This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Spectral bootstrap confidence bands for Lévy-driven moving average processes111The support of German Science Foundation research grant (DFG Sachbeihilfe) 406700014 is gratefully acknowledged.

D. Belomestny, E. Ivanova and T. Orlova Duisburg-Essen University
Abstract.

In this paper we study the problem of constructing bootstrap confidence intervals for the Lévy density of the driving Lévy process based on high-frequency observations of a Lévy-driven moving average processes. Using a spectral estimator of the Lévy density, we propose a novel implementations of multiplier and empirical bootstraps to construct confidence bands on a compact set away from the origin. We also provide conditions under which the confidence bands are asymptotically valid.

1. Introduction

The continuous-time Lévy-driven moving average processes are defined as

(1.1) Zt=𝒦(ts)𝑑Ls\displaystyle Z_{t}=\int_{-\infty}^{\infty}\mathcal{K}(t-s)\,dL_{s}

where 𝒦\mathcal{K} is a deterministic kernel and L=(Lt)tL=\left(L_{t}\right)_{t\in\mathbb{R}} is a two-sided Lévy process with a Lévy triplet (γ,σ,ν)(\gamma,\sigma,\nu). The conditions which guarantee that this integral is well-defined are given in the pioneering work by Rajput and Rosinski [13]. For instance, if x2ν(dx)<\int x^{2}\nu\left(dx\right)<\infty, it is sufficient to assume that 𝒦1()2()\mathcal{K}\in\mathcal{L}^{1}\left(\mathbb{R}\right)\cap\mathcal{L}^{2}(\mathbb{R}).

Continuous-time Lévy-driven moving average processes (and slightly modified versions of them) are widely used for the construction of many popular models such as Lévy-driven Ornstein-Uhlenbeck processes, fractional Lévy processes, CARMA processes, Lévy semistationary processes and ambit fields, cf. Barndorff-Nielsen, Benth and Veraart [1], Podolskij [12]. Most of these models can be applied to financial and physical problems. For instance, the choice 𝒦(t)=tαeλt1[0,)(t)\mathcal{K}(t)=t^{\alpha}e^{-\lambda t}1_{[0,\infty)}(t) with λ>0\lambda>0 and α>1/2\alpha>-1/2 (known as Gamma-kernel) is used for modeling volatility and turbulence, see e.g. Barndorff-Nielsen and Schmiegel [2]. Otherwise, the choice 𝒦(t)=eλ|t|\mathcal{K}(t)=e^{-\lambda|t|} (known as well-balanced Ornstein-Uhlenbeck process) can be used for the analysis of the SAP high-frequency data, see Schnurr and Woerner [15].

This paper is devoted to statistical inference for continuous-time Lévy-driven moving average processes. Assuming that the high-frequency equidistant observations of the process (Zt)(Z_{t}) are given, we aim to estimate the characteristic triplet of the process (Lt)(L_{t}). Recently, Belomestny, Panov and Woerner [4] considered the statistical estimation of the Lévy measure ν\nu from the low-frequency observations of the process (Zt)(Z_{t}). The approach presented in [4] is rather general - in particular, it works well under various choices of 𝒦\mathcal{K}. Nevertheless, this approach is based on the superposition of the Mellin and Fourier transforms of the Lévy measure, and therefore its practical implementation can meet some computational difficulties. In [3], another method was presented, which essentially uses the following theoretical observation. For any kernel 𝒦\mathcal{K}, the characteristic function Φ(u):=𝖤[eiuZt]\Phi(u):=\mathsf{E}\left[e^{\mathrm{i}uZ_{t}}\right] of the process (Zt)(Z_{t}) and the characteristic exponent ψ(u)\psi(u) of the process (Lt)(L_{t}) are connected via the formula:

Φ(u)=exp(ψ(u𝒦(s))𝑑s).\displaystyle\Phi(u)=\exp\left(\int_{\mathbb{R}}\psi(u\,\mathcal{K}(s))\,ds\right).

It was noted in [3] that under the choice 𝒦(x)=(1α|x|)+1α\mathcal{K}(x)=\left(1-\alpha|x|\right)_{+}^{\frac{1}{\alpha}} this formula can be inverted without use of an additional integral transformations, that is, the function ψ\psi can be represented via Φ\Phi and its derivatives. Therefore, the characteristic exponent can be estimated from the observations of the process (Zt),(Z_{t}), and further application of the Fourier techniques leads to a consistent estimator of the Lévy triplet.

The current paper is devoted to the estimation of the Lévy measure ν\nu in the same model as in [3] but based on high-frequency observations of the process (Zt).(Z_{t}). Moreover, we are interested in uniform bootstrap confidence bands for ν.\nu. We propose a novel implementation of the multiplier and empirical bootstrap procedures to construct confidence bands on a compact set away from the origin. We also provide conditions under which the confidence bands are asymptotically valid. Our approach can be viewed as an extension of the recent work [10] where bootstrap confidence bands are constructed for the case of high-frequency observations of the Lévy process (Lt)t0(L_{t})_{t\geq 0} itself.

The paper is organised as follows. In Section 2 we formulate our main statistical problem and propose an estimator for the underlying Lévy density ν\nu. We also discuss how to construct confidence bands for ν\nu. Section 3 contains a detailed description of the bootstrap procedure and results on the validity of the bootstrap confidence bands. Some numerical results on simulated data are shown in Section 4. Finally, in Section 5 all proofs are collected.

2. Set-up

We shall consider continuous-time Lévy-driven moving average processes (Zt)t0(Z_{t})_{t\geq 0} of the form:

(2.1) Zt=𝒦(ts)𝑑Ls,\displaystyle Z_{t}=\int_{-\infty}^{\infty}\mathcal{K}(t-s)\,dL_{s},

where 𝒦\mathcal{K} is a symmetric kernel given by

(2.2) 𝒦α(x)={(1α|x|)1α,|x|α1,0,else\displaystyle\mathcal{K}_{\alpha}(x)=\begin{cases}\left(1-\alpha|x|\right)^{\frac{1}{\alpha}},&\quad|x|\leq\alpha^{-1},\\ 0,&\mathrm{else}\end{cases}

for some α(0,1),\alpha\in(0,1), L=(Lt)tL=\left(L_{t}\right)_{t\in\mathbb{R}} is a two-sided Lévy process with the Lévy triplet (γ,σ,ν)\left(\gamma,\sigma,\nu\right). Note that as a limiting case for α0\alpha\to 0 we get the exponential kernel 𝒦0(x)=exp(x)\mathcal{K}_{0}(x)=\exp\left(-x\right). It follows from [13] that the process (Zt)(Z_{t}) is well-defined and infinitely divisible with the characteristic function:

𝖤[eiuZt]=exp{iuγZ(t)12u2σZ2(t)+[eiux1iux1{|x|1}]νZ(t,dx)},\displaystyle\mathsf{E}\left[e^{iuZ_{t}}\right]=\exp\left\{\mathrm{i}u\gamma_{Z}(t)-\frac{1}{2}u^{2}\sigma_{Z}^{2}(t)+\int_{\mathbb{R}}\left[e^{\mathrm{i}ux}-1-iux\mathrm{1}_{\{|x|\leq 1\}}\right]\,\nu_{Z}(t,dx)\right\},

where

γZ(t)=γ𝒦(ts)𝑑s+x𝒦(ts)[1{|x𝒦(ts)|1}1{|x|1}]ν(dx)𝑑s,\displaystyle\gamma_{Z}(t)=\gamma\int\mathcal{K}(t-s)\,ds+\int\int x\mathcal{K}(t-s)\left[\mathrm{1}_{\{|x\mathcal{K}(t-s)|\leq 1\}}-\mathrm{1}_{\{|x|\leq 1\}}\right]\nu(dx)\,ds,
σZ2(t)=σ2𝒦2(ts)𝑑s\displaystyle\sigma_{Z}^{2}(t)=\sigma^{2}\int\mathcal{K}^{2}(t-s)\,ds

and

νZ(t,dx)=1B(x𝒦(ts))ν(dx)𝑑s,B().\displaystyle\nu_{Z}(t,dx)=\int\int\mathrm{1}_{B}\left(x\,\mathcal{K}(t-s)\right)\nu(dx)\,ds,\quad B\in\mathcal{B}(\mathbb{R}).

Furthermore, under our choice of the kernel function 𝒦\mathcal{K}, we can represent the characteristic exponent ψ\psi of the Lévy-process (Lt)(L_{t}) via the characteristic function ΦΔ\Phi_{\Delta} of the increments Zt+ΔZtZ_{t+\Delta}-Z_{t}. We explicitly derive for ΨΔ(u):=log(ΦΔ(u))\Psi_{\Delta}(u):=\log(\Phi_{\Delta}(u)) (see Lemma 3),

(2.3) ΨΔ(u)=ψ(u(𝒦α(x+Δ)𝒦α(x)))𝑑x=(αψ)(Δu)+SΔ(u),\Psi_{\Delta}(u)=\int_{-\infty}^{\infty}\psi\left(u\left(\mathcal{K_{\alpha}}(x+\Delta)-\mathcal{K_{\alpha}}(x)\right)\right)\,dx=(\mathcal{L}_{\alpha}\psi)(\Delta u)+S_{\Delta}(u),

where the operator α\mathcal{L}_{\alpha} is defined as

(αf)(x):=21αxα1α0xf(z)z2α11α𝑑z\displaystyle(\mathcal{L}_{\alpha}f)(x):=\frac{2}{1-\alpha}\,x^{-\frac{\alpha}{1-\alpha}}\int_{0}^{x}f\left(z\right)z^{\frac{2\alpha-1}{1-\alpha}}\,dz

for any locally bounded function ff and

(2.4) ψ(u)=iγu12σ2u2+(eiux1iux1{|x|1})ν(dx).\displaystyle\psi(u)=\mathrm{i}\gamma u-\frac{1}{2}\sigma^{2}u^{2}+\int_{\mathbb{R}}\left(e^{\mathrm{i}ux}-1-\mathrm{i}ux\mathrm{1}_{\{\left|x\right|\leq 1\}}\right)\nu(dx).

Moreover, if

(2.5) |x|pν(x)𝑑x<\displaystyle\int\left|x\right|^{p}\nu(x)\,dx<\infty

for some natural p>1p>1 then the function SΔS_{\Delta} satisfies (see Lemma 4)

(2.6) limΔ0Δ(l+α)SΔ(l)(u/Δ)=0,l=0,,p,\displaystyle\lim_{\Delta\to 0}\Delta^{-(l+\alpha)}S^{(l)}_{\Delta}(u/\Delta)=0,\quad l=0,\ldots,p,

and as a result we have convergence

(2.7) ΨΔ(u/Δ)Ψ(u):=αψ(u),u\displaystyle\Psi_{\Delta}(u/\Delta)\to\Psi(u):=\mathcal{L}_{\alpha}\psi(u),\quad u\in\mathbb{R}

for Δ0.\Delta\to 0. Furthermore by inverting the operator α,\mathcal{L}_{\alpha}, we get from (2.3)

ψ′′(u)=(1/Δ)2(α1ΨΔ)′′(u/Δ)(1/Δ)2(α1SΔ)′′(u/Δ)\psi^{\prime\prime}(u)=(1/\Delta)^{2}(\mathcal{L}^{-1}_{\alpha}\Psi_{\Delta})^{\prime\prime}(u/\Delta)-(1/\Delta)^{2}(\mathcal{L}^{-1}_{\alpha}S_{\Delta})^{\prime\prime}(u/\Delta)

with

(2.8) (α1f)(x):=α2f(x)+1α2xf(x).\displaystyle(\mathcal{L}^{-1}_{\alpha}f)(x):=\frac{\alpha}{2}f(x)+\frac{1-\alpha}{2}xf^{\prime}(x).

On the other hand, under the condition (2.5) with p=2p=2, we obtain from (2.4),

ψ′′(u)=σ2eiuxρ(x)𝑑x,\psi^{\prime\prime}\left(u\right)=-\sigma^{2}-\int_{\mathbb{R}}e^{\mathrm{i}ux}\rho\left(x\right)dx,

where ρ(x):=x2ν(x).\rho(x):=x^{2}\nu(x). Therefore, we can apply the inverse Fourier transform to get

(2.9) ρ(x)=12πΔ2eiux[(α1ΨΔ)′′(u/Δ)+Δ2σ2]𝑑uRΔ(u),\rho(x)=-\frac{1}{2\pi\Delta^{2}}\int_{\mathbb{R}}e^{-\mathrm{i}ux}[(\mathcal{L}^{-1}_{\alpha}\Psi_{\Delta})^{\prime\prime}(u/\Delta)+\Delta^{2}\sigma^{2}]\,du-R_{\Delta}(u),

where

RΔ(u):=eiuxrΔ(u)𝑑u,rΔ(u):=(1/Δ)2(α1SΔ)′′(u/Δ).R_{\Delta}(u):=\int_{\mathbb{R}}e^{-\mathrm{i}ux}r_{\Delta}(u)\,du,\quad r_{\Delta}(u):=(1/\Delta)^{2}(\mathcal{L}^{-1}_{\alpha}S_{\Delta})^{\prime\prime}(u/\Delta).

In view of (2.6) and (2.8), the term RΔR_{\Delta} is of smaller order in Δ\Delta than the first term in (2.9) and we can consider the limiting case (2.7) in (2.9).

In this work we assume that we observe a discretised (high-frequency) trajectory of the limiting Lévy process X0,XΔ,,XnΔX_{0},X_{\Delta},\ldots,X_{n\Delta} with characteristic function Φ(u):=𝖤[exp(iuX1)]=exp(Ψ(u))=exp(αψ(u)).\Phi(u):=\mathsf{E}[\exp(\mathrm{i}uX_{1})]=\exp(\Psi(u))=\exp(\mathcal{L}_{\alpha}\psi(u)). This assumption is mainly done to simplify analysis and avoid difficulties related to the time dependence structure of the process (Zt).(Z_{t}). Still the main features of the underlying inverse problem (e.g. the structure of the inverse operator α1\mathcal{L}^{-1}_{\alpha}) remains reflected in our statistical analysis. An extension to the case where one directly observes the process (Zt)t0(Z_{t})_{t\geq 0} will also be discussed.

Let us now describe our estimation procedure. Let WW be an integrable kernel function such that

W(x)𝑑x=1,|x|p+1|W(x)|𝑑x<,xlW(x)𝑑x=0,l=1,,p,\int_{\mathbb{R}}W(x)\,dx=1,\quad\int_{\mathbb{R}}|x|^{p+1}|W(x)|\,dx<\infty,\quad\int_{\mathbb{R}}x^{l}W(x)\,dx=0,\quad l=1,\ldots,p,

and suppose that the Fourier transform φW\varphi_{W} of WW is supported in [1,1].\left[-1,1\right]. Motivated by (2.9), we propose to estimate ρ\rho via the estimator:

(2.10) ρ^n(x):=12πeiux[(α1Ψ^)′′(u)+σ^n2]φW(uhn)𝑑u,\begin{split}\widehat{\rho}_{n}(x)&:=-\frac{1}{2\pi}\int_{\mathbb{R}}e^{-\mathrm{i}ux}\left[(\mathcal{L}^{-1}_{\alpha}\widehat{\Psi})^{\prime\prime}(u)+\widehat{\sigma}_{n}^{2}\right]\varphi_{W}(uh_{n})\,du,\end{split}

where Ψ^:=Δ1log(Φ^ΔX)\widehat{\Psi}:=\Delta^{-1}\log(\widehat{\Phi}_{\Delta X}) with

Φ^ΔX(u):=1nj=1neiu(ΔX)j,u,\displaystyle\widehat{\Phi}_{\Delta X}(u):=\frac{1}{n}\sum_{j=1}^{n}e^{\mathrm{i}u(\Delta X)_{j}},\quad u\in\mathbb{R},

(ΔX)j:=XΔjXΔ(j1),(\Delta X)_{j}:=X_{\Delta j}-X_{\Delta(j-1)}, hnh_{n} is a sequence of positive numbers (bandwidths) such that hn0h_{n}\to 0 as nn\to\infty, and σ^n2\widehat{\sigma}_{n}^{2} is an estimator of σ2.\sigma^{2}. Our aim is to construct confidence bands for the transformed Lévy density ρ\rho on a compact set II in {0}\mathbb{R}\setminus\{0\} and to prove validity of the proposed confidence bands. To this end, we shall use the Gaussian multiplier (or wild) bootstrap.

3. Main results

3.1. Construction of confidence bands

Using the equations (2.9) and (2.10), the difference ρ^n(x)ρ(x)\widehat{\rho}_{n}(x)-\rho(x) can be represented as

(3.1) ρ^n(x)ρ(x)=(ρ^n(x)ρ~(x))Rn(x)+(ρ~(x)ρ(x))Iσn2(x)+Iρn(x),\widehat{\rho}_{n}(x)-\rho(x)=\underbrace{\bigl{(}\widehat{\rho}_{n}(x)-\widetilde{\rho}(x)\bigr{)}}_{R_{n}(x)}+\underbrace{\bigl{(}\widetilde{\rho}(x)-\rho(x)\bigr{)}}_{I_{\sigma^{2}_{n}}(x)+I_{\rho_{n}}(x)},

where

(3.2) ρ~(x):=12πΔeiux[(α1Ψ)′′(u)+Δσ2]φW(uhn)𝑑u,Iσn2(x):=12πeiux(σ^n2σ2)φW(uhn)𝑑u,Iρn(x):=[ρ(hn1W(/hn))](x)ρ(x).\begin{split}&\widetilde{\rho}(x):=-\frac{1}{2\pi\Delta}\int_{\mathbb{R}}e^{-\mathrm{i}ux}\bigl{[}(\mathcal{L}^{-1}_{\alpha}\Psi)^{\prime\prime}(u)+\Delta\sigma^{2}\bigr{]}\varphi_{W}(uh_{n})\,du,\\ &I_{\sigma^{2}_{n}}(x):=-\frac{1}{2\pi}\int_{\mathbb{R}}e^{-\mathrm{i}ux}(\widehat{\sigma}^{2}_{n}-\sigma^{2})\varphi_{W}(uh_{n})\,du,\\ &I_{\rho_{n}}(x):=\bigl{[}\rho\ast(h_{n}^{-1}W(\cdot/h_{n}))\bigr{]}(x)-\rho(x).\end{split}

Later we show that under suitable assumptions (Assumption 1), the terms IρnI_{\rho_{n}} and Iσn2I_{\sigma^{2}_{n}} are asymptotically (as nn\to\infty and Δ0\Delta\to 0) smaller than RnR_{n} and hence can be neglected when constructing the confidence interval for the transformed Lévy density ρ.\rho. Further note that

(α1Ψ^)′′(u)(α1Ψ)′′(u)\displaystyle(\mathcal{L}^{-1}_{\alpha}\widehat{\Psi})^{\prime\prime}(u)-(\mathcal{L}^{-1}_{\alpha}\Psi)^{\prime\prime}(u) =\displaystyle= Q0(u)𝔻(u)+Q1(u)𝔻(u)\displaystyle Q_{0}(u)\mathbb{D}(u)+Q_{1}(u)\mathbb{D}^{\prime}(u)
+Q2(u)𝔻′′(u)+Q3(u)𝔻′′′(u),\displaystyle+Q_{2}(u)\mathbb{D}^{\prime\prime}(u)+Q_{3}(u)\mathbb{D}^{\prime\prime\prime}(u),

where 𝔻(u):=Φ^ΔX(u)ΦΔX(u),\mathbb{D}(u):=\widehat{\Phi}_{\Delta X}(u)-\Phi_{\Delta X}(u), ΦΔX(u):=exp(Δαψ(u))\Phi_{\Delta X}(u):=\exp(\Delta\mathcal{L}_{\alpha}\psi(u)) and

(3.3) Q0(u)=1ΦΔX(u)(2α2(2(ΦΔX(u)ΦΔX(u))2ΦΔX′′(u)ΦΔX(u))+1α2u(ΦΔX′′′(u)ΦΔX(u)+6ΦΔX′′(u)ΦΔX(u)(ΦΔX(u))24(ΦΔX(u)ΦΔX(u))3))=ΔΦΔX(u)(2α2(Δ(Ψ(u))2Ψ′′(u))u1α2(Ψ′′′(u)3ΔΨ′′(u)Ψ(u)+Δ2(Ψ(u))3)),\begin{split}Q_{0}(u)&=\frac{1}{\Phi_{\Delta X}(u)}\left(\frac{2-\alpha}{2}\left(2\left(\frac{\Phi^{\prime}_{\Delta X}(u)}{\Phi_{\Delta X}(u)}\right)^{2}-\frac{\Phi^{\prime\prime}_{\Delta X}(u)}{\Phi_{\Delta X}(u)}\right)\right.\\ &\left.\hskip 28.45274pt+\frac{1-\alpha}{2}u\left(-\frac{\Phi^{\prime\prime\prime}_{\Delta X}(u)}{\Phi_{\Delta X}(u)}+6\frac{\Phi^{\prime\prime}_{\Delta X}(u)\Phi^{\prime}_{\Delta X}(u)}{(\Phi_{\Delta X}(u))^{2}}-4\left(\frac{\Phi^{\prime}_{\Delta X}(u)}{\Phi_{\Delta X}(u)}\right)^{3}\right)\right)\\ &=\frac{\Delta}{\Phi_{\Delta X}(u)}\left(\frac{2-\alpha}{2}\left(\Delta(\Psi^{\prime}(u))^{2}-\Psi^{\prime\prime}(u)\right)\right.\\ &\left.\hskip 56.9055pt-u\frac{1-\alpha}{2}\left(\Psi^{\prime\prime\prime}(u)-3\Delta\Psi^{\prime\prime}(u)\Psi^{\prime}(u)+\Delta^{2}(\Psi^{\prime}(u))^{3}\right)\right),\end{split}
(3.4) Q1(u)=1ΦΔX(u)(3u(1α)(ΦΔX(u)ΦΔX(u))23uΦΔX′′(u)ΦΔX(u)1α2(2α)ΦΔX(u)ΦΔX(u))=ΔΦΔX(u)(3u1α2(Δ(Ψ(u))2Ψ′′(u))(2α)Ψ(u)),\begin{split}Q_{1}(u)&=\frac{1}{\Phi_{\Delta X}(u)}\left(3u\left(1-\alpha\right)\left(\frac{\Phi^{\prime}_{\Delta X}(u)}{\Phi_{\Delta X}(u)}\right)^{2}-3u\frac{\Phi^{\prime\prime}_{\Delta X}(u)}{\Phi_{\Delta X}(u)}\frac{1-\alpha}{2}-(2-\alpha)\frac{\Phi^{\prime}_{\Delta X}(u)}{\Phi_{\Delta X}(u)}\right)\\ &=\frac{\Delta}{\Phi_{\Delta X}(u)}\left(3u\frac{1-\alpha}{2}\left(\Delta(\Psi^{\prime}(u))^{2}-\Psi^{\prime\prime}(u)\right)-(2-\alpha)\Psi^{\prime}(u)\right),\end{split}
(3.5) Q2(u)=1ΦΔX(u)(2α23uΦΔX(u)ΦΔX(u)1α2)=1ΦΔX(u)(2α23uΔΨ(u)1α2),\begin{split}Q_{2}(u)&=\frac{1}{\Phi_{\Delta X}(u)}\left(\frac{2-\alpha}{2}-3u\frac{\Phi^{\prime}_{\Delta X}(u)}{\Phi_{\Delta X}(u)}\frac{1-\alpha}{2}\right)\\ &=\frac{1}{\Phi_{\Delta X}(u)}\left(\frac{2-\alpha}{2}-3u\Delta\Psi^{\prime}(u)\frac{1-\alpha}{2}\right),\end{split}
(3.6) Q3(u)=1ΦΔX(u)(u1α2).Q_{3}(u)=\frac{1}{\Phi_{\Delta X}(u)}\left(u\frac{1-\alpha}{2}\right).

With the above notations Rn(x)R_{n}(x) becomes

(3.7) Rn(x)=12πΔeiux[Q0(u)𝔻(u)+Q1(u)𝔻(u)..+Q2(u)𝔻′′(u)+Q3(u)𝔻′′′(u)]φW(uhn)du\begin{split}R_{n}(x)&=-\frac{1}{2\pi\Delta}\int_{\mathbb{R}}e^{-\mathrm{i}ux}\bigl{[}Q_{0}(u)\mathbb{D}(u)+Q_{1}(u)\mathbb{D}^{\prime}(u)\bigr{.}\\ &\bigl{.}\hskip 56.9055pt+Q_{2}(u)\mathbb{D}^{\prime\prime}(u)+Q_{3}(u)\mathbb{D}^{\prime\prime\prime}(u)\bigr{]}\varphi_{W}(uh_{n})\,du\end{split}

or alternatively

(3.8) Rn(x)=1nΔm[=0]3(j[=1]n{im(ΔX)jmKm,n(x(ΔX)j)....𝖤[im(ΔX)1mKm,n(x(ΔX)1)]}),\begin{split}R_{n}(x)&=\frac{1}{n\Delta}\stackrel{{\scriptstyle[}}{{m}}=0]{3}{\sum}\biggl{(}\stackrel{{\scriptstyle[}}{{j}}=1]{n}{\sum}\bigl{\{}\mathrm{i}^{m}(\Delta X)_{j}^{m}K_{m,n}(x-(\Delta X)_{j})\bigr{.}\biggr{.}\\ &\biggl{.}\bigl{.}\hskip 85.35826pt-\mathsf{E}\bigl{[}\mathrm{i}^{m}(\Delta X)_{1}^{m}K_{m,n}(x-(\Delta X)_{1})\bigr{]}\bigr{\}}\biggr{)},\end{split}

where the kernel functions Km,n(z),m=0,1,2,3,K_{m,n}(z),\,m=0,1,2,3, are defined as

Km,n(z):=12πeiuzQm(u)φW(uhn)𝑑u.K_{m,n}(z):=-\frac{1}{2\pi}\int_{\mathbb{R}}e^{-\mathrm{i}uz}Q_{m}(u)\varphi_{W}(uh_{n})\,du.

