This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

footnotetext: ©   Nikolai  V.  Ivanov,   2021.   footnotetext: The author  is  grateful  to  M.  Prokhorova  for attracting  his attention  to  the work of  Melrose  and  Piazza  [MP1MP_{\hskip 0.35002pt1}],   stimulating online discussions,   and writing  the paper  [P3P_{\hskip 0.35002pt3}].

Spectral  sections :   two  proofs  of  a  theorem  of  Melrose–Piazza

Nikolai  V.  Ivanov

1. Introduction

Spectral  sections of  families of  self-adjoint  Fredholm  operators were introduced  by  Melrose  and  Piazza  [MP1MP_{\hskip 0.35002pt1}]  for  the needs of  index  theory.   The basic result  about  spectral  sections  is  a  theorem of  Melrose and  Piazza  to  the effect  that  a family admits a spectral  section  if  and  only  if  its analytic  index  vanishes.   See  [MP1MP_{\hskip 0.35002pt1}],  Proposition  1.   Melrose  and  Piazza  [MP1MP_{\hskip 0.35002pt1}]  gloss over  the definition of  the analytic  index and  the notion of  a  trivialization of  a  Hilbert  bundle  implicitly  used  in  their  proof.   Since passing  from one  trivializations of  a  Hilbert  bundle  to another rarely  preserves  the norm continuity of  families of  Hilbert  space operators,   the straightforward  interpretation of  Melrose–Piazza  proof  works only  for  families of  operators in a fixed  Hilbert  space.   The author  learned about  this  issue  from  M.  Prokhorova  [P1P_{\hskip 0.35002pt1}].

Recently  the author  proved  a  general  version of  this  theorem of  Melrose–Piazza  as a byproduct  of  a  theory developed  in  [I1I_{\hskip 0.70004pt1}],  [I2I_{\hskip 0.70004pt2}].   See  [I2I_{\hskip 0.70004pt2}],   Corollary  6.2.   After  learning about  Melrose  approach  [M]  to clarifying  [MP1MP_{\hskip 0.35002pt1}],   the author  realized  that  a  less general  version of  Melrose–Piazza  theorem can be disentangled  from  the  theory of  [I1I_{\hskip 0.70004pt1}],  [I2I_{\hskip 0.70004pt2}].   This version  is  still  more general  than  the original  one  [MP1MP_{\hskip 0.35002pt1}].   An analysis of  the resulting  proof  led  to  a fairly simple way  to prove  the original  Melrose–Piazza  theorem,   or,   rather,   its  “axiomatic”  version.

The present  paper  is  devoted  to  the proofs  of  these  two versions of  Melrose–Piazza  theorem.   The ideas of  Atiyah–Singer  [AS]  play a  key  role,   but,   in contrast  with  [M]  and  [AS],   compact  operators are not  used even  implicitly  in  the proof  of  the first,   more general,   version.   The proof  of  the second version  is  closer  to  the ideas of  Melrose  [M]  and  uses compact  operators and  some ideas of  Atiyah–Segal  [ASe].   Both  proofs are presented as complements  to  [MP1MP_{\hskip 0.35002pt1}].   This forces us  to  deal only with compact  spaces of  parameters.   If  one replaces  references  to  [MP1MP_{\hskip 0.35002pt1}]  by  references  to  [I2I_{\hskip 0.70004pt2}],   the same proofs would  work for paracompact  spaces.

Both  proofs depend on  a  theorem about  the existence of  trivializations appropriately adapted  to families.   See  Theorem  Spectral  sections :   two  proofs  of  a  theorem  of  Melrose–Piazza  below  for  the statement  and  [I2I_{\hskip 0.70004pt2}],   Theorem  4.6,   for a proof.   The case of  triangulable bases  is  considered  in  [I2I_{\hskip 0.70004pt2}],   Theorem  4.5,   and  is  independent  from  the rest  of  [I2I_{\hskip 0.70004pt2}].   Also,   we refer  to  [I2I_{\hskip 0.70004pt2}]  for  a detailed  proof  of  Theorem  Spectral  sections :   two  proofs  of  a  theorem  of  Melrose–Piazza,   which  is  treated  in  [MP1MP_{\hskip 0.35002pt1}]  as obvious.   It  is  also independent  from  the rest  of  [I2I_{\hskip 0.70004pt2}].

In  [MP2MP_{\hskip 0.35002pt2}]  Melrose  and  Piazza  proved an odd 𝐙2\mathbf{Z}_{\hskip 0.70004pt2}-graded version of  their  theorem.   There  is  no doubt  that  the methods of  the present  paper  work  in  this case also.   Cf.  [I1I_{\hskip 0.70004pt1}],   [I2I_{\hskip 0.70004pt2}].

2. Basic  definitions

The framework.   Let  HH  be a separable infinite dimensional  Hilbert  space over  𝐂\mathbf{C}.   Let  \mathbb{H}  be a  locally  trivial  Hilbert  bundle with  a paracompact  base  XX  and  fibers isomorphic  to  HH.   We will  treat  \mathbb{H}  as a family  Hx,xXH_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  of  Hilbert  spaces.   We will  assume  that  the space  XX  is  paracompact.   Let  Ax:HxHx,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt\colon\hskip 1.00006ptH_{\hskip 0.70004ptx}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 3.00003ptx\hskip 1.99997pt\in\hskip 1.99997ptX  be a family of  self-adjoint  Fredholm  operators.   We will  assume  that  either  all  operators AxA_{\hskip 0.70004ptx} are bounded,   or  that  they are closed and densely defined.   In  the first  case we will  assume  that  the family  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 3.00003ptx\hskip 1.99997pt\in\hskip 1.99997ptX  is  continuous as a self-map of  the  total  space of \mathbb{H}.   In  the second case we will  assume  that  the  bounded  transform  γ(Ax),xX\gamma\hskip 1.49994pt(\hskip 1.49994ptA_{\hskip 0.70004ptx}\hskip 1.49994pt)\hskip 1.00006pt,\hskip 3.00003ptx\hskip 1.99997pt\in\hskip 1.99997ptX,   where  γ(t)=t(1+t2)1/2\gamma\hskip 1.49994pt(\hskip 1.49994ptt\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptt\hskip 1.49994pt(\hskip 1.49994pt1\hskip 1.99997pt+\hskip 1.99997ptt^{\hskip 0.70004pt2}\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1/2},   has  this property.   By  a well  known  reason we assume  that  operators  AxA_{\hskip 0.70004ptx}  are neither essentially  positive,   nor  essentially negative.

Enhanced operators.   An  enhanced  (self-adjoint  Fredholm)  operator  is  a pair (A,ε)(\hskip 1.49994ptA\hskip 0.50003pt,\hskip 1.99997pt\varepsilon\hskip 1.00006pt),  where  A:HHA\hskip 1.00006pt\colon\hskip 1.00006ptH\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH  is  a self-adjoint  Fredholm  operator,  ε>0\varepsilon\hskip 1.99997pt>\hskip 1.99997pt0,   such  that  ε,εσ(A)\varepsilon\hskip 0.50003pt,\hskip 1.99997pt-\hskip 1.99997pt\varepsilon\hskip 1.99997pt\not\in\hskip 1.99997pt\sigma\hskip 1.49994pt(\hskip 1.49994ptA\hskip 1.49994pt)  and  the interval  [ε,ε][\hskip 1.49994pt-\hskip 1.99997pt\varepsilon\hskip 0.50003pt,\hskip 1.99997pt\varepsilon\hskip 1.49994pt]  is  disjoint  from  the essential  spectrum of  AA.   Then  the spectral  projection  P[ε,ε](A)P_{\hskip 0.70004pt[\hskip 0.70004pt-\hskip 0.70004pt\varepsilon\hskip 0.35002pt,\hskip 1.39998pt\varepsilon\hskip 0.70004pt]}\hskip 1.49994pt(\hskip 1.49994ptA\hskip 1.49994pt)  has finitely dimensional  image.   If  (A,ε)(\hskip 1.49994ptA\hskip 0.50003pt,\hskip 1.99997pt\varepsilon\hskip 1.49994pt)  is  an enhanced operator  and  A:HHA^{\prime}\hskip 1.00006pt\colon\hskip 1.00006ptH\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH  is  a self-adjoint  Fredholm  operator sufficiently close  to  AA  in  the norm  topology or  in  the uniform  resolvent  sense,   then  (A,ε)(\hskip 1.49994ptA^{\prime}\hskip 0.50003pt,\hskip 1.99997pt\varepsilon\hskip 1.49994pt)  is  also an enhanced operator.   The spectral  projection  P[ε,ε](A)P_{\hskip 0.70004pt[\hskip 0.70004pt-\hskip 0.70004pt\varepsilon\hskip 0.35002pt,\hskip 1.39998pt\varepsilon\hskip 0.70004pt]}\hskip 1.49994pt(\hskip 1.49994ptA^{\prime}\hskip 1.49994pt) continuously depend on  AA^{\prime} for  AA^{\prime} sufficiently close  to  AA.

