This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Spectral dimension of pp-adic integers

Surajit Biswas, Bipul Saurabh
Abstract

The notion of spectral dimension was introduced by Chakraborty and Pal in [4]. In this paper, we show that the spectral dimension of the ring of pp-adic integers, p\mathbb{Z}_{p}, is equal to its manifold dimension, which is 0. Finally, we determine the KK-groups of p\mathbb{Z}_{p}, and show that the generators of K0(p)K_{0}(\mathbb{Z}_{p}) can be expressed as finite span of the characters of p\mathbb{Z}_{p}.

keywords:
pp-adic Integers; Characters.
MSC:
[2020] 46L87

1 Introduction

Connes’ formulation of noncommutative geometry centers around the concept of spectral triples [1]. These triples originate from fundamental properties of Dirac-type operators on manifolds. Importantly, a spectral triple for the algebra of continuous functions and Dirac operators on L2L^{2} spinors has the remarkable ability to fully reconstruct a closed Riemannian manifold with a spin structure. This achievement is made possible through Connes’ reconstruction theorem [2] and the contributions of Lord et al [8].

Noncommutative concepts, described by spectral triples, provide a distinct perspective on the group of pp-adic integers, redefining them as differentiable spaces. Operators associated with pp-adic numbers hold significant number-theoretic implications, potentially giving rise to captivating spectral functions. Of note, Connes’ unpublished construction of a spectral triple for the algebra of continuous functions on the Cantor set is documented in [3]. Klimek et al [7] construct a spectral triple for the CC^{*}-algebra of continuous functions on the space of pp-adic integers. Their approach involves utilizing a rooted tree derived from a coarse-grained approximation of the space and applying the forward derivative on this tree. They not only validate the spectral triple’s compliance with the traits of a compact spectral metric space but also establish its equivalence to the traditional pp-adic metric on the space of pp-adic integers.

Motivated by Connes’ definition of dimension for spectral triples,Chakraborty and Pal [4] introduced the spectral dimension as an invariant for ergodic CC^{*}-dynamical systems. They conjectured that for a homogeneous space of a classical compact Lie group, the spectral dimension matches its dimension as a differentiable manifold. The spectral dimensions of SU(2)SU(2), quaternion sphere HnH^{n}, and sphere SnS^{n} computed in [4], [11] and [12] further bolster Chakraborty and Pal’s conjecture. Furthermore, in [4], spectral dimensions were computed for the noncommutative torus, qq-deformation of SU(l+1)SU(l+1) (l1)(l\geq 1), and the Cuntz algebra Au(Q)A_{u}(Q). The spectral dimension of the qq-deformation of U(2)U(2) was computed in [6]. In this article, Section 3 computes the spectral dimension of the group of pp-adic integers. Section 4 describes the KK-groups of p\mathbb{Z}_{p}.

2 Preliminaries

In this section, we recall the notion of the spectral dimension of ahomogeneous space from the reference [4].

Definition 2.1.

Given an associative unital -algebra 𝒜\mathcal{A}, a spectral triple for 𝒜\mathcal{A} comprises a triple (,π,D)(\mathcal{H},\pi,D) where

  1. (1)

    \mathcal{H} is a complex separable Hilbert space,

  2. (2)

    π:𝒜()\pi:\mathcal{A}\rightarrow\mathcal{L}(\mathcal{H}) is a faithful -representation,

  3. (3)

    DD is a self-adjoint operator with compact resolvent, satisfying [D,π(a)]()[D,\pi(a)]\in\mathcal{L}(\mathcal{H}) for all a𝒜a\in\mathcal{A}.

For clarity, we use (,A,D)(\mathcal{H},A,D) when the representation π\pi is clear from the context. A spectral triple is termed ss-summable if |I+D2|s/2\left|I+D^{2}\right|^{-s/2} is in the ideal 1\mathcal{L}^{1} of trace-class operators.

Since DD has compact resolvent, this is equivalent to asserting that |D|s|D|^{-s} is trace-class on the complement of its kernel.

Definition 2.2.

[14] A compact quantum group (C(G),Δ)\left(C(G),\Delta\right) includes a unital CC^{*}-algebra C(G)C(G) and a unital -homomorphism Δ:C(G)C(G)C(G)\Delta:C(G)\rightarrow C(G)\otimes C(G) satisfying

  1. (1)

    (Δid)Δ=(idΔ)Δ(\Delta\otimes id)\Delta=(id\otimes\Delta)\Delta,

  2. (2)

    Both {(aI)Δ(b):a,bC(G)}\left\{(a\otimes I)\Delta(b):a,b\in C(G)\right\} and {(Ia)Δ(b):a,bC(G)}\left\{(I\otimes a)\Delta(b):a,b\in C(G)\right\}densely span C(G)C(G)C(G)\otimes C(G).

Every compact quantum group possesses a unique invariant Haar state hh. The Haar state’s invariance is described as follows:

(hid)Δ(a)=h(a)I=(idh)Δ(a) for all aA.(h\otimes id)\Delta(a)=h(a)I=(id\otimes h)\Delta(a)\text{ for all }a\in A.
Definition 2.3.

