This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Square function estimates for conical regions

Shengwen Gan Shengwen Gan
Deparment of Mathematics, Massachusetts Institute of Technology, USA
[email protected]
 and  Shukun Wu Shukun Wu
Department of Mathematics
California Institute of Technology, USA
[email protected]
Abstract.

We prove square function estimates for certain conical regions. Specifically, let {Δj}\{\Delta_{j}\} be regions of the unit sphere 𝕊n1\mathbb{S}^{n-1} and let SjfS_{j}f be the smooth Fourier restriction of ff to the conical region {ξn:ξ/|ξ|Δj}\{\xi\in\mathbb{R}^{n}:\xi/|\xi|\in\Delta_{j}\}. We are interested in the following estimate

(j|Sjf|2)1/2pεδεfp.\Big{\|}(\sum_{j}|S_{j}f|^{2})^{1/2}\Big{\|}_{p}\lesssim_{\varepsilon}\delta^{-\varepsilon}\|f\|_{p}.

The first result is: when {Δj}\{\Delta_{j}\} is a set of disjoint δ\delta-balls, then the estimate holds for p=4p=4. The second result is: In 3\mathbb{R}^{3}, when {Δj}\{\Delta_{j}\} is a set of disjoint δ×δ1/2\delta\times\delta^{1/2}-rectangles contained in the band 𝕊2Nδ({ξ12+ξ22=ξ32})\mathbb{S}^{2}\cap N_{\delta}(\{\xi_{1}^{2}+\xi_{2}^{2}=\xi_{3}^{2}\}) and suppf^{ξ3:ξ/|ξ|𝕊2Nδ({ξ12+ξ22=ξ32})}{\rm{supp}}\widehat{f}\subset\{\xi\in\mathbb{R}^{3}:\xi/|\xi|\in\mathbb{S}^{2}\cap N_{\delta}(\{\xi_{1}^{2}+\xi_{2}^{2}=\xi_{3}^{2}\})\}, then the estimate holds for p=8p=8. The two estimates are sharp.

1. Introduction

The whole Littlewood-Paley theory concerns orthogonality properties of the Fourier transform, and square function gives a way to express and quantify orthogonality of the Fourier transform on LpL^{p} space. In particular, one seeks estimates of the form

(1.1) (σΣ|Sσf|2)1/2pCn,p,Σfp,\Big{\|}\Big{(}\sum_{\sigma\in\Sigma}|S_{\sigma}f|^{2}\Big{)}^{1/2}\Big{\|}_{p}\leq C_{n,p,\Sigma}\|f\|_{p},

where Σ={σ}\Sigma=\{\sigma\} is a collection of geometric objects in n\mathbb{R}^{n} and SσfS_{\sigma}f is the Fourier restriction of ff to σ\sigma. Two different types of the operator are frequently studied: smooth operator and sharp operator. If one studies the smooth operator, then one uses the definition Sσf=(𝟏σf^)S_{\sigma}f=({\bf{1}}^{*}_{\sigma}\widehat{f}\ )^{\vee}, where 𝟏σ{\bf{1}}^{*}_{\sigma} is a smooth bump function at σ\sigma. Similarly, one uses the definition Sσf=(𝟏σf^)S_{\sigma}f=({\bf{1}}_{\sigma}\widehat{f}\ )^{\vee} where 𝟏σ{\bf{1}}_{\sigma} is the indicator function of σ\sigma to study the sharp operator. Usually, the smooth version is easier than the sharp version.

Let us discuss some well-known square function estimates of the form (1.1). The classic Littlewood-Paley theory justifies (1.1) for 1<p<1<p<\infty when Σ\Sigma is the collection of dyadic annuli and {Sσ}σΣ\{S_{\sigma}\}_{\sigma\in\Sigma} are sharp (or smooth) Fourier projection operators associated to the annuli; the Rubio de Francia’s square function estimate justifies (1.1) for 2p<2\leq p<\infty when Σ\Sigma is a collection of disjoint rectangles whose edges are parallel to the coordinate axes and {Sσ}σΣ\{S_{\sigma}\}_{\sigma\in\Sigma} are sharp (or smooth) projections (see [RdF85], [Jou85] and [Lac07]). If one uses the sharp operator and seeks for an square function estimate, then the shape of each σΣ\sigma\in\Sigma is quite limited. Indeed, due to Fefferman’s ball-multiplier example [Fef71], we see that (1.1) makes sense only when σ\sigma is “flat” in some sense. In the case of sharp operator, we replace each σΣ\sigma\in\Sigma by a rectangular box of the same size to make sure the boundaries of σ\sigma are flat. For this specific choice of Σ\Sigma, the estimate (1.1) is related to the maximal Nikodym or Kakeya conjecture (see for instance [Cór79], [Bou91]), which is one of the core conjectures in harmonic analysis. In this paper, we study (1.1) when Σ\Sigma is a certain collection of conical regions with the common apex at the origin.

1.1. First result

A well-known result for square function in 2\mathbb{R}^{2} proved by Córdoba [Cór82] says that for some absolute constant CC the following estimate holds:

(1.2) (j=1N|Sjf|2)1/24(logN)Cf4.\Big{\|}\big{(}\sum_{j=1}^{N}|S_{j}f|^{2}\big{)}^{1/2}\Big{\|}_{4}\lesssim(\log N)^{C}\|f\|_{4}.

Here SjfS_{j}f is the Fourier restriction to the conical regions determined by

(1.3) Δj={ω𝕊1:2πj/Narg(ω)2π(j+1)/N},\Delta_{j}=\{\omega\in\mathbb{S}^{1}:2\pi j/N\leq\arg(\omega)\leq 2\pi(j+1)/N\},

namely, Sjf^(ξ)=𝟏Δj(ξ/|ξ|)f^(ξ)\widehat{S_{j}f}(\xi)={\bf{1}}_{\Delta_{j}}(\xi/|\xi|)\widehat{f}(\xi).

Our first result is a generalization of Cordoba’s estimate (1.2) to higher dimensions. In Cordoba’s square function estimate, the regions are chosen as Σ={σj}\Sigma=\{\sigma_{j}\} where σj={ξ:ξ/|ξ|Δj}\sigma_{j}=\{\xi:\xi/|\xi|\in\Delta_{j}\} is a sector of angle N1N^{-1}. A natural way to generalize it to higher dimensions is by choosing {Δj}\{\Delta_{j}\} to be a set of disjoint δ\delta-balls in 𝕊n1\mathbb{S}^{n-1}. We first discuss the smooth version. Let {Δj}\{\Delta_{j}\} be a set of disjoint δ\delta-balls and let {𝟏Δj}\{{\bf{1}}^{*}_{\Delta_{j}}\} be the corresponding smooth bump functions. More precisely, 𝟏Δj{\bf{1}}^{*}_{\Delta_{j}} is supported in Δj\Delta_{j} and =1=1 on 12Δj\frac{1}{2}\Delta_{j} (12Δj\frac{1}{2}\Delta_{j} is the ball that has the same center as Δj\Delta_{j} but half the radius), and it satisfies the decay condition |k𝟏Δj(ω)|kδk|\nabla^{k}{\bf{1}}^{*}_{\Delta_{j}}(\omega)|\lesssim_{k}\delta^{-k}.

Theorem 1.1.

Let {Δj}\{\Delta_{j}\} be a set of disjoint δ\delta-balls in 𝕊n1\mathbb{S}^{n-1} and {𝟏Δj}\{{\bf{1}}^{*}_{\Delta_{j}}\} be the corresponding smooth bump functions. Let Tjf=(𝟏Δj(/||)f^())T_{j}f=({\bf{1}}_{\Delta_{j}}^{\ast}(\cdot/|\cdot|)\widehat{f}(\cdot))^{\vee} be the smooth Fourier projection of ff to the conical region {ξn:ξ/|ξ|Δj}\{\xi\in\mathbb{R}^{n}:\xi/|\xi|\in\Delta_{j}\}. Then for some constant CC depending only on the dimension, we have

(1.4) (j|Tjf|2)1/24(logδ1)1/2f4.\Big{\|}\big{(}\sum_{j}|T_{j}f|^{2}\big{)}^{1/2}\Big{\|}_{4}\lesssim(\log\delta^{-1})^{1/2}\|f\|_{4}.
Remark 1.2.

The exponent p=4p=4 is sharp in the sense that for p>4p>4, the factor (logδ1)1/2(\log\delta^{-1})^{1/2} in (1.4) should be replaced by some factor like δcp\delta^{-c_{p}}, which depends exponentially on δ\delta. Also, a logarithmic loss like (logδ1)1/4(\log\delta^{-1})^{1/4} is inevitable due to the existence of Besicovitch set (see for instance [ADPH+20] Section 8.6).

Next, let us discuss the sharp-projection version of Theorem 1.1. We still hope each Δj\Delta_{j} is roughly a δ\delta-ball in 𝕊n1\mathbb{S}^{n-1}. While due to Fefferman’s ball-multiplier example, the boundaries of σj={ξn:ξ/|ξ|Δj}\sigma_{j}=\{\xi\in\mathbb{R}^{n}:\xi/|\xi|\in\Delta_{j}\} must be flat, otherwise estimates like (1.4) for sharp projection could fail. These two conditions suggest that each Δj\Delta_{j} is a “δ\delta-regular polyhedron” in 𝕊n1\mathbb{S}^{n-1}, for which we give the precise definition below.

Definition 1.3.

Let Δ\Delta be a subset of 𝕊n1\mathbb{S}^{n-1} and 0<δ10<\delta\ll 1. We say that Δ\Delta is a δ\delta-regular polyhedron of 𝕊n1\mathbb{S}^{n-1} if Δ\Delta is surrounded by great (n2)(n-2)-spheres of 𝕊n1\mathbb{S}^{n-1} and there exists ωΔ𝕊n1\omega_{\Delta}\in\mathbb{S}^{n-1} such that 𝕊n1Bcδ(ωΔ)Δ𝕊n1BCδ(ωΔ)\mathbb{S}^{n-1}\cap B_{c\delta}(\omega_{\Delta})\subset\Delta\subset\mathbb{S}^{n-1}\cap B_{C\delta}(\omega_{\Delta}), where cCc\ll C are two absolute constants. We call the portion of the great (n2)(n-2)-sphere that form the boundary of Δ\Delta the face of Δ\Delta. Throughout the paper, we assume the polyhedron Δ\Delta has O(1)O(1) many faces.

We are interested in the set of disjoint δ\delta-regular polyhedrons. Let us discuss some examples here. The collection {Δj}\{\Delta_{j}\} given by (1.3) is a set of disjoint N1N^{-1}-regular polyhedrons in 𝕊1\mathbb{S}^{1}. In higher dimensions, we can also easily choose a triangulation of the sphere: 𝕊n1=jΔj\mathbb{S}^{n-1}=\sqcup_{j}\Delta_{j} such that each Δj\Delta_{j} is a δ\delta-regular polyhedron ((n1)(n-1)-simplex) of 𝕊n1\mathbb{S}^{n-1}.

However, it turns out that we still need another condition for the collection {Δj}j\{\Delta_{j}\}_{j}. In fact, how the normal directions of the faces of each Δj\Delta_{j} are distributed is critical. Recall that each face of Δj\Delta_{j} is a portion of a great (n2)(n-2)-sphere, and the normal direction of the face is the normal direction of the corresponding great (n2)(n-2)-sphere in 𝕊n1\mathbb{S}^{n-1}. Denote by 𝒩\mathcal{N} the collection of all the unit normal directions of all the faces of all the Δj\Delta_{j}. One can think of 𝒩\mathcal{N} as a subset of 𝕊n1\mathbb{S}^{n-1}.

Definition 1.4.

We call a collection of δ\delta-regular polyhedrons {Δj}\{\Delta_{j}\} “one-dimensional”, if 𝒩\mathcal{N} is contained in O(1)O(1) many great circles in 𝕊n1\mathbb{S}^{n-1}.

For instance, the {Δj}\{\Delta_{j}\} given in (1.3) is one-dimensional. Another example is the “pyramid” example. Consider the set [1,1]n1×{1}[-1,1]^{n-1}\times\{-1\} in n\mathbb{R}^{n}. We partition it into the sets of form Db=j=1n1[bjN,bj+1N]×{1}D_{\vec{b}}=\prod_{j=1}^{n-1}[\frac{b_{j}}{N},\frac{b_{j}+1}{N}]\times\{-1\}, where b=(b1,bn1)\vec{b}=(b_{1}\cdots,b_{n-1}) and NbjN1-N\leq b_{j}\leq N-1 are integers. For each b=(b1,bn1)\vec{b}=(b_{1},\cdots b_{n-1}), we define the small pyramid σb\sigma_{\vec{b}} which consists of the points ξ\xi such that the ray 0ξ\overrightarrow{0\xi} emanating from the origin intersects DbD_{\vec{b}}. More precisely,

σb:={ξn:ξn<0,1|ξn|ξDb}.\sigma_{\vec{b}}:=\{\xi\in\mathbb{R}^{n}:\xi_{n}<0,\frac{1}{|\xi_{n}|}\xi\in D_{\vec{b}}\}.

We set Δb=𝕊n1σb\Delta_{\vec{b}}=\mathbb{S}^{n-1}\cap\sigma_{\vec{b}}. Then, {Δb}b\{\Delta_{\vec{b}}\}_{\vec{b}} is one dimensional.

We can state our result for the sharp operator.

Theorem 1.5.

Suppose {Δj}j\{\Delta_{j}\}_{j} is a set of disjoint δ\delta-regular polyhedrons and is one-dimensional. Define Sjf=(𝟏Δj(/||)f^())S_{j}f=({\bf{1}}_{\Delta_{j}}(\cdot/|\cdot|)\widehat{f}(\cdot))^{\vee} which is the Fourier restriction of ff to {ξn:ξ/|ξ|Δj}\{\xi\in\mathbb{R}^{n}:\xi/|\xi|\in\Delta_{j}\}. Then for any ε>0\varepsilon>0 we have

(1.5) (j|Sjf|2)1/24εδεf4.\Big{\|}\big{(}\sum_{j}|S_{j}f|^{2}\big{)}^{1/2}\Big{\|}_{4}\lesssim_{\varepsilon}\delta^{-\varepsilon}\|f\|_{4}.

The one-dimensional assumption on {Δj}j\{\Delta_{j}\}_{j} is somewhat necessary. In fact, we will show in the Appendix that without the “one-dimensional” condition, then (1.5) can fail.

Remark 1.6.

One possible application of Theorem 1.1 as well as Theorem 1.5 is the study of the local smoothing conjecture. Actually, the reverse square function estimate for cone plus the Nikodym maximal estimate for cone together with Theorem 1.1 would imply the local smoothing conjecture for cone. See for instance [TV00].

Remark 1.7.

After this project was finished, the authors became aware that Francesco Di Plinio and Ioannis Parissis have studied the same problem as in Theorem 1.1. Their result ([DPP21] Theorem J) will imply our inequality (1.4) (with the same constant (logδ1)1/2\log\delta^{-1})^{1/2}) by a standard interpolation argument (see for example in [Dem10] Lemma 3.1 or [Kat99] Proposition 2.1). Their method is based on the time-frequency analysis, while our method is based on the high-low method developed recently (see [GWZ20], [GSW19], [GMW20]). We also remark that when n=2n=2, both the smooth operator version and the sharp operator version were studied by Accomazzo, Di Plinio, Hagelstein, Parissis and Roncal [ADPH+20].

1.2. Second result

Let us talk about the second result. We consider the cone Γ={ξ3:ξ12+ξ22=ξ32,1/2|ξ3|1}\Gamma=\{\xi\in\mathbb{R}^{3}:\xi_{1}^{2}+\xi_{2}^{2}=\xi_{3}^{2},1/2\leq|\xi_{3}|\leq 1\}, and let Nδ(Γ)N_{\delta}(\Gamma) denote its δ\delta-neighborhood. There is a canonical covering of Nδ(Γ)N_{\delta}(\Gamma) using finitely overlapping planks τ\tau of dimensions δ×δ1/2×1\sim\delta\times\delta^{1/2}\times 1. Denote this collection by 𝒯={τ}\mathcal{T}=\{\tau\}. For each τ𝒯\tau\in\mathcal{T}, choose a smooth bump function 𝟏τ{\bf{1}}^{*}_{\tau} adapted to τ\tau so that supp𝟏τ2τ{\rm{supp}}{\bf{1}}^{*}_{\tau}\subset 2\tau and 𝟏τ=1{\bf{1}}^{*}_{\tau}=1 on τ\tau. Define fτ:=(𝟏τf^)f_{\tau}:=({\bf{1}}^{*}_{\tau}\widehat{f}\ )^{\vee} as usual. Guth, Wang and Zhang [GWZ20] proved the following sharp L4L^{4} reverse square function estimate.

Theorem 1.8 (Reverse square function estimate, [GWZ20]).

Assuming suppf^Nδ(Γ){\rm{supp}}\widehat{f}\subset N_{\delta}(\Gamma), then for any ε>0\varepsilon>0 we have

(1.6) fL4(3)Cεδε(τ|fτ|2)1/2L4(3).\|f\|_{L^{4}(\mathbb{R}^{3})}\leq C_{\varepsilon}\delta^{-\varepsilon}\bigg{\|}(\sum_{\tau}|f_{\tau}|^{2})^{1/2}\bigg{\|}_{L^{4}(\mathbb{R}^{3})}.

Or equivalently,

(1.7) τfτL4(3)Cεδε(τ|fτ|2)1/2L4(3).\|\sum_{\tau}f_{\tau}\|_{L^{4}(\mathbb{R}^{3})}\leq C_{\varepsilon}\delta^{-\varepsilon}\bigg{\|}(\sum_{\tau}|f_{\tau}|^{2})^{1/2}\bigg{\|}_{L^{4}(\mathbb{R}^{3})}.

In this paper, we prove the sharp L8L^{8} square function estimate for the cone.

Theorem 1.9.

Assuming suppf^Nδ(Γ){\rm{supp}}\widehat{f}\subset N_{\delta}(\Gamma), then for any ε>0\varepsilon>0 we have

(1.8) (τ|fτ|2)1/2L8(3)CεδεfL8(3).\bigg{\|}(\sum_{\tau}|f_{\tau}|^{2})^{1/2}\bigg{\|}_{L^{8}(\mathbb{R}^{3})}\leq C_{\varepsilon}\delta^{-\varepsilon}\|f\|_{L^{8}(\mathbb{R}^{3})}.
Remark 1.10.

The endpoint p=8p=8 is sharp in the sense that if we consider the estimate

(τ|fτ|2)1/2Lp(3)C(p,δ)fLp(3)\bigg{\|}(\sum_{\tau}|f_{\tau}|^{2})^{1/2}\bigg{\|}_{L^{p}(\mathbb{R}^{3})}\leq C(p,\delta)\|f\|_{L^{p}(\mathbb{R}^{3})}

for p>8p>8, then the best constant C(p,δ)C(p,\delta) should be a positive power of δ1\delta^{-1}. We will give a sharp example in the Appendix.

