This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\newsiamremark

remarkRemark \newsiamremarkexampleExample \newsiamremarkhypothesisHypothesis \newsiamthmclaimClaim \headersStability for a multi-frequency inverse random source problemT. Wang, X. Xu and Y. Zhao

Stability for a multi-frequency inverse random source problem

Tianjiao Wang School of Mathematical Sciences, Zhejiang University, Hangzhou, Zhejiang, China, 310058. (). [email protected]    Xiang Xu School of Mathematical Sciences, Zhejiang University, Hangzhou, Zhejiang, China,310058. XX’s work was supported in part by National Key Research and Development Program of China (2023YFA1009100) and National Natural Science Foundation of China (12071430), Key Laboratory of Collaborative Sensing and Autonomous Unmanned Systems of Zhejiang Province. (). [email protected]    Yue Zhao School of Mathematics and Statistics, and Key Lab NAA–MOE, Central China Normal University, Wuhan 430079, China. (). [email protected]
Abstract

We present stability estimates for the inverse source problem of the stochastic Helmholtz equation in two and three dimensions by either near-field or far-field data. The random source is assumed to be a microlocally isotropic generalized Gaussian random function. For the direct problem, by exploring the regularity of the Green function, we demonstrate that the direct problem admits a unique bounded solution with an explicit integral representation, which enhances the existing regularity result. For the case using near-field data, the analysis of the inverse problem employs microlocal analysis to achieve an estimate for the Fourier transform of the micro-correlation strength by the near-field correlation data and a high-frequency tail. The stability follows by showing the analyticity of the data and applying a novel analytic continuation principle. The stability estimate by far-field data is derived by investigating the correlation of the far-field data. The stability estimate consists of the Lipschitz type data discrepancy and the logarithmic stability. The latter decreases as the upper bound of the frequency increases, which exhibits the phenomenon of increasing stability.

keywords:
increasing stability, inverse source problem, generalized Gaussian random function.
{AMS}

35Q74, 35R30, 78A46

1 Introduction

Inverse source scattering problem is concerned with recovering the unknown source from near-field or far-field data away from its support. Such problem has generated tremendous interest due to its wide applications in scientific and engineering fields such as seismology, telecommunications, medical imaging, antenna synthesis, radar technology, and magnetoencephalography [1, 3, 8, 15]. However, the non-uniqueness of the inverse source problem at a single frequency, caused by the existence of non-radiating sources, poses a challenge [9, 12]. Consequently, additional information is required for a unique determination of the source. To resolve this issue, the use of multi-frequency data has been realized to be an effective approach to regain the uniqueness and achieve enhanced stability [7, 8, 11, 24].

In many applications, the source is often considered as a random field due to uncertainties in the surrounding environment or random measurement noise [2]. The presence of randomness introduces additional challenges compared to deterministic source scattering. Specifically, the regularities of wave fields tend to be lower, and the measurements become statistical data. Inverse source problems driven by Wiener process have been extensively investigated [4, 5, 6, 19, 23]. In recent studies, uniqueness of inverse source problems have been studied in [17, 18, 21] by assuming the source to be a generalized Gaussian random field. The covariance of such random field is a classical pseudo-differential operator with a principal symbol taking the form h(x)|ξ|mh(x)|\xi|^{-m}, where hh is called micro-correlation strength. This model encompasses various important stochastic processes, including white noise, fractional Brownian motion, and Markov fields [16]. Compared with the many uniqueness results of the inverse random source problems, the stability has been much less studied. To the best of our knowledge, the only existing stability results were obtained in [20, 22] driven by Wiener process. The corresponding stability for the generalized Gaussian random field remains unsolved.

In numerical experiments in [4, 19], it has been observed that the ill-posedness of the inverse random source problem can be overcome by using multi-frequency data which yields increasing stability, i.e., as the frequency increases the inverse problem becomes more stable. The goal of this work is to mathematical verify the increasing stability with a generalized Gaussian random field. Specifically, consider the stochastic Helmholtz equation

(1.1) Δu+k2u=f,ind,d=2,3,\Delta u+k^{2}u=f,\quad\mathrm{in}\quad\mathbb{R}^{d},\,d=2,3,

where k>0k>0 is the wavenumber. The source function ff is a microlocally isotropic general Gaussian random field of order mm in a bounded Lipschitz domain DdD\subset\mathbb{R}^{d} (see Section 2 for a detailed definition). The wave field uu is required to satisfy the Sommerfeld radiation condition

(1.2) limrrd12(ruiku)=0,r=|x|.\lim_{r\to\infty}r^{\frac{d-1}{2}}(\partial_{r}u-iku)=0,\quad r=|x|.

Let BR={x:xd,|x|R}B_{R}=\{x:x\in\mathbb{R}^{d},\,|x|\leq R\} with boundary BR\partial B_{R} and assume that DBRD\subset\subset B_{R}. The inverse problem is to determine the principle symbol of ff from either the near-field data on BR\partial B_{R} or far-field data.

Compared with the deterministic case, new challenges arise due to the roughness and randomness of the source. The well-posedness of the direct problem (1.1)–(1.2) has been discussed in [18]. However, it is not clear if the solution can be represented by the convolution of the Green function and the source as in the classical setting. By studying the regularity of the Green function, we establish an explicit integral representation of the solution which holds pointwisely. As a consequence, we obtain an enhanced regularity result. The analysis of the inverse problem employs microlocal analysis to achieve an estimate for the Fourier transform of the micro-correlation strength by the near-field correlation data and a high-frequency tail. Next, we show that the correlation data is analytic and derive an upper bound with respect to complex wave number. The stability estimate follows by an application of a novel analytic continuation developed in [25]. For the case of far-field data, the stability estimate can be derived by investigating the correlation of the far-field data. The stability has a unified form which consists of the Lipschitz data discrepancy and a logarithmic stability, where the latter decreases as the frequency increases.

The rest of this paper is organized as follows. Section 2 is devoted to the definition and some properties of the microlocally isotropic Gaussian random function. In Section 3, we derive a regularity result for the Green function of the Helmholtz equation which leads to an explicit integral representation of the direct problem. The main increasing stability results are presented in Section 4 and Section 5 for near-field data and far-field data, respectively. A conclusion is given in Section 6. Throughout this paper, aba\lesssim b stands for aCba\leq Cb, where C>0C>0 is a generic constant whose special value is not required but should be clear from the context.

2 Preliminaries

In this section, we state the properties of microlocally isotropic generalized Gaussian random functions. Let (Ω,𝒜,)(\Omega,\mathcal{A},\mathbb{P}) be a complete probability space. Denote the test function space by 𝒟\mathcal{D}, which consists of smooth functions with compact supports in d(d=2,3)\mathbb{R}^{d}(d=2,3). Then the dual space of 𝒟\mathcal{D} is denoted as 𝒟\mathcal{D}^{\prime}. A scalar field ff is said to be a real-valued generalized Gaussian random function if f:Ω𝒟f\,:\,\Omega\to\mathcal{D}^{\prime} is a distribution such that for each ωΩ\omega\in\Omega the path f[](ω)𝒟f[\cdot](\omega)\in\mathcal{D}^{\prime} is a linear functional on 𝒟\mathcal{D}, and ωf(ω),ϕ\omega\mapsto\langle f(\omega),\phi\rangle is a real-valued Gaussian random variable for all ϕ𝒟\phi\in\mathcal{D}. The expectation of ff is a generalized function defined by

𝔼f:ϕ𝔼f,ϕ,ϕ𝒟,\mathbb{E}f\,:\,\phi\mapsto\mathbb{E}\langle f,\phi\rangle,\quad\phi\in\mathcal{D},

and the covariance is a bilinear form given by

Covf:(ϕ1,ϕ2)Cov(f,ϕ1,f,ϕ2),ϕ1,ϕ2𝒟.\mathrm{Cov}f\,:\,(\phi_{1},\phi_{2})\mapsto\mathrm{Cov}(\langle f,\phi_{1}\rangle,\langle f,\phi_{2}\rangle),\quad\phi_{1},\phi_{2}\in\mathcal{D}.

Then define the covariance operator Cf:𝒟𝒟C_{f}\,:\,\mathcal{D}\to\mathcal{D}^{\prime} by

Cfϕ1,ϕ2=Cov(f,ϕ1,f,ϕ2),ϕ1,ϕ2𝒟,\langle C_{f}\phi_{1},\phi_{2}\rangle=\mathrm{Cov}(\langle f,\phi_{1}\rangle,\langle f,\phi_{2}\rangle),\quad\phi_{1},\phi_{2}\in\mathcal{D},

which is associated with a Schwartz kernel denoted by Kf(x,y)K_{f}(x,y) as follows

Cfϕ1,ϕ2=𝕕𝕕Kf(x,y)ϕ1(x)ϕ2(y)dxdy, and Kf(x,y)=𝔼[(f(x)𝔼f(x))(f(y)𝔼f(y))].\langle C_{f}\phi_{1},\phi_{2}\rangle=\int_{\mathbb{R^{d}}}\int_{\mathbb{R^{d}}}K_{f}(x,y)\phi_{1}(x)\phi_{2}(y)\,\mathrm{d}x\mathrm{d}y,\mbox{ and }K_{f}(x,y)=\mathbb{E}[(f(x)-\mathbb{E}f(x))(f(y)-\mathbb{E}f(y))].

In this paper, the random source is assumed to be characterized by a special class of generalized Gaussian random functions as follows.

Definition 2.1.

A generalized Gaussian random function ff with zero expectation is called microlocally isotropic of order mm\in\mathbb{R} in the domain DdD\subset\mathbb{R}^{d}, if suppfD\text{supp}\,f\subset\subset D for almost surely ωΩ\omega\in\Omega and its covariance operator CfC_{f} is a classical pseudo-differential operator with the principal symbol h(x)|ξ|mh(x)\big{|}\xi\big{|}^{-m} where 0hC0(d)0\leq h\in C^{\infty}_{0}(\mathbb{R}^{d}) and supphD\text{supp}\,h\subset\subset D.

The smooth function hh is called the micro-correlation strength of the random function ff. Let c(x,ξ)c(x,\xi) be the symbol of CfC_{f}. The operator can be represented by

Cf(ϕ)(x)=(2π)ddeixξc(x,ξ)ϕ^(ξ)dξ,ϕ𝒟,C_{f}(\phi)(x)=(2\pi)^{-d}\int_{\mathbb{R}^{d}}e^{ix\cdot\xi}c(x,\xi)\hat{\phi}(\xi)\,\mathrm{d}\xi,\quad\phi\in\mathcal{D},

where ϕ^(ξ)\hat{\phi}(\xi) stands for the Fourier transform of ϕ\phi defined by ϕ^(ξ)=ϕ(ξ):=deixξϕ(x)dx.\hat{\phi}(\xi)=\mathcal{F}\phi(\xi):=\int_{\mathbb{R}^{d}}e^{-ix\cdot\xi}\phi(x)\,\mathrm{d}x. The kernel KfK_{f} can be represented as an oscillatory integral of the form

(2.1) Kf(x,y)=(2π)ddei(xy)ξc(x,ξ)dξ.K_{f}(x,y)=(2\pi)^{-d}\int_{\mathbb{R}^{d}}e^{i(x-y)\cdot\xi}c(x,\xi)\,\mathrm{d}\xi.

We introduce the following regularity result in [21] for microlocally isotropic Gaussian random functions.

Lemma 2.1.

Let ff be a microlocally isotropic Gaussian random function of order mm. Then fWmd2ϵ,p(D)f\in W^{\frac{m-d}{2}-\epsilon,p}(D) almost surely for all ϵ>0\epsilon>0 and 1<p<1<p<\infty.

By Sobolev embedding theorem, Lemma 2.1 gives the following corollary.

Corollary 2.1.

Let ff be a microlocally isotropic Gaussian random function of order mm. Suppose DD is a Lipschitz domain such that  suppfD\text{ supp}f\subset D. For any aa\in\mathbb{N} satisfying d+2a<md+2(a+1)d+2a<m\leq d+2(a+1), we have fCa,γ(D¯)f\in C^{a,\gamma}{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}(\bar{D})} almost surely with γ(0,md2a)\gamma\in(0,\frac{m-d}{2}-a).

