This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Spectral Excision and Descent for Almost Perfect Complexes

Chang-Yeon Chough Department of Mathematics, Sogang University, Seoul 04107, Republic of Korea [email protected]
Abstract.

We show that almost perfect complexes of commutative ring spectra satisfy excision and vv-descent. These results generalize Milnor excision for perfect complexes of ordinary commutative rings and vv-descent for almost perfect complexes of locally noetherian derived stacks by Halpern-Leistner and Preygel, respectively.

Key words and phrases:
almost perfect complexes, v-topology, Milnor squares, commutative ring spectra, infinity-categories
2020 Mathematics Subject Classification:
14A30, 18F10, 19E08, 55P43, 18N60

1. Introduction

1.1.

Suppose we are given a square of associative rings σ\sigma:

A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}A\textstyle{A^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}B\textstyle{B\ignorespaces\ignorespaces\ignorespaces\ignorespaces}B\textstyle{B^{\prime}}

for which the map BBB\rightarrow B^{\prime} is surjective. According to Milnor (see [11, §2]), the image of σ\sigma under the functor which assigns to each associative ring RR the category of finitely generated projective RR-modules is a pullback diagram of categories. To work in the more general context of structured ring spectra, recall that if RR is a commutative ring, then a chain complex of RR-modules MM (viewed as an object of the derived category of RR-modules) is perfect if it is quasi-isomorphic to a bounded complex of finitely generated projective RR-modules (see, for example, [13, Tag 0657]). More generally, we say that MM is pseudo-coherent it if is quasi-isomorphic to a bounded above complex of finitely generated free RR-modules (see, for example, [1, p.79]). Suppose now that RR is an 𝔼\operatorname{\mathbb{E}}_{\infty}-ring in the sense of [8, 7.1.0.1] and let ModR\operatorname{Mod}_{R} denote the \infty-category of RR-modules (see [8, 7.1.1.2]). Then the notions of perfect and pseudo-coherent modules over commutative rings can be generalized to the setting of 𝔼\operatorname{\mathbb{E}}_{\infty}-rings, and we obtain the notions of perfect and almost perfect modules over RR, respectively (see [8, 7.2.4.1] and [8, 7.2.4.10]). We will denote by Perf(R)\operatorname{Perf}(R) and APerf(R)\operatorname{APerf}(R) the full subcategories of ModR\operatorname{Mod}_{R} spanned by the perfect and almost perfect RR-modules, respectively. The constructions RPerf(R),APerf(R)R\mapsto\operatorname{Perf}(R),\operatorname{APerf}(R) determine functors Perf,APerf:CAlgcn𝒞at\operatorname{Perf},\operatorname{APerf}:\operatorname{CAlg}^{\operatorname{cn}}\rightarrow\operatorname{\mathcal{C}at}_{\infty}, where CAlgcn\operatorname{CAlg}^{\operatorname{cn}} and 𝒞at\operatorname{\mathcal{C}at}_{\infty} denote the \infty-category of connective 𝔼\operatorname{\mathbb{E}}_{\infty}-rings and the \infty-category of \infty-categories, respectively (see [8, p.1201] and [6, 3.0.0.1]).

1.2.

One of the main results in this paper is the following analogue of Milnor’s result in the setting of 𝔼\operatorname{\mathbb{E}}_{\infty}-rings:

Theorem 1.3.

Suppose we are given a pullback square of connective 𝔼\operatorname{\mathbb{E}}_{\infty}-rings σ:\sigma:

A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}A\textstyle{A^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}B\textstyle{B\ignorespaces\ignorespaces\ignorespaces\ignorespaces}B.\textstyle{B^{\prime}.}

If the induced map π0Bπ0B\pi_{0}B\rightarrow\pi_{0}B^{\prime} is a surjection of commutative rings, then the diagram of \infty-categories APerf(σ):\operatorname{APerf}(\sigma):

APerf(A)\textstyle{\operatorname{APerf}(A)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}APerf(A)\textstyle{\operatorname{APerf}(A^{\prime})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}APerf(B)\textstyle{\operatorname{APerf}(B)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}APerf(B)\textstyle{\operatorname{APerf}(B^{\prime})}

determined by the extension of scalars functors is a pullback square in the \infty-category 𝒞at\operatorname{\mathcal{C}at}_{\infty}.

Remark 1.4.

In our proof of 1.3, we will make use of the notion of a universal descent morphism of 𝔼\operatorname{\mathbb{E}}_{\infty}-rings in the sense of [7, D.3.1.1], which was introduced originally by Akhil Mathew in [9, 3.18]. We note that the notion of universal descent morphisms makes sense more generally for 𝔼2\operatorname{\mathbb{E}}_{2}-rings. However, it is in the commutative setting that the class of universal descent morphisms has the descent property of [7, D.3.5.8], which will play an important role in our discussion of almost perfect complexes. For this reason, we focus our attention to the case of 𝔼\operatorname{\mathbb{E}}_{\infty}-rings (unlike Milnor’s excision, which works for associative rings).

Remark 1.5.

Under the additional assumption that the underlying map of commutative rings π0Aπ0B\pi_{0}A^{\prime}\rightarrow\pi_{0}B^{\prime} is surjective, APerf(σ)\operatorname{APerf}(\sigma) is already known to be a pullback diagram by virtue of [7, 16.2.0.2] and [7, 16.2.3.1].

Remark 1.6.

In the special case where σ\sigma is a pullback square of connective 𝔼\operatorname{\mathbb{E}}_{\infty}-rings for which the map π0Bπ0B\pi_{0}B\rightarrow\pi_{0}B^{\prime} is a surjection whose kernel is a nilpotent ideal of π0B\pi_{0}B, 1.3 can be deduced from [7, 16.2.0.2] and [7, 2.7.3.2].

Remark 1.7.

By restricting the equivalence of 1.3 to the full subcategories spanned by the dualizable objects (see the proof of 2.15), we immediately deduce that the canonical map Perf(A)Perf(A)×Perf(B)Perf(B)\operatorname{Perf}(A)\rightarrow\operatorname{Perf}(A^{\prime})\times_{\operatorname{Perf}(B^{\prime})}\operatorname{Perf}(B) is an equivalence of \infty-categories. We remark that this equivalence is proven in [9, 2.23] under the additional assumption that the map π0Aπ0B\pi_{0}A^{\prime}\rightarrow\pi_{0}B^{\prime} is a surjection.

Remark 1.8.

