta)]dx\\ \leq&Ce^{-2c_{-}st}e^{-2c_{-}\beta}=Ce^{-2c_{-}st}e^{-2c_{-}\beta_{1}}e^{-2c_{-}(\beta-\beta_{1})}\leq Ce^{-2c_{-}st}e^{-2c_{-}\beta_{1}},\end{split}

where we have used Lemma 2.1 in the second inequality and Lemma 5.2 in the last inequality. Thus, we obtain that

W2Cecβ1esct.\displaystyle\|W\|_{{2}}\leq Ce^{-c_{-}\beta_{1}}e^{-sc_{-}t}.

Similar like (6.8), one can get that

k=02i=12st|xkD2,i(x,t)|2𝑑xCε2e2σ0t.\sum_{k=0}^{2}\sum_{i=1}^{2}\int_{-\infty}^{st}|\partial_{x}^{k}D_{2,i}^{-}(x,t)|^{2}dx\leq C\varepsilon^{2}e^{-2\sigma_{0}t}. (6.13)

Case 2. If x>stx>st, using (2.14), one can decompose F1,F2F_{1},F_{2} as

F1(x,t)=F1,1(x,t)+x+f1,2(y,t)𝑑y+𝒳x+F1,3(y,t)𝑑y,F_{1}(x,t)=-F_{1,1}(x,t)+\int_{x}^{+\infty}f_{1,2}(y,t)dy+\mathcal{X}^{\prime}\int_{x}^{+\infty}F_{1,3}(y,t)dy, (6.14)
F2(x,t)=F2,1(x,t)+x+f2,2(y,t)𝑑y+𝒴x+F2,3(y,t)𝑑y,F_{2}(x,t)=-F_{2,1}(x,t)+\int_{x}^{+\infty}f_{2,2}(y,t)dy+\mathcal{Y}^{\prime}\int_{x}^{+\infty}F_{2,3}(y,t)dy, (6.15)

and using similar arguments as in the case 1 to obtain that

k=02st+|xkFi(x,t)|2𝑑xCε2e2σ0t,i=1,2.\sum_{k=0}^{2}\int_{st}^{+\infty}|\partial_{x}^{k}F_{i}(x,t)|^{2}dx\leq C\varepsilon^{2}e^{-2\sigma_{0}t},\quad i=1,2. (6.16)
Remark 6.1.

If γ=1\gamma=1 (isothermal gas) in our equations, we can get the same result by the same method.

Remark 6.2.

In our proof, we make the position of the shock is far away from the wall, is this necessary?