If we remove the condition suppf^Nδ(Γ){\rm{supp}}\widehat{f}\subset N_{\delta}(\Gamma), then the best we can hope is an L4L^{4}-estimate. This result was implicitly proved by Mockenhaupt, Seeger and Sogge [MSS92]. Actually, by a duality argument, one can reduce the L4L^{4} square function estimate to a maximal Nikodym estimate which is Lemma 1.4 in [MSS92].

From Theorem 1.1 in this paper, we easily see (1.8) holds for p=4p=4. Moreover, if we use trilinear restriction estimate for the cone, then we can prove (1.8) for p=6p=6. In order to prove for p=8p=8, we need to do more work.

By Littlewood-Paley theory, we can prove a global version of Theorem 1.9. Let us consider 𝔹2:=𝕊2Nδ(Γ)\mathbb{B}^{2}:=\mathbb{S}^{2}\cap N_{\delta}(\Gamma) which is a band of width δ\delta in 𝕊2\mathbb{S}^{2}. Let {Δj}\{\Delta_{j}\} be a set of disjoint δ×δ1/2\delta\times\delta^{1/2}-rectangles that are contained in 𝔹2\mathbb{B}^{2}. Also, we choose {𝟏Δj}\{{\bf{1}}^{*}_{\Delta_{j}}\} to be the corresponding smooth bump functions. We see that 𝟏Δj(ξ/|ξ|){\bf{1}}^{*}_{\Delta_{j}}(\xi/|\xi|) is a smooth cutoff function in the region {ξ3:ξ/|ξ|Δj}\{\xi\in\mathbb{R}^{3}:\xi/|\xi|\in\Delta_{j}\}. Define Tjf:=(𝟏Δj(ξ/|ξ|)f^(ξ))T_{j}f:=({\bf{1}}^{*}_{\Delta_{j}}(\xi/|\xi|)\widehat{f}(\xi))^{\vee}. Our global version is the following.

Theorem 1.11.

Assuming f^{ξ3:ξ/|ξ|𝔹2}\widehat{f}\subset\{\xi\in\mathbb{R}^{3}:\xi/|\xi|\in\mathbb{B}^{2}\}, then for any ε>0\varepsilon>0 we have

(1.9) (j|Tjf|2)1/2L8(3)CεδεfL8(3).\big{\|}(\sum_{j}|T_{j}f|^{2})^{1/2}\big{\|}_{L^{8}(\mathbb{R}^{3})}\leq C_{\varepsilon}\delta^{-\varepsilon}\|f\|_{L^{8}(\mathbb{R}^{3})}.

In the end of this section, let us talk about the structure of the paper. In Section 2, we do a global-to-local reduction in the frequency space to reduce the problem to the case that suppf^{|ξ|1}{\rm{supp}}\widehat{f}\subset\{|\xi|\sim 1\}. In Section 3, we prove Theorem 1.1. In Section 4, we prove Theorem 1.5. In Section 5, we prove Theorem 1.9. In the Appendix, we discuss some examples.

Acknowlegement. The authors would like to thank Francesco Di Plinio and Ioannis Parissis for some useful discussions, and for bringing their papers to our attention.

2. The global-to-local reduction

The main goal of this section is to reduce Theorem 1.1 and Theorem 1.5 to a local version. That is to say, we only need to prove the case when suppf^{|ξ|1}{\rm{supp}}\widehat{f}\subset\{|\xi|\sim 1\}.

We may assume Δj\Delta_{j} are within the conical region {ω𝕊n1:ωen1}\{\omega\in\mathbb{S}^{n-1}:\omega\cdot e_{n}\geq 1\} and {Δj}\{\Delta_{j}\} are 100Cδ100C\delta-separated. Let PkP_{k} be the Littlewood-Paley operator for the dyadic annulus, so that for any function ff, Pkf^\widehat{P_{k}f} is supported in the annulus {ξ:|ξ|2k}\{\xi:|\xi|\sim 2^{k}\} and f=kPkff=\sum_{k\in\mathbb{Z}}P_{k}f. More precisely, we choose a function ρ(r)\rho(r) supported in [1/4,4][1/4,4] such that kρ(r/2k)=1\sum_{k\in\mathbb{Z}}\rho(r/2^{k})=1, and set Pkf:=(ρ(|ξ|/2k)f^(ξ))P_{k}f:=(\rho(|\xi|/2^{k})\widehat{f}(\xi))^{\vee}. Choose m=10nm=10^{n} which is a large number. For each integer 0im10\leq i\leq m-1, define 𝒦i:=m+i\mathcal{K}_{i}:=m\mathbb{Z}+i, so that there is a partition =0im1𝒦i\mathbb{Z}=\sqcup_{0\leq i\leq m-1}\mathcal{K}_{i}. We have

(2.1) (j|Tjf|2)1/244=\displaystyle\Big{\|}\Big{(}\sum_{j}|T_{j}f|^{2}\Big{)}^{1/2}\Big{\|}_{4}^{4}= (j|kTjPkf|2)1/244\displaystyle\Big{\|}\Big{(}\sum_{j}\Big{|}\sum_{k\in\mathbb{Z}}T_{j}P_{k}f\Big{|}^{2}\Big{)}^{1/2}\Big{\|}_{4}^{4}
(2.2) 0im1\displaystyle\lesssim\sum_{0\leq i\leq m-1} (j|k𝒦iTjPkf|2)1/244.\displaystyle\Big{\|}\Big{(}\sum_{j}\Big{|}\sum_{k\in\mathcal{K}_{i}}T_{j}P_{k}f\Big{|}^{2}\Big{)}^{1/2}\Big{\|}_{4}^{4}.

For simplicity, we just write 𝒦i\mathcal{K}_{i} as 𝒦\mathcal{K}. The only property of 𝒦\mathcal{K} we will use is that for any two different numbers k1,k2𝒦k_{1},k_{2}\in\mathcal{K}, we have |k1k2|10n|k_{1}-k_{2}|\geq 10^{n}. The goal of Theorem 1.1 is to prove

(2.3) (j|k𝒦TjPkf|2)1/244(logδ1)2f44.\Big{\|}\Big{(}\sum_{j}\Big{|}\sum_{k\in\mathcal{K}}T_{j}P_{k}f\Big{|}^{2}\Big{)}^{1/2}\Big{\|}_{4}^{4}\lesssim(\log\delta^{-1})^{2}\|f\|_{4}^{4}.

For convenience, let us denote

(2.4) I=(j|k𝒦TjPkf|2)1/244,II=(jk𝒦|TjPkf|2)1/244.I=\Big{\|}\Big{(}\sum_{j}\Big{|}\sum_{k\in\mathcal{K}}T_{j}P_{k}f\Big{|}^{2}\Big{)}^{1/2}\Big{\|}_{4}^{4},\hskip 14.22636ptII=\Big{\|}\Big{(}\sum_{j}\sum_{k\in\mathcal{K}}|T_{j}P_{k}f|^{2}\Big{)}^{1/2}\Big{\|}_{4}^{4}.

We begin with the first estimate.

Lemma 2.1.

Let I and II be as above. We have

I1000II.I\leq 1000II.
Proof.

After expanding the L4L^{4}-norm, we get

(2.5) I\displaystyle I =j1j2k1,k2,k3,k4𝒦(Tj1Pk1fTj2Pk2f)(Tj1Pk3fTj2Pk4f¯)\displaystyle=\sum_{j_{1}\not=j_{2}}\sum_{k_{1},k_{2},k_{3},k_{4}\in\mathcal{K}}\int(T_{j_{1}}P_{k_{1}}f\cdot T_{j_{2}}P_{k_{2}}f)(\overline{T_{j_{1}}P_{k_{3}}f\cdot T_{j_{2}}P_{k_{4}}f})
(2.6) +j1=j2k1,k2,k3,k4𝒦(Tj1Pk1fTj2Pk2f)(Tj1Pk3fTj2Pk4f¯).\displaystyle+\sum_{j_{1}=j_{2}}\sum_{k_{1},k_{2},k_{3},k_{4}\in\mathcal{K}}\int(T_{j_{1}}P_{k_{1}}f\cdot T_{j_{2}}P_{k_{2}}f)(\overline{T_{j_{1}}P_{k_{3}}f\cdot T_{j_{2}}P_{k_{4}}f}).

Denote k=(k1,k2,k3,k4)\vec{k}=(k_{1},k_{2},k_{3},k_{4}). In the following discussion, we would like to find a partition of the set 𝒦4\mathcal{K}^{4} and hence a partition of the summation k𝒦4\sum_{\vec{k}\in\mathcal{K}^{4}}. We will discuss the two terms (2.5), (2.6) separately.

Case 1: j1j2j_{1}\not=j_{2}.

When j1j2j_{1}\not=j_{2}, for the quadruples k=(k1,k2,k3,k4)𝒦4\vec{k}=(k_{1},k_{2},k_{3},k_{4})\in\mathcal{K}^{4}, we consider the following subsets of 𝒦4\mathcal{K}^{4}:

  1. (1)

    A={k1=k3}A=\{k_{1}=k_{3}\}.

  2. (2)

    B={k2=k4}B=\{k_{2}=k_{4}\}.

  3. (3)

    C={k1=k3,k2=k4}C=\{k_{1}=k_{3},k_{2}=k_{4}\}.

  4. (4)

    D={k1k3,k2k4}D=\{k_{1}\not=k_{3},k_{2}\not=k_{4}\}.

Then we see that 𝟏𝒦4=𝟏A+𝟏B+𝟏D𝟏C{\bf{1}}_{\mathcal{K}^{4}}={\bf{1}}_{A}+{\bf{1}}_{B}+{\bf{1}}_{D}-{\bf{1}}_{C}.

For kD\vec{k}\in D, we have by Plancherel that

(2.7) (Tj1Pk1fTj2Pk2f)(Tj1Pk3fTj2Pk4f¯)\displaystyle\int(T_{j_{1}}P_{k_{1}}f\cdot T_{j_{2}}P_{k_{2}}f)(\overline{T_{j_{1}}P_{k_{3}}f\cdot T_{j_{2}}P_{k_{4}}f})
(2.8) =\displaystyle= Tj1Pk1f^Tj2Pk2f^Tj1Pk3f^Tj2Pk4f^¯.\displaystyle\int\widehat{T_{j_{1}}P_{k_{1}}f}\ast\widehat{T_{j_{2}}P_{k_{2}}f}\cdot\overline{\widehat{T_{j_{1}}P_{k_{3}}f}\ast\widehat{T_{j_{2}}P_{k_{4}}f}}.

We claim this integral is 0. First, by definition we have

(2.9) suppTjPkf^{ξ:ξ/|ξ|Δj,|ξ|2k}.{\rm{supp}}\widehat{T_{j}P_{k}f}\subset\{\xi:\xi/|\xi|\in\Delta_{j},|\xi|\sim 2^{k}\}.

Define

(2.10) τk,j:={ξ:ξ/|ξ|Δj,|ξ|2k},\tau_{k,j}:=\{\xi:\xi/|\xi|\in\Delta_{j},|\xi|\sim 2^{k}\},

then we see that τk,j\tau_{k,j} is morally a tube of length 2k2^{k} and radius δ2k\delta 2^{k}, pointing to the direction cΔj𝕊n1c_{\Delta_{j}}\in\mathbb{S}^{n-1} (cΔjc_{\Delta_{j}} is the center of Δj\Delta_{j}). We note that the support of the integrand of (2.8) is contained in (τj1,k1+τj2,k2)(τj1,k3+τj2,k4)(\tau_{j_{1},k_{1}}+\tau_{j_{2},k_{2}})\cap(\tau_{j_{1},k_{3}}+\tau_{j_{2},k_{4}}). To show (2.8)=0\eqref{L4}=0, it suffices to show (τj1,k1+τj2,k2)(τj1,k3+τj2,k4)=(\tau_{j_{1},k_{1}}+\tau_{j_{2},k_{2}})\cap(\tau_{j_{1},k_{3}}+\tau_{j_{2},k_{4}})=\emptyset, or equivalently

(τj1,k1τj1,k3)(τj2,k4τj2,k2)=.(\tau_{j_{1},k_{1}}-\tau_{j_{1},k_{3}})\cap(\tau_{j_{2},k_{4}}-\tau_{j_{2},k_{2}})=\emptyset.

Since kD\vec{k}\in D, we have k1k3k_{1}\neq k_{3}, so |k1k3|10n>>1|k_{1}-k_{3}|\geq 10^{n}>>1. We may assume k1>k3k_{1}>k_{3}. By an easy geometry, we see that τj1,k1τj1,k3(1+110)τj1,k1\tau_{j_{1},k_{1}}-\tau_{j_{1},k_{3}}\subset(1+\frac{1}{10})\tau_{j_{1},k_{1}}. Here (1+110)τj1,k1(1+\frac{1}{10})\tau_{j_{1},k_{1}} is the dilation of τj1,k1\tau_{j_{1},k_{1}} with respect to its center (regarding τj1,k1\tau_{j_{1},k_{1}} as a tube). Similarly, we have τj2,k2τj2,k4(1+110)τj2,max(k2,k4)\tau_{j_{2},k_{2}}-\tau_{j_{2},k_{4}}\subset(1+\frac{1}{10})\tau_{j_{2},\max(k_{2},k_{4})}. Note that (1+110)τj1,k1(1+\frac{1}{10})\tau_{j_{1},k_{1}} is contained in the conical region {ξ:ξ/|ξ|N10CδΔj1}\{\xi:\xi/|\xi|\in N_{10C\delta}\Delta_{j_{1}}\}, while (1+110)τj2,max(k2,k4)(1+\frac{1}{10})\tau_{j_{2},\max(k_{2},k_{4})} is contained in the conical region {ξ:ξ/|ξ|N10CδΔj2}\{\xi:\xi/|\xi|\in N_{10C\delta}\Delta_{j_{2}}\}. Since j1j2j_{1}\neq j_{2}, we have dist(Δj1,Δj2)100Cδ{\rm dist}(\Delta_{j_{1}},\Delta_{j_{2}})\geq 100C\delta, so we prove the disjointness.

As for those quadruples k\vec{k} in AA or BB, we have

(2.11) j1j2(kA+kB)(Tj1Pk1fTj2Pk2f)(Tj1Pk3fTj2Pk4f¯)\displaystyle\sum_{j_{1}\not=j_{2}}\big{(}\sum_{\vec{k}\in A}+\sum_{\vec{k}\in B}\big{)}\int(T_{j_{1}}P_{k_{1}}f\cdot T_{j_{2}}P_{k_{2}}f)(\overline{T_{j_{1}}P_{k_{3}}f\cdot T_{j_{2}}P_{k_{4}}f})
(2.12) \displaystyle\leq (jk𝒦|TjPkf|2)(j|k𝒦TjPkf|2),\displaystyle\int\Big{(}\sum_{j}\sum_{k\in\mathcal{K}}|T_{j}P_{k}f|^{2}\Big{)}\cdot\Big{(}\sum_{j}\Big{|}\sum_{k\in\mathcal{K}}T_{j}P_{k}f\Big{|}^{2}\Big{)},

which, by using Hölder’s inequality, is bounded by

(2.13) [(1/100)I+100II]/2.[(1/100)I+100II]/2.

Note that for those quadruples kC\vec{k}\in C,

j1j2kC(Tj1Pk1fTT2Pk2f)(Tj1Pk3fTj2Pk4f¯)II.\sum_{j_{1}\not=j_{2}}\sum_{\vec{k}\in C}\int(T_{j_{1}}P_{k_{1}}f\cdot T_{T_{2}}P_{k_{2}}f)(\overline{T_{j_{1}}P_{k_{3}}f\cdot T_{j_{2}}P_{k_{4}}f})\leq II.

Thus we obtain

(2.14) (2.5)(1/100)I+100II.\eqref{off-diagonal-1}\leq(1/100)I+100II.

Case 2: j1=j2j_{1}=j_{2}.

When j1=j2j_{1}=j_{2}, we similarly consider the subsets of 𝒦4\mathcal{K}^{4}:

  1. (1)

    E1={k1=k2}E_{1}=\{k_{1}=k_{2}\}, E2={k1=k3}E_{2}=\{k_{1}=k_{3}\}, E3={k1=k4}E_{3}=\{k_{1}=k_{4}\}, E4={k2=k3}E_{4}=\{k_{2}=k_{3}\}, E5={k2=k4}E_{5}=\{k_{2}=k_{4}\}, E6={k3=k4}E_{6}=\{k_{3}=k_{4}\}.

  2. (2)

    F1={k1=k2,k3=k4}F_{1}^{\prime}=\{k_{1}=k_{2},k_{3}=k_{4}\}, F2={k1=k3,k2=k4}F_{2}^{\prime}=\{k_{1}=k_{3},k_{2}=k_{4}\}, F3={k1=k4,k2=k3}F_{3}^{\prime}=\{k_{1}=k_{4},k_{2}=k_{3}\}.

  3. (3)

    F1={k1=k2=k3}F_{1}=\{k_{1}=k_{2}=k_{3}\}, F2={k1=k2=k4}F_{2}=\{k_{1}=k_{2}=k_{4}\}, F3={k1=k3=k4}F_{3}=\{k_{1}=k_{3}=k_{4}\}, F4={k2=k3=k4}F_{4}=\{k_{2}=k_{3}=k_{4}\}.

  4. (4)

    G={k1=k2=k3=k4}G=\{k_{1}=k_{2}=k_{3}=k_{4}\}.

  5. (5)

    H={k1,k2,k3,k4are all different}H=\{k_{1},k_{2},k_{3},k_{4}~{}\textup{are all different}\}.

Then by inclusion-exclusion principle, one can express 𝒦4\mathcal{K}^{4} as a linear combination of the aforementioned collection of quadruples:

(2.15) 𝟏𝒦4=i=16𝟏Eii=13𝟏Fi2i=14𝟏Fi+6𝟏G+𝟏H.{\bf{1}}_{\mathcal{K}^{4}}=\sum_{i=1}^{6}{\bf{1}}_{E_{i}}-\sum_{i=1}^{3}{\bf{1}}_{F^{\prime}_{i}}-2\sum_{i=1}^{4}{\bf{1}}_{F_{i}}+6\cdot{\bf{1}}_{G}+{\bf{1}}_{H}.

Note that when j1=j2j_{1}=j_{2} and kH\vec{k}\in H, (2.6) is zero.

