This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Spin current generation due to differential rotation

Takumi Funato1,2, Shunichiro Kinoshita3,4, Norihiro Tanahashi4, Shin Nakamura4, and Mamoru Matsuo2,5,6,7 1Center for Spintronics Research Network, Keio University, Yokohama 223-8522, Japan 2Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China. 3Department of Physics, College of Humanities and Sciences, Nihon University, Tokyo 156-8550, Japan 4Department of Physics, Chuo University, Tokyo 112-8551, Japan 5CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China 6RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan 7Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, 319-1195, Japan
Abstract

We study nonequilibrium spin dynamics in differentially rotating systems, deriving an effective Hamiltonian for conduction electrons in the comoving frame. In contrast to conventional spin current generation mechanisms that require vorticity, our theory describes spins and spin currents arising from differentially rotating systems regardless of vorticity. We demonstrate the generation of spin currents in differentially rotating systems, such as liquid metals with Taylor-Couette flow. Our alternative mechanism will be important in the development of nanomechanical spin devices.

pacs:
Valid PACS appear here

Introduction. The physics of spin currents, initially introduced as the flow of Fermi particles [1], and the diffusion of spin magnetic moments [2, 3] and Ising spins [4], has long attracted the interest of researchers. Generating and controlling spin currents is a key challenge in spintronics [5], involving mechanisms such as the spin Hall effect [6, 7, 8, 9, 10], spin pumping [11, 12, 13, 14, 15], spin Seebeck effect [16], spin accumulation at ferromagnet/nonmagnet interfaces [17, 18], and Edelstain effect [19, 20, 21]. Advances in nanofabrication now enable mechanical motions in materials for spin transport [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38]. The gyromagnetic effect [39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54], involving angular momentum interconversion between mechanical rotation and spin, is crucial as it enables spin current generation without strong spin-orbit coupling [55, 56, 57, 58, 59, 60].

The gyromagnetic effect, initially understood through the conservation of angular momentum [39, 40, 61, 41], is now recognized as originating from spin-rotation coupling, Hsr=𝒔𝛀H_{\mathrm{sr}}=-\bm{s}\cdot\bm{\Omega}, where 𝒔\bm{s} is the spin and 𝛀\bm{\Omega} is the angular velocity of rigid rotation, derived from the Dirac equation [62]. This coupling is analogous to the Zeeman effect, with angular velocity acting as an effective magnetic field on the spin. Theoretical and experimental work shows that inhomogeneities of the angular velocity can generate a spin current via the Stern-Gerlach type effect [63, 64, 65], using vorticity gradients in liquid metal [55, 57, 58, 59] and surface acoustic waves [56, 66, 67, 28, 60]. In these studies, a spin-vorticity coupling, Hsv=𝒔𝝎H_{\rm sv}=-\bm{s}\cdot\bm{\omega}, was explored by replacing constant angular velocity 𝛀\bm{\Omega} in HsrH_{\rm sr} with vorticity 𝝎=(1/2)×𝒗\bm{\omega}=(1/2)\bm{\nabla}\times\bm{v}. However, in addition to the spin-vorticity coupling, differential rotation 𝛀(𝒓)=𝒓×𝒗/r2\bm{\Omega}(\bm{r})=\bm{r}\times\bm{v}/r^{2} offers a new method for localizing the interaction. This overlooked coupling may enhance our understanding of spin transport driven by non-uniform rotation.

In this study, we investigate the non-equilibrium spin dynamics in differentially rotating systems within a microscopic theory. By mapping into a comoving frame, we construct an effective Hamiltonian for conduction electrons in these systems, demonstrating the emergence of effective gauge fields. Furthermore, we derive microscopic expressions for the spin density and spin current of conduction electrons driven by these emergent gauge fields. The mechanism of spin current generation proposed in the present Letter is based on the fundamental principles of quantum mechanics, without interjecting phenomenological arguments.

Although our mechanism applies to general differentially rotating systems, we present specific examples of experiments that may verify our proposal. By applying our mechanism to a liquid metal and a non-magnetic metallic cantilever as examples of differentially rotating systems, we estimate the concrete amount of the spin current. In particular, we show that even in cases such as Taylor-Couette flow where the vorticity-gradient is zero, spin currents can be generated due to the differential rotation. Consequently, we uncover mechanisms of angular momentum transfer that have not been captured by traditional frameworks.

Emergent gauge fields in comoving frame. We consider the free electron system subject to momentum scattering and spin-orbit scattering due to the impurities. In the inertial laboratory frame the Hamiltonian is given by

H^\displaystyle\hat{H}^{\prime} =d3xψ^(𝒙){22m2ϵF+Vimp(𝒙,t)\displaystyle=\int d^{3}x\hat{\psi}^{\dagger}(\bm{x})\biggl{\{}-\frac{\hbar^{2}}{2m}\bm{\nabla}^{2}-\epsilon_{F}+V^{\prime}_{\text{imp}}(\bm{x},t)
+λso𝝈[Vimp(𝒙,t)×(i)]}ψ^(𝒙),\displaystyle\quad+\lambda_{\text{so}}\bm{\sigma}\cdot[\bm{\nabla}V^{\prime}_{\text{imp}}(\bm{x},t)\times(-i\hbar\bm{\nabla})]\biggr{\}}\hat{\psi}(\bm{x}), (1)

where ψ^(𝒙)\hat{\psi}(\bm{x}) is the electron field operator, ϵF\epsilon_{F} is the Fermi energy, 𝝈=(σx,σy,σz)\bm{\sigma}=(\sigma^{x},\sigma^{y},\sigma^{z}) are the Pauli matrices, and λso\lambda_{\text{so}} is the strength of the spin-orbit interaction. The third term represents the impurity scattering and the fourth term represents the spin-orbit scattering. Here, Vimp(𝒙,t)=ju[𝒙𝒓j(t)]V^{\prime}_{\text{imp}}(\bm{x},t)=\sum_{j}u[\bm{x}-\bm{r}^{\prime}_{j}(t)] is the total impurity potential, where u[𝒙𝒓j(t)]u[\bm{x}-\bm{r}^{\prime}_{j}(t)] is a single impurity potential due to the jjth impurity located at the position 𝒓j(t)\bm{r}^{\prime}_{j}(t). It is worth noting that the electrons are subject to the moving impurities because we suppose the total system is differentially rotating. To characterize the differential rotation of the system, we introduce a rotation angle Φ(𝒙,t)\Phi(\bm{x},t) around the zz axis, which is chosen as a rotation axis. When we take a cylindrical coordinate system, the coordinate transformation from the laboratory frame 𝒓=(r,φ,z)\bm{r}^{\prime}=(r^{\prime},\varphi^{\prime},z^{\prime}) to the rotating frame 𝒓=(r,φ,z)\bm{r}=(r,\varphi,z) can be written as r=rr=r^{\prime}, z=zz=z^{\prime}, and φ=φΦ(𝒓,t)\varphi=\varphi^{\prime}-\Phi(\bm{r}^{\prime},t). Note that Φ\Phi is independent of φ\varphi, i.e., φΦ=0\partial_{\varphi}\Phi=0 because of axisymmetry. Supposing Φ(𝒙,t)=0\Phi(\bm{x},t)=0 at an initial time t=0t=0, the position of the jjth impurity at tt is given by 𝒓j(t)=z[Φ(𝒓j,t)]𝒓j\bm{r}^{\prime}_{j}(t)=\mathcal{R}_{z}[\Phi(\bm{r}_{j},t)]\bm{r}_{j}, where z\mathcal{R}_{z} denotes rotation around the zz axis and 𝒓j\bm{r}_{j} is the position at t=0t=0.

Now, we define a generator of the differential rotation with angle Φ(𝒙,t)\Phi(\bm{x},t) as

Q^Φ(t)=d3xΦ(𝒙,t)ψ^(𝒙)Jzψ^(𝒙),\hat{Q}_{\Phi}(t)=\int d^{3}x\Phi(\bm{x},t)\hat{\psi}^{\dagger}(\bm{x})J^{z}\hat{\psi}(\bm{x}), (2)

where JzJ^{z} is the total angular momentum operator acting on coordinates and spin space as Jz=iφ+σz/2J^{z}=-i\hbar\partial_{\varphi}+\hbar\sigma^{z}/2. Note that JzJ^{z} and Φ(𝒙,t)\Phi(\bm{x},t) are commutative. For an arbitrary state vector in the laboratory frame |Ψ(t)|\Psi^{\prime}(t)\rangle, the state vector in the rotating frame is given by

|Ψ(t)=exp[iQ^Φ(t)]|Ψ(t).|\Psi(t)\rangle=\exp\left[\frac{i}{\hbar}\hat{Q}_{\Phi}(t)\right]|\Psi^{\prime}(t)\rangle. (3)

The Schrödinger equation in the laboratory frame, it|Ψ(t)=H^|Ψ(t)i\hbar\partial_{t}|\Psi^{\prime}(t)\rangle=\hat{H}^{\prime}|\Psi^{\prime}(t)\rangle, yields

it|Ψ(t)\displaystyle i\hbar\frac{\partial}{\partial t}|\Psi(t)\rangle =(eiQ^Φ/H^eiQ^Φ/Q^tΦ)|Ψ(t)\displaystyle=(e^{i\hat{Q}_{\Phi}/\hbar}\hat{H}^{\prime}e^{-i\hat{Q}_{\Phi}/\hbar}-\hat{Q}_{\partial_{t}\Phi})|\Psi(t)\rangle (4)
=H^T|Ψ(t),\displaystyle=\hat{H}_{T}|\Psi(t)\rangle,

where Q^tΦ=d3xtΦ(𝒙,t)ψ^(𝒙)Jzψ^(𝒙)\hat{Q}_{\partial_{t}\Phi}=\int d^{3}x\partial_{t}\Phi(\bm{x},t)\hat{\psi}^{\dagger}(\bm{x})J^{z}\hat{\psi}(\bm{x}) and Q^Φ\hat{Q}_{\Phi} commute because of φΦ=0\partial_{\varphi}\Phi=0. The Hamiltonian HTH_{T} governs dynamics in the rotating frame. The density operator in the rotating frame, ρ^(t)\hat{\rho}(t), is given by ρ^(t)=eiQ^Φ/ρ^(t)eiQ^Φ/\hat{\rho}(t)=e^{i\hat{Q}_{\Phi}/\hbar}\hat{\rho}^{\prime}(t)e^{-i\hat{Q}_{\Phi}/\hbar}, where ρ^(t)\hat{\rho}^{\prime}(t) is the density operator in the laboratory frame. The time evolution of ρ^(t)\hat{\rho}(t) is determined by itρ^(t)=[H^T,ρ^(t)]i\hbar\partial_{t}\hat{\rho}(t)=[\hat{H}_{T},\hat{\rho}(t)]. Assuming that the single impurity potential u(𝒙)u(\bm{x}) is isotropic and its typical range aa, such that u(𝒙)0u(\bm{x})\simeq 0 for |𝒙|a|\bm{x}|\gg a, is much smaller than a typical scale of the gradient of the differential rotation, i.e., a|Φ|1a|{\bm{\nabla}}\Phi|\ll 1, the Hamiltonian in the rotating frame can be rewritten as

H^T=d3xψ^(𝒙){(i𝑨sJz)22mAs,0JzϵF+Vimp(𝒙)\displaystyle\!\!\!\!\!\!\hat{H}_{T}=\!\!\int\!\!d^{3}x\hat{\psi}^{\dagger}(\bm{x})\biggl{\{}\frac{(-i\hbar{\bm{\nabla}}\!\!-\!\!{\bm{A}}_{s}J^{z})^{2}}{2m}-\!\!A_{s,0}J^{z}\!\!-\epsilon_{F}+\!V_{\text{imp}}(\bm{x})
+λso𝝈[Vimp(𝒙)×(i𝑨sJz)]}ψ^(𝒙),\displaystyle+\lambda_{\text{so}}\bm{\sigma}\cdot[{\bm{\nabla}}V_{\text{imp}}(\bm{x})\times(-i\hbar{\bm{\nabla}}-{\bm{A}}_{s}J^{z})]\biggr{\}}\hat{\psi}(\bm{x}), (5)

where the time and spatial derivatives of the rotation angle are denoted by

As,μ(𝒙,t)=(tΦ(𝒙,t),Φ(𝒙,t))(μ=0,x,y,z).\displaystyle A_{s,\mu}(\bm{x},t)=\Bigl{(}\partial_{t}\Phi(\bm{x},t),{\bm{\nabla}}\Phi(\bm{x},t)\Bigr{)}\quad(\mu=0,x,y,z). (6)

We call As,μ(𝒙,t)A_{s,\mu}(\bm{x},t) “emergent gauge field” in this Letter. In the rotating frame, the effects of the differential rotation are represented by the emergent gauge fields, whereas the impurity potential given by Vimp(𝒙)=ju(𝒙𝒓j)V_{\text{imp}}(\bm{x})=\sum_{j}u(\bm{x}-\bm{r}_{j}) does not depend on time under the assumption a|Φ|1a|{\bm{\nabla}}\Phi|\ll 1.