The representation (3.8) is crucial for our analysis. Consider now the process

(3.9) Tn(x):=nΔs(x)Rn(x),T_{n}(x):=\frac{\sqrt{n}\Delta}{s(x)}R_{n}(x),

where s2(x)s^{2}(x) is given by

(3.10) s2(x):=𝖵𝖺𝗋[m[=0]3im(ΔX)1mKm,n(x(ΔX)1)]s^{2}(x):=\mathsf{Var}\biggl{[}\stackrel{{\scriptstyle[}}{{m}}=0]{3}{\sum}\mathrm{i}^{m}(\Delta X)_{1}^{m}K_{m,n}(x-(\Delta X)_{1})\biggr{]}

Under some conditions, we shall show that there exists a tight (I)\ell^{\infty}(I)-sequence of Gaussian random variables TnGT_{n}^{G} with zero mean and the same covariance function as one of Tn\,T_{n}, and such that the distribution of TnGI:=supxI|TnG(x)|\|T_{n}^{G}\|_{I}:=\sup_{x\in I}|T_{n}^{G}(x)| asymptotically approximates the distribution of TnI\|T_{n}\|_{I} in the sense that

supz|P{TnIz}P{TnGIz}|0,n.\underset{z\in\mathbb{R}}{\sup}\bigl{|}\mathrm{P}\left\{\bigl{\|}T_{n}\bigr{\|}_{I}\leq z\right\}-\mathrm{P}\left\{\bigl{\|}T_{n}^{G}\bigr{\|}_{I}\leq z\right\}\bigr{|}\to 0,\quad n\to\infty.

Accordingly, the construction of confidence bands reduces to estimating the quantiles of the r.v. TnGI\|T_{n}^{G}\|_{I}. To this end we shall use bootstrap. Define

cnG(1τ):=inf{z:P{TnGIz}1τ}\begin{split}c_{n}^{G}(1-\tau):=\inf\bigl{\{}z\in\mathbb{R}:\ \mathrm{P}\left\{\bigl{\|}T_{n}^{G}\bigr{\|}_{I}\leq z\bigr{\}}\geq 1-\tau\right\}\end{split}

for τ(0,1),\tau\in(0,1), then the 1τ1-\tau-confidence band for ρ\rho is of the form:

𝒞^1τ(x)=[ρ^n(x)s(x)nΔcnG(1τ),ρ^n(x)+s(x)nΔcnG(1τ)],xI.\widehat{\mathcal{C}}_{1-\tau}(x)=\left[\widehat{\rho}_{n}(x)-\frac{s(x)}{\sqrt{n}\Delta}c_{n}^{G}(1-\tau),\,\widehat{\rho}_{n}(x)+\frac{s(x)}{\sqrt{n}\Delta}c_{n}^{G}(1-\tau)\right],\quad x\in I.

Since ρ(x)𝒞^1τ(x)\rho(x)\in\widehat{\mathcal{C}}_{1-\tau}(x) for all xIx\in I means that

nΔ(ρ^n()ρ())s()IcnG(1τ),\left\|\frac{\sqrt{n}\Delta(\widehat{\rho}_{n}(\cdot)-\rho(\cdot))}{s(\cdot)}\right\|_{I}\leq c_{n}^{G}(1-\tau),

we can show that

P{ρ(x)𝒞^1τ(x),xI}=P{TnGIcnG(1τ)}+o(1)\mathrm{P}\left\{\rho(x)\in\widehat{\mathcal{C}}_{1-\tau}(x),\quad\forall\,x\in I\right\}=\mathrm{P}\bigl{\{}\bigl{\|}T_{n}^{G}\bigr{\|}_{I}\leq c_{n}^{G}(1-\tau)\bigr{\}}+o(1)

as n.n\to\infty. Hence 𝒞^1τ(x)\widehat{\mathcal{C}}_{1-\tau}(x) is a valid confidence band for ρ\rho on II with an approximate level 1τ1-\tau. However, we still need to estimate the quantile cnG(1τ).c_{n}^{G}(1-\tau). In what follows we consider the Gaussian multiplier (or wild) bootstrap to estimate the quantile cnG(1τ)c_{n}^{G}(1-\tau).

Gaussian multiplier bootstrap.

The main idea of the Gaussian multiplier bootstrap consists in reweighting estimated influence functions using mean zero and unit variance pseudo-random variables, see, e.g. [8] for more details. On the one hand, the advantage of this method compared to the conventional bootstrap is that we can avoid recomputing the estimator in each bootstrap repetition, and as a result we reduce the calculation time. On the other hand, one of the disadvantages of the Gaussian multiplier bootstrap is that it is necessary to obtain an analytical expression for the corresponding influence function. In our case, this method will be used as follows. First we simulate NN independent centred Gaussian random variables ω1,ωnN(0,1)\omega_{1},\ldots\omega_{n}\sim N(0,1), independent of the data 𝖣n={(ΔX)j}j=0n\mathsf{D}_{n}=\bigl{\{}(\Delta X)_{j}\bigr{\}}_{j=0}^{n} and construct the multiplier process T^nMB(x)\widehat{T}_{n}^{MB}(x) of the form:

(3.11) T^nMB(x):=1s^n(x)n(m[=0]3(j[=1]nωj{im(ΔX)jmK^m,n(x(ΔX)j)n1j[=1]nim(ΔX)jmK^m,n(x(ΔX)j)})),\begin{split}\widehat{T}_{n}^{MB}(x):=&\frac{1}{\widehat{s}_{n}(x)\sqrt{n}}\biggl{(}\stackrel{{\scriptstyle[}}{{m}}=0]{3}{\sum}\biggl{(}\stackrel{{\scriptstyle[}}{{j}}=1]{n}{\sum}\omega_{j}\bigl{\{}\mathrm{i}^{m}(\Delta X)_{j}^{m}\widehat{K}_{m,n}(x-(\Delta X)_{j})\bigr{.}\biggr{.}\biggr{.}\\ &\biggl{.}\biggl{.}\bigl{.}\hskip 56.9055pt-n^{-1}\stackrel{{\scriptstyle[}}{{j}}^{\prime}=1]{n}{\sum}\mathrm{i}^{m}(\Delta X)_{j^{\prime}}^{m}\widehat{K}_{m,n}(x-(\Delta X)_{j^{\prime}})\bigr{\}}\biggr{)}\biggr{)},\end{split}

where

(3.12) s^n2(x):=𝖵𝖺𝗋[m[=0]3im(ΔX)1mK^m,n(x(ΔX)1)],xI,\widehat{s}^{2}_{n}(x):=\mathsf{Var}\biggl{[}\stackrel{{\scriptstyle[}}{{m}}=0]{3}{\sum}\mathrm{i}^{m}(\Delta X)_{1}^{m}\widehat{K}_{m,n}(x-(\Delta X)_{1})\biggr{]},\quad x\in I,
K^m,n(z)=12πeiuzQ^m(u)φW(uhn)𝑑u\widehat{K}_{m,n}(z)=-\frac{1}{2\pi}\int_{\mathbb{R}}e^{-\mathrm{i}uz}\widehat{Q}_{m}(u)\varphi_{W}(uh_{n})\,du

and Q^m(u)\widehat{Q}_{m}(u) is based on a bootstrapped version of the empirical characteristic function Φ^ΔX\widehat{\Phi}_{\Delta X}:

Φ^ΔXMB(u):=1nj=1nωjeiu(ΔX)j,u.\displaystyle\widehat{\Phi}^{MB}_{\Delta X}(u):=\frac{1}{n}\sum_{j=1}^{n}\omega_{j}e^{\mathrm{i}u(\Delta X)_{j}},\quad u\in\mathbb{R}.

Furthermore, we estimate cnG(1τ)c_{n}^{G}(1-\tau) using quantile c^nMB(1τ)\widehat{c}_{n}^{MB}(1-\tau) of the distribution of T^nMBI,\|\widehat{T}_{n}^{MB}\|_{I}, conditional on the data 𝖣n.\mathsf{D}_{n}. The latter quantity can be computed via simulations. As a result, the confidence band takes the form

(3.13) 𝒞^1τMB(x):=[ρ^n(x)s^n(x)nΔc^nMB(1τ),ρ^n(x)+s^n(x)nΔc^nMB(1τ)],xI.\widehat{\mathcal{C}}_{1-\tau}^{MB}(x):=\biggl{[}\widehat{\rho}_{n}(x)-\frac{\widehat{s}_{n}(x)}{\sqrt{n}\Delta}\widehat{c}_{n}^{MB}(1-\tau),\widehat{\rho}_{n}(x)+\frac{\widehat{s}_{n}(x)}{\sqrt{n}\Delta}\widehat{c}_{n}^{MB}(1-\tau)\biggr{]},\quad x\in I.

3.2. Validity of bootstrap confidence bands.

In this section, we will present the main result, which proves the validity of the confidence band 𝒞^1τMB(x)\widehat{\mathcal{C}}^{MB}_{1-\tau}(x) .

Assumption 1.

We assume that the following conditions are fulfilled.

  1. (i)

    |x|6+ςν(x)𝑑x<\int_{\mathbb{R}}|x|^{6+\varsigma}\nu(x)\,dx<\infty for some ς[0,1].\varsigma\in[0,1].

  2. (ii)

    Let r>0r>0 and let pp be an integer such that p<rp+1p<r\leq p+1. The function ρ\rho is p-times differentiable, and (ρ)p(\rho)^{p} is (rp)(r-p) -Hölder222 The function f:f\ :\ \mathbb{\mathbb{R}\to R} is called α\alpha-Hölder continuous for α(0,1]\alpha\in(0,1], if supx,y,xy|f(y)f(x)||yx|α<.\underset{x,y\in\mathbb{R},x\neq y}{\sup}\frac{|f(y)-f(x)|}{|y-x|^{\alpha}}<\infty. continuous.

  3. (iii)

    It holds hn3Δ,h_{n}^{3}\gtrsim\Delta,\, hnr+1Δ1/2n1/2(loghn1)10h_{n}^{r+1}\Delta^{1/2}n^{1/2}(\log h_{n}^{-1})^{-1}\to 0 and (nΔhn3)1/2(logn)1/20(n\Delta h_{n}^{3})^{-1/2}(\log n)^{1/2}\to 0.

  4. (iv)

    The estimator σ^2\widehat{\sigma}^{2} satisfies

    |σ2σ^2|hn1W(/hn)I=oP(Δ1/2hn1n1/2loghn1).\bigl{|}\sigma^{2}-\widehat{\sigma}^{2}\bigr{|}\cdot\bigl{\|}h_{n}^{-1}W(\cdot/h_{n})\bigr{\|}_{I}=o_{\mathrm{P}}\bigl{(}\Delta^{-1/2}h_{n}^{-1}n^{-1/2}\log h_{n}^{-1}\bigr{)}.

Discussion

Condition (i) is a moment condition and is equivalent to finiteness of (6+)-th moment of the increments process Xt+ΔXtX_{t+\Delta}-X_{t} (see Lemma 8 for more details). And finally, Condition (iv) guarantees that the term |σ2σ^2|hn1W(/hn)I\bigl{|}\sigma^{2}-\widehat{\sigma}^{2}\bigr{|}\cdot\bigl{\|}h_{n}^{-1}W(\cdot/h_{n})\bigr{\|}_{I} is of smaller order as compared to the order of the leading term in ρ^n(x)ρ(x).\widehat{\rho}_{n}(x)-\rho(x).

Now we formulate the main theorem of this section, which shows the convergence of the proposed Gaussian approximation.

Theorem 1.

(Gaussian approximation)

Under our assumptions, for sufficiently large n, there exists a tight Gaussian random variable TnGT_{n}^{G} in (I)\ell^{\infty}(I) with zero mean and covariance function of the form W(x,y)s(x)s(y),\frac{W(x,y)}{s(x)s(y)}, where

W(x,y):=𝖨Δ[B1(x,)B1(y,)]𝖨Δ[B1(x,)]𝖨Δ[B1(y,)]+𝖨Δ[B2(x,)B2(y,)]𝖨Δ[B2(x,)]𝖨Δ[B2(y,)]+i{𝖨Δ[B1(y,)B2(x,)]𝖨Δ[B1(x,)B2(y,)]}+i{𝖨Δ[B1(x,)]𝖨Δ[B2(y,)]𝖨Δ[B1(y,)]𝖨Δ[B2(x,)]},W(x,y):=\mathsf{I}_{\Delta}[B_{1}(x,\cdot)B_{1}(y,\cdot)]-\mathsf{I}_{\Delta}[B_{1}(x,\cdot)]\mathsf{I}_{\Delta}[B_{1}(y,\cdot)]\\ +\mathsf{I}_{\Delta}[B_{2}(x,\cdot)B_{2}(y,\cdot)]-\mathsf{I}_{\Delta}[B_{2}(x,\cdot)]\mathsf{I}_{\Delta}[B_{2}(y,\cdot)]\\ +\mathrm{i}\bigl{\{}\mathsf{I}_{\Delta}[B_{1}(y,\cdot)B_{2}(x,\cdot)]-\mathsf{I}_{\Delta}[B_{1}(x,\cdot)B_{2}(y,\cdot)]\bigr{\}}\\ +\mathrm{i}\bigl{\{}\mathsf{I}_{\Delta}[B_{1}(x,\cdot)]\mathsf{I}_{\Delta}[B_{2}(y,\cdot)]-\mathsf{I}_{\Delta}[B_{1}(y,\cdot)]\mathsf{I}_{\Delta}[B_{2}(x,\cdot)]\bigr{\}},

the integral operator 𝖨Δ\mathsf{I}_{\Delta} is defined as 𝖨Δ[f]:=f(υ)PΔ(dυ),\mathsf{I}_{\Delta}[f]:=\int f(\upsilon)\,P_{\Delta}(d\upsilon), s(x)=s2(x)s(x)=\sqrt{s^{2}(x)} has the form (5.22) and

B1(x,υ):=K0,n(xυ)+υ2K2,n(xυ),B2(x,υ):=υK1,n(xυ)υ3K3,n(xυ).\begin{split}B_{1}(x,\upsilon)&:=K_{0,n}(x-\upsilon)+\upsilon^{2}K_{2,n}(x-\upsilon),\\ {B}_{2}(x,\upsilon)&:=\upsilon K_{1,n}(x-\upsilon)-\upsilon^{3}K_{3,n}(x-\upsilon).\end{split}

Moreover it holds

supz|P{nΔs()(ρ^n()ρ())Iz}P{TnGIz}|0\underset{z\in\mathbb{R}}{\sup}\left|\mathrm{P}\left\{\left\|\frac{\sqrt{n}\Delta}{s(\cdot)}(\widehat{\rho}_{n}(\cdot)-\rho(\cdot))\right\|_{I}\leq z\right\}-\mathrm{P}\left\{\left\|T_{n}^{G}\right\|_{I}\leq z\right\}\right|\to 0

as nn\to\infty and

(3.14) |TnITnGI|=oP(hn1/2loghn1),n.\bigl{|}\bigl{\|}T_{n}\bigr{\|}_{I}-\bigl{\|}T_{n}^{G}\bigr{\|}_{I}\bigr{|}=o_{\mathrm{P}}\left(h_{n}^{1/2}\log h_{n}^{-1}\right),\quad n\to\infty.

Building on Theorem 2, the following result formally establishes the asymptotic validity of the multiplier bootstrap confidence band 𝒞^1τMB(x)\widehat{\mathcal{C}}^{MB}_{1-\tau}(x).

Theorem 2.

(Validity of bootstrap confidence bands). Under Assumption 1 we have that

P{ρ(x)𝒞^1τMB(x),xI}1τ\mathrm{P}\bigl{\{}\rho(x)\in\widehat{\mathcal{C}}^{MB}_{1-\tau}(x),\quad\forall\,x\in I\bigr{\}}\to 1-\tau

as nn\to\infty. Moreover the supremum width of the confidence band of 𝒞^1τMB(x)\widehat{\mathcal{C}}^{MB}_{1-\tau}(x) is of order 𝒪p((nΔhn3)1/2logn)\mathcal{O}_{p}\bigl{(}(n\Delta h_{n}^{3})^{-1/2}\sqrt{\log n}\bigr{)}.

Discussion on choosing for Δ\Delta, nn and hnh_{n}

From the lemma 12 applies infxIs2(x)Δhn3\inf_{x\in I}s^{2}(x)\gtrsim\Delta h_{n}^{-3}, which leads to the first assumption 1 (iii), namely hn3Δh_{n}^{3}\gtrsim\Delta. According to the representation 3.1 applies

ρ^n(x)ρ(x)=(ρ^n(x)ρ~(x))Rn(x)+(ρ~(x)ρ(x))Iσn2(x)+Iρn(x).\widehat{\rho}_{n}(x)-\rho(x)=\underbrace{\bigl{(}\widehat{\rho}_{n}(x)-\widetilde{\rho}(x)\bigr{)}}_{R_{n}(x)}+\underbrace{\bigl{(}\widetilde{\rho}(x)-\rho(x)\bigr{)}}_{I_{\sigma^{2}_{n}}(x)+I_{\rho_{n}}(x)}.

Under the condition of the dominance of the convergence rate of the first term Rn(x)=𝒪(Δ1/2hn1n1/2loghn1)\|R_{n}(x)\|_{\mathbb{R}}=\mathcal{O}\left(\Delta^{-1/2}h_{n}^{-1}n^{-1/2}\log h_{n}^{-1}\right) follows assumption 1 (iv), namely |σ2σ^2|hn1W(/h)I=oP(Δ1/2hn1n1/2loghn1)\bigl{|}\sigma^{2}-\widehat{\sigma}^{2}\bigr{|}\cdot\bigl{\|}h_{n}^{-1}W(\cdot/h)\bigr{\|}_{I}=o_{\mathrm{P}}\bigl{(}\Delta^{-1/2}h_{n}^{-1}n^{-1/2}\log h_{n}^{-1}\bigr{)} and assumption 1 (iii), namely hnr+1Δ1/2n1/2(loghn1)10h_{n}^{r+1}\Delta^{1/2}n^{1/2}(\log h_{n}^{-1})^{-1}\to 0. If the two terms are supposed to be significant, the last condition is represented in the form hnr+1Δ1/2n1/2(loghn1)11h_{n}^{r+1}\Delta^{1/2}n^{1/2}(\log h_{n}^{-1})^{-1}\gtrsim 1, which leads to a relationship between nn and hnh_{n}. Let loghn1lognnε\log h_{n}^{-1}\lesssim\log n\lesssim n^{\varepsilon}, where ε0\varepsilon\to 0 then applies

hnrΔ1/2hn1n1/2loghn1hnrhn5/2n1/2loghn1hnr+5/2n1/2+εhnn12ε2r+5nhn2r+512ε.\begin{split}&h_{n}^{r}\lesssim\Delta^{-1/2}h_{n}^{-1}n^{-1/2}\log h_{n}^{-1}\\ &h_{n}^{r}\lesssim h_{n}^{-5/2}n^{-1/2}\log h_{n}^{-1}\\ &h_{n}^{r+5/2}\lesssim n^{-1/2+\varepsilon}\\ &h_{n}\lesssim n^{-\frac{1-2\varepsilon}{2r+5}}\\ &n\lesssim h_{n}^{-\frac{2r+5}{1-2\varepsilon}}.\end{split}

From the proof of the theorem 1 it follows that

nΔ(ρ^n(x)ρ(x))s(x)=Tn(x)+oP(hn1/2loghn1)\frac{\sqrt{n}\Delta(\widehat{\rho}_{n}(x)-\rho(x))}{s(x)}=T_{n}(x)+o_{\mathrm{P}}\left(h_{n}^{1/2}\log h_{n}^{-1}\right)

and

|𝖦nnVn|=𝒪P{(logn)1+1/qn1/21/qΔhn1+logn(nΔhn1)1/6}=𝒪P{logn(nΔhn1)1/6}\bigl{|}\bigl{\|}\mathsf{G}_{n}\bigr{\|}_{\mathcal{F}_{n}}-V_{n}\bigr{|}=\mathcal{O}_{P}\biggl{\{}\frac{(\log n)^{1+1/q}}{n^{1/2-1/q}\sqrt{\Delta h_{n}^{-1}}}+\frac{\log n}{(n\Delta h_{n}^{-1})^{1/6}}\biggr{\}}=\mathcal{O}_{P}\biggl{\{}\frac{\log n}{(n\Delta h_{n}^{-1})^{1/6}}\biggr{\}}

further follows

hn1/2loghn1logn(nΔhn1)1/6hn1/2loghn1(nΔhn1)1/6(logn)1.\begin{split}&h_{n}^{1/2}\log h_{n}^{-1}\gg\frac{\log n}{(n\Delta h_{n}^{-1})^{1/6}}\\ &h_{n}^{1/2}\log h_{n}^{-1}(n\Delta h_{n}^{-1})^{1/6}\left(\log n\right)^{-1}\to\infty.\end{split}

We also find the relationship between nn and hnh_{n} so that the error of the Gaussian approximation |𝖦nnVn|\bigl{|}\bigl{\|}\mathsf{G}_{n}\bigr{\|}_{\mathcal{F}_{n}}-V_{n}\bigr{|} is comparable to the approximation error Tn(x)\|T_{n}(x)\|_{\mathbb{R}}. Let loghn1lognnε\log h_{n}^{-1}\lesssim\log n\lesssim n^{\varepsilon}, where ε0\varepsilon\to 0, then applies

hn1/2loghn1logn(nΔhn1)1/6hn1/2loghn1logn(nhn2)1/6hn5/6loghn1n1/6lognhnn1/5.\begin{split}&h_{n}^{1/2}\log h_{n}^{-1}\gtrsim\frac{\log n}{(n\Delta h_{n}^{-1})^{1/6}}\\ &h_{n}^{1/2}\log h_{n}^{-1}\gtrsim\frac{\log n}{(nh_{n}^{2})^{1/6}}\\ &h_{n}^{5/6}\log h_{n}^{-1}\gtrsim n^{-1/6}\log n\\ &h_{n}\gtrsim n^{-1/5}.\end{split}

Furthermore, it should be noted that the bootstrap approximation TnMB(x)\|T_{n}^{MB}(x)\|_{\mathbb{R}} of a Gaussian process TnG(x)\|T_{n}^{G}(x)\|_{\mathbb{R}} according to the theorem 2 has the order

|𝖦nξnVnξ|=𝒪P{(logn)2+1/qn1/21/qΔhn1+(logn)7/4+1/q(nΔhn1)1/4}=𝒪P{(logn)7/4+1/q(nΔhn1)1/4}.\bigl{|}\bigl{\|}\mathsf{G}_{n}^{\xi}\bigr{\|}_{\mathcal{F}_{n}}-V_{n}^{\xi}\bigr{|}=\mathcal{O}_{P}\biggl{\{}\frac{(\log n)^{2+1/q}}{n^{1/2-1/q}\sqrt{\Delta h_{n}^{-1}}}+\frac{(\log n)^{7/4+1/q}}{(n\Delta h_{n}^{-1})^{1/4}}\biggr{\}}=\mathcal{O}_{P}\biggl{\{}\frac{(\log n)^{7/4+1/q}}{(n\Delta h_{n}^{-1})^{1/4}}\biggr{\}}.

Therefore the rate of convergence of this approximation is faster than the one mentioned above in the theorem 1 order, namely applies

hn1/2loghn1logn(nΔhn1)1/6(logn)7/4+1/q(nΔhn1)1/4.h_{n}^{1/2}\log h_{n}^{-1}\gg\frac{\log n}{(n\Delta h_{n}^{-1})^{1/6}}\gg\frac{(\log n)^{7/4+1/q}}{(n\Delta h_{n}^{-1})^{1/4}}.

It is also important to note that according to the theorem 2, the the supremum width of the confidence band should also converge to 0:

(nΔhn3)1/2logn0.(n\Delta h_{n}^{3})^{-1/2}\sqrt{\log n}\longrightarrow 0.

Since hn3/2(logn)3(loghn1)3h2lognh_{n}^{-3/2}\left(\log n\right)^{3}\left(\log h_{n}^{-1}\right)^{-3}\ll h^{-2}\sqrt{\log n} then applies

hn1/2(nΔhn1)1/6logn(loghn1)10,hn1/2loghn1(nΔhn1)1/6(logn)1\begin{split}&h_{n}^{-1/2}(n\Delta h_{n}^{-1})^{-1/6}\log n\left(\log h_{n}^{-1}\right)^{-1}\to 0,\\ &h_{n}^{1/2}\log h_{n}^{-1}(n\Delta h_{n}^{-1})^{1/6}\left(\log n\right)^{-1}\to\infty\end{split}

if assumption (nΔhn3)1/2logn0(n\Delta h_{n}^{3})^{-1/2}\sqrt{\log n}\to 0 satisfies. Since the expression (nΔhn3)1/2logn0(n\Delta h_{n}^{3})^{-1/2}\sqrt{\log n}\to 0 has a slower order of convergence than the expression hn1/2(nΔhn1)1/6logn(loghn1)10h_{n}^{-1/2}(n\Delta h_{n}^{-1})^{-1/6}\log n\left(\log h_{n}^{-1}\right)^{-1}\to 0, then the expression hnn1/5h_{n}\gtrsim n^{-1/5} should be specified:

(nΔhn3)1/2logn0(nhn6)1/2logn0hn3n1/2(1ε)hnn1/6(1ε)nhn6/(1ε),\begin{split}&(n\Delta h_{n}^{3})^{-1/2}\sqrt{\log n}\to 0\\ &(nh_{n}^{6})^{-1/2}\sqrt{\log n}\to 0\\ &h_{n}^{-3}\lesssim n^{1/2\left(1-\varepsilon\right)}\\ &h_{n}\gtrsim n^{-1/6\left(1-\varepsilon\right)}\\ &n\gtrsim h_{n}^{-6/\left(1-\varepsilon\right)},\end{split}

where lognnε,ε0.\log n\ll n^{\varepsilon},\varepsilon\to 0. The supremum width of the confidence band is minimal if nhn2r+512εn\approx h_{n}^{-\frac{2r+5}{1-2\varepsilon}}, da (nΔhn3)1/2lognminhn6logn/nmin(n\Delta h_{n}^{3})^{-1/2}\sqrt{\log n}\to\min\Longleftrightarrow h_{n}^{-6}\log n/n\to\min applies. Then the following applies to the relationship between nn and hnh_{n}:

hn6/(1ε)nhn2r+512εn1/6(1ε)hnn12ε2r+5.\begin{split}&h_{n}^{-6/\left(1-\varepsilon\right)}\leq n\leq h_{n}^{-\frac{2r+5}{1-2\varepsilon}}\\ &n^{-1/6\left(1-\varepsilon\right)}\leq h_{n}\leq n^{-\frac{1-2\varepsilon}{2r+5}}.\end{split}

4. Numerical results

Consider the integral (2.1) with the kernel 𝒦α\mathcal{K}_{\alpha} from the class (2.2) for some α(0,1)\alpha\in(0,1), and the Lévy process (Lt)(L_{t}) defined by

(4.1) Lt=γt+σWt+CPPt(1)𝕀{t0}+CPPt(2)𝕀{t<0},CPPt(k):=j=1Nt(k)Yj(k),k=1,2,\displaystyle\begin{split}&L_{t}=\gamma t+\sigma W_{t}+CPP_{t}^{(1)}\cdot\mathbb{I}\left\{t\geq 0\right\}+CPP_{t}^{(2)}\cdot\mathbb{I}\left\{t<0\right\},\\ &CPP_{t}^{\left(k\right)}:=\sum_{j=1}^{N_{t}^{\left(k\right)}}Y_{j}^{\left(k\right)},\qquad k=1,2,\end{split}

where γ\gamma\in\mathbb{R} is a drift, σ0\sigma\geq 0, WtW_{t} is a Brownian motion, Nt(1)N_{t}^{(1)}, Nt(2)N_{t}^{(2)}, are two Poisson processes with intensity λ\lambda, Y1(1)Y_{1}^{(1)}, Y2(1)Y_{2}^{(1)},… and Y1(2)Y_{1}^{(2)}, Y2(2)Y_{2}^{(2)},… are i.i.d. r.v’s with an absolutely continuous distribution, and all YY^{\prime}s, Nt(1)N_{t}^{(1)}, Nt(2)N_{t}^{(2)}, WtW_{t} are jointly independent. For simulation study, we take γ=5,λ=1\gamma=5,\lambda=1 and σ=0,\sigma=0, and aim to estimate the corresponding Lévy density of (Lt)(L_{t}) under different choices of the parameter α,\alpha, namely α=0.5,\alpha=0.5, 0.8 and 0.9.