As for those quadruples in EiE_{i}, similar to (2.11) we get

(2.16) j1=j2kEi(Tj1Pk1fTj2Pk2f)(Tj1Pk3fTj2Pk4f¯)\displaystyle\sum_{j_{1}=j_{2}}\sum_{\vec{k}\in E_{i}}\int(T_{j_{1}}P_{k_{1}}f\cdot T_{j_{2}}P_{k_{2}}f)(\overline{T_{j_{1}}P_{k_{3}}f\cdot T_{j_{2}}P_{k_{4}}f})
(2.17) \displaystyle\leq (jk𝒦|TjPkf|2)(j|k𝒦TjPkf|2)[(1/100)I+100II]/2.\displaystyle\int\Big{(}\sum_{j}\sum_{k\in\mathcal{K}}|T_{j}P_{k}f|^{2}\Big{)}\cdot\Big{(}\sum_{j}\Big{|}\sum_{k\in\mathcal{K}}T_{j}P_{k}f\Big{|}^{2}\Big{)}\leq[(1/100)I+100II]/2.

For those kF2\vec{k}\in F_{2}^{\prime} or F3F_{3}^{\prime}, we have:

j1=j2kF2(orF3)(Tj1Pk1fTT2Pk2f)(Tj1Pk3fTj2Pk4f¯)=j(𝒦|TjPkf|2)2II.\sum_{j_{1}=j_{2}}\sum_{\vec{k}\in F_{2}^{\prime}(\textup{or}F_{3}^{\prime})}\int(T_{j_{1}}P_{k_{1}}f\cdot T_{T_{2}}P_{k_{2}}f)(\overline{T_{j_{1}}P_{k_{3}}f\cdot T_{j_{2}}P_{k_{4}}f})=\int\sum_{j}(\sum_{\mathcal{K}}|T_{j}P_{k}f|^{2})^{2}\leq II.

For kF1\vec{k}\in F_{1}^{\prime}, we have:

j1=j2kF1(Tj1Pk1fTT2Pk2f)(Tj1Pk3fTj2Pk4f¯)=j(𝒦(TjPkf)2)2II.\sum_{j_{1}=j_{2}}\sum_{\vec{k}\in F_{1}^{\prime}}\int(T_{j_{1}}P_{k_{1}}f\cdot T_{T_{2}}P_{k_{2}}f)(\overline{T_{j_{1}}P_{k_{3}}f\cdot T_{j_{2}}P_{k_{4}}f})=\int\sum_{j}(\sum_{\mathcal{K}}(T_{j}P_{k}f)^{2})^{2}\leq II.

For those quadruples in FiF_{i}, for example in F1F_{1}, we get

(2.18) j1=j2kF1(Tj1Pk1fTj2Pk2f)(Tj1Pk3fTj2Pk4f¯)\displaystyle\sum_{j_{1}=j_{2}}\sum_{\vec{k}\in F_{1}}\int(T_{j_{1}}P_{k_{1}}f\cdot T_{j_{2}}P_{k_{2}}f)\overline{(T_{j_{1}}P_{k_{3}}f\cdot T_{j_{2}}P_{k_{4}}f})
(2.19) =\displaystyle= jk1|TjPk1f|2TjPk1fk4TjPk4f¯,\displaystyle\sum_{j}\int\sum_{k_{1}}|T_{j}P_{k_{1}}f|^{2}\cdot T_{j}P_{k_{1}}f\cdot\sum_{k_{4}}\overline{T_{j}P_{k_{4}}f},

whose absolute value, by Cauchy-Schwartz inequality, is bounded above by

(2.20) j(k1|TjPk1f|4)1/2(k1|TjPk1f|2|k4TjPk4f¯|2)1/2\displaystyle\sum_{j}\int\Big{(}\sum_{k_{1}}|T_{j}P_{k_{1}}f|^{4}\Big{)}^{1/2}\Big{(}\sum_{k_{1}}|T_{j}P_{k_{1}}f|^{2}\Big{|}\sum_{k_{4}}\overline{T_{j}P_{k_{4}}f}\Big{|}^{2}\Big{)}^{1/2}
(2.21) \displaystyle\leq jk1|TjPk1f|4+jk1|TjPk1f|2|k4TjPk4f|2\displaystyle\int\sum_{j}\sum_{k_{1}}|T_{j}P_{k_{1}}f|^{4}+\int\sum_{j}\sum_{k_{1}}|T_{j}P_{k_{1}}f|^{2}\Big{|}\sum_{k_{4}}T_{j}P_{k_{4}}f\Big{|}^{2}
(2.22) \displaystyle\leq II+[(1/100)I+100II]/2.\displaystyle\,II+[(1/100)I+100II]/2.

Finally, for those quadruples in GG, we can easily get

(2.23) j1=j2kG(Tj1Pk1fTj2Pk2f)(Tj1Pk3fTj2Pk4f¯)\displaystyle\sum_{j_{1}=j_{2}}\sum_{\vec{k}\in G}\int(T_{j_{1}}P_{k_{1}}f\cdot T_{j_{2}}P_{k_{2}}f)(\overline{T_{j_{1}}P_{k_{3}}f\cdot T_{j_{2}}P_{k_{4}}f})
(2.24) =\displaystyle= jk|TjPkf|4II.\displaystyle\int\sum_{j}\sum_{k}|T_{j}P_{k}f|^{4}\leq II.

Putting all estimates above together, we reach

(2.25) (2.6)\displaystyle\eqref{diagonal-1} 3[(1/100)I+100II]+8II+4[(1/100)I+100II]+II\displaystyle\leq 3[(1/100)I+100II]+8II+4[(1/100)I+100II]+II
(2.26) (7/100)I+800II.\displaystyle\leq(7/100)I+800II.

Now plug (2.14) and (2.25) (2.1) so that

(2.27) (2.1)=I(8/100)I+900II,\displaystyle\eqref{before-LP}=I\leq(8/100)I+900II,

which gives (2.1)=I1000II\eqref{before-LP}=I\leq 1000II. ∎

Hence it remains to show

(2.28) II4=(jk𝒦|TjPkf|2)1/24(logδ1)1/2f4.\sqrt[4]{II}=\Big{\|}\Big{(}\sum_{j}\sum_{k\in\mathcal{K}}|T_{j}P_{k}f|^{2}\Big{)}^{1/2}\Big{\|}_{4}\lesssim(\log\delta^{-1})^{1/2}\|f\|_{4}.

The desired estimate (2.28) can be further reduced to the following local estimate.

(2.29) (j|TjP1f|2)1/24(logδ1)1/4f4.\Big{\|}\Big{(}\sum_{j}|T_{j}P_{1}f|^{2}\Big{)}^{1/2}\Big{\|}_{4}\lesssim(\log\delta^{-1})^{1/4}\|f\|_{4}.

It is a local version of (1.4). We also remark that in the local version, the constant (logδ1)1/4(\log\delta^{-1})^{1/4} is better than the global version. To deduce (2.28) from (2.29), we need the following lemma. It is from [GRY20] Proposition 4.2 (see also [JSW08] and [See88]).

Lemma 2.2.

Let {mj(ξ)}j𝒥\{m_{j}(\xi)\}_{j\in\mathcal{J}} be a set of Fourier multipliers on n\mathbb{R}^{n}, each of which is compactly supported on {ξ:1/2|ξ|2}\{\xi:1/2\leq|\xi|\leq 2\}, and satisfies

(2.30) supj𝒥|ξαmj(ξ)|Bfor each 0|α|n+1\sup_{j\in\mathcal{J}}|\partial^{\alpha}_{\xi}m_{j}(\xi)|\leq B\ \textup{for~{}each~{}}0\leq|\alpha|\leq n+1

for some constant BB. For j𝒥j\in\mathcal{J} and kk\in\mathbb{Z}, write Tj,kT_{j,k} the multiplier operator with multiplier mj(2kξ)m_{j}(2^{-k}\xi). Fix some p[2,)p\in[2,\infty). Assume that there exists some constant AA such that

(2.31) supk(j𝒥|Tj,kf|2)1/2Ls(n)AfLs(n)\sup_{k\in\mathbb{Z}}\big{\|}(\sum_{j\in\mathcal{J}}|T_{j,k}f|^{2})^{1/2}\big{\|}_{L^{s}(\mathbb{R}^{n})}\leq A\|f\|_{L^{s}(\mathbb{R}^{n})}

for both s=ps=p and s=2s=2. Then

(2.32) (kj𝒥|Tj,kf|2)1/2Lp(n)A|log(2+BA)|121pfLp(n).\bigg{\|}(\sum_{k\in\mathbb{Z}}\sum_{j\in\mathcal{J}}|T_{j,k}f|^{2})^{1/2}\bigg{\|}_{L^{p}(\mathbb{R}^{n})}\lesssim A\bigg{|}\log\bigg{(}2+\frac{B}{A}\bigg{)}\bigg{|}^{\frac{1}{2}-\frac{1}{p}}\|f\|_{L^{p}(\mathbb{R}^{n})}.

Let us discuss how to apply Lemma 2.2. First note that

(TjPkf)(ξ)=𝟏Δj(ξ/|ξ|)ρ(2k|ξ|)f^(ξ).(T_{j}P_{k}f)^{\wedge}(\xi)={\bf{1}}^{*}_{\Delta_{j}}(\xi/|\xi|)\rho(2^{-k}|\xi|)\widehat{f}(\xi).

If we assume (2.29) is true, by rescaling we have for any kk\in\mathbb{Z}

(2.33) (j|TjPkf|2)1/24(logδ1)1/4f4.\Big{\|}\Big{(}\sum_{j}|T_{j}P_{k}f|^{2}\Big{)}^{1/2}\Big{\|}_{4}\lesssim(\log\delta^{-1})^{1/4}\|f\|_{4}.

We choose mj(ξ)=𝟏Δj(ξ/|ξ|)ρ(ξ)m_{j}(\xi)={\bf{1}}^{*}_{\Delta_{j}}(\xi/|\xi|)\rho(\xi) in Lemma 2.2, so we have Tj,kf=TjPkfT_{j,k}f=T_{j}P_{k}f. We also choose p=4p=4. We can verify the constant B=δO(1)B=\delta^{-O(1)} and A=(logδ1)1/4A=(\log\delta^{-1})^{1/4} will make the conditions (2.30) and (2.31) in the lemma hold. As a result, from (2.32) we obtain

(jk𝒦|TjPkf|2)1/24A|log(2+BA)|1/4f4(logδ1)1/2f4.\Big{\|}\Big{(}\sum_{j}\sum_{k\in\mathcal{K}}|T_{j}P_{k}f|^{2}\Big{)}^{1/2}\Big{\|}_{4}\lesssim A\bigg{|}\log\bigg{(}2+\frac{B}{A}\bigg{)}\bigg{|}^{1/4}\|f\|_{4}\lesssim(\log\delta^{-1})^{1/2}\|f\|_{4}.

This gives the estimate (2.28).

The proof of (2.29) is given in the next section.

3. Proof of the local version

Recall we are given a set of disjoint δ\delta-balls {Δj}\{\Delta_{j}\} in 𝕊n1\mathbb{S}^{n-1}. Also recall the smooth Fourier restriction operator is defined as

Tjf(x)=(𝟏Δj(ξ/|ξ|)f^(ξ))(x),T_{j}f(x)=({\bf{1}}^{*}_{\Delta_{j}}(\xi/|\xi|)\widehat{f}(\xi))^{\vee}(x),

where 𝟏Δj{\bf{1}}^{*}_{\Delta_{j}} is a smooth bump function adapted to Δj\Delta_{j}.

After the global-to-local reduction in the previous section, (1.4) boils down to (2.29), which is the following result

Theorem 3.1.

For any function ff with suppf^{ξ:100|ξ|101}{\rm{supp}}\widehat{f}\subset\{\xi:100\leq|\xi|\leq 101\}, we have

(3.1) (j|Tjf|2)1/2L4(n)(logδ1)1/4fL4(n),\bigg{\|}\big{(}\sum_{j}|T_{j}f|^{2}\big{)}^{1/2}\bigg{\|}_{L^{4}(\mathbb{R}^{n})}\lesssim(\log\delta^{-1})^{1/4}\|f\|_{L^{4}(\mathbb{R}^{n})},

where C>0C>0 is some universal constant.

Let us first discuss some geometry. For each Δj\Delta_{j}, we consider the corresponding tube τj\tau_{j} defined as follows

τj:={ξn:100|ξ|101,ξ/|ξ|Δj}.\tau_{j}:=\{\xi\in\mathbb{R}^{n}:100\leq|\xi|\leq 101,~{}\xi/|\xi|\in\Delta_{j}\}.

Since suppf^{ξ:100|ξ|101}{\rm{supp}}\widehat{f}\subset\{\xi:100\leq|\xi|\leq 101\}, we have

Tjf=(𝟏Δj(ξ/|ξ|)ρ(|ξ|)f^(ξ)),T_{j}f=\bigg{(}{\bf{1}}^{*}_{\Delta_{j}}(\xi/|\xi|)\rho(|\xi|)\widehat{f}(\xi)\bigg{)}^{\vee},

where ρ(r)\rho(r) is a smooth function supported in r[99,102]r\in[99,102] and =1=1 for r[100,101]r\in[100,101]. Now we define

ψτj(ξ):=𝟏Δj(ξ/|ξ|)ρ(|ξ|),\psi_{\tau_{j}}(\xi):={\bf{1}}^{*}_{\Delta_{j}}(\xi/|\xi|)\rho(|\xi|),

so ψτj\psi_{\tau_{j}} is a smooth bump function supported in τj\tau_{j}, and Tjf=(ψτjf^)T_{j}f=\big{(}\psi_{\tau_{j}}\widehat{f}\ \big{)}^{\vee}. Denote all the δ××δ×1\delta\times\cdots\times\delta\times 1 tubes obtained above by 𝒯={τj}\mathcal{T}=\{\tau_{j}\}. By definition we know that the tubes are finitely overlapping. Now, let us forget about TjfT_{j}f and use the new notation fτ:=(ψτf^)f_{\tau}:=\big{(}\psi_{\tau}\widehat{f}\ \big{)}^{\vee} for τ𝒯\tau\in\mathcal{T}. (3.1) is equivalent to

(3.2) (τ𝒯|fτ|2)1/2L4(n)(logδ1)1/4fL4(n)\bigg{\|}\big{(}\sum_{\tau\in\mathcal{T}}|f_{\tau}|^{2}\big{)}^{1/2}\bigg{\|}_{L^{4}(\mathbb{R}^{n})}\lesssim(\log\delta^{-1})^{1/4}\|f\|_{L^{4}(\mathbb{R}^{n})}

For each τ𝒯\tau\in\mathcal{T}, the Fourier transform of |fτ|2|f_{\tau}|^{2} has support in ττ5τ0\tau-\tau\subset 5\tau_{0} (here τ0\tau_{0} is the translation of τ\tau to the origin). Hence the Fourier transform of τ𝒯|fτ|2\sum_{\tau\in\mathcal{T}}|f_{\tau}|^{2} is supported in τ𝒯5τ0B10(0)\cup_{\tau\in\mathcal{T}}5\tau_{0}\subset B_{10}(0). Next, we will partition the frequency ball B10(0)B_{10}(0) into tubes and analyze the contribution of τ𝒯|fτ|2\sum_{\tau\in\mathcal{T}}|f_{\tau}|^{2} on each of the partitions.

For any dyadic number ss with δs10\delta\leq s\leq 10, consider a partition of the annulus 𝐀s:={ξn:s2|ξ|s}{\bf A}_{s}:=\{\xi\in\mathbb{R}^{n}:\frac{s}{2}\leq|\xi|\leq s\} into tubes of dimensions δ××δ×s\delta\times\cdots\times\delta\times s whose central lines pass through the origin. More precisely, we choose a set of maximal δs1\delta s^{-1}-separated points on 𝕊n1\mathbb{S}^{n-1}, denoted by {ωs}\{\omega_{s}\}. For each ωs\omega_{s}, define

θs={ξ:s2|ξ|s,ξ/|ξ|𝕊n1Bδs1(ωs)}.\theta_{s}=\{\xi:\frac{s}{2}\leq|\xi|\leq s,~{}\xi/|\xi|\in\mathbb{S}^{n-1}\cap B_{\delta s^{-1}}(\omega_{s})\}.

Denote the set of these tubes by Θs={θs}\Theta_{s}=\{\theta_{s}\}. One can see that Θs\Theta_{s} forms a finitely overlapping covering of 𝐀s{\bf A}_{s}. Particularly, when s=δs=\delta, we just define Θδ\Theta_{\delta} to consist of a single element θδ={ξn:|ξ|δ}\theta_{\delta}=\{\xi\in\mathbb{R}^{n}:|\xi|\leq\delta\} which is a ball of radius δ\delta centered at the origin.

Next, we will use θsΘs\theta_{s}\in\Theta_{s} to give a partition of 𝒯\mathcal{T}. For each θsΘs\theta_{s}\in\Theta_{s}, define

𝒯θs:={τ𝒯:θs10τ0}.\mathcal{T}_{\theta_{s}}:=\{\tau\in\mathcal{T}:\theta_{s}\cap 10\tau_{0}\neq\emptyset\}.

By some elementary geometries, we can see that {𝒯θs}θsΘs\{\mathcal{T}_{\theta_{s}}\}_{\theta_{s}\in\Theta_{s}} form a finitely overlapping cover of 𝒯\mathcal{T}.

For each θs\theta_{s}, we define θs\theta_{s}^{*} to be the dual slab of θs\theta_{s}. More precisely, θs\theta_{s}^{*} is a slab centered at the origin with dimensions δ1××δ1×s1\delta^{-1}\times\cdots\times\delta^{-1}\times s^{-1} and with the normal direction the same as the direction of θs\theta_{s}.

Now let us start the proof.

Proof.

Denote the square function by g=τ𝒯|fτ|2g=\sum_{\tau\in\mathcal{T}}|f_{\tau}|^{2}. If ξ𝐀s\xi\in{\bf A}_{s}, then

(3.3) |g^(ξ)|2θsΘs|τ𝒯θs(|fτ|2)(ξ)|2.|\widehat{g}(\xi)|^{2}\lesssim\sum_{\theta_{s}\in\Theta_{s}}|\sum_{\tau\in\mathcal{T}_{\theta_{s}}}(|f_{\tau}|^{2})^{\wedge}(\xi)|^{2}.

For each θs\theta_{s}, we choose ηθs\eta_{\theta_{s}} to be a smooth cutoff function at θs\theta_{s} so that ηθs1\eta_{\theta_{s}}\gtrsim 1 in θs\theta_{s} and |ηθs(x)|1|θs|1θs(x)|\eta_{\theta_{s}}^{\vee}(x)|\lesssim\frac{1}{|\theta_{s}^{*}|}1_{\theta_{s}^{*}}(x). Then, we have

(3.4) |g^(ξ)|2θsΘs|ηθs(ξ)τ𝒯θs(|fτ|2)(ξ)|2,|\widehat{g}(\xi)|^{2}\lesssim\sum_{\theta_{s}\in\Theta_{s}}|\eta_{\theta_{s}}(\xi)\sum_{\tau\in\mathcal{T}_{\theta_{s}}}(|f_{\tau}|^{2})^{\wedge}(\xi)|^{2},

for ξ𝐀s\xi\in{\bf A}_{s}.