Setup. We present the Fourier representation of the total Hamiltonian in the rotating frame to facilitate calculations: H^T=H^0+H^imp+H^so+H^(t)\hat{H}_{T}=\hat{H}_{0}+\hat{H}_{\text{imp}}+\hat{H}_{\text{so}}+\hat{H}^{\prime}(t), where H^(t)\hat{H}^{\prime}(t) is the contribution of the emergent gauge field, and we treat it as a perturbation. The first term H^0=𝒌ϵ𝒌ψ^𝒌ψ^𝒌\hat{H}_{0}=\sum_{\bm{k}}\epsilon_{\bm{k}}\hat{\psi}_{\bm{k}}^{\dagger}\hat{\psi}_{\bm{k}} represents the kinetic term, where ϵ𝒌=2k2/2mϵF\epsilon_{\bm{k}}=\hbar^{2}k^{2}/2m-\epsilon_{F} is the kinetic energy, and ψ^𝒌\hat{\psi}_{\bm{k}} is the Fourier component of the electron annihilation operator. The second and third terms describe the momentum scattering and the spin-orbit scattering due to the impurities, respectively. These are expressed as H^imp=𝒌𝒌V𝒌𝒌ψ^𝒌ψ^𝒌\hat{H}_{\text{imp}}=\sum_{\bm{k}\bm{k}^{\prime}}V_{\bm{k}-\bm{k}^{\prime}}\hat{\psi}_{\bm{k}}^{\dagger}\hat{\psi}_{\bm{k}^{\prime}} and H^so=iλso𝒌𝒌V𝒌𝒌(𝒌×𝒌)ψ^𝒌𝝈ψ^𝒌\hat{H}_{\text{so}}=i\hbar\lambda_{\text{so}}\sum_{\bm{k}\bm{k}^{\prime}}V_{\bm{k}-\bm{k}^{\prime}}(\bm{k}\times\bm{k}^{\prime})\cdot\hat{\psi}_{\bm{k}}^{\dagger}\bm{\sigma}\hat{\psi}_{\bm{k}^{\prime}}, where V𝒌V_{\bm{k}} denotes the Fourier component of the impurity potential Vimp(𝒙)V_{\text{imp}}(\bm{x}). We assume a short-range impurity potential, i.e., u(𝒙𝒓j)=uiδ(𝒙𝒓j)u(\bm{x}-\bm{r}_{j})=u_{\text{i}}\delta(\bm{x}-\bm{r}_{j}), where uiu_{\text{i}} is the strength of the impurity potential defined by ui=d3xu(𝒙)u_{\text{i}}=\int d^{3}xu(\bm{x}) in general, while the perturbed part, denoted by H^(t)=H^s+(Lz)\hat{H}^{\prime}(t)=\hat{H}_{s}+\order{L^{z}} with Lz=iφL^{z}=-i\hbar\partial_{\varphi} being the orbital angular momentum, represents the effect of the emergent gauge fields. The Hamiltonian H^s\hat{H}_{s} incorporates the electron spin, given by

H^s\displaystyle\hat{H}_{s} =22m𝒌𝒌𝒒ψ^𝒌+(𝒌σzδ𝒌𝒌12𝑨s,𝒌𝒌)ψ^𝒌𝑨s(𝒒)\displaystyle=-\frac{\hbar^{2}}{2m}\sum_{\bm{k}\bm{k}^{\prime}\bm{q}}\hat{\psi}_{\bm{k}_{+}}^{\dagger}\left(\bm{k}\sigma^{z}\delta_{\bm{k}\bm{k}^{\prime}}-\frac{1}{2}\bm{A}_{s,\bm{k}-\bm{k}^{\prime}}\right)\hat{\psi}_{\bm{k}^{\prime}_{-}}\cdot\bm{A}_{s}(\bm{q})
2s^(𝒒)As,0(𝒒),\displaystyle\quad-\frac{\hbar}{2}\hat{s}(\bm{q})A_{s,0}(\bm{q}), (7)

where 𝑨s,𝒒\bm{A}_{s,\bm{q}} is the Fourier component of the emergent gauge fields, and 𝒌±=𝒌±𝒒/2\bm{k}_{\pm}=\bm{k}\pm\bm{q}/2 are defined.

To define the spin-current operator, we consider the temporal modulation of the zz-polarized spin density, ts^(𝒒)=i𝒒𝒋^s(𝒒)+𝒯^𝒒\partial_{t}\hat{s}(\bm{q})=-i\bm{q}\cdot\hat{\bm{j}}_{s}(\bm{q})+\hat{\mathcal{T}}_{\bm{q}}, where s^(𝒒)=𝒌ψ^𝒌σzψ^𝒌+\hat{s}(\bm{q})=\sum_{\bm{k}}\hat{\psi}^{\dagger}_{\bm{k}_{-}}\sigma^{z}\hat{\psi}_{\bm{k}_{+}} is the spin-density operator, and 𝒯^𝒒\hat{\mathcal{T}}_{\bm{q}} describes the spin torque due to the spin-orbit interaction of the impurities. The spin-current density operator polarized in the zz direction is defined by 𝒋^s(𝒒)=𝒌𝒌ψ^𝒌𝒋s,𝒌𝒌ψ^𝒌+\hat{\bm{j}}_{s}(\bm{q})=\sum_{\bm{k}\bm{k}^{\prime}}\hat{\psi}^{\dagger}_{\bm{k}_{-}^{\prime}}\bm{j}_{s,\bm{k}^{\prime}\bm{k}}\hat{\psi}_{\bm{k}_{+}}, where the matrix elements 𝒋s,𝒌𝒌\bm{j}_{s,\bm{k}^{\prime}\bm{k}} are given by

𝒋s,𝒌𝒌=δ𝒌𝒌𝒗𝒌σz+λsoV𝒌𝒌[𝒆z×(𝒌𝒌)]𝑨s,𝒌𝒌2m,\displaystyle\!\!\!\!\!\bm{j}_{s,\bm{k}^{\prime}\bm{k}}=\delta_{\bm{k}^{\prime}\bm{k}}\bm{v}_{\bm{k}}\sigma^{z}\!\!+\!\lambda_{\text{so}}V_{\bm{k}^{\prime}-\bm{k}}[\bm{e}_{z}\!\!\times\!\!(\bm{k}^{\prime}\!\!-\bm{k})]\!-\!\frac{\hbar\bm{A}_{s,\bm{k}^{\prime}-\bm{k}}}{2m}, (8)

where 𝒗𝒌=𝒌/m\bm{v}_{\bm{k}}=\hbar\bm{k}/m is the velocity and 𝒆z\bm{e}_{z} is the unit vector in zz direction.

Calculation of spin current. We now compute the spin current induced by the emergent gauge fields. The statistical averages of the spin density and spin current are given by

j^μ(𝒒,ω)=dϵ2πi𝒌𝒌Tr[jsμ,𝒌𝒌G𝒌+,𝒌<(ϵ+,ϵ)],\displaystyle\!\!\langle\hat{j}_{\mu}(\bm{q},\omega)\rangle=\!\!\int^{\infty}_{-\infty}\!\!\frac{d\epsilon}{2\pi i}\sum_{\bm{k}\bm{k}^{\prime}}\Tr\left[j_{s\mu,\bm{k}^{\prime}\bm{k}}G^{<}_{\bm{k}_{+},\bm{k}^{\prime}_{-}}(\epsilon_{+},\epsilon_{-})\right], (9)

where ϵ±=ϵ±ω/2\epsilon_{\pm}=\epsilon\pm\omega/2, js0,𝒌𝒌=σzδ𝒌𝒌j_{s0,\bm{k}^{\prime}\bm{k}}=\sigma^{z}\delta_{\bm{k}^{\prime}\bm{k}}, and the trace is taken for the spin space. Here, the four-vector j^μ=(s^,𝒋^s)\hat{j}_{\mu}=(\hat{s},\hat{\bm{j}}_{s}) represents the spin density and spin current operators. The function G𝒌+,𝒌<(ϵ+,ϵ)G^{<}_{\bm{k}_{+},\bm{k}^{\prime}_{-}}(\epsilon_{+},\epsilon_{-}) is the lesser component of the nonequilibrium path-ordered Green’s function, defined by G𝒌,𝒌(t,t)=iTKψ^𝒌+(t)ψ^𝒌(t)G_{\bm{k},\bm{k}^{\prime}}(t,t^{\prime})=-i\langle T_{K}\hat{\psi}_{\bm{k}_{+}}(t)\hat{\psi}^{\dagger}_{\bm{k}^{\prime}_{-}}(t^{\prime})\rangle, where TKT_{K} is a path-ordering operator, ψ^(t)=U^(t)ψ^(t)U^(t)\hat{\psi}(t)=\hat{U}^{\dagger}(t)\hat{\psi}(t)\hat{U}(t) is the Heisenberg representation with U^(t)=Texp[(i/)tH^T(τ)𝑑τ]\hat{U}(t)=T\text{exp}[-(i/\hbar)\int^{t}_{-\infty}\hat{H}_{T}(\tau)d\tau] and TT being time-ordering operator, and =tr(ρ^)\langle\cdots\rangle=\text{tr}(\hat{\rho}\cdots) is the expectation value with the density operator ρ^\hat{\rho}.