A compact quantum group (C(G),Δ)\left(C(G),\Delta\right) acts on a CC^{*}-algebra AA through a -homomorphism τ:AAC(G)\tau:A\rightarrow A\otimes C(G) satisfying

  1. (1)

    (τid)τ=(idΔ)τ(\tau\otimes id)\tau=(id\otimes\Delta)\tau,

  2. (2)

    {(Ib)τ(a):aA,bC(G)}\left\{(I\otimes b)\tau(a):a\in A,b\in C(G)\right\} densely spans AC(G)A\otimes C(G).

A CC^{*}-algebra AA is called a homogeneous space of C(G)C(G) when the fixed point subalgebra aA:τ(a)=aI{a\in A:\tau(a)=a\otimes I} is I\mathbb{C}I. In such case, the action τ\tau is called ergodic, and (A,C(G),τ)\left(A,C(G),\tau\right) is called an ergodic CC^{*}-dynamical system.

A covariant representation (π,u)(\pi,u) of a CC^{*}-dynamical system (A,C(G),τ)\left(A,C(G),\tau\right) consists of a unital -representation π:A()\pi:A\rightarrow\mathcal{L}(\mathcal{H}), a unitary representation uu of (C(G),Δ)\left(C(G),\Delta\right) on \mathcal{H} (i.e. a unitary element of the multiplier algebraM(𝒦()C(G))M\left(\mathcal{K}(\mathcal{H})\otimes C(G)\right) with (idΔ)(u)=u12u13(id\otimes\Delta)(u)=u_{12}u_{13}), fulfilling the condition (πid)τ(a)=u(π(a)I)u(\pi\otimes id)\tau(a)=u\left(\pi(a)\otimes I\right)u^{*} for all aAa\in A.

In the previous definition, for j=2,3j=2,3, define u1ju_{1j} as ϕ1j(u)\phi_{1j}(u), where ϕ1j:𝒦()C(G)𝒦()C(G)C(G)\phi_{1j}:\mathcal{K}(\mathcal{H})\otimes C(G)\rightarrow\mathcal{K}(\mathcal{H})\otimes C(G)\otimes C(G) is given by ϕ12(Ta)=TaI\phi_{12}(T\otimes a)=T\otimes a\otimes I and ϕ13(Ta)=TIa\phi_{13}(T\otimes a)=T\otimes I\otimes a for all T𝒦()T\in\mathcal{K}(\mathcal{H}) and aC(G)a\in C(G). For a compact Hausdorff space GG, M(𝒦()C(G))M\left(\mathcal{K}(\mathcal{H})\otimes C(G)\right) is isomorphic to Cbstr(G,())C_{b}^{str}\left(G,\mathcal{L}(\mathcal{H})\right), where Cbstr(G,())C_{b}^{str}\left(G,\mathcal{L}(\mathcal{H})\right) represents the set of bounded continuous functions from GG to ()\mathcal{L}(\mathcal{H}) equipped with the strict topology. The convergence of a net Tii\langle T_{i}\rangle_{i} to TT in ()\mathcal{L}(\mathcal{H}) in the strict sense is characterized by TiSTS0\|T_{i}S-TS\|\to 0 and STiST0\|ST_{i}-ST\|\to 0 for all compact operators S𝒦()S\in\mathcal{K}(\mathcal{H}).

Definition 2.4.

For a CC^{*}-dynamical system (A,C(G),τ)(A,C(G),\tau), an operator DD acting on a Hilbert space \mathcal{H} is equivariant with respect to a covariantrepresentation (π,u)(\pi,u) of the system if DID\otimes I commutes with uu. When (π,u)(\pi,u) is a covariant representation of (A,C(G),τ)(A,C(G),\tau) on a Hilbert space \mathcal{H} and (,π,D)(\mathcal{H},\pi,D) is a spectral triple for a dense -subalgebra 𝒜\mathcal{A} of AA, (,π,D)(\mathcal{H},\pi,D) is considered equivariant with respect to (π,u)(\pi,u) if DD is equivariant with respect to (π,u)(\pi,u).

A homogeneous space AA for a compact quantum group (C(G),Δ)(C(G),\Delta) has an invariant state ρ\rho satisfying

(ρid)τ(a)=ρ(a)I,aA.(\rho\otimes id)\tau(a)=\rho(a)I,\,a\in A.

This invariant state ρ\rho is unique and relates to the Haar state hh on (C(G),Δ)(C(G),\Delta) through the equality

(idh)τ(a)=ρ(a)I,aA.(id\otimes h)\tau(a)=\rho(a)I,\,a\in A.