Fredholm  families.   The family  Ax,xXA_{\hskip 0.70004ptx}\hskip 0.50003pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  is  said  to be a  Fredholm  family  if  all  operators AxA_{\hskip 0.70004ptx} are  Fredholm  and  for every  zXz\hskip 1.99997pt\in\hskip 1.99997ptX  there exists  ε=εz>0\varepsilon\hskip 3.99994pt=\hskip 3.99994pt\varepsilon_{\hskip 0.70004ptz}\hskip 1.99997pt>\hskip 1.99997pt0  and a neighborhood  UzU_{\hskip 0.70004ptz}  of  zz such  that  (Ay,ε)(\hskip 1.49994ptA_{\hskip 0.70004pty}\hskip 1.00006pt,\hskip 1.99997pt\varepsilon\hskip 1.49994pt)  is  an enhanced  operator  for every yUzy\hskip 1.99997pt\in\hskip 1.99997ptU_{\hskip 0.70004ptz},   the subspaces

Vy=ImP[ε,ε](Ay)Hy\quad V_{\hskip 0.35002pty}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Im}\hskip 1.49994ptP_{\hskip 1.39998pt[\hskip 0.70004pt-\hskip 0.70004pt\varepsilon\hskip 0.35002pt,\hskip 1.39998pt\varepsilon\hskip 0.70004pt]}\hskip 1.49994pt(\hskip 1.49994ptA_{\hskip 0.70004pty}\hskip 1.49994pt)\hskip 3.99994pt\subset\hskip 3.99994ptH_{\hskip 0.70004pty}

continuously depend on  yUzy\hskip 1.99997pt\in\hskip 1.99997ptU_{\hskip 0.70004ptz},   and  the operators  VyVyV_{\hskip 0.35002pty}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptV_{\hskip 0.35002pty} induced  by  AyA_{\hskip 0.70004pty}  also continuously depend on  yUzy\hskip 1.99997pt\in\hskip 1.99997ptU_{\hskip 0.70004ptz}.   Two  families  Ax,xXA_{\hskip 0.70004ptx}\hskip 0.50003pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  and  Ax,xXA^{\prime}_{\hskip 0.70004ptx}\hskip 0.50003pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  are said  to be  Fredholm  homotopic  if  there exists  a  homotopy  Ax,uA_{\hskip 1.04996ptx\hskip 0.35002pt,\hskip 0.70004ptu},  (x,u)X×[0,1](\hskip 1.49994ptx\hskip 0.50003pt,\hskip 1.99997ptu\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997ptX\hskip 1.00006pt\times\hskip 1.00006pt[\hskip 1.00006pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.00006pt]  which  is  Fredholm  as a family and  such  that  Ax,0=AxA_{\hskip 1.04996ptx\hskip 0.35002pt,\hskip 0.70004pt0}\hskip 3.99994pt=\hskip 3.99994ptA_{\hskip 0.70004ptx}  and  Ax,1=BxA_{\hskip 1.04996ptx\hskip 0.35002pt,\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994ptB_{\hskip 0.70004ptx}  for every  xXx\hskip 1.99997pt\in\hskip 1.99997ptX.

Strictly  Fredholm  families.   Suppose  first  that  \mathbb{H}  is  the  trivial  bundle with  the fiber  HH.   We will  say  that  the family  Ax:HHA_{\hskip 0.70004ptx}\hskip 1.00006pt\colon\hskip 1.00006ptH\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH,  xXx\hskip 1.99997pt\in\hskip 1.99997ptX  is  strictly  Fredholm  if  it  is  Fredholm  and  for every  zXz\hskip 1.99997pt\in\hskip 1.99997ptX  there exists  ε>0\varepsilon\hskip 1.99997pt>\hskip 1.99997pt0  and  a neighborhood  UzU_{\hskip 0.35002ptz}  of  zz  such  that  (Ay,ε)(\hskip 1.49994ptA_{\hskip 0.70004pty}\hskip 0.50003pt,\hskip 1.99997pt\varepsilon\hskip 1.49994pt)  is  an enhanced operator for every  yUzy\hskip 1.99997pt\in\hskip 1.99997ptU_{\hskip 0.35002ptz} and  the spectral  projection  P[ε,)(Ay)P_{\hskip 0.70004pt[\hskip 1.04996pt\varepsilon\hskip 0.35002pt,\hskip 1.39998pt\infty\hskip 0.70004pt)}\hskip 1.49994pt(\hskip 1.49994ptA_{\hskip 0.70004pty}\hskip 1.49994pt)  continuously depends on  yy  in  the norm  topology  for  yUzy\hskip 1.99997pt\in\hskip 1.99997ptU_{\hskip 0.35002ptz}.

In  general,  Ax:HxHxA_{\hskip 0.70004ptx}\hskip 1.00006pt\colon\hskip 1.00006ptH_{\hskip 0.70004ptx}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004ptx},  xXx\hskip 1.99997pt\in\hskip 1.99997ptX  is  said  to be a  strictly  Fredholm  family  if  for every  xXx\hskip 1.99997pt\in\hskip 1.99997ptX  there exists  a neighborhood  UzU_{\hskip 0.35002ptz}  of  zz  and a  local  trivialization of  \mathbb{H}  over  UzU_{\hskip 0.35002ptz}  turning  the restriction  Ax:HxHxA_{\hskip 0.70004ptx}\hskip 1.00006pt\colon\hskip 1.00006ptH_{\hskip 0.70004ptx}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004ptx},  xUzx\hskip 1.99997pt\in\hskip 1.99997ptU_{\hskip 0.35002ptz}  into a strictly  Fredholm  family  in  the above sense.   Such a  local  trivialization  is  said  to be  strictly adapted  to  the family  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX.   A  trivialization of  \mathbb{H}  is  said  to be  strictly adapted  to  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  if  for every  zXz\hskip 1.99997pt\in\hskip 1.99997ptX  there  exists  a neighborhood  UzU_{\hskip 0.35002ptz}  of  zz  such  that  its restriction  to  UzU_{\hskip 0.35002ptz}  is  strictly adapted  to  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX.

Fully  Fredholm  families.   Suppose  that  Ax:HxHx,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt\colon\hskip 1.00006ptH_{\hskip 0.70004ptx}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  is  a family of  bounded operators.   We  say  that  it  is  fully  Fredholm  if  for every  xXx\hskip 1.99997pt\in\hskip 1.99997ptX  there exists  a neighborhood  UzU_{\hskip 0.35002ptz}  of  zz  and a  local  trivialization of  \mathbb{H}  over  UzU_{\hskip 0.35002ptz}  turning  the restriction  Ax:HxHxA_{\hskip 0.70004ptx}\hskip 1.00006pt\colon\hskip 1.00006ptH_{\hskip 0.70004ptx}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004ptx},  xUzx\hskip 1.99997pt\in\hskip 1.99997ptU_{\hskip 0.35002ptz}  into a family continuous in  the norm  topology.   Such a  local  trivialization  is  said  to be  fully adapted  to  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX.   Clearly,   a  fully  Fredholm  family  is  strictly  Fredholm.

If  Ax:HxHxA_{\hskip 0.70004ptx}\hskip 1.00006pt\colon\hskip 1.00006ptH_{\hskip 0.70004ptx}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004ptx},  xXx\hskip 1.99997pt\in\hskip 1.99997ptX  is  a family of  closed densely defined operators,   we will  say  that  it  is  fully  Fredholm  if  the bounded  transform  γ(Ax),xUz\gamma\hskip 1.49994pt(\hskip 1.49994ptA_{\hskip 0.70004ptx}\hskip 1.49994pt)\hskip 1.00006pt,\hskip 3.00003ptx\hskip 1.99997pt\in\hskip 1.99997ptU_{\hskip 0.35002ptz}  is  fully  Fredholm.   The  fully adapted  ( local )  trivializations of  such families are defined  in  the obvious way.

Polarizations and  restricted  Grassmannians.   A  polarization  of  a  Hilbert  space  KK  is  a presentation of  KK  as an orthogonal  direct  sum  K=KK+K\hskip 3.99994pt=\hskip 3.99994ptK_{\hskip 0.70004pt-}\hskip 1.00006pt\oplus\hskip 1.00006ptK_{\hskip 0.70004pt+}  of  two closed  infinitely dimensional  subspaces  K,K+K_{\hskip 0.70004pt-}\hskip 1.00006pt,\hskip 3.99994ptK_{\hskip 0.70004pt+}.   A polarization  leads  to  the  restricted  Grassmannian  Gr\operatorname{G{\hskip 0.50003pt}r},   the space of  subspaces  LKL\hskip 1.99997pt\subset\hskip 1.99997ptK  commensurable  with KK_{\hskip 0.70004pt-},   i.e.  such  that  the intersection  LKL\hskip 1.00006pt\cap\hskip 1.00006ptK_{\hskip 0.70004pt-}  is  closed and  has finite codimension  in  both  LL  and  KK_{\hskip 0.70004pt-}.   The  topology of  Gr\operatorname{G{\hskip 0.50003pt}r}  is  defined  by  the norm  topology of  orthogonal  projections  KLK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptL.