3 Direct problem

In this section, we investigate the direct scattering problem. The Green function of the Helmholtz equation Φ(x,y)\Phi(x,y) has the explicit form

(3.3) Φ(x,y)={i4H0(1)(k|xy|),d=2,eik|xy|4π|xy|,d=3,\displaystyle\Phi(x,y)=\left\{\begin{array}[]{cc}\frac{i}{4}H^{(1)}_{0}(k|x-y|),&d=2,\\ \frac{e^{ik|x-y|}}{4\pi|x-y|},&d=3,\end{array}\right.

where H0(1)H^{(1)}_{0} is the Hankel function of the first kind with order zero. According to Corollary 2.1, for m>dm>d, the source fC0,γ(D¯)L2(D)f\in C^{0,\gamma}{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}(\bar{D})}\subset L^{2}(D) with some γ>0\gamma>0 almost surely. Hence, the scattering problem (1.1)-(1.2) is classical which admits a unique solution uHloc2(d)u\in H^{2}_{loc}(\mathbb{R}^{d}) with the following explicit integral form

(3.4) u=dΦ(x,y)f(y)dx.\displaystyle u=-\int_{\mathbb{R}^{d}}\Phi(x,y)f(y)\,\mathrm{d}x.

However, for mdm\leq d, Lemma 2.1 shows that such source is too rough to exist pointwisely which should be taken as distribution. In this case, the following theorem proved in [18] gives the well-posedness and regularity of the direct problem.

Theorem 3.1.

Let ff be a microlocally isotropic Gaussian random function of order m(d4,d]m\in(d-4,d]. The problem (1.1)-(1.2) is well-posed and the unique solution can be represented by (3.3) in sense of distributions, which satisfies uWlocα,q(3)u\in W^{\alpha,q}_{loc}(\mathbb{R}^{3}) almost surely for any q>1q>1 and

0<α<min{2dm2,2dm2+d(1q12)}.0<\alpha<\min\left\{2-\frac{d-m}{2},2-\frac{d-m}{2}+d\left(\frac{1}{q}-\frac{1}{2}\right)\right\}.

For m>dm>d, by classical acoustic wave scattering theory we know that the solution of the direct problem admits a pointwise explicit integral representation (3.4). However, for mdm\leq d, we only know that (3.4) holds in sense of distributions. In the rest of this section, we show that (3.4) holds pointwisely, which implies uL(d)u\in L^{\infty}(\mathbb{R}^{d}).

The following lemma is useful in the subsequent analysis.

Lemma 3.1.

Supposing that p1,p2(1,d)p_{1},p_{2}\in(1,d) and p1+p2>dp_{1}+p_{2}>d, we have that the inequalities

D1|yx|p1|yz|p2dy1|xz|p1+p2d\displaystyle\int_{D}\frac{1}{|y-x|^{p_{1}}|y-z|^{p_{2}}}\,\mathrm{d}y\lesssim\frac{1}{|x-z|^{p_{1}+p_{2}-d}}

and

D|log|zy|||yx|p1|yz|p2dy1+|log|xz|||xz|p1+p2d\displaystyle\int_{D}\frac{|\log|z-y||}{|y-x|^{p_{1}}|y-z|^{p_{2}}}\,\mathrm{d}y\lesssim\frac{1+|\log|x-z||}{|x-z|^{p_{1}+p_{2}-d}}

hold for x,zdx,z\in\mathbb{R}^{d}.

Proof.

Without loss of gengerality, assume z=0z=0. Letting y=y|x|y^{\prime}=\frac{y}{|x|} we obtain

D1|yx|p1|y|p2dyd|x|dp1p2|yx^|p1|y|p2dy1|x|p1+p2d,\displaystyle\int_{D}\frac{1}{|y-x|^{p_{1}}|y|^{p_{2}}}\,\mathrm{d}y\leq\int_{\mathbb{R}^{d}}\frac{|x|^{d-p_{1}-p_{2}}}{|y^{\prime}-\hat{x}|^{p_{1}}|y^{\prime}|^{p_{2}}}\,\mathrm{d}y^{\prime}\lesssim\frac{1}{|x|^{p_{1}+p_{2}-d}},

which proves the first inequality. The second inequality can be proven similarly.

Lemma 3.2.

For any xdx\in\mathbb{R}^{d} we have Φ(x,)Wloc1+μ,p(d)\Phi(x,\cdot)\in W^{1+\mu,p}_{loc}(\mathbb{R}^{d}) with μ(0,1)\mu\in(0,1), 1<p<dμ+d11<p<\frac{d}{\mu+d-1}.

Proof.

Consider the Slobodeckij semi-norm

|u|Wμ,p(D)p:=DD|u(x)u(y)|p|xy|pμ+ddxdy.|u|^{p}_{W^{\mu,p}(D)}:=\int_{D}\int_{D}\frac{|u(x)-u(y)|^{p}}{|x-y|^{p\mu+d}}\,\mathrm{d}x\,\mathrm{d}y.

The norm of W1+μ,p(D)W^{1+\mu,p}(D) can be expressed by

uW1+μ,p(D)p:=uW1,p(D)p+i=1d|iu|Wμ,p(D)p.\|u\|^{p}_{W^{1+\mu,p}(D)}:=\|u\|^{p}_{W^{1,p}(D)}+\sum_{i=1}^{d}|\partial_{i}u|^{p}_{W^{\mu,p}(D)}.

Without loss of generality, we assume xDdx\in D\subset\subset\mathbb{R}^{d}. Firstly we consider the case when d=3d=3. Notice

Φ(x,y)=eik|xy|4π|xy|,iΦ(x,y)=eik|xy|ik(yixi)|xy|(yixi)4π|xy|3,\Phi(x,y)=\frac{e^{ik|x-y|}}{4\pi|x-y|},\quad\partial_{i}\Phi(x,y)=e^{ik|x-y|}\frac{ik(y_{i}-x_{i})|x-y|-(y_{i}-x_{i})}{4\pi|x-y|^{3}},

which gives Φ(x,)W1,p(D)\Phi(x,\cdot)\in W^{1,p}(D) with 1<p<321<p<\frac{3}{2}. Therefore, we only need to show

|jΦ(x,y)|Wμ,p(D)p<,j=1,2d,\displaystyle|\partial_{j}\Phi(x,y)|^{p}_{W^{\mu,p}(D)}<\infty,\quad j=1,2...d,

for 0<μ<10<\mu<1 and 1<p<32+μ1<p<\frac{3}{2+\mu}. Clearly, we only need to consider the term which has higher singularity. Hence, it suffices to show

eik|xy|yjxj|xy|3Wμ,p(D)e^{ik|x-y|}\frac{y_{j}-x_{j}}{|x-y|^{3}}\in W^{\mu,p}(D)

for 0<μ<10<\mu<1 and 1<p<32+μ1<p<\frac{3}{2+\mu}. Using the fractional Leibniz rule in [14] gives

(3.5) |eik|xy|yjxj|xy|3|Wμ,p(D)\displaystyle\left|e^{ik|x-y|}\frac{y_{j}-x_{j}}{|x-y|^{3}}\right|_{W^{\mu,p}(D)} eik|xy|L(D)|yjxj|xy|3|Wμ,p(D)+|eik|xy||Wμ,(D)yjxj|xy|3Lp(D).\displaystyle\lesssim\|e^{ik|x-y|}\|_{L^{\infty}(D)}\left|\frac{y_{j}-x_{j}}{|x-y|^{3}}\right|_{W^{\mu,p}(D)}+|e^{ik|x-y|}|_{W^{\mu,\infty(D)}}\left\|\frac{y_{j}-x_{j}}{|x-y|^{3}}\right\|_{L^{p}(D)}.

It is straightforward to verify eik|xy|W1,(D)e^{ik|x-y|}\in W^{1,\infty}(D), which implies

(3.6) eik|xy|L(D)<,|eik|xy||Wμ,(D)<.\|e^{ik|x-y|}\|_{L^{\infty}(D)}<\infty,\quad|e^{ik|x-y|}|_{W^{\mu,\infty(D)}}<\infty.

Combining (3.5)–(3.6), we only need to prove

xiyi|xy|3Wμ,p(D)\frac{x_{i}-y_{i}}{|x-y|^{3}}\in W^{\mu,p}(D)

for 0<μ<10<\mu<1 and 1<p<32+μ1<p<\frac{3}{2+\mu}. It is easy to verify

xiyi|xy|W1,p(D),\frac{x_{i}-y_{i}}{|x-y|}\in W^{1,p^{\prime}}(D),

where 1<p<31<p^{\prime}<3. Applying Sobolev embedding theorem yields

(3.7) xiyi|xy|Wμ,q(D),\frac{x_{i}-y_{i}}{|x-y|}\in W^{\mu,q}(D),

where 0<μ<10<\mu<1 and q<3μq<\frac{3}{\mu}. Next we will show that

(3.8) 1|xy|2Wμ,p(D)\frac{1}{|x-y|^{2}}\in W^{\mu,p}(D)

for 0<μ<10<\mu<1 and 1<p<32+μ1<p<\frac{3}{2+\mu}. To this end, direct calculations imply

DD||xy|2|xz|2|p|yz|pμ+3dydzDD(|xz|p+|xy|p)|zy|p|yz|pμ+3|xz|2p|xy|2pdydz\displaystyle\int_{D}\int_{D}\frac{\left||x-y|^{-2}-|x-z|^{-2}\right|^{p}}{|y-z|^{p\mu+3}}\,\mathrm{d}y\mathrm{d}z\lesssim\int_{D}\int_{D}\frac{(|x-z|^{p}+|x-y|^{p})|z-y|^{p}}{|y-z|^{p\mu+3}|x-z|^{2p}|x-y|^{2p}}\,\mathrm{d}y\mathrm{d}z
(3.9) =\displaystyle= DD|yz|(p(μ1)+3)|xy|p|xz|2pdydz+DD|yz|(p(μ1)+3)|xz|p|xy|2pdydz.\displaystyle\int_{D}\int_{D}|y-z|^{-(p(\mu-1)+3)}|x-y|^{-p}|x-z|^{-2p}\,\mathrm{d}y\mathrm{d}z+\int_{D}\int_{D}|y-z|^{-(p(\mu-1)+3)}|x-z|^{-p}|x-y|^{-2p}\,\mathrm{d}y\mathrm{d}z.

Applying Lemma 3.1 gives

(3.10) DD|yz|(p(μ1)+3)|xy|p|xz|2pdydzD1|xz|2p+μp<,\displaystyle\int_{D}\int_{D}|y-z|^{-(p(\mu-1)+3)}|x-y|^{-p}|x-z|^{-2p}\,\mathrm{d}y\mathrm{d}z\lesssim\int_{D}\frac{1}{|x-z|^{2p+\mu p}}<\infty,

when 0<μ<10<\mu<1 and p<32+μp<\frac{3}{2+\mu}. Inserting (3.10) into (3.9) gives (3.8).

Applying fractional Leibniz rule yields

(3.11) |xiyi|xy|3|Wμ,p(D)xiyi|xy|L(D)|1|xy|2|Wμ,p(D)+|xiyi|xy||Wμ,q(D)|1|xy|2|Lq(D),\displaystyle\left|\frac{x_{i}-y_{i}}{|x-y|^{3}}\right|_{W^{\mu,p}(D)}\lesssim\left\|\frac{x_{i}-y_{i}}{|x-y|}\right\|_{L^{\infty}(D)}\left|\frac{1}{|x-y|^{2}}\right|_{W^{\mu,p}(D)}+\left|\frac{x_{i}-y_{i}}{|x-y|}\right|_{W^{\mu,q}(D)}\left|\frac{1}{|x-y|^{2}}\right|_{L^{q^{\prime}}(D)},

where 1q+1q=1p\frac{1}{q^{\prime}}+\frac{1}{q}=\frac{1}{p}. We have known that

(3.12) |1|xy|2|Wμ,p(D)<,\left|\frac{1}{|x-y|^{2}}\right|_{W^{\mu,p}(D)}<\infty,

for 0<μ<10<\mu<1, 1<p<32+μ1<p<\frac{3}{2+\mu} and

(3.13) |xiyi|xy||Wμ,q(D)<\left|\frac{x_{i}-y_{i}}{|x-y|}\right|_{W^{\mu,q}(D)}<\infty

for 0<μ<10<\mu<1, 1<q<3μ1<q<\frac{3}{\mu}. Obviously, it can be verified

(3.14) |1|xy|2|Lq(D)<\left|\frac{1}{|x-y|^{2}}\right|_{L^{q^{\prime}}(D)}<\infty

with 1<q<321<q^{\prime}<\frac{3}{2}. Hence, we can choose 1<q<3μ1<q<\frac{3}{\mu} and 1<q<321<q^{\prime}<\frac{3}{2} which gives

p=1q1+q1<32+μ.p=\frac{1}{q^{-1}+q^{\prime-1}}<\frac{3}{2+\mu}.