Given an ergodic CC^{*}-dynamical system (A,C(G),τ)(A,C(G),\tau) with unique invariant state ρ\rho, let (ρ,πρ,ηρ)\left(\mathcal{H}_{\rho},\pi_{\rho},\eta_{\rho}\right) denote the GNS representation associated with ρ\rho, i.e. ρ\mathcal{H}_{\rho} is a Hilbert space, ηρ:Aρ\eta_{\rho}:A\rightarrow\mathcal{H}_{\rho} is linear with ηρ(A)\eta_{\rho}(A) dense in ρ\mathcal{H}_{\rho}, and ηρ(a),ηρ(b)=ρ(ab)\left\langle\eta_{\rho}(a),\eta_{\rho}(b)\right\rangle=\rho(a^{*}b); and πρ:A((ρ))\pi_{\rho}:A\rightarrow\mathcal{L}(\left(\mathcal{H}_{\rho}\right)) is the -representation of AA on ρ\mathcal{H}_{\rho} defined by πρ(a)ηρ(b)=ηρ(ab)\pi_{\rho}(a)\eta_{\rho}(b)=\eta_{\rho}(ab). The action τ\tau induces a unitary representation uτu_{\tau} of (C(G),Δ)(C(G),\Delta) on ρ\mathcal{H}_{\rho}, making (πρ,uτ)\left(\pi_{\rho},u_{\tau}\right) a covariantrepresentation of the system (A,C(G),τ)\left(A,C(G),\tau\right). Let 𝒪(G)\mathcal{O}(G) be the dense -subalgebra of C(G)C(G) generated by the matrix entries of irreducible unitary representations of (C(G),Δ)(C(G),\Delta). We define

𝒜={aA:τ(a)Aalg𝒪(G)};\mathcal{A}=\left\{a\in A:\tau(a)\in A\otimes_{alg}\mathcal{O}(G)\right\};

by [10, Theorem 1.5], 𝒜\mathcal{A} is a dense -subalgebra of AA. Let \mathcal{E} be the class of spectral triples for 𝒜\mathcal{A} equivariant with respect to the covariant representation (πρ,uτ)\left(\pi_{\rho},u_{\tau}\right). We define the spectral dimension of the system (A,C(G),τ)(A,C(G),\tau) as the quantity

inf{s>0:D such that (ρ,πρ,D) and D is s-summable}.\inf\left\{s>0:\exists\,D\text{ such that }\left(\mathcal{H}_{\rho},\pi_{\rho},D\right)\in\mathcal{E}\text{ and }D\text{ is }s\text{-summable}\right\}.

We will denote this number by 𝒮dim(A,C(G),τ)\mathcal{S}dim\left(A,C(G),\tau\right).

Proposition 2.5.

For a compact group GG, in the ergodic CC^{*}-dynamical system (C(G),C(G),Δ)\left(C(G),C(G),\Delta\right), we have 𝒜=𝒪(G)\mathcal{A}=\mathcal{O}(G).

Proof.

Let a𝒜a\in\mathcal{A} with Δ(a)=i=1naiχi\Delta(a)=\sum_{i=1}^{n}a_{i}\otimes\chi_{i} for aiAa_{i}\in A and χi𝒪(G)\chi_{i}\in\mathcal{O}(G). Using the identity element 0 of GG, we find that a(y)=Δ(a)(0,y)=i=1nai(0)χi(y)a(y)=\Delta(a)(0,y)=\sum_{i=1}^{n}a_{i}(0)\cdot\chi_{i}(y) for all yGy\in G. Thus, a=i=1nai(0)χi𝒪(G)a=\sum_{i=1}^{n}a_{i}(0)\cdot\chi_{i}\in\mathcal{O}(G). ∎

3 Computation of Spectral dimension

We begin by recalling the group of pp-adic integers from [13], discussing its defnition and key topological characteristics.

Definition 3.1.

Consider the prime number pp. For any nonzero rational number xx, express it as x=pvp(x)x1x=p^{v_{p}(x)}x_{1}, where x1x_{1} is a rational number coprime to pp, meaning that when written in its simplest form, both the numerator and denominator are coprime to pp. We define the pp-adic absolute value of xx, denoted as |x|p|x|_{p}, by the formula

|x|p=pvp(x).|x|_{p}=p^{-v_{p}(x)}.

For the case of x=0x=0, we set |0|p=0|0|_{p}=0. It can be readily verified that ||p|\cdot|_{p} constitutes a norm on \mathbb{Q}.

Let RR be the set of all sequences xnn=1\langle x_{n}\rangle_{n=1}^{\infty} in \mathbb{Q}, which are Cauchy with respect to the norm ||p|\cdot|_{p}. Addition and multiplication of sequences are defined pointwise:

xnn=1+ynn=1=xn+ynn=1,\langle x_{n}\rangle_{n=1}^{\infty}+\langle y_{n}\rangle_{n=1}^{\infty}=\langle x_{n}+y_{n}\rangle_{n=1}^{\infty},
xnn=1ynn=1=xnynn=1.\langle x_{n}\rangle_{n=1}^{\infty}\cdot\langle y_{n}\rangle_{n=1}^{\infty}=\langle x_{n}\cdot y_{n}\rangle_{n=1}^{\infty}.