Simulation. Recall that the Lévy-driven moving average process ZtZ_{t} satisfying 2.1 is observed at nn discrete instants tj=jΔ,j=1,,n,t_{j}=j\Delta,\,j=1,...,n, with regular sampling interval and our estimation procedure is based on the random variables (ΔZ)j:=ZjΔZ(j1)Δ,j=1,,n,\,(\Delta Z)_{j}:=Z_{j\Delta}-Z_{(j-1)\Delta},\,j=1,\ldots,n, which are independent, identically distributed, with common characteristic function Φ\Phi. We assume that, as nn tends to infinity, Δ=Δn\Delta=\Delta_{n} tends to 0 and nΔn\Delta tends to infinity.

For k=1,2,k=1,2, denote the jump times of Lt(k)L_{t}^{\left(k\right)} by s1(k)s_{1}^{\left(k\right)}, s2(k)s_{2}^{\left(k\right)},…., corresponding to the jump sizes Y1(k)Y_{1}^{\left(k\right)}, Y2(k)Y_{2}^{\left(k\right)},…. Y1(k)Y_{1}^{\left(k\right)} and Y2(k)Y_{2}^{\left(k\right)} are independent r.v’s with standard exponential distribution with parameter λ\lambda. Note that

(4.2) Zt={2γ1+α+jJ(1)(1α|ts1(j)|)1/αY1(j),ift1α2γ1+α+jJ(2)(1α|ts1(j)|)1/αY1(j)+jJ(3)(1α|t+s2(j)|)1/αY2(j),ift<1α,\displaystyle\quad\quad Z_{t}=\begin{cases}\frac{2\gamma}{1+\alpha}+\underset{j\in J^{\left(1\right)}}{\sum}\left(1-\alpha|t-s_{1}^{\left(j\right)}|\right)^{1/\alpha}Y_{1}^{\left(j\right)},&\text{if}\;\;t\geq\frac{1}{\alpha}\\ \frac{2\gamma}{1+\alpha}+\underset{j\in J^{\left(2\right)}}{\sum}\left(1-\alpha|t-s_{1}^{\left(j\right)}|\right)^{1/\alpha}Y_{1}^{\left(j\right)}\\ \hskip 71.13188pt+\underset{j\in J^{(3)}}{\sum}\left(1-\alpha|t+s_{2}^{\left(j\right)}|\right)^{1/\alpha}Y_{2}^{\left(j\right)},&\text{if}\;\;t<\frac{1}{\alpha},\end{cases}

where

J(1):={j:t1αs1(j)t+1α},J(2):={j:0s1(j)t+1α},J(3):={j:0s2(j)1αt}.\displaystyle\begin{split}J^{\left(1\right)}&:=\left\{j:t-\frac{1}{\alpha}\leq s_{1}^{\left(j\right)}\leq t+\frac{1}{\alpha}\right\},\\ J^{\left(2\right)}&:=\left\{j:0\leq s_{1}^{\left(j\right)}\leq t+\frac{1}{\alpha}\right\},\\ J^{\left(3\right)}&:=\left\{j:0\leq s_{2}^{\left(j\right)}\leq\frac{1}{\alpha}-t\right\}.\end{split}

Finally, the limiting Lévy process is defined by Xj:=(ZjΔZ(j1)Δ)/Δ,j=1,,n.X_{j}:=(Z_{j\Delta}-Z_{(j-1)\Delta})/\Delta,\,j=1,...,n.

Typical trajectory of the of the limiting Lévy process Xt:=(ΔZ)t/ΔX_{t}:=(\Delta Z)_{t}/\Delta is presented in Figure 4.1.

Refer to caption
Figure 4.1. Typical trajectory of the limiting Lévy process Xt:=(ΔZ)t/ΔX_{t}:=(\Delta Z)_{t}/\Delta with the value of the parameter α=0.5\alpha=0.5

Estimation. Following the ideas from Section 2, we estimate the transformed Lévy measure by Equation (2.10) under different choices of α\alpha. To show the convergence properties of the considered estimates, we provide simulations with different values of n. Figure 4.2 shows an estimate of the real part of the characteristic exponent ψ\psi of the Lévy process (Lt)(L_{t}) through discrete observations of the limit Lévy process (Xt).(X_{t}).

Refer to caption
Figure 4.2. Real part of the characteristic exponent ψ(u)\psi(u) (red) and the real part of 10 realizations of the empirical characteristic exponent ψn(u)\psi_{n}(u) (gray) with the value of the parameter α=0.8\alpha=0.8 (left) and α=0.9\alpha=0.9 (right)

It is important to note that a good estimate of the characteristic exponent ψ(u)\psi(u) is obtained when u(0,2)u\in(0,2). Figure 4.3 shows the estimator of the transformed Lévy density ρ\rho through discrete observations of the Limit-Lévy process (Xt)(X_{t}).

Refer to caption
Figure 4.3. Transformed Lévy-density ρ\rho (red) and 5 realizations of the estimator of the transformed Lévy-density ρn\rho_{n} (gray) with the value of the parameter α=0.5\alpha=0.5

The estimation of the Lévy densities based on 25 simulation runs are presented in Figures 4.4.

Refer to caption
Figure 4.4. Estimates of the Lévy densities (dashed lines) for different values of nn and α\alpha

On the one hand, a priori choice for the parameter hnh_{n} can be found using the interval for uu where the characteristic function of the process ΔX\Delta X can be approximated by empirical characteristic function. On the other hand, a priori choice of the parameter hnh_{n} has to consider the assumption 1 (iii). Note that the parameter hnh_{n} is chosen by numerical optimization. Namely, for each choice of α\alpha, we first estimate the Lévy densities for each hnh_{n} from an equidistant grid (from 0.050.05 to 0.50.5 with step 0.050.05), and then analyze the quality of estimation in terms of the minimal mean square error. Because the best results are obtained for hnh_{n} from 0.1 to 0.2, we reproduce the estimation procedure for hnh_{n} from another grid (from 0.080.08 to 0.250.25 with step 0.010.01). After several iterations, we stop the procedure. It is important to note that in the real-life examples, the aforementioned strategy for choosing hnh_{n} should be changed, because the comparison with respect to the mean square error is not possible. One should rather use adaptive methods. The simulation results illustrated in the figure 4.4 show that the convergence rates significantly depend on the parameter α\alpha. More precisely, it turns out that the quality of estimation increases with growing α\alpha, and the best rates correspond to the case when α\alpha is close to 1. This can be explained by the fact that observations become less dependent as α\alpha increases. Let us remark that in Figure 4.4 we show the real parts of the estimate ν^n(x)\widehat{\nu}_{n}(x). The imaginary part of the considered estimate is quite small (of order 10810^{-8}) and is shown in the Figure 4.5.

Refer to caption
Figure 4.5. Imaginary part of the estimate of the Lévy densities for α=0.5\alpha=0.5

Finally, following the ideas from Section 2, we construct the confidence interval for the transformed Lévy density ρ\rho via the Gaussian multiplier bootstrap method with parameters α=0.8\alpha=0.8, n=105n=10^{5} and the confidence level 0.90.9. The dashed line in Figure 4.6 represents the estimator ρ^n\widehat{\rho}_{n} of the transformed Lévy density ρ\rho (red line).

Refer to caption
Figure 4.6. Confidence interval for the transformed Lévy density ρ\rho via Gaussian multiplier bootstrap method with the parameter α=0.8\alpha=0.8, n=105n=10^{5} and the confidence level 0.90.9. (The dashed line is the estimator ρ^n\widehat{\rho}_{n} of the Lévy density, the red line is the transformed Lévy density ρ\rho)

5. Proofs

For a symmetric kernel 𝒦α\mathcal{K}_{\alpha} of the form (2.2) we first show 2.3.

Lemma 3.

We have

ΨΔ(u)=ψ(u(𝒦α(x+Δ)𝒦α(x)))𝑑x=αψ(Δu)+SΔ(u),\Psi_{\Delta}(u)=\int_{-\infty}^{\infty}\psi\left(u\left(\mathcal{K_{\alpha}}(x+\Delta)-\mathcal{K_{\alpha}}(x)\right)\right)\,dx=\mathcal{L}_{\alpha}\psi(\Delta u)+S_{\Delta}(u),

where the operator α\mathcal{L}_{\alpha} is defined as

αf(x):=21αxα1α0xf(z)z2α11α𝑑z\displaystyle\mathcal{L}_{\alpha}f(x):=\frac{2}{1-\alpha}\,x^{-\frac{\alpha}{1-\alpha}}\int_{0}^{x}f\left(z\right)z^{\frac{2\alpha-1}{1-\alpha}}\,dz

for any locally bounded function ff and

ψ(u)=iγu12σ2u2+(eiux1iux1{|x|1})ν(dx).\displaystyle\psi(u)=\mathrm{i}\gamma u-\frac{1}{2}\sigma^{2}u^{2}+\int_{\mathbb{R}}\left(e^{\mathrm{i}ux}-1-\mathrm{i}ux\mathrm{1}_{\{\left|x\right|\leq 1\}}\right)\nu(dx).

Furthermore, SΔ(u)S_{\Delta}(u) has the form

(5.1) SΔ(u)=S1(u)+S2(u)=1/α1/α[ψ(u(𝒦α(x+Δ)𝒦α(x)))ψ(uΔ𝒦α(x))]𝑑x+1/αΔ1/αψ(u𝒦α(x+Δ))𝑑x.\begin{split}S_{\Delta}(u)&=S_{1}(u)+S_{2}(u)\\ &=\int_{-1/\alpha}^{1/\alpha}\left[\psi\bigl{(}u(\mathcal{K_{\alpha}}(x+\Delta)-\mathcal{K_{\alpha}}(x))\bigr{)}-\psi(u\Delta\mathcal{K_{\alpha}}^{\prime}(x))\right]\,dx\\ &+\int_{-1/\alpha-\Delta}^{-1/\alpha}\psi(u\mathcal{K_{\alpha}}(x+\Delta))\,dx.\end{split}
Proof.

In the previously described scenario, the characteristic function ΦΔ\Phi_{\Delta} of the increment process Zt+ΔZtZ_{t+\Delta}-Z_{t} has the form

ΦΔ(u):=𝖤[exp(iu(Zt+ΔZt))]=exp(ΨΔ(u)),\Phi_{\Delta}(u):=\mathsf{E}\bigl{[}\exp\bigl{(}\mathrm{i}u(Z_{t+\Delta}-Z_{t})\bigr{)}\bigr{]}=\exp\bigl{(}\Psi_{\Delta}(u)\bigr{)},

where

ΨΔ(u):=ψ[u(𝒦α(x+Δ)𝒦α(x))]𝑑x\Psi_{\Delta}(u):=\int_{-\infty}^{\infty}\psi\bigl{[}u\bigl{(}\mathcal{K}_{\alpha}(x+\Delta)-\mathcal{K}_{\alpha}(x)\bigr{)}\bigr{]}\,dx

The last expression can be obtained using Lemma 5.5 in Sato [14] and taking into account the fact that

u(Zt+ΔZt)=u(𝒦α(x+Δ)𝒦α(x))𝑑Ls.u(Z_{t+\Delta}-Z_{t})=\int_{\mathbb{R}}u\bigl{(}\mathcal{K}_{\alpha}(x+\Delta)-\mathcal{K}_{\alpha}(x)\bigr{)}dL_{s}.

We also calculate the first two derivatives of 𝒦α\mathcal{K}_{\alpha},

𝒦α(x)=(1αx)1αα=𝒦α1α(x),x>0𝒦α′′(x)=(1α)(1αx)12αα=(1α)𝒦α12α(x),x>0.\begin{split}\mathcal{K}^{\prime}_{\alpha}(x)=&-\left(1-\alpha x\right)^{\frac{1-\alpha}{\alpha}}=-\mathcal{K}_{\alpha}^{1-\alpha}(x),\quad\forall\,x>0\\ \mathcal{K}_{\alpha}^{\prime\prime}(x)=&(1-\alpha)(1-\alpha x)^{\frac{1-2\alpha}{\alpha}}=(1-\alpha)\mathcal{K}_{\alpha}^{1-2\alpha}(x),\quad\forall\,x>0.\end{split}

Then the characteristic function ΦΔ\Phi_{\Delta} of the increment process Zt+ΔZtZ_{t+\Delta}-Z_{t} has the form:

(5.2) ΦΔ(u)=exp[ψ(u(𝒦α(x+Δ)𝒦α(x)))𝑑x]=exp[201/αψ(uΔ𝒦α(x))𝑑x+SΔ(u)]=exp[201/αψ(uΔ𝒦α(x))𝒦α′′(x)𝑑𝒦α(x)+SΔ(u)]=exp[21α01ψ(uΔy)y2α11α𝑑y+SΔ(u)]=exp[21α(uΔ)α1α0uΔψ(z)z2α11αdz+SΔ(u)]=exp[αψ(uΔ)+SΔ(u)],\begin{split}\Phi_{\Delta}(u)&=\exp\biggl{[}\int_{-\infty}^{\infty}\psi\bigl{(}u\bigl{(}\mathcal{K_{\alpha}}(x+\Delta)-\mathcal{K_{\alpha}}(x)\bigr{)}\bigr{)}\,dx\biggr{]}\\ &=\exp\biggl{[}2\int_{0}^{1/\alpha}\psi\bigl{(}u\Delta\mathcal{K}^{\prime}_{\alpha}(x)\bigr{)}\,dx+S_{\Delta}(u)\biggr{]}\\ &=\exp\biggl{[}2\int_{0}^{1/\alpha}\frac{\psi\bigl{(}u\Delta\mathcal{K}^{\prime}_{\alpha}(x)\bigr{)}}{\mathcal{K}_{\alpha}^{\prime\prime}(x)}\,d\mathcal{K}_{\alpha}^{\prime}(x)+S_{\Delta}(u)\biggr{]}\\ &=\exp\biggl{[}\frac{2}{1-\alpha}\int_{0}^{1}\psi(u\Delta y)y^{\frac{2\alpha-1}{1-\alpha}}\,dy+S_{\Delta}(u)\biggr{]}\\ &=\exp\biggr{[}\frac{2}{1-\alpha}\,(u\Delta)^{-\frac{\alpha}{1-\alpha}}\int_{0}^{u\Delta}\psi(z)z^{\frac{2\alpha-1}{1-\alpha}}\,dz+S_{\Delta}(u)\biggr{]}\\ &=\exp\bigl{[}\mathcal{L}_{\alpha}\psi(u\Delta)+S_{\Delta}(u)\bigr{]},\end{split}

where

(5.3) SΔ(u)=S1(u)+S2(u)=1/α1/α[ψ(u(𝒦α(x+Δ)𝒦α(x)))ψ(uΔ𝒦α(x))]𝑑x+1/αΔ1/αψ(u𝒦α(x+Δ))𝑑x.\begin{split}S_{\Delta}(u)&=S_{1}(u)+S_{2}(u)\\ &=\int_{-1/\alpha}^{1/\alpha}\left[\psi\bigl{(}u(\mathcal{K_{\alpha}}(x+\Delta)-\mathcal{K_{\alpha}}(x))\bigr{)}-\psi(u\Delta\mathcal{K_{\alpha}}^{\prime}(x))\right]\,dx\\ &+\int_{-1/\alpha-\Delta}^{-1/\alpha}\psi(u\mathcal{K_{\alpha}}(x+\Delta))\,dx.\end{split}

Note that the distribution of Zt+ΔZtZ_{t+\Delta}-Z_{t} is infinitely divisible. Next, we prove (2.6).

Lemma 4.

Let

|x|pν(x)𝑑x<\int|x|^{p}\nu(x)\,dx<\infty

for some p.p\in\mathbb{N}. Then applies

(5.4) limΔ0Δ(p+α)SΔ(p)(u/Δ)=0,\lim_{\Delta\to 0}\Delta^{-(p+\alpha)}S_{\Delta}^{(p)}(u/\Delta)=0,

where SΔCp()S_{\Delta}\in C^{p}(\mathbb{R}) is defined by 5.3.

Proof.

We have

S1(p)(u)=1/α1/α(𝒦α(x+Δ)𝒦α(x))pψ(p)(u(𝒦α(x+Δ)𝒦α(x)))𝑑x1/α1/α(Δ𝒦α(x))pψ(p)(uΔ𝒦α(x))𝑑x=1/α1/α[(𝒦α(x+Δ)𝒦α(x))p(Δ𝒦α(x))p]×ψ(p)(u(𝒦α(x+Δ)𝒦α(x)))dx+1/α1/α(Δ𝒦α(x))p[ψ(p)(u(𝒦α(x+Δ)𝒦α(x)))ψ(p)(uΔ𝒦α(x))]𝑑x:=I1+I2.\begin{split}S_{1}^{(p)}(u)&=\int_{-1/\alpha}^{1/\alpha}\bigl{(}\mathcal{K_{\alpha}}(x+\Delta)-\mathcal{K_{\alpha}}(x)\bigr{)}^{p}\psi^{(p)}\bigl{(}u(\mathcal{K_{\alpha}}(x+\Delta)-\mathcal{K_{\alpha}}(x))\bigr{)}dx\\ &\hskip 71.13188pt-\int_{-1/\alpha}^{1/\alpha}\bigl{(}\Delta\mathcal{K_{\alpha}}^{\prime}(x)\bigr{)}^{p}\psi^{(p)}\bigl{(}u\Delta\mathcal{K_{\alpha}}^{\prime}(x)\bigr{)}dx\\ &=\int_{-1/\alpha}^{1/\alpha}\bigl{[}\bigl{(}\mathcal{K_{\alpha}}(x+\Delta)-\mathcal{K_{\alpha}}(x)\bigr{)}^{p}-\bigl{(}\Delta\mathcal{K_{\alpha}}^{\prime}(x)\bigr{)}^{p}\bigr{]}\\ &\hskip 71.13188pt\times\psi^{(p)}\bigl{(}u\bigl{(}\mathcal{K_{\alpha}}(x+\Delta)-\mathcal{K_{\alpha}}(x)\bigr{)}\bigr{)}dx\\ &+\int_{-1/\alpha}^{1/\alpha}\bigl{(}\Delta\mathcal{K}_{\alpha}^{\prime}(x)\bigr{)}^{p}\bigl{[}\psi^{(p)}(u(\mathcal{K}_{\alpha}(x+\Delta)-\mathcal{K}_{\alpha}(x)))-\psi^{(p)}(u\Delta\mathcal{K}_{\alpha}^{\prime}(x))\bigr{]}dx\\ &:=I_{1}+I_{2}.\end{split}

Using the fact that 𝒦α<,\bigl{\|}\mathcal{K_{\alpha}}^{\prime}\bigr{\|}_{\infty}<\infty, we derive the integral form of the remainder term in the Taylor’s formula:

(5.5) |(𝒦α(x+Δ)𝒦α(x))p(Δ𝒦α(x))p|BαΔpxx+Δ(x+Δt)|𝒦α′′(t)|dt=BαΔp0Δ(Δt)|𝒦α′′(t+x)|dt.\begin{split}\bigl{|}(\mathcal{K_{\alpha}}(x+\Delta)-\mathcal{K_{\alpha}}(x))^{p}-(\Delta\mathcal{K_{\alpha}}^{\prime}(x))^{p}\bigr{|}&\leq B_{\alpha}\Delta^{p}\int_{x}^{x+\Delta}(x+\Delta-t)\bigl{|}\mathcal{K_{\alpha}}^{\prime\prime}(t)\bigr{|}dt\\ &=B_{\alpha}\Delta^{p}\int_{0}^{\Delta}(\Delta-t)\bigl{|}\mathcal{K_{\alpha}}^{\prime\prime}(t+x)\bigr{|}dt.\end{split}

If |𝒦α′′(t)|dt<,\int_{\mathbb{R}}\bigl{|}\mathcal{K_{\alpha}}^{\prime\prime}(t)\bigr{|}\,dt<\infty, then we have

(5.6) |I1|Δp+1,|I2|Δ2p,Δ0.\left|I_{1}\right|\lesssim\Delta^{p+1},\quad\left|I_{2}\right|\lesssim\Delta^{2p},\quad\Delta\to 0.

Similarly

S2(p)(u)=1/α1/α+Δ(𝒦α(x))pψ(p)(u(𝒦α(x)))𝑑x=1/α1/α+Δ(𝒦α(x))p𝒦α(x)ψ(p)(u(𝒦α(x)))𝑑𝒦α(x)=0(αΔ)1/αyp+α1ψ(p)(uy)𝑑y=upα0u(αΔ)1/αzp+α1ψ(p)(z)𝑑z.\begin{split}S_{2}^{(p)}(u)&=\int_{-1/\alpha}^{-1/\alpha+\Delta}(\mathcal{K}_{\alpha}(x))^{p}\psi^{(p)}\bigl{(}u(\mathcal{K}_{\alpha}(x))\bigr{)}dx\\ &=\int_{-1/\alpha}^{-1/\alpha+\Delta}\frac{\left(\mathcal{K}_{\alpha}(x)\right)^{p}}{\mathcal{K}_{\alpha}^{\prime}(x)}\psi^{(p)}\bigl{(}u(\mathcal{K}_{\alpha}(x))\bigr{)}d\mathcal{K}_{\alpha}(x)\\ &=\int_{0}^{(\alpha\Delta)^{1/\alpha}}y^{p+\alpha-1}\psi^{(p)}(uy)\,dy\\ &=u^{-p-\alpha}\int_{0}^{u(\alpha\Delta)^{1/\alpha}}z^{p+\alpha-1}\psi^{(p)}(z)\,dz.\end{split}

Further

ψ(p)(z)=ipxpeiuzν(x)𝑑x|x|pν(x)𝑑x\psi^{(p)}(z)=\mathrm{i}^{p}\int_{\mathbb{R}}x^{p}e^{\mathrm{i}uz}\nu(x)\,dx\lesssim\int|x|^{p}\nu(x)\,dx

and hence

(5.7) S2(p)(u/Δ)=(u/Δ)pα0u(αΔ)1/αΔ1zp+α1ψ(p)(z)𝑑z(u/Δ)pα0u(αΔ)1/αΔ1zp+α1(|x|pν(x)𝑑x)𝑑zΔ(p+α)/α.\begin{split}S_{2}^{(p)}(u/\Delta)&=(u/\Delta)^{-p-\alpha}\int_{0}^{u(\alpha\Delta)^{1/\alpha}\Delta^{-1}}z^{p+\alpha-1}\psi^{(p)}(z)\,dz\\ &\lesssim(u/\Delta)^{-p-\alpha}\int_{0}^{u(\alpha\Delta)^{1/\alpha}\Delta^{-1}}z^{p+\alpha-1}\left(\int|x|^{p}\nu(x)\,dx\right)dz\\ &\lesssim\Delta^{(p+\alpha)/\alpha}.\end{split}

Combining 5.6 and 5.7, we get

SΔ(p)(u/Δ)Δp+1.S_{\Delta}^{(p)}(u/\Delta)\lesssim\Delta^{p+1}.

Since 0<α<10<\alpha<1, it follows that

limΔ0Δ(p+α)SΔ(p)(u/Δ)=0.\lim_{\Delta\to 0}\Delta^{-(p+\alpha)}S_{\Delta}^{(p)}(u/\Delta)=0.

Next, we formulate and prove some auxiliary lemmas that we need to prove the main results. In the sequel we assume that hn,Δ0h_{n},\Delta\to 0 as nn\to\infty and \lesssim stands for inequality up to a constant not depending on hn,Δh_{n},\Delta and n.n.

Lemma 5.

We have for any hn>0h_{n}>0 with hn3Δ,h_{n}^{3}\gtrsim\Delta,

inf|u|hn1|ΦΔX(u)|1.\displaystyle\inf_{|u|\leq h_{n}^{-1}}\bigl{|}\Phi_{\Delta X}(u)\bigr{|}\gtrsim 1.
Proof.

Recall that

ΦΔX(u)=exp[2Δ1αuα1α0uψ(z)z2α11α𝑑z].\Phi_{\Delta X}(u)=\exp\left[\frac{2\Delta}{1-\alpha}u^{-\frac{\alpha}{1-\alpha}}\int_{0}^{u}\psi(z)z^{\frac{2\alpha-1}{1-\alpha}}\,dz\right].

By using the Taylor expansion we obtain for any u,x,u,\ x\in\mathbb{R},

|eiux1iux𝕀|x|1||x2u22|,\displaystyle\bigl{|}e^{\mathrm{i}ux}-1-\mathrm{i}ux\mathbb{I}_{|x|\leq 1}\bigr{|}\leq\left|\frac{x^{2}u^{2}}{2}\right|,

so that

|ψ(u)|σ2u22+|γu|+u22x2ν(x)𝑑xhn2.|\psi(u)|\leq\frac{\sigma^{2}u^{2}}{2}+|\gamma u|+\frac{u^{2}}{2}\int_{\mathbb{R}}x^{2}\,\nu(x)\,dx\lesssim h_{n}^{-2}.