By Plancherel, we get

(3.5) |g|2δs10θsΘs|ηθsτ𝒯θs|fτ|2|2.\int|g|^{2}\lesssim\int\sum_{\delta\leq s\leq 10}\sum_{\theta_{s}\in\Theta_{s}}|\eta_{\theta_{s}}^{\vee}*\sum_{\tau\in\mathcal{T}_{\theta_{s}}}|f_{\tau}|^{2}|^{2}.

Note that |ηθs(x)|1|θs|1θs(x)|\eta_{\theta_{s}}^{\vee}(x)|\lesssim\frac{1}{|\theta_{s}^{*}|}1_{\theta_{s}^{*}}(x). This suggests us to tile n\mathbb{R}^{n} by translations of θs\theta_{s}^{*}. We denote this cover by {U:Uθs}\{U:U\parallel\theta_{s}^{*}\}. For xUx\in U, we have

|ηθsτ𝒯θs|fτ|2||U|1ηUτ𝒯θs|fτ|2,|\eta_{\theta_{s}}^{\vee}*\sum_{\tau\in\mathcal{T}_{\theta_{s}}}|f_{\tau}|^{2}|\lesssim|U|^{-1}\int\eta_{U}\sum_{\tau\in\mathcal{T}_{\theta_{s}}}|f_{\tau}|^{2},

where ηU(x)=maxyx+θs|ηθs(xy)|\eta_{U}(x)=\max_{y\in x+\theta_{s}^{*}}|\eta_{\theta_{s}}^{\vee}(x-y)| is a smooth bump function supported in 2U2U.

Therefore, one has

(3.6) |g|2δs10θsΘsUθs|U|1(2Uτ𝒯θs|fτ|2)2.\int|g|^{2}\lesssim\sum_{\delta\leq s\leq 10}\sum_{\theta_{s}\in\Theta_{s}}\sum_{U\parallel\theta_{s}^{*}}|U|^{-1}\big{(}\int_{2U}\sum_{\tau\in\mathcal{T}_{\theta_{s}}}|f_{\tau}|^{2}\big{)}^{2}.

By dyadic pigeonholing, there exists an ss such that

(3.7) |g|2logδ1θsΘsUθs|U|1(2Uτ𝒯θs|fτ|2)2.\int|g|^{2}\lesssim\log\delta^{-1}\sum_{\theta_{s}\in\Theta_{s}}\sum_{U\parallel\theta_{s}^{*}}|U|^{-1}\big{(}\int_{2U}\sum_{\tau\in\mathcal{T}_{\theta_{s}}}|f_{\tau}|^{2}\big{)}^{2}.

We remark that this is the only place we lose a logarithmic factor logδ1\log\delta^{-1}.

Now we carefully analyze the integral 2Uτ𝒯θs|fτ|2\int_{2U}\sum_{\tau\in\mathcal{T}_{\theta_{s}}}|f_{\tau}|^{2}. For simplicity, we just write θ\theta for θs\theta_{s} (recall θ\theta is a tube of dimensions δ×δ×s\delta\times\cdots\delta\times s). For each θΘs\theta\in\Theta_{s} of form θ={ξ:s2|ξ|s,ξ/|ξ|𝕊n1Bδs1(ω)},\theta=\{\xi:\frac{s}{2}\leq|\xi|\leq s,\xi/|\xi|\in\mathbb{S}^{n-1}\cap B_{\delta s^{-1}}(\omega)\}, we define another tube

(3.8) ϑ:={ξ:100|ξ|101,ξ/|ξ|𝕊n1B100δs1(ω)}.\vartheta:=\{\xi:100\leq|\xi|\leq 101,\xi/|\xi|\in\mathbb{S}^{n-1}\cap B_{100\delta s^{-1}}(\omega)\}.

This roughly says the radial projection of θ\theta on 𝕊n1\mathbb{S}^{n-1} is contained in that of ϑ\vartheta. From a simple geometric argument, we see that each τ𝒯θ\tau\in\mathcal{T}_{\theta} satisfies τϑ\tau\subset\vartheta. Let 𝚯={ϑ}\boldsymbol{\Theta}=\{\vartheta\} be the collection of these ϑ\vartheta. For each ϑ\vartheta, we choose a smooth bump function ψϑ\psi_{\vartheta} at ϑ\vartheta and then define fϑ:=(ψϑf^)f_{\vartheta}:=(\psi_{\vartheta}\widehat{f}\ )^{\vee}.

By local L2L^{2}-orthogonality (see Lemma 5.3), we have

(3.9) 2Uτ𝒯θs|fτ|2χU|fϑ|2,\int_{2U}\sum_{\tau\in\mathcal{T}_{\theta_{s}}}|f_{\tau}|^{2}\lesssim\int\chi_{U}|f_{\vartheta}|^{2},

where χU\chi_{U} is morally a cutoff function at UU and decay rapidly outside UU. Therefore, by Hölder’s inequality, we have

(3.10) |g|2logδ1θsΘsUθs(χU)2|fϑ|4logδ1θsΘs|fϑ|4.\int|g|^{2}\lesssim\log\delta^{-1}\sum_{\theta_{s}\in\Theta_{s}}\sum_{U\parallel\theta_{s}^{*}}\int(\chi_{U})^{2}|f_{\vartheta}|^{4}\lesssim\log\delta^{-1}\sum_{\theta_{s}\in\Theta_{s}}\int|f_{\vartheta}|^{4}.

Here we use

Uθs(χU)21.\sum_{U\parallel\theta_{s}^{*}}(\chi_{U})^{2}\lesssim 1.

It remains to prove

(3.11) θsΘs|fϑ|4|f|4.\sum_{\theta_{s}\in\Theta_{s}}\int|f_{\vartheta}|^{4}\lesssim\int|f|^{4}.

This is just a result of interpolation between the following two inequalities (or see Lemma 5.4):

(3.12) supθsΘsfϑLfL.\sup_{\theta_{s}\in\Theta_{s}}\|f_{\vartheta}\|_{L^{\infty}}\lesssim\|f\|_{L^{\infty}}.
(3.13) θsΘsfϑL22fL22.\sum_{\theta_{s}\in\Theta_{s}}\|f_{\vartheta}\|_{L^{2}}^{2}\lesssim\|f\|_{L^{2}}^{2}.

4. Proof of the sharp-cutoff version

Let us prove Theorem 1.5. Now each Δj\Delta_{j} is δ\delta-regular, so by definition there is a δ\delta-ball Bj𝕊n1B_{j}\subset\mathbb{S}^{n-1} such that cBjΔjCBjcB_{j}\subset\Delta_{j}\subset CB_{j}. By the disjointness of {Δj}\{\Delta_{j}\}, we see the CδC\delta-balls {CBj}\{CB_{j}\} are finitely overlapping. Without loss of generality, we may assume they are disjoint. (Actually, we can regroup these balls into O(1)O(1) sets so that the CδC\delta-balls in each set are disjoint. Then we prove the estimate for each set and sum them up together.) We can choose smooth bump function 𝟏Bj{\bf{1}}^{*}_{B_{j}} adapted to CBjCB_{j} so that 𝟏Bj=1{\bf{1}}^{*}_{B_{j}}=1 on Δj\Delta_{j}. For any function hh, we define Tjh:=(𝟏Bjh^)T_{j}h:=({\bf{1}}^{*}_{B_{j}}\widehat{h})^{\vee}. By the support condition, we see that Sjf=SjTjfS_{j}f=S_{j}T_{j}f.

By duality, there is a gL2g\in L^{2} with g2=1\|g\|_{2}=1 so that

(4.1) (j|Sjf|2)1/242=nj|Sjf|2g=jn|SjTjf|2g.\Big{\|}\big{(}\sum_{j}|S_{j}f|^{2}\big{)}^{1/2}\Big{\|}_{4}^{2}=\int_{\mathbb{R}^{n}}\sum_{j}|S_{j}f|^{2}g=\sum_{j}\int_{\mathbb{R}^{n}}|S_{j}T_{j}f|^{2}g.

Let us look at the integral n|Sjh|2g\int_{\mathbb{R}^{n}}|S_{j}h|^{2}g, where we will plug in h=Tjfh=T_{j}f later. Recall that Sjh^=𝟏σjh^\widehat{S_{j}h}={\bf{1}}_{\sigma_{j}}\widehat{h}, where σj={ξ:ξ/|ξ|Δj}\sigma_{j}=\{\xi:\xi/|\xi|\in\Delta_{j}\}. We want to express 𝟏σj{\bf{1}}_{\sigma_{j}} in another form. Note that Δj\Delta_{j} is a polyhedron on 𝕊n1\mathbb{S}^{n-1}, so if we denote by 𝒩j={nj}\mathcal{N}_{j}=\{\vec{n}_{j}\} the normals of Δj\Delta_{j} pointing outward, then

𝟏σj=nj𝒩j𝟏{ξnj<0}.{\bf{1}}_{\sigma_{j}}=\prod_{\vec{n}_{j}\in\mathcal{N}_{j}}{\bf{1}}_{\{\xi\cdot\vec{n}_{j}<0\}}.

By the one-dimensional condition (see Definition 1.4), we see that 𝒩:=j𝒩j\mathcal{N}:=\cup_{j}\mathcal{N}_{j} is contained in O(1)O(1) many great circles. Define the following maximal functions

(4.2) Mng(x):=supt>012tx+[t,t]n|g|,\displaystyle M_{\vec{n}}g(x):=\sup_{t>0}\frac{1}{2t}\int_{x+[-t,t]\vec{n}}|g|,
(4.3) Ms,ng(x):=\displaystyle M_{s,\vec{n}}g(x):= Mn((Mn|g|s)1/s),Msg(x):=supn𝒩Ms,ng.\displaystyle M_{\vec{n}}\big{(}(M_{\vec{n}}|g|^{s})^{1/s}\big{)},\ \ \ M_{s}g(x):=\sup_{\vec{n}\in\mathcal{N}}M_{s,\vec{n}}g.

Here s>1s>1. We see that MsM_{s} is actually a maximal operator associated to one-dimensional directions.

We may assume 𝒩\mathcal{N} is contained in one great circle and by rotation we may assume 𝒩\mathcal{N} lie in the (ξ1,ξ2)(\xi_{1},\xi_{2})-plane, i.e., 𝒩{ξ𝕊n1:ξ12+ξ22=1}\mathcal{N}\subset\{\xi\in\mathbb{S}^{n-1}:\xi_{1}^{2}+\xi_{2}^{2}=1\}. Denote x=(x1,x2,x)x=(x_{1},x_{2},x^{\prime}), where xn2x^{\prime}\in\mathbb{R}^{n-2}. We write

(4.4) n|Sjh|2g=n22|Sjh(x1,x2,x)|2g(x1,x2,x)𝑑x1𝑑x2𝑑x\displaystyle\int_{\mathbb{R}^{n}}|S_{j}h|^{2}g=\int_{\mathbb{R}^{n-2}}\int_{\mathbb{R}^{2}}|S_{j}h(x_{1},x_{2},x^{\prime})|^{2}g(x_{1},x_{2},x^{\prime})dx_{1}dx_{2}dx^{\prime}
(4.5) =n22|K(x1,x2)h(x1,x2,x)|2g(x1,x2,x)𝑑x1𝑑x2𝑑x.\displaystyle=\int_{\mathbb{R}^{n-2}}\int_{\mathbb{R}^{2}}|K(x_{1},x_{2})*h(x_{1},x_{2},x^{\prime})|^{2}g(x_{1},x_{2},x^{\prime})dx_{1}dx_{2}dx^{\prime}.

Here K(x1,x2)=(nj𝒩j𝟏{ξnj<0})K(x_{1},x_{2})=(\prod_{\vec{n}_{j}\in\mathcal{N}_{j}}{\bf{1}}_{\{\xi\cdot\vec{n}_{j}<0\}})^{\vee} is some kernel depending only on x1,x2x_{1},x_{2}.

By iterating the weighted estimate of Córdoba-Fefferman [CF76], we have for each s>1s>1 the following estimate:

(4.6) 2|K(x1,x2)h(x1,x2,x)|2g(x1,x2,x)𝑑x1𝑑x2\displaystyle\int_{\mathbb{R}^{2}}|K(x_{1},x_{2})*h(x_{1},x_{2},x^{\prime})|^{2}g(x_{1},x_{2},x^{\prime})dx_{1}dx_{2}
(4.7) 2|h|2Ms,nj,1Ms,nj,mj|g|.\displaystyle\lesssim\int_{\mathbb{R}^{2}}|h|^{2}M_{s,\vec{n}_{j,1}}\circ\cdots\circ M_{s,\vec{n}_{j,m_{j}}}|g|.

Here 𝒩j={nj,1,,nj,mj}\mathcal{N}_{j}=\{\vec{n}_{j,1},\cdots,\vec{n}_{j,m_{j}}\}. We assume mjmm_{j}\leq m which is a bounded number, so the above inequality is bounded by

(4.8) 2|h|2Ms(m)|g|,\int_{\mathbb{R}^{2}}|h|^{2}M_{s}^{(m)}|g|,

where Ms(m)M_{s}^{(m)} is the composition of MsM_{s} by mm times. We obtain

n|Sjh|2gn|h|2Ms(m)|g|.\int_{\mathbb{R}^{n}}|S_{j}h|^{2}g\lesssim\int_{\mathbb{R}^{n}}|h|^{2}M_{s}^{(m)}|g|.

Plugging back to (4.1), we have

(4.9) (j|Sjf|2)1/242nj|Tjf|2Ms(m)|g|\displaystyle\Big{\|}\big{(}\sum_{j}|S_{j}f|^{2}\big{)}^{1/2}\Big{\|}_{4}^{2}\lesssim\int_{\mathbb{R}^{n}}\sum_{j}|T_{j}f|^{2}M_{s}^{(m)}|g|
(4.10) (j|Tjf|2)1/242(Ms(m)|g|)1/s2.\displaystyle\leq\Big{\|}\big{(}\sum_{j}|T_{j}f|^{2}\big{)}^{1/2}\Big{\|}_{4}^{2}\|(M_{s}^{(m)}|g|)^{1/s}\|_{2}.

Since Ms(m)M_{s}^{(m)} is essentially a maximal operator in the plane, we can use the two-dimensional maximal estimate (see for example in [Kat99]) and choose ss very close to 11 to get Ms(m)|g|2εδεg2\big{\|}M_{s}^{(m)}|g|\big{\|}_{2}\lesssim_{\varepsilon}\delta^{-\varepsilon}\|g\|_{2}. This gives

(4.11) (j|Sjf|2)1/242εδε(j|Tjf|2)1/242.\Big{\|}\big{(}\sum_{j}|S_{j}f|^{2}\big{)}^{1/2}\Big{\|}_{4}^{2}\lesssim_{\varepsilon}\delta^{-\varepsilon}\Big{\|}\big{(}\sum_{j}|T_{j}f|^{2}\big{)}^{1/2}\Big{\|}_{4}^{2}.

This boils down to the smooth version that we have already proved in Section 3.

5. L8L^{8} square function estimate for the cone

We prove Theorem 1.9 and Theorem 1.11 in this section. Via a global-to-local reduction that is similar to the one in Section 2, we see that Theorem 1.11 is a corollary of Theorem 1.9. Hence we will focus on the proof of Theorem 1.9. Let us begin with some elementary tools.

5.1. Some elementary estimates

Let R3R\subset\mathbb{R}^{3} be a rectangle of dimensions a1×a2×a3a_{1}\times a_{2}\times a_{3}. We will use RR^{*} to denote the dual rectangle of RR, namely RR^{*} is the rectangle centered at the origin of dimensions a11×a21×a31a_{1}^{-1}\times a_{2}^{-1}\times a_{3}^{-1}. Also we make the convention that if RR lies in the physical space x3\mathbb{R}^{3}_{x} then RR^{*} lies in the frequency space ξ3\mathbb{R}^{3}_{\xi} and vice versa.

Sometimes we will use the notation that a function φ\varphi is a smooth bump function adapted to RR. What follows is its precise definition.

Definition 5.1.

Let Rξ3R\subset\mathbb{R}^{3}_{\xi} be a rectangle of dimensions a1×a2×a3a_{1}\times a_{2}\times a_{3} and let (𝐞1,𝐞2,𝐞3)(\boldsymbol{e}_{1},\boldsymbol{e}_{2},\boldsymbol{e}_{3}) be the corresponding directions. Denote by ξR\xi_{R} the center of RR and write ξ\xi in the coordinate (𝐞1,𝐞2,𝐞3)(\boldsymbol{e}_{1},\boldsymbol{e}_{2},\boldsymbol{e}_{3}) as (ξ1,ξ2,ξ3)(\xi_{1},\xi_{2},\xi_{3}). We say φ\varphi is “a smooth bump function adapted” to RR, if suppφ2R{\rm{supp}}\varphi\subset 2R, φ=1\varphi=1 on RR and φ\varphi satisfies the following derivative estimate

(5.1) |D𝒆ikφ(ξR+ξ)|k(1+|ξi|ai)k,|D^{k}_{\boldsymbol{e}_{i}}\varphi(\xi_{R}+\xi)|\lesssim_{k}(1+\frac{|\xi_{i}|}{a_{i}})^{-k},

for i=1,2,3i=1,2,3 and any k>0k>0.

Following the notation in the definition above, if φ\varphi is a smooth bump function adapted to RR, then

(5.2) |φ(x)|k1|R|(1+a|x1|+b|x2|+c|x3|)k.|\varphi^{\vee}(x)|\lesssim_{k}\frac{1}{|R^{*}|}(1+a|x_{1}|+b|x_{2}|+c|x_{3}|)^{-k}.

This roughly says |φ|1|R|𝟏R|\varphi^{\vee}|\approx\frac{1}{|R^{*}|}{\bf{1}}_{R^{*}}, which suggests us to define the following indicator function with rapidly decaying tail.

Definition 5.2.

Let RR be a rectangle and A:33A:\mathbb{R}^{3}\rightarrow\mathbb{R}^{3} be the linear map such that A([1,1]3)=RA([-1,1]^{3})=R. We define

(5.3) χR(x):=(1+|A1x|)109.\chi_{R}(x):=(1+|A^{-1}x|)^{-10^{9}}.

We call χR\chi_{R} the indicator function of RR with rapidly decaying tail.

The definitions above also work in n\mathbb{R}^{n}. Now let us state a weighted L2L^{2}-estimate. For its proof, see [Cór82] or Lemma 2.3 in [GJW21].

Lemma 5.3.