According to [4, 1.17] of Markus Land and Georg Tamme, Perf(σ)\operatorname{Perf}(\sigma) is a pullback diagram of \infty-categories if σ\sigma is a pullback square of 𝔼1\operatorname{\mathbb{E}}_{1}-rings for which the functor Perf(BABA)Perf(B)\operatorname{Perf}(B\odot^{B^{\prime}}_{A}A^{\prime})\rightarrow\operatorname{Perf}(B^{\prime}) is conservative (see [4, 1.3] for more details). In the case of connective 𝔼\operatorname{\mathbb{E}}_{\infty}-rings, the condition appearing in [4, 1.17] is satisfied if the map π0Bπ0B\pi_{0}B\rightarrow\pi_{0}B^{\prime} is surjective (see [4, p.912] and [4, 1.3]). Consequently, 1.7, which is an immediate consequence of our more general result 1.3, can be deduced from [4, 1.17]. We note that our proof of 1.7, which is very succinct, does not involve the construction of the 𝔼1\operatorname{\mathbb{E}}_{1}-ring BABAB\odot^{B^{\prime}}_{A}A^{\prime} appearing in the statement of [4, 1.17].

1.9.

Fix a finite field 𝔽p\mathbb{F}_{p} of pp elements for some prime number pp. Recall that an 𝔽p\mathbb{F}_{p}-scheme XX is said to be perfect if the Frobenius map XXX\rightarrow X is an isomorphism (see, for example, [2, 3.1]). This paper was motivated by [2, 11.2] of Bhargav Bhatt and Peter Scholze, which shows that the functor which carries each perfect quasi-compact and quasi-separated 𝔽p\mathbb{F}_{p}-scheme XX to the \infty-category of perfect complexes on XX (see, for example, [7, 2.8.4.4]) is a hypercomplete sheaf with respect to the vv-topology of [2, 3.2] in the sense of [6, p.669]. We note that this result depends crucially on the fact that the derived tensor product can be identified with the ordinary tensor product for perfect rings; see [2, 3.16].

1.10.

Our second main result shows that the restriction to perfect schemes can be removed from [2, 11.2] if we work in the setting of spectral algebraic geometry (see 2.2 for the notion of vv-cover in the spectral setting). In fact, we prove this not just for perfect modules, but for more general almost perfect modules:

Theorem 1.11.

Let f:ABf:A\rightarrow B be a vv-cover of connective 𝔼\operatorname{\mathbb{E}}_{\infty}-rings for which the underlying map of commutative rings π0f:π0Aπ0B\pi_{0}f:\pi_{0}A\rightarrow\pi_{0}B is of finite presentation. Then ff is of universal APerf\operatorname{APerf}-descent: that is, for every morphism AAA\rightarrow A^{\prime} in the \infty-category CAlgcn\operatorname{CAlg}^{\operatorname{cn}} of connective 𝔼\operatorname{\mathbb{E}}_{\infty}-rings, the induced map APerf(A)limAPerf(B)\operatorname{APerf}(A^{\prime})\rightarrow\lim\operatorname{APerf}({B^{\prime}}^{\bullet}) is an equivalence of \infty-categories, where B{B^{\prime}}^{\bullet} denotes the Čech nerve of the map AAABA^{\prime}\rightarrow A^{\prime}\otimes_{A}B (formed in the opposite of the \infty-category CAlgcn\operatorname{CAlg}^{\operatorname{cn}}).

Remark 1.12.

If f:ABf:A\rightarrow B is a morphism of noetherian simplicial commutative rings for which the induced map π0f\pi_{0}f is a finitely presented vv-cover of ordinary commutative rings, it then follows from [3, 3.3.1] of Halpern-Leistner and Preygel that almost perfect complexes satisfy (not necessarily universal) descent for the morphism ff; see 2.13. Our descent result 1.11 can be regarded as a generalization of their work (in the affine case): it holds without the locally noetherian assumption appearing in [3, 3.3.1] and is valid more generally for connective 𝔼\operatorname{\mathbb{E}}_{\infty}-rings, rather than merely for simplicial commutative rings. Moreover, the APerf\operatorname{APerf}-descent for the morphism ff is universal (that is, APerf\operatorname{APerf} satisfies descent for arbitrary base change of the map ff).

Remark 1.13.

Let f:ABf:A\rightarrow B be a morphism of noetherian connective 𝔼\operatorname{\mathbb{E}}_{\infty}-rings for which the induced map π0f\pi_{0}f is a finitely presented vv-cover of ordinary commutative rings. Then [3, 3.3.6] of Halpern-Leistner and Preygel shows that the functor Modacn\operatorname{Mod}^{\operatorname{acn}} satisfies (not necessarily universal) descent for the map ff (see 2.9). Using a slight variant of the proof of 1.11, we can remove the noetherian assumption on AA and BB to show that ff is of universal Modacn\operatorname{Mod}^{\operatorname{acn}}-descent; see 3.8.

Remark 1.14.

As a consequence of 1.11, we will see in 3.9 that ff is also of universal Perf\operatorname{Perf}-descent. In particular, the functor Perf:CAlgcn𝒞at\operatorname{Perf}:\operatorname{CAlg}^{\operatorname{cn}}\rightarrow\operatorname{\mathcal{C}at}_{\infty} satisfies descent with respect to the Grothendieck topology on (CAlgcn)op(\operatorname{CAlg}^{\operatorname{cn}})^{\operatorname{op}} which is characterized by the following property: a sieve 𝒞(CAlgcn)/Aop\operatorname{\mathcal{C}}\subseteq(\operatorname{CAlg}^{\operatorname{cn}})^{\operatorname{op}}_{/A} is a covering if and only if it contains a finite collection of maps {AAi}1in\{A\rightarrow A_{i}\}_{1\leq i\leq n} for which the induced map f:AAif:A\rightarrow\prod A_{i} is a vv-cover such that the underlying map of commutative rings π0f\pi_{0}f exhibits π0(Ai)\pi_{0}(\prod A_{i}) as a finitely presented π0A\pi_{0}A-algebra. In contrast with [2, 11.2] for ordinary perfect schemes, the sheaf Perf\operatorname{Perf} is not hypercomplete (that is, it is not true in general that if U:Δop(CAlgcn)opU_{\bullet}:\Delta^{\operatorname{op}}\rightarrow(\operatorname{CAlg}^{\operatorname{cn}})^{\operatorname{op}} is a hypercovering with respect to the above Grothendieck topology in the sense of [7, A.5.7.1], then the composition ΔUCAlgcnPerf𝒞at\Delta\stackrel{{\scriptstyle U_{\bullet}}}{{\longrightarrow}}\operatorname{CAlg}^{\operatorname{cn}}\stackrel{{\scriptstyle\operatorname{Perf}}}{{\longrightarrow}}\operatorname{\mathcal{C}at}_{\infty} is a limit diagram). To see this, we note that for every connective 𝔼\operatorname{\mathbb{E}}_{\infty}-ring RR, the truncation map Rπ0RR\rightarrow\pi_{0}R is a vv-cover, so that the constant cosimplicial 𝔼\operatorname{\mathbb{E}}_{\infty}-ring with value π0R\pi_{0}R is a hypercovering of RR with respect to the above Grothendieck topology. Consequently, if the functor Perf\operatorname{Perf} is hypercomplete, then the natural map Perf(R)Perf(π0R)\operatorname{Perf}(R)\rightarrow\operatorname{Perf}(\pi_{0}R) is an equivalence of \infty-categories, which is false in general.

