This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

\catchline

Spectra of Λ\Lambda and Σ\Sigma Baryons under Screened Potential

CHANDNI MENAPARA111[email protected] and AJAY KUMAR RAI Department of Physics, The Maharaja Sayajirao University of Baroda, Vadodara, India
Department of Physics, Sardar Valabhbhai National Institute of Technology
Surat-395008, Gujarat, India
(Day Month Year; Day Month Year)
Abstract

The light, strange baryons have been studied through various approaches and attempted to be looked for rigorously in experiments. The screened potential has been applied to heavy baryon sector as well as meson systems in earlier works. Here, this article attempts to compare the results for linear and screened potential for light strange baryons. Also, the Regge trajectories depict the linear nature.

keywords:
Screened potential, Strange Baryon, CQM
{history}
\ccode

PACS numbers:

1 Introduction

JLab, LHC, BESIII experimental facilities have over the years looked for missing resonances from light to heavy quark systems [1, 2]. An upcoming experiment PANDA is highly focused to look for strange baryon especially ones with higher strangeness Ξ\Xi and Ω\Omega [3, 4, 5, 6, 7, 8]. With every run and new upgrades in energy scale, exotic states have come up however strange quark still hasn’t revealed all its composites easily. Singly strange Λ\Lambda and its similar partner Σ\Sigma have still a sizable number of resonances but many are 1 and 2 star status [9]. A non-relativistic approach under constituent cover with different confining potential attempts to reproduce these excited states. This is the driving force for the Hadron spectroscopy field [10, 11].

Many approaches have been used throughout the years in an effort to fully comprehend the baryon sector. Internal baryon dynamics have been studied using algebraic models; a recent study used U(7) in this regard [12]. R. Bijker and group too have focused on algebraic approach with the string-like model [13]. the quark-diquark model has been examined in several variations; E. Santopinto et al. used an exchange interaction inspired by Gursey Radicati to generate both strange and non-strange baryon resonances [14, 15]. Regge phenomenology has also been employed in the study of light, strange baryons using n and J plane linear curves [16]. Other than these various models have been employed over the years [17, 22].
The screened potential term is accompanied with spin-dependent term in the present approach as detailed in section 2. The section 3 discusses mass spectra of Λ\Lambda, Σ\Sigma baryons along with the experimental and theoretical background known so far Few states need special attention regarding their actual nature. Section 4 is dedicated to Regge trajectory for (J,M2M^{2}) and (n,M2M^{2}).

2 Theoretical Framework

Hypercentral Constituent Quark Model (hCQM) has been applied in various systems and with a variety of potentials for heavy hadrons [23, 24, 25, 26, 28, 27, 29, 30, 31] and exotics. The linear potential has been employed for all octet, decuplet baryons in our earlier works [32, 33, 34, 35, 36, 37]. The screened potential now applied to strange Λ\Lambda and Σ\Sigma baryons, allows to give a vivid comparison between linear and screened potential. Our earlier works have highlighted the detailed comparison with other theoretical models.
Employing the Jacobi coordinates to describe the three body baryon system as marked by notable articles [38, 39, 40],

ρ=r1r22andλ=r1+r22r36.\vec{\rho}=\frac{\vec{r_{1}}-\vec{r_{2}}}{\sqrt{2}}\hskip 14.22636ptand\hskip 14.22636pt\vec{\lambda}=\frac{\vec{r_{1}}+\vec{r_{2}}-2\vec{r_{3}}}{\sqrt{6}}. (1)

Hyperradias xx and hyperangle ξ\xi in terms of Jacobi coordinates are [41],

x=ρ2+λ2andξ=arctan(ρλ)x=\sqrt{\rho^{2}+\lambda^{2}}\hskip 14.22636ptand\hskip 14.22636pt\xi=arctan\left(\frac{\rho}{\lambda}\right) (2)

The Hamiltonian, presenting the three quark bound system is,

H=P22m+V(x)H=\frac{P^{2}}{2m}+V(x) (3)

Here, PP is conjugate momentum and mm is the reduced mass of the system, which expressed as, m=2mρmλmρ+mλm=\frac{2m_{\rho}m_{\lambda}}{m_{\rho}+m_{\lambda}}. Here, the constituent quark mass mu=md=0.290GeVm_{u}=m_{d}=0.290GeV, ms=0.500GeVm_{s}=0.500GeV. As the hypercentral model itself suggests, V(x)V(x) is non-relativistic interaction potential inside the baryonic system depending only on hyperradius x [41, 42, 43].