Then by combining (3.11)–(3.14) we arrive at

|xiyi|xy|3|Wμ,p(D)<,\displaystyle\left|\frac{x_{i}-y_{i}}{|x-y|^{3}}\right|_{W^{\mu,p}(D)}<\infty,

which completes the proof when d=3d=3.

When d=2d=2, the discussion is analogous as d=3d=3 by noticing the asymptotic relations

H0(1)(t)=2iπlogt2+O(1)H^{(1)}_{0}(t)=\frac{2i}{\pi}\log{\frac{t}{2}}+O(1)

and

H0(1)(t)=2iπt+O(t)H^{(1)}_{0}(t)=-\frac{2i}{\pi t}+O(t)

when t0t\to 0. We omit it for brevity.

Combining Lemma 2.1 and 3.2, we have the following regularity result.

Theorem 3.2.

Let ff be a microlocally isotropic Gaussian random function of order m(d4,d]m\in(d-4,d]. The solution to the direct scattering problem admits the following representation which holds pointwisely

(3.15) u(x)=dΦ(x,y)f(y)dx.u(x)=-\int_{\mathbb{R}^{d}}\Phi(x,y)f(y)\,\mathrm{d}x.

Moreover, uL(d)u\in L^{\infty}(\mathbb{R}^{d}) almost surely.

Proof.

For any fixed xdx\in\mathbb{R}^{d}, combining Lemma 2.1 and 3.2 gives that (3.15) is well-defined, i.e.

(3.16) |u(x)|Φ(x,)W1+μ,p(D)fW(1+μ),p(D)<,\displaystyle|u(x)|\leq\|\Phi(x,\cdot)\|_{W^{1+\mu,p}(D)}\|f\|_{W^{-(1+\mu),p^{\prime}}(D)}<\infty,

with

0<μ<1,1<p<dμ+d1and1p+1p=1.0<\mu<1,\quad 1<p<\frac{d}{\mu+d-1}\quad\text{\rm and}\quad\frac{1}{p}+\frac{1}{p^{\prime}}=1.

Now we show uL(d)u\in L^{\infty}(\mathbb{R}^{d}). Recalling (3.3), there exists a sufficient large R0R_{0} such that DBR0D\subset B_{R_{0}} and

|Φ(x,y)|C,|yΦ(x,y)|Cand|y2Φ(x,y)|C,xd\BR0,yD,|\Phi(x,y)|\leq C,\quad|\nabla_{y}\Phi(x,y)|\leq C\quad\text{\rm and}\quad|\nabla_{y}^{2}\Phi(x,y)|\leq C,\quad x\in\mathbb{R}^{d}\backslash B_{R_{0}},\,y\in D,

where CC is a constant independent of xx and yy. Hence for any xd\BR0x\in\mathbb{R}^{d}\backslash B_{R_{0}}, there holds

(3.17) Φ(x,)W1+μ,p(D)Φ(x,)W2,p(D)C,\displaystyle\|\Phi(x,\cdot)\|_{W^{1+\mu,p}(D)}\leq\|\Phi(x,\cdot)\|_{W^{2,p}(D)}\leq C,

where CC is a constant independent of xx. For any xBR0x\in B_{R_{0}}, we have

(3.18) Φ(x,)W1+μ,p(D)Φ(x,)W1+μ,p(BR0)Φ(x,)W1+μ,p(B2R0)=Φ(0,)W1+μ,p(B2R0).\displaystyle\|\Phi(x,\cdot)\|_{W^{1+\mu,p}(D)}\leq\|\Phi(x,\cdot)\|_{W^{1+\mu,p}(B_{R_{0}})}\leq\|\Phi(x,\cdot)\|_{W^{1+\mu,p}(B_{2R_{0})}}=\|\Phi(0,\cdot)\|_{W^{1+\mu,p}(B_{2R_{0}})}.

Combining (3.16)–(3.18) we complete the proof.

It can be verified that using the regularity result in Theorem 4.1 and Sobolev embedding theorem one can only have uL(d)u\in L^{\infty}(\mathbb{R}^{d}) when m>2(d2)m>2(d-2). Hence, the above theorem enhances the regularity result in Theorem 4.1.

4 Inverse problem using near-field data

In this section, we derive the stability estimate by near-field data. Denote a(x,ξ)=c(x,ξ)h(x)|ξ|ma(x,\xi)=c(x,\xi)-h(x)|\xi|^{-m}. Assume that ff satisfies the following assumption.

Assumption (A). The random source ff is a real-valued microlocally isotropic Gaussian random function of order m>d1m>d-1. The covariance operator has the symbol c(x,ξ)c(x,\xi) with the principal symbol h(x)|ξ|mh(x)|\xi|^{-m} satisfying (i) |h(x)|M|h(x)|\leq M for xDx\in D; (ii) |c(x,ξ)|M(1+|ξ|)m|c(x,\xi)|\leq M(1+|\xi|)^{-m} for ξd\xi\in\mathbb{R}^{d} and xDx\in D; (iii) |a(x,ξ)|M|ξ|(m+1)|a(x,\xi)|\leq M|\xi|^{-(m+1)} for |ξ|1|\xi|\geq 1 and xDx\in D. Here M>0M>0 stands for a constant.

We first give a bound with a high frequency tail for the Fourier transform of hh in terms of the source function. Recalling the definitions in Section 2, the covariance of f^\hat{f} can be expressed by

𝔼(f^(ξ)f^(η))\displaystyle\mathbb{E}(\hat{f}(\xi)\hat{f}(\eta)) =𝔼(BRBRf(x)f(y)eiξxeiηydxdy)=BRBRKf(x,y)eiξxeiηydxdy\displaystyle=\mathbb{E}\left(\int_{B_{R}}\int_{B_{R}}f(x)f(y)e^{-i\xi\cdot x}e^{-i\eta\cdot y}\,\mathrm{d}x\mathrm{d}y\right)=\int_{B_{R}}\int_{B_{R}}K_{f}(x,y)e^{-i\xi\cdot x}e^{-i\eta\cdot y}\,\mathrm{d}x\mathrm{d}y
=(2π)dBRBRdei(ξx+ηy)ei(xy)ζc(x,ζ)dζdxdy\displaystyle=(2\pi)^{-d}\int_{B_{R}}\int_{B_{R}}\int_{\mathbb{R}^{d}}e^{-i(\xi\cdot x+\eta\cdot y)}e^{i(x-y)\cdot\zeta}c(x,\zeta)\,\mathrm{d}\zeta\mathrm{d}x\mathrm{d}y
=BRdeix(ζξ)c(x,ζ)δ(ζ+η)dζdx=BReix(η+ξ)c(x,η)dx\displaystyle=\int_{B_{R}}\int_{\mathbb{R}^{d}}e^{ix\cdot(\zeta-\xi)}c(x,\zeta)\delta(\zeta+\eta)\,\mathrm{d}\zeta\mathrm{d}x=\int_{B_{R}}e^{-ix\cdot(\eta+\xi)}c(x,-\eta)\,\mathrm{d}x
=BReix(η+ξ)h(x)|η|mdx+MRdO(|η|(m+1))\displaystyle=\int_{B_{R}}e^{-ix\cdot(\eta+\xi)}h(x)|\eta|^{-m}\,\mathrm{d}x+MR^{d}O(|\eta|^{-(m+1)})
=|η|mh^(ξ+η)+MRdO(|η|(m+1)).\displaystyle=|\eta|^{-m}\hat{h}(\xi+\eta)+MR^{d}O(|\eta|^{-(m+1)}).

Therefore, we obtain

h^(ξ+η)=|η|m𝔼(f^(ξ)f^(η))+MRdO(1|η|).\hat{h}(\xi+\eta)=|\eta|^{m}\mathbb{E}(\hat{f}(\xi)\hat{f}(\eta))+MR^{d}O\left(\frac{1}{|\eta|}\right).

Taking ξ=kθ1\xi=k\theta_{1} and η=kθ2\eta=k\theta_{2} with θ1,θ2𝕊d1\theta_{1},\,\theta_{2}\in\mathbb{S}^{d-1}, one arrives at

(4.1) h^(k(θ1+θ2))=|k|m𝔼(f^(kθ1)f^(kθ2))+MRdO(1|k|).\hat{h}(k(\theta_{1}+\theta_{2}))=|k|^{m}\mathbb{E}(\hat{f}(k\theta_{1})\hat{f}(k\theta_{2}))+MR^{d}O\left(\frac{1}{|k|}\right).

Next, we bound the term 𝔼(f^(kθ1)f^(kθ2))\mathbb{E}(\hat{f}(k\theta_{1})\hat{f}(k\theta_{2})) by the correlation data on BR\partial B_{R}. Multiplying the governing equation (1.1) by the plane wave eikθjxe^{-ik\theta_{j}\cdot x} and integrating by parts yield

(4.2) BRfeikθjxdx=BRνu(x)eikθjxν(eikθjx)u(x)dx.\displaystyle\int_{B_{R}}fe^{-ik\theta_{j}\cdot x}\,\mathrm{d}x=\int_{\partial B_{R}}\partial_{\nu}u(x)e^{-ik\theta_{j}\cdot x}-\partial_{\nu}(e^{-ik\theta_{j}\cdot x})u(x)\,\mathrm{d}x.

Taking expectation gives that

𝔼(f^(kθ1)f^(kθ2))\displaystyle\mathbb{E}(\hat{f}(k\theta_{1})\hat{f}(k\theta_{2})) =BRBR𝔼(νu(x)νu(y))eik(θ1x+θ2y)ds(x)ds(y)\displaystyle=\int_{\partial B_{R}}\int_{\partial B_{R}}\mathbb{E}(\partial_{\nu}u(x)\partial_{\nu}u(y))e^{-ik(\theta_{1}\cdot x+\theta_{2}\cdot y)}\,\mathrm{d}s(x)\mathrm{d}s(y)
BRBR𝔼(νu(x)u(y))eik(θ1x+θ2y)(ikθ2y^)ds(x)ds(y)\displaystyle\quad-\int_{\partial B_{R}}\int_{\partial B_{R}}\mathbb{E}(\partial_{\nu}u(x)u(y))e^{-ik(\theta_{1}\cdot x+\theta_{2}\cdot y)}(-ik\theta_{2}\cdot\hat{y})\,\mathrm{d}s(x)\mathrm{d}s(y)
BRBR𝔼(νu(y)u(x))eik(θ1x+θ2y)(ikθ1x^)ds(x)ds(y)\displaystyle\quad-\int_{\partial B_{R}}\int_{\partial B_{R}}\mathbb{E}(\partial_{\nu}u(y)u(x))e^{-ik(\theta_{1}\cdot x+\theta_{2}\cdot y)}(-ik\theta_{1}\cdot\hat{x})\,\mathrm{d}s(x)\mathrm{d}s(y)
BRBR𝔼(u(x)u(y))eik(θ1x+θ2y)k2(θ2y^)(θ1x^)ds(x)ds(y)\displaystyle\quad-\int_{\partial B_{R}}\int_{\partial B_{R}}\mathbb{E}(u(x)u(y))e^{-ik(\theta_{1}\cdot x+\theta_{2}\cdot y)}k^{2}(\theta_{2}\cdot\hat{y})(\theta_{1}\cdot\hat{x})\,\mathrm{d}s(x)\mathrm{d}s(y)
(4.3) :=j=14Ij(k,θ1,θ2),\displaystyle\quad:=\sum_{j=1}^{4}I_{j}(k,\theta_{1},\theta_{2}),

where x^=x/|x|\hat{x}=x/|x|. By inserting (4.3) into (4.1) and noticing

{θ:θ=θ1+θ2,θ1,θ2𝕊d1}={θd:|θ|2},{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}\{\theta:\theta=\theta_{1}+\theta_{2},\theta_{1},\theta_{2}\in\mathbb{S}^{d-1}\}=\{\theta\in\mathbb{R}^{d}:|\theta|\leq 2\},}

we derive the inequality

(4.4) |h^(ξ)|2supθ1,θ2𝕊d1k2m|j=14Ij(k,θ1,θ2)|2+M2R2dk2,\displaystyle|\hat{h}(\xi)|^{2}\lesssim\sup_{\theta_{1},\theta_{2}\in\mathbb{S}^{d-1}}k^{2m}|\sum_{j=1}^{4}I_{j}(k,\theta_{1},\theta_{2})|^{2}+\frac{M^{2}R^{2d}}{k^{2}},

which holds for all |ξ|2k|\xi|\leq 2k. For convenience, denote

ϵ2(k,θ1,θ2):=j=14|Ij(k,θ1,θ2)|2\epsilon^{2}(k,\theta_{1},\theta_{2}):=\sum_{j=1}^{4}|I_{j}(k,\theta_{1},\theta_{2})|^{2}

with k>0k>0 and θ1,θ2𝕊d1\theta_{1},\theta_{2}\in\mathbb{S}^{d-1}. From the equation (1.1) and the Sommerfeld radiation condition (1.2), it can be verified that

u(x;k)=u(x;k)¯,k,u(x;-k)=\overline{u(x;k)},\quad k\in\mathbb{R},

where the notation u(x;k)u(x;k) is used to exhibit the dependence of the solution on the wavenumber kk. Therefore, the definition of ϵ2(k,θ1,θ2)\epsilon^{2}(k,\theta_{1},\theta_{2}) can be extended to \mathbb{C} as