Let {R}\{R\} be a set of finitely overlapping congruent rectangles in ξn\mathbb{R}^{n}_{\xi}, and let {φR(ξ)}R\{\varphi_{R}(\xi)\}_{R} be the smooth bump functions adapted to them. Then

(5.4) nR|(φRf^)|2gn|f|2(1|R|χR|g|).\int_{\mathbb{R}^{n}}\sum_{R}|(\varphi_{R}\widehat{f})^{\vee}|^{2}g\lesssim\int_{\mathbb{R}^{n}}|f|^{2}(\frac{1}{|R^{*}|}\chi_{R^{*}}*|g|).

There is another useful lemma.

Lemma 5.4.

Let {R}\{R\} be a set of finitely overlapping rectangles in ξn\mathbb{R}^{n}_{\xi}, and let {φR(ξ)}R\{\varphi_{R}(\xi)\}_{R} be the smooth bump functions adapted to them. Then

(5.5) nR|(φRf^)|ppn|f|p,\int_{\mathbb{R}^{n}}\sum_{R}|(\varphi_{R}\widehat{f})^{\vee}|^{p}\lesssim_{p}\int_{\mathbb{R}^{n}}|f|^{p},

for 2p2\leq p\leq\infty.

Lemma 5.4 follows from interpolation between p=2p=2 and p=p=\infty. We also have the local version of Lemma 5.4.

Lemma 5.5.

Let {R}\{R\} be a set of finitely overlapping congruent rectangles in ξn\mathbb{R}^{n}_{\xi}, and let {φR(ξ)}R\{\varphi_{R}(\xi)\}_{R} be the smooth bump functions adapted to them. If UxnU\subset\mathbb{R}^{n}_{x} is a rectangle whose translation to the origin contains all the dual rectangles RR^{*}, then we have the following estimate:

(5.6) χUR|(φRf^)|ppχU|f|p,\int\chi_{U}\sum_{R}|(\varphi_{R}\widehat{f})^{\vee}|^{p}\lesssim_{p}\int\chi_{U}|f|^{p},

for 2p2\leq p\leq\infty.

Again, the proof is by interpolation between p=2p=2 and p=p=\infty. The case p=p=\infty is easy, let us focus on p=2p=2. We may assume UU is centered at the origin. Since RUR^{*}\subset U, we can partition each RR into smaller rectangles that are comparable to UU^{*}. Denote the set of all the smaller rectangles coming from the partition by {ω}\{\omega\}. By local orthogonality, we have

χUR|(φRf^)|2χUω|(φωf^)|2,\int\chi_{U}\sum_{R}|(\varphi_{R}\widehat{f})^{\vee}|^{2}\lesssim\int\chi_{U}\sum_{\omega}|(\varphi_{\omega}\widehat{f})^{\vee}|^{2},

where φω\varphi_{\omega} are smooth bump functions adapted to ω\omega. Together with Lemma 5.3 and the fact that 1|U|χUχUχU\frac{1}{|U|}\chi_{U}*\chi_{U}\lesssim\chi_{U}, we prove the result.

Remark 5.6.

From the point of view of the so-called “locally constant property”, the lemmas above are obvious, but we still state them carefully for rigorousness.

5.2. The cutoff replacing property

Let R,Rξ3R,R^{\prime}\subset\mathbb{R}^{3}_{\xi} be two rectangles and φR,φR\varphi_{R},\varphi_{R^{\prime}} be smooth bump functions adapted to them. If suppf^RR{\rm{supp}}\widehat{f}\subset R\cap R^{\prime}, then (φRf^)=(φRf^)(\varphi_{R}\widehat{f})^{\vee}=(\varphi_{R^{\prime}}\widehat{f})^{\vee}. In this case, we replace the cutoff φR\varphi_{R} by φR\varphi_{R^{\prime}}, so we call it the cutoff replacing property.

When suppf^{\rm{supp}}\widehat{f} is not contained in RRR\cap R^{\prime}, we can still have the cutoff replacing property by choosing φR,φR\varphi_{R},\varphi_{R^{\prime}} carefully. In the following, we discuss the case that we need in the paper. Let R=[a,a]×[b,b]×[c,c],R=[a,a]×[b,b]×[c,c]R=[-a,a]\times[-b,b]\times[-c,c],R^{\prime}=[-a,a]\times[-b,b]\times[-c^{\prime},c^{\prime}] be two rectangles with a>b>c>ca>b>c^{\prime}>c in the frequency space ξ3\mathbb{R}^{3}_{\xi}. Let ff be a function in x3\mathbb{R}^{3}_{x} so that suppf^ξ3{|ξ1|a,|ξ2|b,|ξ3|>c}{\rm{supp}}\widehat{f}\subset\mathbb{R}^{3}_{\xi}\setminus\{|\xi_{1}|\leq a,|\xi_{2}|\leq b,|\xi_{3}|>c\}. We see that suppf^{\rm{supp}}\widehat{f} is not contained in RRR\cap R^{\prime}, but we can still construct the smooth bump functions to satisfy the property.

Choose φ(ξ1,ξ2)\varphi(\xi_{1},\xi_{2}) to be a smooth bump function adapted to [a,a]×[b,b][-a,a]\times[-b,b]. Choose ρ(ξ3)\rho(\xi_{3}) to be a smooth bump function adapted to [c,c][-c,c], then ρ(ccξ3)\rho(\frac{c}{c^{\prime}}\xi_{3}) is a smooth bump function adapted to [c,c][-c^{\prime},c^{\prime}]. If we set 𝟏R=φ(ξ1,ξ2)ρ(ξ3){\bf{1}}^{*}_{R}=\varphi(\xi_{1},\xi_{2})\rho(\xi_{3}) and 𝟏R=φ(ξ1,ξ2)ρ(ccξ3){\bf{1}}^{*}_{R^{\prime}}=\varphi(\xi_{1},\xi_{2})\rho(\frac{c}{c^{\prime}}\xi_{3}), we see that 𝟏R,𝟏R{\bf{1}}^{*}_{R},{\bf{1}}^{*}_{R^{\prime}} are adapted to R,RR,R^{\prime}, and 𝟏R=𝟏R{\bf{1}}^{*}_{R}={\bf{1}}^{*}_{R^{\prime}} on ξ3{|ξ1|a,|ξ2|b,|ξ3|>c}\mathbb{R}^{3}_{\xi}\setminus\{|\xi_{1}|\leq a,|\xi_{2}|\leq b,|\xi_{3}|>c\} which contains suppf^{\rm{supp}}\widehat{f}. So, we have (𝟏Rf^)=(𝟏Rf^)({\bf{1}}^{*}_{R}\widehat{f})^{\vee}=({\bf{1}}^{*}_{R^{\prime}}\widehat{f})^{\vee}.

Let us discuss how it works in our proof. Let τ\tau be a δ×δ1/2×1\delta\times\delta^{1/2}\times 1-plank in Nδ(Γ)N_{\delta}(\Gamma) and let ω\omega be a γ1δ×δ1/2×1\gamma^{-1}\delta\times\delta^{1/2}\times 1-plank which is the γ1\gamma^{-1}-dilation of τ\tau in the shortest direction (here γ<1\gamma<1). Our function ff satisfies suppf^Nδ(Γ){\rm{supp}}\widehat{f}\subset N_{\delta}(\Gamma), so it also satisfies a similar condition discussed above after rotation. So, we can find 𝟏τ{\bf{1}}^{*}_{\tau} adapted to τ\tau and 𝟏ω{\bf{1}}^{*}_{\omega} adapted to ω\omega such that (𝟏τf^)=(𝟏ωf^)({\bf{1}}^{*}_{\tau}\widehat{f})^{\vee}=({\bf{1}}^{*}_{\omega}\widehat{f})^{\vee}.

Remark 5.7.

The reason we want to change the cutoff is that we want to apply Lemma 5.3 and Lemma 5.5.

5.3. A general version of square function

We start the proof of Theorem 1.9. Recall that Γ={ξ3:ξ12+ξ22=ξ32,1/2|ξ3|1}\Gamma=\{\xi\in\mathbb{R}^{3}:\xi_{1}^{2}+\xi_{2}^{2}=\xi_{3}^{2},1/2\leq|\xi_{3}|\leq 1\}, and Nδ(Γ)N_{\delta}(\Gamma) is its δ\delta-neighborhood. There is a canonical covering of Nδ(Γ)N_{\delta}(\Gamma) using finitely overlapping planks τ\tau of dimensions δ×δ1/2×1\sim\delta\times\delta^{1/2}\times 1, denoted by 𝒯={τ}\mathcal{T}=\{\tau\}. For each τ𝒯\tau\in\mathcal{T}, choose a smooth bump function 𝟏τ{\bf{1}}^{*}_{\tau} adapted to τ\tau. Define fτ:=(𝟏τf^)f_{\tau}:=({\bf{1}}^{*}_{\tau}\widehat{f}\ )^{\vee} as usual.

To prove the theorem, we need to state the estimate in a more technical way. Fix a dyadic parameter δ1/2γ1\delta^{1/2}\leq\gamma\leq 1. For each τ𝒯\tau\in\mathcal{T}, we partition it into planks of dimensions δ×δ1/2×γ\delta\times\delta^{1/2}\times\gamma along the longest side of τ\tau (see Figure 1). Denote the collection of these sub-planks of τ\tau by Θγ(τ)\Theta_{\gamma}(\tau). For each θΘγ(τ)\theta\in\Theta_{\gamma}(\tau), there is a smooth cutoff function 𝟏θ{\bf{1}}^{*}_{\theta} adapted to θ\theta and meanwhile we have 𝟏τ=θΘγ(τ)𝟏θ{\bf{1}}^{*}_{\tau}=\sum_{\theta\in\Theta_{\gamma}(\tau)}{\bf{1}}^{*}_{\theta}. We define fθ=(𝟏θf^)f_{\theta}=({\bf{1}}^{*}_{\theta}\widehat{f}\ )^{\vee}, then fτ=θΘγ(τ)fθf_{\tau}=\sum_{\theta\in\Theta_{\gamma}(\tau)}f_{\theta}. Set Θγ=τ𝒯Θγ(τ)\Theta_{\gamma}=\cup_{\tau\in\mathcal{T}}\Theta_{\gamma}(\tau) be the set of all these planks.

θ\thetaτ\tauθδ×δ1/2×γ\theta\sim\delta\times\delta^{1/2}\times\gamma
Figure 1. Finer partition

We will prove the following general version of the square function estimate.

Theorem 5.8.

Assuming f^Nδ(Γ)\widehat{f}\subset N_{\delta}(\Gamma), then for any ε>0\varepsilon>0 we have

(5.7) (θΘγ|fθ|2)1/2L8(3)Cε(γδ1)εfL8(3).\bigg{\|}(\sum_{\theta\in\Theta_{\gamma}}|f_{\theta}|^{2})^{1/2}\bigg{\|}_{L^{8}(\mathbb{R}^{3})}\leq C_{\varepsilon}(\gamma\delta^{-1})^{\varepsilon}\|f\|_{L^{8}(\mathbb{R}^{3})}.
Proof.

We prove by induction on γ\gamma. The base case is when γ=δ1/2\gamma=\delta^{1/2}. For each θΘδ1/2\theta\in\Theta_{\delta^{1/2}}, there is a cube QθQ_{\theta} of side length δ1/2\delta^{1/2} such that θQθ\theta\subset Q_{\theta}. By the cutoff replacing property in Section 5.2, we can choose a smooth bump function 𝟏Qθ{\bf{1}}^{*}_{Q_{\theta}} adapted to QθQ_{\theta} so that 𝟏θf^=𝟏Qθf^{\bf{1}}^{*}_{\theta}\widehat{f}={\bf{1}}^{*}_{Q_{\theta}}\widehat{f}. Via the Littlewood-Paley theory for congruent cubes (see [RdF85] or [Lac07]), we obtain

(5.8) (θΘδ1/2|fθ|2)1/2Lp(3)fLp(3)\bigg{\|}(\sum_{\theta\in\Theta_{\delta^{1/2}}}|f_{\theta}|^{2})^{1/2}\bigg{\|}_{L^{p}(\mathbb{R}^{3})}\lesssim\|f\|_{L^{p}(\mathbb{R}^{3})}

for any 1<p<1<p<\infty, which in particular implies (5.7) when γ=δ1/2\gamma=\delta^{1/2}.

Assuming (5.7) is proved for γγ0/2\gamma\leq\gamma_{0}/2, we are going to look at the case γ=γ0\gamma=\gamma_{0}. We suggest the reader to pretend γ0=1\gamma_{0}=1 for the first time of reading. For simplicity, we will omit the subscript γ\gamma and write Θγ\Theta_{\gamma} (or Θγ(τ)\Theta_{\gamma}(\tau)) as Θ\Theta (or Θ(τ)\Theta(\tau)). For each τ𝒯\tau\in\mathcal{T}, define the square function

(5.9) gτ:=θΘ(τ)|fθ|2.g_{\tau}:=\sum_{\theta\in\Theta(\tau)}|f_{\theta}|^{2}.

Each term in the summation has Fourier transform supported in θθ\theta-\theta which is roughly the translation of θ\theta to the origin. Note that all the θΘ(τ)\theta\in\Theta(\tau) are roughly a translation of each other, so there is a plank of dimensions δ×δ1/2×γ\sim\delta\times\delta^{1/2}\times\gamma centered at the origin such that θθ\theta-\theta is contained in this plank for any θΘ(τ)\theta\in\Theta(\tau). We denote this plank by θτ\theta_{\tau}. Now we obtain functions {gτ}τ𝒯\{g_{\tau}\}_{\tau\in\mathcal{T}} and planks {θτ}τ𝒯\{\theta_{\tau}\}_{\tau\in\mathcal{T}} with suppg^τθτ{\rm{supp}}\widehat{g}_{\tau}\subset\theta_{\tau}. We also see that

θΘ|fθ|2=τgτ.\sum_{\theta\in\Theta}|f_{\theta}|^{2}=\sum_{\tau}g_{\tau}.

Our goal is to estimate 3|τgτ|4\int_{\mathbb{R}^{3}}|\sum_{\tau}g_{\tau}|^{4}.

Next, we will do a high-low frequency decomposition for each gτg_{\tau}. Fix a large enough constant KK which is to be determined later. Note that θτ\theta_{\tau} is a plank of dimensions δ×δ1/2×γ\delta\times\delta^{1/2}\times\gamma centered at the origin. Define another plank which we call the “low plank” as: θτ,low:=θτBCK1γ(0)\theta_{\tau,low}:=\theta_{\tau}\cap B_{CK^{-1}\gamma}(0). Roughly speaking, θτ,low\theta_{\tau,low} is the portion of θτ\theta_{\tau} that is centered at the origin and has dimensions δ×δ1/2×K1γ\delta\times\delta^{1/2}\times K^{-1}\gamma. Choose a smooth bump function 𝟏θτ{\bf{1}}^{*}_{\theta_{\tau}} adapted to θτ\theta_{\tau} and a smooth bump function 𝟏θτ,low{\bf{1}}^{*}_{\theta_{\tau,low}} adapted θτ,low\theta_{\tau,low}. Define

(5.10) gτ,low:=(𝟏θτ,lowg^τ),gτ,high:=((𝟏θτ𝟏θτ,low)g^τ).g_{\tau,low}:=({\bf{1}}^{*}_{\theta_{\tau,low}}\widehat{g}_{\tau})^{\vee},\ \ \ g_{\tau,high}:=\big{(}({\bf{1}}^{*}_{\theta_{\tau}}-{\bf{1}}^{*}_{\theta_{\tau,low}})\widehat{g}_{\tau}\big{)}^{\vee}.

Since suppg^τθτ{\rm{supp}}\widehat{g}_{\tau}\subset\theta_{\tau}, we have

gτ,low+gτ,high=(𝟏θτg^τ)=gτ.g_{\tau,low}+g_{\tau,high}=({\bf{1}}^{*}_{\theta_{\tau}}\widehat{g}_{\tau})^{\vee}=g_{\tau}.

By triangle inequality, we have

(5.11) 3|τgτ|43|τgτ,low|4+3|τgτ,high|4.\int_{\mathbb{R}^{3}}|\sum_{\tau}g_{\tau}|^{4}\lesssim\int_{\mathbb{R}^{3}}|\sum_{\tau}g_{\tau,low}|^{4}+\int_{\mathbb{R}^{3}}|\sum_{\tau}g_{\tau,high}|^{4}.

We call the two terms on the right hand side above low term and high term. We consider them separately.

Estimate for the low term: For each θΘ\theta\in\Theta, we cover it by finitely overlapping planks of dimensions δ×δ1/2×K1γ\delta\times\delta^{1/2}\times K^{-1}\gamma, denoted by {θ}\{\theta^{\prime}\}. We use “θ<θ\theta^{\prime}<\theta” to indicate that θ\theta^{\prime} comes from the covering of θ\theta. One observation is that: if θΘ(τ)\theta\in\Theta(\tau) and θ<θ\theta^{\prime}<\theta, then θ\theta^{\prime} is roughly a translation of θτ,low\theta_{\tau,low}. For fixed θ\theta and {θ}θ<θ\{\theta^{\prime}\}_{\theta^{\prime}<\theta}, we choose smooth functions {𝟏θ}θ<θ\{{\bf{1}}^{*}_{\theta^{\prime}}\}_{\theta^{\prime}<\theta} so that each 𝟏θ{\bf{1}}^{*}_{\theta^{\prime}} is a smooth bump function adapted to θ\theta^{\prime} and

(5.12) 𝟏θ=θ<θ𝟏θ{\bf{1}}^{*}_{\theta}=\sum_{\theta^{\prime}<\theta}{\bf{1}}^{*}_{\theta^{\prime}}

on Nδ(Γ)N_{\delta}(\Gamma).

As usual, we define fθ:=(𝟏θf^)f_{\theta^{\prime}}:=({\bf{1}}^{*}_{\theta^{\prime}}\widehat{f}\ )^{\vee}. Since suppf^Nδ(Γ){\rm{supp}}\widehat{f}\subset N_{\delta}(\Gamma), we have

(5.13) fθ=θ<θfθ.f_{\theta}=\sum_{\theta^{\prime}<\theta}f_{\theta^{\prime}}.

Let us look at the low term. By definition,

(5.14) g^τ,low=𝟏θτ,lowθΘ(τ)|fθ|2^=𝟏θτ,lowθΘ(τ)(|θ<θfθ|2)\displaystyle\widehat{g}_{\tau,low}={\bf{1}}^{*}_{\theta_{\tau,low}}\sum_{\theta\in\Theta(\tau)}\widehat{|f_{\theta}|^{2}}={\bf{1}}^{*}_{\theta_{\tau,low}}\sum_{\theta\in\Theta(\tau)}\big{(}|\sum_{\theta^{\prime}<\theta}f_{\theta^{\prime}}|^{2}\big{)}^{\wedge}
(5.15) =𝟏θτ,lowθΘ(τ)θ1,θ2<θf^θ1fθ2¯^.\displaystyle={\bf{1}}^{*}_{\theta_{\tau,low}}\sum_{\theta\in\Theta(\tau)}\sum_{\theta_{1}^{\prime},\theta_{2}^{\prime}<\theta}\widehat{f}_{\theta_{1}^{\prime}}*\widehat{\overline{f_{\theta_{2}^{\prime}}}}.