References

  • [1] L. Chang, Stability of a Composite Wave of Two Seperate Strong Viscous Shock Waves for 1-D Isentropic Navier-Stokes System. arXiv:2103.15133, (2021),1-16.
  • [2] L. Chang, Stability of Large Amplitude Viscous Shock Wave for 1-D Isentropic Navier-Stokes System in the Half Space. arXiv:2103.15133, (2021),1-14.
  • [3] L. Chang, L. Liu, L. Xu, Nonlinear stability of planar shock wave to 3-D compressible Navier-Stokes equations in half space with Navier Boundary conditions. arXiv:2312.05565.
  • [4] H. Freistuhler, D. Serre, L1L^{1} stability of shock waves in scalar viscous conservation laws. Comm. Pure Appl. Math. 51 (1998), no. 3, 291-301.
  • [5] J. Goodman, Nonlinear asymptotic stability of viscous shock profiles for conservation laws. Arch. Rational Mech. Anal. 95 (1986), no. 4, 325-344.
  • [6] L. He, F. Huang, Nonlinear stability of large amplitude viscous shock wave for general viscous gas. J. Differential Equations 269 (2020), no. 2, 1226-1242.
  • [7] F. Huang, A. Matsumura, Stability of a composite wave of two viscous shock waves for full compressible Navier-Stokes equation. Comm. Math. Phys. 289 (2009), no. 3, 841-861.
  • [8] F. Huang, Z. Xin, L. Xu, Q. Yuan, Nonlinear asymptotic stability of compressible vortex sheets with viscosity effects. arXiv:2308.06180
  • [9] F. Huang, L. Xu, Decay rate toward the traveling wave for scalar viscous conservation law. Commun. Math. Anal. Appl. 1, No. 3, 395-409 (2022).
  • [10] F. Huang, L. Xu, Q. Yuan, Asymptotic stability of planar rarefaction waves under periodic perturbations for 3-d Navier-Stokes equations. Adv. Math. 404, Part B, Article ID 108452, 27 p. (2022).
  • [11] F. Huang, Q. Yuan, Stability of large-amplitude viscous shock under periodic perturbation for 1-d isentropic Navier-Stokes equations, Commun. Math. Phys. 387 (2021), 1655-1679.
  • [12] J. Humpherys, G. Lyng, K. Zumbrun, Multidimensional stability of large-amplitude Navier-Stokes shocks. Arch. Ration. Mech. Anal. 226 (2017), no. 3, 923-973.
  • [13] S. Kawashima, A. Matsumura, Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion. Commun. Math. Phys. 101. (1985), no. 1, 97-127.
  • [14] L. Liu, D. Wang, L. Xu, Asymptotic stability of the combination of a viscous contact wave with two rarefaction waves for 1-D Navier-Stokes equations under periodic perturbations. J. Differ. Equations 346, 254-276 (2023).
  • [15] L. Liu, S. Wang, L. Xu, Decay rate to the planar viscous shock wave for multi-dimensional scalar conservation laws. arXiv:2312.03553.
  • [16] T. Liu, Pointwise convergence to shock waves for viscous conservation laws. Comm. Pure Appl. Math. 50 (1997), no. 11, 1113-1182.
  • [17] T. Liu, Y. Zeng, Time-asymptotic behavior of wave propagation around a viscous shock profile. Comm. Math. Phys. 290 (2009), no. 1, 23-82.
  • [18] T. Liu, Y. Zeng, Shock waves in conservation laws with physical viscosity. Mem. Amer. Math. Soc. 234, (2015), no. 1105.
  • [19] C. Mascia, K. Zumbrun, Stability of large-amplitude viscous shock profiles of hyperbolic-parabolic system. Arch. Ration. Mech. Anal. 172 (2004), no. 1, 93-131.
  • [20] A. Matsumura, Waves in compressible fluids: viscous shock, rarefaction, and contact waves. Handbook of mathematical analysis in mechanics of viscous fluids. 2495-2548, Springer, Cham, 2018.
  • [21] A. Matsumura, M. Mei, Convergence to travelling fronts of solutions of the pp-system with viscosity in the presence of a boundary.Arch. Ration. Mech. Anal. 146 (1999), no. 1, 1-22.
  • [22] A. Matsumura, K. Nishihara, On the stability of travelling wave solutions of a one-dimensional model system for compressible viscous gas. Japan. J. Appl. Math. 2 (1985), no. 1, 17-25.
  • [23] A. Matsumura, K. Nishihara, Asymptotic stability of traveling waves for scalar viscous conservation laws with non-convex nonlinearity. Comm. Math. Phys. 165 (1994), no. 1, 83-96.
  • [24] A. Matsumura, K. Nishihara, Global Solutions for Nonlinear Differential Equations-Mathematical Analysis on Compressible Viscous Fluids (In Japanese). Nippon Hyoronsha, 2004.
  • [25] A. Matsumura, Y. Wang, Asymptotic stability of viscous shock wave for a one-dimensional isentropic model of viscous gas with density dependent viscosity. Methods Appl. Anal. 17 (2010), no. 3, 279-290.
  • [26] A. M. Il’in, O. A. Oleinik, Asymptotic behavior of solutions of the Cauchy problem for some quasi-linear equations for large values of the time, Mat. Sb. (N.S.) 51(93), (1960), no. 2, 191–216
  • [27] A. Szepessy, Z. Xin, Nonlinear stability of viscous shock waves. Arch. Ration. Mech. Anal. 122 (1993), no. 1, 53-103.
  • [28] A. Vasseur, L. Yao, Nonlinear stability of viscous shock wave to one-dimensional compressible isentropic Navier-Stokes equations with density dependent viscous coefficient. Commun. Math. Sci. 14 (2016), no. 8, 2215-2228.
  • [29] Z. Xin, Q. Yuan, and Y. Yuan, Asymptotic stability of shock profiles and rarefaction waves under periodic perturbations for 1-D convex scalar viscous conservation laws, Indiana Univ. Math. J. 70 (2021), no. 6, 2295-2349.
  • [30] Z. Xin, Q. Yuan, Y. Yuan, Asymptotic stability of shock waves and rarefaction waves under periodic perturbations for 1-D convex scalar conservation laws. SIAM J. Math. Anal. 51 (2019), no. 4, 2971–2994.
  • [31] K. Zumbrun, Stability of large-amplitude shock waves of compressible Navier-Stokes equations. with an appendix by Helge Kristian Jenssen and Gregory Lyng. Handbook