Remark 1.15.

Fix integers aba\leq b. Since the functor Perf\operatorname{Perf} is a sheaf for the Grothendieck topology appearing in 1.14 by virtue of 3.9, so is the subfunctor Perf[a,b]\operatorname{Perf}^{[a,b]} which assigns to each connective 𝔼\operatorname{\mathbb{E}}_{\infty}-ring RR the full subcategory Perf[a,b](R)Perf(R)\operatorname{Perf}^{[a,b]}(R)\subseteq\operatorname{Perf}(R) spanned by those perfect complexes whose Tor-amplitude is contained in [a,b][a,b]; see, for example, [8, 7.2.4.21]. As Akhil Mathew pointed out, the functor Perf[a,b]:CAlgcn𝒞at\operatorname{Perf}^{[a,b]}:\operatorname{CAlg}^{\operatorname{cn}}\rightarrow\operatorname{\mathcal{C}at}_{\infty} does not take values in the \infty-category of (ba+1)(b-a+1)-categories in the sense of [6, 2.3.4.1], unlike in the case of ordinary perfect schemes of [2, 11.2]. Consequently, the fact that Perf[a,b]\operatorname{Perf}^{[a,b]} is a sheaf does not guarantee that it is a hypercomplete sheaf (see [6, 6.5.2.9]). In fact, for a connective 𝔼\operatorname{\mathbb{E}}_{\infty}-ring RR, the canonical map Perf[a,b](R)Perf[a,b](π0R)\operatorname{Perf}^{[a,b]}(R)\rightarrow\operatorname{Perf}^{[a,b]}(\pi_{0}R) is not an equivalence in general, so that Perf[a,b]\operatorname{Perf}^{[a,b]} is not hypercomplete.

1.16.

Conventions. We will make use of the theory of \infty-categories and the theory of spectral algebraic geometry developed in [6], [8], and [7].

1.17.

Acknowledgements. The author is thankful to Bhargav Bhatt and Akhil Mathew for their helpful comments and suggestions. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2020R1A5A1016126) and the Sogang University Research Grant of 2023 (No. 202310024.01).

2. The vv-covers and universal descent morphisms of connective 𝔼\operatorname{\mathbb{E}}_{\infty}-rings

2.1.

Let f:XYf:X\rightarrow Y be a morphism of quasi-compact and quasi-separated schemes. Recall from [2, 2.1] (see also [12, 2.9]) that ff is said to be a vv-cover if, for every valuation ring VV and every morphism of schemes SpecVY\operatorname{Spec}V\rightarrow Y, there exist an extension of valuation rings VWV\rightarrow W (that is, an injective local homomorphism) and a morphism of schemes SpecWX\operatorname{Spec}W\rightarrow X, which fit into a commutative diagram

SpecW\textstyle{\operatorname{Spec}W\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}X\textstyle{X\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}SpecV\textstyle{\operatorname{Spec}V\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Y.\textstyle{Y.}

In the spectral setting, we define the vv-cover of connective 𝔼\operatorname{\mathbb{E}}_{\infty}-rings as follows:

Definition 2.2.

Let f:ABf:A\rightarrow B be a morphism of connective 𝔼\operatorname{\mathbb{E}}_{\infty}-rings (see [8, 7.1.0.1]). We will say that ff is a vv-cover if the induced morphism Spec(π0f):Spec(π0B)Spec(π0A)\operatorname{Spec}(\pi_{0}f):\operatorname{Spec}(\pi_{0}B)\rightarrow\operatorname{Spec}(\pi_{0}A) is a vv-cover of ordinary schemes in the sense of 2.1.

Remark 2.3.

Alternatively, we can define a vv-cover of affine spectral Deligne-Mumford stacks Spec(f):SpecBSpecA\operatorname{Spec}(f):\operatorname{Spec}B\rightarrow\operatorname{Spec}A as in 2.1, by virtue of the universal property of 0-truncations of spectral Deligne-Mumford stacks (see [7, 1.4.6.3]).

2.4.

We now summarize some of the formal properties of 2.2 (which follow immediately from the case of ordinary schemes and [8, 7.2.1.23]):

Lemma 2.5.
  1. (i)

    The collection of vv-covers of connective 𝔼\operatorname{\mathbb{E}}_{\infty}-rings contains all equivalences and is stable under composition.

  2. (ii)

    Suppose we are given a pushout diagram of connective 𝔼\operatorname{\mathbb{E}}_{\infty}-rings

    A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}B\textstyle{B\ignorespaces\ignorespaces\ignorespaces\ignorespaces}A\textstyle{A^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f^{\prime}}B.\textstyle{B^{\prime}.}

    If ff is a vv-cover, then so is ff^{\prime}.

2.6.

The notion of vv-covers appearing in 2.2 is closely related to the notion of a universal descent morphism of 𝔼\operatorname{\mathbb{E}}_{\infty}-rings (which makes sense more generally for 𝔼2\operatorname{\mathbb{E}}_{2}-rings): recall from [7, D.3.1.1] that a morphism of 𝔼\operatorname{\mathbb{E}}_{\infty}-rings f:ABf:A\rightarrow B is said to be a universal descent morphism if the smallest stable subcategory of LModA\operatorname{LMod}_{A} which is closed under retracts and contains all AA-modules of the form NABN\otimes_{A}B, where NN is a left AA-module, coincides with LModA\operatorname{LMod}_{A}. We note that for a finitely presented map f:ABf:A\rightarrow B of noetherian commutative rings, the map ff (regarded as a morphism of discrete 𝔼\operatorname{\mathbb{E}}_{\infty}-rings) is a universal descent morphism if and only if Spec(f):SpecBSpecA\operatorname{Spec}(f):\operatorname{Spec}B\rightarrow\operatorname{Spec}A is a vv-cover of ordinary schemes; see [2, 11.26].

