This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Stability of Linear Set-Membership Filters With Respect to Initial Conditions: An Observation-Information Perspective

Yirui Cong [email protected]    Xiangke Wang [email protected]    Xiangyun Zhou [email protected] College of Intelligence Science and Technology, National University of Defense Technology School of Engineering, The Australian National University
Abstract

The issue of filter stability with respect to (w.r.t.) the initial condition refers to the unreliable filtering process caused by improper prior information of the initial state. This paper focuses on analyzing and resolving the stability issue w.r.t. the initial condition of the classical Set-Membership Filters (SMFs) for linear time-invariance systems, which has not yet been well understood in the literature. To this end, we propose a new concept – the Observation-Information Tower (OIT), which describes how the measurements affect the estimate in a set-intersection manner without relying on the initial condition. The proposed OIT enables a rigorous stability analysis, a new SMFing framework, as well as an efficient filtering algorithm. Specifically, based on the OIT, explicit necessary and sufficient conditions for stability w.r.t. the initial condition are provided for the classical SMFing framework. Furthermore, the OIT inspires a stability-guaranteed SMFing framework, which fully handles the stability issue w.r.t. the initial condition. Finally, with the OIT-inspired framework, we develop a fast and stable constrained zonotopic SMF, which significantly overcomes the wrapping effect.

keywords:
Set-membership filter, Stability w.r.t. initial condition, Observation-information tower, Constrained zonotope.
thanks: Corresponding author: X. Wang.

, ,

1 Introduction

Set-Membership Filter (SMF) is a very important class of non-stochastic filters, which gives the optimal solution to the filtering problems with bounded noises whose probability distributions are unknown. It is fundamentally equivalent to the Bayes filter [23] under the non-stochastic Markov condition (caused by unrelated noises) [10]. For linear systems, it can be regarded as a non-stochastic counterpart of the well-known Kalman filter. Therefore, the SMF has great potentials in many important fields like control systems, telecommunications, and navigation, as the Bayes filter does. However, the linear SMFing has not drawn an adequate amount of attention to realize its full potential. One important issue is stability w.r.t. the initial condition111Similarly to the true initial distribution/measure and the initial condition for stochastic filters [22, 26], in this article: the term true initial set refers to the set of all possible initial states (objectively determined by the system), which could be a singleton when we focus on one trial; the term initial condition (for SMFs) represents the initial set subjectively chosen in the design of a filter., which characterizes whether the resulting estimate, as time elapses, remains reliable when the filter is improperly initialized [22, 26].

For Kalman filters, stability w.r.t. the initial condition is a central feature and well-established in an asymptotic manner: the posterior distribution, under some simple system assumptions, converges to the true conditional distribution of the system state (given all observed measurements) regardless of initial conditions [12, 13, 15]. This means measurements in stable filters can help correct/forget the information from the initial condition.

For linear SMFs, in contrast, there is very limited knowledge of the stability w.r.t. the initial condition. The most related work is on the uniform boundedness of the estimate, which guarantees that the size of estimate does not increase unboundedly with time. In the literature, the uniform boundedness analysis is considered for two types of SMFs, i.e., the ellipsoidal and polytopic SMFs.222The uniform boundedness of interval observers [18, 29] is not included since their basic structures are linear observers. For ellipsoidal SMFs, [4] proposed an input-to-state stable algorithm that ensures the uniform boundedness of the estimate; since in [4] the input-to-state stability required to solve a time-inefficient polynomial equation at each time step, [16] developed an SMF with increased efficiency based on minimizing an important upper bound; then, [25] provided a parallelotope-bounding technique to reduce the complexity, which was further improved by [3]. For polytopic SMFs, [8] proposed a zonotopic Kalman filter, where a sufficient condition (called robust detectability) for the uniform boundedness of the estimate was given; in [28], a zonotopic SMF was designed for linear parameter-varying systems, and an upper bound on the radius of the estimate was derived by solving linear matrix inequalities (LMIs); based on [28], the article [11] proposed a zonotopic SMF for switched linear systems, where an LMI-based upper bound was obtained for the radius of the estimate.

It is important to note that the uniform boundedness of the estimate does not imply reliable estimates when the initial condition is improperly chosen. Therefore, existing linear SMFs still face the issue of stability w.r.t. the initial condition, reflected in two aspects333Note that stability of SMFs w.r.t. their initial conditions is different from stability of control systems with estimation [5, 6, 19, 20]; for an unstable system, an stable SMF w.r.t. the initial condition can still be designed.:

  • Ill-posedenss: In the literature, the initial condition of an SMF should include the true initial set of the system state. But if the initial condition does not contain the true initial set, the resulting estimate at some time steps can be an empty set; in this case, we say the SMF is ill-posed444In the SMF community, the ill-posedness is a case of the falsification of a priori assumption. To the best of our knowledge, this issue has not been studied in the literature. or not well-posed, which is a key different feature from the stability of Kalman filters. Unfortunately, ill-posedness widely exists, which means the initial condition must be carefully chosen to guarantee non-empty estimates.

  • Unbounded estimation gap: Even if the estimate is non-empty, perturbations of the initial condition can gradually amplify the difference (called the estimation gap) between the estimate and the true set of the system states. Consequently, the estimation gap can go unbounded with time: inherently, the classical SMFing framework cannot always ensure the bounded estimation gap (the boundedness condition is unknown); extrinsically, approximation/reduction methods result in the wrapping effect [14] so that the estimation gap is unboundedly accumulated.

To directly tackle the stability issue, we should analyze when the classical linear SMFing framework is stable w.r.t. the initial condition, i.e., well-posed and with a bounded estimation gap; then, it is necessary to propose a new SMFing framework with guaranteed stability.

In addition to the stability, a linear SMF should be fast and accurate, which is also a challenging issue arising from the computational intractability of the optimal estimate. In general, to improve the time efficiency of an existing SMF, one has to sacrifice the estimation accuracy, and vice versa.

A recent study in [2] showed that the constrained zonotopic SMF proposed by [24] can give tighter estimates than other types of modern SMFs (e.g., ellipsoidal SMFs [16, 17] and zonotopic SMFs [8, 27]), which sheds new light on balancing the efficiency and the accuracy. This is largely because constrained zonotopes are closed under Minkowski sums and set intersections in the prediction and update steps, respectively. Nevertheless, the constrained zonotopic SMF still has a relatively large computation time due to the limitation of the existing approximation techniques. Specifically, the reduction relies on the geometric properties of the constrained zonotopes at each single time step (i.e., without considering the “time correlation”). As a result, overestimation cumulates over time, which means maintaining accuracy would lead to an unnecessary increase of complexity. The situation would be even worse for high-dimensional systems.

Taking the above discussions into account, it is of great theoretical and practical interest to develop a fast constrained zonotopic SMF with guaranteed stability, which is also efficient for high-dimensional systems.

In this work, we focus on understanding and analyzing the stability w.r.t. the initial condition of SMFing for linear time-invariant systems and establish a stability-guaranteed filtering framework to develop a new SMF. The main contribution is to put forward a concept of Observation-Information Tower (OIT). It reflects the impact of the measurements on the estimate, independent of any reliance on the initial condition. The OIT enables to provide a rigorous stability analysis, resolve the ill-posedness issue, and develop an efficient filtering algorithm. More specifically:

  • Applying the OIT to a projected system, we analyze the stability of the classical linear SMFing framework. An explicit stability criterion (sufficient condition) is given, which turns out to be surprisingly close to the necessity w.r.t. the bounded estimation gap.

  • The OIT inspires a new SMFing framework, through a rigorously proven invariance property. This framework completely fixes the ill-posedness problem of the existing linear SMFing, without relying on any information of the true initial set.

  • With this new framework, we design a stable and fast constrained zonotopic SMF with uniform boundedness; different from the existing reduction methods based on geometric properties of constrained zonotopes, our method utilizes the properties of system dynamics via the OIT, which has high efficiency and significantly overcomes the wrapping effect.

In Section 2, the system model is given and three problems (on stability of classical linear SMFing framework, new framework with guaranteed stability, and stable and fast constrained zonotopic SMF) are described. We propose the OIT in Section 3 which is the key to solving those three problems, and the solutions are provided in Sections 46, respectively. Section 7 gives the simulation examples to corroborate our theoretical results. Finally, the concluding remarks are given in Section 8.

Notation: Throughout this paper, \mathbb{R}, 0\mathbb{N}_{0}, and +\mathbb{Z}_{+} denote the sets of real numbers, non-negative integers, and positive integers, respectively. n\mathbb{R}^{n} stands for the nn-dimensional Euclidean space. For an uncertain variable 𝐱\mathbf{x} defined on a sample space Ω\Omega, its range is 𝐱={𝐱(ω):ωΩ}\llbracket\mathbf{x}\rrbracket=\{\mathbf{x}(\omega)\colon\omega\in\Omega\} and its realization is x=𝐱(ω)x=\mathbf{x}(\omega) [21, 10]. For multiple uncertain variables with consecutive indices, we define 𝐱k1:k2=𝐱k1,,𝐱k2\mathbf{x}_{k_{1}:k_{2}}=\mathbf{x}_{k_{1}},\ldots,\mathbf{x}_{k_{2}} (with their realizations xk1:k2=xk1,,xk2x_{k_{1}:k_{2}}=x_{k_{1}},\ldots,x_{k_{2}}) where k2k1k_{2}\geq k_{1}. Given two sets 𝒮1\mathcal{S}_{1} and 𝒮2\mathcal{S}_{2} in a Euclidean space, the operation \oplus stands for the Minkowski sum of 𝒮1\mathcal{S}_{1} and 𝒮2\mathcal{S}_{2}, i.e., 𝒮1𝒮2={s1+s2:s1𝒮1,s2𝒮2}\mathcal{S}_{1}\oplus\mathcal{S}_{2}=\{s_{1}+s_{2}\colon s_{1}\in\mathcal{S}_{1},s_{2}\in\mathcal{S}_{2}\}. The summation i=ab𝒮i\sum_{i=a}^{b}\mathcal{S}_{i} represents 𝒮a𝒮a+1𝒮b\mathcal{S}_{a}\oplus\mathcal{S}_{a+1}\oplus\cdots\oplus\mathcal{S}_{b} for aba\leq b, but returns {0}\{0\} for a>ba>b.555This is different from the mathematical convention, but can keep many expressions compact in this paper. We use \|\cdot\| to represent the Euclidean norm (of a vector) or the spectral norm (of a matrix). The set 𝒮k\mathcal{S}_{k} is uniformly bounded666A mathematically rigorous statement should be “the indexed family (𝒮k)k𝒦(\mathcal{S}_{k})_{k\in\mathcal{K}} is uniformly bounded”. However, this minor abuse of notation considerably simplifies the presentation. (w.r.t. k𝒦k\in\mathcal{K}) if there exists d¯>0\bar{d}>0 such that d(𝒮k)d¯d(\mathcal{S}_{k})\leq\bar{d} for all k𝒦k\in\mathcal{K}, where d(𝒮k)=sups,s𝒮kssd(\mathcal{S}_{k})=\sup_{s,s^{\prime}\in\mathcal{S}_{k}}\|s-s^{\prime}\| is the diameter of 𝒮k\mathcal{S}_{k}. The interval hull of a bounded set 𝒮s=(s(1),,s(n))\mathcal{S}\ni s=(s^{(1)},\ldots,s^{(n)}) is IH¯(𝒮)=i=1n[s¯(i),s¯(i)]\overline{\mathrm{IH}}(\mathcal{S})=\prod_{i=1}^{n}[\underline{s}^{(i)},\overline{s}^{(i)}], where s¯(i)=infs(i){s𝒮}\underline{s}^{(i)}=\inf_{s^{(i)}}\{s\in\mathcal{S}\} and s¯(i)=sups(i){s𝒮}\overline{s}^{(i)}=\sup_{s^{(i)}}\{s\in\mathcal{S}\}. The limit superior is denoted by lim¯\varlimsup. Given a matrix Mm×nM\in\mathbb{R}^{m\times n}, the Moore-Penrose inverse is M+M^{+}; the range space and the kernel (null space) are denoted by ran(M)\mathrm{ran}(M) and ker(M)\ker(M), respectively. The notation \circ stands for the composition of two maps.

2 System Model and Problem Description

2.1 Linear SMF with Inaccurate Initial Condition

Consider the following discrete-time linear system described by uncertain variables:

𝐱k+1\displaystyle\mathbf{x}_{k+1} =A𝐱k+B𝐰k,\displaystyle=A\mathbf{x}_{k}+B\mathbf{w}_{k}, (1)
𝐲k\displaystyle\mathbf{y}_{k} =C𝐱k+𝐯k,\displaystyle=C\mathbf{x}_{k}+\mathbf{v}_{k}, (2)

at time k0k\in\mathbb{N}_{0}, where (1) and (2) are called the state and measurement equations, respectively, where An×nA\in{\mathbb{R}}^{n\times n}, Bn×pB\in{\mathbb{R}}^{n\times p}, and Cm×nC\in\mathbb{R}^{m\times n}. The state equation describes how the system state 𝐱k\mathbf{x}_{k} (with its realization xk𝐱knx_{k}\in\llbracket\mathbf{x}_{k}\rrbracket\subseteq\mathbb{R}^{n}) changes over time, where the true initial set 𝐱0\llbracket\mathbf{x}_{0}\rrbracket is non-empty and bounded; 𝐰k\mathbf{w}_{k} is the process/dynamical noise (with its realization wk𝐰kpw_{k}\in\llbracket\mathbf{w}_{k}\rrbracket\subseteq\mathbb{R}^{p}), and there exists a constant dw>0d_{w}>0 such that d(𝐰k)dwd(\llbracket\mathbf{w}_{k}\rrbracket)\leq d_{w} for all k0k\in\mathbb{N}_{0}. The measurement equation gives how the system state is measured from the measurement 𝐲k\mathbf{y}_{k} (with its realization, called observed measurement, yk𝐲kmy_{k}\in\llbracket\mathbf{y}_{k}\rrbracket\subseteq\mathbb{R}^{m}); 𝐯k\mathbf{v}_{k} (with its realization vk𝐯kmv_{k}\in\llbracket\mathbf{v}_{k}\rrbracket\subseteq\mathbb{R}^{m}) stands for the measurement noise, and there exists a constant dv>0d_{v}>0 such that d(𝐯k)dvd(\llbracket\mathbf{v}_{k}\rrbracket)\leq d_{v} for all k0k\in\mathbb{N}_{0}. The process noises, the measurement noises, and the initial state are unrelated [21], given in Assumption 1. This makes the system satisfy a non-stochastic hidden Markov model, which guarantees the optimality of the classical SMFing framework [10].

Assumption 1.

(Unrelated Noises and Initial State) k0\forall k\in\mathbb{N}_{0}, 𝐰0:k,𝐯0:k,𝐱0\mathbf{w}_{0:k},\mathbf{v}_{0:k},\mathbf{x}_{0} are unrelated.

Unless otherwise stated, the results and discussions in the rest of this paper are under Assumption 1.

The classical linear SMFing framework [10] is given in Algorithm 1, where an initial condition 𝐱^0\llbracket\hat{\mathbf{x}}_{0}\rrbracket is required. The existing linear SMFs are based on this framework. We highlight the prediction and update steps in (3) and (4), respectively:

𝐱^k|y0:k1\displaystyle\llbracket\hat{\mathbf{x}}_{k}|y_{0:k-1}\rrbracket =A𝐱^k1|y0:k1B𝐰k1,\displaystyle=A\llbracket\hat{\mathbf{x}}_{k-1}|y_{0:k-1}\rrbracket\oplus B\llbracket\mathbf{w}_{k-1}\rrbracket, (3)
𝐱^k|y0:k\displaystyle\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket =𝒳k(C,yk,𝐯k)𝐱^k|y0:k1,\displaystyle=\mathcal{X}_{k}(C,y_{k},\llbracket\mathbf{v}_{k}\rrbracket)\bigcap\llbracket\hat{\mathbf{x}}_{k}|y_{0:k-1}\rrbracket, (4)

where we define 𝐱^0=:𝐱^0|y0:1\llbracket\hat{\mathbf{x}}_{0}\rrbracket=:\llbracket\hat{\mathbf{x}}_{0}|y_{0:-1}\rrbracket for consistency, and

𝒳k(C,yk,𝐯k)={xk:yk=Cxk+vk,vk𝐯k}=ker(C)C+({yk}𝐯k).\begin{split}\!\!\mathcal{X}_{k}(C,y_{k},\llbracket\mathbf{v}_{k}\rrbracket)&=\left\{x_{k}\colon y_{k}=Cx_{k}+v_{k},~{}v_{k}\in\llbracket\mathbf{v}_{k}\rrbracket\right\}\\ &=\ker(C)\oplus C^{+}(\left\{y_{k}\right\}\oplus\llbracket-\mathbf{v}_{k}\rrbracket).\end{split} (5)
Algorithm 1 Classical Linear SMFing Framework
1:Initialization: 𝐱^0n\llbracket\hat{\mathbf{x}}_{0}\rrbracket\subset\mathbb{R}^{n};
2:if k>0k>0 then
3:    Prediction: 𝐱^k|y0:k1\llbracket\hat{\mathbf{x}}_{k}|y_{0:k-1}\rrbracket\leftarrow (3); % Returns the prior set.
4:Update: 𝐱^k|y0:k\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket\leftarrow (4); % Returns the estimate/the posterior set.

If the true initial set 𝐱0\llbracket\mathbf{x}_{0}\rrbracket can be perfectly known, i.e., 𝐱^0=𝐱0\llbracket\hat{\mathbf{x}}_{0}\rrbracket=\llbracket\mathbf{x}_{0}\rrbracket, Algorithm 1 returns the true set 𝐱k|y0:k\llbracket\mathbf{x}_{k}|y_{0:k}\rrbracket as the estimate 𝐱^k|y0:k\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket. In this case, Algorithm 1 is optimal777The optimality is in the sense that no filters can give a smaller set containing all possible states [10].. Under this classical SMFing framework, existing SMFs employ different set-based descriptions to represent or outer bound 𝐱^k|y0:k\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket, as pointed out in [10]; that means the estimate 𝒵k\mathcal{Z}_{k} of a linear SMF, at k0k\in\mathbb{N}_{0}, satisfies 𝒵k𝐱^k|y0:k\mathcal{Z}_{k}\supseteq\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket.

However, the initial condition is usually not accurate in practice, i.e., 𝐱^0𝐱0\llbracket\hat{\mathbf{x}}_{0}\rrbracket\neq\llbracket\mathbf{x}_{0}\rrbracket, which can cause stability issue as stated in Section 1. To rigorously derive the theoretical results in the sequel of this paper, we introduce the filtering map as follows.

Definition 1.

(Filtering Map) At time k+k\in\mathbb{Z}_{+}, the prediction-update map under 𝐰k1\llbracket\mathbf{w}_{k-1}\rrbracket and 𝐯k\llbracket\mathbf{v}_{k}\rrbracket is

fk:𝒮𝒳k(C,yk,𝐯k)(A𝒮B𝐰k1),f_{k}:\mathcal{S}\mapsto\mathcal{X}_{k}(C,y_{k},\llbracket\mathbf{v}_{k}\rrbracket)\bigcap(A\mathcal{S}\oplus B\llbracket\mathbf{w}_{k-1}\rrbracket), (6)

where 𝒮n\mathcal{S}\subseteq\mathbb{R}^{n}. The filtering map from time i+i\in\mathbb{Z}_{+} to kik\geq i is Fk,iF_{k,i} with the following form (where 0ik0\leq i\leq k)

Fk,i(𝒮)={fkfi+1(𝒳i(C,yi,𝐯i)𝒮),k>i,𝒳i(C,yi,𝐯i)𝒮,k=i.\!\!\!\!\!F_{k,i}(\mathcal{S})\!=\!\begin{cases}\!f_{k}\!\circ\cdots\circ\!f_{i+1}(\mathcal{X}_{i}(C,y_{i},\llbracket\mathbf{v}_{i}\rrbracket)\bigcap\mathcal{S}),&\!\!\!k>i,\\ \!\mathcal{X}_{i}(C,y_{i},\llbracket\mathbf{v}_{i}\rrbracket)\bigcap\mathcal{S},&\!\!\!k=i.\end{cases} (7)

By Definition 1, Algorithm 1 can be described by a compact form by the filtering map:

𝐱^k|y0:k=Fk,0(𝐱^0),k0.\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket=F_{k,0}(\llbracket\hat{\mathbf{x}}_{0}\rrbracket),\quad k\in\mathbb{N}_{0}. (8)

2.2 Problem Description: Analysis and Synthesis of Stability w.r.t. Initial Condition

In this work, we focus on understanding and handling the stability issue of linear SMFs, which includes three parts: (i) analyzing the stability of the classical linear SMFing framework (see Problem 1), (ii) establishing a new linear SMFing framework with guaranteed stability (see Problem 2), (iii) designing an efficient linear SMF under the proposed framework (see Problem 3).

To analyze the stability of existing linear SMFs, we define the stability in Definition 4, based on the well-posedness and the bounded estimation gap.

Definition 2.

(Well-Posedness) An SMF with the initial condition 𝐱^0\llbracket\hat{\mathbf{x}}_{0}\rrbracket is well-posed, if 𝒵k\mathcal{Z}_{k}\neq\emptyset for all k0k\in\mathbb{N}_{0}.

Definition 3.

(Bounded Estimation Gap) At k0k\in\mathbb{N}_{0}, the estimation gap is the Hausdorff distance between the estimate 𝒵k\mathcal{Z}_{k} and the true set 𝐱k|y0:k\llbracket\mathbf{x}_{k}|y_{0:k}\rrbracket

dkg(𝒵k):=dH(𝒵k,𝐱k|y0:k),d_{k}^{\mathrm{g}}(\mathcal{Z}_{k}):=d_{\mathrm{H}}(\mathcal{Z}_{k},\llbracket\mathbf{x}_{k}|y_{0:k}\rrbracket), (9)

where

dH(𝒮,𝒯)=max{sups𝒮inft𝒯st,supt𝒯infs𝒮st}.\!\!\!d_{\mathrm{H}}(\mathcal{S},\mathcal{T})=\max\Big{\{}\adjustlimits{\sup}_{s\in\mathcal{S}}{\inf}_{t\in\mathcal{T}}\|s-t\|,\adjustlimits{\sup}_{t\in\mathcal{T}}{\inf}_{s\in\mathcal{S}}\|s-t\|\Big{\}}. (10)

The estimation gap is bounded, if there exists a d¯>0\bar{d}>0 such that dkg(𝒵k)d¯d_{k}^{\mathrm{g}}(\mathcal{Z}_{k})\leq\bar{d} for all k0k\in\mathbb{N}_{0}.

Definition 4.

(Stability of SMF) An SMF is stable w.r.t. its initial condition, if for all bounded 𝐱^0n\llbracket\hat{\mathbf{x}}_{0}\rrbracket\subset\mathbb{R}^{n}, the SMF is well-posed and the estimation gap is bounded.

Remark 1.

The stability of an SMF reflects the insensitivity of 𝒵k\mathcal{Z}_{k} to the initial conditions. Note that the well-posedness is a necessary condition for the stability, which is different from that of Kalman filters.

With Definition 4, we are ready to study the stability of the classical linear SMFing framework (that the existing linear SMFs are based on). For the framework described in Algorithm 1: the initial condition 𝐱^0\llbracket\hat{\mathbf{x}}_{0}\rrbracket must be carefully chosen in case of ill-posedness;888For example, consider the linear system with parameters A=1A=1, B=1B=1, C=1C=1, 𝐰k=[1,1]\llbracket\mathbf{w}_{k}\rrbracket=[-1,1], and 𝐯k=[0,1]\llbracket\mathbf{v}_{k}\rrbracket=[0,1]. If 𝐱0=[1,1]\llbracket\mathbf{x}_{0}\rrbracket=[-1,1] and 𝐱^0=[0,2]\llbracket\hat{\mathbf{x}}_{0}\rrbracket=[0,2], with (4) we have 𝐱0|y0=𝒳0(C,y0,𝐯0)𝐱0=[2,1][1,1]={1}\llbracket\mathbf{x}_{0}|y_{0}\rrbracket=\mathcal{X}_{0}(C,y_{0},\llbracket\mathbf{v}_{0}\rrbracket)\bigcap\llbracket\mathbf{x}_{0}\rrbracket=[-2,-1]\bigcap[-1,1]=\{-1\} while 𝐱^0|y0=𝒳0(C,y0,𝐯0)𝐱^0=[2,1][0,2]=\llbracket\hat{\mathbf{x}}_{0}|y_{0}\rrbracket=\mathcal{X}_{0}(C,y_{0},\llbracket\mathbf{v}_{0}\rrbracket)\bigcap\llbracket\hat{\mathbf{x}}_{0}\rrbracket=[-2,-1]\bigcap[0,2]=\emptyset. From (3), we know that 𝐱^1|y0=\llbracket\hat{\mathbf{x}}_{1}|y_{0}\rrbracket=\emptyset and thus (4) gives 𝐱^1|y0:1=\llbracket\hat{\mathbf{x}}_{1}|y_{0:1}\rrbracket=\emptyset. Proceeding forward, we have 𝐱^k|y0:k=\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket=\emptyset for k0k\geq 0. furthermore, the estimation gap dkg(𝐱^k|y0:k)d_{k}^{\mathrm{g}}(\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket) can go unbounded as kk\to\infty. Thus, it is necessary to analyze the stability condition of Algorithm 1; see Problem 1.