The screened potential is incorporated as confining potential with the color-Coulomb potential (spin independent potential VSI(x)=Vconf(x)+VCol(x)V_{SI}(x)=V_{conf}(x)+V_{Col}(x)).

Vconf(x)=a(1eμxμ)andVCol(x)=23αsxV_{conf}(x)=a\left(\frac{1-e^{-{\mu}x}}{\mu}\right)\hskip 14.22636ptand\hskip 14.22636ptV_{Col}(x)=-\frac{2}{3}\frac{\alpha_{s}}{x} (4)

where, aa is the string tension. Based on a paper by R. Chaturvedi, the screening parameter μ\mu has been varied over a range and 0.3 has been considered as the value obtain the spectra for all the systems considered here [44] for the case of mesons. The spin dependent part of potential VSD(x)V_{SD}(x) is,

VSD(x)=VSS(x)(SρSλ)+VγS(x)(γS)+VT(x)[S23(Sx)(Sx)x2]V_{SD}(x)=V_{SS}(x)(\vec{S_{\rho}}\cdot\vec{S_{\lambda}})+V_{\gamma S}(x)(\vec{\gamma}\cdot\vec{S})+V_{T}(x)\left[S^{2}-\frac{3(\vec{S}\cdot\vec{x})(\vec{S}\cdot\vec{x})}{x^{2}}\right] (5)

which includes spin-spin, spin-orbit and tensor term respectively. In case of linear potential for the similar articles mentioned above, the differences for the resonances predicted for higher excited hyperfine states were more. The screened effect has shown effects in heavy baryons by reducing this splitting, which has been tried to observe in higher excited light baryons.

3 Mass Spectra

The PDG signifies the currently known resonances of Λ\Lambda with 10 four star states, 4 three star states, 2 two star states and 7 one star states. Except for four star states, there is a wide opportunity to look for the resonances in every possible reactions to know all the details. The very first excited state 1405 MeV has been under the spotlight for years. In some instances, the measurement results are consistent within a relatively narrow range. This is true not only for the well-known (1520)32\frac{3}{2}, but also for the (1670)12\frac{1}{2}, (1690)32\frac{3}{2}, and (1815)52+\frac{5}{2}^{+}, all of which lie within a relatively narrow mass range. The findings of (1890) 32+\frac{3}{2}^{+}, (1830)52\frac{5}{2}, and (2100)72\frac{7}{2} are also very compelling. A Four star status has been assigned to these resonances. As it is evident that the low-lying masses i.e. S-wave the predicted mass differ by 50 MeV from PDG. Also, lower excited states for P and D-wave also, the masses are quite in the range with difference of 20-30 MeV. But for 1F, 1G the masses are under-predicted by more than 100 MeV to experimental as well as that of linear potential ones.

Σ\Sigma baryon happens to have a large number of states with 1 and 2 stars clearly marking the need to look for resonances. In the earliest studies, the resonances (1915)52+\frac{5}{2}^{+} and (1910)32\frac{3}{2}^{-} emerge as the leading candidates, with additional support for (1880) 12+\frac{1}{2}^{+} and (1900)12+\frac{1}{2}^{+}. The four star states (1670)32\frac{3}{2}^{-}, (1775)52\frac{5}{2}^{-}, (1915)52+\frac{5}{2}^{+}, and (2030)72+\frac{7}{2}^{+} have been established with good consistency. As here (1915)52+\frac{5}{2}^{+} and (2030)72+\frac{7}{2}^{+} are both assigned to 1D family, our masses are higher by 37 MeV compared to 1915. State 1660 is 2S(12+\frac{1}{2}^{+}) differs by 30 MeV. The three star state 2230 doesn’t have known spin-parity but here we have tentatively assigned it to be 3S(32+\frac{3}{2}^{+}).