Hence, (R,+,)(R,+,\cdot) forms a commutative ring. Moreover, the subset 𝔪\mathfrak{m} of RR that consists of null Cauchy sequences, i.e. sequences that converge to zero, is a maximal ideal. Consequently, the quotient ring R/𝔪R/\mathfrak{m} becomes a field. We can include \mathbb{Q} in RR through the mapping x(x,x,)x\mapsto(x,x,\ldots), which is clearly a Cauchy sequence. Thus, we regard \mathbb{Q} as a subfield of R/𝔪R/\mathfrak{m}. This completion of \mathbb{Q} with respect to ||p|\cdot|_{p} is denoted as p\mathbb{Q}_{p}, and its elements are called pp-adic numbers.

The set p={xp:|x|p1}\mathbb{Z}_{p}=\{x\in\mathbb{Q}_{p}:|x|_{p}\leq 1\} is a subring of p\mathbb{Q}_{p}, referred to as the ring of pp-adic integers.

Evidently, \mathbb{Z} (the set of integers) forms a dense subset within p\mathbb{Z}_{p}. This implies that elements of p\mathbb{Z}_{p} can be regarded as formal power series n=0xnpn\sum_{n=0}^{\infty}x_{n}p^{n}, where 0xnp10\leq x_{n}\leq p-1. The topological group (p,+)(\mathbb{Z}_{p},+) is well-established as compact, totally disconnected, and Hausdorff. As a compact abelian group, p\mathbb{Z}_{p} possesses a unique probability Haar measure denoted as μ\mu.

Definition 3.2.

[5, Section 1.7] A character of a locally compact abelian group (G,+)(G,+) is a continuous group homomorphism χ:G𝕋\chi:G\rightarrow\mathbb{T}, where 𝕋\mathbb{T} is the circle group, i.e. the multiplicative group of all complex numbers of absolute value one.

The set of characters of the group GG form a group under pointwise multiplication, called the dual group and denoted G^\widehat{G}.

Lemma 3.3.

Let S={(1,0)}{(m,n):m<pn,pm}S=\{(1,0)\}\cup\{(m,n)\in\mathbb{N}:m<p^{n},\,p\nmid m\}. The dual group ^p\widehat{\mathbb{Z}}_{p} is isomorphic to the group of pp-power roots of unity, i.e., ^p{e2πimpn:(m,n)S}\widehat{\mathbb{Z}}_{p}\cong\left\{e^{\frac{2\pi im}{p^{n}}}:(m,n)\in S\right\}. For any character χ\chi of p\mathbb{Z}_{p}, we have χ(1)=e2πimpn\chi(1)=e^{\frac{2\pi im}{p^{n}}} for some (m,n)S(m,n)\in S.

Proof.

Let χ\chi be a character of p\mathbb{Z}_{p}. Since \mathbb{Z} is dense within p\mathbb{Z}_{p}, the values of χ()\chi(\mathbb{Z}) uniquely determine χ\chi. Considering that \mathbb{Z} is a cyclic group generated by 11, this implies that χ\chi is fully characterized by χ(1)\chi(1). As prp^{r} tends to 0 within p\mathbb{Z}_{p} as rr approaches infinity, the sequence χ(pr)=χ(1)pr\chi(p^{r})=\chi(1)^{p^{r}} converges to χ(0)=1\chi(0)=1. Consequently, we find that χ(1)=e2πimpn\chi(1)=e^{\frac{2\pi im}{p^{n}}} for some (m,n)S(m,n)\in S. ∎

Henceforth, we adopt the notation χm,n\chi_{m,n} for all (m,n)S(m,n)\in S to represent the character of p\mathbb{Z}_{p}, where χm,n(1)=e2πimpn\chi_{m,n}(1)=e^{\frac{2\pi im}{p^{n}}}. We consider C(p)C(\mathbb{Z}_{p}) both as a compact quantum group and an unital CC^{*}-algebra and compute the spectral dimension of the natural ergodic CC^{*}-dynamical system (C(p),C(p),Δ)\left(C(\mathbb{Z}_{p}),C(\mathbb{Z}_{p}),\Delta\right) associated with p\mathbb{Z}_{p}. The Haar state on C(p)C(\mathbb{Z}_{p}) serves as an invariant Haar state for the homogeneous space C(p)C(\mathbb{Z}_{p}). The relevant covariant representation of this system is given by the triple (L2(p),π,u)\left(L^{2}(\mathbb{Z}_{p}),\pi,u\right), where L2(p)L^{2}(\mathbb{Z}_{p}) is the GNS Hilbert space corresponding to the Haar state on C(p)C(\mathbb{Z}_{p}), π\pi is the representation of C(p)C(\mathbb{Z}_{p}) on L2(p)L^{2}(\mathbb{Z}_{p}) through left multiplication, and uu is the right regular representation.

Theorem 3.4.

The spectral dimension of p\mathbb{Z}_{p} is 0.

Proof.