Assuming that the characteristic energy scales of the momentum scattering and the spin-orbit scattering due to the impurities are much smaller than the Fermi energy, i.e., niuiϵFn_{\text{i}}u_{\text{i}}\ll\epsilon_{F} and 2λso2kF41\hbar^{2}\lambda_{\text{so}}^{2}k_{F}^{4}\ll 1, we treat them in the Born approximation. With the uniformly random distribution of impurities, we perform the average of their positions to obtain the retarded/advanced Green’s function: g𝒌r/a(ϵ)=1/(ϵϵ𝒌±iγ)g^{r/a}_{\bm{k}}(\epsilon)=1/(\epsilon-\epsilon_{\bm{k}}\pm i\hbar\gamma), where γ=πniui2ν0(1+22λso2kF4/3)\hbar\gamma=\pi n_{\text{i}}u_{\text{i}}^{2}\nu_{0}(1+2\hbar^{2}\lambda_{\text{so}}^{2}k_{F}^{4}/3) is the damping constant calculated with the density of state per spin at Fermi level ν0=mkF/2π22\nu_{0}=mk_{F}/2\pi^{2}\hbar^{2}. We assume that γϵF\hbar\gamma\ll\epsilon_{F}. This condition is well-satisfied when uiν01u_{\text{i}}\nu_{0}\lesssim 1.

The spin-current density in linear response to the emergent gauge fields is expressed as j^μ(𝒒,ω)=Kμν(ω)As,ν(𝒒,ω)\langle\hat{j}_{\mu}(\bm{q},\omega)\rangle=K_{\mu\nu}(\omega)A_{s,\nu}(\bm{q},\omega), where Kμν(ω)K_{\mu\nu}(\omega) is the response function. It is presumed that the time and spatial variation of the differential rotation are much slower than the electron mean-free path l=vFτl=v_{F}\tau and momentum relaxation time τ=1/2γ\tau=1/2\gamma, respectively, i.e., l|Φ|1l|\bm{\nabla}\Phi|\ll 1 and τ|tΦ|1\tau|\partial_{t}\Phi|\ll 1, where vF=kF/mv_{F}=\hbar k_{F}/m is the Fermi velocity and kF=2mϵF/2k_{F}=\sqrt{2m\epsilon_{F}/\hbar^{2}} is the Fermi wavenumber. In terms of Fourier space, conditions lq1lq\ll 1 and τω1\tau\omega\ll 1 hold. By including the ladder vertex corrections due to the impurities, and using the relations vFq/2γϵF\hbar v_{F}q/2\ll\hbar\gamma\ll\epsilon_{F} and ω/2γϵF\hbar\omega/2\ll\hbar\gamma\ll\epsilon_{F}, the response function is calculated as

Kμν(ω)=δμ0δν0σ02e2D\displaystyle K_{\mu\nu}(\omega)=\delta_{\mu 0}\delta_{\nu 0}\frac{\hbar\sigma_{0}}{2e^{2}D}
+iω4π𝒌v𝒌,μTr[σzg+rσz(v𝒌,ν+Λνs)ga],\displaystyle\qquad+i\omega\frac{\hbar}{4\pi}\sum_{\bm{k}}v_{\bm{k},\mu}\Tr[\sigma^{z}g^{r}_{+}\sigma^{z}(v_{\bm{k},\nu}+\Lambda_{\nu}^{s})g^{a}_{-}], (10)

where σ0=nee2τ/m\sigma_{0}=n_{e}e^{2}\tau/m is the Drude conductivity with ne=4ϵFν0/3n_{e}=4\epsilon_{F}\nu_{0}/3 being the number density of the electrons and e(>0)e(>0) being the elementary charge, and D=vF2τ/3D=v_{F}^{2}\tau/3 is the diffusion constant. We set v𝒌,0=1v_{\bm{k},0}=1 and v𝒌,i=ki/mv_{\bm{k},i}=\hbar k_{i}/m. Here, Λνs\Lambda^{s}_{\nu} describes the three-point vertex corrections, and g±r/a=g𝒌±r/a(±ω/2)g^{r/a}_{\pm}=g^{r/a}_{\bm{k}_{\pm}}(\pm\omega/2) are specified. The first term of the response function represents the spin susceptibility for the rigid rotation [68], known as the Barnett effect.

Performing a straightforward calculation, we derive the rotation-induced spin density and spin current:

s^(𝒒,ω)\displaystyle\langle\hat{s}(\bm{q},\omega)\rangle =iωσ02e2Dτs1Dq2iω+τs1Φ(𝒒,ω),\displaystyle=-i\omega\frac{\hbar\sigma_{0}}{2e^{2}D}\frac{\tau_{s}^{-1}}{Dq^{2}-i\omega+\tau_{s}^{-1}}\Phi(\bm{q},\omega), (11)
𝒋^s(𝒒,ω)\displaystyle\langle\hat{\bm{j}}_{s}(\bm{q},\omega)\rangle =iωσ02e2τs1Dq2iω+τs1i𝒒Φ(𝒒,ω),\displaystyle=i\omega\frac{\hbar\sigma_{0}}{2e^{2}}\frac{\tau_{s}^{-1}}{Dq^{2}-i\omega+\tau_{s}^{-1}}i{\bm{q}}\Phi(\bm{q},\omega), (12)

where τs=9τ/82λso2kF4\tau_{s}=9\tau/8\hbar^{2}\lambda_{\text{so}}^{2}k_{F}^{4} is the spin-relaxation time. Combining these results, we obtain Fick’s law, 𝒋s=Ds{\bm{j}}_{s}=-D\bm{\nabla}s. This implies that our spin current is a diffusive flow produced by the gradient of the spin density, in which the impurity scattering governs the diffusion.

Now, we focus on long-term dynamics such that time scales are longer than the period of the rotation, ωΩ\omega\lesssim\Omega. In metals, the spin relaxation time and the spin diffusion length are much shorter than the typical scale of the period and that of the spatial variation for the differential rotation, respectively (i.e., Ω1τs\Omega^{-1}\gg\tau_{s} and |Ω/Ω|1ls|\bm{\nabla}\Omega/\Omega|^{-1}\gg l_{s}, where ls=Dτsl_{s}=\sqrt{D\tau_{s}}). Thus, the relations Dq2,ωτs1Dq^{2},\omega\ll\tau_{s}^{-1} are satisfied, and the rotation-induced spin current reduces to the following form in the real space:

𝒋s(𝒙,t)=σ02e2tΦ(𝒙,t).\displaystyle\bm{j}_{s}(\bm{x},t)=-\frac{\hbar\sigma_{0}}{2e^{2}}\bm{\nabla}\partial_{t}\Phi(\bm{x},t). (13)

In addition, the rotation-induced spin density reduces to

s(𝒙,t)=σ02e2DtΦ(𝒙,t),s(\bm{x},t)=\frac{\hbar\sigma_{0}}{2e^{2}D}\partial_{t}\Phi(\bm{x},t), (14)

which is the Barnett effect generalized to differential rotations. The susceptibility given by σ0/2e2D\hbar\sigma_{0}/2e^{2}D is identical to that of the Barnett effect for rigid rotations. These results suggest that the spin density and current are polarized along the rotation axis and the spin current is driven in the direction of the spatial gradient of the angular velocity. By contrast, if the spin relaxation is so slow that τs1ωΩ\tau_{s}^{-1}\ll\omega\lesssim\Omega, the spin density (11) as well as the spin current (12) vanish, which implies that the spin relaxation is necessary to generate the spin current and spin density. Despite this fact, the magnitude of the spin current (61) is independent of the spin relaxation time.

The absence of τs\tau_{s} from the long-term dynamics of the spin density and the spin current is explained as follows. In the response function (10), the first term that originates from the spin-rotation coupling As,0JzA_{s,0}J^{z} in (5) is principal, while the other terms including the spin-orbit coupling are suppressed by τsω1\tau_{s}\omega\ll 1. This means that the spin density is determined only by the susceptibility of the Barnett effect and the angular velocity. The gradient of this spin density produces the spin current due to the diffusion caused by the impurity scattering, as shown. Thus, the spin density and current are independent of τs\tau_{s}.

The spin-orbit interaction contributes only to the transient process that is necessary to drive the system to the final steady state, but it does not contribute to long-term dynamics. Indeed, for ωΩ\omega\gtrsim\Omega, (11) and (12) provide the following spin transport equation:

st+𝒋s=sτs+σ02e2DτstΦ,\frac{\partial s}{\partial t}+{\bm{\nabla}}\cdot{\bm{j}}_{s}=-\frac{s}{\tau_{s}}+\frac{\hbar\sigma_{0}}{2e^{2}D\tau_{s}}\partial_{t}\Phi, (15)

which describes the transient process with a time scale ωτs1\omega\simeq\tau_{s}^{-1}. We expect to obtain similar diffusive spin currents as long as there is an interaction producing a transient process satisfying Ωτs1τ1\Omega\ll\tau_{s}^{-1}\ll\tau^{-1}, not necessarily that presented here.

Taylor-Couette flow. As an explicit example, let us consider a two-dimensional steady flow with concentric circular streamlines. In this case, the flow velocity is parallel to the φ\varphi-direction, 𝒗=(0,vφ,0)\bm{v}=(0,v_{\varphi},0), satisfying the following Navier-Stokes equation: r2vφ+(rvφ)/rvφ/r2=0\partial_{r}^{2}v_{\varphi}+(\partial_{r}v_{\varphi})/r-v_{\varphi}/r^{2}=0. (The detailed derivation is given in Supplemental Material.) The general solution is vφ=c1/r+c2rv_{\varphi}=c_{1}/r+c_{2}r with integration constants c1c_{1} and c2c_{2} determined by boundary conditions. The first term represents irrotational flow, while the second term represents rigid-rotation flow. We consider the two infinitely long coaxial cylinders of radii r1r_{1} and r2r_{2} (r2>r1>0r_{2}>r_{1}>0), and the inner and outer cylinders are rotating at constant angular velocities Ω1\Omega_{1} and Ω2\Omega_{2}, respectively. Under these boundary conditions, vφ(r1)=r1Ω1v_{\varphi}(r_{1})=r_{1}\Omega_{1} and vφ(r2)=r2Ω2v_{\varphi}(r_{2})=r_{2}\Omega_{2}, the constants are obtained as c1=(Ω1Ω2)r12r22/(r22r12)c_{1}=(\Omega_{1}-\Omega_{2})r_{1}^{2}r_{2}^{2}/(r_{2}^{2}-r_{1}^{2}) and c2=(Ω2r22Ω1r12)/(r22r12)c_{2}=(\Omega_{2}r_{2}^{2}-\Omega_{1}r_{1}^{2})/(r_{2}^{2}-r_{1}^{2}). This concentric steady flow, known as the Taylor-Couette flow [69], induces the steady differential rotation with angular velocity Ω(r)=c1/r2+c2\Omega(r)=c_{1}/r^{2}+c_{2}, leading to the generation of spin current [see Fig. 1(a)]:

𝒋s(r)=𝒆rσ0e2r12r22r22r12Ω1Ω2r3,\displaystyle\bm{j}_{s}(r)=\bm{e}_{r}\frac{\hbar\sigma_{0}}{e^{2}}\frac{r_{1}^{2}r_{2}^{2}}{r_{2}^{2}-r_{1}^{2}}\frac{\Omega_{1}-\Omega_{2}}{r^{3}}, (16)

where 𝒆r\bm{e}_{r} is the unit vector in the rr direction. Notably, since the vorticity in this system is constant, ×𝒗=2c2𝒆z\bm{\nabla}\times\bm{v}=2c_{2}\bm{e}_{z}, the conventional spin currents owing to the spin-vorticity coupling, which require the vorticity gradient [64, 55] or time-dependent vorticity [63], do not appear. On the other hand, our theory predicts the generation of spin current even in vorticity-free cases c2=0c_{2}=0.