Then the infimum of ΦΔX(u)\Phi_{\Delta X}(u) can under the condition hn3Δh_{n}^{3}\gtrsim\Delta be estimated by

inf|u|hn1|ΦΔX(u)|exp(Δsup|u|hn1|21αuα1α0uψ(z)z2α11α𝑑z|)exp(Δsup|u|hn1|σ2u22+γu|)eΔhn2ehn1.\begin{split}\inf_{|u|\leq h_{n}^{-1}}\bigl{|}\Phi_{\Delta X}(u)\bigr{|}&\geq\exp\biggl{(}-\Delta\sup_{|u|\leq h_{n}^{-1}}\biggl{|}\frac{2}{1-\alpha}u^{-\frac{\alpha}{1-\alpha}}\int_{0}^{u}\psi(z)z^{\frac{2\alpha-1}{1-\alpha}}\,dz\biggr{|}\biggr{)}\\ &\geq\exp\biggl{(}-\Delta\sup_{|u|\leq h_{n}^{-1}}\biggl{|}\frac{\sigma^{2}u^{2}}{2}+\gamma u\biggr{|}\biggr{)}\\ &\gtrsim e^{-\Delta h_{n}^{-2}}\gtrsim e^{-h_{n}}\gtrsim 1.\end{split}

This completes the proof. ∎

Lemma 6.

Define ρ(x)=x2ν(x)\rho(x)=x^{2}\nu(x), then ρ(hn1W(/hn))ρhnr\left\|\rho\ast\left(h_{n}^{-1}W\left(\cdot/h_{n}\right)\right)-\rho\right\|_{\mathbb{R}}\lesssim h_{n}^{r}, where \ast denotes the convolution.

Proof.

Using the change of variables, we may rewrite the term as

ρ(hn1W(/hn))ρ(x)={ρ(xyhn)ρ(x)}W(y)dy.\displaystyle\rho\left(h_{n}^{-1}W\left(\cdot/h_{n}\right)\right)-\rho(x)=\int_{\mathbb{R}}\left\{\rho(x-yh_{n})-\rho(x)\right\}W(y)\,dy.

By the Tailor’s expansion we obtain for any x,y,x,y\in\mathbb{R},

ρ(xyhn)ρ(x)=i[=1]p1ρ(l)(x)l!(yhn)l+ρ(p)(xθyhn)p!(yhn)p,\displaystyle\rho(x-yh_{n})-\rho(x)=\stackrel{{\scriptstyle[}}{{i}}=1]{p-1}{\sum}\frac{\rho^{(l)}(x)}{l!}(-yh_{n})^{l}+\frac{\rho^{(p)}(x-\theta yh_{n})}{p!}(-yh_{n})^{p},

for some θ(0,1\theta\in(0,1). Since ρ(p)(rp)\rho^{(p)}\left(r-p\right) α\alpha-Hölder continuous, we can assert that Hsupx,y,xy|ρ(p)(x)ρ(p)(y)||xy|rp<.H\coloneqq\underset{x,y\in\mathbb{R},x\neq y}{\sup}\frac{\left|\rho^{(p)}(x)-\rho^{(p)}(y)\right|}{|x-y|^{r-p}}<\infty.

Furthermore, since ylW(y)𝑑y=0,forl=1,,p,\int_{\mathbb{R}}y^{l}W(y)\,dy=0,\ for\ l=1,\ldots,p, we conclude that for any xR,x\in R,

|{ρ(xyhn)ρ(x)}W(y)𝑑y|=|[ρ(xyhn)ρ(x)i[=1]pρl(x)l!(yhn)l]W(y)dy|=|[ρ(p)(xθyhn)ρ(p)(x)p!(yhn)p]W(y)𝑑y|=|[ρ(p)(xθyhn)ρ(p)(x)p!(θyhn)rp(yhn)rθrp]W(y)𝑑y|Hhnrp!|y|r|W(y)|𝑑y.\begin{split}\biggl{|}\int_{\mathbb{R}}\bigl{\{}\rho(x-yh_{n})-\rho(x)\bigr{\}}W(y)dy\biggr{|}&=\biggl{|}\int_{\mathbb{R}}\bigl{[}\rho(x-yh_{n})-\rho(x)-\stackrel{{\scriptstyle[}}{{i}}=1]{p}{\sum}\frac{\rho^{l}(x)}{l!}(-yh_{n})^{l}\bigr{]}W(y)\,dy\biggr{|}\\ &=\biggl{|}\int_{\mathbb{R}}\bigl{[}\frac{\rho^{(p)}(x-\theta yh_{n})-\rho^{(p)}(x)}{p!}(-yh_{n})^{p}\bigr{]}W(y)\,dy\biggr{|}\\ &=\biggl{|}\int_{\mathbb{R}}\bigl{[}\frac{\rho^{(p)}(x-\theta yh_{n})-\rho^{(p)}(x)}{p!(-\theta yh_{n})^{r-p}}(-yh_{n})^{r}\theta^{r-p}\bigr{]}W(y)\,dy\biggr{|}\\ &\leq\frac{Hh_{n}^{r}}{p!}\int_{\mathbb{R}}|y|^{r}|W(y)|\,dy.\end{split}

This completes the proof. ∎

Lemma 7.

Suppose that |x|pν(x)𝑑x<\int_{\mathbb{R}}|x|^{p}\nu(x)\,dx<\infty for some p1p\geq 1 and let

(5.8) Ψ(u):=21α01ψ(uy)y2α11α𝑑y,\Psi(u):=\frac{2}{1-\alpha}\int_{0}^{1}\psi(uy)y^{\frac{2\alpha-1}{1-\alpha}}\,dy,

then we have 333The supremum is found on the interval I1I_{1} so that φW(uhn)\varphi_{W}(uh_{n}) supported in [1,1]\left[-1,1\right]

  1. (i)

    ΨIh1hn,\ \bigl{\|}\Psi^{\prime}\bigr{\|}_{I_{h}}\lesssim\frac{1}{h_{n}},

  2. (ii)

    Ψ(k)Ih1,k2.\ \bigl{\|}\Psi^{(k)}\bigr{\|}_{I_{h}}\lesssim 1,\quad k\geq 2.

Proof.

Under the assumption we have

Ψ(u)=21α01yψ(uy)y2α11α𝑑y=21α01(σ2uy2+iy(γ+x(eiuyx𝕀{|x|1})ν(dx)))y2α11α𝑑y,Ψ′′(u)=21α01y2ψ′′(uy)y2α11α𝑑y=01(σ2y2y2x2eiuyxν(dx))yd2α11αy,Ψ(k)(u)=21α01ykψ(k)(uy)y2α11α𝑑y=01yk[xkeiuyxν(dx)]y2α11α𝑑y,k>2.\begin{split}&\Psi^{\prime}(u)=\frac{2}{1-\alpha}\int_{0}^{1}y\psi^{\prime}(uy)y^{\frac{2\alpha-1}{1-\alpha}}\,dy\\ &\hskip 24.75375pt=\frac{2}{1-\alpha}\int_{0}^{1}\biggl{(}-\sigma^{2}uy^{2}+\mathrm{i}y\bigl{(}\gamma+\int_{\mathbb{R}}x(e^{\mathrm{i}uyx}-\mathbb{I}_{\{|x|\leq 1\}})\nu(dx)\bigr{)}\biggr{)}y^{\frac{2\alpha-1}{1-\alpha}}\,dy,\\ &\Psi^{\prime\prime}(u)=\frac{2}{1-\alpha}\int_{0}^{1}y^{2}\psi^{\prime\prime}(uy)y^{\frac{2\alpha-1}{1-\alpha}}\,dy=\int_{0}^{1}\biggl{(}-\sigma^{2}y^{2}-y^{2}\int_{\mathbb{R}}x^{2}e^{\mathrm{i}uyx}\nu(dx)\biggr{)}y{}^{\frac{2\alpha-1}{1-\alpha}}\,dy,\\ &\Psi^{(k)}(u)=\frac{2}{1-\alpha}\int_{0}^{1}y^{k}\psi^{(k)}(uy)y^{\frac{2\alpha-1}{1-\alpha}}\,dy=\int_{0}^{1}y^{k}\biggl{[}\int_{\mathbb{R}}x^{k}e^{\mathrm{i}uyx}\nu(dx)\biggr{]}y^{\frac{2\alpha-1}{1-\alpha}}\,dy,\,\,k>2.\end{split}

and the assertion follows. ∎

Lemma 8.

For kk\in\mathbb{N} we have

𝖤[|ΔX|2k]Δ,\mathsf{E}\bigl{[}|\Delta X|^{2k}\bigl{]}\lesssim\Delta,

where (ΔX)t(\Delta X)_{t} the increment process of the limiting Lévy process (Xt)(X_{t}).

Proof.

Since ΦΔX(u)=exp[ΔΨ(u)],\Phi_{\Delta X}(u)=\exp\bigl{[}\Delta\Psi(u)\bigr{]}, we have

𝖤[ΔX2k]=(i)2kΦΔX(2k)(0)=(1)kd2kdu2kexp[ΔΨ(u)]u=0.\mathsf{E}\bigl{[}\Delta X^{2k}\bigr{]}=(-\mathrm{i})^{2k}\Phi_{\Delta X}^{(2k)}(0)=(-1)^{k}\frac{d^{2k}}{du^{2k}}\exp\bigl{[}\Delta\Psi(u)\bigr{]}\mid_{u=0}.

Note that

ΦΔX(2k)(u)=ΔΦΔX(u)(Ψ(2k)(u)+a1ΔΨ(2k1)(u)Ψ(u)++Δ2k1(Ψ(u))2k)\Phi_{\Delta X}^{(2k)}(u)=\Delta\Phi_{\Delta X}(u)\bigl{(}\Psi^{(2k)}(u)+a_{1}\Delta\Psi^{(2k-1)}(u)\Psi^{\prime}(u)+\ldots+\Delta^{2k-1}(\Psi^{\prime}(u))^{2k}\bigr{)}

where ai,a_{i}\in\mathbb{R}, for i=1,,2k1i=1,\ldots,2k-1. This observation completes the proof. ∎

Lemma 9.

For k=0,1,2,3k=0,1,2,3 we have

𝔻(k)(u)Ih=𝒪P(n1/2Δ(k1)/2loghn1),\left\|\mathbb{D}^{(k)}(u)\right\|_{I_{h}}=\mathcal{O}_{P}\bigl{(}n^{-1/2}\Delta^{(k\wedge 1)/2}\log h_{n}^{-1}\bigr{)},

where 𝔻(u)=Φ^ΔX(u)ΦΔX(u).\mathbb{D}(u)=\widehat{\Phi}_{\Delta X}(u)-\Phi_{\Delta X}(u).

Proof.

To prove this statement we use Lemma 8 together with proof of the Theorems 1 (see [14]), which shows that for the weight function ω(u)=(log(e+|u|))1\omega(u)=\left(\log\left(e+\left|u\right|\right)\right)^{-1} under Assumption 1, we obtain

Ck:=sup𝑛𝖤[nΔ(k1)/2𝔻(k)(u)ω(u)]<C_{k}:=\underset{n}{\sup}\,\mathsf{E}\left[\bigl{\|}\sqrt{n}\Delta^{-(k\wedge 1)/2}\mathbb{D}^{(k)}(u)\omega(u)\bigr{\|}_{\mathbb{R}}\right]<\infty

for k=0,1,2,3k=0,1,2,3. Furthermore,

nΔ(k1)/2𝔻(k)(u)ω(u)nΔ(k1)/2𝔻(k)(u)Ihinf|u|hn1ω(u)\bigl{\|}\sqrt{n}\Delta^{-(k\wedge 1)/2}\mathbb{D}^{(k)}(u)\omega(u)\bigr{\|}_{\mathbb{R}}\geq\sqrt{n}\Delta^{-(k\wedge 1)/2}\bigl{\|}\mathbb{D}^{(k)}(u)\bigr{\|}_{I_{h}}\underset{|u|\leq h_{n}^{-1}}{\inf}\omega(u)

Since

inf|u|hn1ω(u)=inf|u|hn1(log(e+|u|))1=(sup|u|hn1log(e+|u|))1=log(e+hn1)1\begin{split}\underset{|u|\leq h_{n}^{-1}}{\inf}\omega(u)&=\underset{|u|\leq h_{n}^{-1}}{\inf}\left(\log(e+|u|)\right)^{-1}=\bigl{(}\underset{|u|\leq h_{n}^{-1}}{\sup}\log(e+|u|)\bigr{)}^{-1}\\ &=\log\left(e+h_{n}^{-1}\right)^{-1}\end{split}

we conclude that

𝖤[𝔻(k)(u)Ih]CkΔ(k1)/2ninf|u|hn1ω(u)n1/2Δ(k1)/2loghn1.\mathsf{E}\left[\bigl{\|}\mathbb{D}^{(k)}(u)\bigr{\|}_{I_{h}}\right]\leq\frac{C_{k}\Delta^{(k\wedge 1)/2}}{\sqrt{n}\underset{|u|\leq h_{n}^{-1}}{\inf}\omega(u)}\lesssim n^{-1/2}\Delta^{(k\wedge 1)/2}\log h_{n}^{-1}.

This completes the proof. ∎

Note that the Lemma 5 and Lemma 9 imply

inf|u|hn1|Φ^ΔX(u)|inf|u|hn1|ΦΔX(u)|op(1)1op(1).\displaystyle\inf_{|u|\leq h_{n}^{-1}}\bigl{|}\widehat{\Phi}_{\Delta X}(u)\bigr{|}\geq\inf_{|u|\leq h_{n}^{-1}}\bigl{|}\Phi_{\Delta X}(u)\bigr{|}-o_{p}(1)\gtrsim 1-o_{p}(1).
Lemma 10.

Let Rn(x)R_{n}(x) be the form

Rn(x)=12πΔeiux[Q0(u)𝔻(u)+Q1(u)𝔻(u)..+Q2(u)𝔻′′(u)+Q3(u)𝔻′′′(u)]φW(uhn)du,\begin{split}R_{n}(x)&=-\frac{1}{2\pi\Delta}\int_{\mathbb{R}}e^{-\mathrm{i}ux}\bigl{[}Q_{0}(u)\mathbb{D}(u)+Q_{1}(u)\mathbb{D}^{\prime}(u)\bigr{.}\\ &\bigl{.}\hskip 56.9055pt+Q_{2}(u)\mathbb{D}^{\prime\prime}(u)+Q_{3}(u)\mathbb{D}^{\prime\prime\prime}(u)\bigr{]}\varphi_{W}(uh_{n})\,du,\end{split}

where 𝔻(u):=Φ^ΔX(u)ΦΔX(u)\mathbb{D}(u):=\widehat{\Phi}_{\Delta X}(u)-\Phi_{\Delta X}(u) and

Q0(u)=ΔΦΔX(u)(2α2(Δ(Ψ(u))2Ψ′′(u))u1α2(Ψ′′′(u)3ΔΨ′′(u)Ψ(u)+Δ2(Ψ(u))3)),Q1(u)=ΔΦΔX(u)(3u1α2(Δ(Ψ(u))2Ψ′′(u))(2α)Ψ(u)),Q2(u)=1ΦΔX(u)(2α23uΔΨ(u)1α2),Q3(u)=1ΦΔX(u)(u1α2).\begin{split}Q_{0}(u)&=\frac{\Delta}{\Phi_{\Delta X}(u)}\left(\frac{2-\alpha}{2}\left(\Delta(\Psi^{\prime}(u))^{2}-\Psi^{\prime\prime}(u)\right)\right.\\ &\left.\hskip 56.9055pt-u\frac{1-\alpha}{2}\left(\Psi^{\prime\prime\prime}(u)-3\Delta\Psi^{\prime\prime}(u)\Psi^{\prime}(u)+\Delta^{2}(\Psi^{\prime}(u))^{3}\right)\right),\\ Q_{1}(u)&=\frac{\Delta}{\Phi_{\Delta X}(u)}\left(3u\frac{1-\alpha}{2}\left(\Delta(\Psi^{\prime}(u))^{2}-\Psi^{\prime\prime}(u)\right)-(2-\alpha)\Psi^{\prime}(u)\right),\\ Q_{2}(u)&=\frac{1}{\Phi_{\Delta X}(u)}\left(\frac{2-\alpha}{2}-3u\Delta\Psi^{\prime}(u)\frac{1-\alpha}{2}\right),\\ Q_{3}(u)&=\frac{1}{\Phi_{\Delta X}(u)}\left(u\frac{1-\alpha}{2}\right).\end{split}

Then applies

Rn(x)=𝒪(Δ1/2hn1n1/2loghn1).\|R_{n}(x)\|_{\mathbb{R}}=\mathcal{O}\left(\Delta^{-1/2}h_{n}^{-1}n^{-1/2}\log h_{n}^{-1}\right).
Proof.

Let us first consider the integral I0(x):=eiuxQ0(u)𝔻(u)φW(uhn)𝑑u\,I_{0}(x):=\int_{\mathbb{R}}e^{-\mathrm{i}ux}Q_{0}(u)\mathbb{D}(u)\varphi_{W}(uh_{n})\,du.

I0(x)=eiux𝔻(u)ΔΦΔX(u)(2α2(Δ(Ψ(u))2Ψ′′(u))u1α2(Ψ′′′(u)3ΔΨ′′(u)Ψ(u)+Δ2(Ψ(u))3))φW(uhn)du\begin{split}&I_{0}(x)=\int_{\mathbb{R}}e^{-\mathrm{i}ux}\mathbb{D}(u)\frac{\Delta}{\Phi_{\Delta X}(u)}\left(\frac{2-\alpha}{2}\left(\Delta(\Psi^{\prime}(u))^{2}-\Psi^{\prime\prime}(u)\right)\right.\\ &\left.\hskip 56.9055pt-u\frac{1-\alpha}{2}\left(\Psi^{\prime\prime\prime}(u)-3\Delta\Psi^{\prime\prime}(u)\Psi^{\prime}(u)+\Delta^{2}(\Psi^{\prime}(u))^{3}\right)\right)\varphi_{W}(uh_{n})\,du\end{split}

According to the lemmas 9, 7 and 5 we get

I0(x)Δ𝔻(u)Ih(Δhn2+1+hn1(1+Δhn1+Δ2hn3))Δhn1n1/2loghn1.\begin{split}\|I_{0}(x)\|_{\mathbb{R}}&\lesssim\Delta\left\|\mathbb{D}(u)\right\|_{I_{h}}\left(\Delta h_{n}^{-2}+1+h_{n}^{-1}(1+\Delta h_{n}^{-1}+\Delta^{2}h_{n}^{-3})\right)\\ &\lesssim\Delta h_{n}^{-1}n^{-1/2}\log h_{n}^{-1}.\end{split}

Analogous to I0(x)\|I_{0}(x)\|_{\mathbb{R}} applies to the integrals Ii(x):=eiuxQi(u)𝔻(i)(u)φW(uhn)𝑑uI_{i}(x):=\int_{\mathbb{R}}e^{-\mathrm{i}ux}Q_{i}(u)\mathbb{D}^{\left(i\right)}(u)\varphi_{W}(uh_{n})\,du for i=1,2,3i=1,2,3:

I1(x)Δ𝔻(u)Ih(hn1(Δhn2+1)+hn1)Δ3/2hn1n1/2loghn1,I2(x)𝔻′′(u)Ih(1+Δhn2)Δ1/2n1/2loghn1,I3(x)𝔻′′′(u)Ihhn1Δ1/2hn1n1/2loghn1.\begin{split}\|I_{1}(x)\|_{\mathbb{R}}&\lesssim\Delta\left\|\mathbb{D}^{\prime}(u)\right\|_{I_{h}}\left(h_{n}^{-1}(\Delta h_{n}^{-2}+1)+h_{n}^{-1}\right)\\ &\lesssim\Delta^{3/2}h_{n}^{-1}n^{-1/2}\log h_{n}^{-1},\\ \|I_{2}(x)\|_{\mathbb{R}}&\lesssim\left\|\mathbb{D}^{\prime\prime}(u)\right\|_{I_{h}}\left(1+\Delta h_{n}^{-2}\right)\\ &\lesssim\Delta^{1/2}n^{-1/2}\log h_{n}^{-1},\\ \|I_{3}(x)\|_{\mathbb{R}}&\lesssim\left\|\mathbb{D}^{\prime\prime\prime}(u)\right\|_{I_{h}}h_{n}^{-1}\\ &\lesssim\Delta^{1/2}h_{n}^{-1}n^{-1/2}\log h_{n}^{-1}.\end{split}

Thus the claim of the lemma holds such that

Rn(x)=𝒪(Δ1/2hn1n1/2loghn1).\|R_{n}(x)\|_{\mathbb{R}}=\mathcal{O}\left(\Delta^{-1/2}h_{n}^{-1}n^{-1/2}\log h_{n}^{-1}\right).

Lemma 11.

Let PΔP_{\Delta} denote the distribution of the r.v. XΔX0X_{\Delta}-X_{0}. The measures y2mPΔ(dy)y^{2m}P_{\Delta}(dy) for m=1,2,3m=1,2,3 have Lebesgue densities gΔ2mg_{\Delta}^{2m}. For any compact set in {0}\mathbb{R}\setminus\{0\} and any ε0>0\varepsilon_{0}>0, let Iε0={x:d(x,I)ε0}I^{\varepsilon_{0}}=\{x\in\mathbb{R}:\,\,d(x,I)\leq\varepsilon_{0}\}, where d(x,I)=infyI|xy|d(x,I)=\inf_{y\in I}|x-y|.

We have

  1. (i)
    infyIε0gΔ2m(y)=infyIε0(y2mPΔ)(y)Δ, for ,m=1,2,3Δ0,\inf_{y\in I^{\varepsilon_{0}}}g_{\Delta}^{2m}(y)=\inf_{y\in I^{\varepsilon_{0}}}\left(y^{2m}P_{\Delta}\right)(y)\gtrsim\Delta,\,\text{ for },\,m=1,2,3\quad\Delta\to 0,
  2. (ii)
    gΔ2Δ1/2andgΔ2mΔ,m=2,3Δ0,\|g_{\Delta}^{2}\|_{\mathbb{R}}\lesssim\Delta^{1/2}\,\,\mathrm{and}\,\,\|g_{\Delta}^{2m}\|_{\mathbb{R}}\lesssim\Delta,\quad m=2,3\quad\Delta\to 0,

for some sufficiently small ε0>0\varepsilon_{0}>0 such that 0Iε00\notin I^{\varepsilon_{0}}.

Proof.

Note that

ψ(uy)=uσ2y2+iy(γ+x(eiuyx𝕀[1,1](x))ν(dx))ψ′′(uy)=σ2y2eiuyx(yx)2ν(x)𝑑x=y1eiutt2νσ(t/y)𝑑tψ(k)(uy)=eiuyx(iyx)kν(x)𝑑x=y1eiuttkν(t/y)𝑑t,\begin{split}&\psi^{\prime}(uy)=-u\sigma^{2}y^{2}+\mathrm{i}y\bigl{(}\gamma+\int_{\mathbb{R}}x\bigl{(}e^{\mathrm{i}uyx}-\mathbb{I}_{[-1,1]}(x)\bigr{)}\nu(dx)\bigr{)}\\ &\psi^{\prime\prime}(uy)=-\sigma^{2}y^{2}-\int_{\mathbb{R}}e^{\mathrm{i}uyx}(yx)^{2}\nu(x)\,dx\\ &\hskip 31.2982pt=-\int_{\mathbb{R}}y^{-1}e^{\mathrm{i}ut}t^{2}\nu_{\sigma}(t/y)\,dt\\ &\psi^{(k)}(uy)=\int_{\mathbb{R}}e^{\mathrm{i}uyx}(\mathrm{i}yx)^{k}\nu(x)dx=\int_{\mathbb{R}}y^{-1}e^{\mathrm{i}ut}t^{k}\nu(t/y)\,dt,\end{split}

where νσ=σ2y2δ0+t2ν,t=yx.\nu_{\sigma}=\sigma^{2}y^{2}\delta_{0}+t^{2}\nu,\,t=yx. It also follows that

Ψ(u)=21α01(uσ2y2+iy(γ+x(eiuyx𝕀[1,1](x))ν(dx))y2α11α)𝑑y=21α01(eiut(σ2δ1uy2+δ2iγy+tν(t/y))𝑑t)y3α21α𝑑y=21αeiut(01(σ2δ1uy2+δ2iγy+tν(t/y))y3α21α𝑑y)𝑑t,Ψ′′(u)=21α01ψ′′(uy)y2α11α𝑑y=21α01(eiutt2νσ(t/y)𝑑t)y3α21α𝑑y=21αeiutt201y3α21ανσ(t/y)𝑑y𝑑t,Ψ(k)(u)=21α01ψ(k)(uy)y2α11α𝑑y=21αeiuttk01y3α21αν(t/y)𝑑y𝑑t.\begin{split}&\Psi^{\prime}(u)=\frac{2}{1-\alpha}\int_{0}^{1}\bigl{(}-u\sigma^{2}y^{2}+\mathrm{i}y\bigl{(}\gamma+\int_{\mathbb{R}}x\bigl{(}e^{\mathrm{i}uyx}-\mathbb{I}_{[-1,1]}(x)\bigr{)}\nu(dx)\bigr{)}y^{\frac{2\alpha-1}{1-\alpha}}\bigr{)}\,dy\\ &\hskip 25.6073pt=\frac{2}{1-\alpha}\int_{0}^{1}\biggl{(}\int_{\mathbb{R}}e^{\mathrm{i}ut}\bigl{(}-\sigma^{2}\delta_{1}uy^{2}+\delta_{2}\mathrm{i}\gamma y+t\nu(t/y)\bigr{)}\,dt\biggr{)}y^{\frac{3\alpha-2}{1-\alpha}}\,dy\\ &\hskip 25.6073pt=\frac{2}{1-\alpha}\int_{\mathbb{R}}e^{\mathrm{i}ut}\biggl{(}\int_{0}^{1}\bigl{(}-\sigma^{2}\delta_{1}uy^{2}+\delta_{2}\mathrm{i}\gamma y+t\nu(t/y)\bigr{)}y^{\frac{3\alpha-2}{1-\alpha}}\,dy\biggr{)}\,dt,\\ &\Psi^{\prime\prime}(u)=\frac{2}{1-\alpha}\int_{0}^{1}\psi^{\prime\prime}(uy)y^{\frac{2\alpha-1}{1-\alpha}}\,dy=\frac{2}{1-\alpha}\int_{0}^{1}\biggl{(}\int_{\mathbb{R}}e^{\mathrm{i}ut}t^{2}\nu_{\sigma}(t/y)\,dt\biggr{)}y^{\frac{3\alpha-2}{1-\alpha}}\,dy\\ &\hskip 25.6073pt=\frac{2}{1-\alpha}\int_{\mathbb{R}}e^{\mathrm{i}ut}t^{2}\int_{0}^{1}y^{\frac{3\alpha-2}{1-\alpha}}\nu_{\sigma}(t/y)\,dy\,dt,\\ &\Psi^{(k)}(u)=\frac{2}{1-\alpha}\int_{0}^{1}\psi^{(k)}(uy)y^{\frac{2\alpha-1}{1-\alpha}}\,dy=\frac{2}{1-\alpha}\int_{\mathbb{R}}e^{\mathrm{i}ut}t^{k}\int_{0}^{1}y^{\frac{3\alpha-2}{1-\alpha}}\nu(t/y)\,dy\,dt.\end{split}

From infinite divisibility of the process (ΔX)t(\Delta X)_{t} it follows that ΦΔX(u)=(ΦΔ/2(u))2\Phi_{\Delta X}(u)=\bigl{(}\Phi_{\Delta/2}(u)\bigr{)}^{2}. Then

ΦΔX′′(u)\displaystyle\Phi^{\prime\prime}_{\Delta X}(u) =ΦΔX(u)(ΔΨ′′(u)+(ΔΨ(u))2)\displaystyle=\Phi_{\Delta X}(u)\bigl{(}\Delta\Psi^{\prime\prime}(u)+(\Delta\Psi^{\prime}(u))^{2}\bigr{)}
=ΔΨ′′(u)ΦΔX(u)+4(Δ/2Ψ(u)ΦΔ/2(u))2\displaystyle=\Delta\Psi^{\prime\prime}(u)\Phi_{\Delta X}(u)+4\bigl{(}\Delta/2\Psi^{\prime}(u)\Phi_{\Delta/2}(u)\bigr{)}^{2}
=ΔΨ′′(u)ΦΔX(u)+4(ΦΔ/2(u))2.\displaystyle=\Delta\Psi^{\prime\prime}(u)\Phi_{\Delta X}(u)+4\bigl{(}\Phi^{\prime}_{\Delta/2}(u)\bigr{)}^{2}.