Consider the equivariant self-adjoint operator DD with compact resolvent specified by D(χm,n)=((n+1)2pn+1)1/sχm,nD\left(\chi_{m,n}\right)=\left((n+1)^{2}p^{n+1}\right)^{1/s}\chi_{m,n} for all (m,n)S{(1,0)}(m,n)\in S\setminus\{(1,0)\}. For (m,n),(k,l)S(m,n),(k,l)\in S with nln\leq l, it follows that [D,π(χm,n)](χk,l)=0\left[D,\pi\left(\chi_{m,n}\right)\right]\left(\chi_{k,l}\right)=0. This implies that [D,π(χm,n)]\left[D,\pi\left(\chi_{m,n}\right)\right] is in (L2(p))\mathcal{L}\left(L^{2}\left(\mathbb{Z}_{p}\right)\right), being zero on the complement of the finite dimensional space spanned by χk,l\chi_{k,l} where l<nl<n.
Moreover, we have

Tr|D|s=(m,n)S1(n+1)2pn+1\displaystyle Tr|D|^{-s}=\sum_{(m,n)\in S}\frac{1}{(n+1)^{2}p^{n+1}} =1p+n=21(n+1)2pn+1(pnpn1)\displaystyle=\frac{1}{p}+\sum_{n=2}^{\infty}\frac{1}{(n+1)^{2}p^{n+1}}\left(p^{n}-p^{n-1}\right)
=1p+(11p)1pn=11n2<,\displaystyle=\frac{1}{p}+\left(1-\frac{1}{p}\right)\frac{1}{p}\sum_{n=1}^{\infty}\frac{1}{n^{2}}<\infty,

thus yielding 𝒮dim(C(p),C(p),Δ)=0.\mathcal{S}dim\left(C(\mathbb{Z}_{p}),C(\mathbb{Z}_{p}),\Delta\right)=0.

4 KK-groups

p\mathbb{Z}_{p} can alternatively be identified as the inverse (or projective) limit of the system {/pnn,Φnn=2}\left\{\left\langle\mathbb{Z}/{p^{n}\mathbb{Z}}\right\rangle_{n\in\mathbb{N}},\left\langle\Phi_{n}\right\rangle_{n=2}^{\infty}\right\}, where for each nn\in\mathbb{N} with n2n\geq 2, the transition map Φn:/pn/pn1\Phi_{n}:\mathbb{Z}/{p^{n}\mathbb{Z}}\rightarrow\mathbb{Z}/{p^{n-1}\mathbb{Z}} is defined as Φn(xmodpn):=xmodpn1\Phi_{n}\left(x\mod p^{n}\right):=x\mod p^{n-1} for all xx\in\mathbb{Z}. This identification is precisely given by the isomorphism ϕ:plim/pn\phi:\mathbb{Z}_{p}\rightarrow\varprojlim\mathbb{Z}/{p^{n}\mathbb{Z}} defined by ϕ(x)=ϕn(x)n\phi(x)=\left\langle\phi_{n}(x)\right\rangle_{n\in\mathbb{N}} where for each nn\in\mathbb{N}, ϕn:p/pn\phi_{n}:\mathbb{Z}_{p}\rightarrow\mathbb{Z}/{p^{n}\mathbb{Z}} is the projection map defined by ϕ(k=0xkpk)\phi\left(\sum_{k=0}^{\infty}x_{k}p^{k}\right) =k=0n1xkpk+pn=\sum_{k=0}^{n-1}x_{k}p^{k}+p^{n}\mathbb{Z}. Consequently, C(p)C(\mathbb{Z}_{p}) can be seen as a CC^{*}-algebraic inductive limit of the induced system {C(/pn),Ψnn=2}\left\{C\left(\mathbb{Z}/{p^{n}\mathbb{Z}}\right),\left\langle\Psi_{n}\right\rangle_{n=2}^{\infty}\right\}, where Ψn:C(/pn1)C(/pn)\Psi_{n}:C\left(\mathbb{Z}/{p^{n-1}\mathbb{Z}}\right)\rightarrow C\left(\mathbb{Z}/{p^{n}\mathbb{Z}}\right) is the induced transition map defined by (Ψnf)(xmodpn):=f(xmodpn1)\left(\Psi_{n}f\right)(x\mod p^{n}):=f(x\mod p^{n-1}) for all fC(/pn1)f\in C\left(\mathbb{Z}/{p^{n-1}\mathbb{Z}}\right) and xx\in\mathbb{Z}. The induced isomorphism ψ:limC(/pn)C(p)\psi:\varinjlim C\left(\mathbb{Z}/{p^{n}\mathbb{Z}}\right)\rightarrow C(\mathbb{Z}_{p}) is given by ψ(fnn)(x)=limnfnϕn(x)\psi\left(\langle f_{n}\rangle_{n\in\mathbb{N}}\right)(x)=\lim_{n\rightarrow\infty}f_{n}\phi_{n}(x) for all fnnlimC(/pn)\langle f_{n}\rangle_{n\in\mathbb{N}}\in\varinjlim C\left(\mathbb{Z}/{p^{n}\mathbb{Z}}\right) and xpx\in\mathbb{Z}_{p}. As a result, this identification C(p)=limC(/pn)C(\mathbb{Z}_{p})=\varinjlim C\left(\mathbb{Z}/{p^{n}\mathbb{Z}}\right) implies Ki(C(p))=limKi(C(/pn))K_{i}\left(C(\mathbb{Z}_{p})\right)=\varinjlim K_{i}\left(C\left(\mathbb{Z}/{p^{n}\mathbb{Z}}\right)\right) for i=1,2i=1,2. Since K1(C(/pn))=0K_{1}\left(C(\mathbb{Z}/{p^{n}\mathbb{Z}})\right)=0 for all nn\in\mathbb{N}, it follows that K1(C(p))=0K_{1}\left(C(\mathbb{Z}_{p})\right)=0.