ϵ2(k,θ1,θ2):=j=14Ij(k,θ1,θ2)Ij(k,θ1,θ2).\epsilon^{2}(k,\theta_{1},\theta_{2}):={\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}\sum_{j=1}^{4}I_{j}(k,\theta_{1},\theta_{2})I_{j}(-k,\theta_{1},\theta_{2}).}

Consider the multi-frequency data characterized as

ϵ2=supk[0,K],θ1,θ2𝕊d1ϵ2(k,θ1,θ2),\epsilon^{2}=\sup_{k\in[0,K],\theta_{1},\theta_{2}\in\mathbb{S}^{d-1}}\epsilon^{2}(k,\theta_{1},\theta_{2}),

where K>0K>0 is the upper bound of the frequency. Denote a sectorial domain by ={z:|argz|<π/4}\mathcal{R}=\{z\in\mathbb{C}:|\arg z|<\pi/4\}. In what follows, we show that ϵ2(k,θ1,θ2)\epsilon^{2}(k,\theta_{1},\theta_{2}) is analytic and has an upper bound for kk\in\mathcal{R}. We only consider the term I1I_{1} since the discussions for I2,I3,I4I_{2},I_{3},I_{4} are similar. Recalling (3.15), we deduce

I1(k,θ1,θ2)\displaystyle I_{1}(k,\theta_{1},\theta_{2})
=BRBR𝔼(u(x)u(y))eik(θ1x+θ2y)ds(x)ds(y)\displaystyle=\int_{\partial B_{R}}\int_{\partial B_{R}}\mathbb{E}(u(x)u(y))e^{-ik(\theta_{1}\cdot x+\theta_{2}\cdot y)}\,\mathrm{d}s(x)\mathrm{d}s(y)
=BRBRDDJ(x,y,τ,t;k)𝔼(f(τ)f(t))dτdtds(x)ds(y)\displaystyle=\int_{\partial B_{R}}\int_{\partial B_{R}}\int_{D}\int_{D}J(x,y,\tau,t;k)\mathbb{E}(f(\tau)f(t))\,\mathrm{d}\tau\mathrm{d}t\mathrm{d}s(x)\mathrm{d}s(y)
=BRBRDDJ(x,y,τ,t;k)Kf(τ,t)dτdtds(x)ds(y),\displaystyle=\int_{\partial B_{R}}\int_{\partial B_{R}}\int_{D}\int_{D}J(x,y,\tau,t;k)K_{f}(\tau,t)\,\mathrm{d}\tau\mathrm{d}t\mathrm{d}s(x)\mathrm{d}s(y),

where we denote

J(x,y,τ,t;k):=ν(x)Φ(x,τ)ν(y)Φ(y,t)eik(θ1x+θ2y).J(x,y,\tau,t;k):=\partial_{\nu(x)}\Phi(x,\tau)\partial_{\nu(y)}\Phi(y,t)e^{-ik(\theta_{1}\cdot x+\theta_{2}\cdot y)}.

Obviously, JJ is analytic with respective to kk\in\mathcal{R}. In order to show I1I_{1} is also analytic, we shall verify the following estimates

(4.5) BRBRDD|Kf(τ,t)J(x,y,τ,t;k)|dτdtds(x)ds(y)<\displaystyle\int_{\partial B_{R}}\int_{\partial B_{R}}\int_{D}\int_{D}|K_{f}(\tau,t)J(x,y,\tau,t;k)|\,\mathrm{d}\tau\mathrm{d}t\mathrm{d}s(x)\mathrm{d}s(y)<\infty
(4.6) BRBRDD|Kf(τ,t)kJ(x,y,τ,t;k)|dτdtds(x)ds(y)<\displaystyle\int_{\partial B_{R}}\int_{\partial B_{R}}\int_{D}\int_{D}|K_{f}(\tau,t)\partial_{k}J(x,y,\tau,t;k)|\,\mathrm{d}\tau\mathrm{d}t\mathrm{d}s(x)\mathrm{d}s(y)<\infty

which hold uniformly with respect to kk\in\mathcal{R}. As a consequence, the derivative can be taken under the integral. We only prove (4.5), since (4.6) can be proven similarly. It is necessary to discuss the singularity of Kf(τ,t)K_{f}(\tau,t). Inspired by [10], we show in the following lemma that the kernel Kf(x,y)K_{f}(x,y) can be represented as the sum of a singular part and a continuous remainder which is bounded under assumption (A).

Lemma 4.1.

Let the random function ff satisfy assumption (A). The covariance function KfK_{f} has the following form:

(i) If a<m(d1)a+1a<m-(d-1)\leq a+1 with a=1,2,3a=1,2,3...,

Kf(x,y)=ch(x)|xy|md+Fm(x,y)K_{f}(x,y)=ch(x)|x-y|^{m-d}+F_{m}(x,y)

where cc is a constant dependent on m,dm,d and Fm(x,y)Ca,α(d×d)F_{m}(x,y)\in C^{a,\alpha}(\mathbb{R}^{d}\times\mathbb{R}^{d}) with α(0,mda+1)\alpha\in(0,m-d-a+1).

(ii) If d1<m<dd-1<m<d,

Kf(x,y)=ch(x)|xy|md+Fm(x,y)K_{f}(x,y)=ch(x)|x-y|^{m-d}+F_{m}(x,y)

where cc is a constant dependent on m,dm,d and Fm(x,y)C0,α(d×d)F_{m}(x,y)\in C^{0,\alpha}(\mathbb{R}^{d}\times\mathbb{R}^{d}) with α(0,md+1)\alpha\in(0,m-d+1).

(iii) If m=dm=d,

Kf(x,y)=ch(x)log|xy|+Fm(x,y)K_{f}(x,y)=ch(x)\log{|x-y|}+F_{m}(x,y)

where cc is a constant dependent on dd and Fm(x,y)C0,α(d×d)F_{m}(x,y)\in C^{0,\alpha}(\mathbb{R}^{d}\times\mathbb{R}^{d}) with α(0,1)\alpha\in(0,1).

For all of the above three cases, we have

FmL(D×D)M.\|F_{m}\|_{L^{\infty}(D\times D)}\lesssim M.

Proof.

We first consider the case a<m(d1)a+1a<m-(d-1)\leq a+1. Choose a radially symmetric cut-off function χ(ξ)C0(d)\chi(\xi)\in C^{\infty}_{0}(\mathbb{R}^{d}) such that χ(ξ)=1\chi(\xi)=1 when |ξ|1|\xi|\leq 1. Recalling (2.1) , we deduce

K(x,x),ϕ\displaystyle\langle K(x,x-\cdot),\phi\rangle =d1(χc(x,))(y)ϕ(y)dy+d1((1χ)a(x,))(y)ϕ(y)dy\displaystyle=\int_{\mathbb{R}^{d}}\mathcal{F}^{-1}(\chi c(x,\cdot))(y)\phi(y)\,\mathrm{d}y+\int_{\mathbb{R}^{d}}\mathcal{F}^{-1}((1-\chi)a(x,\cdot))(y)\phi(y)\,\mathrm{d}y
(4.7) +d(1χ(ξ))h(x)|ξ|m(1ϕ)(ξ)dξ\displaystyle\quad+\int_{\mathbb{R}^{d}}(1-\chi(\xi))h(x)|\xi|^{-m}(\mathcal{F}^{-1}\phi)(\xi)\,\mathrm{d}\xi

with the test function ϕ𝒟\phi\in\mathcal{D}. Notice that v1(x,y):=1(χc(x,))(y)𝒮(d×d)v_{1}(x,y):=\mathcal{F}^{-1}(\chi c(x,\cdot))(y)\in\mathcal{S}(\mathbb{R}^{d}\times\mathbb{R}^{d}) with suppvD×dsupp\,v\subset D\times\mathbb{R}^{d} and the bound

(4.8) v1(x,y)L(d×d)Msuppχ|χ|(1+|ξ|)mdξM.\displaystyle\|v_{1}(x,y)\|_{L^{\infty}(\mathbb{R}^{d}\times\mathbb{R}^{d})}\lesssim M\int_{supp\,\chi}|\chi|(1+|\xi|)^{-m}\,\mathrm{d}\xi\lesssim M.

Denote v2(x,y)=1((1χ)a(x,))(y)v_{2}(x,y)=\mathcal{F}^{-1}((1-\chi)a(x,\cdot))(y). Obviously v2v_{2} is smooth and compactly supported with respect to xx. Recalling 1χ1-\chi vanishes when |ξ|1|\xi|\leq 1, then assumption (A) implies

|(1χ(ξ))a(x,ξ)|M|ξ|(m+1).|(1-\chi(\xi))a(x,\xi)|\lesssim M|\xi|^{-(m+1)}.

Take p,qp,\,q such that 2p2\leq p\leq\infty and 1p+1q=1\frac{1}{p}+\frac{1}{q}=1. Applying assumption (A) and Hausdorff-Young inequality gives the inequality

v2(x,)Ws,p(d)\displaystyle\|v_{2}(x,\cdot)\|_{W^{s,p}(\mathbb{R}^{d})} =(IΔ)s2v2(x,)Lp(d)(1+||2)s/2(1χ)a(x,)Lq(d)\displaystyle=\|(I-\Delta)^{\frac{s}{2}}v_{2}(x,\cdot)\|_{L^{p}(\mathbb{R}^{d})}\lesssim\|(1+|\cdot|^{2})^{s/2}(1-\chi)a(x,\cdot)\|_{L^{q}(\mathbb{R}^{d})}
M(|ξ|11|ξ|(m+1s)qdξ)1qM.\displaystyle\lesssim M\left(\int_{|\xi|\geq 1}\frac{1}{|\xi|^{(m+1-s)q}}\,\mathrm{d}\xi\right)^{\frac{1}{q}}\lesssim M.

The above inequality holds uniformly with respect to xx if and only if (m+1s)q>n(m+1-s)q>n which can be satisfied by choosing s>0s>0 and sd/p<m(d1)s-{d}/{p}<m-(d-1). Then using Sobolev embedding theorem gives Ws,p(d)Ck0,α(d)W^{s,p}(\mathbb{R}^{d})\subset C^{k_{0},\alpha}(\mathbb{R}^{d}) with k0,α(0,1]k_{0}\in\mathbb{N},\alpha\in(0,1] such that k0+α=sd/pk_{0}+\alpha=s-d/p. When a<m(d1)a+1a<m-(d-1)\leq a+1 with aa\in\mathbb{N}, we can choose pp sufficiently large such that ss is close to m(d1)m-(d-1) which implies k0,αk_{0},\alpha can be chosen as k0=ak_{0}=a and 0<α<m(d1)a0<\alpha<m-(d-1)-a. Furthermore, one has v2Ca,α(d×d)v_{2}\in C^{a,\alpha}(\mathbb{R}^{d}\times\mathbb{R}^{d}) and

(4.9) v2(x,y)L(d×d)v2(x,)Ca,α(d)v2(x,)Ws,p(d)M.\|v_{2}(x,y)\|_{L^{\infty}(\mathbb{R}^{d}\times\mathbb{R}^{d})}\leq\|v_{2}(x,\cdot)\|_{C^{a,\alpha}(\mathbb{R}^{d})}\leq\|v_{2}(x,\cdot)\|_{W^{s,p}(\mathbb{R}^{d})}\lesssim M.