To estimate the magnitude of the spin current, we assume that the radii of the two cylinders are much larger than the gap between them d=r2r1d=r_{2}-r_{1}, i.e., r1,r2dr_{1},r_{2}\gg d, and only the outer cylinder is rotating, Ω1=0\Omega_{1}=0 and Ω20\Omega_{2}\neq 0, for simplicity. Under this assumption, the spin current is approximated as js=σ0Ω2/2e2dj_{s}=\hbar\sigma_{0}\Omega_{2}/2e^{2}d. We consider (Ga,In)Sn as the fluid with the electric conductivity σ0=3.26×106(Ωm)1\sigma_{0}=3.26\times 10^{6}(\Omega\text{m})^{-1} [58]. Set d1μd\sim 1\mum and Ω2102\Omega_{2}\sim 10^{2}kHz, the magnitude of the spin current in charge current units is estimated as ejs1.07×102Am2ej_{s}\sim 1.07\times 10^{2}\mathrm{A}\mathrm{m}^{-2}.

Torsional oscillation of cantilever. As another example, we focus on the torsional oscillation of a cantilever [42, 44], wherein one of the ends is securely fixed while external forces are exerted on the opposite end. These forces induce only a twisting motion in the cantilever, not bending or other deformations. In this case, the angular velocity of the system varies along the rotation axis rather than the radial direction. This position-dependent rotation induces relative motion of the impurities in the cantilever, and our analysis applies even to such a setting.

The distortion angle φ(z,t)\varphi(z,t) of the cantilever dictates the subsequent equation of motion: Cz2φ=ρmIt2φC\partial_{z}^{2}\varphi=\rho_{m}I\partial_{t}^{2}\varphi, where CC is the torsional rigidity, ρm\rho_{m} is the mass density, and II is the moment of inertia of the cross section about its center of mass. By solving the equation of motion under the boundary conditions φ(0,t)=0\varphi(0,t)=0 and zφ(l,t)=0\partial_{z}\varphi(l,t)=0 and considering the initial conditions φ(l,0)=φ0\varphi(l,0)=\varphi_{0} and tφ(z,0)=0\partial_{t}\varphi(z,0)=0, we derive the solution as φn(z,t)=φ0sinknzcosωnt\varphi_{n}(z,t)=\varphi_{0}\sin k_{n}z\cos\omega_{n}t, where kn=(2n1)π/2lk_{n}=(2n-1)\pi/2l and ωn=vkn\omega_{n}=vk_{n} with the integer n1n\geq 1 and the velocity v=C/ρmIv=\sqrt{C/\rho_{m}I}. Plugging φ\varphi into Φ\Phi in (61), we find the spin current, driven by the nnth torsional oscillation of cantilever, flows along the zz direction as given by [see Fig. 1(b)]

𝒋s,n(z,t)=𝒆zσ0φ0v2e2kn2cosknzsinωnt.\displaystyle\bm{j}_{s,n}(z,t)=\bm{e}_{z}\frac{\hbar\sigma_{0}\varphi_{0}v}{2e^{2}}k_{n}^{2}\cos k_{n}z\sin\omega_{n}t. (17)

The mechanism under investigation in this study represents a universal phenomenon, irrespective of material choice, and fundamentally distinct from the previous theory [70] that focus solely on magnetic materials.

Finally, we estimate the magnitude of the spin current driven by the torsional oscillation. For a plate-shaped cantilever with width aa, thickness bb and length ll, the quantities CC and II are calculated as Cμab3/3C\simeq\mu ab^{3}/3 and Ia3b/12I\simeq a^{3}b/12 (aba\gg b) with Lamé constant μ\mu. The magnitude of the total spin current in charge current units is denoted by Jn=eabjs,n(0,0)J_{n}=eabj_{s,n}(0,0), while that attributed to the first torsional oscillation mode is given by J1=(π2σ0φ0/4e)(b/l)2μ/ρmJ_{1}=(\pi^{2}\hbar\sigma_{0}\varphi_{0}/4e)(b/l)^{2}\sqrt{\mu/\rho_{m}}. We consider that the cantilever is composed of copper with weak spin-orbit interaction. By using the charge conductivity σ0=6.45×107Ω1m1\sigma_{0}=6.45\times 10^{7}\,\Omega^{-1}\text{m}^{-1}, the Lamé constant μ=48.3GHz\mu=48.3\,\text{GHz} and the mass density ρm=8.96×103kg/m3\rho_{m}=8.96\times 10^{3}\,\text{kg}/\text{m}^{3}, the total spin current is estimated as J10.15μJ_{1}\sim 0.15\,\muA for φ00.01\varphi_{0}\sim 0.01 and b/l=1/4b/l=1/4.

Refer to caption
Figure 1: Schematic illustration showing the generation of spin current due to (a) the Taylor-Couette flow in a liquid metal and (b) torsional motion of a cantilever.

Conclusion and discussion. We have proposed a mechanism for spin current generation in differentially rotating systems. This mechanism produces spin currents even in vorticity-free systems and differs from the known mechanisms based on the spin-vorticity coupling. Our result is not phenomenological, but is derived from a microscopic theory of non-equilibrium spin dynamics. This is a natural extension of the Barnett effect in rigidly rotating systems to non-uniform rotating systems. It removes the previous limitation of spin current generation, which was restricted to systems with vorticity, and broadens the potential for spin devices using a wider range of spatially non-uniform mechanical motions. In addition, it would provide a deeper understanding of the ubiquitous gyromagnetic effect, both from a theoretical and an experimental point of view.

In more detail, distinctions between our mechanism and those proposed in other literature [63, 64, 55] can be found in the source terms that violate the conservation of the spin density, where the spin current is proportional to the gradient of those source terms. In our case, the spin transport equation is given in (60) and the source term is proportional to Ω\Omega, the angular velocity of the orbital rotation around a fixed axis. On the other hand, the source term given in Ref. [63] and those in Refs. [64, 55] are proportional to tω~\partial_{t}\tilde{\omega} and ζω~\zeta\tilde{\omega}, respectively, where ω~\tilde{\omega} is the vorticity and ζ\zeta is a phenomenological parameter. The difference between our proposal and that of Ref. [63] can be detected experimentally, for the torsional oscillation, from the frequency dependence of the spin current. We can distinguish our mechanism from those of Refs. [64, 55] experimentally based on its dependence on phenomenological parameters (for details, see Supplemental Material). Moreover, an irrotational flow, in which the vorticity is zero, can prevent the spin current generation due to the spin-vorticity coupling. Creating an irrotational flow akin to a differentially rotating system allows us to detect spin currents specific to our mechanism. One may achieve such flow in the Taylor-Couette flow by taking appropriate boundary conditions that realize c2=0c_{2}=0 with c10c_{1}\neq 0. Furthermore, we can distinguish the mechanisms even in the case of c20c_{2}\neq 0. Since the vorticity in this system is uniform and time-independent, neither the source term in Ref. [63] nor that in Refs. [64, 55] can contribute to the spin current. As a result, the Taylor-Couette flow can generate the spin current in our mechanism but not in the other ones. Exploring the implications of our mechanism in various experiments would be valuable for both fundamental physics and next-generation devices, such as integrating liquid metal fluids with micro-electromechanical systems (MEMS) [71] to utilize electrical and spin degrees of freedom.

Acknowledgments. We would like to thank D. Oue and Y. Nozaki for the valuable and informative discussion. This work was partially supported by JST CREST Grant No. JPMJCR19J4, Japan. We acknowledge JSPS KAKENHI for Grants (No. JP21H01800, No. JP21H04565, No. JP23H01839, No. JP21H05186, No. JP19K03659, No. JP19H05821, No. JP18K03623, and No. JP21H05189). The work was supported in part by the Chuo University Personal Research Grant. The authors thank RIKEN iTHEMS NEW working group for providing the genesis of this collaboration.