Table 1: Λ\Lambda Resonance mass spectra using Screened potential (in MeV)
State JPJ^{P} MscrM_{scr} MlinM_{lin} MexpM_{exp}[9] [18] [19] [20] [21]
1S 12+\frac{1}{2}^{+} 1115 1115 1115 1115 1133 1136 1113
2S 12+\frac{1}{2}^{+} 1553 1589 1600 1615 1577 1625 1606
3S 12+\frac{1}{2}^{+} 1869 1892 1810 1901 1880
4S 12+\frac{1}{2}^{+} 2197 2220 1986 2173
5S 12+\frac{1}{2}^{+} 2536 2571 2099
12P1/21^{2}P_{1/2} 12\frac{1}{2}^{-} 1554 1558 1667 1686 1556 1559
12P3/21^{2}P_{3/2} 32\frac{3}{2}^{-} 1549 1544 1520 1549 1560
14P1/21^{4}P_{1/2} 12\frac{1}{2}^{-} 1557 1564 1670 1656
14P3/21^{4}P_{3/2} 32\frac{3}{2}^{-} 1552 1551 1690 1693
14P5/21^{4}P_{5/2} 52\frac{5}{2}^{-} 1545 1533
22P1/22^{2}P_{1/2} 12\frac{1}{2}^{-} 1814 1858 1800 1733 1791
22P3/22^{2}P_{3/2} 32\frac{3}{2}^{-} 1808 1841 1812 1859
24P1/22^{4}P_{1/2} 12\frac{1}{2}^{-} 1817 1867
24P3/22^{4}P_{3/2} 32\frac{3}{2}^{-} 1811 1850
24P5/22^{4}P_{5/2} 52\frac{5}{2}^{-} 1803 1827 1830 1861 1799 1778 1803
32P1/23^{2}P_{1/2} 12\frac{1}{2}^{-} 2083 2186 2155
32P3/23^{2}P_{3/2} 32\frac{3}{2}^{-} 2077 2166 2035
34P1/23^{4}P_{1/2} 12\frac{1}{2}^{-} 2086 2196 2197
34P3/23^{4}P_{3/2} 32\frac{3}{2}^{-} 2080 2176
34P5/23^{4}P_{5/2} 52\frac{5}{2}^{-} 2072 2149 2136
12D3/21^{2}D_{3/2} 32+\frac{3}{2}^{+} 1765 1789 1854 1849 1836
12D5/21^{2}D_{5/2} 52+\frac{5}{2}^{+} 1755 1767 1820 1825 1849 1839
14D1/21^{4}D_{1/2} 12+\frac{1}{2}^{+} 1776 1814 1710* 1901 1799 1799 1764
14D3/21^{4}D_{3/2} 32+\frac{3}{2}^{+} 1768 1798 1890
14D5/21^{4}D_{5/2} 52+\frac{5}{2}^{+} 1758 1776
14D7/21^{4}D_{7/2} 72+\frac{7}{2}^{+} 1746 1748
22D3/22^{2}D_{3/2} 32+\frac{3}{2}^{+} 2032 2113 2070
22D5/22^{2}D_{5/2} 52+\frac{5}{2}^{+} 2022 2085 2110
State JPJ^{P} MscrM_{scr} MlinM_{lin} MexpM_{exp} [9] [18] [19] [20] [21]
24D1/22^{4}D_{1/2} 12+\frac{1}{2}^{+} 2043 2144
24D3/22^{4}D_{3/2} 32+\frac{3}{2}^{+} 2036 2123
24D5/22^{4}D_{5/2} 52+\frac{5}{2}^{+} 2026 2096 2074 2008
24D7/22^{4}D_{7/2} 72+\frac{7}{2}^{+} 2013 2061 2085 2064
32D3/23^{2}D_{3/2} 32+\frac{3}{2}^{+} 2306 2459
32D5/23^{2}D_{5/2} 52+\frac{5}{2}^{+} 2296 2426