Grassmannian  bundles and  weak  spectral  sections.   Suppose  that  Ax:HxHxA_{\hskip 0.70004ptx}\hskip 1.00006pt\colon\hskip 1.00006ptH_{\hskip 0.70004ptx}\hskip 1.49994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004ptx},  xXx\hskip 1.99997pt\in\hskip 1.99997ptX  is  a strictly  Fredholm  family.   If  xXx\hskip 1.99997pt\in\hskip 1.99997ptX  and  (Ax,ε)(\hskip 1.49994ptA_{\hskip 0.70004ptx}\hskip 0.50003pt,\hskip 1.99997pt\varepsilon\hskip 1.49994pt)  is  an enhanced operator,   then

Hx=ImP(,ε](Ax)ImP[ε,)(Ax)\quad H_{\hskip 0.70004ptx}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{Im}\hskip 1.49994pt\hskip 1.00006ptP_{\hskip 0.70004pt(\hskip 0.70004pt-\hskip 1.39998pt\infty\hskip 0.35002pt,\hskip 1.39998pt\varepsilon\hskip 1.04996pt]}\hskip 1.49994pt(\hskip 1.49994ptA_{\hskip 0.70004ptx}\hskip 1.49994pt)\hskip 1.99997pt\oplus\hskip 1.99997pt\ \operatorname{Im}\hskip 1.49994pt\hskip 1.00006ptP_{\hskip 0.70004pt[\hskip 1.04996pt\varepsilon\hskip 0.35002pt,\hskip 1.39998pt\infty\hskip 0.70004pt)}\hskip 1.49994pt(\hskip 1.49994ptA_{\hskip 0.70004ptx}\hskip 1.49994pt)

is  a polarization of  HxH_{\hskip 0.70004ptx}.   This polarization  leads  to  a  restricted  Grassmannian,   which  we will  denote by  Gr(x)\operatorname{G{\hskip 0.50003pt}r}\hskip 1.49994pt(\hskip 1.49994ptx\hskip 1.49994pt).   Since  the family  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  is  strictly  Fredholm,   the family  of  restricted  Grassmannians  Gr(x),xX\operatorname{G{\hskip 0.50003pt}r}\hskip 1.49994pt(\hskip 1.49994ptx\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  forms a  locally  trivial  bundle  𝝅(𝔸):Gr(𝔸)X\bm{\pi}\hskip 1.49994pt(\hskip 1.49994pt\mathbb{A}\hskip 1.49994pt)\hskip 1.00006pt\colon\hskip 1.00006pt\operatorname{G{\hskip 0.50003pt}r}\hskip 1.49994pt(\hskip 1.49994pt\mathbb{A}\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptX.   Continuous sections of  this bundle are called  weak spectral  sections  of  the family  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX.

Discrete-spectrum  families and spectral  sections.   The family  Ax:HxHxA_{\hskip 0.70004ptx}\hskip 1.00006pt\colon\hskip 1.00006ptH_{\hskip 0.70004ptx}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004ptx},  xXx\hskip 1.99997pt\in\hskip 1.99997ptX  is  said  to be a  discrete-spectrum  family  if  for every  λ𝐑\lambda\hskip 1.99997pt\in\hskip 1.99997pt\mathbf{R}  the family  of  operators  AxλA_{\hskip 0.70004ptx}\hskip 1.99997pt-\hskip 3.00003pt\lambda,  xXx\hskip 1.99997pt\in\hskip 1.99997ptX  is  a  Fredholm  family.   In  particular,   operators  AxλA_{\hskip 0.70004ptx}\hskip 1.99997pt-\hskip 3.00003pt\lambda  are  Fredholm  for every  λ𝐑\lambda\hskip 1.99997pt\in\hskip 1.99997pt\mathbf{R}.   The operators AxA_{\hskip 0.70004ptx} in  such a family  have discrete spectrum and cannot  be bounded.   Since  they are self-adjoint,   they are necessarily closed and densely defined.

Let  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  be a strictly  Fredholm  and  discrete-spectrum  family.   A  weak spectral  section  S:XGr(𝔸)S\hskip 1.00006pt\colon\hskip 1.00006ptX\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\operatorname{G{\hskip 0.50003pt}r}\hskip 1.49994pt(\hskip 1.49994pt\mathbb{A}\hskip 1.49994pt)  is  said  to be a  spectral  section  if

ImP[r(x),)(Ax)S(x)ImP[r(x),)(Ax)\quad\operatorname{Im}\hskip 1.49994ptP_{\hskip 1.39998pt[\hskip 1.04996ptr\hskip 0.70004pt(\hskip 0.70004ptx\hskip 1.04996pt)\hskip 0.35002pt,\hskip 2.10002pt\infty\hskip 1.39998pt)}\hskip 1.99997pt(\hskip 1.00006ptA_{\hskip 0.70004ptx}\hskip 1.00006pt)\hskip 3.99994pt\subset\hskip 3.99994pt\hskip 1.00006ptS\hskip 1.00006pt(\hskip 1.49994ptx\hskip 1.49994pt)\hskip 3.99994pt\subset\hskip 3.99994pt\hskip 1.00006pt\operatorname{Im}\hskip 1.49994ptP_{\hskip 1.39998pt[\hskip 1.39998pt-\hskip 1.39998ptr\hskip 0.70004pt(\hskip 0.70004ptx\hskip 1.04996pt)\hskip 0.35002pt,\hskip 2.10002pt\infty\hskip 1.39998pt)}\hskip 1.99997pt(\hskip 1.00006ptA_{\hskip 0.70004ptx}\hskip 1.00006pt)\hskip 3.00003pt

for a continuous function r:X𝐑>0r\hskip 1.00006pt\colon\hskip 1.00006ptX\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathbf{R}_{\hskip 1.04996pt>\hskip 0.70004pt0}  and every  xXx\hskip 1.99997pt\in\hskip 1.99997ptX.   This  is  a generalization of  the notion of  spectral  sections introduced  by  Melrose  and  Piazza  [MP1MP_{\hskip 0.35002pt1}].

Discrete-spectrum  families and classical  operator  topologies.   The material  of  this subsection  is  not  used  in  the rest  of  the paper.

The discrete-spectrum  families were introduced  by  the author  [I2I_{\hskip 0.70004pt2}]  as a natural  analogue of  the notion of  a  Fredholm  family  for families of  operators with discrete spectrum.   At  the same  time  such families are exactly  the families for which  the proof  of  Theorem  Spectral  sections :   two  proofs  of  a  theorem  of  Melrose–Piazza  below about  the existence of  spectral  sections works.

Recently  M.  Prokhorova  [P3P_{\hskip 0.35002pt3}]  related  the notion of  a discrete-spectrum  family with  classical  continuity  properties.   Note  that  every operator in a discrete-spectrum  family  is  a closed densely defined operator with compact  resolvent.   Let  Ax:HHA_{\hskip 0.70004ptx}\hskip 1.00006pt\colon\hskip 1.00006ptH\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH,  xXx\hskip 1.99997pt\in\hskip 1.99997ptX  be a family  of  self-adjoint  operators with compact  resolvent  in a fixed  Hilbert  space  HH.   Then  AxA_{\hskip 0.70004ptx},  xXx\hskip 1.99997pt\in\hskip 1.99997ptX  is  a discrete-spectrum  family  if  and  only  if  AxA_{\hskip 0.70004ptx},  xXx\hskip 1.99997pt\in\hskip 1.99997ptX  is  continuous in  the  topology of  convergence in  the norm  resolvent  sense.   Also,   for discrete-spectrum  families every  strictly adapted  local  trivialization  is  fully adapted.   In  particular,   a discrete-spectrum  family  is  strictly  Fredholm  if  and  only  if  it  is  fully  Fredholm.   See  [P3P_{\hskip 0.35002pt3}],   Theorems  2  and  3.

3. Basic  theorems

Classical  contractibility  theorems.   Let  KK  be a separable infinite dimensional  Hilbert  space.   Let  us consider  the group of  isometries  KKK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK  and denote by U(K)U\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.49994pt) this group equipped with  the norm  topology.   The group U(K)U\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.49994pt)  is  contractible by a  theorem of  Kuiper  [K].

Another useful  topology  on  this group  is  the compact-open one.   We will  denote by 𝒰(K)\mathcal{U}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.49994pt)  this group equipped  with  topology induced  from  the product  of  compact-open  topologies by  the map  g(g,g1)g\hskip 3.99994pt\longmapsto\hskip 3.99994pt(\hskip 1.49994ptg\hskip 0.50003pt,\hskip 1.99997ptg^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt).   Actually,   this  topology coincides with  the strong operator  topology,   but  the author prefers  to ignore  this fact.   The group 𝒰(K)\mathcal{U}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.49994pt)  is  contractible by a  theorem of  Atiyah  and  Segal  [ASe],   who adapted an argument  of  Dixmier  and  Douady  [DD].

Another  important  space  is  the space of  polarizations  H=HH+H\hskip 3.99994pt=\hskip 3.99994ptH_{\hskip 0.70004pt-}\hskip 1.00006pt\oplus\hskip 1.00006ptH_{\hskip 0.70004pt+}  with  the  topology defined  by  the norm  topology of  orthogonal  projections  HHH\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004pt-}.   By an observation of  Atiyah  and  Singer  [AS],   Kuiper’s  theorem  implies  that  this space  is  also contractible.

3.1. Theorem.   If  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  is  a strictly  Fredholm  family,   then  there exists a  trivialization of  \mathbb{H}  strictly  adapted  to  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX.   

Proof.   The proof  is  simpler  if  there exists a  triangulation of  the space  XX,   perhaps infinite.   In  this case one can  argue by  an  induction  by skeletons,   using  at  each  step both  the contractibility of  the space of  polarizations and  the contractibility of  the groups 𝒰(K)\mathcal{U}\hskip 1.00006pt(\hskip 1.49994ptK\hskip 1.49994pt).   The  latter  is  applied  to  K=H,H+K\hskip 3.99994pt=\hskip 3.99994ptH_{\hskip 0.70004pt-}\hskip 1.00006pt,\hskip 3.00003ptH_{\hskip 0.70004pt+}  for polarizations  H=HH+H\hskip 3.99994pt=\hskip 3.99994ptH_{\hskip 0.70004pt-}\hskip 1.00006pt\oplus\hskip 1.00006ptH_{\hskip 0.70004pt+}.   The case of  triangulable space  XX  is  sufficient  for applications.   The general  case of  a paracompact  space  XX  requires more sophisticated  tools from  the homotopy  theory.   See  [I2I_{\hskip 0.70004pt2}],   Theorems  4.5  and  4.6.    \blacksquare

3.2. Theorem.   If  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  is  a  discrete-spectrum  and  strictly  Fredholm  family,   then every  weak  spectral  section  of  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  is  homotopic  to a spectral  section.   