Problem 1.

(Stability of Classical Linear SMFing Framework) Under what condition is the framework in Algorithm 1 stable w.r.t. the initial condition?

Since the well-posedness is sensitive to initial conditions, the classical framework faces the ill-posedness issue. This motivates us to propose a new SMFing framework always with guaranteed stability (regardless of perturbations w.r.t. the initial condition); see Problem 2.

Problem 2 (Stability-Guaranteed Framework).

How to establish a new SMFing framework such that for any bounded 𝐱^0n\llbracket\hat{\mathbf{x}}_{0}\rrbracket\subseteq\mathbb{R}^{n}, the stability is guaranteed?

Under the new framework, one should develop a filtering algorithm with low complexity and high accuracy. Inspired by prior work (e.g., [24]), we consider a constrained zonotopic SMF for the filter design as follows.

Problem 3.

(Stable and Fast Constrained Zonotopic SMF) How to design a constrained zonotopic SMF satisfying the stability-guaranteed framework while the complexity and accuracy can be well handled?

To solve these three problems, we propose the concept of Observation-Information Tower (OIT) in Section 3. It plays a pivotal role in understanding the stability of linear SMFing and inspiring stability-guaranteed designs. Then, the solutions to Problems 1-3 are studied in Sections 46, respectively.

3 The Observation-Information Tower

Before defining the OIT, let us first analyze how a single observed measurement affects the estimate as time elapses.999This is quite similar to analyzing the impulse response of a control system. At k=0k=0, from the update step (4) in Algorithm 1 we know that the estimate 𝐱^0|y0\llbracket\hat{\mathbf{x}}_{0}|y_{0}\rrbracket is the intersection of 𝒳0(C,y0,𝐯0)=:𝒪0,0\mathcal{X}_{0}(C,y_{0},\llbracket\mathbf{v}_{0}\rrbracket)=:\mathcal{O}_{0,0} and 𝐱^0=:0\llbracket\hat{\mathbf{x}}_{0}\rrbracket=:\mathcal{E}_{0}, which describes how the observed measurement y0y_{0} affects the estimate at k=0k=0. When we ignore all the successive observed measurements (like the impulse response does), only the prediction step in Algorithm 1 works for k1k\geq 1. Based on “set intersection under Minkowski sum”: for sets 𝒮1,,𝒮I\mathcal{S}_{1},\ldots,\mathcal{S}_{I}, and 𝒯\mathcal{T}, we have101010The proof is as follows. l(i=1I𝒮i)𝒯\forall l\in\big{(}\bigcap_{i=1}^{I}\mathcal{S}_{i}\big{)}\oplus\mathcal{T}, si=1I𝒮i\exists s\in\bigcap_{i=1}^{I}\mathcal{S}_{i} and t𝒯t\in\mathcal{T} such that l=s+tl=s+t. Since si=1I𝒮is\in\bigcap_{i=1}^{I}\mathcal{S}_{i}, we have s𝒮is\in\mathcal{S}_{i} for all i{1,,I}i\in\{1,\ldots,I\}. Thus, i{1,,I}\forall i\in\{1,\ldots,I\}, l=s+t𝒮i𝒯l=s+t\in\mathcal{S}_{i}\oplus\mathcal{T}, which implies li=1I(𝒮i𝒯)l\in\bigcap_{i=1}^{I}(\mathcal{S}_{i}\oplus\mathcal{T}), and we get (11).

(i=1I𝒮i)𝒯i=1I(𝒮i𝒯),\bigg{(}\bigcap_{i=1}^{I}\mathcal{S}_{i}\bigg{)}\oplus\mathcal{T}\subseteq\bigcap_{i=1}^{I}(\mathcal{S}_{i}\oplus\mathcal{T}), (11)

and hence the estimate at k=1k=1 is outer bounded by the intersection of the following two sets:

A𝒪0,0B𝐰0\displaystyle A\mathcal{O}_{0,0}\oplus B\llbracket\mathbf{w}_{0}\rrbracket =A𝒳0(C,y0,𝐯0)B𝐰0=:𝒪1,0,\displaystyle=A\mathcal{X}_{0}(C,y_{0},\llbracket\mathbf{v}_{0}\rrbracket)\oplus B\llbracket\mathbf{w}_{0}\rrbracket=:\mathcal{O}_{1,0},
A0B𝐰0\displaystyle A\mathcal{E}_{0}\oplus B\llbracket\mathbf{w}_{0}\rrbracket =A𝐱^0B𝐰0=:1,\displaystyle=A\llbracket\hat{\mathbf{x}}_{0}\rrbracket\oplus B\llbracket\mathbf{w}_{0}\rrbracket=:\mathcal{E}_{1},

i.e., 𝐱^1|y0𝒪1,01\llbracket\hat{\mathbf{x}}_{1}|y_{0}\rrbracket\subseteq\mathcal{O}_{1,0}\bigcap\mathcal{E}_{1}, which indicates how y0y_{0} affects the estimate at k=1k=1. As such, we can analyze the effect of yiy_{i} on the estimate at time kk. It defines the observation-information and state-evolution sets as follows.

Definition 5.

(Observation-Information and State-Evolution Sets) The observation-information set at time kik\geq i contributed by yiy_{i} (i.e, the observed measurement at time ii) is

𝒪k,i:=Aki𝒳i(C,yi,𝐯i)r=ik1Ak1rB𝐰r.\mathcal{O}_{k,i}:=A^{k-i}\mathcal{X}_{i}(C,y_{i},\llbracket\mathbf{v}_{i}\rrbracket)\oplus\sum_{r=i}^{k-1}A^{k-1-r}B\llbracket\mathbf{w}_{r}\rrbracket. (12)

The state-evolution set at time kk is

k:=Ak𝐱^0r=0k1Ak1rB𝐰r.\mathcal{E}_{k}:=A^{k}\llbracket\hat{\mathbf{x}}_{0}\rrbracket\oplus\sum_{r=0}^{k-1}A^{k-1-r}B\llbracket\mathbf{w}_{r}\rrbracket. (13)
Remark 2.

If we consider all the observed measurements y0:ky_{0:k}, the intersection of the observation-information sets and the state-evolution set forms an outer bound on the estimate (see Proposition 1), where the conservativeness comes from the converse of (11) is not true in general.

Proposition 1.

(Set-Intersection-Based Outer B-ound) At k0k\in\mathbb{N}_{0}, an outer bound on 𝐱^k|y0:k\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket in Algorithm 1 is

𝐱^k|y0:k=Fk,0(𝐱^0)i=0k𝒪k,ik,𝐱^0n,\!\!\!\!\!\!\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket=F_{k,0}(\llbracket\hat{\mathbf{x}}_{0}\rrbracket)\subseteq\!\bigcap_{i=0}^{k}\mathcal{O}_{k,i}\bigcap\mathcal{E}_{k},~{}\forall\llbracket\hat{\mathbf{x}}_{0}\rrbracket\subseteq\mathbb{R}^{n}, (14)

which means 𝐱^k|y0:ki=0k𝒪k,i\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket\subseteq\bigcap_{i=0}^{k}\mathcal{O}_{k,i} and 𝐱^k|y0:kk\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket\subseteq\mathcal{E}_{k}.

Proof.

See Appendix A. ∎

A pictorial illustration of Proposition 1 is given in Fig. 1.

Refer to caption
Figure 1: Illustration of set-intersection-based outer bound. For k=0k=0, the only observation-information set is 𝒪0,0\mathcal{O}_{0,0}; the state-evolution set is 0\mathcal{E}_{0}; the intersection of 𝒪0,0\mathcal{O}_{0,0} and 0\mathcal{E}_{0} gives the estimate 𝐱^0|y0\llbracket\hat{\mathbf{x}}_{0}|y_{0}\rrbracket. For k=1k=1, 𝒪0,0\mathcal{O}_{0,0} and 0\mathcal{E}_{0} become 𝒪1,0\mathcal{O}_{1,0} and 1\mathcal{E}_{1}, respectively; the new observation-information set is 𝒪1,1\mathcal{O}_{1,1}; the intersection of 𝒪1,1\mathcal{O}_{1,1}, 𝒪1,0\mathcal{O}_{1,0}, and 1\mathcal{E}_{1} forms an outer bound on the estimate 𝐱^1|y0:1\llbracket\hat{\mathbf{x}}_{1}|y_{0:1}\rrbracket as presented in Proposition 1.

Note that

i=0k𝒪k,ii=kδk𝒪k,i\bigcap_{i=0}^{k}\mathcal{O}_{k,i}\subseteq\bigcap_{i=k-\delta}^{k}\mathcal{O}_{k,i} (15)

holds for any integer δ[0,k]\delta\in[0,k],111111In this paper, when an integer is in an interval [a,b][a,b], this interval denotes {i:aib}\{i\in\mathbb{Z}\colon a\leq i\leq b\}. we define the Right-Hand Side (RHS) of (15) as the OIT (see Definition 6).

Definition 6 (Observation-Information Tower).

The OIT at time k0k\in\mathbb{N}_{0} is the intersection of the observation-information sets over [kδ,k][k-\delta,k]: i=kδk𝒪k,i\bigcap_{i=k-\delta}^{k}\mathcal{O}_{k,i}.

Now, we provide a sufficient condition for the uniform boundedness (see Section 1) of the OIT as follows, which is fundamental to the results derived in the rest of this paper.

Theorem 1 (Uniform Boundedness of OIT).

The OIT defined by Definition 6 is uniformly bounded w.r.t. k{kδ:δμ1}k\in\{k\geq\delta\colon\delta\geq\mu-1\} (or simply kδμ1k\geq\delta\geq\mu-1), where μ\mu is the observability index (see Chapter 6.3.1 in [5]), if the pair (A,C)(A,C) is observable and AA is non-singular. Furthermore, the diameter of the OIT is upper bounded by

d(i=kδk𝒪k,i)j=0δ[dv+l=1δjCAlBdw]2σmin(Oδ)=:d¯δ(A,B,C),\begin{split}\!\!d\bigg{(}\bigcap_{i=k-\delta}^{k}\mathcal{O}_{k,i}\bigg{)}&\leq\frac{\sqrt{\displaystyle\sum_{j=0}^{\delta}\bigg{[}d_{v}+\sum_{l=1}^{\delta-j}\|CA^{-l}B\|d_{w}\bigg{]}^{2}}}{\sigma_{\min}(O_{\delta})}\\ &=:\bar{d}_{\delta}(A,B,C),\end{split} (16)

where σmin(Oδ)\sigma_{\min}(O_{\delta}) returns the smallest singular value of Oδ=[(Aδ)TCTCT]TO_{\delta}=[(A^{-\delta})^{\mathrm{T}}C^{\mathrm{T}}\ldots C^{\mathrm{T}}]^{\mathrm{T}}.

Proof.

See Appendix B. ∎

Note that the uniform boundedness of the OIT indicates the diameter of i=kδk𝒪k,i\bigcap_{i=k-\delta}^{k}\mathcal{O}_{k,i} (δμ1\forall\delta\geq\mu-1) cannot go unbounded as kk\to\infty, which is upper bounded by (16).

4 Stability Analysis of Classical Linear Set-Membership Filtering Framework

In this section, we study the stability issue w.r.t. the initial condition of the classical linear SMFing framework to address Problem 1, based on the OIT.

Since the uniform boundedness of the OIT requires observability, for general (A,C)(A,C) we introduce the observability decomposition: there exists a nonsingular Pn×nP\in\mathbb{R}^{n\times n} such that the equivalence transformation 𝐱~k=[(𝐱~ko)T(𝐱~ko¯)T]T=P𝐱k\tilde{\mathbf{x}}_{k}=[(\tilde{\mathbf{x}}_{k}^{o})^{\mathrm{T}}(\tilde{\mathbf{x}}_{k}^{\bar{o}})^{\mathrm{T}}]^{\mathrm{T}}=P\mathbf{x}_{k} transforms (1) and (2) into121212The observability decomposition follows Theorem 6.O6 in [5]: P=[PoTPo¯T]TP=[P_{o}^{\mathrm{T}}~{}P_{\bar{o}}^{\mathrm{T}}]^{\mathrm{T}} and U=P1=[UoUo¯]U=P^{-1}=[U_{o}~{}U_{\bar{o}}], where Pono×nP_{o}\in\mathbb{R}^{n_{o}\times n}, Po¯no¯×nP_{\bar{o}}\in\mathbb{R}^{n_{\bar{o}}\times n}, Uon×noU_{o}\in\mathbb{R}^{n\times n_{o}}, and Uo¯n×no¯U_{\bar{o}}\in\mathbb{R}^{n\times n_{\bar{o}}}, such that A~o=PoAUo\tilde{A}_{o}=P_{o}AU_{o}, A~21=Po¯AUo\tilde{A}_{21}=P_{\bar{o}}AU_{o}, A~o¯=Po¯AUo¯\tilde{A}_{\bar{o}}=P_{\bar{o}}AU_{\bar{o}}, B~o=PoB\tilde{B}_{o}=P_{o}B, B~o¯=Po¯B\tilde{B}_{\bar{o}}=P_{\bar{o}}B, and C~o=CUo\tilde{C}_{o}=CU_{o}. Note that the eigenvalues of A~o¯\tilde{A}_{\bar{o}} only depends on (A,C)(A,C) but independent of PP.

[𝐱~k+1o𝐱~k+1o¯]=[A~o0A~21A~o¯][𝐱~ko𝐱~ko¯]+[B~oB~o¯]𝐰k,𝐲k=C~o𝐱~ko+𝐯k,\begin{split}\begin{bmatrix}\tilde{\mathbf{x}}_{k+1}^{o}\\ \tilde{\mathbf{x}}_{k+1}^{\bar{o}}\end{bmatrix}&=\begin{bmatrix}\tilde{A}_{o}&0\\ \tilde{A}_{21}&\tilde{A}_{\bar{o}}\end{bmatrix}\begin{bmatrix}\tilde{\mathbf{x}}_{k}^{o}\\ \tilde{\mathbf{x}}_{k}^{\bar{o}}\end{bmatrix}+\begin{bmatrix}\tilde{B}_{o}\\ \tilde{B}_{\bar{o}}\end{bmatrix}\mathbf{w}_{k},\\ \mathbf{y}_{k}&=\tilde{C}_{o}\tilde{\mathbf{x}}_{k}^{o}+\mathbf{v}_{k},\end{split} (17)

where x~kono\tilde{x}_{k}^{o}\in\mathbb{R}^{n_{o}} and x~ko¯no¯\tilde{x}_{k}^{\bar{o}}\in\mathbb{R}^{n_{\bar{o}}}; the pair (A~o,C~o)(\tilde{A}_{o},\tilde{C}_{o}) is observable with the observability index μo\mu_{o}; it is well-known that (A,C)(A,C) is detectable if and only if ρ(A~o¯)<1\rho(\tilde{A}_{\bar{o}})<1, where ρ()\rho(\cdot) returns the spectral radius of a matrix.

Now, we propose a stability condition of the classical linear SMFing framework as follows, where we define 𝐱~^0o\llbracket\hat{\tilde{\mathbf{x}}}_{0}^{o}\rrbracket and 𝐱~^0o¯\llbracket\hat{\tilde{\mathbf{x}}}_{0}^{\bar{o}}\rrbracket as the projections of 𝐱~^0=P𝐱^0\llbracket\hat{\tilde{\mathbf{x}}}_{0}\rrbracket=\llbracket P\hat{\mathbf{x}}_{0}\rrbracket to the subspaces w.r.t. x~0o\tilde{x}_{0}^{o} and x~0o¯\tilde{x}_{0}^{\bar{o}}, respectively.

Theorem 2 (Stability Criterion).

The classical SM-Fing framework in Algorithm 1 is stable w.r.t. its initial condition, if the following conditions hold:

  • (i)

    𝐱~^0o𝐱~0o\llbracket\hat{\tilde{\mathbf{x}}}_{0}^{o}\rrbracket\supseteq\llbracket\tilde{\mathbf{x}}_{0}^{o}\rrbracket;

  • (ii)

    limk(A~o¯k+i=0k1A~o¯k1iA~21)<\lim_{k\to\infty}\big{(}\tilde{A}_{\bar{o}}^{k}+\sum_{i=0}^{k-1}\tilde{A}_{\bar{o}}^{k-1-i}\tilde{A}_{21}\big{)}<\infty.

Proof.

See Appendix C. ∎

Remark 3.

Theorem 2 tells that when conditions (i) and (ii) hold, the classical SMFing framework is stable, which solves Problem 1. More precisely, these two conditions ensure the well-posedness and the bounded estimation gap, respectively. However, under condition (i), we cannot always keep 𝐱^k|y0:k𝐱k|y0:k\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket\supseteq\llbracket\mathbf{x}_{k}|y_{0:k}\rrbracket (which is different from Proposition 4 in Appendix C for observable systems), i.e., the outer boundedness breaks.

As mentioned in Remark 3, condition (ii) in Theorem 2 is a sufficient condition for the boundedness of the estimation gap. To evaluate the difference between the sufficiency and the necessity, we provide a necessary condition for the bounded estimation gap in Proposition 2.

Proposition 2.

(Necessary Condition for Bounded Estimation Gap) For all bounded 𝐱^0n\llbracket\hat{\mathbf{x}}_{0}\rrbracket\subset\mathbb{R}^{n} with 𝐱~^0o𝐱~0o\llbracket\hat{\tilde{\mathbf{x}}}_{0}^{o}\rrbracket\supseteq\llbracket\tilde{\mathbf{x}}_{0}^{o}\rrbracket, if the estimation gap dkg(𝐱^k|y0:k)d_{k}^{\mathrm{g}}(\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket) of Algorithm 1 is bounded, A~o¯\tilde{A}_{\bar{o}} must be marginally stable131313In this paper, it refers to that A~o¯\tilde{A}_{\bar{o}} is the system matrix of a marginally stable discrete-time system, i.e., all eigenvalues of A~o¯\tilde{A}_{\bar{o}} have magnitudes less or equal to one and those equal to one are non-defective [5]..

Proof.

See Appendix D. ∎

Remark 4.

For all bounded 𝐱^0n\llbracket\hat{\mathbf{x}}_{0}\rrbracket\subset\mathbb{R}^{n} with 𝐱~^0o𝐱~0o\llbracket\hat{\tilde{\mathbf{x}}}_{0}^{o}\rrbracket\supseteq\llbracket\tilde{\mathbf{x}}_{0}^{o}\rrbracket, the proposed sufficient condition for the bounded estimation gap [i.e., condition (ii) in Theorem 2] is very close to the necessary condition given in Proposition 2. When A~21=0\tilde{A}_{21}=0, condition (ii) means A~o¯\tilde{A}_{\bar{o}} is marginally stable; in that case, it becomes a necessary and sufficient condition. When A~210\tilde{A}_{21}\neq 0, in general we need ρ(A~o¯)<1\rho(\tilde{A}_{\bar{o}})<1 (which is close to marginal stability of A~o¯\tilde{A}_{\bar{o}}), i.e., (A,C)(A,C) is detectable, to provide the bounded-input bounded-output stability to guarantee the bounded estimation gap.

The following corollary gives a sufficient condition for simultaneously guaranteeing the stability w.r.t. the initial condition and the uniform boundedness of the estimate.

Corollary 1 (Egregium).

For bounded 𝐱^0n\llbracket\hat{\mathbf{x}}_{0}\rrbracket\subset\mathbb{R}^{n} with 𝐱~^0o𝐱~0o\llbracket\hat{\tilde{\mathbf{x}}}_{0}^{o}\rrbracket\supseteq\llbracket\tilde{\mathbf{x}}_{0}^{o}\rrbracket, the classical SMFing framework is stable w.r.t. the initial condition and has the uniformly bounded estimate w.r.t. k0k\in\mathbb{N}_{0} if (A,C)(A,C) is detectable.

Proof.

See Appendix E. ∎

Remark 5.

provides an explicit condition for the stability and the uniform boundedness141414Even though the detectability is usually assumed for the uniform boundedness [7], to be best of our knowledge, there are no existing results on rigorously proving it.. This result is consistent with the discrete-time Kalman filter that detectable (A,C)(A,C) implies a stable151515For Kalman filters, to achieve asymptotic stability w.r.t. the initial condition needs an additional condition on the reachability w.r.t. process noises. For linear SMFs, even though the numerical results in Section 7.1 show the asymptotic stability, proving it requires to introduce probability measures, which is beyond the scope of this work. filter [15]. Thus, it builds an important bridge between stochastic and non-stochastic linear filters on their stability w.r.t. initial conditions. It should also be highlighted that our result is independent of the types of the noises; while for stochastic filtering very few results are on the stability of discrete-time linear optimal filters with non-Gaussian noises.

Remark 6.

(Instability Caused by Improper Initial Conditions) Different from Kalman filtering, the classical linear SMFing framework is not stable for all bounded initial conditions. If the designer has little information on 𝐱0\llbracket\mathbf{x}_{0}\rrbracket, it would be hard to choose a proper 𝐱^0\llbracket\hat{\mathbf{x}}_{0}\rrbracket to guarantee the stability w.r.t. the initial condition (see Theorem 2). This motivates us to propose a stability-guaranteed filtering framework without using the knowledge of 𝐱0\llbracket\mathbf{x}_{0}\rrbracket, presented in Section 5.

5 Stability-Guaranteed Filtering Framework

In this section, we establish a stability-guaranteed filtering framework, called OIT-inspired filtering (see Algorithm 2), to solve Problem 2.

From Theorem 2, we know that the initial condition 𝐱^0\llbracket\hat{\mathbf{x}}_{0}\rrbracket should satisfy 𝐱~^0o𝐱~0o\llbracket\hat{\tilde{\mathbf{x}}}_{0}^{o}\rrbracket\supseteq\llbracket\tilde{\mathbf{x}}_{0}^{o}\rrbracket to ensure the stability of Algorithm 1 w.r.t. the initial condition. This motivates us to choose a sufficiently large 𝐱~^0o𝐱~0o\llbracket\hat{\tilde{\mathbf{x}}}_{0}^{o}\rrbracket\supseteq\llbracket\tilde{\mathbf{x}}_{0}^{o}\rrbracket so that the ill-posedness can be fully handled. However, it is difficult to choose such 𝐱~^0o\llbracket\hat{\tilde{\mathbf{x}}}_{0}^{o}\rrbracket due to the following two issues:

  • Since 𝐱~0o\llbracket\tilde{\mathbf{x}}_{0}^{o}\rrbracket is unlikely to know exactly, we can hardly 100%100\% guarantee 𝐱~^0o𝐱~0o\llbracket\hat{\tilde{\mathbf{x}}}_{0}^{o}\rrbracket\supseteq\llbracket\tilde{\mathbf{x}}_{0}^{o}\rrbracket.

  • Larger 𝐱~^0o\llbracket\hat{\tilde{\mathbf{x}}}_{0}^{o}\rrbracket can increase the possibility of the inclusion but brings more conservativeness.

In the existing SMFing framework, these two issues cannot be effectively resolved. Thus, we propose a new SMFing framework inspired by OIT, with the help of the following lemma.

Lemma 1 (OIT-Inspired Invariance).

For all kmax{μo1+nλ0o,1}=:kk\geq\max\{\mu_{o}-1+n_{\lambda_{0}^{o}},1\}=:k_{*}, where nλ0on_{\lambda_{0}^{o}} is the index of eigenvalue 0 of A~o\tilde{A}_{o} (if A~o\tilde{A}_{o} does not contain 0 eigenvalues, nλ0o=0n_{\lambda_{0}^{o}}=0), define the family of nested sets {θk[c^0o]}θk[0,)\{\mathcal{B}_{\theta_{k}}^{\infty}[\hat{c}_{0}^{o}]\}_{\theta_{k}\in[0,\infty)}, in which θk[c^0o]\mathcal{B}_{\theta_{k}}^{\infty}[\hat{c}_{0}^{o}] is a closed non_{o}-cube of edge length 2θk2\theta_{k} centered at c^0ono\hat{c}_{0}^{o}\in\mathbb{R}^{n_{o}}. Then, θ¯k0\exists\bar{\theta}_{k}\geq 0 s.t. θkθ¯kθk′′\forall\theta^{\prime}_{k}\leq\bar{\theta}_{k}\leq\theta^{\prime\prime}_{k}, (18) holds, where PoP_{o} is a submatrix formed by the first non_{o} rows of PP.

PoFk,0(P1(θk[c^0o]×𝐱~^0o¯))PoFk,0(P1(θ¯k[c^0o]×𝐱~^0o¯))=PoFk,0(P1(θk′′[c^0o]×𝐱~^0o¯)).P_{o}F_{k,0}(P^{-1}(\mathcal{B}_{\theta^{\prime}_{k}}^{\infty}[\hat{c}_{0}^{o}]\times\llbracket\hat{\tilde{\mathbf{x}}}_{0}^{\bar{o}}\rrbracket))\subseteq P_{o}F_{k,0}(P^{-1}(\mathcal{B}_{\bar{\theta}_{k}}^{\infty}[\hat{c}_{0}^{o}]\times\llbracket\hat{\tilde{\mathbf{x}}}_{0}^{\bar{o}}\rrbracket))=P_{o}F_{k,0}(P^{-1}(\mathcal{B}_{\theta^{\prime\prime}_{k}}^{\infty}[\hat{c}_{0}^{o}]\times\llbracket\hat{\tilde{\mathbf{x}}}_{0}^{\bar{o}}\rrbracket)). (18)

Proof.