The third term in (4.7) can be rewritten as

h(x)d1((1χ)||m)(y)ϕ(y)dy.\displaystyle h(x)\int_{\mathbb{R}^{d}}\mathcal{F}^{-1}((1-\chi)|\cdot|^{-m})(y)\phi(y)\,\mathrm{d}y.

Now we claim when m>dm>d,

(4.10) 1((1χ)||m)(y)=c1|y|md+g1(y),\mathcal{F}^{-1}((1-\chi)|\cdot|^{-m})(y)=c_{1}|y|^{m-d}+g_{1}(y),

where c1c_{1} is a constant only dependent on m,dm,d and g1(y)C(d)g_{1}(y)\in C^{\infty}(\mathbb{R}^{d}). In fact, direct calculation gives

1((1χ)||m)(y)\displaystyle\mathcal{F}^{-1}((1-\chi)|\cdot|^{-m})(y) =|y|md1((1χ)||m)(y^)+(2π)ddeiyξ|ξ|m(χ(|y|ξ)χ(ξ))dξ.\displaystyle=|y|^{m-d}\mathcal{F}^{-1}((1-\chi)|\cdot|^{-m})(\hat{y})+(2\pi)^{-d}\int_{\mathbb{R}^{d}}e^{iy\cdot\xi}|\xi|^{-m}(\chi(|y|\xi)-\chi(\xi))\,\mathrm{d}\xi.

Notice that m>dm>d and choose χ\chi to be a radially symmetric function. We have that

c1:=1((1χ)||m)(y^)c_{1}:=\mathcal{F}^{-1}((1-\chi)|\cdot|^{-m})(\hat{y})

is a finite constant. As χC0\chi\in C_{0}^{\infty}, we have that

g1(y):=(2π)ddeiyξ|ξ|m(χ(|y|ξ)χ(ξ))dξg_{1}(y):=(2\pi)^{-d}\int_{\mathbb{R}^{d}}e^{iy\cdot\xi}|\xi|^{-m}(\chi(|y|\xi)-\chi(\xi))\,\mathrm{d}\xi

is smooth and bounded with respect to yy. In conclusion, when m>dm>d, by combining (4.7)–(4.10) we have

K(x,xy)=c1h(x)|y|md+v1(x,y)+v2(x,y)+h(x)g1(y),K(x,x-y)=c_{1}h(x)|y|^{m-d}+v_{1}(x,y)+v_{2}(x,y)+h(x)g_{1}(y),

which gives

Kf(x,y)=cm,dh(x)|xy|md+Fm(x,y),FmL(d×d)MK_{f}(x,y)=c_{m,d}h(x)|x-y|^{m-d}+F_{m}(x,y),\quad\|F_{m}\|_{L^{\infty}(\mathbb{R}^{d}\times\mathbb{R}^{d})}\lesssim M

with

Fm(x,y):=v1(x,xy)+v2(x,xy)+h(x)g(xy)Ca,α(d×d)F_{m}(x,y):=v_{1}(x,x-y)+v_{2}(x,x-y)+h(x)g(x-y)\in C^{a,\alpha}(\mathbb{R}^{d}\times\mathbb{R}^{d})

for a<m(d1)a+1a<m-(d-1)\leq a+1.

Then we consider the case d1<m<dd-1<m<d. Denote by Γ\Gamma the Gamma function Γ(β)=0tβ1etdt.\Gamma(\beta)=\int^{\infty}_{0}t^{\beta-1}e^{-t}\,\mathrm{d}t. One has the identity

(4.11) |ξ|m=2m/2Γ(m/2)0tm/21et|ξ|2/2dt.\displaystyle|\xi|^{-m}=\frac{2^{-m/2}}{\Gamma({m}/{2})}\int_{0}^{\infty}t^{m/2-1}e^{{-t|\xi|^{2}}/{2}}\,\mathrm{d}t.

One also has

(4.12) (et|ξ|2/2)(y)=(2π)d/2td/2e|y|2/(2t).\mathcal{F}(e^{-t|\xi|^{2}/2})(y)=(2\pi)^{d/2}t^{-d/2}e^{-|y|^{2}/(2t)}.

Applying (4.11)–(4.12) gives

d(1χ(ξ))h(x)|ξ|m(1ϕ)(ξ)dξ=c2h(x)d|y|md((1χ)1ϕ)(y)dy\displaystyle\int_{\mathbb{R}^{d}}(1-\chi(\xi))h(x)|\xi|^{-m}(\mathcal{F}^{-1}\phi)(\xi)\,\mathrm{d}\xi=c_{2}h(x)\int_{\mathbb{R}^{d}}|y|^{m-d}\mathcal{F}((1-\chi)\mathcal{F}^{-1}\phi)(y)\,\mathrm{d}y
=c2h(x)(d|y|mdϕ(y)dy+d|y|md(χ1ϕ)(y)dy)\displaystyle=c_{2}h(x)\left(\int_{\mathbb{R}^{d}}|y|^{m-d}\phi(y)\,\mathrm{d}y+\int_{\mathbb{R}^{d}}|y|^{m-d}\mathcal{F}(\chi\mathcal{F}^{-1}\phi)(y)\,\mathrm{d}y\right)
(4.13) =c2h(x)d[|y|md+(||md1χ)(y)]ϕ(y)dy,\displaystyle=c_{2}h(x)\int_{\mathbb{R}^{d}}[|y|^{m-d}+(|\cdot|^{m-d}\ast\mathcal{F}^{-1}\chi)(y)]\phi(y)\,\mathrm{d}y,

where c2=2m+d/2Γ(m/2)Γ((dm)/2)c_{2}=\frac{2^{-m+d/2}}{\Gamma(m/2)}\Gamma((d-m)/2). Moreover, g2(y):=c2[||md1χ)(y)]g_{2}(y):=c_{2}[|\cdot|^{m-d}\ast\mathcal{F}^{-1}\chi)(y)] is smooth. Combining (4.7)–(4.9) and (4.13) yields

Kf(x,y)=c2h(x)|xy|md+F(x,y),FL(D×D)MK_{f}(x,y)=c_{2}h(x)|x-y|^{m-d}+F(x,y),\quad\|F\|_{L^{\infty}(D\times D)}\lesssim M

with

F(x,y):=v1(x,xy)+v2(x,xy)+h(x)g(xy)C0,α(d×d).F(x,y):=v_{1}(x,x-y)+v_{2}(x,x-y)+h(x)g(x-y)\in C^{0,\alpha}(\mathbb{R}^{d}\times\mathbb{R}^{d}).

for d1<m<dd-1<m<d.

At last, consider the case when d=md=m. Rewrite the right-hand side of (4.7) as

d(1\displaystyle\int_{\mathbb{R}^{d}}(1 χ(ξ))h(x)|ξ|m(1ϕ)(ξ)dξ\displaystyle-\chi(\xi))h(x)|\xi|^{-m}(\mathcal{F}^{-1}\phi)(\xi)\,\mathrm{d}\xi
=2m+d/2Γ(m/2)Γ((dm)/2+1)h(x)d|y|md1(dm)/2((1χ)1ϕ)(y)dy\displaystyle=\frac{2^{-m+d/2}}{\Gamma(m/2)}\Gamma((d-m)/2+1)h(x)\int_{\mathbb{R}^{d}}\frac{|y|^{m-d}-1}{(d-m)/2}\mathcal{F}((1-\chi)\mathcal{F}^{-1}\phi)(y)\,\mathrm{d}y
+2m+d/2Γ(m/2)Γ((dm)/2)h(x)d((1χ)1ϕ)(y)dy.\displaystyle+\frac{2^{-m+d/2}}{\Gamma(m/2)}\Gamma((d-m)/2)h(x)\int_{\mathbb{R}^{d}}\mathcal{F}((1-\chi)\mathcal{F}^{-1}\phi)(y)\,\mathrm{d}y.

Letting mdm\to d in, we obtain

d(1χ(ξ))h(x)|ξ|n(1ϕ)(ξ)dξ\displaystyle\int_{\mathbb{R}^{d}}(1-\chi(\xi))h(x)|\xi|^{-n}(\mathcal{F}^{-1}\phi)(\xi)\,\mathrm{d}\xi
(4.14) =cdh(x)dlog|y|((1χ)1ϕ)(y)dy+c~dh(x)d((1χ)1ϕ)(y)dy\displaystyle=-c_{d}h(x)\int_{\mathbb{R}^{d}}\log{|y|}\mathcal{F}((1-\chi)\mathcal{F}^{-1}\phi)(y)\,\mathrm{d}y+\tilde{c}_{d}h(x)\int_{\mathbb{R}^{d}}\mathcal{F}((1-\chi)\mathcal{F}^{-1}\phi)(y)\,\mathrm{d}y

with constants cd,c~d>0c_{d},\tilde{c}_{d}>0. Notice that

(4.15) g3(y)=cd[log||1χ](y)+c~d{1d1χ(y)dy}\displaystyle g_{3}(y)=-c_{d}[\log{|\cdot|}\ast\mathcal{F}^{-1}\chi](y)+\tilde{c}_{d}\left\{1-\int_{\mathbb{R}^{d}}\mathcal{F}^{-1}\chi(y)\,\mathrm{d}y\right\}

is smooth. Combining (4.7)–(4.9) and (4.14)–(4.15) yields

Kf(x,y)=cdh(x)log|xy|+Fm(x,y),FL(D×D)MK_{f}(x,y)=c_{d}h(x)\log|x-y|+F_{m}(x,y),\quad\|F\|_{L^{\infty}(D\times D)}\lesssim M

with

Fm(x,y):=v1(x,xy)+v2(x,xy)+h(x)g3(xy)C0,α(d×d)F_{m}(x,y):=v_{1}(x,x-y)+v_{2}(x,x-y)+h(x)g_{3}(x-y)\in C^{0,\alpha}(\mathbb{R}^{d}\times\mathbb{R}^{d})

for m=dm=d.

In what follows, we show that I1I_{1} is bounded with respect to kk\in\mathcal{R} and similar arguments apply to I2,I3,I4I_{2},I_{3},I_{4}. We consider the following two situations.

Case 1. Let m>d1m>d-1 and mdm\neq d. We have from Lemma 4.1 that

Kf(x,y)=ch(x)|xy|md+Fm(x,y),K_{f}(x,y)=ch(x)|x-y|^{m-d}+F_{m}(x,y),

which yields that the kernel is continuous or weakly singular. Therefore, (4.5) holds for kk\in\mathcal{R} and thus I1I_{1} is analytic. Moreover, when k=k1+ik2k=k_{1}+ik_{2}\in\mathcal{R}, we further obtain the following bound

|I1|\displaystyle|I_{1}| e2k1BRBRDD|ν(x)Φ(x,τ)ν(y)Φ(y,t)|(h(τ)|τt|md+M)dτdtds(x)ds(y)\displaystyle\lesssim e^{2k_{1}}\int_{\partial B_{R}}\int_{\partial B_{R}}\int_{D}\int_{D}|\partial_{\nu(x)}\Phi(x,\tau)\partial_{\nu(y)}\Phi(y,t)|({h(\tau)}|\tau-t|^{m-d}+M)\,\mathrm{d}\tau\mathrm{d}t\mathrm{d}s(x)\mathrm{d}s(y)
(4.16) e2k1MBRBRDD|ν(x)Φ(x,τ)ν(y)Φ(y,t)|(|τt|md+1)dτdtds(x)ds(y).\displaystyle\lesssim e^{2k_{1}}M\int_{\partial B_{R}}\int_{\partial B_{R}}\int_{D}\int_{D}|\partial_{\nu(x)}\Phi(x,\tau)\partial_{\nu(y)}\Phi(y,t)|(|\tau-t|^{m-d}+1)\,\mathrm{d}\tau\mathrm{d}t\mathrm{d}s(x)\mathrm{d}s(y).