Furthermore

eiuxx2PΔ(dx)=21αΔeiutt201y3α21ανσ(t/y)𝑑y𝑑teiutPΔ(dt)+4(eiuttPΔ/2(dt))2.\int_{\mathbb{R}}e^{\mathrm{i}ux}x^{2}P_{\Delta}(dx)=\frac{2}{1-\alpha}\Delta\int_{\mathbb{R}}e^{\mathrm{i}ut}t^{2}\int_{0}^{1}y^{\frac{3\alpha-2}{1-\alpha}}\nu_{\sigma}(t/y)\,dy\,dt\int_{\mathbb{R}}e^{\mathrm{i}ut}P_{\Delta}(dt)+4\bigl{(}\int_{\mathbb{R}}e^{\mathrm{i}ut}tP_{\Delta/2}(dt)\bigr{)}^{2}.

Hence

(5.9) x2PΔ=21αΔ(t201y3α21ανσ(t/y)𝑑y)PΔ+4(xPΔ/2)(xPΔ/2),x3PΔ=21αΔ((t301y3α21αν(t/y)dy)PΔ+..+(t201y3α21ανσ(t/y)dy)(xPΔ))+8(xPΔ/2)(x2PΔ/2),x4PΔ=21αΔ((t401y3α21αν(t/y)dy)PΔ..+2(t301y3α21αν(t/y)dy)(xPΔ)+(t201y3α21ανσ(t/y)dy)(x2PΔ))+8(x2PΔ/2)(x2PΔ/2)+8(x3PΔ/2)(xPΔ/2),x6PΔ=21αΔ((t601y3α21αν(t/y)dy)PΔ+4(t501y3α21αν(t/y)dy)(xPΔ)..+6(t401y3α21αν(t/y)dy)(x2PΔ)+4(t301y3α21αν(t/y)dy)(x3PΔ)..+(t201y3α21ανσ(t/y)dy)(x4PΔ))+32(x4PΔ/2)(x2PΔ/2)+24(x3PΔ/2)(x3PΔ/2)+8(x5PΔ/2)(xPΔ/2).\begin{split}x^{2}P_{\Delta}&=\frac{2}{1-\alpha}\Delta\biggl{(}t^{2}\int_{0}^{1}y^{{}^{\frac{3\alpha-2}{1-\alpha}}}\nu_{\sigma}(t/y)\,dy\biggr{)}\ast P_{\Delta}+4(xP_{\Delta/2})\ast(xP_{\Delta/2}),\\ x^{3}P_{\Delta}&=\frac{2}{1-\alpha}\Delta\biggl{(}\biggl{(}t^{3}\int_{0}^{1}y^{{}^{\frac{3\alpha-2}{1-\alpha}}}\nu(t/y)\,dy\biggr{)}\ast P_{\Delta}+\biggr{.}\\ &\biggl{.}+\biggl{(}t^{2}\int_{0}^{1}y^{{}^{\frac{3\alpha-2}{1-\alpha}}}\nu_{\sigma}(t/y)\,dy\biggr{)}\ast(xP_{\Delta})\biggr{)}+8(xP_{\Delta/2})\ast(x^{2}P_{\Delta/2}),\\ x^{4}P_{\Delta}&=\frac{2}{1-\alpha}\Delta\biggl{(}\biggl{(}t^{4}\int_{0}^{1}y^{\frac{3\alpha-2}{1-\alpha}}\nu(t/y)\,dy\biggr{)}\ast P_{\Delta}\biggr{.}\\ &\biggl{.}+2\biggl{(}t^{3}\int_{0}^{1}y^{\frac{3\alpha-2}{1-\alpha}}\nu(t/y)\,dy\biggr{)}\ast(xP_{\Delta})+\biggl{(}t^{2}\int_{0}^{1}y^{\frac{3\alpha-2}{1-\alpha}}\nu_{\sigma}(t/y)\,dy\biggr{)}\ast(x^{2}P_{\Delta})\biggr{)}\\ &+8(x^{2}P_{\Delta/2})\ast(x^{2}P_{\Delta/2})+8(x^{3}P_{\Delta/2})\ast(xP_{\Delta/2}),\\ x^{6}P_{\Delta}&=\frac{2}{1-\alpha}\Delta\biggl{(}\biggl{(}t^{6}\int_{0}^{1}y^{\frac{3\alpha-2}{1-\alpha}}\nu(t/y)\,dy\biggr{)}\ast P_{\Delta}+4\biggl{(}t^{5}\int_{0}^{1}y^{\frac{3\alpha-2}{1-\alpha}}\nu(t/y)\,dy\biggr{)}\ast(xP_{\Delta})\biggr{.}\\ &\biggl{.}+6\biggl{(}t^{4}\int_{0}^{1}y^{\frac{3\alpha-2}{1-\alpha}}\nu(t/y)\,dy\biggr{)}\ast(x^{2}P_{\Delta})+4\biggl{(}t^{3}\int_{0}^{1}y^{\frac{3\alpha-2}{1-\alpha}}\nu(t/y)\,dy\biggr{)}\ast(x^{3}P_{\Delta})\biggr{.}\\ &\biggl{.}+\biggl{(}t^{2}\int_{0}^{1}y^{\frac{3\alpha-2}{1-\alpha}}\nu_{\sigma}(t/y)\,dy\biggr{)}\ast(x^{4}P_{\Delta})\biggr{)}+32(x^{4}P_{\Delta/2})\ast(x^{2}P_{\Delta/2})\\ &+24(x^{3}P_{\Delta/2})\ast(x^{3}P_{\Delta/2})+8(x^{5}P_{\Delta/2})\ast(xP_{\Delta/2}).\end{split}

For any ε>0,\varepsilon>0, it holds due to the Markov inequality

PΔ([ε,ε]c)=P(|ΔX|>ε)ε2𝖤[ΔX2]Δ.P_{\Delta}\bigl{(}[-\varepsilon,\varepsilon]^{c}\bigr{)}=P\bigl{(}|\Delta X|>\varepsilon\bigr{)}\leq\varepsilon^{-2}\mathsf{E}\bigl{[}\Delta X^{2}\bigr{]}\lesssim\Delta.

Then it follows PΔ([ε,ε])=1𝒪(Δ)P_{\Delta}\bigl{(}[-\varepsilon,\varepsilon]\bigr{)}=1-\mathcal{O}(\Delta) and since inftIε1(tk01y3α21αν(t/y)𝑑y)1\underset{t\in I^{\varepsilon_{1}}}{\inf}\left(t^{k}\int_{0}^{1}y^{\frac{3\alpha-2}{1-\alpha}}\nu(t/y)\,dy\right)\gtrsim 1 we have

inftIε1((tk01y3α21αν(t/y)𝑑y)PΔ)PΔ[ε1/2,ε1/2]inftIε1(tk01y3α21αν(t/y)𝑑y)1.\begin{split}&\underset{t\in I^{\varepsilon_{1}}}{\inf}\left(\left(t^{k}\int_{0}^{1}y^{\frac{3\alpha-2}{1-\alpha}}\nu(t/y)\,dy\right)\ast P_{\Delta}\right)\\ &\hskip 56.9055pt\geq P_{\Delta}\bigl{[}-\varepsilon_{1}/2,\varepsilon_{1}/2\bigr{]}\underset{t\in I^{\varepsilon_{1}}}{\inf}\left(t^{k}\int_{0}^{1}y^{\frac{3\alpha-2}{1-\alpha}}\nu(t/y)\,dy\right)\gtrsim 1.\end{split}

Then the first claim follows from (5.9),

infyIε0gΔ2m(y)=infyIε0(y2mPΔ)(y)Δ,m=1,2,3.\inf_{y\in I^{\varepsilon_{0}}}g_{\Delta}^{2m}(y)=\inf_{y\in I^{\varepsilon_{0}}}\bigl{(}y^{2m}P_{\Delta}\bigr{)}(y)\gtrsim\Delta,\quad m=1,2,3.

Furthermore due (5.9) and

yPΔ/2L1=𝖤[XΔ/2]𝖤[XΔ/22]Δ1/2,\bigl{\|}yP_{\Delta/2}\bigr{\|}_{L^{1}}=\mathsf{E}\bigl{[}X_{\Delta/2}\bigr{]}\leq\sqrt{\mathsf{E}\bigl{[}X^{2}_{\Delta/2}\bigr{]}}\lesssim\Delta^{1/2},

we derive

y2PΔΔy2νPΔ()+yPΔ/2yPΔ/2L1Δ+Δ1/2Δ1/2,y3PΔΔ{y3νPΔ()+yPΔνσ()}+yPΔ/2y2PΔ/2L1Δ,y4PΔΔ{y4νPΔ()+y3νyPΔL1+y2PΔνσ()}+y3PΔ/2yPΔ/2L1+y2PΔ/2y2PΔ/2L1Δ,y5PΔΔ{y5νPΔ()+y4νyPΔL1+y3νy2PΔL1..+y3PΔνσ()}+y4PΔ/2yPΔ/2L1+y3PΔ/2y2PΔ/2L1+y2PΔ/2y3PΔ/2L1Δ,y6PΔΔ{y6νPΔ()+y5νyPΔL1+y4νy2PΔL1..+y4PΔνσ()+y3νy3PΔL1}+y5PΔ/2yPΔ/2L1+y4PΔ/2y2PΔ/2L1+y3PΔ/2y3PΔ/2L1+y2PΔ/2y4PΔ/2L1Δ.\begin{split}\bigl{\|}y^{2}P_{\Delta}\bigr{\|}_{\mathbb{R}}&\lesssim\Delta\bigl{\|}y^{2}\nu\bigr{\|}_{\mathbb{R}}P_{\Delta}(\mathbb{R})+\bigl{\|}yP_{\Delta/2}\bigr{\|}_{\mathbb{R}}\bigl{\|}yP_{\Delta/2}\bigr{\|}_{L^{1}}\lesssim\Delta+\Delta^{1/2}\lesssim\Delta^{1/2},\\ \bigl{\|}y^{3}P_{\Delta}\bigr{\|}_{\mathbb{R}}&\lesssim\Delta\bigl{\{}\bigl{\|}y^{3}\nu\bigr{\|}_{\mathbb{R}}P_{\Delta}(\mathbb{R})+\bigl{\|}yP_{\Delta}\bigr{\|}_{\mathbb{R}}\nu_{\sigma}(\mathbb{R})\bigr{\}}\\ &\hskip 99.58464pt+\bigl{\|}yP_{\Delta/2}\bigr{\|}_{\mathbb{R}}\bigl{\|}y^{2}P_{\Delta/2}\bigr{\|}_{L^{1}}\lesssim\Delta,\\ \bigl{\|}y^{4}P_{\Delta}\bigr{\|}_{\mathbb{R}}&\lesssim\Delta\bigl{\{}\bigl{\|}y^{4}\nu\bigr{\|}_{\mathbb{R}}P_{\Delta}(\mathbb{R})+\bigl{\|}y^{3}\nu\bigr{\|}_{\mathbb{R}}\bigl{\|}yP_{\Delta}\bigr{\|}_{L^{1}}+\|y^{2}P_{\Delta}\|_{\mathbb{R}}\nu_{\sigma}\left(\mathbb{R}\right)\bigr{\}}\\ &+\bigl{\|}y^{3}P_{\Delta/2}\bigr{\|}_{\mathbb{R}}\bigl{\|}yP_{\Delta/2}\bigr{\|}_{L^{1}}+\bigl{\|}y^{2}P_{\Delta/2}\bigr{\|}_{\mathbb{R}}\bigl{\|}y^{2}P_{\Delta/2}\bigr{\|}_{L^{1}}\lesssim\Delta,\\ \bigl{\|}y^{5}P_{\Delta}\bigr{\|}_{\mathbb{R}}&\lesssim\Delta\bigl{\{}\bigl{\|}y^{5}\nu\bigr{\|}_{\mathbb{R}}P_{\Delta}(\mathbb{R})+\bigl{\|}y^{4}\nu\bigr{\|}_{\mathbb{R}}\bigl{\|}yP_{\Delta}\bigr{\|}_{L^{1}}+\bigl{\|}y^{3}\nu\bigr{\|}_{\mathbb{R}}\bigl{\|}y^{2}P_{\Delta}\bigr{\|}_{L^{1}}\bigr{.}\\ &\bigl{.}\,+\bigl{\|}y^{3}P_{\Delta}\bigr{\|}_{\mathbb{R}}\nu_{\sigma}(\mathbb{R})\bigr{\}}+\bigl{\|}y^{4}P_{\Delta/2}\bigr{\|}_{\mathbb{R}}\bigl{\|}yP_{\Delta/2}\bigr{\|}_{L^{1}}\\ &+\bigl{\|}y^{3}P_{\Delta/2}\bigr{\|}_{\mathbb{R}}\bigl{\|}y^{2}P_{\Delta/2}\bigr{\|}_{L^{1}}+\bigl{\|}y^{2}P_{\Delta/2}\bigr{\|}_{\mathbb{R}}\bigl{\|}y^{3}P_{\Delta/2}\bigr{\|}_{L^{1}}\lesssim\Delta,\\ \bigl{\|}y^{6}P_{\Delta}\bigr{\|}_{\mathbb{R}}&\lesssim\Delta\bigl{\{}\bigl{\|}y^{6}\nu\bigr{\|}_{\mathbb{R}}P_{\Delta}(\mathbb{R})+\bigl{\|}y^{5}\nu\bigr{\|}_{\mathbb{R}}\bigl{\|}yP_{\Delta}\bigr{\|}_{L^{1}}+\bigl{\|}y^{4}\nu\bigr{\|}_{\mathbb{R}}\bigl{\|}y^{2}P_{\Delta}\bigr{\|}_{L^{1}}\bigr{.}\\ &\bigl{.}\,+\bigl{\|}y^{4}P_{\Delta}\bigr{\|}_{\mathbb{R}}\nu_{\sigma}(\mathbb{R})+\bigl{\|}y^{3}\nu\bigr{\|}_{\mathbb{R}}\bigl{\|}y^{3}P_{\Delta}\bigr{\|}_{L^{1}}\bigr{\}}+\bigl{\|}y^{5}P_{\Delta/2}\bigr{\|}_{\mathbb{R}}\bigl{\|}yP_{\Delta/2}\bigr{\|}_{L^{1}}\\ &+\bigl{\|}y^{4}P_{\Delta/2}\bigr{\|}_{\mathbb{R}}\bigl{\|}y^{2}P_{\Delta/2}\bigr{\|}_{L^{1}}+\bigl{\|}y^{3}P_{\Delta/2}\bigr{\|}_{\mathbb{R}}\bigl{\|}y^{3}P_{\Delta/2}\bigr{\|}_{L^{1}}\\ &\hskip 56.9055pt+\bigl{\|}y^{2}P_{\Delta/2}\bigr{\|}_{\mathbb{R}}\bigl{\|}y^{4}P_{\Delta/2}\bigr{\|}_{L^{1}}\lesssim\Delta.\end{split}

This completes the proof. ∎

Lemma 12.

For the variance s2(x)s^{2}(x) defined by (5.22), we have the following estimate:

infxIs2(x)Δhn3,\displaystyle\inf_{x\in I}s^{2}(x)\gtrsim\Delta h_{n}^{-3},

for sufficiently large nn.

Proof.

We have

s2(x)=m[=0]3Var[(ΔX)1mKm,n(x(ΔX)1)]=m[=0]3(𝖤[(ΔX)12mKm,n2(x(ΔX)1)](𝖤[(ΔX)1mKm,n(x(ΔX)1)])2).\begin{split}s^{2}(x)&=\stackrel{{\scriptstyle[}}{{m}}=0]{3}{\sum}\mathrm{Var}\bigl{[}(\Delta X)_{1}^{m}K_{m,n}\bigl{(}x-(\Delta X)_{1}\bigr{)}\bigr{]}\\ &=\stackrel{{\scriptstyle[}}{{m}}=0]{3}{\sum}\bigl{(}\mathsf{E}\bigl{[}(\Delta X)_{1}^{2m}K_{m,n}^{2}\bigl{(}x-(\Delta X)_{1}\bigr{)}\bigr{]}-\bigl{(}\mathsf{E}\bigl{[}(\Delta X)_{1}^{m}K_{m,n}\bigl{(}x-(\Delta X)_{1}\bigr{)}\bigr{]}\bigr{)}^{2}\bigr{)}.\end{split}

In order to determine the infimum of the variance, we compute the supremum of the expected value 𝖤[(ΔX)1mKm,n(x(ΔX)1)]\mathsf{E}\bigl{[}(\Delta X)_{1}^{m}K_{m,n}\bigl{(}x-(\Delta X)_{1}\bigr{)}\bigr{]} and the infimum of 𝖤[(ΔX)12mKm,n2(x(ΔX)1)]\mathsf{E}\bigl{[}(\Delta X)_{1}^{2m}K_{m,n}^{2}\bigl{(}x-(\Delta X)_{1}\bigr{)}\bigr{]} for m=0,1,2,3.m=0,1,2,3. Note that

𝖤[(ΔX)1mKm,n(x(ΔX)1)]=ymKm,n(xy)PΔ(dy).\mathsf{E}\bigl{[}(\Delta X)_{1}^{m}K_{m,n}\bigl{(}x-(\Delta X)_{1}\bigr{)}\bigr{]}=\int_{\mathbb{R}}y^{m}K_{m,n}(x-y)P_{\Delta}\,(dy).

Further we get

K0,n(xy)PΔ(dy)\displaystyle\int_{\mathbb{R}}K_{0,n}(x-y)P_{\Delta}(dy) =[eiu(xy)Q0(u)φW(uhn)𝑑u]PΔ(dy)\displaystyle=\int_{\mathbb{R}}\biggl{[}\int e^{-\mathrm{i}u(x-y)}Q_{0}(u)\varphi_{W}(uh_{n})\,du\biggr{]}P_{\Delta}(dy)
=[eiu(xy)PΔ(dy)]Q0(u)φW(uhn)𝑑u\displaystyle=\int_{\mathbb{R}}\biggl{[}\int_{\mathbb{R}}e^{-\mathrm{i}u(x-y)}P_{\Delta}(dy)\biggr{]}Q_{0}(u)\varphi_{W}(uh_{n})\,du
=eiuxΦΔX(u)Q0(u)φW(uhn)𝑑u\displaystyle=\int_{\mathbb{R}}e^{-\mathrm{i}ux}\Phi_{\Delta X}(u)Q_{0}(u)\varphi_{W}(uh_{n})\,du
=Δ1/hn1/hneiux(2α2(Δ(Ψ(u))2Ψ′′(u)).\displaystyle=\Delta\int_{-1/h_{n}}^{1/h_{n}}e^{-\mathrm{i}ux}\biggl{(}\frac{2-\alpha}{2}\bigl{(}\Delta(\Psi^{\prime}(u))^{2}-\Psi^{\prime\prime}(u)\bigr{)}\bigr{.}
.u1α2(Ψ′′′(u)3ΔΨ′′(u)Ψ(u)Δ2(Ψ(u))3))du.\displaystyle\bigl{.}-u\frac{1-\alpha}{2}(\Psi^{\prime\prime\prime}(u)-3\Delta\Psi^{\prime\prime}(u)\Psi^{\prime}(u)-\Delta^{2}(\Psi^{\prime}(u))^{3})\biggr{)}du.

Furthermore

(5.10) 1/hn1/hneiuxuΨ′′′(u)𝑑u\displaystyle\int_{-1/h_{n}}^{1/h_{n}}e^{-\mathrm{i}ux}u\Psi^{\prime\prime\prime}(u)\,du 1/hn1/hneiuxu𝑑u=2i01/hnusin(ux)𝑑u\displaystyle\leq\int_{-1/h_{n}}^{1/h_{n}}e^{-\mathrm{i}ux}u\,du=-2\mathrm{i}\int_{0}^{1/h_{n}}u\sin(ux)\,du
=2ixhncos(x/hn)+1x2sin(x/hn)hn1\displaystyle=\frac{2i}{xh_{n}}\cos(x/h_{n})+\frac{1}{x^{2}}\sin(x/h_{n})\lesssim h_{n}^{-1}

for xI.x\in I. Analogously we get

(5.11) 1/hn1/hneiuxuΨ′′(u)Ψ(u)𝑑uhn11/hn1/hneiuxu𝑑uhn2,1/hn1/hneiuxu(Ψ(u))3𝑑uh31/hn1/hneiuxu𝑑uhn4,1/hn1/hneiux(Ψ(u))2𝑑uhn21/hn1/hneiux𝑑uhn2,1/hn1/hneiuxΨ′′(u)𝑑u1/hn1/hneiux𝑑u1.\begin{split}&\int_{-1/h_{n}}^{1/h_{n}}e^{-\mathrm{i}ux}u\Psi^{\prime\prime}(u)\Psi^{\prime}(u)\,du\leq h_{n}^{-1}\int_{-1/h_{n}}^{1/h_{n}}e^{-iux}u\,du\lesssim h_{n}^{-2},\\ &\int_{-1/h_{n}}^{1/h_{n}}e^{-\mathrm{i}ux}u(\Psi^{\prime}(u))^{3}\,du\leq h^{-3}\int_{-1/h_{n}}^{1/h_{n}}e^{-\mathrm{i}ux}u\,du\lesssim h_{n}^{-4},\\ &\int_{-1/h_{n}}^{1/h_{n}}e^{-iux}(\Psi^{\prime}(u))^{2}\,du\leq h_{n}^{-2}\int_{-1/h_{n}}^{1/h_{n}}e^{-\mathrm{i}ux}\,du\lesssim h_{n}^{-2},\\ &\int_{-1/h_{n}}^{1/h_{n}}e^{-\mathrm{i}ux}\Psi^{\prime\prime}(u)\,du\leq\int_{-1/h_{n}}^{1/h_{n}}e^{-\mathrm{i}ux}\,du\lesssim 1.\end{split}

Then due to (5.10) and (5.11) we get

(5.12) K0,n(xy)PΔ(dy)Δ(Δhn2+1+hn1+Δ2hn4)Δhn1.\int_{\mathbb{R}}K_{0,n}(x-y)P_{\Delta}(dy)\lesssim\Delta(\Delta h_{n}^{-2}+1+h_{n}^{-1}+\Delta^{2}h_{n}^{-4})\lesssim\Delta h_{n}^{-1}.