Note that supp(𝟏θτ,lowf^θ1fθ2¯^){\rm{supp}}({\bf{1}}^{*}_{\theta_{\tau},low}\cdot\widehat{f}_{\theta_{1}^{\prime}}*\widehat{\overline{f_{\theta_{2}^{\prime}}}}) is contained in θτ(θ1θ2)\theta_{\tau}\cap(\theta_{1}^{\prime}-\theta_{2}^{\prime}), so 𝟏θτ,lowf^θ1fθ2¯^{\bf{1}}^{*}_{\theta_{\tau},low}\cdot\widehat{f}_{\theta_{1}^{\prime}}*\widehat{\overline{f_{\theta_{2}^{\prime}}}} is nonzero only when θ1\theta_{1}^{\prime} and θ2\theta_{2}^{\prime} are roughly adjacent. We use θ2θ1\theta_{2}^{\prime}\sim\theta_{1}^{\prime} to denote that θ2\theta_{2}^{\prime} and θ1\theta_{1}^{\prime} are adjacent. As a result, we have

(5.16) g^τ,low=𝟏θτ,lowθΘ(τ)(θ1<θθ2θ1fθ1fθ2¯).\widehat{g}_{\tau,low}={\bf{1}}^{*}_{\theta_{\tau,low}}\sum_{\theta\in\Theta(\tau)}\big{(}\sum_{\theta^{\prime}_{1}<\theta}\sum_{\theta_{2}^{\prime}\sim\theta_{1}^{\prime}}f_{\theta_{1}^{\prime}}\overline{f_{\theta_{2}^{\prime}}}\big{)}^{\wedge}.

So, we have

(5.17) gτ,low\displaystyle g_{\tau,low} =(𝟏θτ,low)θΘ(τ)θ1<θθ2θ1fθ1fθ2¯\displaystyle=({\bf{1}}^{*}_{\theta_{\tau,low}})^{\vee}*\sum_{\theta\in\Theta(\tau)}\sum_{\theta^{\prime}_{1}<\theta}\sum_{\theta_{2}^{\prime}\sim\theta_{1}^{\prime}}f_{\theta_{1}^{\prime}}\overline{f_{\theta_{2}^{\prime}}}
(5.18) |(𝟏θτ,low)|θΘ(τ)θ<θ|fθ|2\displaystyle\lesssim|({\bf{1}}^{*}_{\theta_{\tau,low}})^{\vee}|*\sum_{\theta\in\Theta(\tau)}\sum_{\theta^{\prime}<\theta}|f_{\theta^{\prime}}|^{2}
(5.19) 1|θτ,low|χθτ,lowθΘ(τ)θ<θ|fθ|2.\displaystyle\lesssim\frac{1}{|\theta_{\tau,low}^{*}|}\chi_{\theta_{\tau,low}^{*}}*\sum_{\theta\in\Theta(\tau)}\sum_{\theta^{\prime}<\theta}|f_{\theta^{\prime}}|^{2}.

where the second-last inequality is by the fact that for each θ1\theta_{1}^{\prime} there are O(1)O(1) many θ2\theta_{2}^{\prime} adjacent to θ1\theta_{1}^{\prime}.

Since suppf^θθ{\rm{supp}}\widehat{f}_{\theta^{\prime}}\subset\theta^{\prime}, we have |fθ|2|f_{\theta^{\prime}}|^{2} is locally constant on any translation of θ\theta^{\prime*}. Also noting that θτ,low\theta_{\tau,low}^{*} and θ\theta^{\prime*} are roughly the same, we have |fθ||f_{\theta^{\prime}}| is locally constant on any translation of θτ,low\theta_{\tau,low}^{*}. So, we actually have

(5.20) (5.19)θΘ(τ)θ<θ|fθ|2=θΘγK1|fθ|2.\eqref{localconst}\approx\sum_{\theta\in\Theta(\tau)}\sum_{\theta^{\prime}<\theta}|f_{\theta^{\prime}}|^{2}=\sum_{\theta^{\prime}\in\Theta_{\gamma K^{-1}}}|f_{\theta^{\prime}}|^{2}.

By induction hypothesis, we have the following estimate for the low term.

(5.21) 3|τgτ,low|4=3(θΘγK1|fθ|2)4(Cε(γK1δ1)εfL8)8.\int_{\mathbb{R}^{3}}|\sum_{\tau}g_{\tau,low}|^{4}=\int_{\mathbb{R}^{3}}(\sum_{\theta\in\Theta_{\gamma K^{-1}}}|f_{\theta^{\prime}}|^{2})^{4}\leq\big{(}C_{\varepsilon}(\gamma K^{-1}\delta^{-1})^{\varepsilon}\|f\|_{L^{8}}\big{)}^{8}.

Estimate for the high term: We consider the truncated cone

(5.22) Γγ:={ξ3:ξ12+ξ22=ξ32,γ/K|ξ3|γ},\Gamma_{\gamma}:=\{\xi\in\mathbb{R}^{3}:\xi_{1}^{2}+\xi_{2}^{2}=\xi_{3}^{2},\gamma/K\leq|\xi_{3}|\leq\gamma\},

and its Cγ1δC\gamma^{-1}\delta-neighborhood NCγ1δΓγN_{C\gamma^{-1}\delta}\Gamma_{\gamma}. For simplicity, we will omit the constant CC and just write as Nγ1δΓγN_{\gamma^{-1}\delta}\Gamma_{\gamma}. By definition, the support of g^τ,high\widehat{g}_{\tau,high} is contained in θτθτ,low\theta_{\tau}\setminus\theta_{\tau,low} which consists of two planks symmetric with respect to the origin and of dimensions δ×δ1/2×γ\delta\times\delta^{1/2}\times\gamma. We denote them by θτθτ,low=θτ,high+θτ,high\theta_{\tau}\setminus\theta_{\tau,low}=\theta_{\tau,high}^{+}\cup\theta_{\tau,high}^{-}, where θτ,high+\theta_{\tau,high}^{+} lies in {ξ3>0}\{\xi_{3}>0\} and θτ,high\theta_{\tau,high}^{-} lies in {ξ3<0}\{\xi_{3}<0\}. By a simple geometry, we see that suppg^τ,highNγ1δΓγ{\rm{supp}}\widehat{g}_{\tau,high}\subset N_{\gamma^{-1}\delta}\Gamma_{\gamma}. We choose a finitely overlapping covering of Nγ1δΓγN_{\gamma^{-1}\delta}\Gamma_{\gamma} by γ1δ×δ1/2×γ\gamma^{-1}\delta\times\delta^{1/2}\times\gamma-planks ω\omega, denoted by:

Nγ1δΓγ=ω.N_{\gamma^{-1}\delta}\Gamma_{\gamma}=\bigcup\omega.

For each g^τ,high\widehat{g}_{\tau,high}, there exists ω\omega such that θτ,high+θτ,highωωre\theta_{\tau,high}^{+}\cup\theta_{\tau,high}^{-}\subset\omega\cup\omega_{re} and hence suppg^τ,highωωre{\rm{supp}}\widehat{g}_{\tau,high}\subset\omega\cup\omega_{re}. Here ωre={ξ:ξω}\omega_{re}=\{-\xi:\xi\in\omega\} denotes the reflection of ω\omega with respect to the origin. We associate τ\tau to ω\omega (if there are multiple choices, we choose one). The reader can also check each suppg^τ,high{\rm{supp}}\widehat{g}_{\tau,high} can intersect a bounded number of sets from {ωωre}ω\{\omega\cup\omega_{re}\}_{\omega}. The relation between ω\omega and θτ,high+\theta_{\tau,high}^{+} is given in Figure 2.

θτ2,high+\theta_{\tau_{2},high}^{+}θτ1,high+\theta_{\tau_{1},high}^{+}ω\omega
Figure 2. Relation between θτ,high+\theta_{\tau,high}^{+} and ω\omega
Remark 5.9.

It’s not harmful to the proof if we ignore θτ,high\theta_{\tau,high}^{-} (the other end of θτθτ,low\theta_{\tau}\setminus\theta_{\tau,low}) and think of suppg^τ,highθτ,high+{\rm{supp}}\widehat{g}_{\tau,high}\subset\theta_{\tau,high}^{+}. It’s convenient to assume all the ω\omega lie in the upper half space {ξ3>0}\{\xi_{3}>0\}.

Define 𝒯(ω)\mathcal{T}(\omega) to be the set of τ\tau’s that are associated to ω\omega. For each ω\omega, we define our function

(5.23) hω:=τ𝒯(ω)gτ,high.h_{\omega}:=\sum_{\tau\in\mathcal{T}(\omega)}g_{\tau,high}.

We see that supph^ωωωre{\rm{supp}}\widehat{h}_{\omega}\subset\omega\cup\omega_{re}. We have

(5.24) 3|τgτ,high|4=3|ωhω|4.\int_{\mathbb{R}^{3}}|\sum_{\tau}g_{\tau,high}|^{4}=\int_{\mathbb{R}^{3}}|\sum_{\omega}h_{\omega}|^{4}.

By rescaling of the factor γ1\gamma^{-1} in all directions, we see that Nγ1δΓγN_{\gamma^{-1}\delta}\Gamma_{\gamma} becomes Nγ2δΓ1N_{\gamma^{-2}\delta}\Gamma_{1} and ω\omega becomes a γ2δ×γ1δ1/2×1\gamma^{-2}\delta\times\gamma^{-1}\delta^{1/2}\times 1-plank. We want to apply Guth-Wang-Zhang’s reverse square function estimate (1.7). Before doing so, we give a remark.

Remark 5.10.

In the setting of (1.7), we use the cone Γ={ξ12+ξ22=ξ33,1/2|ξ3|1}\Gamma=\{\xi_{1}^{2}+\xi_{2}^{2}=\xi_{3}^{3},1/2\leq|\xi_{3}|\leq 1\}, but we can also use the cone Γ1\Gamma_{1} defined in (5.22) at the cost of a factor KO(1)K^{O(1)} in (1.7). That is

τfτL4(3)CεKO(1)δε(τ|fτ|2)1/2L4(3).\|\sum_{\tau}f_{\tau}\|_{L^{4}(\mathbb{R}^{3})}\leq C_{\varepsilon^{\prime}}K^{O(1)}\delta^{-\varepsilon^{\prime}}\bigg{\|}(\sum_{\tau}|f_{\tau}|^{2})^{1/2}\bigg{\|}_{L^{4}(\mathbb{R}^{3})}.

We have from (1.7) that

(5.25) 3|τgτ,high|4=3|ωhω|4(CεKO(1)(γ2δ)ε)43(ω|hω|2)2.\int_{\mathbb{R}^{3}}|\sum_{\tau}g_{\tau,high}|^{4}=\int_{\mathbb{R}^{3}}|\sum_{\omega}h_{\omega}|^{4}\leq\big{(}C_{\varepsilon^{\prime}}K^{O(1)}(\gamma^{-2}\delta)^{-\varepsilon^{\prime}}\big{)}^{4}\int_{\mathbb{R}^{3}}(\sum_{\omega}|h_{\omega}|^{2})^{2}.

To estimate 3(ω|hω|2)2\int_{\mathbb{R}^{3}}(\sum_{\omega}|h_{\omega}|^{2})^{2}, we will use a general version of Lemma 1.4 in [GWZ20]. Before stating the lemma, we introduce some notations.

Fix R=γ2δ1R=\gamma^{2}\delta^{-1}. We see that {ω}\{\omega\} are R1γ×R1/2γ×γR^{-1}\gamma\times R^{-1/2}\gamma\times\gamma-planks that form a finitely overlapping covering of NR1γ(Γγ)N_{R^{-1}\gamma}(\Gamma_{\gamma}). Suppose we are given a set of functions 𝒉={hω}ω\boldsymbol{h}=\{h_{\omega}\}_{\omega} with supph^ωω{\rm{supp}}\widehat{h}_{\omega}\subset\omega. For any dyadic ss in the range R1/2s1R^{-1/2}\leq s\leq 1, let Ωs={ωs}\Omega_{s}=\{\omega_{s}\} be s2γ×sγ×γs^{2}\gamma\times s\gamma\times\gamma-planks that form a finitely overlapping covering of Ns2γ(Γγ)N_{s^{2}\gamma}(\Gamma_{\gamma}). For any ωs\omega_{s}, we define UωsU_{\omega_{s}} to be the plank centered at the origin of dimensions Rγ1×Rsγ1×Rs2γ1R\gamma^{-1}\times Rs\gamma^{-1}\times Rs^{2}\gamma^{-1}. Here, the edge of UωsU_{\omega_{s}} with length Rγ1R\gamma^{-1} (respectively Rsγ1,Rs2γ1Rs\gamma^{-1},Rs^{2}\gamma^{-1}) has the same direction as the edge of ωs\omega_{s} with length s2γs^{2}\gamma (respectively sγ,γs\gamma,\gamma). The motivation for the definition of UωsU_{\omega_{s}} is that UωsU_{\omega_{s}} is the smallest plank that contains the dual plank of ω\omega for all ωωs\omega\subset\omega_{s}. Later we will do rescaling ξγ1ξ\xi\mapsto\gamma^{-1}\xi in the frequency space, so that {ω}\{\omega\} becomes standard R1×R1/2×1R^{-1}\times R^{-1/2}\times 1-planks that cover the NR1(Γ1)N_{R^{-1}}(\Gamma_{1}).

We tile 3\mathbb{R}^{3} by translated copies of UωsU_{\omega_{s}}. We write UUωsU\parallel U_{\omega_{s}} to denoted that UU is one of the copies, and define SU𝒉S_{U}\boldsymbol{h} by

(5.26) SU𝒉=(ωωs|hω|2)1/2|U.S_{U}\boldsymbol{h}=\big{(}\sum_{\omega\subset\omega_{s}}|h_{\omega}|^{2}\big{)}^{1/2}|_{U}.
Remark 5.11.

Different from [GWZ20], we don’t require there is a common function hh for all the hωh_{\omega} so that hωh_{\omega} is the Fourier restriction of hh to ω\omega. The only condition we need is supph^ωω{\rm{supp}}\widehat{h}_{\omega}\subset\omega. One can compare the notation SU𝒉S_{U}\boldsymbol{h} here to a similar one in [GWZ20].

We state the following lemma which is a general version of Lemma 1.4 in[GWZ20].

Lemma 5.12.

Let the notation be given above. Then we have

(5.27) 3(ω|hω|2)2R1/2s1ωsΩsUUωs|U|1SU𝒉L24.\int_{\mathbb{R}^{3}}(\sum_{\omega}|h_{\omega}|^{2})^{2}\lesssim\sum_{R^{-1/2}\leq s\leq 1}\sum_{\omega_{s}\in\Omega_{s}}\sum_{U\parallel U_{\omega_{s}}}|U|^{-1}\|S_{U}\boldsymbol{h}\|_{L^{2}}^{4}.

To prove Lemma 5.12, we first do the rescaling ξγ1ξ\xi\mapsto\gamma^{-1}\xi in the frequency space and correspondingly xγxx\mapsto\gamma x in physical space. Then, the proof is identical to the proof of Lemma 1.4 in [GWZ20] which we do not reproduce here.

Let us come back to (5.25). By Lemma 5.12, we have

(5.28) 3(ω|hω|2)2\displaystyle\int_{\mathbb{R}^{3}}(\sum_{\omega}|h_{\omega}|^{2})^{2} R1/2s1ωsΩsUUωs|U|1SU𝒉L24\displaystyle\lesssim\sum_{R^{-1/2}\leq s\leq 1}\sum_{\omega_{s}\in\Omega_{s}}\sum_{U\parallel U_{\omega_{s}}}|U|^{-1}\|S_{U}\boldsymbol{h}\|_{L^{2}}^{4}
(5.29) =R1/2s1ωsΩsUUωs|U|1(Uωωs|hω|2)2.\displaystyle=\sum_{R^{-1/2}\leq s\leq 1}\sum_{\omega_{s}\in\Omega_{s}}\sum_{U\parallel U_{\omega_{s}}}|U|^{-1}\big{(}\int_{U}\sum_{\omega\subset\omega_{s}}|h_{\omega}|^{2}\big{)}^{2}.

Recalling the definition (5.23) and (5.10), the above formula equals

(5.30) R1/2s1ωsΩsUUωs|U|1(Uωωs|τ𝒯(ω)(𝟏θτ𝟏θτ,low)gτ|2)2.\sum_{R^{-1/2}\leq s\leq 1}\sum_{\omega_{s}\in\Omega_{s}}\sum_{U\parallel U_{\omega_{s}}}|U|^{-1}\big{(}\int_{U}\sum_{\omega\subset\omega_{s}}|\sum_{\tau\in\mathcal{T}(\omega)}({\bf{1}}^{*}_{\theta_{\tau}}-{\bf{1}}^{*}_{\theta_{\tau,low}})^{\vee}*g_{\tau}|^{2}\big{)}^{2}.

Before proceeding further, we give another definition. For an ω\omega, we see that τ𝒯(ω)τ\cup_{\tau\in\mathcal{T}(\omega)}\tau is a union of γ1\sim\gamma^{-1} many δ×δ1/2×1\delta\times\delta^{1/2}\times 1-planks, so τ𝒯(ω)τ\cup_{\tau\in\mathcal{T}(\omega)}\tau is contained in a δγ2×δ1/2γ1×1\delta\gamma^{-2}\times\delta^{1/2}\gamma^{-1}\times 1-plank. By abuse of notation, we also use 𝒯(ω)\mathcal{T}(\omega) to denote this plank. We define f𝒯(ω)f_{\mathcal{T}(\omega)} to be the smooth Fourier restriction of ff to this plank, i.e., f𝒯(ω):=(𝟏𝒯(ω)f^)f_{\mathcal{T}(\omega)}:=({\bf{1}}^{*}_{\mathcal{T}(\omega)}\widehat{f})^{\vee}, where 𝟏𝒯(ω){\bf{1}}^{*}_{\mathcal{T}(\omega)} is a smooth bump function adapted to 𝒯(ω)\mathcal{T}(\omega). The property we will use is: 𝟏θ=𝟏θ𝟏𝒯(ω){\bf{1}}^{*}_{\theta}={\bf{1}}^{*}_{\theta}{\bf{1}}^{*}_{\mathcal{T}(\omega)} if τ𝒯(ω)\tau\in\mathcal{T}(\omega) and θΘ(τ)\theta\in\Theta(\tau). Heuristically, one may think f𝒯(ω)=τ𝒯(ω)fτf_{\mathcal{T}(\omega)}=\sum_{\tau\in\mathcal{T}(\omega)}f_{\tau}.