34D1/23^{4}D_{1/2} 12+\frac{1}{2}^{+} 2316 2496
34D3/23^{4}D_{3/2} 32+\frac{3}{2}^{+} 2309 2471
34D5/23^{4}D_{5/2} 52+\frac{5}{2}^{+} 2300 2438
34D7/23^{4}D_{7/2} 72+\frac{7}{2}^{+} 2288 2398
12F5/21^{2}F_{5/2} 52\frac{5}{2}^{-} 1980 2039 2080
12F7/21^{2}F_{7/2} 72\frac{7}{2}^{-} 1965 2002 2100 2097
14F3/21^{4}F_{3/2} 32\frac{3}{2}^{-} 1996 2079
14F5/21^{4}F_{5/2} 52\frac{5}{2}^{-} 1984 2050
14F7/21^{4}F_{7/2} 72\frac{7}{2}^{-} 1969 2013
14F9/21^{4}F_{9/2} 92\frac{9}{2}^{-} 1951 1969
22F5/22^{2}F_{5/2} 52\frac{5}{2}^{-} 2252 2380
22F7/22^{2}F_{7/2} 72\frac{7}{2}^{-} 2239 2337
24F3/22^{4}F_{3/2} 32\frac{3}{2}^{-} 2267 2427 2325
24F5/22^{4}F_{5/2} 52\frac{5}{2}^{-} 2256 2393
24F7/22^{4}F_{7/2} 72\frac{7}{2}^{-} 2243 2350
24F9/22^{4}F_{9/2} 92\frac{9}{2}^{-} 2226 2299
12G7/21^{2}G_{7/2} 72+\frac{7}{2}^{+} 2198 2302 2251
12G9/21^{2}G_{9/2} 92+\frac{9}{2}^{+} 2179 2246 2350 2360 2357
14G5/21^{4}G_{5/2} 52+\frac{5}{2}^{+} 2219 2363 2258
14G7/21^{4}G_{7/2} 72+\frac{7}{2}^{+} 2203 2316
14G9/21^{4}G_{9/2} 92+\frac{9}{2}^{+} 2184 2260
14G11/21^{4}G_{11/2} 112+\frac{11}{2}^{+} 2162 2195
Table 2: Σ\Sigma resonance spectra using Screened potential (in MeV)
State JPJ^{P} MscrM_{scr} MlinM_{lin} MexpM_{exp}[9] [18] [19] [20] [21]
1S 12+\frac{1}{2}^{+} 1193 1193 1193 1187 1170 1180 1192
32+\frac{3}{2}^{+} 1382 1384 1385 1381 1832 1389 1383
2S 12+\frac{1}{2}^{+} 1630 1643 1660 1711 1604 1616 1664
32+\frac{3}{2}^{+} 1809 1827 1780 1862 1865 1868
3S 12+\frac{1}{2}^{+} 2035 2099 2028 2022
32+\frac{3}{2}^{+} 2186 2236 2230
4S 12+\frac{1}{2}^{+} 2464 2589
32+\frac{3}{2}^{+} 2597 2693
5S 12+\frac{1}{2}^{+} 2916 3108
32+\frac{3}{2}^{+} 3034 3189
12P1/21^{2}P_{1/2} 12\frac{1}{2}^{-} 1679 1725 1620 1620 1711 1677 1657
12P3/21^{2}P_{3/2} 32\frac{3}{2}^{-} 1669 1702 1670 1706 1711 1677 1698
14P1/21^{4}P_{1/2} 12\frac{1}{2}^{-} 1683 1736 1750 1693 1736 1746
14P3/21^{4}P_{3/2} 32\frac{3}{2}^{-} 1674 1713 1731 1736 1790
14P5/21^{4}P_{5/2} 52\frac{5}{2}^{-} 1662 1683 1775 1757 1736 1743
22P1/22^{2}P_{1/2} 12\frac{1}{2}^{-} 2036 2145 1900 2115 2110