Analogously

(5.13) yK1,n(xy)PΔ(dy)=y[eiu(xy)Q1(u)φW(uhn)𝑑u]PΔ(dy)=[yeiu(xy)PΔ(dy)]Q1(u)φW(uhn)𝑑u=eiuxΦΔX(u)Q1(u)φW(uhn)𝑑u=Δ21/hn1/hneiuxΨ(u)(3u1α2(Δ(Ψ(u))2+Ψ′′(u))..(2α)Ψ(u))duΔ2(Δhn4+hn2+hn2)Δ,\begin{split}\int_{\mathbb{R}}yK_{1,n}(x-y)P_{\Delta}(dy)&=\int_{\mathbb{R}}y\biggl{[}\int e^{-\mathrm{i}u(x-y)}Q_{1}(u)\varphi_{W}(uh_{n})\,du\biggr{]}P_{\Delta}(dy)\\ &=\int_{\mathbb{R}}\biggl{[}\int_{\mathbb{R}}ye^{-\mathrm{i}u(x-y)}P_{\Delta}(dy)\biggr{]}Q_{1}(u)\varphi_{W}(uh_{n})\,du\\ &=\int_{\mathbb{R}}e^{-\mathrm{i}ux}\Phi^{\prime}_{\Delta X}(u)Q_{1}(u)\varphi_{W}(uh_{n})\,du\\ &=\Delta^{2}\int^{1/h_{n}}_{-1/h_{n}}e^{-\mathrm{i}ux}\Psi^{\prime}(u)\biggl{(}3u\frac{1-\alpha}{2}\bigl{(}\Delta(\Psi^{\prime}(u))^{2}+\Psi^{\prime\prime}(u)\bigr{)}\biggr{.}\\ &\biggl{.}\hskip 113.81102pt-(2-\alpha)\Psi^{\prime}(u)\biggr{)}\,du\\ &\lesssim\Delta^{2}(\Delta h_{n}^{-4}+h_{n}^{-2}+h_{n}^{-2})\lesssim\Delta,\end{split}
(5.14) y2K2,n(xy)PΔ(dy)=y2[eiu(xy)Q2(u)φW(uhn)𝑑u]PΔ(dy)=[y2eiu(xy)PΔ(dy)]Q2(u)φW(uhn)𝑑u=eiuxΦΔX′′(u)Q2(u)φW(uhn)𝑑u=Δ1/hn1/hneiux(Ψ′′(u)+Δ(Ψ(u))2)×(2α23uΔΨ(u)1α2)duΔ(1+Δhn2+Δhn2+Δ2hn4)Δ,\begin{split}\int_{\mathbb{R}}y^{2}K_{2,n}(x-y)P_{\Delta}(dy)&=\int_{\mathbb{R}}y^{2}\biggl{[}\int e^{-\mathrm{i}u(x-y)}Q_{2}(u)\varphi_{W}(uh_{n})\,du\biggr{]}P_{\Delta}(dy)\\ &=\int_{\mathbb{R}}\left[\int_{\mathbb{R}}y^{2}e^{-\mathrm{i}u(x-y)}P_{\Delta}(dy)\right]Q_{2}(u)\varphi_{W}(uh_{n})\,du\\ &=\int_{\mathbb{R}}e^{-\mathrm{i}ux}\Phi^{\prime\prime}_{\Delta X}(u)Q_{2}(u)\varphi_{W}(uh_{n})\,du\\ &=\Delta\int^{1/h_{n}}_{-1/h_{n}}e^{-\mathrm{i}ux}\bigl{(}\Psi^{\prime\prime}(u)+\Delta(\Psi^{\prime}(u))^{2}\bigr{)}\\ &\hskip 56.9055pt\times\biggl{(}\frac{2-\alpha}{2}-3u\Delta\Psi^{\prime}(u)\frac{1-\alpha}{2}\biggr{)}\,du\\ &\lesssim\Delta(1+\Delta h_{n}^{-2}+\Delta h_{n}^{-2}+\Delta^{2}h_{n}^{-4})\lesssim\Delta,\end{split}
(5.15) y3K3,n(xy)PΔ(dy)=y3[eiu(xy)Q3(u)φW(uhn)𝑑u]PΔ(dy)=[y3eiu(xy)PΔ(dy)]Q3(u)φW(uhn)𝑑u=eiuxΦΔX′′′(u)Q3(u)φW(uhn)𝑑u=Δ1/hn1/hneiux(u1α2(Ψ′′′(u)+3ΔΨ′′(u)Ψ(u)..+Δ2(Ψ(u))3))du,Δ(hn1+Δhn2+Δ2hn4)Δhn1.\begin{split}\int_{\mathbb{R}}y^{3}K_{3,n}(x-y)P_{\Delta}(dy)&=\int_{\mathbb{R}}y^{3}\biggl{[}\int e^{-\mathrm{i}u(x-y)}Q_{3}(u)\varphi_{W}(uh_{n})\,du\biggr{]}P_{\Delta}(dy)\\ &=\int_{\mathbb{R}}\biggl{[}\int_{\mathbb{R}}y^{3}e^{-\mathrm{i}u(x-y)}P_{\Delta}(dy)\biggr{]}Q_{3}(u)\varphi_{W}(uh_{n})\,du\\ &=\int_{\mathbb{R}}e^{-\mathrm{i}ux}\Phi^{\prime\prime\prime}_{\Delta X}(u)Q_{3}(u)\varphi_{W}(uh_{n})\,du\\ &=\Delta\int^{1/h_{n}}_{-1/h_{n}}e^{-\mathrm{i}ux}\biggl{(}u\frac{1-\alpha}{2}(\Psi^{\prime\prime\prime}(u)+3\Delta\Psi^{\prime\prime}(u)\Psi^{\prime}(u)\biggr{.}\\ &\biggl{.}\hskip 113.81102pt+\Delta^{2}(\Psi^{\prime}(u))^{3})\biggr{)}\,du,\\ &\lesssim\Delta\left(h_{n}^{-1}+\Delta h_{n}^{-2}+\Delta^{2}h_{n}^{-4}\right)\lesssim\Delta h_{n}^{-1}.\end{split}

To estimate the infimum 𝖤[(ΔX)12mKm,n2(x(ΔX)1)]\mathsf{E}\bigl{[}(\Delta X)_{1}^{2m}K_{m,n}^{2}\bigl{(}x-(\Delta X)_{1}\bigr{)}\bigr{]} for m=0,1,2,3m=0,1,2,3, we consider

𝖤[(ΔX)12mKm,n2(x(ΔX)1)]=y2mKm,n2(xy)PΔ(dy)=Km,n2(xy)gΔ2m(y)𝑑y=Km,n2(y)gΔ2m(xy)𝑑y.\begin{split}\mathsf{E}\left[\left(\Delta X\right)_{1}^{2m}K_{m,n}^{2}\left(x-\left(\Delta X\right)_{1}\right)\right]&=\int_{\mathbb{R}}y^{2m}K_{m,n}^{2}\left(x-y\right)P_{\Delta}(dy)\\ &=\int_{\mathbb{R}}K_{m,n}^{2}\left(x-y\right)g_{\Delta}^{2m}(y)dy\\ &=\int_{\mathbb{R}}K_{m,n}^{2}\left(y\right)g_{\Delta}^{2m}(x-y)dy.\end{split}

Since Km,n(z)=12πeiuzQm(u)φW(uhn)𝑑uK_{m,n}(z)=-\frac{1}{2\pi}\int_{\mathbb{R}}e^{-\mathrm{i}uz}Q_{m}(u)\varphi_{W}(uh_{n})\,du, we have according to the Plancherel’s theorem:

Km,n2(y)𝑑y=12π|Qm(u)φW(uhn)|2𝑑u,\int_{\mathbb{R}}K_{m,n}^{2}(y)\,dy=-\frac{1}{2\pi}\int_{\mathbb{R}}\bigl{|}Q_{m}(u)\varphi_{W}(uh_{n})\bigr{|}^{2}du,

where

Q0(u)=ΔΦΔX(u)(2α2(Δ(Ψ(u))2Ψ′′(u))..u1α2(Ψ′′′(u)3ΔΨ′′(u)Ψ(u)Δ2(Ψ(u))3)),Q1(u)=ΔΦΔX(u)(3u1α2(Δ(Ψ(u))2+Ψ′′(u))(2α)Ψ(u)),Q2(u)=1ΦΔX(u)(2α23uΔΨ(u)1α2),Q3(u)=1ΦΔX(u)(u1α2).\begin{split}Q_{0}(u)&=\frac{\Delta}{\Phi_{\Delta X}(u)}\biggl{(}\frac{2-\alpha}{2}\bigl{(}\Delta(\Psi^{\prime}(u))^{2}-\Psi^{\prime\prime}(u)\bigr{)}\biggr{.}\\ &\biggl{.}\hskip 56.9055pt-u\frac{1-\alpha}{2}\bigl{(}\Psi^{\prime\prime\prime}(u)-3\Delta\Psi^{\prime\prime}(u)\Psi^{\prime}(u)-\Delta^{2}(\Psi^{\prime}(u))^{3}\bigr{)}\biggr{)},\\ Q_{1}(u)&=\frac{\Delta}{\Phi_{\Delta X}(u)}\biggl{(}3u\frac{1-\alpha}{2}\bigl{(}\Delta(\Psi^{\prime}(u))^{2}+\Psi^{\prime\prime}(u)\bigr{)}-(2-\alpha)\Psi^{\prime}(u)\biggr{)},\\ Q_{2}(u)&=\frac{1}{\Phi_{\Delta X}(u)}\biggl{(}\frac{2-\alpha}{2}-3u\Delta\Psi^{\prime}(u)\frac{1-\alpha}{2}\biggr{)},\\ Q_{3}(u)&=\frac{1}{\Phi_{\Delta X}(u)}\biggl{(}u\frac{1-\alpha}{2}\biggr{)}.\end{split}

Furthermore applies

infxIKm,n2(y)gΔ2m(xy)𝑑yinfxIgΔ2m(xy)Km,n2(y)𝑑y12πinfxIgΔ2m(xy)|Qm(u)φW(uhn)|2𝑑u=12πinfxIgΔ2m(xy)1/hn1/hn|Qm(u)|2𝑑u.\begin{split}\inf_{x\in I}\int_{\mathbb{R}}K_{m,n}^{2}(y)g_{\Delta}^{2m}(x-y)\,dy&\geq\inf_{x\in I}g_{\Delta}^{2m}(x-y)\int_{\mathbb{R}}K_{m,n}^{2}(y)\,dy\\ &\geq\frac{1}{2\pi}\inf_{x\in I}g_{\Delta}^{2m}(x-y)\int_{\mathbb{R}}\bigl{|}Q_{m}(u)\varphi_{W}(uh_{n})\bigr{|}^{2}du\\ &=\frac{1}{2\pi}\inf_{x\in I}g_{\Delta}^{2m}(x-y)\int^{1/h_{n}}_{-1/h_{n}}\bigl{|}Q_{m}(u)\bigr{|}^{2}du.\end{split}

Since |ΦΔX(u)|1\bigl{|}\Phi_{\Delta X}(u)\bigr{|}\leq 1 for all u,u, it follows for m=3:m=3:

(5.16) 1/hn1/hn|Q3(u)|2𝑑u=1/hn1/hn1ΦΔX2(u)(u1α2)2𝑑u1/hn1/hn(u1α2)2𝑑u=(1α2)21/hn1/hnu2𝑑u=(1α)22u3301/hn=𝒪(hn3)\begin{split}\int^{1/h_{n}}_{-1/h_{n}}\bigl{|}Q_{3}(u)\bigr{|}^{2}du&=\int^{1/h_{n}}_{-1/h_{n}}\frac{1}{\Phi_{\Delta X}^{2}(u)}\biggl{(}u\frac{1-\alpha}{2}\biggr{)}^{2}du\geq\int^{1/h_{n}}_{-1/h_{n}}\biggl{(}u\frac{1-\alpha}{2}\biggr{)}^{2}du\\ &=\left(\frac{1-\alpha}{2}\right)^{2}\int^{1/h_{n}}_{-1/h_{n}}u^{2}\,du=\frac{(1-\alpha)^{2}}{2}\frac{u^{3}}{3}\mid_{0}^{1/h_{n}}=\mathcal{O}(h_{n}^{-3})\end{split}

The same argument applies to m=2:m=2:

1/hn1/hn|Q2(u)|2𝑑u=1/hn1/hn1ΦΔX2(u)(2α23uΔΨ(u)1α2)2𝑑u(2α2)21/hn1/hn𝑑u32(2α)(1α)Δ1/hn1/hnuΨ(u)𝑑u+9Δ2(1α2)21/hn1/hn(uΨ(u))2𝑑u.\begin{split}\int^{1/h_{n}}_{-1/h_{n}}\left|Q_{2}(u)\right|^{2}du&=\int^{1/h_{n}}_{-1/h_{n}}\frac{1}{\Phi_{\Delta X}^{2}(u)}\left(\frac{2-\alpha}{2}-3u\Delta\Psi^{\prime}(u)\frac{1-\alpha}{2}\right)^{2}du\\ &\geq\left(\frac{2-\alpha}{2}\right)^{2}\int^{1/h_{n}}_{-1/h_{n}}du-\frac{3}{2}(2-\alpha)(1-\alpha)\Delta\int^{1/h_{n}}_{-1/h_{n}}u\Psi^{\prime}(u)\,du\\ &\hskip 56.9055pt+9\Delta^{2}\biggl{(}\frac{1-\alpha}{2}\biggr{)}^{2}\int^{1/h_{n}}_{-1/h_{n}}(u\Psi^{\prime}(u))^{2}du.\end{split}

Furthermore

1/hn1/hnuΨ(u)𝑑u=21α[1/hn1/hn(01u(σ2uy+iγ)yα1αdy)du..+1/hn1/hn(01iux(eiuyx𝕀{|x|1})ν(dx)yα1αdy)du]=𝒪(hn3+hn2)=𝒪(hn3).\begin{split}\int^{1/h_{n}}_{-1/h_{n}}u\Psi^{\prime}(u)du&=\frac{2}{1-\alpha}\biggl{[}\int^{1/h_{n}}_{-1/h_{n}}\biggl{(}\int_{0}^{1}u(-\sigma^{2}uy+\mathrm{i}\gamma)y^{\frac{\alpha}{1-\alpha}}\,dy\biggr{)}du\biggr{.}\\ &\biggl{.}\hskip 28.45274pt+\int^{1/h_{n}}_{-1/h_{n}}\biggl{(}\int_{0}^{1}\int_{\mathbb{R}}\mathrm{i}ux(e^{\mathrm{i}uyx}-\mathbb{I}_{\{|x|\leq 1\}})\nu(dx)y^{\frac{\alpha}{1-\alpha}}dy\biggr{)}du\biggr{]}\\ &=\mathcal{O}(h_{n}^{-3}+h_{n}^{-2})=\mathcal{O}(h_{n}^{-3}).\end{split}

Similarly 1/hn1/hn(uΨ(u))2𝑑u=𝒪(hn5)\int^{1/h_{n}}_{-1/h_{n}}(u\Psi^{\prime}(u))^{2}\,du=\mathcal{O}(h_{n}^{-5}) and we have

(5.17) 1/hn1/hn|Q2(u)|2𝑑u=𝒪(hn1+Δhn3+Δ2hn5)=𝒪(hn1),\int^{1/h_{n}}_{-1/h_{n}}\bigl{|}Q_{2}(u)\bigr{|}^{2}du=\mathcal{O}(h_{n}^{-1}+\Delta h_{n}^{-3}+\Delta^{2}h_{n}^{-5})=\mathcal{O}(h_{n}^{-1}),
(5.18) 1/hn1/hn|Q1(u)|2duΔ21/hn1/hn(3u1α2(Δ(Ψ(u))2+Ψ′′(u))(2α)Ψ(u))2𝑑u=𝒪(Δ2(Δ2hn7+Δhn5+hn3))=𝒪(Δ2hn3),\begin{split}\int^{1/h_{n}}_{-1/h_{n}}\bigl{|}Q_{1}(u)\bigl{|}^{2}du&\geq\Delta^{2}\int^{1/h_{n}}_{-1/h_{n}}\biggl{(}3u\frac{1-\alpha}{2}\bigl{(}\Delta(\Psi^{\prime}(u))^{2}+\Psi^{\prime\prime}(u)\bigr{)}-(2-\alpha)\Psi^{\prime}(u)\biggr{)}^{2}du\\ &=\mathcal{O}\bigl{(}\Delta^{2}(\Delta^{2}h_{n}^{-7}+\Delta h_{n}^{-5}+h_{n}^{-3})\bigr{)}=\mathcal{O}(\Delta^{2}h_{n}^{-3}),\end{split}
(5.19) 1/hn1/hn|Q0(u)|2𝑑u=Δ21/hn1/hn(2α2(Δ(Ψ(u))2Ψ′′(u))..u1α2(Ψ′′′(u)3ΔΨ′′(u)Ψ(u)Δ2(Ψ(u))3))2du=𝒪(Δ2(hn3+Δhn3+hn1+Δ2hn5+Δ3hn7+Δ4hn9))=𝒪(Δ2hn3).\begin{split}\int^{1/h_{n}}_{-1/h_{n}}\bigl{|}Q_{0}(u)\bigr{|}^{2}du&=\Delta^{2}\int^{1/h_{n}}_{-1/h_{n}}\biggl{(}\frac{2-\alpha}{2}\bigl{(}\Delta(\Psi^{\prime}(u))^{2}-\Psi^{\prime\prime}(u)\bigr{)}\biggr{.}\\ &\biggl{.}\hskip 10.00002pt-u\frac{1-\alpha}{2}\bigl{(}\Psi^{\prime\prime\prime}(u)-3\Delta\Psi^{\prime\prime}(u)\Psi^{\prime}(u)-\Delta^{2}(\Psi^{\prime}(u))^{3}\bigr{)}\biggr{)}^{2}du\\ &=\mathcal{O}(\Delta^{2}(h_{n}^{-3}+\Delta h_{n}^{-3}+h_{n}^{-1}+\Delta^{2}h_{n}^{-5}+\Delta^{3}h_{n}^{-7}+\Delta^{4}h_{n}^{-9}))\\ &=\mathcal{O}(\Delta^{2}h_{n}^{-3}).\end{split}

Taking into account Lemma 11, we get

(5.20) infxIK0,n2(xy)PΔ(dy)Δ2hn3infxIy2K1,n2(xy)PΔ(dy)Δ3hn3infxIy4K2,n2(xy)PΔ(dy)Δhn1infxIy6K3,n2(xy)PΔ(dy)Δhn3\begin{split}&\inf_{x\in I}\int_{\mathbb{R}}K_{0,n}^{2}(x-y)P_{\Delta}(dy)\gtrsim\Delta^{2}h_{n}^{-3}\\ &\inf_{x\in I}\int_{\mathbb{R}}y^{2}K_{1,n}^{2}(x-y)P_{\Delta}(dy)\gtrsim\Delta^{3}h_{n}^{-3}\\ &\inf_{x\in I}\int_{\mathbb{R}}y^{4}K_{2,n}^{2}(x-y)P_{\Delta}(dy)\gtrsim\Delta h_{n}^{-1}\\ &\inf_{x\in I}\int_{\mathbb{R}}y^{6}K_{3,n}^{2}(x-y)P_{\Delta}(dy)\gtrsim\Delta h_{n}^{-3}\end{split}

Finally, by combining (5.20) with (5.12)-(5.15), we prove the claim. ∎

5.1. Proof of Theorem 1

Using the equations (3.1) and (3.2), the difference ρ^n(x)ρ(x)\widehat{\rho}_{n}(x)-\rho(x) can be represented as

ρ^n(x)ρ(x)=(ρ^n(x)ρ~(x))Rn(x)+(ρ~(x)ρ(x))Iσn2(x)+Iρn(x),\widehat{\rho}_{n}(x)-\rho(x)=\underbrace{\bigl{(}\widehat{\rho}_{n}(x)-\widetilde{\rho}(x)\bigr{)}}_{R_{n}(x)}+\underbrace{\bigl{(}\widetilde{\rho}(x)-\rho(x)\bigr{)}}_{I_{\sigma^{2}_{n}}(x)+I_{\rho_{n}}(x)},

where

ρ~(x):=12πΔeiux[(α1Ψ)′′(u)+Δσ2]φW(uh)𝑑u,Iσn2(x):=12πeiux(σ^n2σ2)φW(uh)𝑑u,Iρn(x):=[ρ(h1W(/h))](x)ρ(x).\begin{split}&\widetilde{\rho}(x):=-\frac{1}{2\pi\Delta}\int_{\mathbb{R}}e^{-\mathrm{i}ux}\bigl{[}(\mathcal{L}^{-1}_{\alpha}\Psi)^{\prime\prime}(u)+\Delta\sigma^{2}\bigr{]}\varphi_{W}(uh)\,du,\\ &I_{\sigma^{2}_{n}}(x):=-\frac{1}{2\pi}\int_{\mathbb{R}}e^{-\mathrm{i}ux}(\widehat{\sigma}^{2}_{n}-\sigma^{2})\varphi_{W}(uh)\,du,\\ &I_{\rho_{n}}(x):=\bigl{[}\rho\ast(h^{-1}W(\cdot/h))\bigr{]}(x)-\rho(x).\end{split}

Under assumptions 1 (iv) and lemma 6, the terms IρnI_{\rho_{n}} and Iσn2I_{\sigma^{2}_{n}} are asymptotically (as nn\to\infty and Δ0\Delta\to 0) smaller than RnR_{n} and hence can be neglected when constructing the confidence interval for the transformed Lévy density ρ.\rho. With the notations 3.8 for Rn(x)R_{n}(x), namely

Rn(x)=1nΔm[=0]3(j[=1]n{im(ΔX)jmKm,n(x(ΔX)j)....𝖤[im(ΔX)1mKm,n(x(ΔX)1)]}),\begin{split}R_{n}(x)&=\frac{1}{n\Delta}\stackrel{{\scriptstyle[}}{{m}}=0]{3}{\sum}\biggl{(}\stackrel{{\scriptstyle[}}{{j}}=1]{n}{\sum}\bigl{\{}\mathrm{i}^{m}(\Delta X)_{j}^{m}K_{m,n}(x-(\Delta X)_{j})\bigr{.}\biggr{.}\\ &\biggl{.}\bigl{.}\hskip 85.35826pt-\mathsf{E}\bigl{[}\mathrm{i}^{m}(\Delta X)_{1}^{m}K_{m,n}(x-(\Delta X)_{1})\bigr{]}\bigr{\}}\biggr{)},\end{split}

where the kernel functions Km,n(z),m=0,1,2,3,K_{m,n}(z),\,m=0,1,2,3, are defined as

Km,n(z):=12πeiuzQm(u)φW(uhn)𝑑uK_{m,n}(z):=-\frac{1}{2\pi}\int_{\mathbb{R}}e^{-\mathrm{i}uz}Q_{m}(u)\varphi_{W}(uh_{n})\,du

consider the process

(5.21) Tn(x):=nΔs(x)Rn(x),T_{n}(x):=\frac{\sqrt{n}\Delta}{s(x)}R_{n}(x),

where s2(x)s^{2}(x) is given by

(5.22) s2(x):=𝖵𝖺𝗋[m[=0]3im(ΔX)1mKm,n(x(ΔX)1)]s^{2}(x):=\mathsf{Var}\biggl{[}\stackrel{{\scriptstyle[}}{{m}}=0]{3}{\sum}\mathrm{i}^{m}(\Delta X)_{1}^{m}K_{m,n}(x-(\Delta X)_{1})\biggr{]}

Futher we show that exists a tight (I)\ell^{\infty}(I)-sequence of Gaussian random variables TnGT_{n}^{G} with zero mean and the same covariance function as one of Tn\,T_{n}, and such that the distribution of TnGI:=supxI|TnG(x)|\|T_{n}^{G}\|_{I}:=\sup_{x\in I}|T_{n}^{G}(x)| asymptotically approximates the distribution of TnI\|T_{n}\|_{I} in the sense that

supz|P{TnIz}P{TnGIz}|0,n.\underset{z\in\mathbb{R}}{\sup}\bigl{|}\mathrm{P}\left\{\bigl{\|}T_{n}\bigr{\|}_{I}\leq z\right\}-\mathrm{P}\left\{\bigl{\|}T_{n}^{G}\bigr{\|}_{I}\leq z\right\}\bigr{|}\to 0,\quad n\to\infty.

In what follows, we always assume Assumption 1. The proofs rely on modern empirical process theory. For a probability measure QQ on a measurable space (S,𝒮)(S,\mathcal{S}) and a class of measurable functions \mathcal{F} on SS such that L2(Q)\mathcal{F}\in L^{2}(Q), let N(,Q,2,ε)N(\mathcal{F},\left\|\cdot\right\|_{Q,2},\varepsilon) denote the ε\varepsilon-covering number for \mathcal{F} with respect to the L2(Q)L^{2}(Q)-seminorm Q,2\left\|\cdot\right\|_{Q,2}. See Section 2.1 in [16] for details. Let =d\stackrel{{\scriptstyle d}}{{=}} denote the equality in distribution. Consider the function class

i,n={y(iy)is(x)Ki,n(xy):xI}.\mathcal{F}_{i,n}=\left\{y\mapsto\frac{(\mathrm{i}y)^{i}}{s(x)}K_{i,n}(x-y):\quad x\in I\right\}.

According to Lemma 12

infxIs2(x)Δhn3\inf_{x\in I}s^{2}(x)\gtrsim\Delta h_{n}^{-3}

and we have

(5.23) nΔ(ρ^n(x)ρ(x))s(x)=Tn(x)+oP(hn1/2loghn1)\frac{\sqrt{n}\Delta(\widehat{\rho}_{n}(x)-\rho(x))}{s(x)}=T_{n}(x)+o_{\mathrm{P}}\left(h_{n}^{1/2}\log h_{n}^{-1}\right)

uniformly in xIx\in I. Under condition (iii) of Assumption 1, the expression hn1/2loghn1h_{n}^{1/2}\log h_{n}^{-1} converges to 0. Further we approximate TnI\|T_{n}\|_{I} by the supremum of a tight Gaussian random variable TnGT_{n}^{G} in (I)\ell^{\infty}(I) with expected value zero and the same covariance function as for the random variable TnT_{n}. Using Theorem 2.1 in [6], which proves the existence of such random variable TnGT_{n}^{G}, we consider the empirical process:

𝖦n(fi,n)=1ni[=0]3[j[=1]n{fi,n((ΔX)j)𝖤[fi,n((ΔX)1)]}],fi,ni,n.\mathsf{G}_{n}(f_{i,n})=\frac{1}{\sqrt{n}}\stackrel{{\scriptstyle[}}{{i}}=0]{3}{\sum}\left[\stackrel{{\scriptstyle[}}{{j}}=1]{n}{\sum}\bigl{\{}f_{i,n}((\Delta X)_{j})-\mathsf{E}\bigl{[}f_{i,n}((\Delta X)_{1})\bigr{]}\bigr{\}}\right],\ f_{i,n}\in\mathcal{F}_{i,n}.

Note that according lemma 11 the increment process XΔX0X_{\Delta}-X_{0} has the distribution PΔP_{\Delta}, so that y2mPΔ(dy)=gΔ2m(y)dy,y^{2m}P_{\Delta}(dy)=g_{\Delta}^{2m}(y)dy, with gΔ2Δ1/2\bigl{\|}g_{\Delta}^{2}\bigr{\|}_{\mathbb{R}}\lesssim\Delta^{1/2} and gΔ2mΔ\bigl{\|}g_{\Delta}^{2m}\bigr{\|}_{\mathbb{R}}\lesssim\Delta for m=2,3.m=2,3. Hence

𝖤[(ΔX)12mKm,n2(x(ΔX)1)]=y2mKm,n2(xy)PΔ(dy)=Km,n2(xy)gΔ2m(y)𝑑y=Km,n2(y)gΔ2m(xy)𝑑ygΔ2mKm,n2(y)𝑑y\begin{split}\mathsf{E}\bigl{[}(\Delta X)_{1}^{2m}K_{m,n}^{2}(x-(\Delta X)_{1})\bigr{]}&=\int_{\mathbb{R}}y^{2m}K_{m,n}^{2}(x-y)P_{\Delta}(dy)\\ &=\int_{\mathbb{R}}K_{m,n}^{2}(x-y)g_{\Delta}^{2m}(y)\,dy\\ &=\int_{\mathbb{R}}K_{m,n}^{2}(y)g_{\Delta}^{2m}(x-y)\,dy\\ &\leq\bigl{\|}g_{\Delta}^{2m}\bigr{\|}_{\mathbb{R}}\int_{\mathbb{R}}K_{m,n}^{2}(y)\,dy\end{split}

Since Km,n(z)=12πeiuzQm(u)φW(uhn)𝑑uK_{m,n}(z)=-\frac{1}{2\pi}\int_{\mathbb{R}}e^{-\mathrm{i}uz}Q_{m}(u)\varphi_{W}(uh_{n})\,du, we have according to the Plancherel’s theorem,

Km,n2(y)𝑑y=12π|Qm(u)φW(uhn)|2𝑑u.\int_{\mathbb{R}}K_{m,n}^{2}(y)\,dy=-\frac{1}{2\pi}\int_{\mathbb{R}}\bigl{|}Q_{m}(u)\varphi_{W}(uh_{n})\bigr{|}^{2}du.