References

  • Breit [1938] G. Breit, Approximately relativistic equations, Phys. Rev. 53, 153 (1938).
  • Hone [1961] D. Hone, Self-Diffusion in Liquid He3{\mathrm{He}}^{3}Phys. Rev. 121, 669 (1961).
  • Leggett [1965] A. J. Leggett, Theory of a Superfluid Fermi Liquid. I. General Formalism and Static Properties, Phys. Rev. 140, A1869 (1965).
  • Kawasaki [1966] K. Kawasaki, Diffusion Constants near the Critical Point for Time-Dependent Ising Models. I, Phys. Rev. 145, 224 (1966).
  • Maekawa et al. [2017] S. Maekawa, S. O. Valenzuela, E. Saitoh, and T. Kimura, Spin current, Vol. 22 (Oxford University Press, Oxford, 2017).
  • Dyakonov and Perel [1971a] M. I. Dyakonov and V. I. Perel, Current-induced spin orientation of electrons in semiconductors, Physics Letters A 35, 459 (1971a).
  • Dyakonov and Perel [1971b] M. I. Dyakonov and V. I. Perel, Possibility of Orienting Electron Spins with Current, JETP Letters 13, 467 (1971b).
  • Hirsch [1999] J. E. Hirsch, Spin Hall Effect, Phys. Rev. Lett. 83, 1834 (1999).
  • Kato et al. [2004] Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, Observation of the Spin Hall Effect in Semiconductors, Science 306, 1910 (2004).
  • Saitoh et al. [2006] E. Saitoh, M. Ueda, H. Miyajima, and G. Tatara, Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect, Appl. Phys. Lett. 88, 182509 (2006).
  • Berger [1996] L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current, Phys. Rev. B 54, 9353 (1996).
  • Mizukami et al. [2001a] S. Mizukami, Y. Ando, and T. Miyazaki, Ferromagnetic resonance linewidth for NM/80NiFe/NM films (NM=Cu, Ta, Pd and Pt), Journal of Magnetism and Magnetic Materials 226-230, 1640 (2001a), proceedings of the International Conference on Magnetism (ICM 2000).
  • Mizukami et al. [2001b] S. M. S. Mizukami, Y. A. Y. Ando, and T. M. T. Miyazaki, The Study on Ferromagnetic Resonance Linewidth for NM/80NiFe/NM (NM=Cu, Ta, Pd and Pt) Films, Japanese Journal of Applied Physics 40, 580 (2001b).
  • Ingvarsson et al. [2002] S. Ingvarsson, L. Ritchie, X. Y. Liu, G. Xiao, J. C. Slonczewski, P. L. Trouilloud, and R. H. Koch, Role of electron scattering in the magnetization relaxation of thin Ni 81 Fe 19 films, Phys. Rev. B 66, 214416 (2002).
  • Lubitz et al. [2003] P. Lubitz, S. F. Cheng, and F. J. Rachford, Increase of magnetic damping in thin polycrystalline Fe films induced by Cu/Fe overlayers, Journal of Applied Physics 93, 8283 (2003).
  • Uchida et al. [2008] K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, Observation of the spin Seebeck effect, Nature 455, 778 (2008).
  • Johnson and Silsbee [1985] M. Johnson and R. H. Silsbee, Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals, Phys. Rev. Lett. 55, 1790 (1985).
  • Valenzuela and Tinkham [2006] S. O. Valenzuela and M. Tinkham, Direct electronic measurement of the spin Hall effect, Nature 442, 176 (2006).
  • Bychkov and Rashba [1984] Y. A. Bychkov and E. I. Rashba, Oscillatory effects and the magnetic susceptibility of carriers in inversion layers, J. Phys. C: Solid State Phys. 17, 6039 (1984).
  • Edelstein [1990] V. M. Edelstein, Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems, Solid State Communications 73, 233 (1990).
  • Sánchez et al. [2013] J. C. R. Sánchez, L. Vila, G. Desfonds, S. Gambarelli, J. P. Attané, J. M. De Teresa, C. Magén, and A. Fert, Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials, Nature Commun. 4, 2944 (2013).
  • Uchida et al. [2011] K.-i. Uchida, T. An, Y. Kajiwara, M. Toda, and E. Saitoh, Surface-acoustic-wave-driven spin pumping in Y3Fe5O12/Pt hybrid structure, Appl. Phys. Lett. 99, 212501 (2011).
  • Weiler et al. [2012] M. Weiler, H. Huebl, F. S. Goerg, F. D. Czeschka, R. Gross, and S. T. B. Goennenwein, Spin Pumping with Coherent Elastic Waves, Phys. Rev. Lett. 108, 176601 (2012).
  • Deymier et al. [2014] P. A. Deymier, J. O. Vasseur, K. Runge, A. Manchon, and O. Bou-Matar, Phonon-magnon resonant processes with relevance to acoustic spin pumping, Phys. Rev. B 90, 224421 (2014).
  • Puebla et al. [2020] J. Puebla, M. Xu, B. Rana, K. Yamamoto, S. Maekawa, and Y. Otani, Acoustic ferromagnetic resonance and spin pumping induced by surface acoustic waves, J. Phys. D: Appl. Phys. 53, 264002 (2020).
  • Al Misba et al. [2020] W. Al Misba, M. M. Rajib, D. Bhattacharya, and J. Atulasimha, Acoustic-Wave-Induced Ferromagnetic-Resonance-Assisted Spin-Torque Switching of Perpendicular Magnetic Tunnel Junctions with Anisotropy Variation, Phys. Rev. Applied 14, 014088 (2020).
  • Camara et al. [2019] I. Camara, J.-Y. Duquesne, A. Lemaître, C. Gourdon, and L. Thevenard, Field-Free Magnetization Switching by an Acoustic Wave, Phys. Rev. Applied 11, 014045 (2019).
  • Tateno et al. [2020] S. Tateno, G. Okano, M. Matsuo, and Y. Nozaki, Electrical evaluation of the alternating spin current generated via spin-vorticity coupling, Phys. Rev. B 102, 104406 (2020).
  • Kawada et al. [2021] T. Kawada, M. Kawaguchi, T. Funato, H. Kohno, and M. Hayashi, Acoustic spin Hall effect in strong spin-orbit metals, Sci. Adv. 7, eabd9697 (2021).
  • Sasaki et al. [2017] R. Sasaki, Y. Nii, Y. Iguchi, and Y. Onose, Nonreciprocal propagation of surface acoustic wave in Ni / LiNbO 3, Phys. Rev. B 95, 020407 (2017).
  • Tateno and Nozaki [2020] S. Tateno and Y. Nozaki, Highly nonreciprocal spin waves excited by magnetoelastic coupling in a Ni/Si bilayer, Phys. Rev. Applied 13, 034074 (2020).
  • Xu et al. [2020] M. Xu, K. Yamamoto, J. Puebla, K. Baumgaertl, B. Rana, K. Miura, H. Takahashi, D. Grundler, S. Maekawa, and Y. Otani, Nonreciprocal surface acoustic wave propagation via magneto-rotation coupling, Science Advances 6, eabb1724 (2020).
  • Küß et al. [2021] M. Küß, M. Heigl, L. Flacke, A. Hörner, M. Weiler, A. Wixforth, and M. Albrecht, Nonreciprocal magnetoacoustic waves in dipolar-coupled ferromagnetic bilayers, Phys. Rev. Appl. 15, 034060 (2021).
  • Matsumoto et al. [2022] H. Matsumoto, T. Kawada, M. Ishibashi, M. Kawaguchi, and M. Hayashi, Large surface acoustic wave nonreciprocity in synthetic antiferromagnets, Appl. Phys. Express 15, 063003 (2022).
  • Lyons et al. [2023] T. P. Lyons, J. Puebla, K. Yamamoto, R. S. Deacon, Y. Hwang, K. Ishibashi, S. Maekawa, and Y. Otani, Acoustically Driven Magnon-Phonon Coupling in a Layered Antiferromagnet, Phys. Rev. Lett. 131, 196701 (2023).
  • Chowdhury et al. [2017] P. Chowdhury, A. Jander, and P. Dhagat, Nondegenerate Parametric Pumping of Spin Waves by Acoustic Waves, IEEE Magn. Lett. 8, 1 (2017).
  • Alekseev et al. [2020] S. G. Alekseev, S. E. Dizhur, N. I. Polzikova, V. A. Luzanov, A. O. Raevskiy, A. P. Orlov, V. A. Kotov, and S. A. Nikitov, Magnons parametric pumping in bulk acoustic waves resonator, Applied Physics Letters 117, 072408 (2020).
  • Liao et al. [2023] L. Liao, J. Puebla, K. Yamamoto, J. Kim, S. Maekawa, Y. Hwang, Y. Ba, and Y. Otani, Valley-Selective Phonon-Magnon Scattering in Magnetoelastic Superlattices, Phys. Rev. Lett. 131, 176701 (2023).
  • Barnett [1915] S. J. Barnett, Magnetization by rotation, Phys. Rev. 6, 239 (1915).
  • A. Einstein and de Haas [1915] A. Einstein and W. J. de Haas, Experimental proof of the existence of Ampère’s molecular currents, Proc. KNAW 18, 696 (1915).
  • Scott [1962] G. Scott, Review of gyromagnetic ratio experiments, Reviews of Modern Physics 34, 102 (1962).
  • [42] T. M. Wallis, J. Moreland, and P. Kabos, Einstein-de Haas Effect in a NiFe Film Deposited on a Microcantilever, Applied Physics Letters 89, 122502.
  • [43] G. Zolfagharkhani, A. Gaidarzhy, P. Degiovanni, S. Kettemann, P. Fulde, and P. Mohanty, Nanomechanical detection of itinerant electron spin flip, Nature Nanotechnology 3, 720.
  • [44] K. Harii, Y.-J. Seo, Y. Tsutsumi, H. Chudo, K. Oyanagi, M. Matsuo, Y. Shiomi, T. Ono, S. Maekawa, and E. Saitoh, Spin Seebeck mechanical force, Nature Communications 10, 2616.
  • [45] K. Mori, M. G. Dunsmore, J. E. Losby, D. M. Jenson, M. Belov, and M. R. Freeman, Einstein–de Haas effect at radio frequencies in and near magnetic equilibrium, Physical Review B 102, 054415.
  • Chudo et al. [2014] H. Chudo, M. Ono, K. Harii, M. Matsuo, J. Ieda, R. Haruki, S. Okayasu, S. Maekawa, H. Yasuoka, and E. Saitoh, Observation of Barnett fields in solids by nuclear magnetic resonance, Appl. Phys. Express 7, 063004 (2014).
  • Chudo et al. [2015] H. Chudo, K. Harii, M. Matsuo, J. Ieda, M. Ono, S. Maekawa, and E. Saitoh, Rotational Doppler Effect and Barnett Field in Spinning NMR, J. Phys. Soc. Jpn. 84, 043601 (2015).
  • [48] M. Arabgol and T. Sleator, Observation of the Nuclear Barnett Effect, Physical Review Letters 122, 177202.
  • Chudo et al. [2021] H. Chudo, M. Matsuo, S. Maekawa, and E. Saitoh, Barnett field, rotational Doppler effect, and Berry phase studied by nuclear quadrupole resonance with rotation, Phys. Rev. B 103, 174308 (2021).
  • Wood et al. [2017] A. Wood, E. Lilette, Y. Fein, V. Perunicic, L. Hollenberg, R. Scholten, and A. Martin, Magnetic pseudo-fields in a rotating electron–nuclear spin system, Nature Physics 13, 1070 (2017).
  • Hirohata et al. [2018] A. Hirohata, Y. Baba, B. A. Murphy, B. Ng, Y. Yao, K. Nagao, and J.-y. Kim, Magneto-optical detection of spin accumulation under the influence of mechanical rotation, Scientific reports 8, 1974 (2018).
  • [52] C. Dornes, Y. Acremann, M. Savoini, M. Kubli, M. J. Neugebauer, E. Abreu, L. Huber, G. Lantz, C. A. F. Vaz, H. Lemke, E. M. Bothschafter, M. Porer, V. Esposito, L. Rettig, M. Buzzi, A. Alberca, Y. W. Windsor, P. Beaud, U. Staub, D. Zhu, S. Song, J. M. Glownia, and S. L. Johnson, The ultrafast Einstein–de Haas effect, Nature 565, 209.
  • [53] M. Ganzhorn, S. Klyatskaya, M. Ruben, and W. Wernsdorfer, Quantum Einstein-de Haas effect, Nature Communications 7, 11443.
  • Adamczyk et al. [2017] L. Adamczyk, J. Adkins, G. Agakishiev, M. Aggarwal, Z. Ahammed, N. Ajitanand, I. Alekseev, D. Anderson, R. Aoyama, A. Aparin, et al., Global Λ{\Lambda} hyperon polarization in nuclear collisions, Nature 54810.1038/nature23004 (2017).
  • Takahashi et al. [2016] R. Takahashi, M. Matsuo, M. Ono, K. Harii, H. Chudo, S. Okayasu, J. Ieda, S. Takahashi, S. Maekawa, and E. Saitoh, Spin hydrodynamic generation, Nature Phys 12, 52 (2016).
  • Kobayashi et al. [2017] D. Kobayashi, T. Yoshikawa, M. Matsuo, R. Iguchi, S. Maekawa, E. Saitoh, and Y. Nozaki, Spin current generation using a surface acoustic wave generated via spin-rotation coupling, Phys. Rev. Lett. 119, 077202 (2017).
  • Takahashi et al. [2020] R. Takahashi, H. Chudo, M. Matsuo, K. Harii, Y. Ohnuma, S. Maekawa, and E. Saitoh, Giant spin hydrodynamic generation in laminar flow, Nature Commun. 11, 3009 (2020).
  • Tabaei Kazerooni et al. [2020] H. Tabaei Kazerooni, A. Thieme, J. Schumacher, and C. Cierpka, Electron Spin-Vorticity Coupling in Pipe Flows at Low and High Reynolds Number, Phys. Rev. Applied 14, 014002 (2020).
  • Tabaei Kazerooni et al. [2021] H. Tabaei Kazerooni, G. Zinchenko, J. Schumacher, and C. Cierpka, Electrical voltage by electron spin-vorticity coupling in laminar ducts, Phys. Rev. Fluids 6, 043703 (2021).
  • Tateno et al. [2021] S. Tateno, Y. Kurimune, M. Matsuo, K. Yamanoi, and Y. Nozaki, Einstein–de Haas phase shifts in surface acoustic waves, Phys. Rev. B 104, L020404 (2021).
  • Barnett [1935] S. J. Barnett, Gyromagnetic and electron-inertia effects, Rev. Mod. Phys. 7, 129 (1935).
  • Hehl and Ni [1990] F. W. Hehl and W.-T. Ni, Inertial effects of a Dirac particle, Phys. Rev. D 42, 2045 (1990).
  • Matsuo et al. [2013] M. Matsuo, J. Ieda, K. Harii, E. Saitoh, and S. Maekawa, Mechanical generation of spin current by spin-rotation coupling, Phys. Rev. B 87, 180402 (2013).
  • Matsuo et al. [2017a] M. Matsuo, Y. Ohnuma, and S. Maekawa, Theory of spin hydrodynamic generation, Phys. Rev. B 96, 020401 (2017a).
  • Matsuo et al. [2017b] M. Matsuo, E. Saitoh, and S. Maekawa, Spin-Mechatronics, J. Phys. Soc. Jpn. 86, 011011 (2017b).
  • Kurimune et al. [2020a] Y. Kurimune, M. Matsuo, S. Maekawa, and Y. Nozaki, Highly nonlinear frequency-dependent spin-wave resonance excited via spin-vorticity coupling, Phys. Rev. B 102, 174413 (2020a).
  • Kurimune et al. [2020b] Y. Kurimune, M. Matsuo, and Y. Nozaki, Observation of Gyromagnetic Spin Wave Resonance in NiFe Films, Phys. Rev. Lett. 124, 217205 (2020b).
  • Funato and Kohno [2018] T. Funato and H. Kohno, Generation of Spin Current from Lattice Distortion Dynamics: Spin–Orbit Routes, J. Phys. Soc. Jpn. 87, 073706 (2018).
  • Taylor [1923] G. I. Taylor, Stability of a viscous liquid contained between two rotating cylinders, Philos. Trans. R. Soc. London, Ser. A 223, 289 (1923).
  • Fujimoto and Matsuo [2020] J. Fujimoto and M. Matsuo, Magnon current generation by dynamical distortion, Phys. Rev. B 102, 020406 (2020).
  • Khoshmanesh et al. [2017] K. Khoshmanesh, S.-Y. Tang, J. Y. Zhu, S. Schaefer, A. Mitchell, K. Kalantar-Zadeh, and M. D. Dickey, Liquid metal enabled microfluidics, Lab on a Chip 17, 974 (2017).