See Appendix F, which is inspired by OIT. ∎

Remark 7.

From Lemma 1, we know that even without the information of 𝐱~^0o\llbracket\hat{\tilde{\mathbf{x}}}_{0}^{o}\rrbracket, we can enlarge θk\theta_{k} until PoFk,0(P1(θk[c^0o]×𝐱~^0o¯))P_{o}F_{k,0}(P^{-1}(\mathcal{B}_{\theta_{k}}^{\infty}[\hat{c}_{0}^{o}]\times\llbracket\hat{\tilde{\mathbf{x}}}_{0}^{\bar{o}}\rrbracket)) becomes unchanged for θkθ¯k\theta_{k}\geq\bar{\theta}_{k}. As a result,

PoFk,0(P1(𝐱~0o×𝐱~^0o¯))PoFk,0(P1(θ¯k[c^0o]×𝐱~^0o¯)),P_{o}F_{k,0}(P^{-1}(\llbracket\tilde{\mathbf{x}}_{0}^{o}\rrbracket\times\llbracket\hat{\tilde{\mathbf{x}}}_{0}^{\bar{o}}\rrbracket))\subseteq P_{o}F_{k,0}(P^{-1}(\mathcal{B}_{\bar{\theta}_{k}}^{\infty}[\hat{c}_{0}^{o}]\times\llbracket\hat{\tilde{\mathbf{x}}}_{0}^{\bar{o}}\rrbracket)),

which means θ¯k[c^0o]𝐱~0o\mathcal{B}_{\bar{\theta}_{k}}^{\infty}[\hat{c}_{0}^{o}]\supseteq\llbracket\tilde{\mathbf{x}}_{0}^{o}\rrbracket always holds for kkk\geq k_{*}. Based on this inspiration, we propose the OIT-inspired filtering framework in Algorithm 2.

Algorithm 2 OIT-Inspired Filtering
1:Initialization: Bounded 𝐱^0n\llbracket\hat{\mathbf{x}}_{0}\rrbracket\subset\mathbb{R}^{n};
2:if k<max{μo1+nλ0o,1}=kk<\max\{\mu_{o}-1+n_{\lambda_{0}^{o}},1\}=k_{*} then
3:    𝐱^k|y0:k\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket\leftarrow Algorithm 1;
4:    if 𝐱^k|y0:k=\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket=\emptyset then
5:        Choose a 𝒯^0o\hat{\mathcal{T}}_{0}^{o} such that 𝐱^k|y0:k=Fk,0(P1(𝒯^0o×𝐱~^0o¯))\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket=F_{k,0}(P^{-1}(\hat{\mathcal{T}}_{0}^{o}\times\llbracket\hat{\tilde{\mathbf{x}}}_{0}^{\bar{o}}\rrbracket)) is non-empty and bounded;     
6:else
7:    𝐱^k|y0:k=Fk,0(P1(θ¯k[c^0o]×𝐱~^0o¯))\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket\!=\!F_{k,0}(P^{-1}(\mathcal{B}_{\bar{\theta}_{k}}^{\infty}[\hat{c}_{0}^{o}]\times\llbracket\hat{\tilde{\mathbf{x}}}_{0}^{\bar{o}}\rrbracket)); % Recursively

A line-by-line explanation of Algorithm 2 is as follows. Line 1 initializes the algorithm. Lines 2-7 give the filtering process at each k0k\in\mathbb{N}_{0}. For k<kk<k_{*}, the estimate 𝐱^k|y0:k\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket is identical to that of Algorithm 1 (see Line 3 of Algorithm 2), if it is not an empty set; otherwise, it will be reset by Line 5. In Line 5, we can choose 𝒯^0o=θ[0no]\hat{\mathcal{T}}_{0}^{o}=\mathcal{B}_{\theta}^{\infty}[0_{n_{o}}] with sufficiently large θ\theta, which is used in Algorithm 3. For kkk\geq k_{*}, the estimate 𝐱^k|y0:k\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket is determined by Line 7. Note that Line 7 can be implemented in a recursive manner by its definition in (7).161616Generally speaking, reduction methods are required to balance the accuracy and the complexity in Line 7 for specific filter designs. But it is also possible to reduce the complexity without any accuracy loss (see the cases in Section 7.1).

Theorem 3 (Stability of OIT-Inspired Filtering).

If condition (ii) in Theorem 2 holds, the filtering framework in Algorithm 2 is stable w.r.t. the initial condition.

Proof.

See Appendix G. ∎

Theorem 3 indicates that the OIT-inspired filtering framework given in Algorithm 2 does not rely on any information about 𝐱0\llbracket\mathbf{x}_{0}\rrbracket to guarantee the well-posedness.

For Algorithm 2, similar results in Proposition 2 and can also be derived, where the condition 𝐱~^0o𝐱~0o\llbracket\hat{\tilde{\mathbf{x}}}_{0}^{o}\rrbracket\supseteq\llbracket\tilde{\mathbf{x}}_{0}^{o}\rrbracket is not needed any more.

6 Stable and Fast Constrained Zonotopic SMF

In this section, we develop a constrained zonotopic SMF under the new framework described in Algorithm 2, where the OIT plays the pivotal role. This SMF is not only with guaranteed stability but also with high efficiency and good accuracy. We call it the OIT-inspired Constrained Zonotopic SMF (OIT-CZ SMF).

Before presenting the SMF, we introduce the constrained zonotope [24] in Definition 7 with a small extension.

Definition 7 (Extended Constrained Zonotope).

A set 𝒵n\mathcal{Z}\subseteq\mathbb{R}^{n} is an (extended) constrained zonotope if there exists a quintuple (G^,c^,A^,b^,h^)n×ng×n×nc×ng×nc×[0,]ng(\hat{G},\hat{c},\hat{A},\hat{b},\hat{h})\in\mathbb{R}^{n\times n_{g}}\times\mathbb{R}^{n}\times\mathbb{R}^{n_{c}\times n_{g}}\times\mathbb{R}^{n_{c}}\times[0,\infty]^{n_{g}} such that 𝒵\mathcal{Z} is expressed by

{G^ξ+c^:A^ξ=b^,ξj=1ng[h^(j),h^(j)]}=:Z(G^,c^,A^,b^,h^),\bigg{\{}\hat{G}\xi+\hat{c}\colon\hat{A}\xi=\hat{b},~{}\xi\in\prod_{j=1}^{n_{g}}\big{[}-\hat{h}^{(j)},\hat{h}^{(j)}\big{]}\bigg{\}}=:Z(\hat{G},\hat{c},\hat{A},\hat{b},\hat{h}),

where h^(j)\hat{h}^{(j)} is the jjth component of h^\hat{h}.

In Definition 7, we slightly generalize the constrained zonotope in [24] by replacing ξ1\|\xi\|_{\infty}\leq 1, i.e., ξ[1,1]ng\xi\in[-1,~{}1]^{n_{g}}, with ξj=1ng[h^(j),h^(j)]\xi\in\prod_{j=1}^{n_{g}}\big{[}-\hat{h}^{(j)},\hat{h}^{(j)}\big{]}. The benefit is twofold: (i) we allow h^(j)\hat{h}^{(j)} to be infinity such that the posterior sets induced by unbounded prior sets (which is required by the SMFing framework in Algorithm 2) can be fully described; (ii) the numerical stability of our proposed algorithm is improved.

Based on Definition 7, if 𝐱^0\llbracket\hat{\mathbf{x}}_{0}\rrbracket, 𝐰k\llbracket\mathbf{w}_{k}\rrbracket, and 𝐯k\llbracket\mathbf{v}_{k}\rrbracket are constrained zonotopes, the resulting 𝐱^k|y0:k1\llbracket\hat{\mathbf{x}}_{k}|y_{0:k-1}\rrbracket and 𝐱^k|y0:k\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket in Algorithm 1 are also constrained zonotopes without any approximations. Specifically, by defining

𝐱^k|y0:k1=Z(G^k,c^k,A^k,b^k,h^k),𝐱^k|y0:k=Z(G^k,c^k,A^k,b^k,h^k),𝐰k=Z(G^𝐰k,c^𝐰k,A^𝐰k,b^𝐰k,h^𝐰k),𝐯k=Z(G^𝐯k,c^𝐯k,A^𝐯k,b^𝐯k,h^𝐯k),\begin{split}\llbracket\hat{\mathbf{x}}_{k}|y_{0:k-1}\rrbracket&=Z(\hat{G}_{k}^{-},\hat{c}_{k}^{-},\hat{A}_{k}^{-},\hat{b}_{k}^{-},\hat{h}_{k}^{-}),\\ \llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket&=Z(\hat{G}_{k},\hat{c}_{k},\hat{A}_{k},\hat{b}_{k},\hat{h}_{k}),\\ \llbracket\mathbf{w}_{k}\rrbracket&=Z(\hat{G}_{\mathbf{w}_{k}},\hat{c}_{\mathbf{w}_{k}},\hat{A}_{\mathbf{w}_{k}},\hat{b}_{\mathbf{w}_{k}},\hat{h}_{\mathbf{w}_{k}}),\\ \llbracket\mathbf{v}_{k}\rrbracket&=Z(\hat{G}_{\mathbf{v}_{k}},\hat{c}_{\mathbf{v}_{k}},\hat{A}_{\mathbf{v}_{k}},\hat{b}_{\mathbf{v}_{k}},\hat{h}_{\mathbf{v}_{k}}),\end{split} (19)

the prediction step (3) gives the exact 𝐱^k|y0:k1\llbracket\hat{\mathbf{x}}_{k}|y_{0:k-1}\rrbracket with

G^k=[AG^k1BG^𝐰k1],c^k=Ac^k1+Bc^𝐰k1,A^k=[A^k100A^𝐰k1],b^k=[b^k1b^𝐰k1],h^k=[h^k1h^𝐰k1],\begin{split}\!\!\!\!\!\hat{G}_{k}^{-}&\!=\!\begin{bmatrix}A\hat{G}_{k-1}&B\hat{G}_{\mathbf{w}_{k-1}}\end{bmatrix},~{}\hat{c}_{k}^{-}=A\hat{c}_{k-1}+B\hat{c}_{\mathbf{w}_{k-1}},\\ \!\!\!\!\!\hat{A}_{k}^{-}&\!=\!\begin{bmatrix}\hat{A}_{k-1}&0\\ 0&\hat{A}_{\mathbf{w}_{k-1}}\end{bmatrix}\!,\hat{b}_{k}^{-}\!=\!\begin{bmatrix}\hat{b}_{k-1}\\ \hat{b}_{\mathbf{w}_{k-1}}\end{bmatrix}\!,\hat{h}_{k}^{-}\!=\!\begin{bmatrix}\hat{h}_{k-1}\\ \hat{h}_{\mathbf{w}_{k-1}}\end{bmatrix}\!,\end{split} (20)

and the update step (4) returns the exact 𝐱^k|y0:k\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket with

G^k=[G^k0],c^k=c^k,h^k=[h^kh^𝐯k],A^k=[A^k00A^𝐯kCG^kG^𝐯k],b^k=[b^kb^𝐯kykc^𝐯kCc^k].\begin{split}\hat{G}_{k}&=\begin{bmatrix}\hat{G}_{k}^{-}&0\end{bmatrix},~{}\hat{c}_{k}=\hat{c}_{k}^{-},~{}\hat{h}_{k}=\begin{bmatrix}\hat{h}_{k}^{-}\\ \hat{h}_{\mathbf{v}_{k}}\end{bmatrix},\\ \hat{A}_{k}&=\begin{bmatrix}\hat{A}_{k}^{-}&0\\ 0&\hat{A}_{\mathbf{v}_{k}}\\ C\hat{G}_{k}^{-}&\hat{G}_{\mathbf{v}_{k}}\end{bmatrix},~{}\hat{b}_{k}=\begin{bmatrix}\hat{b}_{k}^{-}\\ \hat{b}_{\mathbf{v}_{k}}\\ y_{k}-\hat{c}_{\mathbf{v}_{k}}-C\hat{c}_{k}^{-}\end{bmatrix}.\end{split} (21)

The proof of (20) and (21) is straightforward from [24], by rewriting (4) as 𝐱k|y0:k={xk𝐱k|y0:k1:Cxk{yk}+𝐯k}\llbracket\mathbf{x}_{k}|y_{0:k}\rrbracket=\{x_{k}\in\llbracket\mathbf{x}_{k}|y_{0:k-1}\rrbracket\colon Cx_{k}\in\{y_{k}\}+\llbracket-\mathbf{v}_{k}\rrbracket\}.

Now, we are ready to design the OIT-CZ SMF (see Algorithm 3), where Proposition 3 plays an important role.

Proposition 3.

The image of a constrained zonotope 𝒵^i=Z(G^i,c^i,A^i,b^i,h^i)\hat{\mathcal{Z}}_{i}^{-}=Z(\hat{G}_{i}^{-},\hat{c}_{i}^{-},\hat{A}_{i}^{-},\hat{b}_{i}^{-},\hat{h}_{i}^{-}) under the filtering map Fk,iF_{k,i} is

𝒵k=Fk,i(𝒵^i)=Z(G^k,c^k,A^k,b^k,h^k),\mathcal{Z}_{k}=F_{k,i}(\hat{\mathcal{Z}}_{i}^{-})=Z(\hat{G}_{k},\hat{c}_{k},\hat{A}_{k},\hat{b}_{k},\hat{h}_{k}), (22)

where the parameters are given in (23) with b^yl=ylc^𝐯lCc^l\hat{b}_{y_{l}}=y_{l}-\hat{c}_{\mathbf{v}_{l}}-C\hat{c}_{l}^{-} and c^l=Alic^i+r=il1Al1rBc^𝐰r\hat{c}_{l}^{-}=A^{l-i}\hat{c}_{i}^{-}+\sum_{r=i}^{l-1}A^{l-1-r}B\hat{c}_{\mathbf{w}_{r}} for ilki\leq l\leq k.

G^k=[AkiG^i0Aki1BG^𝐰i0BG^𝐰k10],c^k=Akic^i+r=ik1Ak1rBc^𝐰r,A^k=[A^i000000A^𝐯i0000CG^iG^𝐯i000000A^𝐰i000000A^𝐯i+100CAG^i0CBG^𝐰iG^𝐯i+1000000A^𝐰k1000000A^𝐯kCAkiG^i0CAki1BG^𝐰i0CBG^𝐰k1G^𝐯k],b^k=[b^ib^𝐯ib^yib^𝐰ib^𝐯i+1b^yi+1b^𝐰k1b^𝐯kb^yk],h^k=[h^ih^𝐯ih^𝐰ih^𝐯i+1h^𝐰k1h^𝐯k].\begin{split}\hat{G}_{k}&=\begin{bmatrix}A^{k-i}\hat{G}_{i}^{-}&0&A^{k-i-1}B\hat{G}_{\mathbf{w}_{i}}&0&\ldots&B\hat{G}_{\mathbf{w}_{k-1}}&0\end{bmatrix},\quad\hat{c}_{k}=A^{k-i}\hat{c}_{i}^{-}+\sum_{r=i}^{k-1}A^{k-1-r}B\hat{c}_{\mathbf{w}_{r}},\\ \hat{A}_{k}&=\begin{bmatrix}\hat{A}_{i}^{-}&0&0&0&\ldots&0&0\\ 0&\hat{A}_{\mathbf{v}_{i}}&0&0&\ldots&0&0\\ C\hat{G}_{i}^{-}&\hat{G}_{\mathbf{v}_{i}}&0&0&\ldots&0&0\\ 0&0&\hat{A}_{\mathbf{w}_{i}}&0&\ldots&0&0\\ 0&0&0&\hat{A}_{\mathbf{v}_{i+1}}&\ldots&0&0\\ CA\hat{G}_{i}^{-}&0&CB\hat{G}_{\mathbf{w}_{i}}&\hat{G}_{\mathbf{v}_{i+1}}&\ldots&0&0\\ \vdots&\vdots&\vdots&\vdots&&\vdots&\vdots\\ 0&0&0&0&\ldots&\hat{A}_{\mathbf{w}_{k-1}}&0\\ 0&0&0&0&\ldots&0&\hat{A}_{\mathbf{v}_{k}}\\ CA^{k-i}\hat{G}_{i}^{-}&0&CA^{k-i-1}B\hat{G}_{\mathbf{w}_{i}}&0&\ldots&CB\hat{G}_{\mathbf{w}_{k-1}}&\hat{G}_{\mathbf{v}_{k}}\end{bmatrix},\quad\hat{b}_{k}=\begin{bmatrix}\hat{b}_{i}^{-}\\ \hat{b}_{\mathbf{v}_{i}}\\ \hat{b}_{y_{i}}\\ \hat{b}_{\mathbf{w}_{i}}\\ \hat{b}_{\mathbf{v}_{i+1}}\\ \hat{b}_{y_{i+1}}\\ \vdots\\ \hat{b}_{\mathbf{w}_{k-1}}\\ \hat{b}_{\mathbf{v}_{k}}\\ \hat{b}_{y_{k}}\end{bmatrix},\quad\hat{h}_{k}=\begin{bmatrix}\hat{h}_{i}^{-}\\ \hat{h}_{\mathbf{v}_{i}}\\ \hat{h}_{\mathbf{w}_{i}}\\ \hat{h}_{\mathbf{v}_{i+1}}\\ \vdots\\ \hat{h}_{\mathbf{w}_{k-1}}\\ \hat{h}_{\mathbf{v}_{k}}\end{bmatrix}.\end{split} (23)
Proof.

By setting 𝒵^i=𝐱^i|y0:i1\hat{\mathcal{Z}}_{i}^{-}=\llbracket\hat{\mathbf{x}}_{i}|y_{0:i-1}\rrbracket and recursively using the prediction and update steps [i.e., (20) and (21)] according to (7), equation (22) can be derived. ∎

Algorithm 3 OIT-Inspired Constrained Zonotopic SMF (OIT-CZ SMF)
1:Initialization: Bounded constrained zonotope 𝐱^0=Z(G^0,c^0,A^0,b^0,h^0)n\llbracket\hat{\mathbf{x}}_{0}\rrbracket=Z(\hat{G}_{0}^{-},\hat{c}_{0}^{-},\hat{A}_{0}^{-},\hat{b}_{0}^{-},\hat{h}_{0}^{-})\subset\mathbb{R}^{n}, δ¯max{μo1+nλ0o,1}\bar{\delta}\geq\max\{\mu_{o}-1+n_{\lambda_{0}^{o}},1\}, ε>0\varepsilon>0, Υ=infγ(ρ(A~o¯),1)max{γkA~o¯k:k0}1γ\Upsilon_{\infty}=\inf_{\gamma\in(\rho(\tilde{A}_{\bar{o}}),1)}\frac{\max\{\gamma^{-k}\|\tilde{A}_{\bar{o}}^{k}\|_{\infty}\colon k\in\mathbb{N}_{0}\}}{1-\gamma};
2:if k<δ¯k<\bar{\delta} then
3:    𝒵k=𝐱^k|y0:k\mathcal{Z}_{k}=\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket\leftarrow Algorithm 1 with (19)-(21);
4:    if 𝒵k=\mathcal{Z}_{k}=\emptyset then
5:        𝒵k\mathcal{Z}_{k}\leftarrow (22) with i=0i=0 and 𝒵0=P1(θ[0no]×𝐱~^0o¯)\mathcal{Z}_{0}^{-}=P^{-1}\big{(}\mathcal{B}_{\theta}^{\infty}[0_{n_{o}}]\times\llbracket\hat{\tilde{\mathbf{x}}}_{0}^{\bar{o}}\rrbracket\big{)}, where θ>0\theta>0 is sufficiently large such that 𝒵k\mathcal{Z}_{k}\neq\emptyset;     
6:    𝒯^ko¯Z(Ino,c¯ko¯,[],[],G¯ko¯1no)=IH¯(𝒵~k,o¯)\hat{\mathcal{T}}_{k}^{\bar{o}}\leftarrow Z(I_{n_{o}},\overline{c}_{k}^{\bar{o}},[~{}],[~{}],\overline{G}_{k}^{\bar{o}}1_{n_{o}})=\overline{\mathrm{IH}}(\widetilde{\mathcal{Z}}_{k}^{-,\bar{o}});
7:else
8:    𝒵k\mathcal{Z}_{k}\leftarrow (22) with i=kδ¯i=k-\bar{\delta} and 𝒵^i=P1(𝒯^kδ¯o×𝒯^kδ¯o¯)\hat{\mathcal{Z}}_{i}^{-}=P^{-1}\big{(}\hat{\mathcal{T}}_{k-\bar{\delta}}^{o}\!\times\!\hat{\mathcal{T}}_{k-\bar{\delta}}^{\bar{o}}\big{)}, where 𝒯^kδ¯o=θ¯k[center(PoIH¯(𝒵kδ¯))]\hat{\mathcal{T}}_{k-\bar{\delta}}^{o}=\mathcal{B}_{\bar{\theta}_{k}}^{\infty}\big{[}\mathrm{center}\big{(}P_{o}\overline{\mathrm{IH}}(\mathcal{Z}_{k-\bar{\delta}}^{-})\big{)}\big{]} for kδ¯<δ¯k-\bar{\delta}<\bar{\delta} and 𝒯^kδ¯o=PoIH¯(𝒵kδ¯)\hat{\mathcal{T}}_{k-\bar{\delta}}^{o}=P_{o}\overline{\mathrm{IH}}(\mathcal{Z}_{k-\bar{\delta}}^{-}) for kδ¯δ¯k-\bar{\delta}\geq\bar{\delta};
9:    Z(Ino,c^kin,[],[],G^kin1no)=IH¯(A~21𝒵~koB~o¯𝐰k)Z(I_{n_{o}},\hat{c}_{k}^{\mathrm{in}},[~{}],[~{}],\hat{G}_{k}^{\mathrm{in}}1_{n_{o}})=\overline{\mathrm{IH}}(\tilde{A}_{21}\widetilde{\mathcal{Z}}_{k}^{o}\oplus\tilde{B}_{\bar{o}}\llbracket\mathbf{w}_{k}\rrbracket);
10:    k=max{G^kin,k1}\ell_{k}=\max\{\|\hat{G}_{k}^{\mathrm{in}}\|_{\infty},\ell_{k-1}\}, with δ¯1=0\ell_{\bar{\delta}-1}=0;
11:    c^k+1o¯=A~o¯c^ko¯+c^kin\hat{c}_{k+1}^{\bar{o}}=\tilde{A}_{\bar{o}}\hat{c}_{k}^{\bar{o}}+\hat{c}_{k}^{\mathrm{in}}, with c^δ¯o¯=center(IH¯(𝒵~δ¯o¯))\hat{c}_{\bar{\delta}}^{\bar{o}}=\mathrm{center}\big{(}\overline{\mathrm{IH}}(\widetilde{\mathcal{Z}}_{\bar{\delta}}^{\bar{o}})\big{)};
12:    𝒯^ko¯=αk[c^ko¯]\hat{\mathcal{T}}_{k}^{\bar{o}}\!=\!\mathcal{B}_{\alpha_{k}}^{\infty}[\hat{c}_{k}^{\bar{o}}] with αk=12Ao¯kδ¯d(𝒵~δ¯o¯)+Υk1+ε\alpha_{k}\!=\!\frac{1}{2}\|A_{\bar{o}}^{k-\bar{\delta}}\|_{\infty}d_{\infty}\!(\widetilde{\mathcal{Z}}_{\bar{\delta}}^{\bar{o}})+\!\Upsilon_{\infty}\ell_{k-1}\!+\!\varepsilon;

Algorithm 3 is under the framework of Algorithm 2, and we provide the line-by-line explanation as follows.

  • Line 1 initializes Algorithm 3, with the additional parameters δ¯max{μo1+nλ0o,1}\bar{\delta}\geq\max\{\mu_{o}-1+n_{\lambda_{0}^{o}},1\} and ε>0\varepsilon>0 that: a larger δ¯\bar{\delta} leads to higher accuracy but increases the complexity (determined by Line 8); a smaller ε\varepsilon makes the estimate corresponding to the unobservable system more accurate but brings slower convergence of (24) [indicated by Line 12 and (88)]. Line 1 also gives an important constant Υ\Upsilon_{\infty} in estimating the unobservable state (see Line 8 with Line 12).171717Note that max{γkA~o¯k:k0}\max\{\gamma^{-k}\|\tilde{A}_{\bar{o}}^{k}\|_{\infty}\colon k\in\mathbb{N}_{0}\} can be calculated within finite steps (implied by the proof of Lemma 4). Thus, Υ\Upsilon_{\infty} can be computed by searching γ\gamma over (ρ(A~o¯),1)(\rho(\tilde{A}_{\bar{o}}),1).