To proceed, noting that the Green function Φ\Phi takes different forms for d=2d=2 and d=3d=3, we discuss the following two cases.

If d=3d=3, a direct calculation gives

(4.17) |ν(y)Φ(x,y)||k1|ek1|xy|4π|xy|+ek1|xy|4π|xy|2.|\partial_{\nu(y)}\Phi(x,y)|\leq\frac{|k_{1}|e^{k_{1}|x-y|}}{4\pi|x-y|}+\frac{e^{k_{1}|x-y|}}{4\pi|x-y|^{2}}.

We show that

(4.18) |I1|e2(2R+1)|k1|MR4(1+|k1|)2.\displaystyle|I_{1}|\lesssim e^{2(2R+1)|k_{1}|}MR^{4}(1+|k_{1}|)^{2}.

In fact, we only need to estimate the term with highest singularity. To this end, with the help of Lemma 3.1 we have the following estimate

BRBRDD1+|tτ|md|xτ|2|yt|2dτdtds(x)ds(y)BRBRD1|xτ|2|yτ|2dτds(x)ds(y)\displaystyle\int_{\partial B_{R}}\int_{\partial B_{R}}\int_{D}\int_{D}\frac{1+|t-\tau|^{m-d}}{|x-\tau|^{2}|y-t|^{2}}\,\mathrm{d}\tau\mathrm{d}t\mathrm{d}s(x)\mathrm{d}s(y)\lesssim\int_{\partial B_{R}}\int_{\partial B_{R}}\int_{D}\frac{1}{|x-\tau|^{2}|y-\tau|^{2}}\,\mathrm{d}\tau\mathrm{d}s(x)\mathrm{d}s(y)
(4.19) BRBR1|xy|ds(x)ds(y)R4.\displaystyle\lesssim\int_{\partial B_{R}}\int_{\partial B_{R}}\frac{1}{|x-y|}\mathrm{d}s(x)\mathrm{d}s(y)\lesssim R^{4}.

For other parts in right-hand side of (4.16), we have simialr estimates. Combining (4.16) and (4.19) yields (4.18).

When d=2d=2, by the following integral form of the Hankel function [13]

(4.20) H0(1)(z)=Ceiz0ess1/2(s/2iz)1/2ds,H_{0}^{(1)}(z)=Ce^{iz}\int_{0}^{\infty}e^{-s}s^{-1/2}(s/2-iz)^{-1/2}\,\mathrm{d}s,

we obtain

|ν(y)Φ(x,y)||k1|ek1|xy||k1(xy)|12+ek1|xy||k1|12|xy|32,k,xD,yBR.\displaystyle|\partial_{\nu(y)}\Phi(x,y)|\lesssim\frac{|k_{1}|e^{k_{1}|x-y|}}{|k_{1}(x-y)|^{\frac{1}{2}}}+\frac{e^{k_{1}|x-y|}}{|k_{1}|^{\frac{1}{2}}|x-y|^{\frac{3}{2}}},\quad k\in\mathcal{R},\,x\in D,\,y\in\partial B_{R}.

Then in a similar way as the derivation of (4.18), we can obtain

(4.21) |I1||k1|1e2(2R+1)|k1|MR2(1+|k1|)2.\displaystyle|I_{1}|\lesssim|k_{1}|^{-1}e^{2(2R+1)|k_{1}|}MR^{2}(1+|k_{1}|)^{2}.

Combining (4.18) and (4.21) gives the estimate

(4.22) |I1|e2(2R+1)|k1|MR2d2|k1|d3(1+|k1|)2.|I_{1}|\lesssim e^{2(2R+1)|k_{1}|}MR^{2d-2}|k_{1}|^{d-3}(1+|k_{1}|)^{2}.

Case 2. When m=dm=d , Lemma 4.1 shows Kf(τ,t)=ch(τ)log|τt|+Fm(τ,t)K_{f}(\tau,t)=ch(\tau)\log{|\tau-t|}+F_{m}(\tau,t) which is still weakly singular. Therefore, we can apply the second inequality of Lemma 3.1 to verify I1I_{1} satisfies the inequalities (4.22).

Combining the above arguments, we arrive at the following lemma which provides the analyticity and boundedness of the data with respect to kk\in\mathcal{R}.

Lemma 4.2.

Suppose that the random function ff satisfies assumption (A). We have that Ij(k,θ1,θ2),j=1,,4,I_{j}(k,\theta_{1},\theta_{2}),j=1,...,4, is analytic with respective to kk\in\mathcal{R}. Furthermore, the following estimates

|I1(k,θ1,θ2)|\displaystyle|I_{1}(k,\theta_{1},\theta_{2})| e2(2R+1)|k1|MR2d2|k1|d3(1+|k1|)2,\displaystyle\lesssim e^{2(2R+1)|k_{1}|}MR^{2d-2}|k_{1}|^{d-3}(1+|k_{1}|)^{2},
|I2(k,θ1,θ2)|\displaystyle|I_{2}(k,\theta_{1},\theta_{2})| e2(2R+1)|k1|MR2d2|k1|d2(1+|k1|),\displaystyle\lesssim e^{2(2R+1)|k_{1}|}MR^{2d-2}|k_{1}|^{d-2}(1+|k_{1}|),
|I3(k,θ1,θ2)|\displaystyle|I_{3}(k,\theta_{1},\theta_{2})| e2(2R+1)|k1|MR2d2|k1|d2(1+|k1|),\displaystyle\lesssim e^{2(2R+1)|k_{1}|}MR^{2d-2}|k_{1}|^{d-2}(1+|k_{1}|),
|I4(k,θ1,θ2)|\displaystyle|I_{4}(k,\theta_{1},\theta_{2})| e2(2R+1)|k1|MR2d2|k1|d1,\displaystyle\lesssim e^{2(2R+1)|k_{1}|}MR^{2d-2}|k_{1}|^{d-1},

hold for k=k1+ik2{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}k=k_{1}+ik_{2}\in\mathcal{R}}.

Remark 4.1.

(i) Conclusions like Lemma 4.2 also hold for Ij(k,θ1,θ2)I_{j}(-k,\theta_{1},\theta_{2}), j=1,2,3,4j=1,2,3,4 after analogous discussions.

(ii) We have to use Lemma 3.1 to derive inequality (4.19). Indeed, for x,yBRx,y\in\partial B_{R} and t,τDt,\tau\in D, by a direction calculation one has

BRBRDD1+|tτ|md|xτ|2|yt|2dτdtds(x)ds(y)R4/dist(BR,D)4.\int_{\partial B_{R}}\int_{\partial B_{R}}\int_{D}\int_{D}\frac{1+|t-\tau|^{m-d}}{|x-\tau|^{2}|y-t|^{2}}\,\mathrm{d}\tau\mathrm{d}t\mathrm{d}s(x)\mathrm{d}s(y)\lesssim R^{4}/\text{dist}(\partial B_{R},D)^{4}.

However, when dist(BR,D)0\text{dist}(\partial B_{R},D)\to 0, the right-hand side of the above inequality tends to infinity. Based on this reason, we use Lemma 3.1 to estimate this integral.

The following unique continuation argument [11] is useful in the subsequent analysis.

Lemma 4.3.

Let U(z)U(z) be an analytic function in \mathcal{R} and continuous in ¯\bar{\mathcal{R}}. If

{|U(z)|ε,z(0,L],|U(z)|V,z,|U(z)|=0,z=0,\displaystyle\left\{\begin{array}[]{ccc}|U(z)|\leq\varepsilon,&z\in(0,L],\\ |U(z)|\leq V,&z\in\mathcal{R},\\ |U(z)|=0,&z=0,\end{array}\right.

with constants ε,L,V>0\varepsilon,L,V>0, then there exists a function μ(z)\mu(z) satisfying

{μ(z)1/2,z(L,21/4L),μ(z)π1((z/L)41)1/2,z(21/4L,)\displaystyle\left\{\begin{array}[]{cc}\mu(z)\geq 1/2,&z\in(L,2^{1/4}L),\\ \mu(z)\geq\pi^{-1}((z/L)^{4}-1)^{-1/2},&z\in(2^{1/4}L,\infty)\end{array}\right.

such that

|U(z)|Vεμ(z),z(L,).|U(z)|\leq V\varepsilon^{\mu(z)},\quad\forall z\in(L,\infty).

Combining Lemma 4.24.3 yields the following conclusion.

Lemma 4.4.

Let ff satisfy assumption (A). Then we have the estimte

|ϵ2(k,θ1,θ2)|K1M2R4d4ϵ2μ(k)e(8R+5)k,k(K,)|\epsilon^{2}(k,\theta_{1},\theta_{2})|\lesssim K^{-1}M^{2}R^{4d-4}\epsilon^{2\mu(k)}e^{(8R+5)k},\quad k\in(K,\infty)

with the function μ(k)\mu(k) satisfying

(4.25) {μ(k)1/2,k(K,21/4K),μ(k)π1((k/K)41)1/2,k(21/4K,).\displaystyle\left\{\begin{array}[]{cc}\mu(k)\geq 1/2,&k\in(K,2^{1/4}K),\\ \mu(k)\geq\pi^{-1}((k/K)^{4}-1)^{-1/2},&k\in(2^{1/4}K,\infty).\end{array}\right.

.

Proof.

Denote U(k)=kϵ2(k,θ1,θ2)U(k)=k\epsilon^{2}(k,\theta_{1},\theta_{2}). We have that U(0)=0U(0)=0 and U(k)U(k) is analytic and continuous for k¯k\in\bar{\mathcal{R}}. It follows from Lemma 4.2 when kk\in\mathcal{R},

|U(k)||k|j=14|Ij(k)|l=14|Il(k)|e8R+5|k1|M2R4d4,\displaystyle|U(k)|\lesssim|k|\sum_{j=1}^{4}|I_{j}(k)|\sum_{l=1}^{4}|I_{l}(-k)|\lesssim e^{8R+5|k_{1}|}M^{2}R^{4d-4},

which yields

|e(8R+5)kU(k)|M2R4d4.\displaystyle|e^{-(8R+5)k}U(k)|\lesssim M^{2}R^{4d-4}.

Obviously, for k(0,K]k\in(0,K], one has |e(8R+5)kU(k)|ϵ2|e^{-(8R+5)k}U(k)|\leq\epsilon^{2}. Applying Lemma 4.4 to e(8R+5)kU(k)e^{-(8R+5)k}U(k) gives

|e(8R+5)kU(k)|M2R4d4ϵ2μ(k),k(K,)|e^{-(8R+5)k}U(k)|\lesssim M^{2}R^{4d-4}\epsilon^{2\mu(k)},\quad k\in(K,\infty)

where μ(k)\mu(k) satisfies (4.25). Thus, we have

|ϵ2(k,θ1,θ2)|K1M2R4d4ϵ2μ(k)e(8R+5)k,k(K,),|\epsilon^{2}(k,\theta_{1},\theta_{2})|\lesssim K^{-1}M^{2}R^{4d-4}\epsilon^{2\mu(k)}e^{(8R+5)k},\quad k\in(K,\infty),

which completes the proof.

Denote 𝒞Q={hC0(D):hHs(d)Q}\mathcal{C}_{Q}=\{h\in C_{0}^{\infty}(D):\|h\|_{H^{s}(\mathbb{R}^{d})}\leq Q\} with s>0s>0. We are now in a position to state the increasing stability result of inverse random source problem. The proof adopts the argument of analytic continuation developed in [25].

Theorem 4.1.

Let the random function ff satisfy assumption (A) and assume h𝒞Qh\in\mathcal{C}_{Q}. We have the following stability estimate

(4.26) hL2(D)2K2m+2dd+2sϵ2+(R+1)2d+23Q2+M2K8s3(2s+d)Es2s+d,\displaystyle\|h\|^{2}_{L^{2}(D)}\lesssim K^{2m+\frac{2d}{d+2s}}\epsilon^{2}+(R+1)^{2d+\frac{2}{3}}\frac{Q^{2}+M^{2}}{K^{\frac{8s}{3(2s+d)}}E^{\frac{s}{2s+d}}},

with E=|logϵ|E=|\log{\epsilon}|.

Proof.