Proof.   This  is  an explicit  form of  the  last  paragraph  in  the proof  of  Proposition  1  of  Melrose  and  Piazza  [MP1MP_{\hskip 0.35002pt1}],   who claim  that  a weak spectral  section can  be  transformed  into a spectral  section  “simply  by  smoothly  truncating  the eigenfunction  expansion”.   See  [I2I_{\hskip 0.70004pt2}],   Theorem  6.1  for a detailed  geometric  version of  this argument.    \blacksquare

3.3. Theorem.   Let  Ax:HHA_{\hskip 0.70004ptx}\hskip 1.00006pt\colon\hskip 1.00006ptH\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH,  xXx\hskip 1.99997pt\in\hskip 1.99997ptX  be a norm continuous family of  Fredholm  self-adjoint  operators in a fixed  Hilbert  space  HH.   Then  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  admits a weak  spectral  section  if  and  only  if  it  is  homotopic  in  the class of  such  families  to a family  of  invertible operators.   

Proof.   For compact  XX  the proof  is  contained  in  [MP1MP_{\hskip 0.35002pt1}].   See  [MP1MP_{\hskip 0.35002pt1}],   the proof  of  Proposition  1.   For  general  paracompact  XX  this follows from  [I2I_{\hskip 0.70004pt2}].   We omit  the details.    \blacksquare

Remark.   Suppose  that  Ax:HHA_{\hskip 0.70004ptx}\hskip 0.50003pt\colon\hskip 0.50003ptH\hskip 1.00006pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.00006ptH,  xXx\hskip 1.99997pt\in\hskip 1.99997ptX  is  a  family of  (closed densely defined )  self-adjoint  operators.   The results of  Prokhorova  [P3P_{\hskip 0.35002pt3}]  mentioned at  the end of  Section  Spectral  sections :   two  proofs  of  a  theorem  of  Melrose–Piazza  imply  that  AxA_{\hskip 0.70004ptx},  xXx\hskip 1.99997pt\in\hskip 1.99997ptX  is  a discrete-spectrum and strictly  Fredholm  family  if  and only  if  AxA_{\hskip 0.70004ptx}  are operators with compact  resolvent  and  the family of  bounded  transforms  γ(Ax)\gamma\hskip 1.49994pt(\hskip 1.49994ptA_{\hskip 0.70004ptx}\hskip 1.49994pt),  xXx\hskip 1.99997pt\in\hskip 1.99997ptX  is  norm  continuous.   In view of  this equivalence,   the analogues of  Theorems  Spectral  sections :   two  proofs  of  a  theorem  of  Melrose–Piazza  and  Spectral  sections :   two  proofs  of  a  theorem  of  Melrose–Piazza  for such families with paracompact  XX  follow  from  the results of  Prokhorova  [P2P_{\hskip 0.35002pt2}].   See  [P2P_{\hskip 0.35002pt2}],   Theorem  4.4  (note  that  every weak spectral  section  is  a generalized spectral  section).

4. The  first  proof

Finite-polarized  replacements.   We will  call  a self-adjoint  operator  A:KKA\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK  in a  Hilbert  space  KK  finite-polarized   if  A=1\|\hskip 1.99997ptA\hskip 1.99997pt\|\hskip 3.99994pt=\hskip 3.99994pt1,   the essential  spectrum of  AA  consists of  two points  1,1-\hskip 1.99997pt1\hskip 0.50003pt,\hskip 1.99997pt1,   and  the spectral  projection  P(1,1)(A)P_{\hskip 1.04996pt(\hskip 0.70004pt-\hskip 1.39998pt1\hskip 0.35002pt,\hskip 1.39998pt1\hskip 1.04996pt)}\hskip 1.49994pt(\hskip 1.49994ptA\hskip 1.49994pt)  is  an operator of  finite rank.   If  we omit  the  last  property,   we will  get  exactly  the operators from  the space  F^\hat{F}_{\hskip 0.70004pt*} from  [AS],   Section  2.

Suppose  that  the family  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  is  Fredholm.   We would  like  to replace  it  by a family  of  finite-polarized operators  Ax:HxHx,xXA^{\prime}_{\hskip 0.70004ptx}\hskip 1.00006pt\colon\hskip 1.00006ptH_{\hskip 0.70004ptx}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  without  affecting  analytic  index  and  weak  spectral  sections.   This can  be done by  a spectral  deformation  similar  to one used  in  [AS].   Let  us choose  for each  xXx\hskip 1.99997pt\in\hskip 1.99997ptX  a neighborhood  UxU_{\hskip 0.70004ptx}  of  xx and a number  εx(0,1)\varepsilon_{\hskip 0.70004ptx}\hskip 1.99997pt\in\hskip 1.99997pt(\hskip 1.00006pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.00006pt)  such  that  the properties from  the definition of  Fredholm  families hold.   Since  XX  is  paracompact,   we can assume  that  for some  ΣX\Sigma\hskip 1.99997pt\subset\hskip 1.99997ptX  the family  Ua,aΣU_{\hskip 0.35002pta}\hskip 1.00006pt,\hskip 1.99997pta\hskip 1.99997pt\in\hskip 1.99997pt\Sigma  is  a  locally  finite covering of  XX  and  there exists a partition of  unity  subordinated  to  this covering.   Let  ra:X𝐑0r_{\hskip 0.35002pta}\hskip 1.00006pt\colon\hskip 1.00006ptX\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathbf{R}_{\hskip 1.39998pt\geqslant\hskip 0.70004pt0}  be  the function from  this partition of  unity corresponding  to  aΣa\hskip 1.99997pt\in\hskip 1.99997pt\Sigma.   Let

r(x)=aΣra(x)εa.\quad r\hskip 1.49994pt(\hskip 1.49994ptx\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\sum\nolimits_{\hskip 1.39998pta\hskip 1.39998pt\in\hskip 1.39998pt\Sigma}\hskip 1.99997ptr_{\hskip 0.35002pta}\hskip 1.00006pt(\hskip 1.49994ptx\hskip 1.49994pt)\hskip 1.99997pt\varepsilon_{\hskip 0.70004pta}\hskip 3.00003pt.

Then r(x)(0,1)r\hskip 1.49994pt(\hskip 1.49994ptx\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997pt(\hskip 1.00006pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.00006pt) and  r(x)maxεar\hskip 1.49994pt(\hskip 1.49994ptx\hskip 1.49994pt)\hskip 1.99997pt\leqslant\hskip 1.99997pt\max\hskip 1.99997pt\varepsilon_{\hskip 0.70004pta},   where  the maximum  is  over  aa  such  that  xUax\hskip 1.99997pt\in\hskip 1.99997ptU_{\hskip 0.35002pta},   for every  xXx\hskip 1.99997pt\in\hskip 1.99997ptX.   It  follows  that  for every  xXx\hskip 1.99997pt\in\hskip 1.99997ptX  the essential  spectrum of  AxA_{\hskip 0.70004ptx}  is  disjoint  from  (r(x),r(x))(\hskip 1.49994pt-\hskip 1.99997ptr\hskip 1.49994pt(\hskip 1.49994ptx\hskip 1.49994pt)\hskip 0.50003pt,\hskip 1.99997ptr\hskip 1.49994pt(\hskip 1.49994ptx\hskip 1.49994pt)\hskip 1.99997pt).   For  r>0r\hskip 1.99997pt>\hskip 1.99997pt0  let  χr:𝐑𝐑\chi_{\hskip 0.70004ptr}\hskip 1.00006pt\colon\hskip 1.00006pt\mathbf{R}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathbf{R}  be  an odd  increasing  function  such  that

χr(u)=ufor0ur/2,andχr(u)=1forur.\quad\chi_{\hskip 0.70004ptr}\hskip 1.00006pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptu\quad\mbox{for}\quad\hskip 1.99997pt0\hskip 1.99997pt\leqslant\hskip 1.99997ptu\hskip 1.99997pt\leqslant\hskip 1.99997ptr/2\hskip 1.99997pt,\quad\mbox{and}\quad\chi_{\hskip 0.70004ptr}\hskip 1.00006pt(\hskip 1.49994ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt1\quad\mbox{for}\quad u\hskip 1.99997pt\geqslant\hskip 1.99997ptr\hskip 1.99997pt.

We assume  that  χr\chi_{\hskip 0.70004ptr} continuously depends on rr in  the sup\sup-norm  topology.   For  xXx\hskip 1.99997pt\in\hskip 1.99997ptX  let

Ax=χr(x)(Ax):HxHx\quad A^{\prime}_{\hskip 0.70004ptx}\hskip 3.99994pt=\hskip 3.99994pt\chi_{\hskip 0.70004ptr\hskip 1.04996pt(\hskip 1.04996ptx\hskip 1.04996pt)}\hskip 1.49994pt\bigl{(}\hskip 1.49994ptA_{\hskip 0.70004ptx}\hskip 1.49994pt\bigr{)}\hskip 1.99997pt\colon\hskip 1.99997ptH_{\hskip 0.70004ptx}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004ptx}\hskip 3.00003pt

The operators  AxA^{\prime}_{\hskip 0.70004ptx}  are finite-polarized and  Ax,xXA^{\prime}_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 3.00003ptx\hskip 1.99997pt\in\hskip 1.99997ptX  is  a  Fredholm  family.   The family  Ax,xXA^{\prime}_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  is  our  finite-polarized  replacement  of  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  .