Remark 2.7.

The class of universal descent morphisms, which will play a central role in our proofs of 1.3 and 1.11, allows us to do descent theory in the spectral setting. In particular, if f:ABf:A\rightarrow B is a universal descent morphism of 𝔼\operatorname{\mathbb{E}}_{\infty}-rings, it then follows from [7, D.3.5.8] that the canonical map ModAlimModB\operatorname{Mod}_{A}\rightarrow\lim\operatorname{Mod}_{B^{\bullet}} is an equivalence of symmetric monoidal \infty-categories, where BB^{\bullet} denotes the Čech nerve of ff formed in the \infty-category (CAlgcn)op(\operatorname{CAlg}^{\operatorname{cn}})^{\operatorname{op}}.

Remark 2.8.

Let f:ABf:A\rightarrow B be a morphism of 𝔼\operatorname{\mathbb{E}}_{\infty}-rings. Let BB^{\bullet} denote the Čech nerve of ff (so that BnB^{n} is given by the (n+1)(n+1)-fold tensor product BAABB\otimes_{A}\cdots\otimes_{A}B for each n0n\geq 0). We denote by Tot(B/A)\operatorname{Tot}^{\bullet}(B/A) the Tot-tower of BB^{\bullet}: that is, the sequence of AA-modules

Tot2(B/A)Tot1(B/A)Tot0(B/A).\cdots\operatorname{Tot}^{2}(B/A)\rightarrow\operatorname{Tot}^{1}(B/A)\rightarrow\operatorname{Tot}^{0}(B/A).

Here Totn(B/A)\operatorname{Tot}^{n}(B/A) denotes the limit of the diagram {Bm}\{B^{m}\} taken over the full subcategory ΔnΔ\Delta_{\leq n}\subseteq\Delta spanned by those objects [m]Δ[m]\in\Delta such that mnm\leq n. We note that if f:ABf:A\rightarrow B is a universal descent morphism, then AA is a retract of Totn(B/A)\operatorname{Tot}^{n}(B/A) for some integer n0n\geq 0 (see the proof of [7, D.3.2.1]). We will use this fact to deduce some descending properties of universal descent morphisms; see 2.11.

2.9.

Let RR be a connective 𝔼\operatorname{\mathbb{E}}_{\infty}-ring. Recall that an RR-module MM is said to be almost connective if it is (m)(-m)-connective for some integer m0m\gg 0 (see [8, p.1201]). We will let ModRacnModR\operatorname{Mod}_{R}^{\operatorname{acn}}\subseteq\operatorname{Mod}_{R} denote the full subcategory spanned by the almost connective RR-modules. We note that the construction RModRacnR\mapsto\operatorname{Mod}_{R}^{\operatorname{acn}} determines a functor Modacn:CAlgcn𝒞at\operatorname{Mod}^{\operatorname{acn}}:\operatorname{CAlg}^{\operatorname{cn}}\rightarrow\operatorname{\mathcal{C}at}_{\infty}. According to [8, 7.2.4.10], an RR-module MM is almost perfect if it is mm-connective for some integer mm and is an almost compact object of the \infty-category ModRm\operatorname{Mod}_{R}^{\geq m} of mm-connective RR-modules (that is, for every integer n0n\geq 0, τnM\tau_{\leq n}M is compact as an object of τnModRm\tau_{\leq n}\operatorname{Mod}_{R}^{\geq m}). We will say that an RR-module MM is perfect to order n if, for every filtered diagram {Nα}\{N_{\alpha}\} of 0-truncated RR-modules, the canonical map colimExtAi(M,Nα)ExtAi(M,colimNα)\operatorname{colim}\operatorname{Ext}^{i}_{A}(M,N_{\alpha})\rightarrow\operatorname{Ext}^{i}_{A}(M,\operatorname{colim}N_{\alpha}) is bijective for i<ni<n and injective for i=ni=n; see [7, 2.7.0.1]. We remark that an RR-module MM is almost perfect if and only if it is perfect to order nn for each integer nn (see [7, 2.7.0.2]).

2.10.

One of the main ingredients in our proofs of 1.3 and 1.11 is the following descent result:

Proposition 2.11.

Let f:ABf:A\rightarrow B be a universal descent morphism of connective 𝔼\operatorname{\mathbb{E}}_{\infty}-rings, let MM be an AA-module, and let nn be an integer. Then:

  1. (i)

    The AA-module MM is nn-connective if and only if the BB-module MABM\otimes_{A}B is nn-connective.

  2. (ii)

    The AA-module MM is almost connective if and only if the BB-module MABM\otimes_{A}B is almost connective.

  3. (iii)

    The AA-module MM is perfect to order nn if and only if the BB-module MABM\otimes_{A}B is perfect to order nn.

  4. (iv)

    The AA-module MM is almost perfect if and only if the BB-module MABM\otimes_{A}B is almost perfect.

Proof.

Assertions (ii) and (iv) follow immediately from (i) and (iii), respectively. The “only if” directions of assertions (i) and (iii) follow from [8, 7.2.1.23] and [7, 2.7.3.1], respectively. To prove “if” directions, we note that since ff is a universal descent morphism, it follows from [7, D.3.2.1] that AA is a retract of Totm(B/A)\operatorname{Tot}^{m}(B/A) for some m0m\geq 0. To prove the “if” direction of (i), assume that MABM\otimes_{A}B is nn-connective. In particular, MATotm(B/A)M\otimes_{A}\operatorname{Tot}^{m}(B/A) is nn-connective when viewed as a BB-module. Since MM is a retract of the connective AA-module MATotm(B/A)M\otimes_{A}\operatorname{Tot}^{m}(B/A), MM is nn-connective as desired. To complete the proof of (iii), let {Nα}\{N_{\alpha}\} be a filtered diagram of 0-truncated AA-modules. We wish to show that the canonical map ϕi:colimExtAi(M,Nα)ExtAi(M,colimNα)\phi_{i}:\operatorname{colim}\operatorname{Ext}^{i}_{A}(M,N_{\alpha})\rightarrow\operatorname{Ext}^{i}_{A}(M,\operatorname{colim}N_{\alpha}) is bijective for i<ni<n and injective for i=ni=n. For this, it will suffice to show that ϕi\phi_{i} is a retract of a bijection for i<ni<n and an injection for i=ni=n. Since AA is a retract of Totm(B/A)\operatorname{Tot}^{m}(B/A), we deduce that NαN_{\alpha} is a retract of τ0(NαATotm(B/A))\tau_{\leq 0}(N_{\alpha}\otimes_{A}\operatorname{Tot}^{m}(B/A)). We are therefore reduced to proving that the horizontal map in the diagram