22P3/22^{2}P_{3/2} 32\frac{3}{2}^{-} 2025 2114 1910 2175
24P1/22^{4}P_{1/2} 12\frac{1}{2}^{-} 2042 2159 2110
24P3/22^{4}P_{3/2} 32\frac{3}{2}^{-} 2030 2129 2010
24P5/22^{4}P_{5/2} 52\frac{5}{2}^{-} 2015 2087
32P1/23^{2}P_{1/2} 12\frac{1}{2}^{-} 2417 2608
32P3/23^{2}P_{3/2} 32\frac{3}{2}^{-} 2406 2571
34P1/23^{4}P_{1/2} 12\frac{1}{2}^{-} 2422 2627
34P3/23^{4}P_{3/2} 32\frac{3}{2}^{-} 2411 2589
34P5/23^{4}P_{5/2} 52\frac{5}{2}^{-} 2396 2541
12D3/21^{2}D_{3/2} 32+\frac{3}{2}^{+} 1971 2057 1940 2025 1947
12D5/21^{2}D_{5/2} 52+\frac{5}{2}^{+} 1952 2013 1915 1991 1872 1949
State JPJ^{P} MscrM_{scr} MlinM_{lin} MexpM_{exp}[9] [18] [19] [20] [21]
14D1/21^{4}D_{1/2} 12+\frac{1}{2}^{+} 1991 2107 1983 1911 1924
14D3/21^{4}D_{3/2} 32+\frac{3}{2}^{+} 1978 2074
14D5/21^{4}D_{5/2} 52+\frac{5}{2}^{+} 1959 2029
14D7/21^{4}D_{7/2} 72+\frac{7}{2}^{+} 1937 1974 2025 2033 2002
22D3/22^{2}D_{3/2} 32+\frac{3}{2}^{+} 2347 2510
22D5/22^{2}D_{5/2} 52+\frac{5}{2}^{+} 2329 2459
24D1/22^{4}D_{1/2} 12+\frac{1}{2}^{+} 2368 2568
24D3/22^{4}D_{3/2} 32+\frac{3}{2}^{+} 2354 2529
24D5/22^{4}D_{5/2} 52+\frac{5}{2}^{+} 2336 2478
24D7/22^{4}D_{7/2} 72+\frac{7}{2}^{+} 2313 2414 2470
32D3/23^{2}D_{3/2} 32+\frac{3}{2}^{+} 2747 3004 3000*
32D5/23^{2}D_{5/2} 52+\frac{5}{2}^{+} 2727 2945
34D1/23^{4}D_{1/2} 12+\frac{1}{2}^{+} 2769 3072
34D3/23^{4}D_{3/2} 32+\frac{3}{2}^{+} 2754 3027
34D5/23^{4}D_{5/2} 52+\frac{5}{2}^{+} 2735 2967
34D7/23^{4}D_{7/2} 72+\frac{7}{2}^{+} 2710 2892
12F5/21^{2}F_{5/2} 52\frac{5}{2}^{-} 2279 2416
12F7/21^{2}F_{7/2} 72\frac{7}{2}^{-} 2249 2343 2100*
14F3/21^{4}F_{3/2} 32\frac{3}{2}^{-} 2311 2495 2300
14F5/21^{4}F_{5/2} 52\frac{5}{2}^{-} 2287 2437 2347
14F7/21^{4}F_{7/2} 72\frac{7}{2}^{-} 2258 2365 2289
14F9/21^{4}F_{9/2} 92\frac{9}{2}^{-} 2223 2278 2289
22F5/22^{2}F_{5/2} 52\frac{5}{2}^{-} 2681 2901
22F7/22^{2}F_{7/2} 72\frac{7}{2}^{-} 2653 2819
24F3/22^{4}F_{3/2} 32\frac{3}{2}^{-} 2704 2990
24F5/22^{4}F_{5/2} 52\frac{5}{2}^{-} 2681 2925
24F7/22^{4}F_{7/2} 72\frac{7}{2}^{-} 2653 2844
24F9/22^{4}F_{9/2} 92\frac{9}{2}^{-} 2619 2746