4.1. Lemma.   If  the family  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  is  strictly  Fredholm,   then  Ax,xXA^{\prime}_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  is  also strictly  Fredholm,   and  these  two families have  the same weak spectral  sections.   

Proof.   Clearly,   if  0<ε<r(x)/20\hskip 1.99997pt<\hskip 1.99997pt\varepsilon\hskip 1.99997pt<\hskip 1.99997ptr\hskip 1.49994pt(\hskip 1.49994ptx\hskip 1.49994pt)/2,   then

P[ε,)(Ax)=P[ε,)(Ax).\quad P_{\hskip 1.39998pt[\hskip 0.70004pt\varepsilon\hskip 0.35002pt,\hskip 1.39998pt\infty\hskip 0.70004pt)}\hskip 1.99997pt\left(\hskip 1.49994ptA_{\hskip 0.70004ptx}\hskip 1.49994pt\right)\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.00006pt\ P_{\hskip 1.39998pt[\hskip 0.70004pt\varepsilon\hskip 0.35002pt,\hskip 1.39998pt\infty\hskip 0.70004pt)}\hskip 1.99997pt\left(\hskip 1.49994ptA^{\prime}_{\hskip 0.70004ptx}\hskip 1.49994pt\right)\hskip 3.00003pt.

It  follows  that  if  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  is  strictly  Fredholm,   then  Ax,xXA^{\prime}_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  is  also strictly  Fredholm.   This also implies  that  the bundles  𝝅(𝔸):Gr(𝔸)X\bm{\pi}\hskip 1.49994pt(\hskip 1.49994pt\mathbb{A}\hskip 1.49994pt)\hskip 1.00006pt\colon\hskip 1.00006pt\operatorname{G{\hskip 0.50003pt}r}\hskip 1.49994pt(\hskip 1.49994pt\mathbb{A}\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptX  and  𝝅(𝔸):Gr(𝔸)X\bm{\pi}\hskip 1.49994pt(\hskip 1.49994pt\mathbb{A}^{\prime}\hskip 1.49994pt)\hskip 1.00006pt\colon\hskip 1.00006pt\operatorname{G{\hskip 0.50003pt}r}\hskip 1.49994pt(\hskip 1.49994pt\mathbb{A}^{\prime}\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptX  corresponding  to  these  two families are equal  (not  only  isomorphic,   but  equal ).   Therefore  these bundles have  the same sections,   i.e.  weak  spectral  sections are  the same.    \blacksquare

4.2. Lemma.   Every  local  trivialization  strictly adapted  to  the family  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  is  fully  adapted  to  the family  Ax,xXA^{\prime}_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX.   In  particular,   if  the family  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  is  strictly  Fredholm,   then  the family  Ax,xXA^{\prime}_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  is  fully  Fredholm.   

Proof.   Let  zXz\hskip 1.99997pt\in\hskip 1.99997ptX.   There exist  ε>0\varepsilon\hskip 1.99997pt>\hskip 1.99997pt0  and a neighborhood  UzU_{\hskip 0.70004ptz}  of  zz  such  that  (Ay,ε)(\hskip 1.49994ptA_{\hskip 0.70004pty}\hskip 1.00006pt,\hskip 1.99997pt\varepsilon\hskip 1.49994pt)  is  an enhanced operator  and  ε<r(y)/2\varepsilon\hskip 1.99997pt<\hskip 1.99997ptr\hskip 1.49994pt(\hskip 1.49994pty\hskip 1.49994pt)/2  for every  yUzy\hskip 1.99997pt\in\hskip 1.99997ptU_{\hskip 0.70004ptz}.   If  UU  is  sufficiently small,   then a strictly adapted  trivialization over  UU  turns  the family

P[ε,)(Ay)P(,ε](Ay),yU\quad P_{\hskip 1.39998pt[\hskip 0.70004pt\varepsilon\hskip 0.35002pt,\hskip 1.39998pt\infty\hskip 0.70004pt)}\hskip 1.99997pt\left(\hskip 1.49994ptA_{\hskip 0.70004pty}\hskip 1.49994pt\right)\hskip 3.99994pt-\hskip 3.99994pt\hskip 1.00006ptP_{\hskip 1.39998pt(\hskip 0.70004pt-\hskip 1.39998pt\infty\hskip 0.35002pt,\hskip 1.39998pt\varepsilon\hskip 1.04996pt]}\hskip 1.99997pt\left(\hskip 1.49994ptA_{\hskip 0.70004pty}\hskip 1.49994pt\right)\hskip 1.00006pt,\quad y\hskip 1.99997pt\in\hskip 1.99997ptU

into a norm-continuous  one.   But  Ay,uUA^{\prime}_{\hskip 0.70004pty}\hskip 1.00006pt,\hskip 1.99997ptu\hskip 1.99997pt\in\hskip 1.99997ptU  differs from  it  by  a norm continuous family of  operators of  finite rank.   This implies  that  the same  local  trivialization  turns  the family  Ay,uUA^{\prime}_{\hskip 0.70004pty}\hskip 1.00006pt,\hskip 1.99997ptu\hskip 1.99997pt\in\hskip 1.99997ptU  into a norm continuous one.    \blacksquare

4.3. Lemma.   If  the family  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  is  fully  Fredholm,   then  there exists a  fully  Fredholm  homotopy  between  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  and  Ax,xXA^{\prime}_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX.   

Proof.   It  is  sufficient  to consider  the case when  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  is  a family of  bounded operators,   since  the case of  closed densely defined operators reduces  to  it  by applying  the bounded  transform  to both  families.   The  linear homotopies between  the identity  id:𝐑𝐑\operatorname{id}\hskip 1.00006pt\colon\hskip 1.00006pt\mathbf{R}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathbf{R}  and  the functions  χr(x)\chi_{\hskip 0.70004ptr\hskip 1.04996pt(\hskip 1.04996ptx\hskip 1.04996pt)}  define a homotopy  between  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  and  Ax,xXA^{\prime}_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX.   If  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  is  fully  Fredholm,   then  this homotopy  is  also fully  Fredholm.    \blacksquare

Atiyah–Singer  approach  to  the analytic  index.   Let  Ax:HHA_{\hskip 0.70004ptx}\hskip 1.00006pt\colon\hskip 1.00006ptH\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH,  xXx\hskip 1.99997pt\in\hskip 1.99997ptX  be a  Fredholm  family of  bounded operators in a fixed  Hilbert  space HH.   Let  us consider  the family  of  Fredholm  operators  (not  assumed  to be self-adjoint )  defined  by  the formula

(1) Bx,t=idHcost+iAxsint,xX,t[0,π],\quad B_{\hskip 0.70004ptx\hskip 0.35002pt,\hskip 1.39998ptt}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{id}_{\hskip 1.04996ptH}\hskip 1.99997pt\cos t\hskip 3.00003pt+\hskip 3.00003pti\hskip 1.49994ptA_{\hskip 0.70004ptx}\hskip 1.99997pt\sin t\hskip 1.99997pt,\quad\hskip 3.99994ptx\hskip 1.99997pt\in\hskip 1.99997ptX\hskip 1.00006pt,\hskip 3.99994pt\hskip 1.99997ptt\hskip 1.99997pt\in\hskip 1.99997pt[\hskip 1.49994pt0\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt]\hskip 3.00003pt,

where  idH\operatorname{id}_{\hskip 1.04996ptH}  is  the identity operator  HHH\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH  and  i=1i\hskip 3.99994pt=\hskip 3.99994pt\sqrt{\hskip 1.00006pt-\hskip 1.99997pt1}.   The idea  is  to define  the analytic  index of  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  as  the analytic  index of  the family  Bx,t,(x,t)X×[0,π]B_{\hskip 0.70004ptx\hskip 0.35002pt,\hskip 1.39998ptt}\hskip 1.00006pt,\hskip 3.99994pt(\hskip 1.49994ptx\hskip 0.50003pt,\hskip 1.99997ptt\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997ptX\hskip 1.00006pt\times\hskip 1.00006pt\ [\hskip 1.49994pt0\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt].   The  latter  should  be considered  relatively  to  X×0X×πX\hskip 1.00006pt\times\hskip 1.00006pt0\hskip 1.99997pt\cup\hskip 1.99997ptX\hskip 1.00006pt\times\hskip 1.00006pt\pi,   reflecting  the fact  that  Bx,0=idHB_{\hskip 0.70004ptx\hskip 0.35002pt,\hskip 1.39998pt0}\hskip 3.99994pt=\hskip 3.99994pt\operatorname{id}_{\hskip 1.04996ptH}  and  Bx,π=idHB_{\hskip 0.70004ptx\hskip 0.35002pt,\hskip 1.39998pt\pi}\hskip 3.99994pt=\hskip 3.99994pt-\hskip 1.99997pt\operatorname{id}_{\hskip 1.04996ptH}  for every  xXx\hskip 1.99997pt\in\hskip 1.99997ptX.   More precisely,   the analytic  index  is  either an element  of  K(ΣX)K\hskip 1.49994pt(\hskip 1.49994pt\Sigma\hskip 1.00006ptX\hskip 1.49994pt),   where  ΣX\Sigma\hskip 1.00006ptX  is  the suspension of  XX  or  a homotopy class of  a map  from  X×[0,π]X\hskip 1.00006pt\times\hskip 1.00006pt\ [\hskip 1.49994pt0\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt]  to an appropriate classifying space with respect  to homotopies fixed on  X×0X\hskip 1.00006pt\times\hskip 1.00006pt0  and  X×πX\hskip 1.00006pt\times\hskip 1.00006pt\pi.