For every natural number rr, p\mathbb{Z}_{p} can be expressed as the disjoint union of prp^{r} balls x+prpx+p^{r}\mathbb{Z}_{p} for x{0,1,,pr1}x\in\{0,1,\ldots,p^{r}-1\}. Consequently, each ball x+prpx+p^{r}\mathbb{Z}_{p} is both open and closed. For a subset BB of a set XX, we denote the characteristic function of BB on XX as 𝟙B\mathbbm{1}_{B}.

Theorem 4.1.

The group K0(C(p))K_{0}\left(C(\mathbb{Z}_{p})\right) is generated by the equivalence classes of continuous functions 𝟙x+prp\mathbbm{1}_{x+p^{r}\mathbb{Z}_{p}} for all rr\in\mathbb{N} and x{0,1,,pr1}x\in\{0,1,\ldots,p^{r}-1\}.

Proof.

Consider the generating subset 𝒦\mathcal{K} of limK0(C(/pn))\varinjlim K_{0}\left(C\left(\mathbb{Z}/{p^{n}\mathbb{Z}}\right)\right) consisting of elements fnn=1\langle f_{n}\rangle_{n=1}^{\infty} such that there exists rr\in\mathbb{N} satisfying the recurrence relation fn=Ψnfn1f_{n}=\Psi_{n}f_{n-1} for all n>rn>r with the initial condition fr=𝟙x+prf_{r}=\mathbbm{1}_{x+p^{r}\mathbb{Z}}, or equivalently, we can express fnf_{n} as fn=l=1nril=0p1𝟙x+l=1nrilpr+l1+pnf_{n}=\displaystyle\sum_{l=1}^{n-r}\sum_{i_{l}=0}^{p-1}\mathbbm{1}_{x+\sum_{l=1}^{n-r}i_{l}p^{r+l-1}+p^{n}\mathbb{Z}}, where x{0,1,,pr1}x\in\{0,1,\ldots,p^{r}-1\}. Now, using the identification of limK0(C(/pn))\varinjlim K_{0}\left(C\left(\mathbb{Z}/{p^{n}\mathbb{Z}}\right)\right) with K0(C(p))K_{0}\left(C\left(\mathbb{Z}_{p}\right)\right), we have

𝒦={fK0(C(p)):f=𝟙x+prp for r and x{0,1,,pr1}}.\mathcal{K}=\left\{f\in K_{0}\left(C\left(\mathbb{Z}_{p}\right)\right):f=\mathbbm{1}_{x+p^{r}\mathbb{Z}_{p}}\text{ for }r\in\mathbb{N}\text{ and }x\in\{0,1,\ldots,p^{r}-1\}\right\}.

We recall a well-known continuous mapping from p\mathbb{Z}_{p} to the interval [0,1][0,1], known as the Monna map [9]. This mapping, denoted as T:p[0,1]T:\mathbb{Z}_{p}\rightarrow[0,1], is defined by T(k=0xkpk)=k=0xkpk+1T\left(\sum_{k=0}^{\infty}x_{k}p^{k}\right)=\sum_{k=0}^{\infty}\frac{x_{k}}{p^{k+1}}, where 0xkp10\leq x_{k}\leq p-1. The Monna map TT is continuous with respect to the pp-adic metric on p\mathbb{Z}_{p} and the standard Euclidean metric on [0,1][0,1]. Furthermore, it preserves measures, with TT being measure-preserving concerning the probability Haar measure on p\mathbb{Z}_{p} and the Lebesgue measure λ\lambda on [0,1][0,1]. Additionally, we note that the set E={x[0,1]:x has multiple base p representations}E=\{x\in[0,1]:x\text{ has multiple base }p\text{ representations}\} is countable and thus has measure zero. Consequently, when we restrict the map TT to pT1[E]\mathbb{Z}_{p}\setminus T^{-1}[E], it becomes a bijection. As a result, the induced map T~:L2([0,1])L2(p)\widetilde{T}:L^{2}([0,1])\rightarrow L^{2}(\mathbb{Z}_{p}) defined as T~(f):=fT\widetilde{T}(f):=f\circ T, where fL2([0,1])f\in L^{2}([0,1]), is unitary.

Proposition 4.2.

For any rr\in\mathbb{N} and x{0,1,,pr1}x\in\{0,1,\ldots,p^{r}-1\}, we have

𝟙x+prp=(m,n)S,nre2πimxpnprχm,n.\mathbbm{1}_{x+p^{r}\mathbb{Z}_{p}}=\sum_{(m,n)\in S,\,n\leq r}\frac{e^{-\frac{2\pi imx}{p^{n}}}}{p^{r}}\chi_{m,n}.
Proof.