  • Lines 3-6 are for k<δ¯k<\bar{\delta}. Similarly to Lines 3 and 5 of Algorithm 2, Lines 3 and 5 of Algorithm 3 give the estimate 𝒵k\mathcal{Z}_{k}: Line 3 gives the estimate returned by the constrained zonotopic version of Algorithm 1, i.e., with (19)-(21); in Line 5, θ[0no]\mathcal{B}_{\theta}^{\infty}[0_{n_{o}}] can be expressed by Z(Ino,0no,[],[],α1no)Z(I_{n_{o}},0_{n_{o}},[~{}],[~{}],\alpha 1_{n_{o}}) for improving the numerical stability, where InoI_{n_{o}} is the identity matrix of size non_{o} and 1no1_{n_{o}} is the non_{o}-dimensional all-ones column vector; one can double θ\theta from θ=1\theta=1 until 𝒵k\mathcal{Z}_{k}\neq\emptyset, and this can be done in finite steps. Line 6 calculates the interval hull of 𝒵~k,o¯\widetilde{\mathcal{Z}}_{k}^{-,\bar{o}} by simply solving 2no2n_{o} linear programmings, where G¯ko¯\overline{G}_{k}^{\bar{o}} and c¯ko¯\overline{c}_{k}^{\bar{o}} are the generator matrix and the center of the resulting interval hull, respectively, and Z(Ino,c¯ko¯,[],[],G¯ko¯1no)Z(I_{n_{o}},\overline{c}_{k}^{\bar{o}},[~{}],[~{}],\overline{G}_{k}^{\bar{o}}1_{n_{o}}) is employed to improve the numerical stability; note that 𝒵~k,o¯\widetilde{\mathcal{Z}}_{k}^{-,\bar{o}} is the projection of 𝒵~k=P𝒵k\widetilde{\mathcal{Z}}_{k}^{-}=P\mathcal{Z}_{k}^{-} to the subspace w.r.t. x~ko¯\tilde{x}_{k}^{\bar{o}}, where 𝒵k\mathcal{Z}_{k}^{-} is derived during the processing of calculating 𝒵k\mathcal{Z}_{k} in Line 3 or Line 5.

  • Lines 8-12 are for kδ¯k\geq\bar{\delta}, where 𝒵~ko\tilde{\mathcal{Z}}_{k}^{o} and 𝒵~ko¯\tilde{\mathcal{Z}}_{k}^{\bar{o}} are the projections of 𝒵~k=P𝒵k\widetilde{\mathcal{Z}}_{k}=P\mathcal{Z}_{k} to the subspaces w.r.t. x~ko\tilde{x}_{k}^{o} and x~ko¯\tilde{x}_{k}^{\bar{o}}, respectively. Line 8 of Algorithm 3 gives the estimate 𝒵k\mathcal{Z}_{k}, which is a finite-horizon version of Line 7 of Algorithm 2 over the time window [kδ¯,k][k-\bar{\delta},~{}k]. In Line 8, θ¯k\bar{\theta}_{k} is derived based on Lemma 1,181818When utilizing Lemma 1, one should regard kδ¯k-\bar{\delta}, θ¯k[center(PoIH¯(𝒵kδ¯))]\mathcal{B}_{\bar{\theta}_{k}}^{\infty}\big{[}\mathrm{center}\big{(}P_{o}\overline{\mathrm{IH}}(\mathcal{Z}_{k-\bar{\delta}}^{-})\big{)}\big{]}, and 𝒯^kδ¯o¯\hat{\mathcal{T}}_{k-\bar{\delta}}^{\bar{o}} as 0, θ¯k[c^0o]\mathcal{B}_{\bar{\theta}_{k}}^{\infty}[\hat{c}_{0}^{o}], and 𝐱~^0o¯\llbracket\hat{\tilde{\mathbf{x}}}_{0}^{\bar{o}}\rrbracket, respectively. For θ¯k\bar{\theta}_{k}, one can double θk\theta_{k} from θk=1\theta_{k}=1 until the equality in (18) holds, where the equality can be checked by calculating interval hulls. and from Algorithm 3 we can observe that 𝒯^kδ¯o¯\hat{\mathcal{T}}_{k-\bar{\delta}}^{\bar{o}} is calculated by Line 6 (for kδ¯<δ¯k-\bar{\delta}<\bar{\delta}) and Lines 9-12 (for kδ¯δ¯k-\bar{\delta}\geq\bar{\delta}).191919In Line 8, we can replace 𝒵kδ¯\mathcal{Z}_{k-\bar{\delta}}^{-} with 𝒵kδ¯\mathcal{Z}_{k-\bar{\delta}} to improve the efficiency when IH¯(𝒵kδ¯)\overline{\mathrm{IH}}(\mathcal{Z}_{k-\bar{\delta}}) is calculated (see Section 7.2). Line 9 gives the interval hull of the “input” of the unobservable subsystem, where c^kin\hat{c}_{k}^{\mathrm{in}} is the center of the resulting interval hull and G^kin\hat{G}_{k}^{\mathrm{in}} is diagonal and positive semi-definite. In Line 10, G^kin\|\hat{G}_{k}^{\mathrm{in}}\|_{\infty} represents the maximum half-edge length of the interval hull derived by Line 9. Thus, k\ell_{k} records the greatest maximum half-edge length up to kk, which determines the radius (in the sense of \infty-norm) of 𝒯^kδ¯o¯\hat{\mathcal{T}}_{k-\bar{\delta}}^{\bar{o}} [see Line 12, where d(𝒮):=sups,s𝒮ssd_{\infty}(\mathcal{S}):=\sup_{s,s^{\prime}\in\mathcal{S}}\|s-s^{\prime}\|_{\infty}]; for the center of 𝒯^kδ¯o¯\hat{\mathcal{T}}_{k-\bar{\delta}}^{\bar{o}}, it is calculated by Line 11.

The following theorem describes not only the stability w.r.t. the initial condition but also two important properties of Algorithm 3. More specifically, for detectable (A,C)(A,C): the finite-time inclusion property fixes the “outer boundedness breaking” problem in the classical linear SMFing framework (see Remark 3); the uniform boundedness of 𝒵k\mathcal{Z}_{k} is guaranteed, i.e., the estimate cannot go unbounded as time elapses – to the best of our knowledge it is the first time to propose a constrained-zonotopic SMF with rigorously proven uniform boundedness.

Theorem 4 (Properties of OIT-CZ SMF).

If (A,C)(A,C) is detectable, the OIT-CZ SMF in Algorithm 3 is stable w.r.t. the initial condition. Furthermore, there exists a k¯2δ¯\underline{k}\geq 2\bar{\delta} such that

𝒵k𝐱k|y0:k,kk¯,\mathcal{Z}_{k}\supseteq\llbracket\mathbf{x}_{k}|y_{0:k}\rrbracket,\quad k\geq\underline{k}, (24)

which is the finite-time inclusion property of Algorithm 3. Finally, 𝒵k\mathcal{Z}_{k} is uniformly bounded w.r.t. k0k\in\mathbb{N}_{0}.

Proof.

See Appendix H. ∎

Furthermore, Algorithm 3 has low computational complexity per step, especially when the system is observable: the averaged complexity for kk\to\infty is determined by the case with kδ¯k\geq\bar{\delta} (i.e., Lines 8-12 in Algorithm 3); for observable (A,C)(A,C), only Line 8 remains, and we can also set 𝒵kδ¯=n=[0n]\mathcal{Z}_{k-\bar{\delta}}^{-}=\mathbb{R}^{n}=\mathcal{B}_{\infty}^{\infty}[0_{n}]; from (23) we know that In Section 7.2.2, we show that Algorithm 3 has higher time efficiency compared with two most efficient constrained zonotopic SMFs in the toolbox CORA 2024 [1].

In terms of the accuracy, Algorithm 3 can be regarded as a reduction on the optimal estimate in Algorithm 1 with constrained zonotopic descriptions. Different from the existing reduction methods (e.g., [24]) based on geometric properties of constrained zonotopes, Algorithm 3 utilizes the properties of the dynamical system. Thus, the reduction is in a long-term manner instead of a greedy/instanetous manner, which greatly overcomes the wrapping effect. Therefore, the proposed OIT-CZ SMF has the desired performance improvement in terms of both complexity and accuracy.

7 Numerical Examples

7.1 Classical and Stability-Guaranteed Frameworks

In this subsection, we consider observable and detectable dynamical systems as illustrative examples to validate the theoretical results in Section 4 and Section 5.

Refer to caption
Refer to caption
Refer to caption
Figure 2: Illustrative example for observable (A,C)(A,C): (a) initial conditions and the true initial set at k=0k=0, (b) posterior sets and the true set 𝐱1|y0:1\llbracket\mathbf{x}_{1}|y_{0:1}\rrbracket at k=1k=1, (c) posterior sets, the true set 𝐱6|y0:6\llbracket\mathbf{x}_{6}|y_{0:6}\rrbracket, and the OIT (see Definition 6) at k=6k=6. Alice and Bob know that by Proposition 4, the initial condition should include 𝐱0\llbracket\mathbf{x}_{0}\rrbracket to safely make Algorithm 1 stable w.r.t. the initial condition: Alice has a good knowledge of 𝐱0\llbracket\mathbf{x}_{0}\rrbracket and she chooses 𝐱^0a=[0,4]×[0,4]\llbracket\hat{\mathbf{x}}_{0}^{\mathrm{a}}\rrbracket=[0,4]\times[0,4] as the initial condition; Bob does not know as much as Alice, but he can make sure that 𝐱0\llbracket\mathbf{x}_{0}\rrbracket is within [4,4]×[4,4]=𝐱^0b[-4,4]\times[-4,4]=\llbracket\hat{\mathbf{x}}_{0}^{\mathrm{b}}\rrbracket [see (a)]. Carol knows that by Theorem 3, Algorithm 2 is always stable w.r.t. the initial condition, and thus Carol chooses 𝐱^0c=[1,1]×[1,1]\llbracket\hat{\mathbf{x}}_{0}^{\mathrm{c}}\rrbracket=[-1,1]\times[-1,1] as the initial condition [in fact, 𝐱^0c𝐱0\llbracket\hat{\mathbf{x}}_{0}^{\mathrm{c}}\rrbracket\not\supseteq\llbracket\mathbf{x}_{0}\rrbracket, see (a)]. David chooses 𝐱^0d=[2,2]×[2,2]\llbracket\hat{\mathbf{x}}_{0}^{\mathrm{d}}\rrbracket=[-2,2]\times[-2,2] as the initial condition while using Algorithm 1 [note that 𝐱^0d𝐱0\llbracket\hat{\mathbf{x}}_{0}^{\mathrm{d}}\rrbracket\not\supseteq\llbracket\mathbf{x}_{0}\rrbracket, see (a)]. At k=1k=1, the estimates given by Alice, Bob, and Carol contain the true set, with 𝐱^1c|y0:1𝐱^1b|y0:1𝐱^1a|y0:1𝐱1|y0:1\llbracket\hat{\mathbf{x}}_{1}^{\mathrm{c}}|y_{0:1}\rrbracket\supset\llbracket\hat{\mathbf{x}}_{1}^{\mathrm{b}}|y_{0:1}\rrbracket\supset\llbracket\hat{\mathbf{x}}_{1}^{\mathrm{a}}|y_{0:1}\rrbracket\supset\llbracket\mathbf{x}_{1}|y_{0:1}\rrbracket; David provides the smallest estimate, but 𝐱^1d|y0:1\llbracket\hat{\mathbf{x}}_{1}^{\mathrm{d}}|y_{0:1}\rrbracket is inside 𝐱1|y0:1\llbracket\mathbf{x}_{1}|y_{0:1}\rrbracket (actually, the estimate becomes empty at k=2k=2, i.e., 𝐱^2d|y0:2=\llbracket\hat{\mathbf{x}}_{2}^{\mathrm{d}}|y_{0:2}\rrbracket=\emptyset). At k=6k=6, except for 𝐱^6d|y0:6=\llbracket\hat{\mathbf{x}}_{6}^{\mathrm{d}}|y_{0:6}\rrbracket=\emptyset, all the posterior sets become the same (i.e., the estimation gap is 0), and equal the OIT with δ=2\delta=2 which gives a tight bound on the posterior sets.

Observable (A,C)(A,C): Consider a discretized second-order system described by (1) and (2), with parameters

A=[1101],B=[0.51],C=[10],𝐰k=[1,1],𝐯k=[1,1],A=\begin{bmatrix}1&1\\ 0&1\end{bmatrix},\quad B=\begin{bmatrix}0.5\\ 1\end{bmatrix},\quad C=\begin{bmatrix}1&0\end{bmatrix},\\ \llbracket\mathbf{w}_{k}\rrbracket=[-1,1],\quad\llbracket\mathbf{v}_{k}\rrbracket=[-1,1], (25)

which means AA is not Schur stable and (A,C)(A,C) is observable with μ=2\mu=2. The true initial set is 𝐱0=[1,3]×[1,3]\llbracket\mathbf{x}_{0}\rrbracket=[1,3]\times[1,3].202020The probability distributions of uncertain variables 𝐱0,𝐰0:k,𝐯0:k\mathbf{x}_{0},\mathbf{w}_{0:k},\mathbf{v}_{0:k} can be arbitrary for simulations. In Section 7, these uncertain variables are set to be uniformly distributed in their ranges. The Matlab codes for all results in this paper are provided at https://github.com/congyirui/Stability-of-Linear-SMF-2024.

Assume that there are four designers Alice, Bob, Carol, and David to design SMFs for (25), and the true initial set 𝐱0\llbracket\mathbf{x}_{0}\rrbracket is unknown to them. Alice, Bob, and David employ the classical filtering framework in Algorithm 1, while Carol uses the OIT-inspired filtering framework in Algorithm 2, where P=I2P=I_{2}.212121Note that the exact solutions of Algorithm 1 and Algorithm 2 can be derived by employing halfspace-representation-based method with acceptable computational complexities. From Fig. 2, we can see that the difference of the initial conditions chosen by the first three designers are corrected by the measurements y0:6y_{0:6}, and the estimates converge to 𝐱6|y0:6\llbracket\mathbf{x}_{6}|y_{0:6}\rrbracket; thus, the estimation gaps of these three filters are 0 for k6k\geq 6; this implies the estimation gaps are bounded for k0k\in\mathbb{N}_{0} which corroborates the results in Theorem 2 and Theorem 3. In contrast, the initial condition chosen by David does not satisfy condition (i) in Theorem 2, and the resulting estimate becomes empty as time elapses.

Detectable (A,C)(A,C): Consider the system with

A=[0.5101],B=[0.51],C=[01],𝐰k=[1,1],𝐯k=[1,1],A=\begin{bmatrix}0.5&1\\ 0&1\end{bmatrix},\quad B=\begin{bmatrix}0.5\\ 1\end{bmatrix},\quad C=\begin{bmatrix}0&1\end{bmatrix},\\ \llbracket\mathbf{w}_{k}\rrbracket=[-1,1],\quad\llbracket\mathbf{v}_{k}\rrbracket=[-1,1], (26)

which implies AA is not Schur stable and (A,C)(A,C) is detectable with μo=1\mu_{o}=1. The true initial set is 𝐱0=[1,3]×[1,3]\llbracket\mathbf{x}_{0}\rrbracket=[1,3]\times[1,3].

The initial conditions chosen by Alice, Bob, Carol, and David are identical to those in Fig. 2, where Algorithm 2 is with P=[0110]P=\left[\begin{smallmatrix}0&1\\ -1&0\end{smallmatrix}\right]. Fig. 3 corroborates the theoretical results in Theorem 2 and Theorem 3, where the estimation gaps corresponding to non-empty estimates are bounded; more specifically, they converge to 0 exponentially fast.

Refer to caption
Figure 3: Diameters and estimation gaps for detectable (A,C)(A,C) in one simulation run. For the first three designers, d(𝐱^ka|y0:k)d(\llbracket\hat{\mathbf{x}}_{k}^{\mathrm{a}}|y_{0:k}\rrbracket), d(𝐱^kb|y0:k)d(\llbracket\hat{\mathbf{x}}_{k}^{\mathrm{b}}|y_{0:k}\rrbracket), and d(𝐱^kc|y0:k)d(\llbracket\hat{\mathbf{x}}_{k}^{\mathrm{c}}|y_{0:k}\rrbracket) are bounded and converge to d(𝐱k|y0:k)d(\llbracket\mathbf{x}_{k}|y_{0:k}\rrbracket); the estimation gaps converge to 0 exponentially fast. For the last designer, d(𝐱^kd|y0:k)=0d(\llbracket\hat{\mathbf{x}}_{k}^{\mathrm{d}}|y_{0:k}\rrbracket)=0 from k=2k=2 (due to 𝐱^2d|y0:2=\llbracket\hat{\mathbf{x}}_{2}^{\mathrm{d}}|y_{0:2}\rrbracket=\emptyset).

7.2 The Stable and Fast Constrained Zonotopic SMF

Firstly, we use Monte Carlo simulation to test the OIT-CZ SMF in Section 7.2.1; then, we show the time efficiency of the OIT-CZ SMF in Section 7.2.2.

7.2.1 Interval hull of the estimate

In this part, we employ the OIT-CZ SMF to derive the interval hull of the estimate.

First, consider the randomly generated (A,B,C)(A,B,C) (by using drss function in MATLAB) with observable (A,C)(A,C). The process and measurement noises are with 𝐰k=[1,1]p\llbracket\mathbf{w}_{k}\rrbracket=[-1,1]^{p} and 𝐯k=[1,1]m\llbracket\mathbf{v}_{k}\rrbracket=[-1,1]^{m}. The true initial set is 𝐱0=[10,10]n\llbracket\mathbf{x}_{0}\rrbracket=[-10,10]^{n}, and the initial condition is 𝐱^0=[10,10]n{c}\llbracket\hat{\mathbf{x}}_{0}\rrbracket=[-10,10]^{n}\oplus\{c\}, where cc is randomly generated in [1,1]n[-1,1]^{n} for testing Algorithm 3. In the simulations, we set n=10n=10, p=m{5,,10}p=m\in\{5,\ldots,10\}, and δ¯=nrank(C)+3>μ1\bar{\delta}=n-\mathrm{rank}(C)+3>\mu-1 (in Algorithm 3); for each p=mp=m, the simulations are conducted 10001000 times. The results are shown in Fig. 4, where one of the simulation runs is highlighted by the (yellow) dash-dotted lines with the (purple) stars representing: 𝒵k=\mathcal{Z}_{k}=\emptyset holds in Line 4 of Algorithm 3 and Line 5 derives a non-empty 𝒵k\mathcal{Z}_{k} by resetting 𝒵0\mathcal{Z}_{0}^{-}. We can see that the proposed OIT-CZ SMF is stable and uniformly bounded, which corroborates the theoretical results in Theorem 4.

Refer to caption
Refer to caption
Figure 4: The diameter of the estimate 𝒵k\mathcal{Z}_{k} and a bound on the estimation gap dkg(𝒵k)d_{k}^{\mathrm{g}}(\mathcal{Z}_{k}) for OIT-CZ SMF, in the sense of \infty-norm. (a) observable (A,C)(A,C), (b) detectable (A,C)(A,C). The bound on dkg(𝒵k)d_{k}^{\mathrm{g}}(\mathcal{Z}_{k}) is dH(𝒵k,{xk}):=supx^k𝒵kx^kxkd_{\mathrm{H}}^{\infty}(\mathcal{Z}_{k},\{x_{k}\}):=\sup_{\hat{x}_{k}\in\mathcal{Z}_{k}}\|\hat{x}_{k}-x_{k}\|_{\infty}, which can be easily calculated by supx^kIH¯(𝒵k)x^kxk\sup_{\hat{x}_{k}\in\overline{\mathrm{IH}}(\mathcal{Z}_{k})}\|\hat{x}_{k}-x_{k}\|_{\infty}.

Second, consider the randomly generated (A,B,C)(A,B,C) (by using drss function in MATLAB) with detectable (A,C)(A,C). For the unobservable subsystem, A~o¯\tilde{A}_{\bar{o}} is a randomly created matrix with ρ(A~o¯)0.5\rho(\tilde{A}_{\bar{o}})\leq 0.5; each element in A~21\tilde{A}_{21} and B~o¯\tilde{B}_{\bar{o}} is randomly selected from [0,1][0,~{}1]. The transformation matrix PP is a randomly derived orthogonal matrix such that by (17): A=P1A~PA=P^{-1}\tilde{A}P, B=P1B~B=P^{-1}\tilde{B}, C=[C~o0]PC=[\tilde{C}_{o}~{}0]P are finally obtained. The sets 𝐰k\llbracket\mathbf{w}_{k}\rrbracket, 𝐯k\llbracket\mathbf{v}_{k}\rrbracket, 𝐱0\llbracket\mathbf{x}_{0}\rrbracket, and 𝐱^0\llbracket\hat{\mathbf{x}}_{0}\rrbracket the same as those in the simulations for observable (A,C)(A,C). Also, we set n=10n=10, no=p=m{7,8,9}n_{o}=p=m\in\{7,8,9\}, δ¯=norank(C~o)+3>μo1\bar{\delta}=n_{o}-\mathrm{rank}(\tilde{C}_{o})+3>\mu_{o}-1, and ε=0.001\varepsilon=0.001. for each no=p=mn_{o}=p=m, the simulations are conducted 10001000 times. The results are shown in Fig. 4, which validates the results in Theorem 4.

7.2.2 Time Efficiency

In this part, we set222222If 𝐱^0𝐱0\llbracket\hat{\mathbf{x}}_{0}\rrbracket\neq\llbracket\mathbf{x}_{0}\rrbracket, the classical algorithm can return an error due to the ill-posedness. 𝐱^0=𝐱0\llbracket\hat{\mathbf{x}}_{0}\rrbracket=\llbracket\mathbf{x}_{0}\rrbracket and compare the computation time (w.r.t. the constrained zonotopic description) of the proposed OIT-CZ SMF and two classical constrained zonotopic SMFs; these two classical SMFs are with the reduction methods girard and combastel in CORA 2024 [1], respectively. Consider the randomly generated observable systems same as those in Section 7.2.1, but with n=p=m{10,20,30}n=p=m\in\{10,20,30\}. We also set δ¯=nrank(C)+3\bar{\delta}=n-\mathrm{rank}(C)+3 in Algorithm 3. For these two classical SMFs, we set nc=1n_{c}=1 and the degrees-of-freedom order [24] od=(ngnc)/n=1o_{d}=(n_{g}-n_{c})/n=1. The simulations are conducted for 100100 runs over the time window [0,100][0,100] by using Matlab 2019b on a laptop with Intel Core [email protected] CPU, and the averaged computation time (per time step) is shown in Table 1. Note that the diameters in the sense of \infty-norm for SMF (girard), SMF (combastel), and OIT-CZ SMF are respectively: 14.890214.8902, 14.890214.8902, and 3.68783.6878 (when n=10n=10); 29.309829.3098, 29.137129.1371, and 4.75964.7596 (when n=20n=20); 37.230137.2301, 37.230137.2301, and 5.09115.0911 (when n=30n=30). These results show that the OIT-CZ SMF achieves significantly higher accuracy with several orders of magnitude reduction in computation time, as compared to the classical SMFs.

Table 1: Computation Time (per Time Step) for the Constrained Zonotopic Description
n=10n=10 n=20n=20 n=30n=30
SMF (girard) 0.58220.5822s 3.81033.8103s 11.970211.9702s
SMF (combastel) 0.58090.5809s 3.80143.8014s 11.954611.9546s
OIT-CZ SMF 0.00040.0004s 0.00060.0006s 0.00110.0011s

8 Conclusion

In this paper, the stability of the SMFs w.r.t. the initial condition has been studied for linear time-invariant systems. Specifically, the stability is given by the well-posedness and the bounded estimation gap. Based on our proposed OIT, we have analyzed the stability of the classical linear SMFing framework, where an explicit sufficient condition has been given. Then, we have provided a good necessary condition for the bounded estimation gap, which is very close to the sufficient condition. To avoid unstable filter design resulted from improper initial conditions, the OIT-inspired filtering framework has been established to guaranteed the stability. Under this new framework, we have developed the OIT-CZ SMF with guaranteed stability, uniform boundedness, high efficiency, and good accuracy.