If  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  is  fully  Fredholm,   then  the family  (1)  is  fully  Fredholm  in  the sense  that  over an open neighborhood of  every  (x,t)X×[0,π](\hskip 1.49994ptx\hskip 0.50003pt,\hskip 1.99997ptt\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997ptX\hskip 1.00006pt\times\hskip 1.00006pt[\hskip 1.49994pt0\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt]  there  exists a  trivialization of  ×[0,π]\mathbb{H}\hskip 1.00006pt\times\hskip 1.00006pt[\hskip 1.49994pt0\hskip 0.50003pt,\hskip 1.99997pt\pi\hskip 1.49994pt]  turning  this family  into a norm-continuous family.   The definition of  the analytic  index  in  the non-self-adjoint  case  [A],   [AS4AS_{\hskip 0.35002pt4}]  trivially  extends  to such  families,   at  least  for  compact  XX.   Hence we can extend  the definition of  the analytic  index  to fully  Fredholm  families of  self-adjoint  operators.   Clearly,   it  is  invariant  under  fully  Fredholm  homotopies.   If  XX  is  only  paracompact,   one needs  to use  Segal’s  definition  [S]  of  the analytic  index and more  work  is  required.   See  [I2I_{\hskip 0.70004pt2}],   Sections  7  and  8,   for  this case.

It  is  easy  to see  that  the bounded  transform  γ(Ax),xX\gamma\hskip 1.49994pt(\hskip 1.49994ptA_{\hskip 0.70004ptx}\hskip 1.49994pt)\hskip 1.00006pt,\hskip 3.00003ptx\hskip 1.99997pt\in\hskip 1.99997ptX  has  the same analytic  index as  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX.   This allows  to extend  the above definition of  the analytic index  to families of  closed densely defined self-adjoint  Fredholm  operators in  HH.   Namely,   given such a family  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX,   one defines its index as  the index of  the bounded  transform  γ(Ax),xX\gamma\hskip 1.49994pt(\hskip 1.49994ptA_{\hskip 0.70004ptx}\hskip 1.49994pt)\hskip 1.00006pt,\hskip 3.00003ptx\hskip 1.99997pt\in\hskip 1.99997ptX.

Theorem  Spectral  sections :   two  proofs  of  a  theorem  of  Melrose–Piazza  allows  to extend  this definition  to strictly  Fredholm  families  of  operators in  the fibers of  a  Hilbert  bundle.   The index does not  depend on  the choice of  trivialization  by  the relative version of  Theorem  Spectral  sections :   two  proofs  of  a  theorem  of  Melrose–Piazza.   See  [I2I_{\hskip 0.70004pt2}],   Theorem  4.7  for  the  latter.

4.4. Theorem   Suppose  that  the family  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  is  fully  Fredholm.   A weak  spectral  section  for  the family  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  exists  if  and  only  if  the analytic  index of  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  vanishes.   

Proof.   We will  limit  ourselves by  the case of  compact  XX.   Suppose  that  there exists a weak  spectral  section.   Then  the arguments  in  the first  part  of  the proof  of  Proposition  1  in  [MP1MP_{\hskip 0.35002pt1}]  together  with  the principle of  uniform  boundedness show  that  there exists a  fully  Fredholm  homotopy  between  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  and  a family  of  invertible operators.   Hence we may assume  that  operators  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  are invertible.   Then  all  operators  (1)  are also invertible.   In  the non-self-adjoint  case  the analytic  index of  families of  invertible operators vanishes essentially  by  the definition.   The  “only  if”  part  follows.

Suppose now  that  the analytic  index of  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  vanishes.   Lemma  Spectral  sections :   two  proofs  of  a  theorem  of  Melrose–Piazza  implies  that  the analytic  index of  our  finite-polarized  replacement  Ax,xXA^{\prime}_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  also vanishes.   By  Theorem  Spectral  sections :   two  proofs  of  a  theorem  of  Melrose–Piazza  there exists a strictly adapted  to  Ax,xXA^{\prime}_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  trivialization of  \mathbb{H}.   By  Lemma  Spectral  sections :   two  proofs  of  a  theorem  of  Melrose–Piazza  such  trivialization  turns  the family  Ax,xXA^{\prime}_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  into a norm continuous one.   The analytic index of  a norm continuous family vanishes  if  and  only  if  it  is  homotopic  to a constant  family.   Since a self-adjoint  operator can be deformed  to an  invertible self-adjoint  operator,   in  this case  Ax,xXA^{\prime}_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  is  homotopic  to a family of  invertible operators.   By  Theorem  Spectral  sections :   two  proofs  of  a  theorem  of  Melrose–Piazza  this implies  that  there exists a  weak  spectral  section of  Ax,xXA^{\prime}_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX.   Lemma  Spectral  sections :   two  proofs  of  a  theorem  of  Melrose–Piazza  implies  that  this weak  spectral  section  is  also a weak  spectral  section  for  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX.   This proves  the  “if”  part.    \blacksquare

4.5. Corollary.   Suppose  that  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  is  a discrete-spectrum  and  fully  Fredholm  family.   A spectral  section  for  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  exists  if  and  only  if  the analytic  index of  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  vanishes.   

Proof.   It  is  sufficient  to combine  Theorems  Spectral  sections :   two  proofs  of  a  theorem  of  Melrose–Piazza  and  Spectral  sections :   two  proofs  of  a  theorem  of  Melrose–Piazza.    \blacksquare

Remark.   In  Theorem  Spectral  sections :   two  proofs  of  a  theorem  of  Melrose–Piazza  and  Corollary  Spectral  sections :   two  proofs  of  a  theorem  of  Melrose–Piazza  it  is  sufficient  to assume  that  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  is  a strictly  Fredholm  family.   This follows  from  [I2I_{\hskip 0.70004pt2}],   Theorems  5.2  and  Corollary  6.2,   if  one  takes into account  the equivalence of  the definition of  the analytic index  suggested  in  [I2I_{\hskip 0.70004pt2}]  and  the classical  definition.   This equivalence  is  proved  in  [I2I_{\hskip 0.70004pt2}],   Theorem  8.5.   The proofs automatically  work  for paracompact  XX.   The proof  of  the equivalence of  two definitions of  the analytic  index  is  simpler  for compact  XX,   where  in  the non-self-adjoint  case one can use  Atiyah’s  definition  [A].   For  paracompact  XX  one needs  to use  Segal’s  definition  [S].   The resulting proof  of  the  “only  if”  parts depends on  the  theory developed  in  [I1I_{\hskip 0.70004pt1}].

Families of  elliptic operators.   Let 𝕄\mathbb{M} be a  locally  trivial  bundle over XX with closed  manifolds as fibers.   Let  us  consider a continuous  family  of  elliptic pseudo-differential  operators of  order  0  acting on  fibers of  𝕄\mathbb{M}.   It  defines a family of  bounded operators  acting in  fibers of  a  Hilbert  bundle  \mathbb{H}  over  XX.   Classical  results of  Seeley  [Se]  and  Atiyah  and  Singer  [AS4AS_{\hskip 0.35002pt4}]  show  that  the  latter  family  is  fully  Fredholm.   Hence  Theorem  Spectral  sections :   two  proofs  of  a  theorem  of  Melrose–Piazza  applies  to such  families.

Suppose now  that  we are given a family of  elliptic self-adjoint  differential  operators of  order 11 acting on  fibers of  𝕄\mathbb{M}.   This  is  the class of  families considered  in  [MP1MP_{\hskip 0.35002pt1}],   Proposition  1.   Such a family defines a family  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  of  closed densely defined operators  acting in  fibers of  a  Hilbert  bundle  \mathbb{H}  over  XX.   It  is  well  known  that  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  has  the properties defining  discrete-spectrum  fully  Fredholm  families.   Hence  Corollary  Spectral  sections :   two  proofs  of  a  theorem  of  Melrose–Piazza  applies  to such  families.

5. The second  proof

Compactly-polarized  operators.   Let  us  call  a self-adjoint  operator  A:KKA\hskip 1.00006pt\colon\hskip 1.00006ptK\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptK  in a  Hilbert  space  KK  compactly-polarized   if  A=1\|\hskip 1.99997ptA\hskip 1.99997pt\|\hskip 3.99994pt=\hskip 3.99994pt1  and  the essential  spectrum of  AA  consists of  two points  1,1-\hskip 1.99997pt1\hskip 0.50003pt,\hskip 1.99997pt1,   i.e.  AA  belongs  to  Atiyah–Singer  [AS]  space  F^\hat{F}_{*}.   Such operator  AA  is  automatically  Fredholm.   One can also define compactly-polarized operators as essentially unitary operators with  the norm 11.   The  term  compactly-polarized   is  intended  to stress  the obvious analogy  with  finitely-polarized  operators from  Section  Spectral  sections :   two  proofs  of  a  theorem  of  Melrose–Piazza.