I Transformation to differentially rotating frame

By using the total angular momentum operator acting on coordinates and spin space,

Jzi(𝒙×)zI+12σz,,J^{z}\equiv-i\hbar(\bm{x}\times\bm{\nabla})_{z}\otimes I+1\otimes\frac{\hbar}{2}\sigma^{z},, (18)

we define the following operator:

Q^Φ(t)=d3xΦ(𝒙,t)ψ^(𝒙)Jzψ^(𝒙),\hat{Q}_{\Phi}(t)=\int d^{3}x\Phi(\bm{x},t)\hat{\psi}^{\dagger}(\bm{x})J^{z}\hat{\psi}(\bm{x}), (19)

which is a generator of the differential rotation with angle Φ(𝒙,t)\Phi(\bm{x},t) around the zz-axis. Note that we assume the rotation angle is axisymmetric, i.e., Φ/φ=0\partial\Phi/\partial\varphi=0. The canonical commutation relation {ψ^(𝒙),ψ^(𝒚)}=δ(𝒙𝒚)\{\hat{\psi}(\bm{x}),\hat{\psi}^{\dagger}(\bm{y})\}=\delta(\bm{x}-\bm{y}) yields

[Q^Φ(t),ψ^(𝒙)]=Φ(𝒙,t)Jzψ^(𝒙),[Q^Φ(t),ψ^(𝒙)]=Φ(𝒙,t)(Jzψ^(𝒙)).[\hat{Q}_{\Phi}(t),\hat{\psi}(\bm{x})]=-\Phi(\bm{x},t)J^{z}\hat{\psi}(\bm{x}),\quad[\hat{Q}_{\Phi}(t),\hat{\psi}^{\dagger}(\bm{x})]=\Phi(\bm{x},t)(J^{z}\hat{\psi}(\bm{x}))^{\dagger}. (20)

We have

exp[iQ^Φ(t)]ψ^(𝒙)exp[iQ^Φ(t)]\displaystyle\exp\left[\frac{i}{\hbar}\hat{Q}_{\Phi}(t)\right]\hat{\psi}(\bm{x})\exp\left[-\frac{i}{\hbar}\hat{Q}_{\Phi}(t)\right] =eiΦ(𝒙,t)Jz/ψ^(𝒙)\displaystyle=e^{-i\Phi(\bm{x},t)J^{z}/\hbar}\hat{\psi}(\bm{x}) (21)
=eiΦ(𝒙,t)σz/2ψ^(𝒙)(𝒙eΦ(𝒙,t)(𝒙×)z𝒙).\displaystyle=e^{-i\Phi(\bm{x},t)\sigma^{z}/2}\hat{\psi}(\bm{x}^{\prime})\qquad(\bm{x}^{\prime}\equiv e^{-\Phi(\bm{x},t)(\bm{x}\times\bm{\nabla})_{z}}\bm{x}).

Note that it can be explicitly written in matrix form as

eΦ(𝒙,t)(𝒙×)z𝒙=z1[Φ(𝒙,t)]𝒙,z(φ)(cosφsinφ0sinφcosφ0001).e^{-\Phi(\bm{x},t)(\bm{x}\times\bm{\nabla})_{z}}\bm{x}=\mathcal{R}^{-1}_{z}[\Phi(\bm{x},t)]\bm{x},\quad\mathcal{R}_{z}(\varphi)\equiv\matrixquantity(\cos\varphi&-\sin\varphi&0\cr\sin\varphi&\cos\varphi&0\cr 0&0&1). (22)

The free part of the Hamiltonian (namely, the kinetic term) transforms as

eiQ^Φ/H^0eiQ^Φ/\displaystyle e^{i\hat{Q}_{\Phi}/\hbar}\hat{H}_{0}e^{-i\hat{Q}_{\Phi}/\hbar} =H^0+i01𝑑λeiλQ^Φ/[Q^Φ,H^0]eiλQ^Φ/\displaystyle=\hat{H}_{0}+\frac{i}{\hbar}\int^{1}_{0}d\lambda e^{i\lambda\hat{Q}_{\Phi}/\hbar}[\hat{Q}_{\Phi},\hat{H}_{0}]e^{-i\lambda\hat{Q}_{\Phi}/\hbar} (23)
=H^0+i[Q^Φ,H^0]122[Q^Φ,[Q^Φ,H^0]]i3!3[Q^Φ,[Q^Φ,[Q^Φ,H^0]]]+\displaystyle=\hat{H}_{0}+\frac{i}{\hbar}[\hat{Q}_{\Phi},\hat{H}_{0}]-\frac{1}{2\hbar^{2}}[\hat{Q}_{\Phi},[\hat{Q}_{\Phi},\hat{H}_{0}]]-\frac{i}{3!\hbar^{3}}[\hat{Q}_{\Phi},[\hat{Q}_{\Phi},[\hat{Q}_{\Phi},\hat{H}_{0}]]]+\cdots
=12md3𝒙[iψ^(𝒙)Φ(𝒙,t)Jzψ^(𝒙)][iψ^(𝒙)Φ(𝒙,t)Jzψ^(𝒙)],\displaystyle=\frac{1}{2m}\int d^{3}\bm{x}[-i\hbar\bm{\nabla}\hat{\psi}(\bm{x})-\bm{\nabla}\Phi(\bm{x},t)J_{z}\hat{\psi}(\bm{x})]^{\dagger}\cdot[-i\hbar\bm{\nabla}\hat{\psi}(\bm{x})-\bm{\nabla}\Phi(\bm{x},t)J_{z}\hat{\psi}(\bm{x})],

where we have used the following equations:

[Q^Φ,H^0]=i22md3𝒙Φ(𝒙,t)[(iψ^(𝒙))Jzψ^(𝒙)+(Jzψ^(𝒙))(iψ^(𝒙))],[\hat{Q}_{\Phi},\hat{H}_{0}]=\frac{i\hbar^{2}}{2m}\int d^{3}\bm{x}\bm{\nabla}\Phi(\bm{x},t)\cdot\left[(-i\bm{\nabla}\hat{\psi}(\bm{x}))^{\dagger}J_{z}\hat{\psi}(\bm{x})+(J_{z}\hat{\psi}(\bm{x}))^{\dagger}(-i\bm{\nabla}\hat{\psi}(\bm{x}))\right], (24)
[Q^Φ,[Q^Φ,H^0]]=2md3𝒙|Φ(𝒙,t)|2(Jzψ^(𝒙))Jzψ^(𝒙),[\hat{Q}_{\Phi},[\hat{Q}_{\Phi},\hat{H}_{0}]]=-\frac{\hbar^{2}}{m}\int d^{3}\bm{x}|\bm{\nabla}\Phi(\bm{x},t)|^{2}(J_{z}\hat{\psi}(\bm{x}))^{\dagger}J_{z}\hat{\psi}(\bm{x}), (25)
[Q^Φ,[Q^Φ,[Q^Φ,H^0]]]=0.[\hat{Q}_{\Phi},[\hat{Q}_{\Phi},[\hat{Q}_{\Phi},\hat{H}_{0}]]]=0. (26)

The impurity potential part is

eiQ^Φ/[d3xψ^(𝒙)Vimp(𝒙,t)ψ^(𝒙)]eiQ^Φ/\displaystyle e^{i\hat{Q}_{\Phi}/\hbar}\left[\int d^{3}x\hat{\psi}^{\dagger}(\bm{x})V^{\prime}_{\text{imp}}(\bm{x},t)\hat{\psi}(\bm{x})\right]e^{-i\hat{Q}_{\Phi}/\hbar} =d3xψ^(𝒙)Vimp(𝒙,t)ψ^(𝒙)\displaystyle=\int d^{3}x\hat{\psi}^{\dagger}(\bm{x}^{\prime})V^{\prime}_{\text{imp}}(\bm{x},t)\hat{\psi}(\bm{x}^{\prime}) (27)
=jd3xψ^(𝒙)u(𝒙𝒓j(t))ψ^(𝒙)(𝒓j(t)=z[Φ(𝒓j,t)]𝒓j)\displaystyle=\sum_{j}\int d^{3}x\hat{\psi}^{\dagger}(\bm{x}^{\prime})u(\bm{x}-\bm{r}^{\prime}_{j}(t))\hat{\psi}(\bm{x}^{\prime})\quad(\bm{r}^{\prime}_{j}(t)=\mathcal{R}_{z}[\Phi(\bm{r}_{j},t)]\bm{r}_{j})
=jd3xψ^(𝒙)u(z[Φ(𝒙,t)]𝒙z[Φ(𝒓j,t)]𝒓j)ψ^(𝒙)\displaystyle=\sum_{j}\int d^{3}x\hat{\psi}^{\dagger}(\bm{x})u(\mathcal{R}_{z}[\Phi(\bm{x},t)]\bm{x}-\mathcal{R}_{z}[\Phi(\bm{r}_{j},t)]\bm{r}_{j})\hat{\psi}(\bm{x})
jd3xψ^(𝒙)u(𝒙𝒓j)ψ^(𝒙)=d3xψ^(𝒙)Vimp(𝒙)ψ^(𝒙),\displaystyle\simeq\sum_{j}\int d^{3}x\hat{\psi}^{\dagger}(\bm{x})u(\bm{x}-\bm{r}_{j})\hat{\psi}(\bm{x})=\int d^{3}x\hat{\psi}^{\dagger}(\bm{x})V_{\text{imp}}(\bm{x})\hat{\psi}(\bm{x}),

where we have changed a variable of integration as 𝒙z[Φ(𝒙,t)]𝒙\bm{x}\to\mathcal{R}_{z}[\Phi(\bm{x},t)]\bm{x} in the third line. Because we assume that a single impurity potential u(𝒙)u(\bm{x}) is isotropic and has compact support in |𝒙|<a|\bm{x}|<a, we have