References

  • [1] Althoff, M., Kochdumper, N., & Wetzlinger, M. CORA 2024 manual. 2024.
  • [2] Althoff, M. & Rath, J.J. Comparison of guaranteed state estimators for linear time-invariant systems. Automatica, 130:109662, Aug. 2021.
  • [3] Becis-Aubry, Y. Ellipsoidal constrained state estimation in presence of bounded disturbances. arXiv:2012.03267, 2021.
  • [4] Becis-Aubry, Y., Boutayeb, M., & Darouach, M.. State estimation in the presence of bounded disturbances. Automatica, 44(7):1867–1873, Jul. 2008.
  • [5] Chen, C.T. Linear System Theory and Design. New York, NY, USA: Oxford University Press, 3rd edition, 1999.
  • [6] Chen, J. & Gu, G. Control-oriented system identification: an HH_{\infty} approach. New York, NY, USA: John Wiley & Sons, 2000.
  • [7] Combastel, C. A state bounding observer based on zonotopes. In Proc. Eur. Control Conf. (ECC), pages 2589–2594, Sep. 2003.
  • [8] Combastel, C. Zonotopes and kalman observers: Gain optimality under distinct uncertainty paradigms and robust convergence. Automatica, 55:265–273, May 2015.
  • [9] Cong, Y., Zhou, X., & Kennedy, R.A. Finite blocklength entropy-achieving coding for linear system stabilization. IEEE Trans. Autom. Control, 66:153–167, Jan. 2021.
  • [10] Cong, Y., Wang, X., & Zhou, X. Rethinking the mathematical framework and optimality of set-membership filtering. IEEE Trans. Autom. Control, 67(5):2544–2551, May 2022.
  • [11] Fei, Z., Yang, L., Sun, X., & Ren, S. Zonotopic set-membership state estimation for switched systems with restricted switching. IEEE Trans. Autom. Control, 67(11):6127-6134, Nov. 2021.
  • [12] Jazwinski, A.H. Stochastic Processes and Filtering Theory. New York, USA: Academic Press, New York, NY, USA, 1970.
  • [13] Kalman, R.E. & Bucy, R.S. New results in linear filtering and prediction theory. J. Basic Eng., 83(1):95–108, 1961.
  • [14] Kühn, W. Rigorously computed orbits of dynamical systems without the wrapping effect. Computing, 61(1):47–67, Mar. 1998.
  • [15] Lewis, F., Xie, L., & Popa, D. Optimal and robust estimation: with an introduction to stochastic control theory. CRC Press, Boca Raton, FL, USA, 2ed. edition, 2007.
  • [16] Liu, Y., Zhao, Y., & Wu, F. Ellipsoidal state-bounding-based set-membership estimation for linear system with unknown-but-bounded disturbances. IET Control Theory & Appl., 10(4):431–442, Feb. 2016.
  • [17] Loukkas, N., Martinez, J.J., & Meslem, N. Set-membership observer design based on ellipsoidal invariant sets. IFAC-PapersOnLine, 50(1):6471–6476, Jul. 2017.
  • [18] Mazenc, F. & Bernard, O. Interval observers for linear time-invariant systems with disturbances. Automatica, 47(1):140–147, Jan. 2011.
  • [19] Milanese, M., Norton, J., Piet-Lahanier, H., & Walter, É. Bounding Approaches to System Identification. New York, NY, USA: Plenum Press, 1996.
  • [20] Milanese, M., Tempo, R., & Vicino, A. Robustness in Identification and Control. New York, NY, USA: Plenum Press, 1989.
  • [21] Nair, G.N. A nonstochastic information theory for communication and state estimation. IEEE Trans. Autom. Control, 58(6):1497–1510, Jun. 2013.
  • [22] Ocone, D. & Pardoux, E. Asymptotic stability of the optimal filter with respect to its initial condition. SIAM J. Control Optim., 34(1):226–243, 1996.
  • [23] Särkkä, S. Bayesian filtering and smoothing. Cambridge University Press, New York, NY, USA, 2013.
  • [24] Scott, J.K., Raimondo, D.M., Marseglia, G.R., & Braatz, R.D. Constrained zonotopes: A new tool for set-based estimation and fault detection. Automatica, 69:126–136, Jul. 2016.
  • [25] Shen, Q., Liu, J., Zhou, X., Zhao, Q., & Wang, Q. Low-complexity ISS state estimation approach with bounded disturbances. Int. J. Adaptive Control and Signal Process., 32(10):1473–1488, Aug. 2018.
  • [26] Handel, R. Filtering, stability, and robustness. PhD thesis, California Institute of Technology, 2006.
  • [27] Wang, Y., Puig, V., & Cembrano, G. Set-membership approach and kalman observer based on zonotopes for discrete-time descriptor systems. Automatica, 93:435–443, Jul. 2018.
  • [28] Wang, Y., Wang, Z., Puig, V., & Cembrano, G. Zonotopic set-membership state estimation for discrete-time descriptor LPV systems. IEEE Trans. Autom. Control, 64(5):2092–2099, Aug. 2019.
  • [29] Xu, F., Tan, J., Raïssi, T., & Liang, B. Design of optimal interval observers using set-theoretic methods for robust state estimation. Int. J. Robust and Nonlinear Control, 30(9):3692–3705, Jun. 2020.

Appendix A Proof of Proposition 1

We prove Proposition 1 by induction.

Base case: For k=0k=0, it follows from (4), (12), and (13) that 𝐱^k|y0:k=𝒪0,00\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket=\mathcal{O}_{0,0}\bigcap\mathcal{E}_{0}, i.e., (14) holds for k=0k=0.

Inductive step: Assume (14) holds for any k=k0k=k^{\prime}\in\mathbb{N}_{0}. For k=k+1k=k^{\prime}+1, the prior set is derived by (3) that

𝐱^k+1|y0:k=A𝐱k|y0:kB𝐰kA(i=0k𝒪k,ik)B𝐰k(a)i=0k(A𝒪k,iB𝐰k)(AkB𝐰k)=(b)i=0k𝒪k+1,ik+1,\begin{split}&\llbracket\hat{\mathbf{x}}_{k^{\prime}+1}|y_{0:k^{\prime}}\rrbracket=A\llbracket\mathbf{x}_{k^{\prime}}|y_{0:k^{\prime}}\rrbracket\oplus B\llbracket\mathbf{w}_{k^{\prime}}\rrbracket\\ &\subseteq A\bigg{(}\bigcap_{i=0}^{k^{\prime}}\mathcal{O}_{k^{\prime},i}\bigcap\mathcal{E}_{k^{\prime}}\bigg{)}\oplus B\llbracket\mathbf{w}_{k^{\prime}}\rrbracket\\ &\stackrel{{\scriptstyle(a)}}{{\subseteq}}\bigcap_{i=0}^{k^{\prime}}\left(A\mathcal{O}_{k^{\prime},i}\oplus B\llbracket\mathbf{w}_{k^{\prime}}\rrbracket\right)\bigcap\left(A\mathcal{E}_{k^{\prime}}\oplus B\llbracket\mathbf{w}_{k^{\prime}}\rrbracket\right)\\ &\stackrel{{\scriptstyle(b)}}{{=}}\bigcap_{i=0}^{k^{\prime}}\mathcal{O}_{k^{\prime}+1,i}\bigcap\mathcal{E}_{k^{\prime}+1},\end{split} (27)

where (a)(a) is established by (11), and (b)(b) is from the following two equations:

A𝒪k,iB𝐰k\displaystyle A\mathcal{O}_{k^{\prime},i}\oplus B\llbracket\mathbf{w}_{k^{\prime}}\rrbracket =(c)𝒪k+1,i,\displaystyle\stackrel{{\scriptstyle(c)}}{{=}}\mathcal{O}_{k^{\prime}+1,i}, (28)
AkB𝐰k\displaystyle A\mathcal{E}_{k^{\prime}}\oplus B\llbracket\mathbf{w}_{k^{\prime}}\rrbracket =(d)k+1,\displaystyle\stackrel{{\scriptstyle(d)}}{{=}}\mathcal{E}_{k^{\prime}+1}, (29)

where (c)(c) and (d)(d) follow from h(i𝒮i)=ih(𝒮i)h^{*}\big{(}\sum_{i\in\mathcal{I}}\mathcal{S}_{i}\big{)}=\sum_{i\in\mathcal{I}}h^{*}(\mathcal{S}_{i}) for any linear map hh^{*}. By (27) and (4), the posterior set is outer bounded by

𝐱^k+1|y0:k+1=𝒳k+1(C,yk+1,𝐯k+1)𝐱^k+1|y0:k=𝒪k+1,k+1𝐱k+1|y0:ki=0k+1𝒪k+1,ik+1,\begin{split}&\llbracket\hat{\mathbf{x}}_{k^{\prime}+1}|y_{0:k^{\prime}+1}\rrbracket=\mathcal{X}_{k^{\prime}+1}(C,y_{k^{\prime}+1},\llbracket\mathbf{v}_{k^{\prime}+1}\rrbracket)\bigcap\llbracket\hat{\mathbf{x}}_{k^{\prime}+1}|y_{0:k^{\prime}}\rrbracket\\ &=\mathcal{O}_{k^{\prime}+1,k^{\prime}+1}\bigcap\llbracket\mathbf{x}_{k^{\prime}+1}|y_{0:k^{\prime}}\rrbracket\subseteq\bigcap_{i=0}^{k^{\prime}+1}\mathcal{O}_{k^{\prime}+1,i}\bigcap\mathcal{E}_{k^{\prime}+1},\end{split}

which implies (14) holds for k=k+1k=k^{\prime}+1. Thus, Proposition 1 is proven by induction. \square

Appendix B Proof of Theorem 1

To start with, we provide two lemmas as follows.

Lemma 2.

(Uniform Boundedness Invariance Under Linear Map) l\forall l\in\mathcal{I}, let the set 𝒯l,kn\mathcal{T}_{l,k}\subset\mathbb{R}^{n} be uniformly bounded w.r.t. k0k\in\mathbb{N}_{0}, and the linear map hlh_{l}^{*} be independent of kk. Then, lhl(𝒯l,k)\sum_{l\in\mathcal{I}}h_{l}^{*}(\mathcal{T}_{l,k}) is uniformly bounded w.r.t. k0k\in\mathbb{N}_{0}.

Proof.

Since l\forall l\in\mathcal{I}, 𝒯l,k\mathcal{T}_{l,k} is uniformly bounded w.r.t. k0k\in\mathbb{N}_{0}, there exists a d¯l\bar{d}_{l} such that d(𝒯l,k)d¯l,k0d(\mathcal{T}_{l,k})\leq\bar{d}_{l},\quad\forall k\in\mathbb{N}_{0}. Thus, l\forall l\in\mathcal{I}, the following holds for all k0k\in\mathbb{N}_{0}

d(hl(𝒯l,k))=supt,t𝒯l,khl(t)hl(t)hlsupt,t𝒯l,ktthld¯l,\begin{split}d(h_{l}^{*}(\mathcal{T}_{l,k}))&=\sup_{t,t^{\prime}\in\mathcal{T}_{l,k}}\|h_{l}^{*}(t)-h_{l}^{*}(t^{\prime})\|\\ &\leq\|h_{l}^{*}\|\sup_{t,t^{\prime}\in\mathcal{T}_{l,k}}\|t-t^{\prime}\|\leq\|h_{l}^{*}\|\bar{d}_{l},\end{split} (30)

where hl\|h_{l}^{*}\| is the operator norm of hlh_{l}^{*}. Now, we have k0k\in\mathbb{N}_{0},

d(lhl(𝒯l,k))(e)ld(hl(𝒯l,k))lhld¯l,\!\!\!d\bigg{(}\sum_{l\in\mathcal{I}}h_{l}^{*}(\mathcal{T}_{l,k})\bigg{)}\stackrel{{\scriptstyle(e)}}{{\leq}}\sum_{l\in\mathcal{I}}d(h_{l}^{*}(\mathcal{T}_{l,k}))\leq\sum_{l\in\mathcal{I}}\|h_{l}^{*}\|\bar{d}_{l}, (31)

where inequality (e)(e) can be easily obtained by using the following triangle inequality: for the sets l\mathcal{R}_{l} (ll\in\mathcal{I}),

d(ll)=suprl,rll,ll(rlrl)lsuprl,rlrlrl=ld(l).d\bigg{(}\sum_{l\in\mathcal{I}}\mathcal{R}_{l}\bigg{)}=\sup_{r_{l},r^{\prime}_{l}\in\mathcal{R}_{l},l\in\mathcal{I}}\|\sum_{l\in\mathcal{I}}(r_{l}-r^{\prime}_{l})\|\\ \leq\sum_{l\in\mathcal{I}}\sup_{r_{l},r^{\prime}_{l}}\|r_{l}-r^{\prime}_{l}\|=\sum_{l\in\mathcal{I}}d(\mathcal{R}_{l}). (32)

By (31), lhl(𝒯l,k)\sum_{l\in\mathcal{I}}h_{l}^{*}(\mathcal{T}_{l,k}) is uniformly bounded. ∎

Lemma 3 (Uniformly Bounded Intersection).

j{0,,δ}\forall j\in\{0,\ldots,\delta\} (δ0\delta\geq 0), let 𝒮j,kn\mathcal{S}_{j,k}\subset\mathbb{R}^{n} be any uniformly bounded set w.r.t. k0k\in\mathbb{N}_{0}. Then,

j=0δ[ran(D¯j)𝒮j,k]\bigcap_{j=0}^{\delta}\big{[}\mathrm{ran}(\bar{D}_{j})\oplus\mathcal{S}_{j,k}\big{]} (33)

is uniformly bounded w.r.t. k0k\in\mathbb{N}_{0} [recall that ran(D¯j)\mathrm{ran}(\bar{D}_{j}) returns the range space of matrix D¯jn×(nm)\bar{D}_{j}\in\mathbb{R}^{n\times(n-m)}], if

rank(DT)=n,\mathrm{rank}\left(D^{\mathrm{T}}\right)=n, (34)

where D=[D0Dδ]D=[D_{0}\ldots D_{\delta}], and Djn×mD_{j}\in\mathbb{R}^{n\times m} (j{0,,δ}j\in\{0,\ldots,\delta\}) satisfies ker(DjT)=ran(D¯j)\ker(D_{j}^{\mathrm{T}})=\mathrm{ran}(\bar{D}_{j}).

Proof.

This proof has three steps. In the first step, we prove the following equality holds:

j=0δ[ran(D¯j)𝒮j,k]=sk𝒮kj=0δ[ran(D¯j){sj,k}],\!\!\!\!\bigcap_{j=0}^{\delta}\big{[}\mathrm{ran}(\bar{D}_{j})\oplus\mathcal{S}_{j,k}\big{]}=\!\bigcup_{s_{k}\in\mathcal{S}_{k}}\bigcap_{j=0}^{\delta}\big{[}\mathrm{ran}(\bar{D}_{j})\oplus\{s_{j,k}\}\big{]}, (35)

where sk=[s0,kTsδ,kT]Ts_{k}=[s_{0,k}^{\mathrm{T}}\ldots s_{\delta,k}^{\mathrm{T}}]^{\mathrm{T}} and 𝒮k:=𝒮0,k××𝒮δ,k\mathcal{S}_{k}:=\mathcal{S}_{0,k}\times\cdots\times\mathcal{S}_{\delta,k} and ×\times stands for the Cartesian product. In the second step, we analyze j=0δ[ran(D¯j){sj,k}]\bigcap_{j=0}^{\delta}\big{[}\mathrm{ran}(\bar{D}_{j})\oplus\{s_{j,k}\}\big{]} from the perspective of solving linear equations. Afterwards, we complete this proof in the third step.

Step 1: Since ran(D¯j)𝒮j,k=sj,k𝒮j,k[ran(D¯j){sj,k}]=:sj,k𝒮j,k𝒯j,sj,k\mathrm{ran}(\bar{D}_{j})\oplus\mathcal{S}_{j,k}=\bigcup_{s_{j,k}\in\mathcal{S}_{j,k}}[\mathrm{ran}(\bar{D}_{j})\oplus\{s_{j,k}\}]=:\bigcup_{s_{j,k}\in\mathcal{S}_{j,k}}\mathcal{T}_{j,s_{j,k}}, we are readily to use distributive law of sets to get (35). Specifically, we have232323The readers can use mathematical induction to derive a rigorous proof. Due to the page limit, we omit it here.

j=0δsj,k𝒮j,k𝒯j,sj,k=(s0,k,,sδ,k)𝒮kj=0δ𝒯j,sj,k,\bigcap_{j=0}^{\delta}\bigcup_{s_{j,k}\in\mathcal{S}_{j,k}}\mathcal{T}_{j,s_{j,k}}=\bigcup_{(s_{0,k},\ldots,s_{\delta,k})\in\mathcal{S}_{k}}\bigcap_{j=0}^{\delta}\mathcal{T}_{j,s_{j,k}}, (36)

which means (35) holds.

Step 2: sk𝒮k\forall s_{k}\in\mathcal{S}_{k}, with ker(DjT)=ran(D¯j)\ker(D_{j}^{\mathrm{T}})=\mathrm{ran}(\bar{D}_{j}) we have

ran(D¯j){sj,k}={x:DjTx=DjTsj,k},j{0,,δ},\mathrm{ran}(\bar{D}_{j})\oplus\{s_{j,k}\}=\left\{x\colon D_{j}^{\mathrm{T}}x=D_{j}^{\mathrm{T}}s_{j,k}\right\},\quad j\in\{0,\ldots,{\delta}\},

which is the solution space of the linear equation DjTx=DjTsj,kD_{j}^{\mathrm{T}}x=D_{j}^{\mathrm{T}}s_{j,k}. Thus, we get

j=0δ[ran(D¯j){sj,k}]={x:DTx=s¯k},\bigcap_{j=0}^{\delta}\big{[}\mathrm{ran}(\bar{D}_{j})\oplus\{s_{j,k}\}\big{]}=\left\{x\colon D^{\mathrm{T}}x=\bar{s}_{k}\right\}, (37)

where s¯k=[s0,kTD0sδ,kTDδ]T\bar{s}_{k}=[s_{0,k}^{\mathrm{T}}D_{0}\ldots s_{\delta,k}^{\mathrm{T}}D_{\delta}]^{\mathrm{T}}. With (34), we know that DTx=s¯kD^{\mathrm{T}}x=\bar{s}_{k} has either a unique solution (DT)+s¯k(D^{\mathrm{T}})^{+}\bar{s}_{k} or no solution, i.e., j=0δ[ran(D¯j){sj,k}]\bigcap_{j=0}^{\delta}\big{[}\mathrm{ran}(\bar{D}_{j})\oplus\{s_{j,k}\}\big{]} at most contains one element. Hence, we have

j=0δ[ran(D¯j){sj,k}]={{(DT)+s¯k}sk𝒮k,otherwise,\bigcap_{j=0}^{\delta}\big{[}\mathrm{ran}(\bar{D}_{j})\oplus\{s_{j,k}\}\big{]}=\begin{cases}\left\{\left(D^{\mathrm{T}}\right)^{+}\bar{s}_{k}\right\}&s_{k}\in\mathcal{S}_{k}^{\neq\emptyset},\\ \emptyset&\mathrm{otherwise},\end{cases} (38)

where 𝒮k={sk𝒮k:{x:DTx=s¯k}}\mathcal{S}_{k}^{\neq\emptyset}=\left\{s_{k}\in\mathcal{S}_{k}\colon\left\{x\colon D^{\mathrm{T}}x=\bar{s}_{k}\right\}\neq\emptyset\right\}.

Step 3: With (38), we can rewrite (35) as follows

j=0δ[ran(D¯j)𝒮j,k]=sk𝒮k{(DT)+s¯k}=sk𝒮k{Hsk}=H𝒮k,\begin{split}\bigcap_{j=0}^{\delta}\big{[}\mathrm{ran}(\bar{D}_{j})\oplus\mathcal{S}_{j,k}\big{]}&=\bigcup_{s_{k}\in\mathcal{S}_{k}^{\neq\emptyset}}\left\{\left(D^{\mathrm{T}}\right)^{+}\bar{s}_{k}\right\}\\ &=\bigcup_{s_{k}\in\mathcal{S}_{k}^{\neq\emptyset}}\left\{Hs_{k}\right\}=H\mathcal{S}_{k}^{\neq\emptyset},\end{split} (39)

where H=(DT)+diag{D0T,,DδT}H=\left(D^{\mathrm{T}}\right)^{+}\mathrm{diag}\{D_{0}^{\mathrm{T}},\ldots,D_{\delta}^{\mathrm{T}}\}. As 𝒮k𝒮k\mathcal{S}_{k}^{\neq\emptyset}\subseteq\mathcal{S}_{k} is uniformly bounded242424This is because d(𝒮k)d(𝒮k)i=0δd2(𝒮i,k)d(\mathcal{S}_{k}^{\neq\emptyset})\leq d(\mathcal{S}_{k})\leq\sqrt{\sum_{i=0}^{\delta}d^{2}(\mathcal{S}_{i,k})}. and HH is a linear map independent of kk, j=0δ[ran(D¯j)𝒮j,k]\bigcap_{j=0}^{\delta}\big{[}\mathrm{ran}(\bar{D}_{j})\oplus\mathcal{S}_{j,k}\big{]} is uniformly bounded. ∎

Now, we prove Theorem 1. With (5), the observation-information set in (12) can be rewritten as

𝒪k,i=Akiker(C)AkiC+({yi}𝐯i)r=ik1Ak1rB𝐰r.\mathcal{O}_{k,i}=A^{k-i}\ker(C)\oplus A^{k-i}C^{+}(\{y_{i}\}\oplus\llbracket-\mathbf{v}_{i}\rrbracket)\\ \oplus\sum_{r=i}^{k-1}A^{k-1-r}B\llbracket\mathbf{w}_{r}\rrbracket. (40)

Thus, with (40), j=ik+δj=i-k+\delta, and l=ri+1l=r-i+1, we can rewrite the OIT in Definition 6 as

i=kδk𝒪k,i=j=0δ[Aδjker(C)𝒮j,k],\bigcap_{i=k-\delta}^{k}\mathcal{O}_{k,i}=\bigcap_{j=0}^{\delta}\left[A^{\delta-j}\ker(C)\oplus\mathcal{S}_{j,k}\right], (41)

where

𝒮j,k=AδjC+({ykδ+j}𝐯kδ+j)l=1δjAδjlB𝐰l+kδ+j1.\mathcal{S}_{j,k}=A^{\delta-j}C^{+}(\{y_{k-\delta+j}\}\oplus\llbracket-\mathbf{v}_{k-\delta+j}\rrbracket)\\ \oplus\sum_{l=1}^{\delta-j}A^{\delta-j-l}B\llbracket\mathbf{w}_{l+k-\delta+j-1}\rrbracket. (42)

Let C¯(nm)×n\bar{C}\in\mathbb{R}^{(n-m)\times n} such that ker(C)=ran(C¯T)\ker(C)=\mathrm{ran}(\bar{C}^{\mathrm{T}}). By Aδjker(C)=Aδjran(C¯T)=ran(AδjC¯T)=:ran(D¯j)A^{\delta-j}\ker(C)=A^{\delta-j}\mathrm{ran}(\bar{C}^{\mathrm{T}})=\mathrm{ran}(A^{\delta-j}\bar{C}^{\mathrm{T}})=:\mathrm{ran}(\bar{D}_{j}), (41) can be rewritten as

i=kδk𝒪k,i=j=0δ[ran(D¯j)𝒮j,k].\bigcap_{i=k-\delta}^{k}\mathcal{O}_{k,i}=\bigcap_{j=0}^{\delta}\left[\mathrm{ran}(\bar{D}_{j})\oplus\mathcal{S}_{j,k}\right]. (43)

Since d(𝐰k)dwd(\llbracket\mathbf{w}_{k}\rrbracket)\leq d_{w} and d(𝐯k)dvd(\llbracket\mathbf{v}_{k}\rrbracket)\leq d_{v}, we know that {ykδ+j}𝐯kδ+j\{y_{k-\delta+j}\}\oplus\llbracket-\mathbf{v}_{k-\delta+j}\rrbracket and 𝐰l+kδ+j1\llbracket\mathbf{w}_{l+k-\delta+j-1}\rrbracket (l{1,,δj}l\in\{1,\ldots,\delta-j\}) are uniformly bounded w.r.t. k0k\in\mathbb{N}_{0}. Hence, j{0,,δ}\forall j\in\{0,\ldots,\delta\}, by Lemma 2 𝒮j,k\mathcal{S}_{j,k} is uniformly bounded w.r.t. k0k\in\mathbb{N}_{0}. Now, the precondition of Lemma 3 is satisfied for (43). To guarantee the uniform boundedness of (43), we only need to prove condition (34) with ker(DjT)=ran(D¯j)\ker(D_{j}^{\mathrm{T}})=\mathrm{ran}(\bar{D}_{j}) in Lemma 3 holds, where DjT:=CAjδD_{j}^{\mathrm{T}}:=CA^{j-\delta}. The proof has two steps.

Step 1: Prove ker(DjT)=ran(D¯j)\ker(D_{j}^{\mathrm{T}})=\mathrm{ran}(\bar{D}_{j}). To be more specific, for non-singular AA, we show that

ker(DjT)=ker(CAjδ)=ran(AδjC¯T)=ran(D¯j),\ker(D_{j}^{\mathrm{T}})=\ker(CA^{j-\delta})=\mathrm{ran}(A^{\delta-j}\bar{C}^{\mathrm{T}})=\mathrm{ran}(\bar{D}_{j}), (44)

as follows: Firstly, we have

DjTD¯j=CAjδAδjC¯T=CC¯T=0,D_{j}^{\mathrm{T}}\bar{D}_{j}=CA^{j-\delta}A^{\delta-j}\bar{C}^{\mathrm{T}}=C\bar{C}^{\mathrm{T}}=0, (45)

which implies ran(D¯j)ker(DjT)\mathrm{ran}(\bar{D}_{j})\subseteq\ker(D_{j}^{\mathrm{T}}). Secondly, we check the rank of D¯j\bar{D}_{j} as follows

rank(D¯j)=rank(AδjC¯T)=rank(C¯T)=nrank(C)=nrank(CAjδ)=nrank(DjT),\mathrm{rank}(\bar{D}_{j})=\mathrm{rank}(A^{\delta-j}\bar{C}^{\mathrm{T}})=\mathrm{rank}(\bar{C}^{\mathrm{T}})=n-\mathrm{rank}(C)\\ =n-\mathrm{rank}(CA^{j-\delta})=n-\mathrm{rank}(D_{j}^{\mathrm{T}}), (46)

which combined with (45) gives (44).