Without losing generality, we assume ϵ<e1\epsilon<e^{-1}. Then take

A={1((8R+5)π)13K23E14,214((8R+5)π)13K13<E14,K,E14214((8R+5)π)13K13.\displaystyle A=\left\{\begin{array}[]{cc}\frac{1}{((8R+5)\pi)^{\frac{1}{3}}}K^{\frac{2}{3}}E^{\frac{1}{4}},&2^{\frac{1}{4}}((8R+5)\pi)^{\frac{1}{3}}K^{\frac{1}{3}}<E^{\frac{1}{4}},\\ K,&E^{\frac{1}{4}}\leq 2^{\frac{1}{4}}((8R+5)\pi)^{\frac{1}{3}}K^{\frac{1}{3}}.\end{array}\right.

If 214((8R+5)π)13K13<E142^{\frac{1}{4}}((8R+5)\pi)^{\frac{1}{3}}K^{\frac{1}{3}}<E^{\frac{1}{4}}, we have A>214K>KA>2^{\frac{1}{4}}K>K. Then for k(K,A]k\in(K,A], applying Lemma 4.4 yields

ϵ2(k,θ1,θ2)\displaystyle\epsilon^{2}(k,\theta_{1},\theta_{2}) K1R4d4M2ϵ2μ(k)e(8R+5)k\displaystyle\lesssim K^{-1}{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}R^{4d-4}}M^{2}\epsilon^{2\mu(k)}e^{(8R+5)k}
K1R4d4M2exp{(8R+5)A2Eπ((k/K)41)12}\displaystyle\lesssim K^{-1}{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}R^{4d-4}}M^{2}\exp\left\{(8R+5)A-\frac{2E}{\pi}((k/K)^{4}-1)^{-\frac{1}{2}}\right\}
K1R4d4M2exp{(8R+5)K23E14((8R+5)π)132Eπ(k/A)2}\displaystyle\lesssim K^{-1}{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}R^{4d-4}}M^{2}\exp\left\{(8R+5)\frac{K^{\frac{2}{3}}E^{\frac{1}{4}}}{((8R+5)\pi)^{\frac{1}{3}}}-\frac{2E}{\pi}(k/A)^{2}\right\}
K1R4d4M2exp{2((8R+5)2π)13K23E12(112E14)}.\displaystyle\lesssim K^{-1}R^{4d-4}M^{2}\exp\left\{-2\left(\frac{(8R+5)^{2}}{\pi}\right)^{\frac{1}{3}}K^{\frac{2}{3}}E^{\frac{1}{2}}\left(1-\frac{1}{2}E^{-\frac{1}{4}}\right)\right\}.

Noticing that ϵ<e1\epsilon<e^{-1} implies

112E14>12.1-\frac{1}{2}E^{-\frac{1}{4}}>\frac{1}{2}.

Then we get

(4.27) ϵ2(k,θ1,θ2)\displaystyle\epsilon^{2}(k,\theta_{1},\theta_{2}) K1M2R4d4exp{(8R+5)23K23E12}K1M2R4d41((8R+5)23K23E12)n.\displaystyle\lesssim K^{-1}M^{2}{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}R^{4d-4}}\exp\left\{-(8R+5)^{\frac{2}{3}}K^{\frac{2}{3}}E^{\frac{1}{2}}\right\}\lesssim K^{-1}M^{2}R^{4d-4}\frac{1}{((8R+5)^{\frac{2}{3}}K^{\frac{2}{3}}E^{\frac{1}{2}})^{n}}.

Here we have used exn!/xne^{-x}\leq n!/x^{n} where nn\in\mathbb{N}. Combining (4.4) and (4.27) gives the estimte

|h^(ξ)|2M2R2dA2+K1M2A2mR4d41((8R+5)23K23E12)n,|ξ|2A,\displaystyle|\hat{h}(\xi)|^{2}\lesssim M^{2}\frac{R^{2d}}{A^{2}}+K^{-1}M^{2}A^{2m}{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}R^{4d-4}}\frac{1}{((8R+5)^{\frac{2}{3}}K^{\frac{2}{3}}E^{\frac{1}{2}})^{n}},\quad|\xi|\leq 2A,

which yields

(4.28) |ξ|2Aγ|h^(ξ)|2dξR2dM2Adγ2+R4d4Adγ+2mK1M21((8R+5)23K23E12)n.\int_{|\xi|\leq 2A^{\gamma}}|\hat{h}(\xi)|^{2}\,\mathrm{d}\xi\lesssim R^{2d}M^{2}A^{d\gamma-2}+{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}R^{4d-4}}A^{d\gamma+2m}K^{-1}M^{2}\frac{1}{((8R+5)^{\frac{2}{3}}K^{\frac{2}{3}}E^{\frac{1}{2}})^{n}}.

By the condition hHs(d)Q\|h\|_{H^{s}(\mathbb{R}^{d})}\leq Q, we obtain

(4.29) |ξ|>2Aγ|h^(ξ)|2dξQ2A2γs.\int_{|\xi|>2A^{\gamma}}|\hat{h}(\xi)|^{2}\,\mathrm{d}\xi\lesssim\frac{Q^{2}}{A^{2\gamma s}}.

Take n>m+1n>m+1 and γ=22s+d\gamma=\frac{2}{2s+d} such that nm214γd>14(2γd)=12γs\frac{n-m}{2}-\frac{1}{4}\gamma d>\frac{1}{4}(2-\gamma d)=\frac{1}{2}\gamma s. Therefore, together with (4.28)–(4.29) we have the inequality

hL2(D)2\displaystyle\|h\|^{2}_{L^{2}(D)} =|ξ|2Aγ|h^(ξ)|2dξ+|ξ|>2Aγ|h^(ξ)|2dξEs2s+d((Q2+1)(R+1)2d+23K8s3(2s+d)+M2R4d4Kβ(1+R)2(m+n)3),\displaystyle=\int_{|\xi|\leq 2A^{\gamma}}|\hat{h}(\xi)|^{2}\,\mathrm{d}\xi+\int_{|\xi|>2A^{\gamma}}|\hat{h}(\xi)|^{2}\,\mathrm{d}\xi\lesssim E^{-\frac{s}{2s+d}}\left(\frac{(Q^{2}+1)(R+1)^{2d+\frac{2}{3}}}{K^{\frac{8s}{3(2s+d)}}}+\frac{M^{2}{\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}R^{4d-4}}}{K^{\beta}(1+R)^{\frac{2(m+n)}{3}}}\right),

where β=1+23n23(2m+2d2s+d)\beta=1+\frac{2}{3}n-\frac{2}{3}(2m+\frac{2d}{2s+d}). Taking n>max{3d7m,2m+12}n>\max\{3d-7-m,2m+\frac{1}{2}\} and β>8s3(2s+d)\beta>\frac{8s}{3(2s+d)}, we have

(4.30) hL2(D)2(R+1)2d+23Q2+M2K8s3(2s+d)Es2s+d.\|h\|^{2}_{L^{2}(D)}\lesssim(R+1)^{2d+\frac{2}{3}}\frac{Q^{2}+M^{2}}{K^{\frac{8s}{3(2s+d)}}E^{\frac{s}{2s+d}}}.

If 214((8R+5)π)13K13E142^{\frac{1}{4}}((8R+5)\pi)^{\frac{1}{3}}K^{\frac{1}{3}}\geq E^{\frac{1}{4}}, it is straightforward to get

hL2(D)2\displaystyle\|h\|^{2}_{L^{2}(D)} =|ξ|2Kγ|h^(ξ)|2dξ+|ξ|>2Kγ|h^(ξ)|2dξ\displaystyle=\int_{|\xi|\leq 2K^{\gamma}}|\hat{h}(\xi)|^{2}\,\mathrm{d}\xi+\int_{|\xi|>2K^{\gamma}}|\hat{h}(\xi)|^{2}\,\mathrm{d}\xi
(4.31) K2m+2dd+2sϵ2+R2dM2+Q2K4s2s+dK2m+2dd+2sϵ2+(R+1)2d4s3(2s+d)M2+Q2K8s3(2s+d)Es2s+d.\displaystyle\lesssim K^{2m+\frac{2d}{d+2s}}\epsilon^{2}+R^{2d}\frac{M^{2}+Q^{2}}{K^{\frac{4s}{2s+d}}}\lesssim K^{2m+\frac{2d}{d+2s}}\epsilon^{2}+(R+1)^{2d-\frac{4s}{3(2s+d)}}\frac{M^{2}+Q^{2}}{K^{\frac{8s}{3(2s+d)}}E^{\frac{s}{2s+d}}}.

Combining (4.30) and (4.31), we complete the proof.

The stability estimate (4.26) consists of the Lipschitz data discrepancy and a logarithmic stability. The latter illustrates the ill-posedness of the inverse source problem. Observe that as the upper bound KK of the frequency increases, the logarithmic stability decreases which leads to the improvement of the stability estimate. Clearly, the stability estimate (4.26) implies the uniqueness of the inverse problem.

5 Inverse problem using far-field data data

In this section, we consider using the far-field data given by

(5.1) u(x^,k)=Cdkd32deix^yf(y)dy.u^{\infty}(\hat{x},k)=-C_{d}k^{\frac{d-3}{2}}\int_{\mathbb{R}^{d}}e^{-{\rm i}\hat{x}\cdot y}f(y){\rm d}y.

Here CdC_{d} is a constant dependent on the dimension dd. According to [18], we have for τ>0\tau>0 that

𝔼[u(x^,k+τ)u(x^,k)¯]\displaystyle\mathbb{E}[u^{\infty}(\hat{x},k+\tau)\overline{u^{\infty}(\hat{x},k)}]
=|Cd|2(k+τ)d32kd32[ddei(k+τ)x^yeikx^z𝔼[f(y)f(z)]dydz\displaystyle=|C_{d}|^{2}(k+\tau)^{\frac{d-3}{2}}k^{\frac{d-3}{2}}\Big{[}\int_{\mathbb{R}^{d}}\int_{\mathbb{R}^{d}}e^{-{\rm i}(k+\tau)\hat{x}\cdot y}e^{{\rm i}k\hat{x}\cdot z}\mathbb{E}[f(y)f(z)]{\rm d}y{\rm d}z
=|Cd|2(k+τ)d32kd32d[dKf(y,z)eikx^(yz)dz]eiτx^ydy)\displaystyle=|C_{d}|^{2}(k+\tau)^{\frac{d-3}{2}}k^{\frac{d-3}{2}}\int_{\mathbb{R}^{d}}\Big{[}\int_{\mathbb{R}^{d}}K_{f}(y,z)e^{-{\rm i}k\hat{x}\cdot(y-z)}{\rm d}z\Big{]}e^{-{\rm i}\tau\hat{x}\cdot y}{\rm d}y\Big{)}
=|Cd|2(k+τ)d32kd32[dh(y)eiτx^ydy|kx^|m+2a(y,kx^)eiτx^ydy)]\displaystyle=|C_{d}|^{2}(k+\tau)^{\frac{d-3}{2}}k^{\frac{d-3}{2}}\Big{[}\int_{\mathbb{R}^{d}}h(y)e^{-{\rm i}\tau\hat{x}\cdot y}{\rm d}y|k\hat{x}|^{-m}+\int_{\mathbb{R}^{2}}a(y,k\hat{x})e^{-{\rm i}\tau\hat{x}\cdot y}{\rm d}y\Big{)}\Big{]}
=|Cd|2(kk+τ)3d2kd3mh^(τx^)+MO(kd4m).\displaystyle=|C_{d}|^{2}\Big{(}\frac{k}{k+\tau}\Big{)}^{\frac{3-d}{2}}k^{d-3-m}\widehat{h}(\tau\hat{x})+M{O}(k^{d-4-m}).

Hence we have

|h^(τx^)||km+3d𝔼[u(x^,k+τ)u(x^,k)¯]|+Mk,\displaystyle|\widehat{h}(\tau\hat{x})|\lesssim\Big{|}k^{m+3-d}\mathbb{E}[u^{\infty}(\hat{x},k+\tau)\overline{u^{\infty}(\hat{x},k)}]\Big{|}+\frac{M}{k},

which gives

|h^(ξ)|2sup0<η<1,x^𝕊2|km+3d𝔼[u(x^,(1+η)k)u(x^,k)¯]|2+M2k2,for all|ξ|k.\displaystyle|\widehat{h}(\xi)|^{2}\lesssim\sup_{0<\eta<1,\hat{x}\in\mathbb{S}^{2}}\Big{|}k^{m+3-d}\mathbb{E}[u^{\infty}(\hat{x},(1+\eta)k)\overline{u^{\infty}(\hat{x},k)}]\Big{|}^{2}+\frac{M^{2}}{k^{2}},\quad\text{for all}~{}|\xi|\leq k.