colimExtAi(M,τ0(NαATotm(B/A)))\textstyle{\operatorname{colim}\operatorname{Ext}^{i}_{A}(M,\tau_{\leq 0}(N_{\alpha}\otimes_{A}\operatorname{Tot}^{m}(B/A)))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ExtAi(M,colimτ0(NαATotm(B/A)))\textstyle{\operatorname{Ext}^{i}_{A}(M,\operatorname{colim}\tau_{\leq 0}(N_{\alpha}\otimes_{A}\operatorname{Tot}^{m}(B/A)))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}colimExtBi(MAB,τ0(NαATotm(B/A)))\textstyle{\operatorname{colim}\operatorname{Ext}^{i}_{B}(M\otimes_{A}B,\tau_{\leq 0}(N_{\alpha}\otimes_{A}\operatorname{Tot}^{m}(B/A)))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ExtBi(MAB,colimτ0(NαATotm(B/A)))\textstyle{\operatorname{Ext}^{i}_{B}(M\otimes_{A}B,\operatorname{colim}\tau_{\leq 0}(N_{\alpha}\otimes_{A}\operatorname{Tot}^{m}(B/A)))}

is bijective for i<ni<n and injective for i=ni=n, where we regard NαATotm(B/A)N_{\alpha}\otimes_{A}\operatorname{Tot}^{m}(B/A) as a BB-module. Since the forgetful functor ModBModA\operatorname{Mod}_{B}\rightarrow\operatorname{Mod}_{A} commutes with the formation of 0-truncations and preserves small colimits (see [8, 4.2.3.7]), the vertical maps are equivalences. Consequently, the desired result follows from our assumption that MABM\otimes_{A}B is perfect to order nn as a module over BB. ∎

2.12.

Before stating our next result which will be needed in our proof of 1.11, we recall a bit of terminology (see [5, 3.1.1]):

Definition 2.13.

Let 𝒞\operatorname{\mathcal{C}} be an \infty-category which admits fiber products, and let 𝒟\operatorname{\mathcal{D}} be an \infty-category. Let F:𝒞op𝒟F:\operatorname{\mathcal{C}}^{\operatorname{op}}\rightarrow\operatorname{\mathcal{D}} be a functor. We will say that a morphism f:C0Cf:C_{0}\rightarrow C in 𝒞\operatorname{\mathcal{C}} is of FF-descent if the composition Δ+C𝒞opF𝒟\Delta_{+}\stackrel{{\scriptstyle C_{\bullet}}}{{\longrightarrow}}\operatorname{\mathcal{C}}^{\operatorname{op}}\stackrel{{\scriptstyle F}}{{\longrightarrow}}\operatorname{\mathcal{D}} is a limit diagram, where CC_{\bullet} denotes the Čech nerve of ff, regarded as an augmented simplicial object of 𝒞\operatorname{\mathcal{C}} with C1CC_{-1}\simeq C (see [6, p.543]). That is, the canonical map F(C)lim[n]ΔopF(Cn)F(C)\rightarrow\lim\limits_{[n]\in\Delta^{\operatorname{op}}}F(C_{n}) is an equivalence in 𝒟\operatorname{\mathcal{D}}. In this case, we will also say that FF satisfies descent for ff. If this condition holds for every base change C×CC0CC^{\prime}\times_{C}C_{0}\rightarrow C^{\prime} of ff along a morphism CCC^{\prime}\rightarrow C, we will say that ff is of universal FF-descent, or that FF satisfies universal descent for ff.

Theorem 2.14.

Let f:ABf:A\rightarrow B be a universal descent morphism of connective 𝔼\operatorname{\mathbb{E}}_{\infty}-rings. Then the map ff is of universal Modacn\operatorname{Mod}^{\operatorname{acn}}-descent (see 2.9) and of universal APerf\operatorname{APerf}-descent.

Proof.

The property of being a universal descent morphism of 𝔼\operatorname{\mathbb{E}}_{\infty}-rings is stable under pushouts (see [7, D.3.1.6]), so it will suffice to show that ff is of Modacn\operatorname{Mod}^{\operatorname{acn}}-descent and of APerf\operatorname{APerf}-descent. Let BB^{\bullet} denote the Čech nerve of ff, so that the canonical map ModAlimModB\operatorname{Mod}_{A}\rightarrow\lim\operatorname{Mod}_{B^{\bullet}} is an equivalence of symmetric monoidal \infty-categories (see 2.7). Using 2.11, we deduce the desired results by restricting to the full subcategories spanned by the almost connective and almost perfect modules, respectively. ∎

Corollary 2.15.

Let f:ABf:A\rightarrow B be a universal descent morphism of connective 𝔼\operatorname{\mathbb{E}}_{\infty}-rings. Then ff is of universal Perf\operatorname{Perf}-descent.

Proof.

As in the proof of 2.14, it will suffice to show that ff is of Perf\operatorname{Perf}-descent. Using 2.14, we obtain an equivalence of symmetric monoidal \infty-categories APerf(A)limAPerf(B)\operatorname{APerf}(A)\rightarrow\lim\operatorname{APerf}(B^{\bullet}). Then the desired result follows by restricting to the full subcategories spanned by the dualizable objects (see [8, 4.6.1.7]), because the full subcategory of limAPerf(B)\lim\operatorname{APerf}(B^{\bullet}) spanned by the dualizable objects can be identified with limPerf(B)\lim\operatorname{Perf}(B^{\bullet}) by virtue of [8, 4.6.1.11]. ∎

Remark 2.16.

In the situation of 2.11, it follows from 2.15 that the AA-module MM is perfect if and only if the BB-module MABM\otimes_{A}B is perfect (see [9, 3.28]).

Remark 2.17.

The proof of 2.15 shows that every morphism which is either of universal Modacn\operatorname{Mod}^{\operatorname{acn}}-descent or of universal APerf\operatorname{APerf}-descent is of universal Perf\operatorname{Perf}-descent.

Remark 2.18.