Step 2: Prove (34). Since DjT=CAjδD_{j}^{\mathrm{T}}=CA^{j-\delta}, we have DT=OδD^{\mathrm{T}}=O_{\delta}, and the left-hand side of (34) equals

rank(Oδ)=rank([CCAδ]Aδ)=(f)n,\mathrm{rank}\left(O_{\delta}\right)=\mathrm{rank}\left(\begin{bmatrix}C\\ \vdots\\ CA^{\delta}\end{bmatrix}A^{-\delta}\right)\stackrel{{\scriptstyle(f)}}{{=}}n, (47)

where (f)(f) is established by observable (A,C)(A,C) and δμ1\delta\geq\mu-1 in Theorem 1.

Therefore, by Lemma 3, i=kδk𝒪k,i\bigcap_{i=k-\delta}^{k}\mathcal{O}_{k,i} in (43) is uniformly bounded w.r.t. kδμ1k\geq\delta\geq\mu-1.

Next, we prove equation (16). With (39) and 𝒮k𝒮k\mathcal{S}_{k}^{\neq\emptyset}\subseteq\mathcal{S}_{k}, we can rewrite (41) as

i=kδk𝒪k,iOδ+j=0δCAjδ𝒮j,k,\bigcap_{i=k-\delta}^{k}\mathcal{O}_{k,i}\subseteq O_{\delta}^{+}\prod_{j=0}^{\delta}CA^{j-\delta}\mathcal{S}_{j,k}, (48)

where \prod is the Cartesian product of the sequence of CAjδ𝒮j,kCA^{j-\delta}\mathcal{S}_{j,k} with the following form

CC+({ykδ+j}𝐯kδ+j)l=1δjCAlB𝐰l+kδ+j1.CC^{+}(\{y_{k-\delta+j}\}\oplus\llbracket-\mathbf{v}_{k-\delta+j}\rrbracket)\oplus\sum_{l=1}^{\delta-j}CA^{-l}B\llbracket\mathbf{w}_{l+k-\delta+j-1}\rrbracket.

Thus, noticing that CC+=1\|CC^{+}\|=1, Oδ+=1/σmin(Oδ+)\|O_{\delta}^{+}\|=1/\sigma_{\min}(O_{\delta}^{+}), and d({ykδ+j})=0d(\{y_{k-\delta+j}\})=0, we can get (16) from (48). \square

Appendix C Proof of Theorem 2

Firstly, we consider the stability for observable (A,C)(A,C), and a sufficient condition is provided in Proposition 4.

Proposition 4 (Stability of Observable Systems).

For observable (A,C)(A,C) and bounded 𝐱^0𝐱0\llbracket\hat{\mathbf{x}}_{0}\rrbracket\supseteq\llbracket\mathbf{x}_{0}\rrbracket, the classical SMFing framework in Algorithm 1 is stable and 𝐱^k|y0:k\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket is uniformly bounded w.r.t. k0k\in\mathbb{N}_{0}.

Proof.

We prove the well-posedness, the uniform boundedness of the estimate, and the boundedness of the estimation gap as follows.

Well-posedness: Since 𝐱^0𝐱0\llbracket\hat{\mathbf{x}}_{0}\rrbracket\supseteq\llbracket\mathbf{x}_{0}\rrbracket, with (4), we have

𝐱^0|y0=𝒳0(C,y0,𝐯0)𝐱^0𝒳0(C,y0,𝐯0)𝐱0=𝐱0|y0(g),\llbracket\hat{\mathbf{x}}_{0}|y_{0}\rrbracket=\mathcal{X}_{0}(C,y_{0},\llbracket\mathbf{v}_{0}\rrbracket)\bigcap\llbracket\hat{\mathbf{x}}_{0}\rrbracket\\ \supseteq\mathcal{X}_{0}(C,y_{0},\llbracket\mathbf{v}_{0}\rrbracket)\bigcap\llbracket\mathbf{x}_{0}\rrbracket=\llbracket\mathbf{x}_{0}|y_{0}\rrbracket\stackrel{{\scriptstyle(g)}}{{\neq}}\emptyset, (49)

i.e., 𝐱^0|y0\llbracket\hat{\mathbf{x}}_{0}|y_{0}\rrbracket\neq\emptyset, where (g)(g) follows from the fact that y0y_{0} is generated by (2) with at least one possible x0𝐱0x_{0}\in\llbracket\mathbf{x}_{0}\rrbracket. With (3), we have 𝐱^1|y0𝐱1|y0\llbracket\hat{\mathbf{x}}_{1}|y_{0}\rrbracket\supseteq\llbracket\mathbf{x}_{1}|y_{0}\rrbracket, as 𝐱^0|y0𝐱0|y0\llbracket\hat{\mathbf{x}}_{0}|y_{0}\rrbracket\supseteq\llbracket\mathbf{x}_{0}|y_{0}\rrbracket. Similarly to (49), by (4), 𝐱^1|y0:1𝐱1|y0:1\llbracket\hat{\mathbf{x}}_{1}|y_{0:1}\rrbracket\supseteq\llbracket\mathbf{x}_{1}|y_{0:1}\rrbracket\neq\emptyset holds. Proceeding forward, we get 𝐱^k|y0:k𝐱k|y0:k\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket\supseteq\llbracket\mathbf{x}_{k}|y_{0:k}\rrbracket\neq\emptyset for k0k\in\mathbb{N}_{0}.

Uniformly bounded estimate: Let 𝐱¯k=[(𝐱¯ka)T(𝐱¯kb)T]T=Q𝐱k\bar{\mathbf{x}}_{k}=[(\bar{\mathbf{x}}_{k}^{\mathrm{a}})^{\mathrm{T}}(\bar{\mathbf{x}}_{k}^{\mathrm{b}})^{\mathrm{T}}]^{\mathrm{T}}=Q\mathbf{x}_{k} with a non-singular Qn×nQ\in\mathbb{R}^{n\times n} such that

[𝐱¯k+1a𝐱¯k+1b]=[A¯a00J0][𝐱¯ka𝐱¯kb]+[B¯aB¯b]𝐰k,𝐲k=C¯a𝐱¯ka+C¯b𝐱¯kb+𝐯k,\begin{split}\begin{bmatrix}\bar{\mathbf{x}}_{k+1}^{\mathrm{a}}\\ \bar{\mathbf{x}}_{k+1}^{\mathrm{b}}\end{bmatrix}&=\begin{bmatrix}\bar{A}_{\mathrm{a}}&0\\ 0&J_{0}\end{bmatrix}\begin{bmatrix}\bar{\mathbf{x}}_{k}^{\mathrm{a}}\\ \bar{\mathbf{x}}_{k}^{\mathrm{b}}\end{bmatrix}+\begin{bmatrix}\bar{B}_{\mathrm{a}}\\ \bar{B}_{\mathrm{b}}\end{bmatrix}\mathbf{w}_{k},\\ \mathbf{y}_{k}&=\bar{C}_{\mathrm{a}}\bar{\mathbf{x}}_{k}^{\mathrm{a}}+\bar{C}_{\mathrm{b}}\bar{\mathbf{x}}_{k}^{\mathrm{b}}+\mathbf{v}_{k},\end{split} (50)

where A¯a\bar{A}_{\mathrm{a}} is non-singular and J0J_{0} is a block diagonal matrix corresponding to all Jordan blocks associated with the eigenvalue 0. Thus, we have

d(𝐱^k|y0:k)supx¯^k,x¯^k𝐱¯^k|y0:kQ1x¯^kx¯^k(h)supx¯^ka,x¯^ka𝐱¯^ka|y0:kQ1x¯^kax¯^ka2+d¯b2,\begin{split}d&(\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket)\leq\sup_{\hat{\bar{x}}_{k},\hat{\bar{x}}^{\prime}_{k}\in\llbracket\hat{\bar{\mathbf{x}}}_{k}|y_{0:k}\rrbracket}\|Q^{-1}\|\|\hat{\bar{x}}_{k}-\hat{\bar{x}}^{\prime}_{k}\|\\ \stackrel{{\scriptstyle(h)}}{{\leq}}&\sup_{\hat{\bar{x}}_{k}^{\mathrm{a}},\hat{\bar{x}}_{k}^{\prime\mathrm{a}}\in\llbracket\hat{\bar{\mathbf{x}}}_{k}^{\mathrm{a}}|y_{0:k}\rrbracket}\|Q^{-1}\|\sqrt{\|\hat{\bar{x}}_{k}^{\mathrm{a}}-\hat{\bar{x}}_{k}^{\prime\mathrm{a}}\|^{2}+\bar{d}_{\mathrm{b}}^{2}},\end{split} (51)

where (h)(h) follows from the uniform boundedness252525Noticing that J0J_{0} is a nilpotent matrix, we can derive the uniform boundedness of 𝐱¯^kb𝐱¯^kb|y0:k\llbracket\hat{\bar{\mathbf{x}}}_{k}^{\mathrm{b}}\rrbracket\supseteq\llbracket\hat{\bar{\mathbf{x}}}_{k}^{\mathrm{b}}|y_{0:k}\rrbracket from 𝐱¯kb=J0k𝐱¯0b+i=0k1J0k1iB¯b𝐰i\bar{\mathbf{x}}_{k}^{\mathrm{b}}=J_{0}^{k}\bar{\mathbf{x}}_{0}^{\mathrm{b}}+\sum_{i=0}^{k-1}J_{0}^{k-1-i}\bar{B}_{\mathrm{b}}\mathbf{w}_{i} and the boundedness of 𝐱^0n\llbracket\hat{\mathbf{x}}_{0}\rrbracket\subset\mathbb{R}^{n}. of 𝐱¯^kb|y0:k\llbracket\hat{\bar{\mathbf{x}}}_{k}^{\mathrm{b}}|y_{0:k}\rrbracket w.r.t. k0k\in\mathbb{N}_{0} that: x¯^kb,x¯^kb𝐱¯^kb|y0:k\forall\hat{\bar{x}}_{k}^{\mathrm{b}},\hat{\bar{x}}_{k}^{\prime\mathrm{b}}\in\llbracket\hat{\bar{\mathbf{x}}}_{k}^{\mathrm{b}}|y_{0:k}\rrbracket there exists a d¯b\bar{d}_{\mathrm{b}} such that x¯^kbx¯^kbd¯b\|\hat{\bar{x}}_{k}^{\mathrm{b}}-\hat{\bar{x}}_{k}^{\prime\mathrm{b}}\|\leq\bar{d}_{\mathrm{b}}. Then, we only need to focus on the first subsystem of (50), i.e.,

𝐱¯k+1a=A¯a𝐱¯ka+B¯a𝐰k,𝐲k=C¯a𝐱¯ka+𝐯¯k,\begin{split}\bar{\mathbf{x}}_{k+1}^{\mathrm{a}}&=\bar{A}_{\mathrm{a}}\bar{\mathbf{x}}_{k}^{\mathrm{a}}+\bar{B}_{\mathrm{a}}\mathbf{w}_{k},\\ \mathbf{y}_{k}&=\bar{C}_{\mathrm{a}}\bar{\mathbf{x}}_{k}^{\mathrm{a}}+\bar{\mathbf{v}}_{k},\end{split} (52)

where 𝐯¯k=C¯b𝐱¯kb+𝐯k\bar{\mathbf{v}}_{k}=\bar{C}_{\mathrm{b}}\bar{\mathbf{x}}_{k}^{\mathrm{b}}+\mathbf{v}_{k} is an equivalent measurement noise [which is related to 𝐰0:k1\mathbf{w}_{0:k-1} due to (50)] and 𝐯¯k\llbracket\bar{\mathbf{v}}_{k}\rrbracket is uniformly bounded w.r.t. k0k\in\mathbb{N}_{0}. Define 𝒪¯k,ia:=A¯aki𝒳¯ia(C¯a,yi,𝐯¯i)r=ik1A¯ak1rB¯a𝐰r\overline{\mathcal{O}}_{k,i}^{\mathrm{a}}:=\bar{A}_{\mathrm{a}}^{k-i}\overline{\mathcal{X}}_{i}^{\mathrm{a}}(\bar{C}_{\mathrm{a}},y_{i},\llbracket\bar{\mathbf{v}}_{i}\rrbracket)\oplus\sum_{r=i}^{k-1}\bar{A}_{\mathrm{a}}^{k-1-r}\bar{B}_{\mathrm{a}}\llbracket\mathbf{w}_{r}\rrbracket with

𝒳¯ia(C¯a,yi,𝐯¯i):=ker(C¯a)C¯a+({yi}𝐯¯i).\overline{\mathcal{X}}_{i}^{\mathrm{a}}(\bar{C}_{\mathrm{a}},y_{i},\llbracket\bar{\mathbf{v}}_{i}\rrbracket):=\ker(\bar{C}_{\mathrm{a}})\oplus\bar{C}_{\mathrm{a}}^{+}(\left\{y_{i}\right\}\oplus\llbracket-\bar{\mathbf{v}}_{i}\rrbracket).

Note that 𝒪¯k,ia\overline{\mathcal{O}}_{k,i}^{\mathrm{a}} is an observation-information set in terms of (52). Hence, we can derive 𝐱¯^ka|y0:ki=kδk𝒪¯k,ia\llbracket\hat{\bar{\mathbf{x}}}_{k}^{\mathrm{a}}|y_{0:k}\rrbracket\subseteq\bigcap_{i=k-\delta}^{k}\overline{\mathcal{O}}_{k,i}^{\mathrm{a}}.262626Even though 𝐰0:k1\mathbf{w}_{0:k-1} and 𝐯¯k\bar{\mathbf{v}}_{k} are related, we can assume the unrelatedness holds and employ Theorem 3 in [10] to employ (14) and (15) to get this result. Thus, for kδμa1k\geq\delta\geq\mu_{\mathrm{a}}-1, where μa\mu_{\mathrm{a}} is the observability index w.r.t. (A¯a,C¯a)(\bar{A}_{\mathrm{a}},\bar{C}_{\mathrm{a}}), we get

d(𝐱^k|y0:k)(16)Q1d¯δ(A¯a,B¯a,C¯a)2+d¯b2,d(\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket)\stackrel{{\scriptstyle\eqref{eqn:An Upper Bound on the Diameter of the OIT}}}{{\leq}}\|Q^{-1}\|\sqrt{\bar{d}_{\delta}(\bar{A}_{\mathrm{a}},\bar{B}_{\mathrm{a}},\bar{C}_{\mathrm{a}})^{2}+\bar{d}_{\mathrm{b}}^{2}}, (53)

where d¯δ(,,)\bar{d}_{\delta}(\cdot,\cdot,\cdot) is defined in (16) with dvd_{v} for the uniformly bounded equivalent noise 𝐯¯k\bar{\mathbf{v}}_{k}. For k<δk<\delta, bounded 𝐱^0\llbracket\hat{\mathbf{x}}_{0}\rrbracket lead to bounded 𝐱^k|y0:k\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket (determined by Algorithm 1). Thus 𝐱^k|y0:k\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket is uniformly bounded w.r.t. k0k\in\mathbb{N}_{0}.

Bounded estimation gap: Due to the page limit272727We recommend the readers to follow the ideas in (58)-(68) and derive a tighter bound. However, the upper bound given in (54) is good enough to derive the boundedness of the estimation gap for observable systems., we provide the proof based on

dkg(𝐱^k|y0:k)supx^k𝐱^k|y0:kxk𝐱k|y0:kx^kxk,(j)supx^k,x^k𝐱^k|y0:kx^kx^k=d(𝐱^k|y0:k),\begin{split}d_{k}^{\mathrm{g}}&(\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket)\leq\sup_{\hat{x}_{k}\in\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket\atop x_{k}\in\llbracket\mathbf{x}_{k}|y_{0:k}\rrbracket}\|\hat{x}_{k}-x_{k}\|,\\ &\stackrel{{\scriptstyle(j)}}{{\leq}}\sup_{\hat{x}_{k},\hat{x}^{\prime}_{k}\in\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket}\|\hat{x}_{k}-\hat{x}^{\prime}_{k}\|=d(\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket),\end{split} (54)

where (j)(j) is from 𝐱^k|y0:k𝐱k|y0:k\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket\supseteq\llbracket\mathbf{x}_{k}|y_{0:k}\rrbracket (see the proof of well-posedness). Therefore, for observable (A,C)(A,C), the boundedness of the estimation gap is established. ∎

Now, we prove the stability of Algorithm 1 w.r.t. the initial condition under conditions (i) and (ii) of Theorem 2.

Well-posedness: Define 𝒪~k,io:=A~oki𝒳~io(C~o,yi,𝐯i)r=ik1A~ok1rB~o𝐰r\widetilde{\mathcal{O}}_{k,i}^{o}:=\tilde{A}_{o}^{k-i}\widetilde{\mathcal{X}}_{i}^{o}(\tilde{C}_{o},y_{i},\llbracket\mathbf{v}_{i}\rrbracket)\oplus\sum_{r=i}^{k-1}\tilde{A}_{o}^{k-1-r}\tilde{B}_{o}\llbracket\mathbf{w}_{r}\rrbracket with

𝒳~io(C~o,yi,𝐯i):={x~io:yi=C~ox~io+vi,vi𝐯i}=ker(C~o)C~o+({yi}𝐯i).\begin{split}\widetilde{\mathcal{X}}_{i}^{o}(\tilde{C}_{o},y_{i},\llbracket\mathbf{v}_{i}\rrbracket)&:=\left\{\tilde{x}_{i}^{o}\colon y_{i}=\tilde{C}_{o}\tilde{x}_{i}^{o}+v_{i},~{}v_{i}\in\llbracket\mathbf{v}_{i}\rrbracket\right\}\\ &=\ker(\tilde{C}_{o})\oplus\tilde{C}_{o}^{+}(\left\{y_{i}\right\}\oplus\llbracket-\mathbf{v}_{i}\rrbracket).\end{split}

Note that 𝒪~k,io\widetilde{\mathcal{O}}_{k,i}^{o} is an observation-information set in terms of the observable subsystem of (17). Then, we have

𝐱~^0|y0=P𝐱^0|y0=P(𝒪0,0𝐱^0)=(k)P𝒪0,0P𝐱^0=(l)(𝒪~0,0o×no¯)𝐱~^0,\begin{split}\llbracket\hat{\tilde{\mathbf{x}}}_{0}|y_{0}\rrbracket&=\llbracket P\hat{\mathbf{x}}_{0}|y_{0}\rrbracket=P\big{(}\mathcal{O}_{0,0}\bigcap\llbracket\hat{\mathbf{x}}_{0}\rrbracket\big{)}\\ &\stackrel{{\scriptstyle(k)}}{{=}}P\mathcal{O}_{0,0}\bigcap\llbracket P\hat{\mathbf{x}}_{0}\rrbracket\\ &\stackrel{{\scriptstyle(l)}}{{=}}\big{(}\widetilde{\mathcal{O}}_{0,0}^{o}\times\mathbb{R}^{n_{\bar{o}}}\big{)}\bigcap\llbracket\hat{\tilde{\mathbf{x}}}_{0}\rrbracket,\\ \end{split} (55)

where (k)(k) follows from the non-singularity of PP; (l)(l) is established by P𝒳0(C,y0,𝐯0)={x~0:y0=CP1x~0+v0,v0𝐯0}={x~0:y0=[C~o0]x~0+v0,v0𝐯0}={x~0o:y0=C~ox~0o+v0,v0𝐯0}×{x~0o¯no¯}P\mathcal{X}_{0}(C,y_{0},\llbracket\mathbf{v}_{0}\rrbracket)=\{\tilde{x}_{0}\colon y_{0}=CP^{-1}\tilde{x}_{0}+v_{0},~{}v_{0}\in\llbracket\mathbf{v}_{0}\rrbracket\}=\{\tilde{x}_{0}\colon y_{0}=[\tilde{C}_{o}~{}0]\tilde{x}_{0}+v_{0},~{}v_{0}\in\llbracket\mathbf{v}_{0}\rrbracket\}=\{\tilde{x}_{0}^{o}\colon y_{0}=\tilde{C}_{o}\tilde{x}_{0}^{o}+v_{0},~{}v_{0}\in\llbracket\mathbf{v}_{0}\rrbracket\}\times\{\tilde{x}_{0}^{\bar{o}}\in\mathbb{R}^{n_{\bar{o}}}\}. Substituting 𝐱~^0=𝐱~0\llbracket\hat{\tilde{\mathbf{x}}}_{0}\rrbracket=\llbracket\tilde{\mathbf{x}}_{0}\rrbracket into (55) and noticing that 𝐱~0|y0\llbracket\tilde{\mathbf{x}}_{0}|y_{0}\rrbracket\neq\emptyset, we have

𝐱~0|y0=(𝒪~0,0o×no¯)𝐱~0.\llbracket\tilde{\mathbf{x}}_{0}|y_{0}\rrbracket=\big{(}\widetilde{\mathcal{O}}_{0,0}^{o}\times\mathbb{R}^{n_{\bar{o}}}\big{)}\bigcap\llbracket\tilde{\mathbf{x}}_{0}\rrbracket\neq\emptyset. (56)

This means {x~0}={x~0o}×{x~0o¯}\exists\{\tilde{x}_{0}\}=\{\tilde{x}_{0}^{o}\}\times\{\tilde{x}_{0}^{\bar{o}}\} such that

(𝒪~0,0o×no¯)({x~0o}×{x~0o¯})=(𝒪~0,0o{x~0o})×{x~0o¯},\emptyset\neq\big{(}\widetilde{\mathcal{O}}_{0,0}^{o}\times\mathbb{R}^{n_{\bar{o}}}\big{)}\bigcap\big{(}\{\tilde{x}_{0}^{o}\}\times\{\tilde{x}_{0}^{\bar{o}}\}\big{)}=\big{(}\widetilde{\mathcal{O}}_{0,0}^{o}\bigcap\{\tilde{x}_{0}^{o}\}\big{)}\times\{\tilde{x}_{0}^{\bar{o}}\},

where x~0o𝐱~0o\tilde{x}_{0}^{o}\in\llbracket\tilde{\mathbf{x}}_{0}^{o}\rrbracket. Since 𝐱~^0o𝐱~0o\llbracket\hat{\tilde{\mathbf{x}}}_{0}^{o}\rrbracket\supseteq\llbracket\tilde{\mathbf{x}}_{0}^{o}\rrbracket in condition (i) holds, we get x~0o𝐱~^0o\tilde{x}_{0}^{o}\in\llbracket\hat{\tilde{\mathbf{x}}}_{0}^{o}\rrbracket. Thus, x~0o¯\exists\tilde{x}_{0}^{\prime\bar{o}} such that 𝐱~^0{x~0o}×{x~0o¯}\llbracket\hat{\tilde{\mathbf{x}}}_{0}\rrbracket\supseteq\{\tilde{x}_{0}^{o}\}\times\{\tilde{x}_{0}^{\prime\bar{o}}\}, which together with (55) gives

𝐱~^0|y0=(𝒪~0,0o×no¯)𝐱~^0(𝒪~0,0o{x~0o})×{x~0o¯}.\begin{split}\llbracket\hat{\tilde{\mathbf{x}}}_{0}|y_{0}\rrbracket&=\big{(}\widetilde{\mathcal{O}}_{0,0}^{o}\times\mathbb{R}^{n_{\bar{o}}}\big{)}\bigcap\llbracket\hat{\tilde{\mathbf{x}}}_{0}\rrbracket\\ &\supseteq\big{(}\widetilde{\mathcal{O}}_{0,0}^{o}\bigcap\{\tilde{x}_{0}^{o}\}\big{)}\times\{\tilde{x}_{0}^{\prime\bar{o}}\}\neq\emptyset.\end{split} (57)

From the first equalities of (56) and (57), we can derive 𝐱~^0o|y0𝐱~0o|y0\llbracket\hat{\tilde{\mathbf{x}}}_{0}^{o}|y_{0}\rrbracket\supseteq\llbracket\tilde{\mathbf{x}}_{0}^{o}|y_{0}\rrbracket, which combined with the observable subsystem in (17) yields 𝐱~^1o|y0𝐱~1o|y0\llbracket\hat{\tilde{\mathbf{x}}}_{1}^{o}|y_{0}\rrbracket\supseteq\llbracket\tilde{\mathbf{x}}_{1}^{o}|y_{0}\rrbracket. Proceeding forward, we can obtain that 𝐱~^k|y0:k\llbracket\hat{\tilde{\mathbf{x}}}_{k}|y_{0:k}\rrbracket\neq\emptyset and 𝐱~^ko|y0:k𝐱~ko|y0:k\llbracket\hat{\tilde{\mathbf{x}}}_{k}^{o}|y_{0:k}\rrbracket\supseteq\llbracket\tilde{\mathbf{x}}_{k}^{o}|y_{0:k}\rrbracket for k0k\in\mathbb{N}_{0}.