u(z[Φ(𝒙,t)]𝒙z[Φ(𝒓j,t)]𝒓j)=u(𝒙z[Φ(𝒓j,t)Φ(𝒙,t)]𝒓j)u(𝒙𝒓j)u(\mathcal{R}_{z}[\Phi(\bm{x},t)]\bm{x}-\mathcal{R}_{z}[\Phi(\bm{r}_{j},t)]\bm{r}_{j})=u(\bm{x}-\mathcal{R}_{z}[\Phi(\bm{r}_{j},t)-\Phi(\bm{x},t)]\bm{r}_{j})\simeq u(\bm{x}-\bm{r}_{j}) (28)

for |𝒙𝒓j|<a1/|Φ||\bm{x}-\bm{r}_{j}|<a\ll 1/|\bm{\nabla}\Phi|. In a similar manner, the spin-orbit interaction part is

eiQ^Φ/[λsod3xψ^(𝒙)𝝈[Vimp(𝒙,t)×(i)]ψ^(𝒙)]eiQ^Φ/\displaystyle e^{i\hat{Q}_{\Phi}/\hbar}\left[\lambda_{\text{so}}\int d^{3}x\hat{\psi}^{\dagger}(\bm{x})\bm{\sigma}\cdot[\bm{\nabla}V^{\prime}_{\text{imp}}(\bm{x},t)\times(-i\hbar\bm{\nabla})]\hat{\psi}(\bm{x})\right]e^{-i\hat{Q}_{\Phi}/\hbar} (29)
=λsod3xψ^(𝒙)𝝈[Vimp(𝒙)×(iΦ(𝒙,t)Jz)]ψ^(𝒙).\displaystyle=\lambda_{\text{so}}\int d^{3}x\hat{\psi}^{\dagger}(\bm{x})\bm{\sigma}\cdot[\bm{\nabla}V_{\text{imp}}(\bm{x})\times(-i\hbar\bm{\nabla}-\bm{\nabla}\Phi(\bm{x},t)J^{z})]\hat{\psi}(\bm{x}).

II Definition of spin current operator

In this section, we define the spin-current density operator through the continuum equation with respect to the spin density. The zz-polarized spin density operator is defined by

s^(𝒙)ψ^(𝒙)σzψ^(𝒙).\displaystyle\hat{s}(\bm{x})\equiv\hat{\psi}^{\dagger}(\bm{x})\sigma^{z}\hat{\psi}(\bm{x}). (30)

The time derivative of the zz-polarized spin density operator in the Heisenberg representation is given by

ts^(𝒙,t)=𝒋^s(𝒙,t)+𝒯^(𝒙,t).\displaystyle\partialderivative{t}\hat{s}(\bm{x},t)=-\bm{\nabla}\cdot\hat{\bm{j}}_{s}(\bm{x},t)+\hat{\mathcal{T}}(\bm{x},t). (31)

The first term is the divergence of the spin-current density:

𝒋^s(𝒙)=ψ^(𝒙)[σz2im+λso𝒆z×V2m𝑨s]ψ^(𝒙).\displaystyle\hat{\bm{j}}_{s}(\bm{x})=\hat{\psi}^{\dagger}(\bm{x})\quantity[\frac{\hbar\sigma^{z}}{2im}\overleftrightarrow{\bm{\nabla}}+\lambda_{\text{so}}\bm{e}_{z}\times\bm{\nabla}V-\frac{\hbar}{2m}\bm{A}_{s}]\hat{\psi}(\bm{x}). (32)

The second term represents the spin torque due to the impurity spin-orbit interaction:

𝒯^(𝒙)=iλsoψ^(𝒙)[σz𝒆z×(V×i)]ψ^(𝒙).\displaystyle\hat{\mathcal{T}}(\bm{x})=-\frac{i}{\hbar}\lambda_{\text{so}}\hat{\psi}^{\dagger}(\bm{x})\quantity[\sigma^{z}\bm{e}_{z}\times\quantity(\bm{\nabla}V\times\frac{\hbar}{i}\bm{\nabla})]\hat{\psi}(\bm{x}). (33)

III calculation of spin density and spin current density

Refer to caption
Figure 2: The diagrams representing the (a) response functions and the (b) three-point vertices. The black circles represent the vertices and the shaded region represents the ladder vertex corrections. The dotted lines represent the impurity potential and the crosses represent the impurities.

In this section, we demonstrate the calculation of the spin density and spin-current density driven by the differential rotation in linear response to the emergent gauge fields. The response functions of spin density and spin-current density corresponding to the diagrams shown in Fig. 2(a) are expressed as

Kμν(ω)=δμ0δν0σc2e2D+iω4π𝒌v𝒌,μtr[σzg+rσz(v𝒌,ν+Λνs)ga],\displaystyle K_{\mu\nu}(\omega)=\delta_{\mu 0}\delta_{\nu 0}\frac{\hbar\sigma_{c}}{2e^{2}D}+i\omega\frac{\hbar}{4\pi}\sum_{\bm{k}}v_{\bm{k},\mu}\text{tr}[\sigma^{z}g^{r}_{+}\sigma^{z}(v_{\bm{k},\nu}+\Lambda_{\nu}^{s})g^{a}_{-}], (34)

where the three-point vertices Λνs\Lambda^{s}_{\nu} are shown in Fig. 2(b). Up to the second order in the wavenumber 𝒒\bm{q} and frequency ω\omega, the response functions are calculated as

K00(ω)\displaystyle K_{00}(\omega) =σc2e2D+iω2π[1+Λ0s]I0=σc2e2DDq2+τs1Dq2iω+τs1,\displaystyle=\frac{\hbar\sigma_{c}}{2e^{2}D}+i\omega\frac{\hbar}{2\pi}\Bigl{[}1+\Lambda_{0}^{s}\Bigr{]}I_{0}=\frac{\hbar\sigma_{c}}{2e^{2}D}\frac{Dq^{2}+\tau_{s}^{-1}}{Dq^{2}-i\omega+\tau_{s}^{-1}}, (35)
K0j(ω)\displaystyle K_{0j}(\omega) =iω2π[1+Λ0s]Ij=iωσc2e2iqjDq2iω+τs1,\displaystyle=i\omega\frac{\hbar}{2\pi}\Bigl{[}1+\Lambda_{0}^{s}\Bigr{]}I_{j}=-i\omega\frac{\hbar\sigma_{c}}{2e^{2}}\frac{iq_{j}}{Dq^{2}-i\omega+\tau_{s}^{-1}}, (36)
Ki0(ω)\displaystyle K_{i0}(\omega) =iω2πIi[1+Λ0s]=iωσc2e2iqiDq2iω+τs1,\displaystyle=i\omega\frac{\hbar}{2\pi}I_{i}\Bigl{[}1+\Lambda_{0}^{s}\Bigr{]}=-i\omega\frac{\hbar\sigma_{c}}{2e^{2}}\frac{iq_{i}}{Dq^{2}-i\omega+\tau_{s}^{-1}}, (37)
Kij(ω)\displaystyle K_{ij}(\omega) =iω2π[Iij+IiΛjs]=iωσc2e2(δijDqiqjDq2iω+τs1),\displaystyle=i\omega\frac{\hbar}{2\pi}\Bigl{[}I_{ij}+I_{i}\Lambda_{j}^{s}\Bigr{]}=i\omega\frac{\hbar\sigma_{c}}{2e^{2}}\left(\delta_{ij}-\frac{Dq_{i}q_{j}}{Dq^{2}-i\omega+\tau_{s}^{-1}}\right), (38)

where the Latin indices represent the spacial directions, i.e., i=x,y,zi=x,y,z. Here, the integrations IμνI_{\mu\nu} are defined by

Iμν=𝒌v𝒌,μv𝒌,νg+rga,\displaystyle I_{\mu\nu}=\sum_{\bm{k}}v_{\bm{k},\mu}v_{\bm{k},\nu}g^{r}_{+}g^{a}_{-}, (39)

and given by

I0=I00=πν0γ[1τ(Dq2iω)],\displaystyle I_{0}=I_{00}=\frac{\pi\nu_{0}}{\hbar\gamma}[1-\tau(Dq^{2}-i\omega)], (40)
Ii=Ii0=I0i=Diqiπν0γ,\displaystyle I_{i}=I_{i0}=I_{0i}=-Diq_{i}\frac{\pi\nu_{0}}{\hbar\gamma}, (41)
Iij=vF23πν0γ[δij+δijτ(iω35Dq2)65τDqiqj].\displaystyle I_{ij}=\frac{v_{F}^{2}}{3}\frac{\pi\nu_{0}}{\hbar\gamma}\left[\delta_{ij}+\delta_{ij}\tau\left(i\omega-\frac{3}{5}Dq^{2}\right)-\frac{6}{5}\tau Dq_{i}q_{j}\right]. (42)

Note that the response functions satisfy the following identities:

iωK00+iqjK0j=iωσc2e2Dτs1Dq2iω+τs1,iωKi0+iqjKij=iωσc2e2τs1Dq2iω+τs1iqi.-i\omega K_{00}+iq_{j}K_{0j}=-i\omega\frac{\hbar\sigma_{c}}{2e^{2}D}\frac{\tau_{s}^{-1}}{Dq^{2}-i\omega+\tau_{s}^{-1}},\quad-i\omega K_{i0}+iq_{j}K_{ij}=i\omega\frac{\hbar\sigma_{c}}{2e^{2}}\frac{\tau_{s}^{-1}}{Dq^{2}-i\omega+\tau_{s}^{-1}}iq_{i}. (43)

The spin density is given by

s^(𝒒,ω)\displaystyle\langle\hat{s}(\bm{q},\omega)\rangle =K00As,0+K0jAs,j\displaystyle=K_{00}A_{s,0}+K_{0j}A_{s,j}
=σc2e2Dτs1Dq2iω+τs1As,0+σc2e2iqjDq2iω+τs1(iωAs,jiqjAs,0)\displaystyle=\frac{\hbar\sigma_{c}}{2e^{2}D}\frac{\tau_{s}^{-1}}{Dq^{2}-i\omega+\tau_{s}^{-1}}A_{s,0}+\frac{\hbar\sigma_{c}}{2e^{2}}\frac{iq_{j}}{Dq^{2}-i\omega+\tau_{s}^{-1}}(-i\omega A_{s,j}-iq_{j}A_{s,0})
=σc2e2Dτs1Dq2iω+τs1(iωΦ).\displaystyle=\frac{\hbar\sigma_{c}}{2e^{2}D}\frac{\tau_{s}^{-1}}{Dq^{2}-i\omega+\tau_{s}^{-1}}(-i\omega\Phi). (44)

The spin-current density is given by

j^s,i(𝒒,ω)\displaystyle\langle\hat{j}_{s,i}(\bm{q},\omega)\rangle =Ki0As,0+KijAs,j\displaystyle=K_{i0}A_{s,0}+K_{ij}A_{s,j}
=iωσc2e2τs1Dq2iω+τs1As,i\displaystyle=i\omega\frac{\hbar\sigma_{c}}{2e^{2}}\frac{\tau_{s}^{-1}}{Dq^{2}-i\omega+\tau_{s}^{-1}}A_{s,i}
+iωσc2e21Dq2iω+τs1(iωAs,iiqiAs,0)+iωσc2e2iDqjDq2iω+τs1(iqiAs,jiqjAs,i)\displaystyle\quad+i\omega\frac{\hbar\sigma_{c}}{2e^{2}}\frac{1}{Dq^{2}-i\omega+\tau_{s}^{-1}}(-i\omega A_{s,i}-iq_{i}A_{s,0})+i\omega\frac{\hbar\sigma_{c}}{2e^{2}}\frac{iDq_{j}}{Dq^{2}-i\omega+\tau_{s}^{-1}}(iq_{i}A_{s,j}-iq_{j}A_{s,i})
=iωσc2e2τs1Dq2iω+τs1iqiΦ.\displaystyle=i\omega\frac{\hbar\sigma_{c}}{2e^{2}}\frac{\tau_{s}^{-1}}{Dq^{2}-i\omega+\tau_{s}^{-1}}iq_{i}\Phi. (45)

We note that (As,0,As,i)=(iωΦ,iqiΦ)(A_{s,0},A_{s,i})=(-i\omega\Phi,iq_{i}\Phi).