The converse of 2.15 is not necessarily true. For example, if R=Sym(Σ2)R=\operatorname{Sym}^{\ast}_{\mathbb{Q}}(\Sigma^{2}\mathbb{Q}) denotes the free 𝔼\operatorname{\mathbb{E}}_{\infty}-algebra over \mathbb{Q} on a single generator tt of degree 22, then we will see from 3.9 that the truncation map Rπ0RR\rightarrow\pi_{0}R is of universal Perf\operatorname{Perf}-descent. However, the extension of scalars functor ModRModπ0R\operatorname{Mod}_{R}\rightarrow\operatorname{Mod}_{\pi_{0}R} is not conservative (since the image of the localization R[t1]R[t^{-1}] vanishes), so that the truncation map is not a universal descent morphism (see 2.7).

3. Proof of Theorems 1.3 and 1.11

3.1.

Using the notion of a universal descent morphism of [7, D.3.1.1] (see also 2.6), we now provide a proof of 1.3:

Proof of 1.3.

We wish to show that the canonical map APerf(A)APerf(A)×APerf(B)APerf(B)\operatorname{APerf}(A)\rightarrow\operatorname{APerf}(A^{\prime})\times_{\operatorname{APerf}(B^{\prime})}\operatorname{APerf}(B) is an equivalence of \infty-categories. The assertion that this map is fully faithful follows immediately from the first half of [7, 16.2.0.2], which supplies a fully faithful functor ModAModA×ModBModB\operatorname{Mod}_{A}\rightarrow\operatorname{Mod}_{A^{\prime}}\times_{\operatorname{Mod}_{B^{\prime}}}\operatorname{Mod}_{B}. To prove the essential surjectivity, note that we can identify the objects of APerf(A)×APerf(B)APerf(B)\operatorname{APerf}(A^{\prime})\times_{\operatorname{APerf}(B^{\prime})}\operatorname{APerf}(B) with triples (M,N,α)(M^{\prime},N,\alpha), where MM^{\prime} is an almost perfect AA^{\prime}-module, NN is an almost perfect BB-module, and α:MABNBB\alpha:M^{\prime}\otimes_{A^{\prime}}B^{\prime}\rightarrow N\otimes_{B}B^{\prime} is an equivalence of BB^{\prime}-modules. Since almost perfect modules are almost connective (that is, mm-connective for some integer mm), we may assume that MM^{\prime} and NN are both nn-connective for some integer nn. Using the second part of [7, 16.2.0.2], we can choose an nn-connective AA-module MM such that MAAMM\otimes_{A}A^{\prime}\simeq M^{\prime} and MABNM\otimes_{A}B\simeq N in ModA\operatorname{Mod}_{A^{\prime}} and ModB\operatorname{Mod}_{B}, respectively. To complete the proof, it will suffice to show that MM is almost perfect. Since the diagram σ\sigma is a pullback square, the map AA×BA\rightarrow A^{\prime}\times B is a universal descent morphism in the sense of [7, D.3.1.1], so that the desired result follows from 2.11. ∎

3.2.

The proof of 1.11 will require some preliminary results.

Lemma 3.3.

Let f:ABf:A\rightarrow B be morphism of connective 𝔼\operatorname{\mathbb{E}}_{\infty}-rings. Then the canonical map ModBcnlimn0ModBAτnAcn\operatorname{Mod}_{B}^{\operatorname{cn}}\rightarrow\lim\limits_{n\geq 0}\operatorname{Mod}_{B\otimes_{A}\tau_{\leq n}A}^{\operatorname{cn}} is an equivalence of \infty-categories. Moreover, it restricts to equivalences of \infty-categories APerf(B)limn0APerf(BAτnA)\operatorname{APerf}(B)\rightarrow\lim\limits_{n\geq 0}\operatorname{APerf}(B\otimes_{A}\tau_{\leq n}A) and Perf(B)limn0Perf(BAτnA)\operatorname{Perf}(B)\rightarrow\lim\limits_{n\geq 0}\operatorname{Perf}(B\otimes_{A}\tau_{\leq n}A).

Proof.

We first note that there is an equivalence of \infty-categories ModAcnlimModτnAcn\operatorname{Mod}_{A}^{\operatorname{cn}}\rightarrow\lim\operatorname{Mod}_{\tau_{\leq n}A}^{\operatorname{cn}} (see [7, 2.5.9.3]). Then [7, 10.2.2.3] guarantees that the natural map

ModBcnModBcnModAcn(limModτnAcn)lim(ModBcnModAcnModτnAcn)\operatorname{Mod}_{B}^{\operatorname{cn}}\simeq\operatorname{Mod}_{B}^{\operatorname{cn}}\otimes_{\operatorname{Mod}_{A}^{\operatorname{cn}}}(\lim\operatorname{Mod}_{\tau_{\leq n}A}^{\operatorname{cn}})\rightarrow\lim(\operatorname{Mod}_{B}^{\operatorname{cn}}\otimes_{\operatorname{Mod}_{A}^{\operatorname{cn}}}\operatorname{Mod}_{\tau_{\leq n}A}^{\operatorname{cn}})

is an equivalence of \infty-categories. Since the tensor product ModBcnModAcnModτnAcn\operatorname{Mod}_{B}^{\operatorname{cn}}\otimes_{\operatorname{Mod}_{A}^{\operatorname{cn}}}\operatorname{Mod}_{\tau_{\leq n}A}^{\operatorname{cn}} can be identified with ModBAτnAcn\operatorname{Mod}_{B\otimes_{A}\tau_{\leq n}A}^{\operatorname{cn}} (see [7, 10.2.1.7]), we can identify ModBcn\operatorname{Mod}_{B}^{\operatorname{cn}} with the limit of the diagram {ModBAτnAcn}\{\operatorname{Mod}_{B\otimes_{A}\tau_{\leq n}A}^{\operatorname{cn}}\} in the \infty-category of (not necessarily small) \infty-categories 𝒞at^\widehat{\operatorname{\mathcal{C}at}}_{\infty} of [6, 3.0.0.5]. The restrictions to almost perfect and perfect modules follow immediately from [7, 2.7.3.2]. ∎

3.4.

Since an almost connective module is mm-connective for some integer mm (see 2.9), we immediately obtain the following:

Corollary 3.5.

Let f:ABf:A\rightarrow B be morphism of connective 𝔼\operatorname{\mathbb{E}}_{\infty}-rings. Then the canonical map ModBacnlimn0ModBAτnAacn\operatorname{Mod}_{B}^{\operatorname{acn}}\rightarrow\lim\limits_{n\geq 0}\operatorname{Mod}_{B\otimes_{A}\tau_{\leq n}A}^{\operatorname{acn}} is an equivalence of \infty-categories.

Lemma 3.6.