Boundedness of estimation gap: From Definition 3, the estimation gap dkg(𝐱^k|y0:k)=dH(𝐱^k|y0:k,𝐱k|y0:k)d_{k}^{\mathrm{g}}(\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket)=d_{\mathrm{H}}(\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket,\llbracket\mathbf{x}_{k}|y_{0:k}\rrbracket) can be upper bounded by

dkg(𝐱^k|y0:k)P1dH(𝐱~^k|y0:k,𝐱~k|y0:k).d_{k}^{\mathrm{g}}(\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket)\leq\|P^{-1}\|d_{\mathrm{H}}(\llbracket\hat{\tilde{\mathbf{x}}}_{k}|y_{0:k}\rrbracket,\llbracket\tilde{\mathbf{x}}_{k}|y_{0:k}\rrbracket). (58)

Noticing the structure of dH(𝒮,𝒯)d_{\mathrm{H}}(\mathcal{S},\mathcal{T}) in (10), firstly we prove the upper boundedness of

supx~^k𝐱~^k|y0:kinfx~k𝐱~k|y0:kx~^kx~k.\adjustlimits{\sup}_{\hat{\tilde{x}}_{k}\in\llbracket\hat{\tilde{\mathbf{x}}}_{k}|y_{0:k}\rrbracket}{\inf}_{\tilde{x}_{k}\in\llbracket\tilde{\mathbf{x}}_{k}|y_{0:k}\rrbracket}\|\hat{\tilde{x}}_{k}-\tilde{x}_{k}\|. (59)

Applying Proposition 4 to the observable subsystem of (17), we get that x~^ko𝐱~^ko|y0:k\forall\hat{\tilde{x}}_{k}^{o}\in\llbracket\hat{\tilde{\mathbf{x}}}_{k}^{o}|y_{0:k}\rrbracket and x~ko𝐱~ko|y0:k\forall\tilde{x}_{k}^{o}\in\llbracket\tilde{\mathbf{x}}_{k}^{o}|y_{0:k}\rrbracket, there exists a d~o\tilde{d}_{o} such that x~^kox~kod~o\|\hat{\tilde{x}}_{k}^{o}-\tilde{x}_{k}^{o}\|\leq\tilde{d}_{o} for k0k\in\mathbb{N}_{0}. Thus, (59) can be upper bounded by

supx~^ko¯𝐱~^ko¯|y0:kinfx~ko¯𝐱~ko¯|y0:kd~o2+x~^ko¯x~ko¯2.\adjustlimits{\sup}_{\hat{\tilde{x}}_{k}^{\bar{o}}\in\llbracket\hat{\tilde{\mathbf{x}}}_{k}^{\bar{o}}|y_{0:k}\rrbracket}{\inf}_{\tilde{x}_{k}^{\bar{o}}\in\llbracket\tilde{\mathbf{x}}_{k}^{\bar{o}}|y_{0:k}\rrbracket}\sqrt{\tilde{d}_{o}^{2}+\|\hat{\tilde{x}}_{k}^{\bar{o}}-\tilde{x}_{k}^{\bar{o}}\|^{2}}. (60)

From the unobservable subsystem of (17), we have

𝐱~^ko¯|y0:k=A~o¯k𝐱~^0o¯+i=0k1A~o¯k1i(A~21𝐱~^io+B~o¯𝐰i)|y0:k(m)A~o¯k𝐱~^0o¯i=0k1A~o¯k1i(A~21𝐱~^io|y0:iB~o¯𝐰i),\begin{split}\llbracket\hat{\tilde{\mathbf{x}}}_{k}^{\bar{o}}&|y_{0:k}\rrbracket=\Big{\llbracket}\tilde{A}_{\bar{o}}^{k}\hat{\tilde{\mathbf{x}}}_{0}^{\bar{o}}+\sum_{i=0}^{k-1}\tilde{A}_{\bar{o}}^{k-1-i}(\tilde{A}_{21}\hat{\tilde{\mathbf{x}}}_{i}^{o}+\tilde{B}_{\bar{o}}\mathbf{w}_{i})\Big{|}y_{0:k}\Big{\rrbracket}\\ &\stackrel{{\scriptstyle(m)}}{{\subseteq}}\tilde{A}_{\bar{o}}^{k}\llbracket\hat{\tilde{\mathbf{x}}}_{0}^{\bar{o}}\rrbracket\oplus\sum_{i=0}^{k-1}\tilde{A}_{\bar{o}}^{k-1-i}(\tilde{A}_{21}\llbracket\hat{\tilde{\mathbf{x}}}_{i}^{o}|y_{0:i}\rrbracket\oplus\tilde{B}_{\bar{o}}\llbracket\mathbf{w}_{i}\rrbracket),\end{split} (61)

where (m)(m) follows from 𝐚+𝐛𝐚𝐛\llbracket\mathbf{a}+\mathbf{b}\rrbracket\subseteq\llbracket\mathbf{a}\rrbracket\oplus\llbracket\mathbf{b}\rrbracket and 𝐚|b𝐚\llbracket\mathbf{a}|b\rrbracket\subseteq\llbracket\mathbf{a}\rrbracket. Hence, x~^ko¯𝐱~^ko¯|y0:k\forall\hat{\tilde{x}}_{k}^{\bar{o}}\in\llbracket\hat{\tilde{\mathbf{x}}}_{k}^{\bar{o}}|y_{0:k}\rrbracket, x~^0o𝐱~^0o,x~^io𝐱~^io|y0:i,wi𝐰i(i=0,,k1)\exists\hat{\tilde{x}}_{0}^{o}\in\llbracket\hat{\tilde{\mathbf{x}}}_{0}^{o}\rrbracket,~{}\hat{\tilde{x}}_{i}^{o}\in\llbracket\hat{\tilde{\mathbf{x}}}_{i}^{o}|y_{0:i}\rrbracket,~{}w_{i}\in\llbracket\mathbf{w}_{i}\rrbracket~{}(i=0,\ldots,k-1) such that

x~^ko¯=A~o¯kx~^0o¯+i=0k1A~o¯k1i(A~21x~^io+B~o¯wi).\hat{\tilde{x}}_{k}^{\bar{o}}=\tilde{A}_{\bar{o}}^{k}\hat{\tilde{x}}_{0}^{\bar{o}}+\sum_{i=0}^{k-1}\tilde{A}_{\bar{o}}^{k-1-i}(\tilde{A}_{21}\hat{\tilde{x}}_{i}^{o}+\tilde{B}_{\bar{o}}w_{i}). (62)

Likewise, x~ko¯𝐱~ko¯|y0:k,w0:k𝐱~ko¯|y0:k\forall\tilde{x}_{k}^{\bar{o}}\in\llbracket\tilde{\mathbf{x}}_{k}^{\bar{o}}|y_{0:k},w_{0:k}\rrbracket\subseteq\llbracket\tilde{\mathbf{x}}_{k}^{\bar{o}}|y_{0:k}\rrbracket, x~0o𝐱~0o,x~io𝐱~io|y0:i(i=0,,k1)\exists\tilde{x}_{0}^{o}\in\llbracket\tilde{\mathbf{x}}_{0}^{o}\rrbracket,~{}\tilde{x}_{i}^{o}\in\llbracket\tilde{\mathbf{x}}_{i}^{o}|y_{0:i}\rrbracket~{}(i=0,\ldots,k-1) such that

x~ko¯=A~o¯kx~0o¯+i=0k1A~o¯k1i(A~21x~io+B~o¯wi).\tilde{x}_{k}^{\bar{o}}=\tilde{A}_{\bar{o}}^{k}\tilde{x}_{0}^{\bar{o}}+\sum_{i=0}^{k-1}\tilde{A}_{\bar{o}}^{k-1-i}(\tilde{A}_{21}\tilde{x}_{i}^{o}+\tilde{B}_{\bar{o}}w_{i}). (63)

Therefore, (60) is upper bounded by

supx~^ko¯𝐱~^ko¯|y0:kinfx~ko¯𝐱~ko¯|y0:k,w0:kd~o2+x~^ko¯x~ko¯2,\adjustlimits{\sup}_{\hat{\tilde{x}}_{k}^{\bar{o}}\in\llbracket\hat{\tilde{\mathbf{x}}}_{k}^{\bar{o}}|y_{0:k}\rrbracket}{\inf}_{\tilde{x}_{k}^{\bar{o}}\in\llbracket\tilde{\mathbf{x}}_{k}^{\bar{o}}|y_{0:k},w_{0:k}\rrbracket}\sqrt{\tilde{d}_{o}^{2}+\|\hat{\tilde{x}}_{k}^{\bar{o}}-\tilde{x}_{k}^{\bar{o}}\|^{2}}, (64)

where [based on (62) and (63)]

x~^ko¯x~ko¯=A~o¯k(x~^0o¯x~0o¯)+i=0k1A~21A~o¯k1i(x~^iox~io).\hat{\tilde{x}}_{k}^{\bar{o}}-\tilde{x}_{k}^{\bar{o}}=\tilde{A}_{\bar{o}}^{k}(\hat{\tilde{x}}_{0}^{\bar{o}}-\tilde{x}_{0}^{\bar{o}})+\sum_{i=0}^{k-1}\tilde{A}_{21}\tilde{A}_{\bar{o}}^{k-1-i}(\hat{\tilde{x}}_{i}^{o}-\tilde{x}_{i}^{o}). (65)

By condition (ii), (65), and the uniform boundedness of 𝐱~^ko|y0:k\llbracket\hat{\tilde{\mathbf{x}}}_{k}^{o}|y_{0:k}\rrbracket and 𝐱~ko|y0:k\llbracket\tilde{\mathbf{x}}_{k}^{o}|y_{0:k}\rrbracket, there exists a d¯o¯\bar{d}_{\bar{o}} such that

x~^ko¯x~ko¯d¯o¯,\|\hat{\tilde{x}}_{k}^{\bar{o}}-\tilde{x}_{k}^{\bar{o}}\|\leq\bar{d}_{\bar{o}}, (66)

which yields the boundedness of (59).

Secondly, we analyze the boundedness of

supx~k𝐱~k|y0:kinfx~^k𝐱~^k|y0:kx~^kx~k\adjustlimits{\sup}_{\tilde{x}_{k}\in\llbracket\tilde{\mathbf{x}}_{k}|y_{0:k}\rrbracket}{\inf}_{\hat{\tilde{x}}_{k}\in\llbracket\hat{\tilde{\mathbf{x}}}_{k}|y_{0:k}\rrbracket}\|\hat{\tilde{x}}_{k}-\tilde{x}_{k}\| (67)

in dH(𝐱~^k|y0:k,𝐱~k|y0:k)d_{\mathrm{H}}(\llbracket\hat{\tilde{\mathbf{x}}}_{k}|y_{0:k}\rrbracket,\llbracket\tilde{\mathbf{x}}_{k}|y_{0:k}\rrbracket). From 𝐱~^ko|y0:k𝐱~ko|y0:k\llbracket\hat{\tilde{\mathbf{x}}}_{k}^{o}|y_{0:k}\rrbracket\supseteq\llbracket\tilde{\mathbf{x}}_{k}^{o}|y_{0:k}\rrbracket [guaranteed by condition (i)], (67) can be rewritten as

supx~ko¯𝐱~ko¯|y0:kinfx~^ko¯𝐱~^ko¯|y0:kx~^ko¯x~ko¯(66)d¯o¯.\adjustlimits{\sup}_{\tilde{x}_{k}^{\bar{o}}\in\llbracket\tilde{\mathbf{x}}_{k}^{\bar{o}}|y_{0:k}\rrbracket}{\inf}_{\hat{\tilde{x}}_{k}^{\bar{o}}\in\llbracket\hat{\tilde{\mathbf{x}}}_{k}^{\bar{o}}|y_{0:k}\rrbracket}\|\hat{\tilde{x}}_{k}^{\bar{o}}-\tilde{x}_{k}^{\bar{o}}\|\stackrel{{\scriptstyle\eqref{eqninpf:thm:Stability Criterion - Boundedness of Estimation Gap - Bound d_obar}}}{{\leq}}\bar{d}_{\bar{o}}. (68)

Therefore, (67) is bounded for k0k\in\mathbb{N}_{0}. To sum up, the estimation gap dkg(𝐱^k|y0:k)d_{k}^{\mathrm{g}}(\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket) is bounded w.r.t. k0k\in\mathbb{N}_{0}. \square

Appendix D Proof of Proposition 2

The estimation gap can be lower bounded by

dkg(𝐱^k|y0:k)P1dH(𝐱~^k|y0:k,𝐱~k|y0:k)(10)supx~^k𝐱~^k|y0:kinfx~k𝐱~k|y0:kP1x~^kx~ksupx~^k𝐱~^k|y0:kinfx~k𝐱~k|y0:kP1x~^ko¯x~ko¯.\begin{split}d_{k}^{\mathrm{g}}&(\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket)\geq\|P\|^{-1}d_{\mathrm{H}}(\llbracket\hat{\tilde{\mathbf{x}}}_{k}|y_{0:k}\rrbracket,\llbracket\tilde{\mathbf{x}}_{k}|y_{0:k}\rrbracket)\\ &\stackrel{{\scriptstyle\eqref{eqn:Hausdorff Distance}}}{{\geq}}\adjustlimits{\sup}_{\hat{\tilde{x}}_{k}\in\llbracket\hat{\tilde{\mathbf{x}}}_{k}|y_{0:k}\rrbracket}{\inf}_{\tilde{x}_{k}\in\llbracket\tilde{\mathbf{x}}_{k}|y_{0:k}\rrbracket}\|P\|^{-1}\|\hat{\tilde{x}}_{k}-\tilde{x}_{k}\|\\ &\geq\adjustlimits{\sup}_{\hat{\tilde{x}}_{k}\in\llbracket\hat{\tilde{\mathbf{x}}}_{k}|y_{0:k}\rrbracket}{\inf}_{\tilde{x}_{k}\in\llbracket\tilde{\mathbf{x}}_{k}|y_{0:k}\rrbracket}\|P\|^{-1}\|\hat{\tilde{x}}_{k}^{\bar{o}}-\tilde{x}_{k}^{\bar{o}}\|.\end{split} (69)

From (69) and (65), we know: if A~o¯\tilde{A}_{\bar{o}} is not marginally stable, then there exists a bounded 𝐱^0\llbracket\hat{\mathbf{x}}_{0}\rrbracket such that x~^ko¯x~ko¯\|\hat{\tilde{x}}_{k}^{\bar{o}}-\tilde{x}_{k}^{\bar{o}}\| in (69) unboundedly increases with kk. Thus, for all bounded 𝐱^0n\llbracket\hat{\mathbf{x}}_{0}\rrbracket\subset\mathbb{R}^{n}, the boundedness of the estimation gap cannot be guaranteed when A~o¯\tilde{A}_{\bar{o}} is not marginally stable. Therefore, A~o¯\tilde{A}_{\bar{o}} must be marginally stable to ensure the bounded dkg(𝐱^k|y0:k)d_{k}^{\mathrm{g}}(\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket). \square

Appendix E Proof of

By Theorem 2, the classical SMFing framework with bounded 𝐱^0\llbracket\hat{\mathbf{x}}_{0}\rrbracket and 𝐱~^0o𝐱~0o\llbracket\hat{\tilde{\mathbf{x}}}_{0}^{o}\rrbracket\supseteq\llbracket\tilde{\mathbf{x}}_{0}^{o}\rrbracket is stable w.r.t. the initial condition if (A,C)(A,C) is detectable. Thus, we only focus on the uniform boundedness of the estimate.

From Proposition 4, d(𝐱~^ko|y0:k)d(\llbracket\hat{\tilde{\mathbf{x}}}_{k}^{o}|y_{0:k}\rrbracket) is bounded. Thus, with

d(𝐱^k|y0:k)=P1d(𝐱~^ko|y0:k)2+d(𝐱~^ko¯|y0:k)2,d(\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket)=\|P^{-1}\|\sqrt{d(\llbracket\hat{\tilde{\mathbf{x}}}_{k}^{o}|y_{0:k}\rrbracket)^{2}+d(\llbracket\hat{\tilde{\mathbf{x}}}_{k}^{\bar{o}}|y_{0:k}\rrbracket)^{2}},

we know that 𝐱^k|y0:k\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket is uniformly bounded w.r.t. k0k\in\mathbb{N}_{0} if and only if 𝐱~^ko¯|y0:k\llbracket\hat{\tilde{\mathbf{x}}}_{k}^{\bar{o}}|y_{0:k}\rrbracket is uniformly bounded w.r.t. k0k\in\mathbb{N}_{0}. From (61) with ρ(A~o¯)<1\rho(\tilde{A}_{\bar{o}})<1 [as (A,C)(A,C) is detectable], bounded 𝐱^0\llbracket\hat{\mathbf{x}}_{0}\rrbracket, and uniformly bounded 𝐱~^ko|y0:k\llbracket\hat{\tilde{\mathbf{x}}}_{k}^{o}|y_{0:k}\rrbracket and 𝐰k\llbracket\mathbf{w}_{k}\rrbracket, we can derive the uniform boundedness of 𝐱~^ko¯|y0:k\llbracket\hat{\tilde{\mathbf{x}}}_{k}^{\bar{o}}|y_{0:k}\rrbracket. Therefore, 𝐱^k|y0:k\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket is uniformly bounded w.r.t. k0k\in\mathbb{N}_{0} for detectable (A,C)(A,C). \square

Appendix F Proof of Lemma 1

Since for any 𝒮no\mathcal{S}\subseteq\mathbb{R}^{n_{o}}, PoFk,0(P1(𝒮×𝐱~^0o¯))P_{o}F_{k,0}(P^{-1}(\mathcal{S}\times\llbracket\hat{\tilde{\mathbf{x}}}_{0}^{\bar{o}}\rrbracket)) in (18) corresponds to the observable subsystem and the resulting set is independent of 𝐱~^0o¯\llbracket\hat{\tilde{\mathbf{x}}}_{0}^{\bar{o}}\rrbracket, without loss of generality, we consider the pair (A,C)(A,C) is observable, i.e., A=A~oA=\tilde{A}_{o}. In that case, (18) becomes

Fk,0(θk[c^0o])Fk,0(θ¯k[c^0o])=Fk,0(θk′′[c^0o]).F_{k,0}(\mathcal{B}_{\theta^{\prime}_{k}}^{\infty}[\hat{c}_{0}^{o}])\subseteq F_{k,0}(\mathcal{B}_{\bar{\theta}_{k}}^{\infty}[\hat{c}_{0}^{o}])=F_{k,0}(\mathcal{B}_{\theta^{\prime\prime}_{k}}^{\infty}[\hat{c}_{0}^{o}]). (70)

Firstly, we prove (70) for non-singular AA. Because θk[c^0o]θ¯k[c^0o]θk′′[c^0o]\mathcal{B}_{\theta^{\prime}_{k}}^{\infty}[\hat{c}_{0}^{o}]\subseteq\mathcal{B}_{\bar{\theta}_{k}}^{\infty}[\hat{c}_{0}^{o}]\subseteq\mathcal{B}_{\theta^{\prime\prime}_{k}}^{\infty}[\hat{c}_{0}^{o}] for all θkθ¯kθk′′\theta^{\prime}_{k}\leq\bar{\theta}_{k}\leq\theta^{\prime\prime}_{k}, from Definition 1 we have

Fk,0(θk[c^0o])Fk,0(θ¯k[c^0o])Fk,0(θk′′[c^0o]).F_{k,0}(\mathcal{B}_{\theta^{\prime}_{k}}^{\infty}[\hat{c}_{0}^{o}])\subseteq F_{k,0}(\mathcal{B}_{\bar{\theta}_{k}}^{\infty}[\hat{c}_{0}^{o}])\subseteq F_{k,0}(\mathcal{B}_{\theta^{\prime\prime}_{k}}^{\infty}[\hat{c}_{0}^{o}]). (71)

By Theorem 1, kmax{μo1+nλ0o,1}\forall k\geq\max\{\mu_{o}-1+n_{\lambda_{0}^{o}},1\}, i=knλ0ok𝒪k,i\bigcap_{i=k-n_{\lambda_{0}^{o}}}^{k}\mathcal{O}_{k,i} is bounded, and θ¯k0\exists\bar{\theta}_{k}\geq 0 s.t. x0nθ¯k[c^0o]\forall x_{0}\in\mathbb{R}^{n}\setminus\mathcal{B}_{\bar{\theta}_{k}}^{\infty}[\hat{c}_{0}^{o}]:

Akx0+i=0k1Ak1iBwi=xki=knλ0ok𝒪k,i,A^{k}x_{0}+\sum_{i=0}^{k-1}A^{k-1-i}Bw_{i}=x_{k}\notin\bigcap_{i=k-n_{\lambda_{0}^{o}}}^{k}\mathcal{O}_{k,i}, (72)

which together with (14) and (15) gives Fk,0(θk′′[c^0o]θ¯k[c^0o])=F_{k,0}(\mathcal{B}_{\theta^{\prime\prime}_{k}}^{\infty}[\hat{c}_{0}^{o}]\setminus\mathcal{B}_{\bar{\theta}_{k}}^{\infty}[\hat{c}_{0}^{o}])=\emptyset for θk′′θ¯k\theta^{\prime\prime}_{k}\geq\bar{\theta}_{k}. Thus, Fk,0(θ¯k[c^0o])=Fk,0(θk′′[c^0o])F_{k,0}(\mathcal{B}_{\bar{\theta}_{k}}^{\infty}[\hat{c}_{0}^{o}])=F_{k,0}(\mathcal{B}_{\theta^{\prime\prime}_{k}}^{\infty}[\hat{c}_{0}^{o}]), and with (71) we get (70).

When AA is singular, from (50) we have 𝐱¯kb=i=0k1J0k1iB¯b𝐰i\bar{\mathbf{x}}_{k}^{\mathrm{b}}=\sum_{i=0}^{k-1}J_{0}^{k-1-i}\bar{B}_{\mathrm{b}}\mathbf{w}_{i} for knλ0ok\geq n_{\lambda_{0}^{o}}, which is not affected by the choice of θk[c^0o]\mathcal{B}_{\theta_{k}}^{\infty}[\hat{c}_{0}^{o}]; for the subsystem w.r.t. 𝐱¯ka\bar{\mathbf{x}}_{k}^{\mathrm{a}}, the proof is the same as that of (70), where the measurement equation is in (52) with the equivalent noise 𝐯¯k=C¯bi=0k1J0k1iB¯b𝐰i+𝐯k\bar{\mathbf{v}}_{k}=\bar{C}_{\mathrm{b}}\sum_{i=0}^{k-1}J_{0}^{k-1-i}\bar{B}_{\mathrm{b}}\mathbf{w}_{i}+\mathbf{v}_{k} for knλ0ok\geq n_{\lambda_{0}^{o}}. \square

Appendix G Proof of Theorem 3

Well-posedness: For k<kk<k_{*}, Line 5 resets every empty 𝐱^k|y0:k\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket to a non-empty set. For kkk\geq k_{*}, the estimate 𝐱^k|y0:k\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket in Line 7 is non-empty, which is guaranteed by 𝐱~^0o=θ¯k[c^0o]𝐱~0o\llbracket\hat{\tilde{\mathbf{x}}}_{0}^{o}\rrbracket=\mathcal{B}_{\bar{\theta}_{k}}^{\infty}[\hat{c}_{0}^{o}]\supseteq\llbracket\tilde{\mathbf{x}}_{0}^{o}\rrbracket (see Remark 7) and the well-posedness part [see (55)-(57)] in the proof of Theorem 2. Thus, 𝐱^k|y0:k\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket\neq\emptyset holds for k0k\in\mathbb{N}_{0}.

Boundedness of estimation gap: For k<kk<k_{*}, bounded 𝐱0\llbracket\mathbf{x}_{0}\rrbracket with Lines 3 and 5 indicates dkg(𝐱^k|y0:k)<d_{k}^{\mathrm{g}}(\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket)<\infty. For kkk\geq k_{*}, using the same techniques in (58)-(68) [note that 𝐱~^0o=θ¯k[c^0o]𝐱~0o\llbracket\hat{\tilde{\mathbf{x}}}_{0}^{o}\rrbracket=\mathcal{B}_{\bar{\theta}_{k}}^{\infty}[\hat{c}_{0}^{o}]\supseteq\llbracket\tilde{\mathbf{x}}_{0}^{o}\rrbracket ensures the preconditon 𝐱^0𝐱0\llbracket\hat{\mathbf{x}}_{0}\rrbracket\supseteq\llbracket\mathbf{x}_{0}\rrbracket in Proposition 4 when it is applied to the observable system to derive (60)], we can obtain the boundedness of dkg(𝐱^k|y0:k)d_{k}^{\mathrm{g}}(\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket). Therefore, the estimation gap dkg(𝐱^k|y0:k)d_{k}^{\mathrm{g}}(\llbracket\hat{\mathbf{x}}_{k}|y_{0:k}\rrbracket) is bounded for k0k\in\mathbb{N}_{0}. \square

Appendix H Proof of Theorem 4

Firstly, we provide Lemma 4 for bounding the norm of matrix power, which is a variant of Lemma 3 in [9].