Let rr\in\mathbb{N} and x{0,1,,pr1}x\in\{0,1,\ldots,p^{r}-1\}, and note that T~1(𝟙x+prp)=𝟙[T(x),T(x)+1pr]\widetilde{T}^{-1}\left(\mathbbm{1}_{x+p^{r}\mathbb{Z}_{p}}\right)=\mathbbm{1}_{\left[T(x),T(x)+\frac{1}{p^{r}}\right]}.

Let (m,n)S(m,n)\in S and denote ξm,n=e2πimpn\xi_{m,n}=e^{\frac{2\pi im}{p^{n}}}. We then have

T~1(χm,n)=limNx0,x1,,xN=0p1ξm,nx0+x1p++xNpN𝟙[x0p+x1p2++xNpN+1,x0p+x1p2++xN+1pN+1).\widetilde{T}^{-1}\left(\chi_{m,n}\right)=\lim_{N\rightarrow\infty}\sum_{x_{0},x_{1},\ldots,x_{N}=0}^{p-1}\xi_{m,n}^{x_{0}+x_{1}p+\cdots+x_{N}p^{N}}\mathbbm{1}_{\left[\frac{x_{0}}{p}+\frac{x_{1}}{p^{2}}+\cdots+\frac{x_{N}}{p^{N+1}},\frac{x_{0}}{p}+\frac{x_{1}}{p^{2}}+\cdots+\frac{x_{N}+1}{p^{N+1}}\right)}.

The L2L^{2}-inner product 𝟙x+prp,χm,n\langle\mathbbm{1}_{x+p^{r}\mathbb{Z}_{p}},\chi_{m,n}\rangle simplifies to

𝟙x+prp,χm,n\displaystyle\left\langle\mathbbm{1}_{x+p^{r}\mathbb{Z}_{p}},\chi_{m,n}\right\rangle
=T~1(𝟙x+prp),T~1(χm,n)\displaystyle=\left\langle\widetilde{T}^{-1}\left(\mathbbm{1}_{x+p^{r}\mathbb{Z}_{p}}\right),\widetilde{T}^{-1}\left(\chi_{m,n}\right)\right\rangle
=𝟙[T(x),T(x)+1pr],limNx0,x1,,xN=0p1ξm,nx0+x1p++xNpN𝟙[x0p++xNpN+1,x0p++xN+1pN+1)\displaystyle=\left\langle\mathbbm{1}_{\left[T(x),T(x)+\frac{1}{p^{r}}\right]},\lim_{N\rightarrow\infty}\sum_{x_{0},x_{1},\ldots,x_{N}=0}^{p-1}\xi_{m,n}^{x_{0}+x_{1}p+\cdots+x_{N}p^{N}}\mathbbm{1}_{\left[\frac{x_{0}}{p}+\cdots+\frac{x_{N}}{p^{N+1}},\frac{x_{0}}{p}+\cdots+\frac{x_{N}+1}{p^{N+1}}\right)}\right\rangle
=limNT(x)T(x)+1prx0,x1,,xN=0p1ξm,n¯x0+x1p++xNpN𝟙[x0p++xNpN+1,x0p++xN+1pN+1)dλ\displaystyle=\lim_{N\rightarrow\infty}\int_{T(x)}^{T(x)+\frac{1}{p^{r}}}\sum_{x_{0},x_{1},\ldots,x_{N}=0}^{p-1}\overline{\xi_{m,n}}^{x_{0}+x_{1}p+\cdots+x_{N}p^{N}}\mathbbm{1}_{\left[\frac{x_{0}}{p}+\cdots+\frac{x_{N}}{p^{N+1}},\frac{x_{0}}{p}+\cdots+\frac{x_{N}+1}{p^{N+1}}\right)}\,d\lambda
=limNxr,,xN=0p1ξm,n¯x+k=rNxkpkT(x)T(x)+1pr𝟙[T(x)+k=rNxkpk+1,T(x)+k=rNxkpk+1+1pN+1)𝑑λ\displaystyle=\lim_{N\rightarrow\infty}\sum_{x_{r},\ldots,x_{N}=0}^{p-1}\overline{\xi_{m,n}}^{x+\sum_{k=r}^{N}x_{k}p^{k}}\int_{T(x)}^{T(x)+\frac{1}{p^{r}}}\mathbbm{1}_{\left[T(x)+\sum_{k=r}^{N}\frac{x_{k}}{p^{k+1}},T(x)+\sum_{k=r}^{N}\frac{x_{k}}{p^{k+1}}+\frac{1}{p^{N+1}}\right)}\,d\lambda
=ξm,n¯xlimN1pN+1xr,,xN=0p1ξm,n¯k=rNxkpk\displaystyle=\overline{\xi_{m,n}}^{x}\lim_{N\rightarrow\infty}\frac{1}{p^{N+1}}\sum_{x_{r},\ldots,x_{N}=0}^{p-1}\overline{\xi_{m,n}}^{\sum_{k=r}^{N}x_{k}p^{k}}
=ξm,n¯xlimN1pN+1k=rN(l=0p1ξm,n¯lpk).\displaystyle=\overline{\xi_{m,n}}^{x}\lim_{N\rightarrow\infty}\frac{1}{p^{N+1}}\prod_{k=r}^{N}\left(\sum_{l=0}^{p-1}\overline{\xi_{m,n}}^{lp^{k}}\right).