The low-lying states are matching but higher excited states are under-predicted. However, the mass-range suggest that the given spin-parity assignment to one and two star states are well in accordance. From the resonance tables 1 and 2, it is noteworthy that for states with higher angular momentum, the under-predicted masses show the effect of screened potential. Also, the hypercentral potential leads to reversed hierarchy for hyperfine states.
The MlinM_{lin} shown in tables 1 and 2 gives the resonance masses predicted through linear potential in our earlier works for the comparison with screened potential results. It is noteworthy that linear masses have greater difference in the hyperfine states as in case of screened potential. Thus, at very high orbital states linear potential gives over prediction for the masses. This serves as a primary aim to observe the difference in application of both these potentials. Also, the tables above showcases comparison with few of the models described in section 1. The relativistic quark model studies by Faustov et al [18] have been incorporated which shows that few states predicted through screened potential are quite in accordance.

4 Regge Trajectory

A number of resonance masses to be fit for experimental comparison and observations, Regge trajectories play a significant role[45]. Regge trajectories are basically plots of total angular momentum J and principle quantum number n against the square of resonance mass as depicted by figures 1, 2, 3, 4, 5. A correct spin-parity assignment for a state can perhaps be predicted using these plots [46].

J=aM2+a0\displaystyle J=aM^{2}+a_{0} (6a)
n=bM2+b0\displaystyle n=bM^{2}+b_{0} (6b)

As it is evident that there are states in PDG whose spin-parity are not precisely known but resonance mass has been observed. Such points when put on the same line allows us to comment through the natural and unnatural parity positions. The value of slope and intercept allow us to extend it to further points to predict the higher excited states in any given baryon spectrum.

Refer to caption
Figure 1: nn vs M2M^{2} for Λ\Lambda, Regge trajectory for Principle Quantum number n versus M2M^{2} depicting the linear nature.
Refer to caption
Figure 2: JPJ^{P} vs M2M^{2} for Λ\Lambda, Regge trajectory for Angular Momentum Quantum number J versus M2M^{2} for natural parity.
Refer to caption
Figure 3: nn vs M2M^{2} for Σ\Sigma, Regge trajectory for Angular Momentum Quantum number J versus M2M^{2}.
Refer to caption
Figure 4: JPJ^{P} vs M2M^{2} for Σ\Sigma, Regge trajectory for Angular Momentum Quantum number J versus M2M^{2} for natural parity.
Refer to caption
Figure 5: JPJ^{P} vs M2M^{2} for Σ\Sigma, Regge trajectory for Angular Momentum Quantum number J versus M2M^{2} for unnatural parity.

5 Conclusion

The present work summarizes the effect of screened type potential under hypercentral Constituent Quark Model (hCQM) for Λ\Lambda and Σ\Sigma baryons. So far, linear potential has been applied to light spectrum, whereas screened potential provided reasonable results for heavy quark systems [47]. The screening parameter plays a role in determining the spin-split and mass at higher angular momentum states. The obtained masses have been comparable with the basis of experimental known values with different star status. The masses of higher spin state for a given L value, decreases in hierarchy. The hyperfine splitting is observed to be less with screened potential than those of linear one.

Acknowledgments

C. Menapara acknowledges the support from DST under INSPIRE Fellowship. Authors are thankful to organizers of ICNFP 2022.