Fix an UUωsU\parallel U_{\omega_{s}}. Let us look at the integral U|τ𝒯(ω)(𝟏θτ𝟏θτ,low)gτ|2\int_{U}|\sum_{\tau\in\mathcal{T}(\omega)}({\bf{1}}^{*}_{\theta_{\tau}}-{\bf{1}}^{*}_{\theta_{\tau,low}})^{\vee}*g_{\tau}|^{2} in the above formula (5.30). Recall (5.9) that gτ=θΘ(τ)|fθ|2g_{\tau}=\sum_{\theta\in\Theta(\tau)}|f_{\theta}|^{2}. We will show there is a local orthogonality for {gτ}τ𝒯(ω)\{g_{\tau}\}_{\tau\in\mathcal{T}(\omega)} on UU, that is, we claim the following estimate:

(5.31) U|τ𝒯(ω)(𝟏θτ𝟏θτ,low)gτ|2χU|f𝒯(ω)|4,\int_{U}|\sum_{\tau\in\mathcal{T}(\omega)}({\bf{1}}^{*}_{\theta_{\tau}}-{\bf{1}}^{*}_{\theta_{\tau,low}})^{\vee}*g_{\tau}|^{2}\lesssim\int\chi_{U}|f_{\mathcal{T}(\omega)}|^{4},

where χU\chi_{U} is the indicator function of UU with rapidly decaying tail.

Our first step is to rewrite (𝟏θτ𝟏θτ,low)g({\bf{1}}^{*}_{\theta_{\tau}}-{\bf{1}}^{*}_{\theta_{\tau,low}})^{\vee}*g. If τ𝒯(ω)\tau\in\mathcal{T}(\omega), then by definition θτθτ,lowωωre\theta_{\tau}\setminus\theta_{\tau,low}\subset\omega\cup\omega_{re}. If we denote by ω~\widetilde{\omega} the translation of ω\omega to the center, from a simple geometry we have θτ100ω~\theta_{\tau}\subset 100\widetilde{\omega}. We may omit the constant 100100 and write it as θτω~\theta_{\tau}\subset\widetilde{\omega}. For reader’s convenience, we remark that θτ\theta_{\tau} is of dimensions δ×δ1/2×γ\delta\times\delta^{1/2}\times\gamma, and ω~\widetilde{\omega} is of dimensions γ1δ×δ1/2×γ(=R1γ×R1/2γ×γ)\gamma^{-1}\delta\times\delta^{1/2}\times\gamma(=R^{-1}\gamma\times R^{-1/2}\gamma\times\gamma). Like the definition of θτ,low\theta_{\tau,low}, we define ω~low\widetilde{\omega}_{low} to be the portion of ω~\widetilde{\omega} that centered at the origin of dimensions R1γ×R1/2γ×K1γR^{-1}\gamma\times R^{-1/2}\gamma\times K^{-1}\gamma (actually ω~\widetilde{\omega} and ω~low\widetilde{\omega}_{low} are comparable since KK is a large constant). Next, we will use the cutoff replacing property (see Section 5.2). Noting that g^τθτ\widehat{g}_{\tau}\subset\theta_{\tau}, we can choose two bump functions 𝟏ω~{\bf{1}}^{*}_{\widetilde{\omega}}, 𝟏ω~low{\bf{1}}^{*}_{\widetilde{\omega}_{low}} adapted to ω~,ω~low\widetilde{\omega},\widetilde{\omega}_{low} respectively, so that 𝟏θτ=𝟏ω~,𝟏θτ,low=𝟏ω~low{\bf{1}}^{*}_{\theta_{\tau}}={\bf{1}}^{*}_{\widetilde{\omega}},{\bf{1}}^{*}_{\theta_{\tau,low}}={\bf{1}}^{*}_{\widetilde{\omega}_{low}} on suppg~τ{\rm{supp}}\widetilde{g}_{\tau}. As a result, we have (𝟏θτ𝟏θτ,low)gτ=(𝟏ω~𝟏ω~low)gτ({\bf{1}}^{*}_{\theta_{\tau}}-{\bf{1}}^{*}_{\theta_{\tau,low}})^{\vee}*g_{\tau}=({\bf{1}}^{*}_{\widetilde{\omega}}-{\bf{1}}^{*}_{\widetilde{\omega}_{low}})^{\vee}*g_{\tau}. In other words, one can rewrite the convolution as

(𝟏θτ𝟏θτ,low)gτ=φω~gτ,({\bf{1}}^{*}_{\theta_{\tau}}-{\bf{1}}^{*}_{\theta_{\tau,low}})^{\vee}*g_{\tau}=\varphi_{\widetilde{\omega}}^{\vee}*g_{\tau},

for some φω~\varphi_{\widetilde{\omega}} adapted to ω~\widetilde{\omega}, by taking the advantage that suppg^τθτ{\rm{supp}}\widehat{g}_{\tau}\subset\theta_{\tau}. Thus,

|φω~gτ|1|ω|χωgτ,|\varphi_{\widetilde{\omega}}^{\vee}*g_{\tau}|\lesssim\frac{1}{|\omega^{*}|}\chi_{\omega^{*}}*g_{\tau},

where χω\chi_{\omega^{*}} is the indicator function of ω\omega^{*} with rapidly decaying tail.

Let us prove (5.31).

(5.32) U|τ𝒯(ω)(𝟏θτ𝟏θτ,low)gτ|2𝟏U(1|ω|χωτ𝒯(ω)θΘ(τ)|fθ|2)2\displaystyle\int_{U}|\sum_{\tau\in\mathcal{T}(\omega)}({\bf{1}}^{*}_{\theta_{\tau}}-{\bf{1}}^{*}_{\theta_{\tau,low}})^{\vee}*g_{\tau}|^{2}\lesssim\int{\bf{1}}_{U}\big{(}\frac{1}{|\omega^{*}|}\chi_{\omega^{*}}*\sum_{\tau\in\mathcal{T}(\omega)}\sum_{\theta\in\Theta(\tau)}|f_{\theta}|^{2}\big{)}^{2}
(5.33) (1|ω|χω𝟏U)(τ𝒯(ω)θΘ(τ)|fθ|2)2χU(τ𝒯(ω)θΘ(τ)|fθ|2)2.\displaystyle\lesssim\int(\frac{1}{|\omega^{*}|}\chi_{\omega^{*}}*{\bf{1}}_{U})\cdot\big{(}\sum_{\tau\in\mathcal{T}(\omega)}\sum_{\theta\in\Theta(\tau)}|f_{\theta}|^{2}\big{)}^{2}\lesssim\int\chi_{U}\big{(}\sum_{\tau\in\mathcal{T}(\omega)}\sum_{\theta\in\Theta(\tau)}|f_{\theta}|^{2}\big{)}^{2}.

In the last inequality, we used 1|ω|χω𝟏UχU\frac{1}{|\omega^{*}|}\chi_{\omega^{*}}*{\bf{1}}_{U}\lesssim\chi_{U} since ω\omega^{*} is contained in the translation of UU to the origin.

Next, we will apply Lemma 5.3. Note that θτ\theta_{\tau} is contained in a translated copy of ω\omega, so each θ\theta is contained in a translated copy of ω\omega. To indicate its relationship with θ\theta, we denote this translated copy by ωθ\omega_{\theta} so that θωθ\theta\subset\omega_{\theta}. One easily sees that {ωθ}θ\{\omega_{\theta}\}_{\theta} are finitely overlapping. Also we can find a smooth bump function 𝟏ωθ{\bf{1}}^{*}_{\omega_{\theta}} adapted to ωθ\omega_{\theta} such that 𝟏ωθ=𝟏θ{\bf{1}}^{*}_{\omega_{\theta}}={\bf{1}}^{*}_{\theta} on suppf^{\rm{supp}}\widehat{f}, by taking the advantage that suppf^Nδ(Γ){\rm{supp}}\widehat{f}\subset N_{\delta}(\Gamma) and the cutoff replacing property. By duality, we choose a function gg with g2=1\|g\|_{2}=1, such that

(5.34) (χU(τ𝒯(ω)θΘ(τ)|fθ|2)2)1/2=gχU1/2τ𝒯(ω)θΘ(τ)|fθ|2.\bigg{(}\int\chi_{U}\big{(}\sum_{\tau\in\mathcal{T}(\omega)}\sum_{\theta\in\Theta(\tau)}|f_{\theta}|^{2}\big{)}^{2}\bigg{)}^{1/2}=\int g\chi_{U}^{1/2}\sum_{\tau\in\mathcal{T}(\omega)}\sum_{\theta\in\Theta(\tau)}|f_{\theta}|^{2}.

Note that fθ=(𝟏θf^)=(𝟏θ𝟏𝒯(ω)f^)=(𝟏θf^𝒯(ω))=(𝟏ωθf^𝒯(ω))f_{\theta}=({\bf{1}}^{*}_{\theta}\widehat{f})^{\vee}=({\bf{1}}^{*}_{\theta}{\bf{1}}^{*}_{\mathcal{T}(\omega)}\widehat{f})^{\vee}=({\bf{1}}^{*}_{\theta}\widehat{f}_{\mathcal{T}(\omega)})^{\vee}=({\bf{1}}^{*}_{\omega_{\theta}}\widehat{f}_{\mathcal{T}(\omega)})^{\vee}. Since {ωθ}\{\omega_{\theta}\} is a set of congruent rectangles, by applying Lemma 5.3 to the function f𝒯(ω)f_{\mathcal{T}(\omega)}, (5.34) is bounded by

(5.35) 1|ω|χω(gχU1/2)|f𝒯(ω)|2=1|ω|χω(gχU1/2)χU1/2|f𝒯(ω)|2χU1/2\displaystyle\int\frac{1}{|\omega^{*}|}\chi_{\omega^{*}}*(g\chi_{U}^{1/2})|f_{\mathcal{T}(\omega)}|^{2}=\int\frac{\frac{1}{|\omega^{*}|}\chi_{\omega^{*}}*(g\chi_{U}^{1/2})}{\chi_{U}^{1/2}}|f_{\mathcal{T}(\omega)}|^{2}\chi_{U}^{1/2}
(5.36) (|1|ω|χω(gχU1/2)χU1/2|2)1/2(χU|f𝒯(ω)|4)1/2.\displaystyle\leq\bigg{(}\int\big{|}\frac{\frac{1}{|\omega^{*}|}\chi_{\omega^{*}}*(g\chi_{U}^{1/2})}{\chi_{U}^{1/2}}\big{|}^{2}\bigg{)}^{1/2}\bigg{(}\int\chi_{U}|f_{\mathcal{T}(\omega)}|^{4}\bigg{)}^{1/2}.

To finish the estimate, we just note that

(1|ω|χω(gχU1/2)χU1/2)2(1|ω|χω(|g|2χU))χU1=|g|2χU(1|ω|χωχU1)\displaystyle\int\big{(}\frac{\frac{1}{|\omega^{*}|}\chi_{\omega^{*}}*(g\chi_{U}^{1/2})}{\chi_{U}^{1/2}}\big{)}^{2}\lesssim\int\bigg{(}\frac{1}{|\omega^{*}|}\chi_{\omega^{*}}*(|g|^{2}\chi_{U})\bigg{)}\cdot\chi_{U}^{-1}=\int|g|^{2}\chi_{U}\cdot\bigg{(}\frac{1}{|\omega^{*}|}\chi_{\omega^{*}}*\chi_{U}^{-1}\bigg{)}
|g|2=1.\displaystyle\lesssim\int|g|^{2}=1.

Here in the last inequality, we use the fact that χU11|ω|χωχU1\chi_{U}^{-1}\sim\frac{1}{|\omega^{*}|}\chi_{\omega^{*}}*\chi_{U}^{-1}, since ω\omega^{*} is contained in a translation of UU. We finish the proof of (5.31).

Plugging back to (5.25) and by Lemma 5.12, we have

(5.37) 3|τgτ,high|4(CεKO(1)(γ2δ)ε)4R1/2s1ωsΩsUUωs|U|1(χUωωs|f𝒯(ω)|4)2.\int_{\mathbb{R}^{3}}|\sum_{\tau}g_{\tau,high}|^{4}\leq(C_{\varepsilon^{\prime}}K^{O(1)}(\gamma^{-2}\delta)^{-\varepsilon^{\prime}})^{4}\sum_{R^{-1/2}\leq s\leq 1}\sum_{\omega_{s}\in\Omega_{s}}\sum_{U\parallel U_{\omega_{s}}}|U|^{-1}\big{(}\int\chi_{U}\sum_{\omega\subset\omega_{s}}|f_{\mathcal{T}(\omega)}|^{4}\big{)}^{2}.

By Lemma 5.5, we have

(5.38) χUωωs|f𝒯(ω)|4χU|f𝒯(ωs)|4.\int\chi_{U}\sum_{\omega\subset\omega_{s}}|f_{\mathcal{T}(\omega)}|^{4}\lesssim\int\chi_{U}|f_{\mathcal{T}(\omega_{s})}|^{4}.

Here f𝒯(ωs)f_{\mathcal{T}(\omega_{s})} has the similar definition as f𝒯(ω)f_{\mathcal{T}(\omega)} does. So, we have

(5.39) 3|τgτ,high|4\displaystyle\int_{\mathbb{R}^{3}}|\sum_{\tau}g_{\tau,high}|^{4} (CεKO(1)(γ2δ)ε)4R1/2s1ωsΩsUUωs|U|1(χU|fωs|4)2\displaystyle\leq(C_{\varepsilon^{\prime}}K^{O(1)}(\gamma^{-2}\delta)^{-\varepsilon^{\prime}})^{4}\sum_{R^{-1/2}\leq s\leq 1}\sum_{\omega_{s}\in\Omega_{s}}\sum_{U\parallel U_{\omega_{s}}}|U|^{-1}\big{(}\int\chi_{U}|f_{\omega_{s}}|^{4}\big{)}^{2}
(5.40) (CεKO(1)(γ2δ)ε)4R1/2s1ωsΩsUUωsχU|fωs|8\displaystyle\lesssim(C_{\varepsilon^{\prime}}K^{O(1)}(\gamma^{-2}\delta)^{-\varepsilon^{\prime}})^{4}\sum_{R^{-1/2}\leq s\leq 1}\sum_{\omega_{s}\in\Omega_{s}}\sum_{U\parallel U_{\omega_{s}}}\int\chi_{U}|f_{\omega_{s}}|^{8}
(5.41) (CεKO(1)(γ2δ)ε)4R1/2s1ωsΩs3|fωs|8\displaystyle\sim(C_{\varepsilon^{\prime}}K^{O(1)}(\gamma^{-2}\delta)^{-\varepsilon^{\prime}})^{4}\sum_{R^{-1/2}\leq s\leq 1}\sum_{\omega_{s}\in\Omega_{s}}\int_{\mathbb{R}^{3}}|f_{\omega_{s}}|^{8}
(5.42) (CεKO(1)(γ2δ)ε)4logδ13|f|8,\displaystyle\lesssim(C_{\varepsilon^{\prime}}K^{O(1)}(\gamma^{-2}\delta)^{-\varepsilon^{\prime}})^{4}\log\delta^{-1}\int_{\mathbb{R}^{3}}|f|^{8},

where the last inequality is by Lemma 5.4.

Combining the estimate for the low term (5.21), we just need to show

(5.43) Cε(γK1δ1)ε+CεKO(1)(γ2δ1)εlogδ11CCε(γδ1)εC_{\varepsilon}(\gamma K^{-1}\delta^{-1})^{\varepsilon}+C_{\varepsilon^{\prime}}K^{O(1)}(\gamma^{2}\delta^{-1})^{\varepsilon^{\prime}}\log\delta^{-1}\leq\frac{1}{C}C_{\varepsilon}(\gamma\delta^{-1})^{\varepsilon}

in order to close the induction.

By choosing KK large enough and εε\varepsilon^{\prime}\ll\varepsilon (for example ε=ε2\varepsilon^{\prime}=\varepsilon^{2}), we close the induction. ∎

Appendix A Examples

In the appendix, we give some examples. Before doing that, we discuss a property of wave packet which will be used to construct examples. Our argument here is heuristic, but is not hard to be made rigorous.

Let RR be a rectangle in the frequency space ξn\mathbb{R}^{n}_{\xi}. After rotation, we may write it as R=cR+i=1n[ai,ai]R=c_{R}+\prod_{i=1}^{n}[-a_{i},a_{i}], where cRc_{R} is the center of RR. Correspondingly, its dual rectangle is given by R=i=1n[1/ai,1/ai]xnR^{*}=\prod_{i=1}^{n}[-1/a_{i},1/a_{i}]\subset\mathbb{R}^{n}_{x}. One heuristic we will use in the rest of Appendix is:

(1.1) (1|R|𝟏R)(x)e2πixcR𝟏R(x).(\frac{1}{|R|}{\bf{1}}_{R})^{\vee}(x)\approx e^{2\pi ix\cdot c_{R}}{\bf{1}}_{R^{*}}(x).

By adding a phase to 𝟏R{\bf{1}}_{R}, we also have

(1.2) (e2πix0ξ1|R|𝟏R(ξ))(x)e2πi(xx0)cR𝟏x0+R(x).(e^{-2\pi ix_{0}\cdot\xi}\frac{1}{|R|}{\bf{1}}_{R}(\xi))^{\vee}(x)\approx e^{2\pi i(x-x_{0})\cdot c_{R}}{\bf{1}}_{x_{0}+R^{*}}(x).

In other words, there is a function whose support lie in RR and whose inverse Fourier transform, after taking absolute value, is roughly the indicator function of a translation of RR^{*}.

Remark A.1.

e2πi(xx0)cR𝟏x0+R(x)e^{2\pi i(x-x_{0})\cdot c_{R}}{\bf{1}}_{x_{0}+R^{*}}(x) is referred to as a wave packet at x0+Rx_{0}+R^{*}.