We claim  that  every compactly-polarized operator AA  has  the form  Q+kQ\hskip 1.99997pt+\hskip 1.99997ptk,   where QQ  is  a unitary self-adjoint  operator and kk  is  a compact  self-adjoint  operator.   Of  course,   this  is  well  known,   but  we need some notations from  the proof.   Let  AA  be a compactly-polarized operator and  let  ε(0,1)\varepsilon\hskip 1.99997pt\in\hskip 1.99997pt(\hskip 1.00006pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.00006pt)  be such  that  (A,ε)(\hskip 1.49994ptA\hskip 0.50003pt,\hskip 1.99997pt\varepsilon\hskip 1.49994pt)  is  an enhanced operator.   Let

Q=Qε(A)=P[ε,)(A)P(,ε](A)and\quad Q\hskip 3.99994pt=\hskip 3.99994ptQ_{\hskip 1.39998pt\varepsilon}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptP_{\hskip 1.39998pt[\hskip 0.70004pt\varepsilon\hskip 0.35002pt,\hskip 1.39998pt\infty\hskip 0.70004pt)}\hskip 1.49994pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 3.00003pt-\hskip 3.00003ptP_{\hskip 1.39998pt(\hskip 0.70004pt-\hskip 1.39998pt\infty\hskip 0.35002pt,\hskip 1.39998pt\varepsilon\hskip 1.04996pt]}\hskip 1.49994pt(\hskip 1.49994ptA\hskip 1.49994pt)\quad\mbox{and}\quad
k=kε(A)=AQε(A).\quad k\hskip 3.99994pt=\hskip 3.99994ptk_{\hskip 1.39998pt\varepsilon}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptA\hskip 3.00003pt-\hskip 3.00003ptQ_{\hskip 1.04996pt\varepsilon}\hskip 1.49994pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 3.00003pt.

Clearly,  Q=f(A)Q\hskip 3.99994pt=\hskip 3.99994ptf\hskip 1.49994pt(\hskip 1.49994ptA\hskip 1.49994pt)  for some continuous function  f:𝐑𝐑f\hskip 1.00006pt\colon\hskip 1.00006pt\mathbf{R}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\mathbf{R}  equal  to 11 in a neighborhood of  11  and  to  1-\hskip 1.99997pt1 in a neighborhood of  1-\hskip 1.99997pt1.   Let  q,aq\hskip 0.50003pt,\hskip 1.99997pta  be  the images of  Q,AQ\hskip 0.50003pt,\hskip 1.99997ptA  respectively  in  the  Calkin  algebra of  HH.   Then  q=f(a)q\hskip 3.99994pt=\hskip 3.99994ptf\hskip 1.49994pt(\hskip 1.49994pta\hskip 1.49994pt).   At  the same  time  the spectrum of  aa  is  equal  to  the essential  spectrum of  AA  and  hence consists of  two points  1,1-\hskip 1.99997pt1\hskip 0.50003pt,\hskip 1.99997pt1.   It  follows  that  a=f(a)a\hskip 3.99994pt=\hskip 3.99994ptf\hskip 1.49994pt(\hskip 1.49994pta\hskip 1.49994pt)  and  hence  a=qa\hskip 3.99994pt=\hskip 3.99994ptq.   In  turn,   this implies  that  k=AQk\hskip 3.99994pt=\hskip 3.99994ptA\hskip 1.99997pt-\hskip 1.99997ptQ  is  compact.

Compactly-polarized  families.   Let  Ax:HxHx,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt\colon\hskip 1.00006ptH_{\hskip 0.70004ptx}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 3.00003ptx\hskip 1.99997pt\in\hskip 1.99997ptX  be a  family  of  self-adjoint  operators.   We will  say  that  such a family  is  a  compactly-polarized  family   if  it  is  fully  Fredholm  and  all  operators  AxA_{\hskip 0.70004ptx}  are compactly-polarized.

5.1. Lemma.   Suppose  that  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  is  a compactly-polarized  family.   Then every  strictly adapted  ( local )  trivialization  is  fully  adapted.   

Proof.   Let  zXz\hskip 1.99997pt\in\hskip 1.99997ptX,  ε(0,1)\varepsilon\hskip 1.99997pt\in\hskip 1.99997pt(\hskip 1.00006pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.00006pt),   and  UzU_{\hskip 0.35002ptz}  be a neighborhood of  zz  such  that  (Ay,ε)(\hskip 1.49994ptA_{\hskip 0.70004pty}\hskip 0.50003pt,\hskip 1.99997pt\varepsilon\hskip 1.49994pt)  is  an enhanced operator for every  yUzy\hskip 1.99997pt\in\hskip 1.99997ptU_{\hskip 0.35002ptz}.   Suppose  that  we are given a strictly adapted  local  trivialization over  UzU_{\hskip 0.35002ptz}.   Such a  local  trivialization  turns  P[ε,)(Ay),yUzP_{\hskip 1.39998pt[\hskip 0.70004pt\varepsilon\hskip 0.35002pt,\hskip 1.39998pt\infty\hskip 0.70004pt)}\hskip 1.49994pt(\hskip 1.49994ptA_{\hskip 0.70004pty}\hskip 1.49994pt)\hskip 0.50003pt,\hskip 1.99997pty\hskip 1.99997pt\in\hskip 1.99997ptU_{\hskip 0.35002ptz}  into a norm continuous family,   and  hence also  turns  Qε(Ay),yUzQ_{\hskip 1.39998pt\varepsilon}\hskip 1.00006pt(\hskip 1.49994ptA_{\hskip 0.70004pty}\hskip 1.49994pt)\hskip 0.50003pt,\hskip 1.99997pty\hskip 1.99997pt\in\hskip 1.99997ptU_{\hskip 0.35002ptz}  into a norm continuous family.   It  is  fully adapted  if  and  only  if  it  turns  Ay,yUzA_{\hskip 0.70004pty}\hskip 0.50003pt,\hskip 1.99997pty\hskip 1.99997pt\in\hskip 1.99997ptU_{\hskip 0.35002ptz}  into a norm continuous family.   Since  Ay=Qε(Ay)+kε(Ay)A_{\hskip 0.70004pty}\hskip 3.99994pt=\hskip 3.99994ptQ_{\hskip 1.39998pt\varepsilon}\hskip 1.00006pt(\hskip 1.49994ptA_{\hskip 0.70004pty}\hskip 1.49994pt)\hskip 1.99997pt+\hskip 1.99997ptk_{\hskip 1.39998pt\varepsilon}\hskip 1.00006pt(\hskip 1.49994ptA_{\hskip 0.70004pty}\hskip 1.49994pt),   for strictly adapted  trivializations  the  latter condition  is  equivalent  to  turning  kε(Ay),yUzk_{\hskip 1.39998pt\varepsilon}\hskip 1.00006pt(\hskip 1.49994ptA_{\hskip 0.70004pty}\hskip 1.49994pt)\hskip 0.50003pt,\hskip 1.99997pty\hskip 1.99997pt\in\hskip 1.99997ptU_{\hskip 0.35002ptz}  into a norm continuous family.

Let  K(H)K\hskip 1.49994pt(\hskip 1.49994ptH\hskip 1.49994pt)  be  the space of  compact  operators  HHH\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH  with  the norm  topology.   By a  theorem of  Atiyah  and  Segal  [ASe]  the action of  the group  𝒰(H)\mathcal{U}\hskip 1.00006pt(\hskip 1.49994ptH\hskip 1.49994pt)  on  K(H)K\hskip 1.49994pt(\hskip 1.49994ptH\hskip 1.49994pt)  by conjugations  is  continuous.   It  follows  that  if  the family  kε(Ay),yUzk_{\hskip 1.04996pt\varepsilon}\hskip 1.49994pt(\hskip 1.49994ptA_{\hskip 0.70004pty}\hskip 1.49994pt)\hskip 1.00006pt,\hskip 3.99994pty\hskip 1.99997pt\in\hskip 1.99997ptU_{\hskip 0.35002ptz}  is  norm-continuous  in one  trivialization,   then  it  is  norm-continuous  in every  trivialization.

Since  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  is  fully  Fredholm,   the first  paragraph of  the proof  implies  that  for some  UzU_{\hskip 0.35002ptz}  some strictly adapted  trivialization over  UzU_{\hskip 0.35002ptz}  turns  kε(Ay),yUzk_{\hskip 1.04996pt\varepsilon}\hskip 1.49994pt(\hskip 1.49994ptA_{\hskip 0.70004pty}\hskip 1.49994pt)\hskip 1.00006pt,\hskip 3.99994pty\hskip 1.99997pt\in\hskip 1.99997ptU_{\hskip 0.35002ptz}  into a norm continuous family.   Then by  the previous paragraph  every  trivialization over  UzU_{\hskip 0.35002ptz}  turns  kε(Ay),yUzk_{\hskip 1.04996pt\varepsilon}\hskip 1.49994pt(\hskip 1.49994ptA_{\hskip 0.70004pty}\hskip 1.49994pt)\hskip 1.00006pt,\hskip 3.99994pty\hskip 1.99997pt\in\hskip 1.99997ptU_{\hskip 0.35002ptz}  into a norm continuous family,   and  hence every strictly  adapted  trivialization  turns  the family  Ay,yUzA_{\hskip 0.70004pty}\hskip 0.50003pt,\hskip 1.99997pty\hskip 1.99997pt\in\hskip 1.99997ptU_{\hskip 0.35002ptz}  into a norm continuous family.   The  lemma  follows.    \blacksquare

5.2. Theorem.   Suppose  that  the family  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  is  compactly-polarized.   Then a weak spectral  section  for  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  exists  if  and  only  if  the analytic  index of  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  vanishes.   