III.1 Ladder vertex corrections

In this section, we calculate ladder vertex corrections due to the impurity scattering and spin-orbit scattering. First, we define the elementary vertex fabf_{ab} shown in Fig. 3(a) corresponding to the coupling to the single impurity:

fab=δab+iλso(𝒌×𝒌)𝝈ab,\displaystyle f_{ab}=\delta_{ab}+i\hbar\lambda_{\text{so}}(\bm{k}\times\bm{k}^{\prime})\cdot\bm{\sigma}_{ab}, (46)

where the Latin indices a,ba,b describe the spin space. The proper four-point vertex Γ0\Gamma^{0} shown in the first term on the right-hand side of Fig. 3(b) is calculated as

Γab,cd0=niui2fadfcbFS=πν0(γ0δadδcb+13γso𝝈ad𝝈cb),\displaystyle\Gamma^{0}_{ab,cd}=n_{i}u_{i}^{2}\langle f_{ad}f_{cb}\rangle_{\text{FS}}=\frac{\hbar}{\pi\nu_{0}}\left(\gamma_{0}\delta_{ad}\delta_{cb}+\frac{1}{3}\gamma_{\text{so}}\bm{\sigma}_{ad}\cdot\bm{\sigma}_{cb}\right), (47)

where FS\langle\cdots\rangle_{\text{FS}} means averaging over at the Fermi surface, γ0=πniui2ν0\hbar\gamma_{0}=\pi n_{i}u_{i}^{2}\nu_{0} is the damping due to the impurity scattering, and γso=2λso2kF4γ0\gamma_{\text{so}}=\hbar^{2}\lambda_{\text{so}}^{2}k_{F}^{4}\gamma_{0} is the damping due to the spin-orbit scattering. The four-point vertex shown in Fig. 3(b) is determined by the following Dyson equation:

Γab,cd(𝒒)\displaystyle\Gamma_{ab,cd}(\bm{q}) =Γab,cd0+Γab,ef0I0(𝒒)Γfe,cd(𝒒)\displaystyle=\Gamma^{0}_{ab,cd}+\Gamma^{0}_{ab,ef}I_{0}(\bm{q})\Gamma_{fe,cd}(\bm{q})
=Γc(𝒒)δabδcd+Γs(𝒒)𝝈ab𝝈cd,\displaystyle=\Gamma_{c}(\bm{q})\delta_{ab}\delta_{cd}+\Gamma_{s}(\bm{q})\bm{\sigma}_{ab}\cdot\bm{\sigma}_{cd}, (48)

where a,,fa,\ldots,f are the spin indices, and

Γc(𝒒)\displaystyle\Gamma_{c}(\bm{q}) =4πν0τ21Dq2iω,\displaystyle=\frac{\hbar}{4\pi\nu_{0}\tau^{2}}\frac{1}{Dq^{2}-i\omega}, (49)
Γs(𝒒)\displaystyle\Gamma_{s}(\bm{q}) =4πν0τ21ττsDq2iω+τs1.\displaystyle=\frac{\hbar}{4\pi\nu_{0}\tau^{2}}\frac{1-\frac{\tau}{\tau_{s}}}{Dq^{2}-i\omega+\tau_{s}^{-1}}. (50)

Therefore, the three-point vertices Λνs\Lambda^{s}_{\nu} are calculated by

σabαΛνs(𝒒)\displaystyle\sigma^{\alpha}_{ab}\Lambda^{s}_{\nu}(\bm{q}) =σdcαΓab,cd(𝒒)Iν,\displaystyle=\sigma^{\alpha}_{dc}\Gamma_{ab,cd}(\bm{q})I_{\nu}, (51)

and given by

Λ0s(𝒒)\displaystyle\Lambda^{s}_{0}(\bm{q}) =1τ(Dq2iω+τs1)1,\displaystyle=\dfrac{1}{\tau(Dq^{2}-i\omega+\tau^{-1}_{s})}-1, (52)
Λjs(𝒒)\displaystyle\Lambda^{s}_{j}(\bm{q}) =Diqjτ(Dq2iω+τs1).\displaystyle=-\dfrac{Diq_{j}}{\tau(Dq^{2}-i\omega+\tau^{-1}_{s})}. (53)
Refer to caption
Figure 3: (a) The elementary vertex due to the single impurity. (b) The four-point vertex in the ladder approximation.

IV Derivation of Navier-Stokes equation for two-dimensional cylindrical flow

In this section, we derive the Navier-Stokes equation for two-dimensional steady flow with concentric circular streamlines and demonstrate that, in this case, the Navier-Stokes equations are explicitly independent of viscosity. The Navier-Stokes equation in the cylindrical coordinate representation is given by

vrt+vrvrr+vφrvrφ+vzvrzvφ2r\displaystyle\partialderivative{v_{r}}{t}+v_{r}\partialderivative{v_{r}}{r}+\frac{v_{\varphi}}{r}\partialderivative{v_{r}}{\varphi}+v_{z}\partialderivative{v_{r}}{z}-\frac{v_{\varphi}^{2}}{r} =1ρpr+ν(Δvrvrr22r2vφφ),\displaystyle=-\frac{1}{\rho}\partialderivative{p}{r}+\nu\quantity(\Delta v_{r}-\frac{v_{r}}{r^{2}}-\frac{2}{r^{2}}\partialderivative{v_{\varphi}}{\varphi}), (54)
vφt+vrvφr+vφrvφφ+vzvφz+vrvφr\displaystyle\partialderivative{v_{\varphi}}{t}+v_{r}\partialderivative{v_{\varphi}}{r}+\frac{v_{\varphi}}{r}\partialderivative{v_{\varphi}}{\varphi}+v_{z}\partialderivative{v_{\varphi}}{z}+\frac{v_{r}v_{\varphi}}{r} =1ρrpφ+ν(Δvφvφr2+2r2vrφ),\displaystyle=-\frac{1}{\rho r}\partialderivative{p}{\varphi}+\nu\quantity(\Delta v_{\varphi}-\frac{v_{\varphi}}{r^{2}}+\frac{2}{r^{2}}\partialderivative{v_{r}}{\varphi}), (55)
vzt+vrvzr+vφrvzφ+vzvzz\displaystyle\partialderivative{v_{z}}{t}+v_{r}\partialderivative{v_{z}}{r}+\frac{v_{\varphi}}{r}\partialderivative{v_{z}}{\varphi}+v_{z}\partialderivative{v_{z}}{z} =1ρpz+νΔvz,\displaystyle=-\frac{1}{\rho}\partialderivative{p}{z}+\nu\Delta v_{z}, (56)

where Δ\Delta represents the Laplacian, given by

Δ=2r2+1rr+1r22φ2+2z2.\displaystyle\Delta=\partialderivative[2]{r}+\frac{1}{r}\partialderivative{r}+\frac{1}{r^{2}}\partialderivative[2]{\varphi}+\partialderivative[2]{z}. (57)

For the two-dimensional flow with concentric circular streamlines, the velocity vector can be represented as 𝒗=(0,vφ,0)\bm{v}=(0,v_{\varphi},0), and the derivatives with respect to φ\varphi and zz vanish, i.e., /φ=/z=0\partial/\partial\varphi=\partial/\partial z=0. Then, the Navier-Stokes equation turn to be represented as

vφt=ν(2vφr2+1rvφrvφr2).\displaystyle\partialderivative{v_{\varphi}}{t}=\nu\quantity(\partialderivative[2]{v_{\varphi}}{r}+\frac{1}{r}\partialderivative{v_{\varphi}}{r}-\frac{v_{\varphi}}{r^{2}}). (58)

In the case of steady flow, i.e., /t=0\partial/\partial t=0, the Navier-Stokes equation come to be

2vφr2+1rvφrvφr2=0.\displaystyle\partialderivative[2]{v_{\varphi}}{r}+\frac{1}{r}\partialderivative{v_{\varphi}}{r}-\frac{v_{\varphi}}{r^{2}}=0. (59)

As can be seen from the above analysis, the specificity of the two-dimensional steady flow with concentric streamlines renders the Navier-Stokes equations explicitly independent of viscosity.

V Distinction between our spin current generation mechanism and conventional mechanisms

In this section, we note the differences between previous studies and the present results on spin current generation using torsional oscillation.

Previous studies, such as references (a) M. Matsuo et al., Phys. Rev. B87, 180402 (2013) and (b) Phys. Rev. B96, 020401 (2017), have proposed the concept based on spin-vorticity coupling. According to these theories, when calculating spin current generation from torsional oscillation, we can clearly distinguish our current results by the frequency dependence and the presence or absence of phenomenological parameters, as summariezed below.

  1. 1.

    Frequency Dependence:
    The results of (a) can be distinguished from our current results by frequency dependence. In the case of (a), the amplitude of the spin current is proportional to the fourth power of the frequency, whereas our current results show that it is proportional to the third power of the frequency.

  2. 2.

    Dependence on Phenomenological Parameter:
    The major difference between the results of (b) and our current results is that (b) includes a phenomenological parameter that originates from a fluctuation of vorticity, whereas our current results do not require phenomenology. Therefore, our work is the first result that allows a quantitative comparison between experiment and theory.

These differences arise from the variations in the source term of the spin diffusion equation derived from the theory. Specifically, (a) states that the source term is proportional to the derivative of vorticity, tω~\partial_{t}\tilde{\omega}, where ω~\tilde{\omega} is vorticity. In contrast, (b) indicates that the source term is proportional to the vorticity and includes a phenomenological parameter as ζω~\zeta\tilde{\omega}, where ζ\zeta is the phenomenological parameter originating from a fluctuation of vorticity. Our current results, on the other hand, demonstrate that the source term is phenomenology-free and proportional to the angular velocity of the differential rotation:

st+𝒋s+sτs=σ02e2DτstΦ,\frac{\partial s}{\partial t}+{\bm{\nabla}}\cdot{\bm{j}}_{s}+\frac{s}{\tau_{s}}=\frac{\hbar\sigma_{0}}{2e^{2}D\tau_{s}}\partial_{t}\Phi, (60)

where ss is the spin density, 𝒋s\bm{j}_{s} is the spin current density, τs\tau_{s} is the spin relaxation time, σ0\sigma_{0} is the Drude conductivity, DD is the diffusion constant, and tΦ\partial_{t}\Phi is the angular velocity of the differential rotation. As a result, the spin current is given by

𝒋s(𝒙,t)=σ02e2tΦ(𝒙,t).\displaystyle\bm{j}_{s}(\bm{x},t)=-\frac{\hbar\sigma_{0}}{2e^{2}}\bm{\nabla}\partial_{t}\Phi(\bm{x},t). (61)

From this equation, we can see that our spin current depends only on \hbar, ee, and the Drude conductivity but does not involve any phenomenological parameters.