Let us discuss a trick called wave packet dilation. Given θ=c+i=1n[ai,ai]\theta^{\prime}=c+\prod_{i=1}^{n}[-a_{i},a_{i}], we specify a direction, for example, 𝒆n\boldsymbol{e}_{n} (equivalently, the ξn\xi_{n}-direction), and then let θ=c+i=1n1[ai,ai]×[0,an]\theta=c+\prod_{i=1}^{n-1}[-a_{i},a_{i}]\times[0,a_{n}] be the upper half of θ\theta^{\prime}. We see that the dual θ\theta^{*} is the 22-dilation of θ\theta^{\prime*} along 𝒆n\boldsymbol{e}_{n}. Write θ=Dil2,𝒆nθ\theta^{*}=Dil_{2,\boldsymbol{e}_{n}}\theta^{\prime*}. When the direction of the dilation is clear (usually the direction is along the longest side or the second longest side), we just denote it by θ=Dil2θ\theta^{*}=Dil_{2}\theta^{\prime*}. When we look for the examples of the map T:f(𝟏θf^)T:f\mapsto({\bf{1}}_{\theta}\widehat{f})^{\vee}, the auxiliary rectangle θ\theta^{\prime} will be very helpful. If we choose the test function f=1|θ|(e2πix0ξ𝟏θ)f=\frac{1}{|\theta|}(e^{-2\pi ix_{0}\cdot\xi}{\bf{1}}_{\theta^{\prime}})^{\vee}, then

|f|𝟏T,|Tf|𝟏Dil2T,|f|\approx{\bf{1}}_{T},\ \ |Tf|\approx{\bf{1}}_{Dil_{2}T},

where T=x0+θT=x_{0}+\theta^{\prime*} is a translation of θ\theta^{*}. It means that after the action of TT on the single wave packet ff, the resulting new wave packet TfTf is two times longer.

By using this idea, we can quickly give the sharp example for Bochner-Riesz conjecture. First, let us recall the Bochner-Riesz conjecture. Let NR1(𝕊n1)N_{R^{-1}}(\mathbb{S}^{n-1}) be the δ\delta-neighborhood of the unit sphere in n\mathbb{R}^{n}. Let 𝟏NR1(𝕊n1){\bf{1}}^{*}_{N_{R^{-1}}(\mathbb{S}^{n-1})} be a smooth bump function adapted to NR1(𝕊n1)N_{R^{-1}}(\mathbb{S}^{n-1}). Define the operator Sf:=(𝟏NR1(𝕊n1)f^)Sf:=({\bf{1}}^{*}_{N_{R^{-1}}(\mathbb{S}^{n-1})}\widehat{f})^{\vee}. We are interested in the following estimate

(1.3) SfLp(n)RCn,pfLp(n).\|Sf\|_{L^{p}(\mathbb{R}^{n})}\lesssim R^{C_{n,p}}\|f\|_{L^{p}(\mathbb{R}^{n})}.

The conjecture is: (1.3) holds for p>2nn1p>\frac{2n}{n-1} and Cn,p>n12npC_{n,p}>\frac{n-1}{2}-\frac{n}{p}. We construct an example for (1.3). First, we write 𝟏NR1(𝕊n1)=θ𝟏θ{\bf{1}}^{*}_{N_{R^{-1}}(\mathbb{S}^{n-1})}=\sum_{\theta}{\bf{1}}^{*}_{\theta}. Where {θ}\{\theta\} is a set of R1/2××R1/2×R1R^{-1/2}\times\cdots\times R^{-1/2}\times R^{-1}-slabs that cover NR1(𝕊n1)N_{R^{-1}}(\mathbb{S}^{n-1}). For each θ\theta, we define θ\theta^{\prime} to be a R1/2××R1/2×100R1R^{-1/2}\times\cdots\times R^{-1/2}\times 100R^{-1}-slab that contains θ\theta. Actually, θ\theta^{\prime} is the 100100-dilation of θ\theta along the normal direction of θ\theta. Heuristically, we may assume {θ}\{\theta^{\prime}\} are disjoint. For each θ\theta^{\prime}, we choose a function fθf_{\theta^{\prime}} such that suppf^θθ{\rm{supp}}\widehat{f}_{\theta^{\prime}}\subset\theta^{\prime} and |fθ|𝟏Tθ|f_{\theta^{\prime}}|\approx{\bf{1}}_{T_{\theta^{\prime}}}, |(𝟏θf^θ)|𝟏Dil100Tθ|({\bf{1}}^{*}_{\theta}\widehat{f}_{\theta^{\prime}})^{\vee}|\approx{\bf{1}}_{Dil_{100}T_{\theta^{\prime}}}, where TθT_{\theta^{\prime}} is a R1/2××R1/2×1001RR^{1/2}\times\cdots\times R^{1/2}\times 100^{-1}R-tube dual to θ\theta^{\prime}. Now we just choose these tubes so that {Tθ}\{T_{\theta^{\prime}}\} are disjoint and {Dil100Tθ}\{Dil_{100}T_{\theta^{\prime}}\} intersect at the origin.

We choose our example f=θaθfθf=\sum_{\theta}a_{\theta}f_{\theta^{\prime}} where aθa_{\theta}\in\mathbb{C} are to be determined. Since {Tθ}\{T_{\theta^{\prime}}\} are disjoint, we have fpθ𝟏TθpRnp\|f\|_{p}\approx\|\sum_{\theta}{\bf{1}}_{T_{\theta}^{\prime}}\|_{p}\sim R^{\frac{n}{p}}. Since {θ}\{\theta^{\prime}\} are disjoint, we have Sf=θ(𝟏θf^)=θ(aθ𝟏θf^θ)Sf=\sum_{\theta}({\bf{1}}^{*}_{\theta}\widehat{f})^{\vee}=\sum_{\theta}(a_{\theta}{\bf{1}}^{*}_{\theta}\widehat{f}_{\theta^{\prime}})^{\vee}. We can make it have a constructive interference at the unit ball B1(0)B_{1}(0) by properly choosing aθa_{\theta}. As a result, Sfp#θRn12\|Sf\|_{p}\gtrsim\#\theta\sim R^{\frac{n-1}{2}}. Plugging into (1.3) verifies Cn,pn12npC_{n,p}\geq\frac{n-1}{2}-\frac{n}{p}.

where𝕊n1\subset\mathbb{S}^{n-1}is a δ\delta-cubeis a δ××δ×δ2\delta\times\cdots\times\delta\times\delta^{2}-slab
Figure 3. Fourier support

A.1.

We show that if we remove the “one-dimensional” condition in Theorem 1.5, then (1.5) is no longer true. See in Figure 3 where we plot our {Δi}\{\Delta_{i}\} (blue δ\delta-cube) on the sphere 𝕊n1\mathbb{S}^{n-1} whose normal directions will be specified latter. There are also some red slabs of dimensions δ××δ×δ2\delta\times\cdots\times\delta\times\delta^{2}, each of which is attached to only one Δj\Delta_{j}, i.e., one half of the red slab lies in Δj\Delta_{j} and another half is outside Δj\Delta_{j}. We denote the slab attached to Δj\Delta_{j} by RjR_{j}, and the set of them by {Rj}\{R_{j}\}. We consider the corresponding regions in n\mathbb{R}^{n}. Define

Δ~j={ξn:ξ/|ξ|Δj,1δ|ξ|1},\widetilde{\Delta}_{j}=\{\xi\in\mathbb{R}^{n}:\xi/|\xi|\in\Delta_{j},1-\delta\leq|\xi|\leq 1\},
R~j={ξn:ξ/|ξ|Rj,1δ|ξ|1}.\widetilde{R}_{j}=\{\xi\in\mathbb{R}^{n}:\xi/|\xi|\in R_{j},1-\delta\leq|\xi|\leq 1\}.

We see that {Δ~j}\{\widetilde{\Delta}_{j}\} is a set of δ\delta-cubes in n\mathbb{R}^{n}, and {R~j}\{\widetilde{R}_{j}\} is a set of δ××δ×δ2\delta\times\cdots\times\delta\times\delta^{2}-slabs. Denote the normal direction of R~j\widetilde{R}_{j} by nj\vec{n}_{j}. We may choose {Δj}\{\Delta_{j}\} and {Rj}\{R_{j}\} carefully so that {nj}\{\vec{n}_{j}\} form a δ\delta-dense subset of 𝕊n1\mathbb{S}^{n-1}.

Now, for each Δj\Delta_{j}, we choose a function fjf_{j} so that f^jR~j\widehat{f}_{j}\subset\widetilde{R}_{j} and

|fj|𝟏Tj,|Sjfj||(𝟏Δ~jf^j)|𝟏Dil2Tj,|f_{j}|\approx{\bf{1}}_{T_{j}},\ \ |S_{j}f_{j}|\approx|({\bf{1}}_{\widetilde{\Delta}_{j}}\widehat{f}_{j})^{\vee}|\approx{\bf{1}}_{Dil_{2}T_{j}},

where the dilation Dil2TjDil_{2}T_{j} is along nj\vec{n}_{j}, and TjT_{j} is a δ1××δ1×δ2\delta^{-1}\times\cdots\times\delta^{-1}\times\delta^{-2}-tube dual to R~j\widetilde{R}_{j}. We choose the tubes {Tj}\{T_{j}\} so that they are disjoint and their dilations {Dil100Tj}\{Dil_{100}T_{j}\} intersect the origin. See in Figure 4 where the blue tubes are the TjT_{j}’s and they intersect Bδ1B_{\delta^{-1}} at the origin.

Bδ1B_{\delta^{-1}}TjT_{j}’s
Figure 4. Concentration of tubes

We choose the test function f=jfjf=\sum_{j}f_{j} and plug into

(1.4) (j|Sjf|2)1/2pCfp.\|(\sum_{j}|S_{j}f|^{2})^{1/2}\|_{p}\leq C\|f\|_{p}.

Since {Tj}\{T_{j}\} are disjoint, we have fpj𝟏Tjpδ2np\|f\|_{p}\approx\|\sum_{j}{\bf{1}}_{T_{j}}\|_{p}\sim\delta^{-\frac{2n}{p}}. Since {Δ~j}\{\widetilde{\Delta}_{j}\} are disjoint, we have |Sjf|=|Sjfj|𝟏Dil2Tj|S_{j}f|=|S_{j}f_{j}|\approx{\bf{1}}_{Dil_{2}T_{j}}. We have

(j|Sjf|2)1/2p(j𝟏Tj)1/2Lp(Bδ1)#{Δj}1/2δnpδn12np.\|(\sum_{j}|S_{j}f|^{2})^{1/2}\|_{p}\gtrsim\|(\sum_{j}{\bf{1}}_{T_{j}})^{1/2}\|_{L^{p}(B_{\delta^{-1}})}\gtrsim\#\{\Delta_{j}\}^{1/2}\delta^{-\frac{n}{p}}\sim\delta^{-\frac{n-1}{2}-\frac{n}{p}}.

We see the constant CC in (1.4) should be greater than δn12+np\delta^{-\frac{n-1}{2}+\frac{n}{p}} for which the threshold is p=2nn1p=\frac{2n}{n-1}.

A.2.

Finally, we give the sharp example for Theorem 1.9. For a δ×δ1/2×1\delta\times\delta^{1/2}\times 1-slab τ\tau contained in Nδ(Γ)N_{\delta}(\Gamma), we use 𝒄(τ)\boldsymbol{c}(\tau), 𝒏(τ)\boldsymbol{n}(\tau) and 𝒕(τ)\boldsymbol{t}(\tau) to denote the light direction, normal direction and tangent direction of τ\tau. More precisely, if ξτΓ{ξ3=1}\xi\in\tau\cap\Gamma\cap\{\xi_{3}=1\}, then we roughly have 𝒄(τ)=(ξ1,ξ2,1)\boldsymbol{c}(\tau)=(\xi_{1},\xi_{2},1), 𝒏(τ)=(ξ1,ξ2,1)\boldsymbol{n}(\tau)=(\xi_{1},\xi_{2},-1) and 𝒕(τ)=(ξ2,ξ1,0)\boldsymbol{t}(\tau)=(-\xi_{2},\xi_{1},0). In the condition of the Theorem 1.9, we assumed f^Nδ(Γ)\widehat{f}\subset N_{\delta}(\Gamma), so we cannot dilate the wave packet in the 𝒏(τ)\boldsymbol{n}(\tau)-direction, which is the longest direction of τ\tau^{*}. However, the “wave packet dilation” trick still works because we can dilate in the second longest direction 𝒕(τ)\boldsymbol{t}(\tau).

Let {τ}\{\tau\} be δ×δ1/2×1\delta\times\delta^{1/2}\times 1-slabs contained in Nδ(Γ)N_{\delta}(\Gamma) such that {100τ}\{100\tau\} are disjoint. As what we did in the previous example, we can choose f=τf100τf=\sum_{\tau}f_{100\tau}, such that f^100τ100τ\widehat{f}_{100\tau}\subset 100\tau and

|f100τ|𝟏Pτ,|(𝟏τf^100τ)|𝟏Dil100Pτ,|f_{100\tau}|\approx{\bf{1}}_{P_{\tau}},\ \ |({\bf{1}}^{*}_{\tau}\widehat{f}_{100\tau})^{\vee}|\approx{\bf{1}}_{Dil_{100}P_{\tau}},

where the dilation Dil100PτDil_{100}P_{\tau} is along 𝒕(τ)\boldsymbol{t}(\tau), and PτP_{\tau} is a 1×δ1/2×δ1\times\delta^{1/2}\times\delta-plank dual to τ\tau. Now, we carefully choose {Pτ}\{P_{\tau}\} so that {Pτ}\{P_{\tau}\} are disjoint but {Dil100Pτ}\{Dil_{100}P_{\tau}\} intersect the unit ball at the origin. See in Figure 5. We arrange {Pτ}\{P_{\tau}\} into the δ1/2\delta^{-1/2}-neighborhood of the hyperboloid {x3:x12+x22x32=δ1}\{x\in\mathbb{R}^{3}:x_{1}^{2}+x_{2}^{2}-x_{3}^{2}=\delta^{-1}\}. Each PτP_{\tau} intersect {x3=0}\{x_{3}=0\} at a 1×δ1/21\times\delta^{1/2}-rectangle lying in {(x1,x2):δ1/2x12+x222δ1/2}\{(x_{1},x_{2}):\delta^{-1/2}\leq\sqrt{x_{1}^{2}+x_{2}^{2}}\leq 2\delta^{-1/2}\} and pointing to the origin.

The total measure of all the planks is δ2\delta^{-2}, so fpδ2p\|f\|_{p}\approx\delta^{-\frac{2}{p}}. On the other hand,

(τ|(𝟏τf^100τ)|2)1/2p(τ𝟏Dil100Pτ)1/2Lp(B1(0))δ1/4.\|(\sum_{\tau}|({\bf{1}}^{*}_{\tau}\widehat{f}_{100\tau})^{\vee}|^{2})^{1/2}\|_{p}\gtrsim\|(\sum_{\tau}{\bf{1}}_{Dil_{100}P_{\tau}})^{1/2}\|_{L^{p}(B_{1}(0))}\sim\delta^{-1/4}.

Plugging into

(τ|(𝟏τf^100τ)|2)1/2pCfp,\|(\sum_{\tau}|({\bf{1}}^{*}_{\tau}\widehat{f}_{100\tau})^{\vee}|^{2})^{1/2}\|_{p}\leq C\|f\|_{p},

we get Cδ14+2pC\geq\delta^{-\frac{1}{4}+\frac{2}{p}}, yielding that p=8p=8 is the critical exponent.

1×1100δ1/2×δ11\times\frac{1}{100}\delta^{-1/2}\times\delta^{-1}-planks
Figure 5. Planks arranged along a hyperboloid

References

  • [ADPH+20] Natalia Accomazzo, Francesco Di Plinio, Paul Hagelstein, Ioannis Parissis, and Luz Roncal. Directional square functions. arXiv preprint arXiv:2004.06509, 2020.
  • [Bou91] Jean Bourgain. Besicovitch type maximal operators and applications to Fourier analysis. Geom. Funct. Anal., 1(2):147–187, 1991.
  • [CF76] Antonio Córdoba and Charles Fefferman. A weighted norm inequality for singular integrals. Studia Math., 57(1):97–101, 1976.
  • [Cór79] Antonio Córdoba. A note on Bochner-Riesz operators. Duke Math. J., 46(3):505–511, 1979.
  • [Cór82] Antonio Córdoba. Geometric Fourier analysis. Annales de l’Institut Fourier, 32(3):215–226, 1982.
  • [Dem10] Ciprian Demeter. Singular integrals along N{N} directions in 2\mathbb{R}^{2}. Proceedings of the American Mathematical Society, 138(12):4433–4442, 2010.
  • [DPP21] Francesco Di Plinio and Ioannis Parissis. Maximal subspace averages. arXiv preprint arXiv:2107.02109, 2021.
  • [Fef71] Charles Fefferman. The multiplier problem for the ball. Annals of Mathematics, 94(2):330–336, 1971.
  • [GJW21] Shengwen Gan, Yifan Jing, and Shukun Wu. New bounds for stein’s square function in 3\mathbb{R}^{3}. arXiv preprint arXiv:2104.14731, 2021.
  • [GMW20] Larry Guth, Dominique Maldague, and Hong Wang. Improved decoupling for the parabola. arXiv preprint arXiv:2009.07953, 2020.
  • [GRY20] Shaoming Guo, Joris Roos, and Po-Lam Yung. Sharp variation-norm estimates for oscillatory integrals related to carleson’s theorem. Analysis & PDE, 13(5):1457–1500, 2020.
  • [GSW19] Larry Guth, Noam Solomon, and Hong Wang. Incidence estimates for well spaced tubes. Geometric and Functional Analysis, 29(6):1844–1863, 2019.
  • [GWZ20] Larry Guth, Hong Wang, and Ruixiang Zhang. A sharp square function estimate for the cone in 3\mathbb{R}^{3}. Annals of Mathematics, 192(2):551–581, 2020.
  • [Jou85] Jean-Lin Journé. Calderón-Zygmund operators on product spaces. Rev. Mat. Iberoamericana, 1(3):55–91, 1985.
  • [JSW08] Roger L Jones, Andreas Seeger, and James Wright. Strong variational and jump inequalities in harmonic analysis. Transactions of the American Mathematical Society, pages 6711–6742, 2008.
  • [Kat99] Nets Hawk Katz. Maximal operators over arbitrary sets of directions. Duke Math. J., 97(1):67–79, 1999.
  • [Lac07] Michael T. Lacey. Issues related to Rubio de Francia’s Littlewood-Paley inequality, volume 2 of New York Journal of Mathematics. NYJM Monographs. State University of New York, University at Albany, Albany, NY, 2007.
  • [MSS92] Gerd Mockenhaupt, Andreas Seeger, and Christopher D Sogge. Wave front sets, local smoothing and Bourgain’s circular maximal theorem. Annals of mathematics, 136(1):207–218, 1992.
  • [RdF85] José L. Rubio de Francia. A Littlewood-Paley inequality for arbitrary intervals. Rev. Mat. Iberoamericana, 1(2):1–14, 1985.
  • [See88] Andreas Seeger. Some inequalities for singular convolution operators in Lp{L}^{p}-spaces. Transactions of the American Mathematical Society, 308(1):259–272, 1988.
  • [TV00] Terence Tao and Ana Vargas. A bilinear approach to cone multipliers. II. Applications. Geom. Funct. Anal., 10(1):216–258, 2000.