Proof.   As in  the proof  of  Theorem  Spectral  sections :   two  proofs  of  a  theorem  of  Melrose–Piazza  we will  assume  that  XX  is  compact.   By  Theorem  Spectral  sections :   two  proofs  of  a  theorem  of  Melrose–Piazza  there exists a strictly adapted  trivialization of  \mathbb{H}.   By  Lemma  Spectral  sections :   two  proofs  of  a  theorem  of  Melrose–Piazza  such  trivialization  is  fully  adapted.   Hence  it  is  sufficient  to consider  norm-continuous  families  of  operators  in  a fixed  Hilbert  space  HH.   In  this case  Theorem  Spectral  sections :   two  proofs  of  a  theorem  of  Melrose–Piazza  implies  that  a weak spectral  section exists  if  and  only  if  the family  is  homotopic  to a family of  invertible operators.   But  the  latter condition  is  equivalent  to  the vanishing of  the analytic index  (cf.  the proof  of  Theorem  Spectral  sections :   two  proofs  of  a  theorem  of  Melrose–Piazza).    \blacksquare

5.3. Theorem   Let  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  is  be a discrete-spectrum  and  fully  Fredholm  family.   Then a weak spectral  section  for  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  exists  if  and  only  if  its  analytic  index vanishes.   

Proof.   Since  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  is  fully  Fredholm,   the family  Cx=γ(Ax),xXC_{\hskip 0.70004ptx}\hskip 3.99994pt=\hskip 3.99994pt\gamma\hskip 1.49994pt(\hskip 1.49994ptA_{\hskip 0.70004ptx}\hskip 1.49994pt)\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  is  also fully  Fredholm.   Clearly,   every operator  CxC_{\hskip 0.70004ptx}  is  compactly-polarized.   It  follows  that  the family  Cx,xXC_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  is  compactly-polarized.   By  Theorem  Spectral  sections :   two  proofs  of  a  theorem  of  Melrose–Piazza  the family  Cx,xXC_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  admits a weak  spectral  section  if  and  only  if  its analytic index,   which  is  equal  to  the analytic  index of  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX,   vanishes.   At  the same  time every weak  spectral  section of  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  is  a weak  spectral  section of  Cx,xXC_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX,   and  the converse  is  also  true.   The  theorem  follows.    \blacksquare

5.4. Corollary.   Suppose  that  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  is  a discrete-spectrum  and  fully  Fredholm  family.   A spectral  section  for  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  exists  if  and  only  if  the analytic  index of  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  vanishes.

Proof.   It  is  sufficient  to combine  Theorems  Spectral  sections :   two  proofs  of  a  theorem  of  Melrose–Piazza  and  Spectral  sections :   two  proofs  of  a  theorem  of  Melrose–Piazza.    \blacksquare

Remark.   While  Corollaries  Spectral  sections :   two  proofs  of  a  theorem  of  Melrose–Piazza  and  Spectral  sections :   two  proofs  of  a  theorem  of  Melrose–Piazza  are identical,   the proof  of  Theorem  Spectral  sections :   two  proofs  of  a  theorem  of  Melrose–Piazza,   in contrast  with  the proof  of  Theorem  Spectral  sections :   two  proofs  of  a  theorem  of  Melrose–Piazza,   works only  for discrete-spectrum  families,   because  it  depends on  the properties of  compactly-polarized  families.

Remark.   As  the reader certainly  noticed,   we did  not  really  work with unbounded operators.   The definition of  spectral  sections  looks nicer  for unbounded operators,   but  can  be easily  reformulated  in  terms of  their bounded  transforms.   Strictly speaking,   Corollaries  Spectral  sections :   two  proofs  of  a  theorem  of  Melrose–Piazza  and  Spectral  sections :   two  proofs  of  a  theorem  of  Melrose–Piazza  are concerned  with  the image of  the bounded  transform,   i.e.  with  the families of  self-adjoint  strictly  contracting  operators.   But  in applications such families usually arise from  closed and densely defined  unbounded operators.

Remark.   Recent  results of  Prokhorova  [P3P_{\hskip 0.35002pt3}]  allow  to strengthen  the results of  this section.   Namely,   in  Lemma  Spectral  sections :   two  proofs  of  a  theorem  of  Melrose–Piazza  and  Theorem  Spectral  sections :   two  proofs  of  a  theorem  of  Melrose–Piazza  it  is  sufficient  to assume  that  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  is  a family of  compactly-polarized operators which  is  strictly  Fredholm  and such  that  Axλ,xXA_{\hskip 0.70004ptx}\hskip 1.99997pt-\hskip 1.99997pt\lambda\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  is  a  Fredholm  family  for every  λ(1,1)\lambda\hskip 1.99997pt\in\hskip 1.99997pt(\hskip 1.00006pt-\hskip 1.99997pt1\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.00006pt).   In fact,   such families are automatically  fully  Fredholm.   See  [P3P_{\hskip 0.35002pt3}],   Theorem  5.   In  Theorem  Spectral  sections :   two  proofs  of  a  theorem  of  Melrose–Piazza and  Corollary  Spectral  sections :   two  proofs  of  a  theorem  of  Melrose–Piazza  it  is  sufficient  to assume  that  Ax,xXA_{\hskip 0.70004ptx}\hskip 1.00006pt,\hskip 1.99997ptx\hskip 1.99997pt\in\hskip 1.99997ptX  is  a discrete-spectrum  and  strictly  Fredholm  family.   As we pointed out  at  the end of  Section  Spectral  sections :   two  proofs  of  a  theorem  of  Melrose–Piazza,   the same  is  true for  Theorem  Spectral  sections :   two  proofs  of  a  theorem  of  Melrose–Piazza  and  Corollary  Spectral  sections :   two  proofs  of  a  theorem  of  Melrose–Piazza.   It  seems  that  strictly  Fredholm  families provide a proper context  for dealing with spectral  sections.

References

  • [A] M.F.  Atiyah,   KK-theory,   W.A.  Benjamin,   Inc.,   1967,   iv,  166  pp.
  • [ASe] M.F.  Atiyah,   G.  Segal,   Twisted KK-theory,   Ukrainian  Mathematical  Bulletin,   V.  1,   No.  3  (2004),   291–334.   
  • [AS4AS_{\hskip 0.35002pt4}] M.F.  Atiyah,   I.M.  Singer,   The index of  elliptic  operators :   IV,   Annals of  Mathematics,   V.  93,   No.  1  (1971),   119 –138.   
  • [  AS ] M.F.  Atiyah,   I.M.  Singer,   Index  theory for skew-adjoint  Fredholm  operators,   Publications mathématiques  IHES,   T.  37  (1969),   5 –26.   
  • [DD] J.  Dixmier,   A.  Douady,   Champs continus d’espaces hilbertiens et de CC^{*}-algébres,   Bulletin de  la  S.M.F.,   T.  91  (1963),   227–284.   
  • [I1I_{\hskip 0.70004pt1}] N.V.  Ivanov,   Topological  categories  related  to  Fredholm  operators :   I.   Classifying  spaces,   2021,   107  pp.   arXiv:2111.14313.
  • [I2I_{\hskip 0.70004pt2}] N.V.  Ivanov,   Topological  categories  related  to  Fredholm  operators :   II.   The analytic  index,   2021,   49  pp.   arXiv:2111.15081.
  • [K] N.  Kuiper,   The homotopy  type of  the unitary  group of  Hilbert  space,   Topology,   V.  3,   No.  1  (1964),   19 –39.   
  • [M] R.  Melrose,   Email  to  M.  Prokhorova,   August  11,   2021.   
  • [MP1MP_{\hskip 0.35002pt1}] R.  Melrose,   P.  Piazza,   Families of  Dirac operators,   boundaries and  the bb-calculus,   J.  of  Diff.  Geometry,   V.  45  (1997),   99 –180.   
  • [MP2MP_{\hskip 0.35002pt2}] R.  Melrose,   P.  Piazza,   An  index  theorem  for  families of  Dirac  operators on odd-dimensional  manifolds with  boundary,   J.  of  Diff.  Geometry,   V.  45  (1997),   287–334.
  • [P1P_{\hskip 0.35002pt1}] M.  Prokhorova,   Private communication,   December  16,   2020.   
  • [P2P_{\hskip 0.35002pt2}] M.  Prokhorova,   Spectral  sections,   2020 – 2021,   37  pp.   arXiv:2008.04672v5,   Israel  Journal  of  Mathematics,   to appear.   
  • [P3P_{\hskip 0.35002pt3}] M.  Prokhorova,   The continuity properties of discrete-spectrum families of Fredholm operators,   2022,   4  pp.  arXiv:2201.09869.
  • [Se] R.  Seeley,   Complex  powers of  an elliptic operator,   Proceeding of  Symposia in  Pure  Mathematics,   V.  10,   American  Mathematical  Society,   1967,   pp.  288–307.   
  • [S] G.  Segal,   Fredholm  complexes,   Quarterly  J.  of  Mathematics,   V.  21 (1970),   385–402.

November  29,   2021.   Revised  January  25,   2022

https :/​/​nikolaivivanov.com

E-mail :   nikolai.v.ivanov @ icloud.com

Department  of  Mathematics,   Michigan  State  University