Let f:ABf:A\rightarrow B be a map of 𝔼\operatorname{\mathbb{E}}_{\infty}-rings which exhibits AA as a square-zero extension of BB by a BB-module MM in the sense of [8, 7.4.1.6]. Then ff is a universal descent morphism.

Proof.

We have a pullback diagram of 𝔼\operatorname{\mathbb{E}}_{\infty}-rings

A\textstyle{A\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}B\textstyle{B\ignorespaces\ignorespaces\ignorespaces\ignorespaces}B\textstyle{B\ignorespaces\ignorespaces\ignorespaces\ignorespaces}BΣM,\textstyle{B\oplus\Sigma M,}

where ΣM\Sigma M denotes the suspension of MM (see [8, 7.4.1.7]), so that the desired result follows from the definition of a universal descent morphism (see [7, D.3.1.1]); alternatively, the desired assertion can be deduced from [2, 11.20]. ∎

3.7.

We are now ready to give the proof of 1.11. We will follow the strategy of Halpern-Leistner and Preygel in the proof of [3, 3.1.1], where square-zero extensions allow us to reduce to the case where AA is discrete.

Proof of 1.11.

Since the collection of vv-covers f:ABf:A\rightarrow B between connective 𝔼\operatorname{\mathbb{E}}_{\infty}-rings for which the underlying map of commutative rings π0f:π0Aπ0B\pi_{0}f:\pi_{0}A\rightarrow\pi_{0}B is of finite presentation is closed under pushouts (see 2.5 and [8, 7.2.1.23]), it will suffice to show that the map ff is of APerf\operatorname{APerf}-descent (see 2.13). Let BB^{\bullet} denote the Čech nerve of ff as in 2.7. We have a commutative diagram

APerf(A)\textstyle{\operatorname{APerf}(A)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}limmAPerf(Bm)\textstyle{\lim\limits_{m}\operatorname{APerf}(B^{m})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}limnAPerf(τnA)\textstyle{\lim\limits_{n}\operatorname{APerf}(\tau_{\leq n}A)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}limnlimmAPerf(τnAABm).\textstyle{\lim\limits_{n}\lim\limits_{m}\operatorname{APerf}(\tau_{\leq n}A\otimes_{A}B^{m}).}

Using 3.3, we see that the vertical maps are equivalences. Consequently, it will suffice to show that for each n0n\geq 0, the canonical map τnAτnAAB\tau_{\leq n}A\rightarrow\tau_{\leq n}A\otimes_{A}B is of universal APerf\operatorname{APerf}-descent. We proceed by induction on nn. We begin with the case n=0n=0. Note that the composition τ0Aτ0AABπ0(τ0AAB)\tau_{\leq 0}A\rightarrow\tau_{\leq 0}A\otimes_{A}B\rightarrow\pi_{0}(\tau_{\leq 0}A\otimes_{A}B), which can be identified with π0(f)\pi_{0}(f), is a finitely presented vv-cover of ordinary commutative rings, so that it is a universal descent morphism by virtue of [10, 5.5]. Using 2.14, we deduce that it is of universal APerf\operatorname{APerf}-descent. It then follows from [5, 3.1.2] that τ0Aτ0AAB\tau_{\leq 0}A\rightarrow\tau_{\leq 0}A\otimes_{A}B is of universal APerf\operatorname{APerf}-descent. To carry out the inductive step, assume that the map τn1Aτn1AAB\tau_{\leq n-1}A\rightarrow\tau_{\leq n-1}A\otimes_{A}B is of universal APerf\operatorname{APerf}-descent. Using [5, 3.1.2], it will suffice to show that the composition τnAτnAABτn1AAB\tau_{\leq n}A\rightarrow\tau_{\leq n}A\otimes_{A}B\rightarrow\tau_{\leq n-1}A\otimes_{A}B is of universal APerf\operatorname{APerf}-descent. Since the truncation map τnAτn1A\tau_{\leq n}A\rightarrow\tau_{\leq n-1}A exhibits τnA\tau_{\leq n}A as a square-zero extension of τn1A\tau_{\leq n-1}A by ΣnπnA\Sigma^{n}\pi_{n}A (see [8, 7.4.1.28]), it is of universal APerf\operatorname{APerf}-descent by virtue of 3.6 and 2.14. Combining this with the inductive hypothesis, the desired result follows from [5, 3.1.2] (which guarantees that the collection of universal APerf\operatorname{APerf}-descent morphisms is closed under composition). ∎

Remark 3.8.

Arguing as in the proof of 1.11 (using Modacn\operatorname{Mod}^{\operatorname{acn}} in place of APerf\operatorname{APerf}), we deduce that in the situation of 1.11, ff is of universal Modacn\operatorname{Mod}^{\operatorname{acn}}-descent.

Corollary 3.9.

In the situation of 1.11, ff is of universal Perf\operatorname{Perf}-descent.

Proof.

By virtue of 2.17, this is an immediate consequence of 1.11. ∎

3.10.

Before recording some other consequences of 1.11, let us introduce a bit of terminology:

Definition 3.11.

Let X:CAlgcn𝒮X:\operatorname{CAlg}^{\operatorname{cn}}\rightarrow\operatorname{\mathcal{S}} be a functor, where 𝒮\operatorname{\mathcal{S}} denotes the \infty-category of spaces (see [6, 1.2.16.1]). Let QCoh(X)\operatorname{QCoh}(X) denote the \infty-category of quasi-coherent sheaves on XX; see [7, 6.2.2.1]. We will say that an object FQCoh(X)F\in\operatorname{QCoh}(X) is a perfect complex on XX if, for every connective 𝔼\operatorname{\mathbb{E}}_{\infty}-ring RR and every morphism η:SpecRX\eta:\operatorname{Spec}R\rightarrow X, the pullback ηFQCoh(SpecR)ModR\eta^{\ast}F\in\operatorname{QCoh}(\operatorname{Spec}R)\simeq\operatorname{Mod}_{R} belongs to the full subcategory Perf(R)ModR\operatorname{Perf}(R)\subseteq\operatorname{Mod}_{R} (see 1.1). We let Perf(X)\operatorname{Perf}(X) denote the full subcategory of QCoh(X)\operatorname{QCoh}(X) spanned by the perfect complexes on XX.

Remark 3.12.

In the special case where XX is representable by an affine spectral Deligne-Mumford stack SpecA\operatorname{Spec}A, the full subcategory Perf(X)QCoh(X)\operatorname{Perf}(X)\subseteq\operatorname{QCoh}(X) corresponds to the full subcategory Perf(A)ModA\operatorname{Perf}(A)\subseteq\operatorname{Mod}_{A} under the equivalence of \infty-categories QCoh(X)ModA\operatorname{QCoh}(X)\simeq\operatorname{Mod}_{A}.