Using (5.16), (5.17), (5.18) and (5.19), we get that

(5.24) 𝖤[K0,n2(x(ΔX)1)]Δ2hn3,𝖤[(ΔX)12K1,n2(x(ΔX)1)]Δ5/2hn3,𝖤[(ΔX)14K2,n2(x(ΔX)1)]Δhn1,𝖤[(ΔX)16K3,n2(x(ΔX)1)]Δhn3,\begin{split}&\mathsf{E}\bigl{[}K_{0,n}^{2}(x-(\Delta X)_{1})\bigr{]}\lesssim\Delta^{2}h_{n}^{-3},\\ &\mathsf{E}\bigl{[}(\Delta X)_{1}^{2}K_{1,n}^{2}(x-(\Delta X)_{1})\bigr{]}\lesssim\Delta^{5/2}h_{n}^{-3},\\ &\mathsf{E}\bigl{[}(\Delta X)_{1}^{4}K_{2,n}^{2}(x-(\Delta X)_{1})\bigr{]}\lesssim\Delta h_{n}^{-1},\\ &\mathsf{E}\bigl{[}(\Delta X)_{1}^{6}K_{3,n}^{2}(x-(\Delta X)_{1})\bigr{]}\lesssim\Delta h_{n}^{-3},\end{split}

holds and it also follows that

supfi,ni,n𝖤[i[=1]3fi,n2((ΔX)1)]Δhn3Δhn31.\underset{f_{i,n}\in\mathcal{F}_{i,n}}{\sup}\mathsf{E}\biggl{[}\stackrel{{\scriptstyle[}}{{i}}=1]{3}{\sum}f_{i,n}^{2}((\Delta X)_{1})\biggr{]}\lesssim\frac{\Delta h_{n}^{-3}}{\Delta h_{n}^{-3}}\lesssim 1.

Furthermore

(5.25) K0,n((ΔX)1)Δ(Δhn2+1+hn1+Δ2hn4)Δhn1,K1,n((ΔX)1)Δ(Δhn3+hn1)Δhn1,K2,n((ΔX)1)1+Δhn21,K3,n((ΔX)1)hn1.\begin{split}\bigl{\|}K_{0,n}(\cdot-(\Delta X)_{1})\bigr{\|}_{\mathbb{R}}&\lesssim\Delta(\Delta h_{n}^{-2}+1+h_{n}^{-1}+\Delta^{2}h_{n}^{-4})\lesssim\Delta h_{n}^{-1},\\ \bigl{\|}K_{1,n}(\cdot-(\Delta X)_{1})\bigr{\|}_{\mathbb{R}}&\lesssim\Delta(\Delta h_{n}^{-3}+h_{n}^{-1})\lesssim\Delta h_{n}^{-1},\\ \bigl{\|}K_{2,n}(\cdot-(\Delta X)_{1})\bigr{\|}_{\mathbb{R}}&\lesssim 1+\Delta h_{n}^{-2}\lesssim 1,\\ \bigl{\|}K_{3,n}(\cdot-(\Delta X)_{1})\bigr{\|}_{\mathbb{R}}&\lesssim h_{n}^{-1}.\end{split}

Hence supfi,ni,ni[=0]3fi,n((ΔX)1)hn1Δhn3hn/Δ\underset{f_{i,n}\in\mathcal{F}_{i,n}}{\sup}\biggl{\|}\stackrel{{\scriptstyle[}}{{i}}=0]{3}{\sum}f_{i,n}((\Delta X)_{1})\biggr{\|}_{\mathbb{R}}\lesssim\frac{h_{n}^{-1}}{\sqrt{\Delta h_{n}^{-3}}}\lesssim\sqrt{h_{n}}/\sqrt{\Delta} and we have

(5.26) supfi,ni,n𝔼[i[=0]3fi,n3((ΔX)1)]supfi,ni,n𝔼[i[=0]3fi,n2((ΔX)1)]hn/Δhn/Δ,supfi,ni,n𝔼[i[=0]3fi,n4((ΔX)1)]supfi,ni,n𝔼[i[=0]3fi,n2((ΔX)1)]hn/Δhn/Δ.\begin{split}&\underset{f_{i,n}\in\mathcal{F}_{i,n}}{\sup}\mathbb{E}\biggl{[}\stackrel{{\scriptstyle[}}{{i}}=0]{3}{\sum}f_{i,n}^{3}((\Delta X)_{1})\biggr{]}\lesssim\underset{f_{i,n}\in\mathcal{F}_{i,n}}{\sup}\mathbb{E}\biggl{[}\stackrel{{\scriptstyle[}}{{i}}=0]{3}{\sum}f_{i,n}^{2}((\Delta X)_{1})\biggr{]}\sqrt{h_{n}}/\sqrt{\Delta}\lesssim\sqrt{h_{n}}/\sqrt{\Delta},\\ &\underset{f_{i,n}\in\mathcal{F}_{i,n}}{\sup}\mathbb{E}\biggl{[}\stackrel{{\scriptstyle[}}{{i}}=0]{3}{\sum}f_{i,n}^{4}((\Delta X)_{1})\biggr{]}\lesssim\underset{f_{i,n}\in\mathcal{F}_{i,n}}{\sup}\mathbb{E}\biggl{[}\stackrel{{\scriptstyle[}}{{i}}=0]{3}{\sum}f_{i,n}^{2}((\Delta X)_{1})\biggr{]}h_{n}/\Delta\lesssim h_{n}/\Delta.\\ \end{split}

Due Theorem 2.1 in [6] with B(f)0,A1,v1,σ1,bhnΔ,γ1lognB(f)\equiv 0,A\lesssim 1,v\lesssim 1,\sigma\sim 1,b\lesssim\frac{\sqrt{h_{n}}}{\sqrt{\Delta}},\gamma\lesssim\frac{1}{\log n} and qq sufficiently large, we derive that there exist a random variable VnV_{n} with the same distribution as Uni,n\bigl{\|}U_{n}\bigr{\|}_{\mathcal{F}_{i,n}} such that

(5.27) |𝖦ni,nVn|=𝒪P{(logn)1+1/qn1/21/qΔhn1+logn(nΔhn1)1/6}=𝒪P{logn(nΔhn1)1/6}.\bigl{|}\bigl{\|}\mathsf{G}_{n}\bigr{\|}_{\mathcal{F}_{i,n}}-V_{n}\bigr{|}=\mathcal{O}_{P}\biggl{\{}\frac{(\log n)^{1+1/q}}{n^{1/2-1/q}\sqrt{\Delta h^{-1}_{n}}}+\frac{\log n}{(n\Delta h^{-1}_{n})^{1/6}}\biggr{\}}=\mathcal{O}_{P}\biggl{\{}\frac{\log n}{(n\Delta h^{-1}_{n})^{1/6}}\biggr{\}}.

Taking into account Assumption  1 (iii), the expression (5.23) converges to zero slower than (5.27). Then the statement 3.14 follows. In addition, for

fj,n(y)=(iy)jKj,n(xy)/s(x)f_{j,n}(y)=(\mathrm{i}y)^{j}K_{j,n}(x-y)/s(x)

we define TnG(x)=Un(i[=0]3fi,n(x)),xIT_{n}^{G}(x)=U_{n}(\stackrel{{\scriptstyle[}}{{i}}=0]{3}{\sum}f_{i,n}(x)),\ x\in I, and we observe, that there exists a tight Gaussian random variable TnG(x)T_{n}^{G}(x) in (I)\ell^{\infty}(I) with expected value zero and the same covariance function as for TnT_{n}. The following concentration inequality holds (see Theorem 2.1 in [9] for any ε>0,\varepsilon>0,

(5.28) supzP{|TnGIz|ε}4ε(1+𝖤[TnGI]).\underset{z\in\mathbb{R}}{\sup}\,\mathrm{P}\bigl{\{}\bigl{|}\bigl{\|}T_{n}^{G}\bigr{\|}_{I}-z\bigr{|}\leq\varepsilon\bigr{\}}\leq 4\varepsilon\bigl{(}1+\mathsf{E}\bigl{[}\bigl{\|}T_{n}^{G}\bigr{\|}_{I}\bigr{]}\bigr{)}.

According to the Corollary 2.1 in [9], Theorem 3 in [7] and the representation 5.27 for 𝖦ni,nVn,\|\mathsf{G}_{n}\|_{\mathcal{F}_{i,n}}-V_{n}, we can claim that there exists a sequence εn0\varepsilon_{n}\rightarrow 0 such

P{|𝖦nnVn|εn(hn1/2loghn1)}εn.\mathrm{P}\biggl{\{}\bigl{|}\bigl{\|}\mathsf{G}_{n}\bigr{\|}_{\mathcal{F}_{n}}-V_{n}\bigr{|}\geq\varepsilon_{n}\left(h_{n}^{1/2}\log h_{n}^{-1}\right)\biggr{\}}\leq\varepsilon_{n}.

Since 𝖦ni,n=TnI\bigl{\|}\mathsf{G}_{n}\bigr{\|}_{\mathcal{F}_{i,n}}=\bigl{\|}T_{n}\bigr{\|}_{I} and Vn=𝑑TnGI,V_{n}\overset{d}{=}\bigl{\|}T_{n}^{G}\bigr{\|}_{I}, we have that

P{TnIz}P{TnGIz+εn(hn1/2loghn1)}+εnP{TnGIz}+4εn(hn1/2loghn1)(1+𝖤[TnGI])+εn,\begin{split}\mathrm{P}\bigl{\{}\bigl{\|}T_{n}\bigr{\|}_{I}\leq z\bigr{\}}&\leq\mathrm{P}\biggl{\{}\bigl{\|}T_{n}^{G}\bigr{\|}_{I}\leq z+\varepsilon_{n}\left(h_{n}^{1/2}\log h_{n}^{-1}\right)\biggr{\}}+\varepsilon_{n}\leq\\ &\leq\mathrm{P}\bigl{\{}\bigl{\|}T_{n}^{G}\bigr{\|}_{I}\leq z\bigr{\}}+4\varepsilon_{n}\left(h_{n}^{1/2}\log h_{n}^{-1}\right)\bigl{(}1+\mathsf{E}\bigl{[}\bigl{\|}T_{n}^{G}\bigr{\|}_{I}\bigr{]}\bigr{)}+\varepsilon_{n},\end{split}

for all zz\in\mathbb{R}. In this way we have

P{TnIz}P{TnGIz}4εn(hn1/2loghn1)(1+𝖤[TnGI])εn,\mathrm{P}\bigl{\{}\bigl{\|}T_{n}\bigr{\|}_{I}\leq z\bigr{\}}\geq\mathrm{P}\bigl{\{}\bigl{\|}T_{n}^{G}\bigr{\|}_{I}\leq z\bigr{\}}-4\varepsilon_{n}\left(h_{n}^{1/2}\log h_{n}^{-1}\right)\bigl{(}1+\mathsf{E}\bigl{[}\bigl{\|}T_{n}^{G}\bigr{\|}_{I}\bigr{]}\bigr{)}-\varepsilon_{n},

for all zz\in\mathbb{R}.

It follows from Corollary 2.2.8 (see [16]) together with Var[i[=0]3fi,n((ΔX)1)]=1\mathrm{Var}\bigl{[}\stackrel{{\scriptstyle[}}{{i}}=0]{3}{\sum}f_{i,n}((\Delta X)_{1})\bigr{]}=1, that

𝖤[TnGI]=𝖤[Uni,n]011+log(1/εΔhn1)𝑑ε(logn)1/2.\mathsf{E}\bigl{[}\bigl{\|}T_{n}^{G}\bigr{\|}_{I}\bigr{]}=\mathsf{E}\bigl{[}\bigl{\|}U_{n}\bigr{\|}_{\mathcal{F}_{i,n}}\bigr{]}\lesssim\int^{1}_{0}\sqrt{1+\log\bigl{(}1/\varepsilon\sqrt{\Delta h_{n}^{-1}}\bigr{)}}\,d\varepsilon\lesssim(\log n)^{1/2}.

The proof is completed.

5.2. Proof of Theorem 2

The proof scheme of the validity of bootstrap confidence bands was introduced by Kato and Kurisu [10] and can be represented as follows.

Step 1: Conditional distribution of the supremum of the multiplier process Tn^MBI\bigl{\|}\widehat{T_{n}}^{MB}\bigr{\|}_{I} consistently estimates the distribution of the Gaussian supremum TnGI\bigl{\|}T_{n}^{G}\bigr{\|}_{I} in the sense that

supz|P{Tn^MBIz𝖣n}P{TnGIz}|=oP(1)\underset{z\in\mathbb{R}}{\sup}\biggl{|}\mathrm{P}\biggl{\{}\bigl{\|}\widehat{T_{n}}^{MB}\bigr{\|}_{I}\leq z\mid\mathsf{D}_{n}\biggr{\}}-\mathrm{P}\bigl{\{}\bigl{\|}T_{n}^{G}\bigr{\|}_{I}\leq z\bigr{\}}\biggr{|}=o_{P}(1)

Step 2: In addition together with Theorem 1 we have that

supz|P{Δn(ρn^()ρ())s^n()Iz}P{TnGIz}|0.\underset{z\in\mathbb{R}}{\sup}\biggl{|}\mathrm{P}\biggl{\{}\biggl{\|}\frac{\Delta\sqrt{n}(\widehat{\rho_{n}}(\cdot)-\rho(\cdot))}{\widehat{s}_{n}(\cdot)}\biggr{\|}_{I}\leq z\biggr{\}}-\mathrm{P}\bigl{\{}\bigl{\|}T_{n}^{G}\bigr{\|}_{I}\leq z\bigr{\}}\biggr{|}\to 0.

Step 3: Combining steps 1 and 2 leads to the conclusion of Theorem 2. For an precise proof of Theorem 2 we need the following technical lemma.

Lemma 13.

We have

s^n2()/s2()1I=oP{((nΔhn1)1logn)1/2}.\bigl{\|}\widehat{s}_{n}^{2}(\cdot)/s^{2}(\cdot)-1\bigr{\|}_{I}=o_{P}\bigl{\{}\bigl{(}(n\Delta h_{n}^{-1})^{-1}\log n\bigr{)}^{1/2}\bigr{\}}.

This Lemma can be proved using the technique in [10] (see Lemma 8.10) together with Corollary 5.1 and A.1 in [5].

Proof.

First using Lemma 9 note that

𝔻Φ^ΔXΦΔX\displaystyle\biggl{\|}\frac{\mathbb{D}}{\widehat{\Phi}_{\Delta X}\Phi_{\Delta X}}\biggr{\|}_{\mathbb{R}}\quad\quad n1/2loghn1,\displaystyle\lesssim n^{-1/2}\log h_{n}^{-1},
(𝔻Φ^ΔXΦΔX)\displaystyle\biggl{\|}\biggl{(}\frac{\mathbb{D}}{\widehat{\Phi}_{\Delta X}\Phi_{\Delta X}}\biggr{)}^{\prime}\biggr{\|}_{\mathbb{R}}\,\, 𝔻Φ^ΔXΦΔX+Δ𝔻ΨΦ^ΔXΦΔX\displaystyle\leq\biggl{\|}\frac{\mathbb{D}^{\prime}}{\widehat{\Phi}_{\Delta X}\Phi_{\Delta X}}+\frac{\Delta\mathbb{D}\Psi^{\prime}}{\widehat{\Phi}_{\Delta X}\Phi_{\Delta X}}\biggr{\|}_{\mathbb{R}}
n1/2loghn1(Δ1/2+Δhn1)n1/2loghn1Δ1/2,\displaystyle\lesssim n^{-1/2}\log h_{n}^{-1}(\Delta^{1/2}+\Delta h_{n}^{-1})\lesssim n^{-1/2}\log h_{n}^{-1}\Delta^{1/2},
(𝔻Φ^ΔXΦΔX)′′\displaystyle\biggl{\|}\biggl{(}\frac{\mathbb{D}}{\widehat{\Phi}_{\Delta X}\Phi_{\Delta X}}\biggr{)}^{\prime\prime}\biggr{\|}_{\mathbb{R}}\, n1/2loghn1(Δ1/2+Δ3/2hn1+Δ2hn2)\displaystyle\lesssim n^{-1/2}\log h_{n}^{-1}(\Delta^{1/2}+\Delta^{3/2}h_{n}^{-1}+\Delta^{2}h_{n}^{-2})
n1/2loghn1Δ1/2,\displaystyle\lesssim n^{-1/2}\log h_{n}^{-1}\Delta^{1/2},
(𝔻Φ^ΔXΦΔX)′′′\displaystyle\biggl{\|}\biggl{(}\frac{\mathbb{D}}{\widehat{\Phi}_{\Delta X}\Phi_{\Delta X}}\biggr{)}^{\prime\prime\prime}\biggr{\|}_{\mathbb{R}} n1/2loghn1(Δ1/2+Δ3/2hn1+Δ2hn2+Δ3hn3)\displaystyle\lesssim n^{-1/2}\log h_{n}^{-1}(\Delta^{1/2}+\Delta^{3/2}h_{n}^{-1}+\Delta^{2}h_{n}^{-2}+\Delta^{3}h_{n}^{-3})
n1/2loghn1Δ1/2.\displaystyle\lesssim n^{-1/2}\log h_{n}^{-1}\Delta^{1/2}.

Furthermore

K^3,n(z)K3,n(z)\displaystyle\widehat{K}_{3,n}(z)-K_{3,n}(z) =12πeiuz(Q^3(u)Q3(u))φW(uhn)𝑑u\displaystyle=-\frac{1}{2\pi}\int_{\mathbb{R}}e^{-\mathrm{i}uz}\bigl{(}\widehat{Q}_{3}(u)-Q_{3}(u)\bigr{)}\varphi_{W}(uh_{n})\,du
=1α4πeiuzu(𝔻(u)Φ^ΔX(u)ΦΔX(u))φW(uhn)𝑑u\displaystyle=-\frac{1-\alpha}{4\pi}\int_{\mathbb{R}}e^{-\mathrm{i}uz}u\biggl{(}\frac{-\mathbb{D}(u)}{\widehat{\Phi}_{\Delta X}(u)\Phi_{\Delta X}(u)}\biggr{)}\varphi_{W}(uh_{n})\,du

and

K^3,nK3,nn1/2loghn11/hn1/hneiuxu𝑑un1/2hn1loghn1.\displaystyle\bigl{\|}\widehat{K}_{3,n}-K_{3,n}\bigr{\|}_{\mathbb{R}}\lesssim n^{-1/2}\log h_{n}^{-1}\int^{1/h_{n}}_{-1/h_{n}}e^{-\mathrm{i}ux}u\,du\lesssim n^{-1/2}h_{n}^{-1}\log h_{n}^{-1}.

Analogously

K^2,nK2,nn1/2loghn1(hn1+Δ1/21/hn1/hneiuxu𝑑u)n1/2hn1loghn1,K^1,nK1,nn1/2loghn1Δ1/2(hn1+Δ1/2hn1)n1/2Δ1/2hn1loghn1,K^0,nK0,nn1/2loghn1Δ1/2(hn1+Δ1/2hn1)n1/2Δ1/2hn1loghn1.\begin{split}\bigl{\|}\widehat{K}_{2,n}-K_{2,n}\bigr{\|}_{\mathbb{R}}\quad&\lesssim n^{-1/2}\log h_{n}^{-1}\biggl{(}h_{n}^{-1}+\Delta^{1/2}\int^{1/h_{n}}_{-1/h_{n}}e^{-\mathrm{i}ux}u\,du\biggr{)}\\ &\lesssim n^{-1/2}h_{n}^{-1}\log h_{n}^{-1},\\ \bigl{\|}\widehat{K}_{1,n}-K_{1,n}\bigr{\|}_{\mathbb{R}}\quad&\lesssim n^{-1/2}\log h_{n}^{-1}\Delta^{1/2}(h_{n}^{-1}+\Delta^{1/2}h_{n}^{-1})\lesssim n^{-1/2}\Delta^{1/2}h_{n}^{-1}\log h_{n}^{-1},\\ \bigl{\|}\widehat{K}_{0,n}-K_{0,n}\bigr{\|}_{\mathbb{R}}\quad&\lesssim n^{-1/2}\log h_{n}^{-1}\Delta^{1/2}(h_{n}^{-1}+\Delta^{1/2}h_{n}^{-1})\lesssim n^{-1/2}\Delta^{1/2}h_{n}^{-1}\log h_{n}^{-1}.\end{split}

Since K^i,n2Ki,n2K^i,nKi,nK^i,n+Ki,n,\bigl{\|}\widehat{K}_{i,n}^{2}-K_{i,n}^{2}\bigr{\|}_{\mathbb{R}}\leq\bigl{\|}\widehat{K}_{i,n}-K_{i,n}\bigr{\|}_{\mathbb{R}}\bigl{\|}\widehat{K}_{i,n}+K_{i,n}\bigr{\|}_{\mathbb{R}}, we have according to (5.25),

K^0,n2K0,n2n1/2Δ3/2hn2loghn1,K^1,n2K1,n2n1/2Δ3/2hn2loghn1,K^2,n2K2,n2n1/2hn1loghn1,K^3,n2K3,n2n1/2hn2loghn1.\begin{split}\bigl{\|}\widehat{K}_{0,n}^{2}-K_{0,n}^{2}\bigr{\|}_{\mathbb{R}}&\lesssim n^{-1/2}\Delta^{3/2}h_{n}^{-2}\log h_{n}^{-1},\\ \bigl{\|}\widehat{K}_{1,n}^{2}-K_{1,n}^{2}\bigr{\|}_{\mathbb{R}}&\lesssim n^{-1/2}\Delta^{3/2}h_{n}^{-2}\log h_{n}^{-1},\\ \bigl{\|}\widehat{K}_{2,n}^{2}-K_{2,n}^{2}\bigr{\|}_{\mathbb{R}}&\lesssim n^{-1/2}h_{n}^{-1}\log h_{n}^{-1},\\ \bigl{\|}\widehat{K}_{3,n}^{2}-K_{3,n}^{2}\bigr{\|}_{\mathbb{R}}&\lesssim n^{-1/2}h_{n}^{-2}\log h_{n}^{-1}.\end{split}

Next we have for i=0,1,2,3i=0,1,2,3

(5.29) 1nj[=1]n(ΔX)ji{K^i,n((ΔX)j)Ki,n((ΔX)j)}I=𝒪p(n1/2Δ(i+1/2)1hn1loghn1).\begin{split}&\biggl{\|}\frac{1}{n}\stackrel{{\scriptstyle[}}{{j}}=1]{n}{\sum}(\Delta X)_{j}^{i}\bigl{\{}\widehat{K}_{i,n}\bigl{(}\cdot-(\Delta X)_{j}\bigr{)}-K_{i,n}\bigl{(}\cdot-(\Delta X)_{j}\bigr{)}\bigr{\}}\biggr{\|}_{I}\\ &\hskip 128.0374pt=\mathcal{O}_{p}\bigl{(}n^{-1/2}\Delta^{(i+1/2)\wedge 1}h_{n}^{-1}\log h_{n}^{-1}\bigr{)}.\end{split}

and analogously

(5.30) 1nj[=1]n{K^0,n2((ΔX)j)K0,n2((ΔX)j)}I=Op(n1/2Δ3/2hn2loghn1),1nj[=1]n(ΔX)j2{K^1,n2((ΔX)j)K1,n2((ΔX)j)}I=Op(n1/2Δ5/2hn2loghn1),1nj[=1]n(ΔX)j4{K^2,n2((ΔX)j)K2,n2((ΔX)j)}I=Op(n1/2Δhn1loghn1),1nj[=1]n(ΔX)j6{K^3,n2((ΔX)j)K3,n2((ΔX)j)}I=Op(n1/2Δhn2loghn1).\begin{split}&\biggl{\|}\frac{1}{n}\stackrel{{\scriptstyle[}}{{j}}=1]{n}{\sum}\bigl{\{}\widehat{K}^{2}_{0,n}\bigl{(}\cdot-(\Delta X)_{j}\bigr{)}-K^{2}_{0,n}\bigl{(}\cdot-(\Delta X)_{j}\bigr{)}\bigr{\}}\biggr{\|}_{I}=O_{p}\bigl{(}n^{-1/2}\Delta^{3/2}h_{n}^{-2}\log h_{n}^{-1}\bigr{)},\\ &\biggl{\|}\frac{1}{n}\stackrel{{\scriptstyle[}}{{j}}=1]{n}{\sum}(\Delta X)^{2}_{j}\bigl{\{}\widehat{K}^{2}_{1,n}\bigl{(}\cdot-(\Delta X)_{j}\bigr{)}-K^{2}_{1,n}\bigl{(}\cdot-(\Delta X)_{j}\bigr{)}\bigr{\}}\biggr{\|}_{I}=O_{p}\bigl{(}n^{-1/2}\Delta^{5/2}h_{n}^{-2}\log h_{n}^{-1}\bigr{)},\\ &\biggl{\|}\frac{1}{n}\stackrel{{\scriptstyle[}}{{j}}=1]{n}{\sum}(\Delta X)^{4}_{j}\bigl{\{}\widehat{K}^{2}_{2,n}\bigl{(}\cdot-(\Delta X)_{j}\bigr{)}-K^{2}_{2,n}\bigl{(}\cdot-(\Delta X)_{j}\bigr{)}\biggr{\}}\biggr{\|}_{I}=O_{p}\bigl{(}n^{-1/2}\Delta h_{n}^{-1}\log h_{n}^{-1}\bigr{)},\\ &\biggl{\|}\frac{1}{n}\stackrel{{\scriptstyle[}}{{j}}=1]{n}{\sum}(\Delta X)_{j}^{6}\bigl{\{}\widehat{K}^{2}_{3,n}\bigl{(}\cdot-(\Delta X)_{j}\bigr{)}-K^{2}_{3,n}\bigl{(}\cdot-(\Delta X)_{j}\bigr{)}\bigr{\}}\biggr{\|}_{I}=O_{p}\bigl{(}n^{-1/2}\Delta h_{n}^{-2}\log h_{n}^{-1}\bigr{)}.\end{split}

By the previous statement, we conclude that

s^n2(x)=s~n2(x)+𝒪p(n1/2Δhn2loghn1)\widehat{s}^{2}_{n}(x)=\widetilde{s}^{2}_{n}(x)+\mathcal{O}_{p}\bigl{(}n^{-1/2}\Delta h_{n}^{-2}\log h_{n}^{-1}\bigr{)}

uniformly in xIx\in I, where

s~n2(x):=m[=0]3(1nj[=0]n[(ΔX)j2mKm,n2(x(ΔX)j)]..{1nj[=0]n[(ΔX)jmKm,n(x(ΔX)j)]}2).\begin{split}\widetilde{s}^{2}_{n}(x)&:=\stackrel{{\scriptstyle[}}{{m}}=0]{3}{\sum}\biggl{(}\frac{1}{n}\stackrel{{\scriptstyle[}}{{j}}=0]{n}{\sum}\bigl{[}(\Delta X)_{j}^{2m}K_{m,n}^{2}\bigl{(}x-(\Delta X)_{j}\bigr{)}\bigr{]}\biggr{.}\\ &\biggl{.}\hskip 56.9055pt-\left\{\frac{1}{n}\stackrel{{\scriptstyle[}}{{j}}=0]{n}{\sum}\bigl{[}(\Delta X)_{j}^{m}K_{m,n}\bigl{(}x-(\Delta X)_{j}\bigr{)}\bigr{]}\right\}^{2}\biggr{)}.\end{split}

Moreover, since infxIs2(x)Δhn3\inf_{x\in I}s^{2}(x)\apprge\Delta h_{n}^{-3} we obtain that

n1/2Δhn2loghn1Δhn3=n1/2hnloghn1lognnΔhn1.\frac{n^{-1/2}\Delta h_{n}^{-2}\log h_{n}^{-1}}{\Delta h_{n}^{-3}}=n^{-1/2}h_{n}\log h_{n}^{-1}\ll\sqrt{\frac{\log n}{n\Delta h_{n}^{-1}}}.