References

  • [1] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 118, 052002 (2017)
  • [2] M. Ablikim et al. [BESIII Collaboration], Phys. Rev. D 100, 051101(R) (2019)
  • [3] PANDA Collaboration (G. Barruca et al.), Eur. Phys. J. A 57, 184 (2021)
  • [4] PANDA Collaboration (B. Singh et al.), J. Phys. G: Nucl. Part. Phys. 46, 045001 (2019)
  • [5] PANDA Collaboration (B. Singh et al.), Nucl. Phys. A 954, 323-340 (2016)
  • [6] PANDA Collaboration (B. Singh et al.), Phys. Rev. D 95, 032003 (2017)
  • [7] PANDA Collaboration (V. Abazov et al.) (2022), 2201.03852
  • [8] PANDA Collaboration (V. Abazov et al.) (2023), 2304.11977v1
  • [9] R. L. Workman et al. [Particle Data Group], Prog. Theor. Exp. Phys. 2022, 083C01 (2022)
  • [10] A. Thiel, F. Afzal, Y. Wunderlich, Prog. Part. Nucl. Phys. 125, 103949 (2022),
  • [11] G. Eichmann, Theory introduction to baryon spectroscopy (2022) arXiv:2202.13378
  • [12] N. Amiri, M. Ghapanvari and M. A. Jafarizadeh, Eur. Phys. J. Plus 141, 136 (2021)
  • [13] R. Bijker, J. Ferretti, G. Galata, H. Garcia-Tecocoatzi and E. Santopinto, Phys. Rev. D. 94, 074040 (2016)  
  • [14] E. Santopinto, Phys. Rev. C 72, 022201(R) (2005)
  • [15] E.Santopinto and J. Ferretti, Phys. Rev. C 92, 025202 (2015)
  • [16] J. Oudichhya, K. Gandhi and A. K. Rai, Nucl. Phys. A; 1035, 122658 (2023)
  • [17] Y. Chen and B. Q. Ma, Chin. Phys. Lett. 25, 3920 (2008)
  • [18] R.N. Faustov and V.O. Galkin Phys. Rev. D 92, 054005 (2015)
  • [19] R. Bijker, F. Iachello, A. Leviatan, Annals Phys. 284, 89 (2000)
  • [20] T. Melde, W. Plessas, B. Sengl, Phys. Rev. D 77, 114002 (2008)
  • [21] Y. Chen, B.Q. Ma, Nucl. Phys. A 831, 1 (2009)
  • [22] E. Klempt, Phys. Rev. C 66, 058201 (2002)
  • [23] Z. Shah, K. Gandhi and A. K. Rai, Chin. Phys. C 43, 034102 (2019)
  • [24] Z. Shah and A. K. Rai, Few-Body Syst 59, 112 (2018)
  • [25] Z. Shah, K. Thakkar and A. K. Rai, Eur. Phys. J. C 76, 530 (2016)
  • [26] Z. Shah and A. K. Rai, Eur. Phys. J. A 53, 195 (2017)
  • [27] K. Gandhi and A. K. Rai, Eur. Phys. J. Plus 135, 213 (2020)
  • [28] K. Gandhi, Z. Shah and A. K. Rai, Eur. Phys. J. Plus 133 (12), 1-9 (2018)
  • [29] A. Kakadiya, Z. Shah, K. Gandhi and A. K. Rai Few-Body Systems 63, 29 (2022)
  • [30] A Kakadiya, Z Shah and A. K. Rai Int. Jour. Mod. Phys. A 37, 2250053 (2022)
  • [31] A Kakadiya, C. Menapara and A. K. Rai Int. Jour. Mod. Phys. A 38, 18, 234103 (2023)
  • [32] C. Menapara, Z. Shah and A. K. Rai, Chin. Phys. C 45, 023102 (2021)
  • [33] C. Menapara and A. K. Rai, Chin. Phys. C 45, 063108 (2021)
  • [34] C. Menapara and A. K. Rai, Chin. Phys. C 46, 103102 (2022)
  • [35] C. Menapara and A. K. Rai, Int. Jour. Mod. Phys. A 37, 27 2250177 (2022).
  • [36] C. Menapara and A. K. Rai, Int. Jour. Mod. Phys. A 38, 9, 2350053 (2023)
  • [37] A. Ansari, C. Menapara and A. K. Rai, Int. Jour. Mod. Phys. A 38, 21, 2350108 (2023)
  • [38] G. Morpurgo, Nuovo Cimento 9, 461 (1952)
  • [39] Yu. A. Simonov, Sov. J. Nucl. Phys. 3, 461 (1966)
  • [40] J. Ballot and M. Fabre de la Ripelle, Ann. of Phys. (N.Y.) 127, 62 (1980)
  • [41] M. M. Giannini and E. Santopinto, Chin. J. Phys. 53, 020301 (2015)
  • [42] M. M. Giannini, E. Santopinto, and A. Vassallo, Eur. Phys. J. A 12, 447 (2001)
  • [43] M. M. Giannini, E. Santopinto, and A. Vassallo, Eur. Phys. J. A 25, 241 (2005)
  • [44] R. Chaturvedi and A. K. Rai, Int. Jour. Theo. Phys.59, 3508-3532 (2020)
  • [45] K. Chen, et al., Eur. Phys. J. C 78, 20 (2018)
  • [46] X.-H. Guo, Ke-Wei Wei and X.-H. Wu, Phys. Rev. D 78, 056005 (2008)
  • [47] C. Menapara and A. K. Rai, Few-Body Syst. 65, 63 (2024)