Now, we consider two cases.

Case 1:

If nrn\leq r, then for each k=r,r+1,,Nk=r,r+1,\ldots,N we have ξm,n¯pk=1\overline{\xi_{m,n}}^{p^{k}}=1, and therefore

ξm,n¯xlimN1pN+1k=rN(l=0p1ξm,n¯lpk)=ξm,n¯xlimNpNr+1pN+1=ξm,n¯xpr,\displaystyle\overline{\xi_{m,n}}^{x}\lim_{N\rightarrow\infty}\frac{1}{p^{N+1}}\prod_{k=r}^{N}\left(\sum_{l=0}^{p-1}\overline{\xi_{m,n}}^{lp^{k}}\right)=\overline{\xi_{m,n}}^{x}\lim_{N\rightarrow\infty}\frac{p^{N-r+1}}{p^{N+1}}=\frac{\overline{\xi_{m,n}}^{x}}{p^{r}},

i.e. 𝟙x+prp,χm,n=ξm,n¯xpr\left\langle\mathbbm{1}_{x+p^{r}\mathbb{Z}_{p}},\chi_{m,n}\right\rangle=\frac{\overline{\xi_{m,n}}^{x}}{p^{r}}.

Case 2:

If n>rn>r, then l=0p1ξm,n¯lpn1=1(ξm,n¯pn1)p1ξm,n¯pn1=0\sum_{l=0}^{p-1}\overline{\xi_{m,n}}^{lp^{n-1}}=\frac{1-\left(\overline{\xi_{m,n}}^{p^{n-1}}\right)^{p}}{1-\overline{\xi_{m,n}}^{p^{n-1}}}=0, and therefore 𝟙x+prp,χm,n=0\left\langle\mathbbm{1}_{x+p^{r}\mathbb{Z}_{p}},\chi_{m,n}\right\rangle=0.

This completes the proof. ∎

Acknowledgement: The first named author would like to thank Professor Partha Sarathi Chakraborty for his valuable suggestions and discussions.

References

  • [1] A. Connes, Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994. xiv+661 pp. ISBN:0-12-185860-X.
  • [2] A. Connes, On the spectral characterization of manifolds, J. Noncommut. Geom. 7(2013), no.1, 1–82.
  • [3] E. Christensen, C. Ivan, Spectral triples for AF CC^{*}-algebras and metrics on the Cantor set, J. Operator Theory 56(2006), no.1, 17–46.
  • [4] P.S. Chakraborty, A.K. Pal, An invariant for homogeneous spaces of compact quantum groups, Adv. Math. 301 (2016), 258–288.
  • [5] A. Deitmar, S. Echterhoff, Principles of harmonic analysis, Second edition, Universitext, Springer, Cham, 2014. xiv+332 pp. ISBN:978-3-319-05791-0, ISBN:978-3-319-05792-7.
  • [6] S. Guin, B. Saurabh, Equivariant spectral triple for the quantum group Uq(2)U_{q}(2) for complex deformation parameters, J. Geom. Phys. 185(2023), Paper No. 104748, 22 pp.
  • [7] S. Klimek, M. McBride, S. Rathnayake, A pp-adic spectral triple, J. Math. Phys. 55(2014), no.11, 113502, 16 pp.
  • [8] S. Lord, A. Rennie, J.C. Várilly, Riemannian manifolds in noncommutative geometry, J. Geom. Phys. 62(2012), no.7, 1611–1638.
  • [9] A.F. Monna, Sur une transformation simple des nombres PP-adiques en nombres réels (French) Nederl. Akad. Wetensch. Proc. Ser. A 55 Indag. Math. 14 (1952), 1–9.
  • [10] P. Podleś, Symmetries of quantum spaces. Subgroups and quotient spaces of quantum SU(2)SU(2) and SO(3)SO(3) groups, Comm. Math. Phys. 170 (1) (1995) 1–20.
  • [11] B. Saurabh, Spectral dimension of quaternion spheres, Arch. Math. (Basel) 111(2018), no.1, 47–55.
  • [12] B. Saurabh, Spectral dimension of spheres, Comm. Algebra 48(2020), no.6, 2539–2554.
  • [13] V.S. Vladimirov, I.V. Volovich, E.I. Zelenov, pp-adic analysis and mathematical physics, Ser. Soviet East European Math., 1, World Scientific Publishing Co., Inc., River Edge, NJ, 1994. xx+319 pp. ISBN:981-02-0880-4.
  • [14] S.L. Woronowicz, Compact quantum groups, Symétries quantiques (Les Houches, 1995), 845–884. North-Holland Publishing Co., Amsterdam, 1998, ISBN:0-444-82867-2.

Surajit Biswas ([email protected], [email protected])
Department of Mathematics,
Indian Institute of Technology, Gandhinagar,
Palaj, Gandhinagar 382055, India

Bipul Saurabh ([email protected], [email protected])
Department of Mathematics,
Indian Institute of Technology, Gandhinagar,
Palaj, Gandhinagar 382055, India