Remark 3.13.

We note that QCoh(X)\operatorname{QCoh}(X) admits a symmetric monoidal structure of [7, p.497]. According to [7, 6.2.6.2], an object FQCoh(X)F\in\operatorname{QCoh}(X) is dualizable as an object of the symmetric monoidal \infty-category QCoh(X)\operatorname{QCoh}(X) if and only if it belongs to Perf(X)\operatorname{Perf}(X).

3.14.

The vv-topology on schemes is not subcanonical, but it is when restricted to quasi-compact and quasi-separated perfect schemes; see [2, 4.2]. In the spectral setting, we have the following consequence of 1.11:

Corollary 3.15.

Let 𝖷\operatorname{\mathsf{X}} be a quasi-compact and quasi-separated spectral algebraic space of [7, 1.6.8.1], and let X:CAlgcn𝒮X:\operatorname{CAlg}^{\operatorname{cn}}\rightarrow\operatorname{\mathcal{S}} denote the functor represented by 𝖷\operatorname{\mathsf{X}} in the sense of [7, 1.6.4.1]. Let f:ABf:A\rightarrow B be a vv-cover of connective 𝔼\operatorname{\mathbb{E}}_{\infty}-rings for which the underlying map of commutative rings π0f:π0Aπ0B\pi_{0}f:\pi_{0}A\rightarrow\pi_{0}B exhibits π0B\pi_{0}B as a finitely presented algebra over π0A\pi_{0}A. Then XX satisfies universal descent for ff.

Proof.

As in the proof of 1.11, we are reduced to proving that the functor XX satisfies descent for the map ff. Let BB^{\bullet} denote Čech nerve of ff. We have a commutative diagram

MapFun(CAlgcn,𝒮)(SpecA,X)\textstyle{\operatorname{Map}_{\operatorname{Fun}(\operatorname{CAlg}^{\operatorname{cn}},\operatorname{\mathcal{S}})}(\operatorname{Spec}A,X)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}limmMapFun(CAlgcn,𝒮)(SpecBm,X)\textstyle{\lim\limits_{m}\operatorname{Map}_{\operatorname{Fun}(\operatorname{CAlg}^{\operatorname{cn}},\operatorname{\mathcal{S}})}(\operatorname{Spec}B^{m},X)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Funex(Perf(X),Perf(A))\textstyle{\operatorname{Fun}^{\otimes}_{\operatorname{ex}}(\operatorname{Perf}(X),\operatorname{Perf}(A))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}limmFunex(Perf(X),Perf(Bm)),\textstyle{\lim\limits_{m}\operatorname{Fun}^{\otimes}_{\operatorname{ex}}(\operatorname{Perf}(X),\operatorname{Perf}(B^{m})),}

where Funex(Perf(X),Perf(A))\operatorname{Fun}^{\otimes}_{\operatorname{ex}}(\operatorname{Perf}(X),\operatorname{Perf}(A)) denotes the \infty-category of exact symmetric monoidal functors from Perf(X)\operatorname{Perf}(X) to Perf(A)\operatorname{Perf}(A) and Funex(Perf(X),Perf(B))\operatorname{Fun}^{\otimes}_{\operatorname{ex}}(\operatorname{Perf}(X),\operatorname{Perf}(B^{\bullet})) is defined similarly (see [8, 2.1.3.7]). We wish to show that the upper horizontal map is an equivalence. It follows from [7, 9.6.4.2] that the vertical maps are equivalences. The desired result now follows from 3.9, which guarantees that the bottom horizontal map is an equivalence. ∎

3.16.

Arguing as in the proof of 3.15 (using APerf\operatorname{APerf} and [7, 9.5.5.1] in place of Perf\operatorname{Perf} and [7, 9.6.4.2], respectively), we obtain another consequence of 1.11:

Corollary 3.17.

Let XX be a locally noetherian geometric stack of [7, 9.3.0.1] and [7, 9.5.1.1]. Let f:ABf:A\rightarrow B be a vv-cover of connective 𝔼\operatorname{\mathbb{E}}_{\infty}-rings for which the underlying map of commutative rings π0f:π0Aπ0B\pi_{0}f:\pi_{0}A\rightarrow\pi_{0}B exhibits π0B\pi_{0}B as a finitely presented algebra over π0A\pi_{0}A. Then XX satisfies universal descent for the morphism ff.

References

  • [1] Théorie des intersections et théorème de Riemann-Roch, Lecture Notes in Mathematics, Vol. 225, Springer-Verlag, Berlin-New York, 1971, Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6), Dirigé par P. Berthelot, A. Grothendieck et L. Illusie. Avec la collaboration de D. Ferrand, J. P. Jouanolou, O. Jussila, S. Kleiman, M. Raynaud et J. P. Serre. MR 354655
  • [2] Bhargav Bhatt and Peter Scholze, Projectivity of the Witt vector affine Grassmannian, Invent. Math. 209 (2017), no. 2, 329–423. MR 3674218
  • [3] Daniel Halpern-Leistner and Anatoly Preygel, Mapping stacks and categorical notions of properness, Compos. Math. 159 (2023), no. 3, 530–589. MR 4560539
  • [4] Markus Land and Georg Tamme, On the KK-theory of pullbacks, Ann. of Math. (2) 190 (2019), no. 3, 877–930. MR 4024564
  • [5] Yifeng Liu and Weizhe Zheng, Enhanced six operations and base change theorem for higher artin stacks, 2012, Preprint.
  • [6] Jacob Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton University Press, Princeton, NJ, 2009. MR 2522659
  • [7] by same author, Spectral algebraic geometry, Last update: Feb 2018, Preprint.
  • [8] by same author, Higher algebra, Last update: Sep 2017, Preprint.
  • [9] Akhil Mathew, The Galois group of a stable homotopy theory, Adv. Math. 291 (2016), 403–541. MR 3459022
  • [10] by same author, Faithfully flat descent of almost perfect complexes in rigid geometry, J. Pure Appl. Algebra 226 (2022), no. 5, Paper No. 106938, 31. MR 4332074
  • [11] John Milnor, Introduction to algebraic KK-theory, Annals of Mathematics Studies, No. 72, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971. MR 0349811
  • [12] David Rydh, Submersions and effective descent of étale morphisms, Bull. Soc. Math. France 138 (2010), no. 2, 181–230. MR 2679038
  • [13] The Stacks Project Authors, Stacks Project, https://stacks.math.columbia.edu, 2018.