Finally let us prove that s~n2()/s2()1I=oP{((nΔhn1)1logn)1/2}.\bigl{\|}\widetilde{s}_{n}^{2}(\cdot)/s^{2}(\cdot)-1\bigr{\|}_{I}=o_{P}\bigl{\{}\bigl{(}(n\Delta h_{n}^{-1})^{-1}\log n\bigr{)}^{1/2}\bigr{\}}. It follows from (5.12), (5.13), (5.14) und (5.15),

𝖤[K0,n((ΔX)1)/s()]IΔhn1/Δhn3(Δhn)1/2𝖤[(ΔX)1K1,n((ΔX)1)/s()]IΔ/Δhn3Δ1/2hn3/2𝖤[(ΔX)12K2,n((ΔX)1)/s()]IΔ/Δhn3Δ1/2hn3/2𝖤[(ΔX)13K3,n((ΔX)1)/s()]IΔhn1/Δhn3(Δhn)1/2.\begin{split}&\bigl{\|}\mathsf{E}\bigl{[}K_{0,n}\bigl{(}\cdot-(\Delta X)_{1}\bigl{)}/s(\cdot)\bigr{]}\bigr{\|}_{I}\lesssim\Delta h_{n}^{-1}/\sqrt{\Delta h_{n}^{-3}}\lesssim(\Delta h_{n})^{1/2}\\ &\bigl{\|}\mathsf{E}\bigl{[}(\Delta X)_{1}K_{1,n}\bigl{(}\cdot-(\Delta X)_{1}\bigr{)}/s(\cdot)\bigr{]}\bigr{\|}_{I}\lesssim\Delta/\sqrt{\Delta h_{n}^{-3}}\lesssim\Delta^{1/2}h_{n}^{3/2}\\ &\bigl{\|}\mathsf{E}\bigl{[}(\Delta X)_{1}^{2}K_{2,n}\bigl{(}\cdot-(\Delta X)_{1}\bigr{)}/s(\cdot)\bigr{]}\bigr{\|}_{I}\lesssim\Delta/\sqrt{\Delta h_{n}^{-3}}\lesssim\Delta^{1/2}h_{n}^{3/2}\\ &\bigl{\|}\mathsf{E}\bigl{[}(\Delta X)_{1}^{3}K_{3,n}\bigl{(}\cdot-(\Delta X)_{1}\bigr{)}/s(\cdot)\bigr{]}\bigr{\|}_{I}\lesssim\Delta h_{n}^{-1}/\sqrt{\Delta h_{n}^{-3}}\lesssim(\Delta h_{n})^{1/2}.\end{split}

Note that

supfi,ni,n2𝖤[i[=0]3fi,n2((ΔX)1)]supfi,ni,n𝖤[i[=0]3fi,n4((ΔX)1)]hn/Δ\sup_{f_{i,n}\in\mathcal{F}_{i,n}^{2}}\mathsf{E}\biggl{[}\stackrel{{\scriptstyle[}}{{i}}=0]{3}{\sum}f^{2}_{i,n}((\Delta X)_{1})\biggr{]}\lesssim\sup_{f_{i,n}\in\mathcal{F}_{i,n}}\mathsf{E}\biggl{[}\stackrel{{\scriptstyle[}}{{i}}=0]{3}{\sum}f^{4}_{i,n}((\Delta X)_{1})\biggr{]}\lesssim h_{n}/\Delta

and

supfi,ni,n2i[=0]3fi,nsupfi,ni,ni[=0]3fi,n2hn/Δ.\sup_{f_{i,n}\in\mathcal{F}_{i,n}^{2}}\left\|\stackrel{{\scriptstyle[}}{{i}}=0]{3}{\sum}f_{i,n}\right\|_{\mathbb{R}}\lesssim\sup_{f_{i,n}\in\mathcal{F}_{i,n}}\left\|\stackrel{{\scriptstyle[}}{{i}}=0]{3}{\sum}f_{i,n}^{2}\right\|_{\mathbb{R}}\lesssim h_{n}/\Delta.

Together with Corollary 5.1 in [5] and Theorem 2.14.1 in [16] we get

1ni[=0]3[j[=1]n(fi,n2((ΔX)j)𝖤[fi,n2((ΔX)j)])]i,nlognnΔhn1+lognnΔhn1lognnΔhn1,1ni[=0]3[j[=1]n(fi,n((ΔZ)j)𝖤[fi,n((ΔZ)j)])]i,n1nΔhn1lognnΔhn1.\begin{split}&\biggl{\|}\frac{1}{n}\stackrel{{\scriptstyle[}}{{i}}=0]{3}{\sum}\biggl{[}\stackrel{{\scriptstyle[}}{{j}}=1]{n}{\sum}\bigl{(}f_{i,n}^{2}((\Delta X)_{j})-\mathsf{E}\bigl{[}f_{i,n}^{2}((\Delta X)_{j})\bigr{]}\bigr{)}\biggr{]}\biggr{\|}_{\mathcal{F}_{i,n}}\lesssim\sqrt{\frac{\log n}{n\Delta h_{n}^{-1}}}+\frac{\log n}{n\Delta h_{n}^{-1}}\lesssim\sqrt{\frac{\log n}{n\Delta h_{n}^{-1}}},\\ &\biggl{\|}\frac{1}{n}\stackrel{{\scriptstyle[}}{{i}}=0]{3}{\sum}\biggl{[}\stackrel{{\scriptstyle[}}{{j}}=1]{n}{\sum}\bigl{(}f_{i,n}((\Delta Z)_{j})-\mathsf{E}\bigl{[}f_{i,n}((\Delta Z)_{j})\bigr{]})\biggr{]}\biggr{\|}_{\mathcal{F}_{i,n}}\lesssim\sqrt{\frac{1}{n\Delta h_{n}^{-1}}}\ll\sqrt{\frac{\log n}{n\Delta h_{n}^{-1}}}.\end{split}

Finally we have s~n2()/s2()1I=𝒪P((nΔhn1)1logn)1/2.\bigl{\|}\widetilde{s}_{n}^{2}(\cdot)/s^{2}(\cdot)-1\bigr{\|}_{I}=\mathcal{O}_{P}\bigl{(}(n\Delta h_{n}^{-1})^{-1}\log n\bigr{)}^{1/2}. This completes the proof. ∎

We get from (5.29)-(5.30),

(j[=1]nωj){1nj[=1]n(ΔX)jm{K^m,n((ΔX)j)Km,n((ΔX)j)}}I=𝒪p(Δ1/2hn1loghn1).\begin{split}&\biggl{\|}\biggl{(}\stackrel{{\scriptstyle[}}{{j}}=1]{n}{\sum}\omega_{j}\biggr{)}\biggl{\{}\frac{1}{n}\stackrel{{\scriptstyle[}}{{j}}=1]{n}{\sum}(\Delta X)_{j}^{m}\bigl{\{}\widehat{K}_{m,n}\bigl{(}\cdot-(\Delta X)_{j}\bigr{)}-K_{m,n}\bigl{(}\cdot-(\Delta X)_{j}\bigr{)}\bigr{\}}\biggr{\}}\biggr{\|}_{I}\\ &\hskip 199.16928pt=\mathcal{O}_{p}\bigl{(}\Delta^{1/2}h_{n}^{-1}\log h_{n}^{-1}\bigr{)}.\end{split}

Hence

j[=1]nωj{(ΔX)jm{K^m,n((ΔX)j)Km,n((ΔX)j)}}I𝒪p(n1/2hn1loghn1)𝖤[j[=1]n(ΔX)j2m]=𝒪p(Δ1/2hn1loghn1).\begin{split}&\biggl{\|}\stackrel{{\scriptstyle[}}{{j}}=1]{n}{\sum}\omega_{j}\bigl{\{}(\Delta X)_{j}^{m}\bigl{\{}\widehat{K}_{m,n}\bigl{(}\cdot-(\Delta X)_{j}\bigr{)}-K_{m,n}\bigl{(}\cdot-(\Delta X)_{j}\bigr{)}\bigr{\}}\bigr{\}}\biggr{\|}_{I}\\ &\hskip 28.45274pt\leq\mathcal{O}_{p}\bigl{(}n^{-1/2}h_{n}^{-1}\log h_{n}^{-1}\bigr{)}\mathsf{E}\biggl{[}\sqrt{\stackrel{{\scriptstyle[}}{{j}}=1]{n}{\sum}(\Delta X)_{j}^{2m}}\,\,\biggr{]}=\mathcal{O}_{p}\bigl{(}\Delta^{1/2}h_{n}^{-1}\log h_{n}^{-1}\bigr{)}.\end{split}

Since 1/s^n(x)I=𝒪p(1/Δhn3),\bigl{\|}1/\widehat{s}_{n}(x)\bigr{\|}_{I}=\mathcal{O}_{p}\bigl{(}1/\sqrt{\Delta h_{n}^{-3}}\bigr{)}, using Lemma 13 we obtain

(5.31) T^nMB(x)=[1+op(lognnΔhn)](TnMB(x)+𝒪p(hn1/2loghn1))\widehat{T}_{n}^{MB}(x)=\biggl{[}1+o_{p}\biggl{(}\sqrt{\frac{\log n}{n\Delta h_{n}}}\biggr{)}\biggr{]}\biggl{(}T_{n}^{MB}(x)+\mathcal{O}_{p}\left(h_{n}^{1/2}\log h_{n}^{-1}\right)\biggr{)}

Applying Theorem 2.2 in [6] with B(f)0,A1,v1,σ1,bhnΔ,γ1lognB(f)\equiv 0,A\lesssim 1,v\lesssim 1,\sigma\sim 1,b\lesssim\frac{\sqrt{h_{n}}}{\sqrt{\Delta}},\gamma\lesssim\frac{1}{\log n} and sufficiently large q,q, we conclude that there exists a random variable VnξV_{n}^{\xi} whose conditional distribution given 𝖣n\mathsf{D}_{n} is identical to the distribution of Uni,n\bigl{\|}U_{n}\bigr{\|}_{\mathcal{F}_{i,n}}, that is, P{VnξIz𝖣n}=P{TnGIz}\mathrm{P}\bigl{\{}\bigl{\|}V_{n}^{\xi}\bigr{\|}_{I}\leq z\mid\mathsf{D}_{n}\bigr{\}}=\mathrm{P}\bigl{\{}\bigl{\|}T_{n}^{G}\bigr{\|}_{I}\leq z\bigr{\}} for all zz\in\mathbb{R} almost surely, and such that

(5.32) |𝖦nξi,nVnξ|=𝒪P{(logn)2+1/qn1/21/qΔhn1+(logn)7/4+1/q(nΔhn1)1/4}=𝒪P{(logn)7/4+1/q(nΔhn1)1/4}\bigl{|}\bigl{\|}\mathsf{G}_{n}^{\xi}\bigr{\|}_{\mathcal{F}_{i,n}}-V_{n}^{\xi}\bigr{|}=\mathcal{O}_{P}\biggl{\{}\frac{(\log n)^{2+1/q}}{n^{1/2-1/q}\sqrt{\Delta h_{n}^{-1}}}+\frac{(\log n)^{7/4+1/q}}{(n\Delta h_{n}^{-1})^{1/4}}\biggr{\}}=\mathcal{O}_{P}\biggl{\{}\frac{(\log n)^{7/4+1/q}}{(n\Delta h_{n}^{-1})^{1/4}}\biggr{\}}

This in turn implies that there exists a sequence of constants εn0\varepsilon_{n}\to 0 such that

P{|𝖦nξi,nVnξ|εn(logn)7/4+1/q(nΔhn)1/4𝖣n}p0.\mathrm{P}\biggl{\{}\bigl{|}\bigl{\|}\mathsf{G}_{n}^{\xi}\bigr{\|}_{\mathcal{F}_{i,n}}-V_{n}^{\xi}\bigr{|}\geq\varepsilon_{n}\frac{(\log n)^{7/4+1/q}}{(n\Delta h_{n})^{1/4}}\mid\mathsf{D}_{n}\biggr{\}}\stackrel{{\scriptstyle p}}{{\to}}0.

The condition (iii) of Assumption 1 guarantees that the expression (5.32) converges to 0 and with speed faster than one of the expression (3.14). Since 𝔾nξi,n=TnMBI\bigl{\|}\mathbb{G}_{n}^{\xi}\bigr{\|}_{\mathcal{F}_{i,n}}=\bigl{\|}T_{n}^{MB}\bigr{\|}_{I}, we get together with the bound 𝖤[TnGI](logn)1/2\mathsf{E}\bigl{[}\bigl{\|}T_{n}^{G}\bigr{\|}_{I}\bigr{]}\lesssim(\log n)^{1/2} and the anti-concentration inequality (5.28),

P{TnMBIz𝖣n}P{VnξIz+εnhn1/2loghn1𝖣n}+op(1)=P{TnGIz+εnhn1/2loghn1}+op(1)P{TnGIz}+op(1)\begin{split}\mathrm{P}\bigl{\{}\bigl{\|}T_{n}^{MB}\bigr{\|}_{I}\leq z\mid\mathsf{D}_{n}\bigr{\}}&\leq\mathrm{P}\biggl{\{}\bigl{\|}V_{n}^{\xi}\bigr{\|}_{I}\leq z+\varepsilon_{n}h_{n}^{1/2}\log h_{n}^{-1}\mid\mathsf{D}_{n}\biggr{\}}+o_{p}(1)\\ &=\mathrm{P}\biggl{\{}\bigl{\|}T_{n}^{G}\bigr{\|}_{I}\leq z+\varepsilon_{n}h_{n}^{1/2}\log h_{n}^{-1}\biggr{\}}+o_{p}(1)\leq\\ &\leq\mathrm{P}\bigl{\{}\bigl{\|}T_{n}^{G}\bigr{\|}_{I}\leq z\bigr{\}}+o_{p}(1)\end{split}

For the same reason, we conclude that

P{TnMBIz𝖣n}P{TnGIz}op(1).\mathrm{P}\bigl{\{}\bigl{\|}T_{n}^{MB}\bigr{\|}_{I}\leq z\mid\mathsf{D}_{n}\bigr{\}}\geq\mathrm{P}\bigl{\{}\bigl{\|}T_{n}^{G}\bigr{\|}_{I}\leq z\bigr{\}}-o_{p}(1).

This argument shows together with (5.31) that

(5.33) supz𝖱|P{T^nMB()Iz𝖣n}P{TnGIz}|p0.\sup_{z\in\mathsf{R}}\bigl{|}\mathrm{P}\bigl{\{}\bigl{\|}\widehat{T}_{n}^{MB}(\cdot)\bigr{\|}_{I}\leq z\mid\mathsf{D}_{n}\bigr{\}}-\mathrm{P}\bigl{\{}\bigl{\|}T_{n}^{G}\bigr{\|}_{I}\leq z\bigr{\}}\bigr{|}\stackrel{{\scriptstyle p}}{{\to}}0.

To conclude the proof, it remains to show that

(5.34) P{ν(x)𝒞^1τMB(x)xI}1τ.\mathrm{P}\bigl{\{}\nu(x)\in\widehat{\mathcal{C}}_{1-\tau}^{MB}(x)\quad\forall\,x\in I\bigr{\}}\to 1-\tau.

Let us recall that it follows from Theorem 1 together with the bound 𝖤[TnGI](logn)1/2\mathsf{E}\bigl{[}\bigl{\|}T_{n}^{G}\bigr{\|}_{I}\bigr{]}\lesssim(\log n)^{1/2} that

ρ(x)𝒞^1τMB(x)xI, if and only if nΔ(ρ^n()ρ())s^n()Ic^nMB(1τ)\rho(x)\in\widehat{\mathcal{C}}_{1-\tau}^{MB}(x)\quad\forall x\,\in I,\text{ if and only if }\biggl{\|}\frac{\sqrt{n}\Delta(\widehat{\rho}_{n}(\cdot)-\rho(\cdot))}{\widehat{s}_{n}(\cdot)}\biggr{\|}_{I}\leq\widehat{c}_{n}^{MB}(1-\tau)

and we have TnI=𝒪p{(logn)1/2}.\bigl{\|}T_{n}\bigr{\|}_{I}=\mathcal{O}_{p}\bigl{\{}(\log n)^{1/2}\bigr{\}}. Let us remark that

nΔ(ρ^n(x)ρ(x))s^n(x)=s(x)s^n(x)nΔ(ρ^n(x)ρ(x))s(x)=(1+op{n1/2loghn1})[Tn(x)+op(hn1/2loghn1)]=Tn(x)+op(hn1/2loghn1).\begin{split}\frac{\sqrt{n}\Delta(\widehat{\rho}_{n}(x)-\rho(x))}{\widehat{s}_{n}(x)}&=\frac{s(x)}{\widehat{s}_{n}(x)}\frac{\sqrt{n}\Delta(\widehat{\rho}_{n}(x)-\rho(x))}{s(x)}\\ &=\bigl{(}1+o_{p}\bigl{\{}n^{-1/2}\log h_{n}^{-1}\bigr{\}}\bigr{)}\biggl{[}T_{n}(x)+o_{p}\bigl{(}h_{n}^{1/2}\log h_{n}^{-1}\bigr{)}\biggr{]}\\ &=T_{n}(x)+o_{p}\bigl{(}h_{n}^{1/2}\log h_{n}^{-1}\bigr{)}.\end{split}

Now if we recall the conclusion of Theorem 1 and the anti-concentration inequality (5.28), we get

(5.35) supz|P{nΔ(ρ^n()ρ())s^n()Iz}P{TnGIz}|0.\sup_{z\in\mathbb{R}}\biggl{|}\mathrm{P}\biggl{\{}\biggl{\|}\frac{\sqrt{n}\Delta\bigl{(}\widehat{\rho}_{n}(\cdot)-\rho(\cdot)\bigr{)}}{\widehat{s}_{n}(\cdot)}\biggr{\|}_{I}\leq z\biggr{\}}-\mathrm{P}\bigl{\{}\bigl{\|}T_{n}^{G}\bigr{\|}_{I}\leq z\bigr{\}}\biggr{|}\to 0.

Note that due to (5.33) together with argument similar to Step 3 in the proof of Theorem 2 in [11], we can find a sequence of constants εn0\varepsilon_{n}^{\prime}\to 0 such that

(5.36) cnG(1τεn)c^nMB(1τ)cnG(1τ+εn)c_{n}^{G}(1-\tau-\varepsilon_{n}^{\prime})\leq\widehat{c}_{n}^{MB}(1-\tau)\leq c_{n}^{G}(1-\tau+\varepsilon_{n}^{\prime})

with probability approaching one. This implies that

P{nΔ(ρ^n()ρ())s^n()Ic^nMB(1τ)}(5.36)P{nΔ(ρ^n()ρ())s^n()IcnG(1τ+εn)}+o(1)=(5.35)P{TnGIcnG(1τ+εn)}+o(1)=1τ+o(1)\begin{split}&\mathrm{P}\biggl{\{}\biggl{\|}\frac{\sqrt{n}\Delta(\widehat{\rho}_{n}(\cdot)-\rho(\cdot))}{\widehat{s}_{n}(\cdot)}\biggr{\|}_{I}\leq\widehat{c}_{n}^{MB}(1-\tau)\biggr{\}}\\ &\hskip 56.9055pt\stackrel{{\scriptstyle(\ref{cInt})}}{{\leq}}\mathrm{P}\biggl{\{}\biggl{\|}\frac{\sqrt{n}\Delta(\widehat{\rho}_{n}(\cdot)-\rho(\cdot))}{\widehat{s}_{n}(\cdot)}\biggr{\|}_{I}\leq c_{n}^{G}(1-\tau+\varepsilon_{n}^{\prime})\biggr{\}}+o(1)\\ &\hskip 56.9055pt\stackrel{{\scriptstyle(\ref{supNull})}}{{=}}\mathrm{P}\bigl{\{}\bigl{\|}T_{n}^{G}\bigr{\|}_{I}\leq c_{n}^{G}(1-\tau+\varepsilon_{n}^{\prime})\bigr{\}}+o(1)=1-\tau+o(1)\end{split}

For the same reason, we have upper bound for the probability, which has the form 1τo(1)1-\tau-o(1). Due the Borell-Sudakov-Tsirelson inequality (see Lemma A.2.2 in [16] for more details) we have

cnG(1τ+εn)𝖤[TnGI]+1+log(1/(τε))(logn)1/2.c_{n}^{G}(1-\tau+\varepsilon_{n}^{\prime})\lesssim\mathsf{E}\bigl{[}\bigl{\|}T_{n}^{G}\bigr{\|}_{I}\bigr{]}+\sqrt{1+\log(1/(\tau-\varepsilon^{\prime}))}\lesssim(\log n)^{1/2}.

If we combine this with (5.36), we get c^nMB(1τ)=OP(logn)\widehat{c}_{n}^{MB}(1-\tau)=O_{P}\bigl{(}\sqrt{\log n}\bigr{)} with the supremum width of the confidence band 𝒞1τMB\mathcal{C}_{1-\tau}^{MB} bounded as

2supxIs^n(x)nΔc^nMB(1τ)(1+oP(1))supxIs(x)nΔc^nMB(1τ)=𝒪p((nΔhn3)1/2logn)\begin{split}2\,\underset{x\in I}{\sup}\,\frac{\widehat{s}_{n}(x)}{\sqrt{n}\Delta}\,\widehat{c}_{n}^{MB}(1-\tau)&\lesssim\bigl{(}1+o_{P}(1)\bigr{)}\frac{\sup_{x\in I}s(x)}{\sqrt{n}\Delta}\,\widehat{c}_{n}^{MB}(1-\tau)\\ &=\mathcal{O}_{p}\bigl{(}(n\Delta h_{n}^{3})^{-1/2}\sqrt{\log n}\bigr{)}\end{split}

This observation completes the proof of Theorem 2 for the multiplier bootstrap case.

References

  • [1] Barndorff-Nielsen, Ole E., and Benth, F. E. and Veraart, A. Cross-commodity modelling by multivariate ambit fields. In Commodities, energy and environmental finance, volume 74 of Fields Inst. Commun., pages 109–148. Fields Inst. Res. Math. Sci., Toronto, ON, 2015.
  • [2] Barndorff-Nielsen, Ole E. and Schmiegel, J. Brownian semistationary processes and volatility/intermittency. In Advanced financial modelling, volume 8 of Radon Ser. Comput. Appl. Math., pages 1–25. Walter de Gruyter, Berlin, 2009.
  • [3] Denis Belomestny, Tatiana Orlova, and Vladimir Panov. Statistical inference for moving-average lévy-driven processes: Fourier-based approach. Statistica Neerlandica, 73(1):100–117, 2019.
  • [4] Belomestny, D., Panov, V., and Woerner, J. Low frequency estimation of continuous-time moving average Lévy processes. arXiv: 1607.00896, 2016.
  • [5] V. Chernozhukov, D. Chetverikov, and K. Kato. Gaussian approximation of suprema of empirical processes. The Annals of Statistics, pages 1564–1597, 2014a.
  • [6] V. Chernozhukov, D. Chetverikov, and K. Kato. Empirical and multiplier bootstraps for suprema of empirical processes of increasing complexity, and related gaussian couplings. Stoch. Anal. Appl., pages 3632–3651, 2016.
  • [7] Victor Chernozhukov, Denis Chetverikov, and Kengo Kato. Comparison and anti-concentration bounds for maxima of gaussian random vectors. Probability Theory and Related Fields, 162(1-2):47–70, 2015.
  • [8] Victor Chernozhukov, Denis Chetverikov, Kengo Kato, et al. Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors. The Annals of Statistics, 41(6):2786–2819, 2013.
  • [9] Victor Chernozhukov, Denis Chetverikov, Kengo Kato, et al. Anti-concentration and honest, adaptive confidence bands. The Annals of Statistics, 42(5):1787–1818, 2014.
  • [10] Kengo Kato and Daisuke Kurisu. Bootstrap confidence bands for spectral estimation of l\\backslash’evy densities under high-frequency observations. arXiv preprint arXiv:1705.00586, 2017.
  • [11] Kengo Kato and Yuya Sasaki. Uniform confidence bands in deconvolution with unknown error distribution. Journal of Econometrics, 207(1):129–161, 2018.
  • [12] Podolskij, Mark. Ambit fields: survey and new challenges. In XI Symposium on Probability and Stochastic Processes, pages 241–279. Springer, 2015.
  • [13] Rajput, B. and Rosiński, J. Spectral representations of infinitely divisible processes. Probability Theory and Related Fields, 82(3):451–487, 1989.
  • [14] Ken-iti Sato and Sato Ken-Iti. Lévy processes and infinitely divisible distributions. Cambridge university press, 1999.
  • [15] Schnurr, A. and Woerner, J. H. C. Well-balanced Lévy driven Ornstein-Uhlenbeck processes. Stat. Risk Model., 28(4):343–357, 2011.
  • [16] A Van der Vaart and J Wellner. Weak convergence and empirical processes: With applications to statistics springer series in statistics. Springer, 8:10, 1996.