Lemma 4 (Bound on Norm of Matrix Power).

Given Fn×nF\in\mathbb{R}^{n\times n} with ρ(F)<1\rho(F)<1, for γ(ρ(F),1)\gamma\in(\rho(F),1), Fkβγ(F)γk\|F^{k}\|_{\infty}\leq\beta_{\gamma}(F)\gamma^{k} holds for all k0k\in\mathbb{N}_{0}, where βγ(F)=max{γkFk:k0}\beta_{\gamma}(F)=\max\{\gamma^{-k}\|F^{k}\|_{\infty}\colon k\in\mathbb{N}_{0}\}.

Proof.

γ(ρ(F),1)\forall\gamma\in(\rho(F),1), let F~=γ1F\tilde{F}=\gamma^{-1}F, and we have ρ(F~)=ρ(F)/γ<1\rho(\tilde{F})=\rho(F)/\gamma<1. Since limkF~k=0\lim_{k\to\infty}\|\tilde{F}^{k}\|_{\infty}=0, we can find a k¯0\underline{k}\in\mathbb{N}_{0} such that for all kk¯k\geq\underline{k}, the following holds

γkFk=γkFk=F~k<1,\displaystyle\gamma^{-k}\|F^{k}\|_{\infty}=\|\gamma^{-k}F^{k}\|_{\infty}=\|\tilde{F}^{k}\|_{\infty}<1, (73)

which implies Fk<γk\|F^{k}\|_{\infty}<\gamma^{k}. It together with βγ(F)=max{1,γkFk(1kk¯)}=max{γkFk:k0}\beta_{\gamma}(F)=\max\{1,\gamma^{-k}\|F^{k}\|_{\infty}~{}(1\leq k\leq\underline{k})\}=\max\{\gamma^{-k}\|F^{k}\|_{\infty}\colon k\in\mathbb{N}_{0}\}282828Note that γ0F0=1\gamma^{-0}\|F^{0}\|_{\infty}=1 and γkFk<1\gamma^{-k}\|F^{k}\|_{\infty}<1 for k>k¯k>\underline{k}. gives Fkβγ(F)γk\|F^{k}\|_{\infty}\leq\beta_{\gamma}(F)\gamma^{k} for all k0k\in\mathbb{N}_{0}. ∎

When (A,C)(A,C) is detectable, the uniform boundedness of the estimate and the boundedness of the estimation gap can be readily derived based on the results in Section 5, when we replace Fk,0F_{k,0} and 𝐱~^0o¯\llbracket\hat{\tilde{\mathbf{x}}}_{0}^{\bar{o}}\rrbracket with Fk,kδ¯F_{k,k-\bar{\delta}} and 𝒯^kδ¯o¯\hat{\mathcal{T}}_{k-\bar{\delta}}^{\bar{o}}, respectively. Thus, we only focus on the well-posedness and finite-time inclusion property of Algorithm 3.

Well-posedness: Similarly to the well-posedness part in Appendix G (Lines 5 and 8 in Algorithm 3 play the same role as Lines 5 and 7 in Algorithm 2), we have 𝒵k\mathcal{Z}_{k}\neq\emptyset for k0k\in\mathbb{N}_{0} and

𝒵~ko𝐱~ko|y0:k,kδ¯.\widetilde{\mathcal{Z}}_{k}^{o}\supseteq\llbracket\tilde{\mathbf{x}}_{k}^{o}|y_{0:k}\rrbracket,\quad k\geq\bar{\delta}. (74)

The only part needs highlighting is: for Line 8, when δ¯k<2δ¯\bar{\delta}\leq k<2\bar{\delta}, Lemma 1 guarantees 𝒯^kδ¯o=θ¯k[center(PoIH¯(𝒵kδ¯))]𝐱~kδ¯o|y0:kδ¯1\hat{\mathcal{T}}_{k-\bar{\delta}}^{o}=\mathcal{B}_{\bar{\theta}_{k}}^{\infty}\big{[}\mathrm{center}\big{(}P_{o}\overline{\mathrm{IH}}(\mathcal{Z}_{k-\bar{\delta}}^{-})\big{)}\big{]}\supseteq\llbracket\tilde{\mathbf{x}}_{k-\bar{\delta}}^{o}|y_{0:k-\bar{\delta}-1}\rrbracket; when k2δ¯k\geq 2\bar{\delta}, 𝒯^kδ¯o=PoIH¯(𝒵kδ¯)𝐱~kδ¯o|y0:kδ¯1\hat{\mathcal{T}}_{k-\bar{\delta}}^{o}=P_{o}\overline{\mathrm{IH}}(\mathcal{Z}_{k-\bar{\delta}}^{-})\supseteq\llbracket\tilde{\mathbf{x}}_{k-\bar{\delta}}^{o}|y_{0:k-\bar{\delta}-1}\rrbracket; thus,

𝒯^ko𝐱~ko|y0:k1𝐱~ko|y0:k,k0.\hat{\mathcal{T}}_{k}^{o}\supseteq\llbracket\tilde{\mathbf{x}}_{k}^{o}|y_{0:k-1}\rrbracket\supseteq\llbracket\tilde{\mathbf{x}}_{k}^{o}|y_{0:k}\rrbracket,\quad k\in\mathbb{N}_{0}. (75)

Boundedness of estimation gap: When (A,C)(A,C) is detectable, condition (ii) in Theorem 2 holds. Then, the proof is similar to that of Theorem 3.

Finite-time inclusion: The proof includes two steps. In the first step, we show that

𝐱~k|y0:k=P𝐱k|y0:k𝐱~ko|y0:k×𝒯ko¯\llbracket\tilde{\mathbf{x}}_{k}|y_{0:k}\rrbracket=\llbracket P\mathbf{x}_{k}|y_{0:k}\rrbracket\subseteq\llbracket\tilde{\mathbf{x}}_{k}^{o}|y_{0:k}\rrbracket\times\mathcal{T}_{k}^{\bar{o}} (76)

holds for k0k\in\mathbb{N}_{0}, where

𝒯ko¯:=A~o¯k𝐱~0o¯i=0k1A~o¯k1i(A~21𝐱~io|y0:iB~o¯𝐰i).\!\!\!\!\!\mathcal{T}_{k}^{\bar{o}}\!:=\!\tilde{A}_{\bar{o}}^{k}\llbracket\tilde{\mathbf{x}}_{0}^{\bar{o}}\rrbracket\oplus\sum_{i=0}^{k-1}\tilde{A}_{\bar{o}}^{k-1-i}(\tilde{A}_{21}\llbracket\tilde{\mathbf{x}}_{i}^{o}|y_{0:i}\rrbracket\oplus\tilde{B}_{\bar{o}}\llbracket\mathbf{w}_{i}\rrbracket). (77)

In the second step, the finite-time inclusion property (24) is proven based on (76).

Step 1: We use the mathematical induction on (76).

Base case: For k=0k=0, we have 𝐱~0|y0𝐱~0o|y0×𝐱~0o¯|y0=𝐱~0o|y0×𝒯0o¯\llbracket\tilde{\mathbf{x}}_{0}|y_{0}\rrbracket\subseteq\llbracket\tilde{\mathbf{x}}_{0}^{o}|y_{0}\rrbracket\times\llbracket\tilde{\mathbf{x}}_{0}^{\bar{o}}|y_{0}\rrbracket=\llbracket\tilde{\mathbf{x}}_{0}^{o}|y_{0}\rrbracket\times\mathcal{T}_{0}^{\bar{o}}. Thus, (76) holds for k=0k=0.

Inductive step: Assume (76) holds for any k=l0k=l\in\mathbb{N}_{0}. For k=l+1k=l+1, with (17) we have

𝐱~l+1|y0:l+1(A~o𝐱~lo|y0:lB~o𝐰l)×(A~o¯𝒯lo¯A~21𝐱~lo|y0:lB~o¯𝐰l).\llbracket\tilde{\mathbf{x}}_{l+1}|y_{0:l+1}\rrbracket\subseteq(\tilde{A}_{o}\llbracket\tilde{\mathbf{x}}_{l}^{o}|y_{0:l}\rrbracket\oplus\tilde{B}_{o}\llbracket\mathbf{w}_{l}\rrbracket)\\ \times(\tilde{A}_{\bar{o}}\mathcal{T}_{l}^{\bar{o}}\oplus\tilde{A}_{21}\llbracket\tilde{\mathbf{x}}_{l}^{o}|y_{0:l}\rrbracket\oplus\tilde{B}_{\bar{o}}\llbracket\mathbf{w}_{l}\rrbracket). (78)

Noticing that 𝒯l+1o¯=A~o¯𝒯lo¯A~21𝐱~lo|y0:lB~o¯𝐰l\mathcal{T}_{l+1}^{\bar{o}}=\tilde{A}_{\bar{o}}\mathcal{T}_{l}^{\bar{o}}\oplus\tilde{A}_{21}\llbracket\tilde{\mathbf{x}}_{l}^{o}|y_{0:l}\rrbracket\oplus\tilde{B}_{\bar{o}}\llbracket\mathbf{w}_{l}\rrbracket and

𝐱~l+1|y0:l+1𝐱~l+1o|y0:l+1×𝐱~l+1o¯|y0:l+1,\llbracket\tilde{\mathbf{x}}_{l+1}|y_{0:l+1}\rrbracket\subseteq\llbracket\tilde{\mathbf{x}}_{l+1}^{o}|y_{0:l+1}\rrbracket\times\llbracket\tilde{\mathbf{x}}_{l+1}^{\bar{o}}|y_{0:l+1}\rrbracket, (79)

we have [as (𝒯1×𝒯2)(𝒯3×𝒯4)=(𝒯1𝒯3)×(𝒯2𝒯4)(\mathcal{T}_{1}\times\mathcal{T}_{2})\bigcap(\mathcal{T}_{3}\times\mathcal{T}_{4})=(\mathcal{T}_{1}\bigcap\mathcal{T}_{3})\times(\mathcal{T}_{2}\bigcap\mathcal{T}_{4})]

𝐱~l+1|y0:l+1[(A~o𝐱~lo|y0:lB~o𝐰l)𝐱~l+1o|y0:l+1]×(𝒯l+1o¯𝐱~l+1o¯|y0:l+1).\llbracket\tilde{\mathbf{x}}_{l+1}|y_{0:l+1}\rrbracket\subseteq\Big{[}(\tilde{A}_{o}\llbracket\tilde{\mathbf{x}}_{l}^{o}|y_{0:l}\rrbracket\oplus\tilde{B}_{o}\llbracket\mathbf{w}_{l}\rrbracket)\\ \bigcap\llbracket\tilde{\mathbf{x}}_{l+1}^{o}|y_{0:l+1}\rrbracket\Big{]}\times\big{(}\mathcal{T}_{l+1}^{\bar{o}}\bigcap\llbracket\tilde{\mathbf{x}}_{l+1}^{\bar{o}}|y_{0:l+1}\rrbracket\big{)}. (80)

It implies 𝐱~l+1|y0:l+1𝐱~l+1o|y0:l+1×𝒯l+1o¯\llbracket\tilde{\mathbf{x}}_{l+1}|y_{0:l+1}\rrbracket\subseteq\llbracket\tilde{\mathbf{x}}_{l+1}^{o}|y_{0:l+1}\rrbracket\times\mathcal{T}_{l+1}^{\bar{o}}, i.e., (76) holds for k=l+1k=l+1. Thus, (76) is proven by induction.

Step 2: We split the RHS of (77) as 𝒯ko¯=𝒯k,1o¯+𝒯k,2o¯\mathcal{T}_{k}^{\bar{o}}=\mathcal{T}_{k,1}^{\bar{o}}+\mathcal{T}_{k,2}^{\bar{o}}:

𝒯k,1o¯\displaystyle\!\!\!\!\!\mathcal{T}_{k,1}^{\bar{o}}\! =A~o¯k𝐱~0o¯i=0δ¯1A~o¯k1i(A~21𝐱~io|y0:iB~o¯𝐰i),\displaystyle=\!\tilde{A}_{\bar{o}}^{k}\llbracket\tilde{\mathbf{x}}_{0}^{\bar{o}}\rrbracket\!\oplus\!\!\sum_{i=0}^{\bar{\delta}-1}\!\tilde{A}_{\bar{o}}^{k-1-i}(\tilde{A}_{21}\llbracket\tilde{\mathbf{x}}_{i}^{o}|y_{0:i}\rrbracket\!\oplus\!\tilde{B}_{\bar{o}}\llbracket\mathbf{w}_{i}\rrbracket), (81)
𝒯k,2o¯\displaystyle\!\!\!\!\!\mathcal{T}_{k,2}^{\bar{o}}\! =i=δ¯k1A~o¯k1i(A~21𝐱~io|y0:iB~o¯𝐰i).\displaystyle=\!\sum_{i=\bar{\delta}}^{k-1}\tilde{A}_{\bar{o}}^{k-1-i}(\tilde{A}_{21}\llbracket\tilde{\mathbf{x}}_{i}^{o}|y_{0:i}\rrbracket\oplus\tilde{B}_{\bar{o}}\llbracket\mathbf{w}_{i}\rrbracket). (82)

Then, we also spilt αk[c^ko¯]\mathcal{B}_{\alpha_{k}}^{\infty}[\hat{c}_{k}^{\bar{o}}] in Line 12 into two parts:

𝒯^ko¯=αk[c^ko¯]=αk,1[c^k,1o¯]αk,2[c^k,2o¯],\hat{\mathcal{T}}_{k}^{\bar{o}}=\mathcal{B}_{\alpha_{k}}^{\infty}[\hat{c}_{k}^{\bar{o}}]=\mathcal{B}_{\alpha_{k,1}}^{\infty}[\hat{c}_{k,1}^{\bar{o}}]\oplus\mathcal{B}_{\alpha_{k,2}}^{\infty}[\hat{c}_{k,2}^{\bar{o}}], (83)

where αk,1=12Ao¯kδ¯d(𝐱~^δ¯o¯|y0:δ¯)+ε\alpha_{k,1}=\frac{1}{2}\|A_{\bar{o}}^{k-\bar{\delta}}\|_{\infty}d_{\infty}(\llbracket\hat{\tilde{\mathbf{x}}}_{\bar{\delta}}^{\bar{o}}|y_{0:\bar{\delta}}\rrbracket)+\varepsilon, αk,2=Υk1\alpha_{k,2}=\Upsilon_{\infty}\ell_{k-1}, c^k,1o¯=A~o¯kδ¯c^δ¯o¯\hat{c}_{k,1}^{\bar{o}}=\tilde{A}_{\bar{o}}^{k-\bar{\delta}}\hat{c}_{\bar{\delta}}^{\bar{o}}, and c^k,2o¯=i=δ¯k1A~o¯k1ic^iin\hat{c}_{k,2}^{\bar{o}}=\sum_{i=\bar{\delta}}^{k-1}\tilde{A}_{\bar{o}}^{k-1-i}\hat{c}_{i}^{\mathrm{in}} such that αk=αk,1+αk,2\alpha_{k}=\alpha_{k,1}+\alpha_{k,2} and c^ko¯=c^k,1o¯+c^k,2o¯\hat{c}_{k}^{\bar{o}}=\hat{c}_{k,1}^{\bar{o}}+\hat{c}_{k,2}^{\bar{o}}. Next, we prove

𝒯k,1o¯αk,1[c^k,1o¯],kk¯,\mathcal{T}_{k,1}^{\bar{o}}\subseteq\mathcal{B}_{\alpha_{k,1}}^{\infty}[\hat{c}_{k,1}^{\bar{o}}],\quad k\geq\underline{k}^{\prime}, (84)

for sufficiently large k¯δ¯\underline{k}^{\prime}\geq\bar{\delta}, and

𝒯k,2o¯αk,2[c^k,2o¯],kδ¯,\mathcal{T}_{k,2}^{\bar{o}}\subseteq\mathcal{B}_{\alpha_{k,2}}^{\infty}[\hat{c}_{k,2}^{\bar{o}}],\quad k\geq\bar{\delta}, (85)

such that

𝒯ko¯=𝒯k,1o¯𝒯k,2o¯αk[c^ko¯]=𝒯^ko¯,kk¯.\mathcal{T}_{k}^{\bar{o}}=\mathcal{T}_{k,1}^{\bar{o}}\oplus\mathcal{T}_{k,2}^{\bar{o}}\subseteq\mathcal{B}_{\alpha_{k}}^{\infty}[\hat{c}_{k}^{\bar{o}}]=\hat{\mathcal{T}}_{k}^{\bar{o}},\quad k\geq\underline{k}^{\prime}. (86)

For (84), tk𝒯k,1o¯\forall t_{k}\in\mathcal{T}_{k,1}^{\bar{o}}, its distance from the center of αk,1[c^k,1o¯]\mathcal{B}_{\alpha_{k,1}}^{\infty}[\hat{c}_{k,1}^{\bar{o}}] is upper bounded by

tkc^k,1o¯tk+A~o¯kδ¯c^δ¯o¯,kδ¯.\|t_{k}-\hat{c}_{k,1}^{\bar{o}}\|_{\infty}\leq\|t_{k}\|_{\infty}+\|\tilde{A}_{\bar{o}}^{k-\bar{\delta}}\hat{c}_{\bar{\delta}}^{\bar{o}}\|_{\infty},\quad k\geq\bar{\delta}. (87)

Since (81) implies limktk=0\lim_{k\to\infty}\|t_{k}\|_{\infty}=0, we can further derive that for ε>0\varepsilon>0 given in Line 1, k¯δ¯\exists\underline{k}^{\prime}\geq\bar{\delta} such that

tkc^k,1o¯εαk,1,kk¯,\|t_{k}-\hat{c}_{k,1}^{\bar{o}}\|_{\infty}\leq\varepsilon\leq\alpha_{k,1},\quad k\geq\underline{k}^{\prime}, (88)

which means tkαk,1[c^k,1o¯]t_{k}\in\mathcal{B}_{\alpha_{k,1}}^{\infty}[\hat{c}_{k,1}^{\bar{o}}], i.e., (84) holds.

For (85), as (74) holds, 𝒯k,2o¯\mathcal{T}_{k,2}^{\bar{o}} in (82) is bounded by

𝒯k,2o¯i=δ¯k1A~o¯k1i(A~21𝒵~ioB~o¯𝐰i)i=δ¯k1A~o¯k1iIH¯(A~21𝒵~ioB~o¯𝐰i)(n)i=δ¯k1A~o¯k1ii[c^iin](o)αk,2[c^k,2o¯],\begin{split}\mathcal{T}_{k,2}^{\bar{o}}&\subseteq\sum_{i=\bar{\delta}}^{k-1}\tilde{A}_{\bar{o}}^{k-1-i}(\tilde{A}_{21}\widetilde{\mathcal{Z}}_{i}^{o}\oplus\tilde{B}_{\bar{o}}\llbracket\mathbf{w}_{i}\rrbracket)\\ &\subseteq\sum_{i=\bar{\delta}}^{k-1}\tilde{A}_{\bar{o}}^{k-1-i}\overline{\mathrm{IH}}(\tilde{A}_{21}\widetilde{\mathcal{Z}}_{i}^{o}\oplus\tilde{B}_{\bar{o}}\llbracket\mathbf{w}_{i}\rrbracket)\\ &\stackrel{{\scriptstyle(n)}}{{\subseteq}}\sum_{i=\bar{\delta}}^{k-1}\tilde{A}_{\bar{o}}^{k-1-i}\mathcal{B}_{\ell_{i}}^{\infty}[\hat{c}_{i}^{\mathrm{in}}]\stackrel{{\scriptstyle(o)}}{{\subseteq}}\mathcal{B}_{\alpha_{k,2}}^{\infty}[\hat{c}_{k,2}^{\bar{o}}],\end{split} (89)

where (n)(n) follows from Lines 9-10 and the fact that 2G^iin2\|\hat{G}_{i}^{\mathrm{in}}\|_{\infty} gives the maximum edge length of the interval hull. Recall that αk,2=Υk1\alpha_{k,2}=\Upsilon_{\infty}\ell_{k-1} and c^k,2o¯=i=δ¯k1A~o¯k1ic^iin\hat{c}_{k,2}^{\bar{o}}=\sum_{i=\bar{\delta}}^{k-1}\tilde{A}_{\bar{o}}^{k-1-i}\hat{c}_{i}^{\mathrm{in}}, and observe that

i=δ¯k1A~o¯k1ii[c^iin]i=δ¯k1A~o¯k1ii[c^iin],\displaystyle\sum_{i=\bar{\delta}}^{k-1}\tilde{A}_{\bar{o}}^{k-1-i}\mathcal{B}_{\ell_{i}}^{\infty}[\hat{c}_{i}^{\mathrm{in}}]\subseteq\sum_{i=\bar{\delta}}^{k-1}\mathcal{B}_{\|\tilde{A}_{\bar{o}}^{k-1-i}\|_{\infty}\ell_{i}}^{\infty}[\hat{c}_{i}^{\mathrm{in}}],
i=δ¯k1A~o¯k1iLemma4infγ(ρ(A~o¯),1)βγ(A~o¯)1γ=Υ.\displaystyle\sum_{i=\bar{\delta}}^{k-1}\|\tilde{A}_{\bar{o}}^{k-1-i}\|_{\infty}\stackrel{{\scriptstyle\mathrm{Lemma~{}\ref{lem:Bound on Matrix Power Norm}}}}{{\leq}}\!\!\inf_{\gamma\in(\rho(\tilde{A}_{\bar{o}}),1)}\!\!\frac{\beta_{\gamma}(\tilde{A}_{\bar{o}})}{1-\gamma}=\Upsilon_{\infty}.

We can further derive (o)(o) in (89), i.e., (85) holds.

Thus, (84) and (85) give (86).

With (75), (76), and (86) we get 𝐱k|y0:kP1(𝒯^ko×𝒯^ko¯)\llbracket\mathbf{x}_{k}|y_{0:k}\rrbracket\subseteq P^{-1}\big{(}\hat{\mathcal{T}}_{k}^{o}\times\hat{\mathcal{T}}_{k}^{\bar{o}}\big{)} for kk¯k\geq\underline{k}^{\prime}. Setting k¯=k¯+δ¯\underline{k}=\underline{k}^{\prime}+\bar{\delta}, we can obtain for kk¯2δ¯k\geq\underline{k}\geq 2\bar{\delta},

𝐱kδ¯|y0:kδ¯P1(𝒯^kδ¯o×𝒯^kδ¯o¯).\llbracket\mathbf{x}_{k-\bar{\delta}}|y_{0:k-\bar{\delta}}\rrbracket\subseteq P^{-1}\big{(}\hat{\mathcal{T}}_{k-\bar{\delta}}^{o}\times\hat{\mathcal{T}}_{k-\bar{\delta}}^{\bar{o}}\big{)}. (90)

Therefore, we have

𝐱k|y0:k=(7)Fk,kδ¯(𝐱kδ¯|y0:kδ¯)(90)Fk,kδ¯(P1(𝒯^kδ¯o×𝒯^kδ¯o¯))=Line8𝒵k\llbracket\mathbf{x}_{k}|y_{0:k}\rrbracket\stackrel{{\scriptstyle\eqref{eqn:Filtering Map}}}{{=}}F_{k,k-\bar{\delta}}\big{(}\llbracket\mathbf{x}_{k-\bar{\delta}}|y_{0:k-\bar{\delta}}\rrbracket\big{)}\\ \stackrel{{\scriptstyle\eqref{eqninpf:thm:Stability of OIT-CZ SMF - Well-Posedness - Step 2 - An Outer Bound on Actual Range}}}{{\subseteq}}F_{k,k-\bar{\delta}}\big{(}P^{-1}\big{(}\hat{\mathcal{T}}_{k-\bar{\delta}}^{o}\times\hat{\mathcal{T}}_{k-\bar{\delta}}^{\bar{o}}\big{)}\big{)}\stackrel{{\scriptstyle\mathrm{Line}~{}\ref{line:OIT-CZ SMF - Estimate Inspired by OIT}}}{{=}}\mathcal{Z}_{k} (91)

for kk¯k\geq\underline{k}, i.e., (24) holds.

Uniformly bounded estimate: From Algorithm 3, the uniform boundedness of 𝒵k\mathcal{Z}_{k} only depends on kδ¯k\geq\bar{\delta}. By Line 8, 𝒵ko=PoFk,kδ¯(P1(𝒯^kδ¯o×𝒯^kδ¯o¯))\mathcal{Z}_{k}^{o}=P_{o}F_{k,k-\bar{\delta}}\big{(}P^{-1}\big{(}\hat{\mathcal{T}}_{k-\bar{\delta}}^{o}\times\hat{\mathcal{T}}_{k-\bar{\delta}}^{\bar{o}}\big{)}\big{)} holds for kδ¯k\geq\bar{\delta}, which combined with Proposition 4 and (75) guarantees the uniform boundedness of 𝒵ko\mathcal{Z}_{k}^{o} w.r.t. kδ¯k\geq\bar{\delta}. Then, similarly to , we can get the uniform boundedness of 𝒵k\mathcal{Z}_{k} w.r.t. k0k\in\mathbb{N}_{0}. \square