Based on the above estimate, we introduce the data discrepancy in a finite interval I=[0,K]I=[0,K] with 0<K0<K as follows

ϵ~2=supkI,η(0,1),x^𝕊2ϵ~2(k,η,x^)\tilde{\epsilon}^{2}=\sup_{k\in I,\eta\in(0,1),\hat{x}\in\mathbb{S}^{2}}\tilde{\epsilon}^{2}(k,\eta,\hat{x})

where

ϵ~2(k,η,x^):=|km+3d𝔼[u(x^,(1+η)k)u(x^,k)¯]|2.\tilde{\epsilon}^{2}(k,\eta,\hat{x}):=\Big{|}k^{m+3-d}\mathbb{E}[u^{\infty}(\hat{x},(1+\eta)k)\overline{u^{\infty}(\hat{x},k)}]\Big{|}^{2}.

As the source function is real-valued, we have u(x,k)¯=u(x,k)\overline{u(x,k)}=u(x,-k) and then u(x,k)¯=u(x,k)\overline{u^{\infty}(x,k)}=u^{\infty}(x,-k). Hence, we can analytically extend ϵ~2(,η,x^)\tilde{\epsilon}^{2}(\cdot,\eta,\hat{x}) from +\mathbb{R}^{+} to \mathbb{C} as follows

ϵ~2(k,η,x^)=k2(m+3d)𝔼[u(x^,(1+η)k)u(x^,k)]𝔼[u(x^,(1+η)k)u(x^,k)],k,\tilde{\epsilon}^{2}(k,\eta,\hat{x})=k^{2(m+3-d)}\mathbb{E}[u^{\infty}(\hat{x},(1+\eta)k)u^{\infty}(\hat{x},-k)]\mathbb{E}[u^{\infty}(\hat{x},-(1+\eta)k)u^{\infty}(\hat{x},k)],\quad k\in\mathbb{C},

by noticing that for k>0k>0

ϵ~2(k,η,x^)=|km+3d𝔼[u(x^,(1+η)k)u(x^,k)¯]|2.\tilde{\epsilon}^{2}(k,\eta,\hat{x})=\Big{|}k^{m+3-d}\mathbb{E}[u^{\infty}(\hat{x},(1+\eta)k)\overline{u^{\infty}(\hat{x},k)}]\Big{|}^{2}.

Recall ={z:|argz|<π/4}\mathcal{R}=\{z\in\mathbb{C}:|\arg z|<\pi/4\}. In order to apply Lemma 4.3 for ϵ~2(k,η,x^)\tilde{\epsilon}^{2}(k,\eta,\hat{x}) in \mathcal{R}, we shall show ϵ~2(k,η,x^)\tilde{\epsilon}^{2}(k,\eta,\hat{x}) is analytic and bounded for kk\in\mathcal{R}. Recalling (5.1), for kk\in\mathcal{R}, we have

|𝔼[u(x^,(1+η)k)u(x^,k)]||k|d3|𝔼Deik(1+η)x^yf(y)dyDeikx^zf(z)dz|\displaystyle\Big{|}\mathbb{E}[u^{\infty}(\hat{x},(1+\eta)k)u^{\infty}(\hat{x},-k)]\Big{|}\lesssim|k|^{d-3}\Big{|}\mathbb{E}\int_{D}e^{-ik(1+\eta)\hat{x}\cdot y}f(y)\,\mathrm{d}y\int_{D}e^{ik\hat{x}\cdot z}f(z)\,\mathrm{d}z\Big{|}
|k|d3DD|eik(1+η)x^eikx^zK(y,z)|dydz\displaystyle\lesssim|k|^{d-3}\int_{D}\int_{D}|e^{-ik(1+\eta)\hat{x}}e^{ik\hat{x}\cdot z}K(y,z)|\,\mathrm{d}y\,\mathrm{d}z
|k|d3e3D0|k|K(y,z)L1(D×D)\displaystyle\lesssim|k|^{d-3}e^{3D_{0}|\Re k|}\|K(y,z)\|_{L^{1}(D\times D)}

with D0=diam(D)D_{0}=diam(D). Lemma 4.1 gives that the kernel is weakly singular and

K(y,z)L1(D×D)M.\|K(y,z)\|_{L^{1}(D\times D)}\lesssim M.

Hence, we have the estimate

(5.2) |𝔼[u(x^,(1+η)k)u(x^,k)]||k|d3e3D0|k|M.|\mathbb{E}[u^{\infty}(\hat{x},(1+\eta)k)u^{\infty}(\hat{x},-k)]|\lesssim|k|^{d-3}e^{3D_{0}|\Re k|}M.

The above arguments guarantee the analyticity and boundedness of the data. In summary, we arrive at the following lemma.

Lemma 5.1.

Suppose that the random field ff satisfies assumption (A). We have that ϵ~2(k,η,x^)\tilde{\epsilon}^{2}(k,\eta,\hat{x}) is analytic with respect to kk\in\mathcal{R} with the following upper bound

ϵ~2(k,η,x^)|k|2me6D0|k|M2.\tilde{\epsilon}^{2}(k,\eta,\hat{x})\lesssim|k|^{2m}e^{6D_{0}|\Re k|}M^{2}.

Using Lemma 4.3 and Lemma 5.1 we have the following lemma.

Lemma 5.2.

Let ff satisfy assumption (A). Then we have the estimte

|ϵ~2(k,θ1,θ2)|M2ϵ~2μ(k)e(6D0+1)k,k(K,)|\tilde{\epsilon}^{2}(k,\theta_{1},\theta_{2})|\lesssim M^{2}\tilde{\epsilon}^{2\mu(k)}e^{(6D_{0}+1)k},\quad k\in(K,\infty)

with the function μ(k)\mu(k) satisfying

{μ(k)1/2,k(K,21/4K),μ(k)π1((k/K)41)1/2,k(21/4K,).\displaystyle\left\{\begin{array}[]{cc}\mu(k)\geq 1/2,&k\in(K,2^{1/4}K),\\ \mu(k)\geq\pi^{-1}((k/K)^{4}-1)^{-1/2},&k\in(2^{1/4}K,\infty).\end{array}\right.

.

Following the arguments in the proof of Theorem 4.1 in a straightforward way, we have the following increasing stability estimate by far-field data. The proof is omitted for brevity.

Theorem 5.1.

Let the random function ff satisfies assumption (A) and assume h𝒞Qh\in\mathcal{C}_{Q}. Then there holds the inequality

(5.3) hL2(D)2K2dd+2sϵ~2+Q2+M2K8s3(2s+d)Es2s+d,\displaystyle\|h\|^{2}_{L^{2}(D)}\lesssim K^{\frac{2d}{d+2s}}\tilde{\epsilon}^{2}+\frac{Q^{2}+M^{2}}{K^{\frac{8s}{3(2s+d)}}E^{\frac{s}{2s+d}}},

where E=|logϵ~|E=|\log{\tilde{\epsilon}}|.

6 Conclusion

We establish an increasing stability of an inverse random source problem for the Helmholtz equation. The analysis employs properties of the covariance kernel and the explicit Green function. A possible extension of the current work is to investigate the increasing stability of inverse random source problem in an inhomogeneous media, where the explicit Green function is no longer available. Another interesting topic is the stability for the nonlinear inverse random potential problem. We hope to report the progress of these problems in forthcoming works.

References

  • [1] S. R. Arridge, Optical tomography in medical imaging, Inverse Problems, 15 (1999), p. R41.
  • [2] M. Badieirostami, A. Adibi, H.-M. Zhou, and S.-N. Chow, Wiener chaos expansion and simulation of electromagnetic wave propagation excited by a spatially incoherent source, Multiscale Modeling & Simulation, 8 (2010), pp. 591–604.
  • [3] G. Bao, H. Ammari, and J. L. Fleming, An inverse source problem for Maxwell’s equations in magnetoencephalography, SIAM Journal on Applied Mathematics, 62 (2002), pp. 1369–1382.
  • [4] G. Bao, C. Chen, and P. Li, Inverse random source scattering problems in several dimensions, SIAM/ASA Journal on Uncertainty Quantification, 4 (2016), pp. 1263–1287.
  • [5]  , Inverse random source scattering for elastic waves, SIAM Journal on Numerical Analysis, 55 (2017), pp. 2616–2643.
  • [6] G. Bao, S.-N. Chow, P. Li, and H. Zhou, An inverse random source problem for the Helmholtz equation, Mathematics of Computation, 83 (2014), pp. 215–233.
  • [7] G. Bao, P. Li, and Y. Zhao, Stability for the inverse source problems in elastic and electromagnetic waves, Journal de Mathématiques Pures et Appliquées, 134 (2020), pp. 122–178.
  • [8] G. Bao, J. Lin, and F. Triki, A multi-frequency inverse source problem, Journal of Differential Equations, 249 (2010), pp. 3443–3465.
  • [9] N. Bleistein and J. K. Cohen, Nonuniqueness in the inverse source problem in acoustics and electromagnetics, Journal of Mathematical Physics, 18 (1977), pp. 194–201.
  • [10] P. Caro, T. Helin, and M. Lassas, Inverse scattering for a random potential, Analysis and Applications, 17 (2019), pp. 513–567.
  • [11] J. Cheng, V. Isakov, and S. Lu, Increasing stability in the inverse source problem with many frequencies, Journal of Differential Equations, 260 (2016), pp. 4786–4804.
  • [12] A. Devaney and G. Sherman, Nonuniqueness in inverse source and scattering problems, IEEE Transactions on Antennas and Propagation, 30 (1982), pp. 1034–1037.
  • [13] D. Finco and K. Yajima, The Lp{L}^{p} boundedness of wave operators for schro¨\ddot{\rm o}dinger operators with threshold singularities II. Even dimensional case, Journal of Mathematical Sciences. University of Tokyo, 13 (2006), pp. 277–346.
  • [14] L. Grafakos and S. Oh, The kato-ponce inequality, Communications in Partial Differential Equations, 39 (2014), pp. 1128–1157.
  • [15] V. Isakov, Inverse Source Problems, no. 34, American Mathematical Soc., 1990.
  • [16] M. Lassas, L. Päivärinta, and E. Saksman, Inverse scattering problem for a two dimensional random potential, Communications in Mathematical Physics, 279 (2008), pp. 669–703.
  • [17] J. Li, T. Helin, and P. Li, Inverse random source problems for time-harmonic acoustic and elastic waves, Communications in Partial Differential Equations, 45 (2020), pp. 1335–1380.
  • [18] J. Li, P. Li, and X. Wang, Inverse source problems for the stochastic wave equations: far-field patterns, SIAM Journal on Applied Mathematics, 82 (2022), pp. 1113–1134.
  • [19] M. Li, C. Chen, and P. Li, Inverse random source scattering for the Helmholtz equation in inhomogeneous media, Inverse Problems, 34 (2017), p. 015003.
  • [20] P. Li and Y. Liang, Stability for inverse source problems of the stochastic Helmholtz equation with a white noise, arXiv preprint arXiv:2307.06544, (2023).
  • [21] P. Li and X. Wang, Inverse random source scattering for the Helmholtz equation with attenuation, SIAM Journal on Applied Mathematics, 81 (2021), pp. 485–506.
  • [22] P. Li and G. Yuan, Increasing stability for the inverse source scattering problem with multi-frequencies, Inverse Problems and Imaging, 11 (2017), pp. 745–759.
  • [23]  , Stability on the inverse random source scattering problem for the one-dimensional Helmholtz equation, Journal of Mathematical Analysis and Applications, 450 (2017), pp. 872–887.
  • [24] P. Li, J. Zhai, and Y. Zhao, Stability for the acoustic inverse source problem in inhomogeneous media, SIAM Journal on Applied Mathematics, 80 (2020), pp. 2547–2559.
  • [25] J. Zhai and Y. Zhao, Increasing stability estimates for the inverse potential scattering problems, arXiv preprint arXiv:2306.10211, (2023).