This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Spatio-temporal determinantal point processes

Abstract

Determinantal point processes are models for regular spatial point patterns, with appealing probabilistic properties. We present their spatio-temporal counterparts and give examples of these models, based on spatio-temporal covariance functions which are separable and non-separable in space and time.

Nafiseh Vafaei
Department of Computer and Statistics Sciences, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran

E-mail: [email protected]

Mohammad Ghorbani111Corresponding Author
Department of Engineering Sciences and Mathematics, Luleå University of Technology, Sweden

E-mail: [email protected]

Masoud Ganji
Department of Computer and Statistics Sciences, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran

E-mail: [email protected]

Mari Myllymäki
Natural Resources Institute Finland (Luke), Helsinki, Finland.

E-mail: [email protected]

Keywords: Covariance function; point process; regularity; spatio-temporal; spectral density

1 Introduction

Spatio-temporal point processes are random countable subsets XX of 2×+\mathbb{R}^{2}\times\mathbb{R}^{+}, where a point (u,t)X(u,t)\in X corresponds to an event u2u\in\mathbb{R}^{2} occurring at time t+t\in\mathbb{R}^{+}. We assume that the points do not overlap, i.e. (u1,t1)(u2,t2)(u_{1},t_{1})\neq(u_{2},t_{2}). Examples of such events are the occurrence of epidemic diseases (such as corona or flu), sightings or births of a species, the occurrence of fires, earthquakes, tsunamis, or volcanic eruptions. We are interested here in spatio-temporal regular point processes, where neighbouring points in the process tend to repel each other.

In the context of spatial point processes, Gibbs point processes including Markov point processes and pairwise interaction point process models are generally used to model repulsiveness. Another class of regular spatial point process models are determinantal point processes (dpps), which have their origin in quantum physics. They were first identified as a class by Macchi (1975), who called them fermion processes because they reflect the distributions of fermion systems in thermal equilibrium that exhibit repulsive behaviour. dpps have been extensively studied in probability theory and have found applications in random matrix theory, quantum physics, wireless network modelling, Monte Carlo integration, and machine learning (see e.g. Lavancier et al., 2015). Recently, Lavancier et al. (2015) studied the statistical properties of dpps.

Some regular spatial point process models have already their spatio-temporal counterparts, but likelihood-based inference or simulation of these models is usually complicated and time-consuming. To circumvent these challenges, our objective here is to introduce the spatio-temporal determinantal point processes (stdpps) and study their properties, which is an open problem according to Lavancier et al. (2015, pages 875-876). We present the basic properties of these processes and give examples of them based on separable and non-separable spatio-temporal covariance functions. We derive the key summary characteristics for these examples that can be used, for example, for model fitting and evaluation.

2 Basic concepts and statistical properties

Assume that XX is a spatio-temporal point process with nnth-order product density ρ(n)\rho^{(n)}, n1n\geq 1 which describes the frequency of possible configurations of nn points. Suppose that B1,,BnB_{1},\ldots,B_{n} are pairwise disjoint cylindrical regions having infinitesimal volumes dV1,,dVndV_{1},\ldots,dV_{n} and containing the points ((u1,t1),,(un,tn))((u_{1},t_{1}),\dots,(u_{n},t_{n})), respectively. Then, ρ(n)((u1,t1),,(un,tn))dV1,dVn\rho^{(n)}\big{(}(u_{1},t_{1}),\ldots,(u_{n},t_{n})\big{)}dV_{1},\ldots dV_{n} is the probability that XX has a point in each of B1,,BnB_{1},\ldots,B_{n}.

Definition 1.

Let CC be a kernel function from (2×+)×(2×+)(\mathbb{R}^{2}\times\mathbb{R}^{+})\times(\mathbb{R}^{2}\times\mathbb{R}^{+}) to \mathbb{R}. We say that a spatio-temporal point process XX is a determinantal point process with kernel CC and write Xstdpp(C)X\sim\textsc{stdpp}{}(C), if its nnth-order product density function is given by

ρ(n)((u1,t1),,(un,tn))=det{C((ui,ti),(uj,tj))}1i,jn,\displaystyle\rho^{(n)}((u_{1},t_{1}),\ldots,(u_{n},t_{n}))=\det\{C((u_{i},t_{i}),(u_{j},t_{j}))\}_{1\leq i,j\leq n},

for (ui,ti)(2×+)(u_{i},t_{i})\in(\mathbb{R}^{2}\times\mathbb{R}^{+}) and n=1,2,n=1,2,\ldots, where {C((ui,ti),(uj,tj)}1i,jn\{C((u_{i},t_{i}),(u_{j},t_{j})\}_{1\leq i,j\leq n} is the n×nn\times n matrix with C((ui,ti),(uj,tj))C((u_{i},t_{i}),(u_{j},t_{j})) as its (i,j)(i,j)-th entry and det{A}\det\{A\} is the determinant of the matrix AA.

The point process XX is well-defined if, for each nn, ρ(n)((u1,t1),,(un,tn))0\rho^{(n)}((u_{1},t_{1}),\cdots,(u_{n},t_{n}))\geq 0 for all {(ui,ti)}i=1n\{(u_{i},t_{i})\}_{i=1}^{n}. This implies that, in Definition 1, 𝐂={C((ui,ti),(uj,tj)}1i,jn\mathbf{C}=\{C((u_{i},t_{i}),(u_{j},t_{j})\}_{1\leq i,j\leq n} should be a non-negative definite matrix. Then all eigenvalues of the matrix 𝐂\mathbf{C} are non-negative and thus its determinant is also non-negative (this follows from the fact that the determinant of a matrix is equal to the product of its eigenvalues) (Radhakrishna Rao and Bhaskara Rao, 1998). Therefore, covariance functions are possible choices for the kernel CC. Denoting the eigenvalues of 𝐂\mathbf{C} by λl\lambda_{l} (l=1,2,)(l=1,2,\ldots), another condition for the existence of stdpp(CC) is that λl1\lambda_{l}\leq 1 (l=1,2,)(l=1,2,\ldots). This is a straightforward extension from the spatial setting, see details in Lavancier et al. (2015) and the references therein. The Poisson process with intensity ρ(u,s)\rho(u,s) results as a special case of stdpp(CC) with setting C((u,s),(u,s))=ρ(u,s)C((u,s),(u,s))=\rho(u,s) and C((u,s),(v,t))=0ifuvorstC((u,s),(v,t))=0\,\,\mbox{if}\,\,u\neq v\,\mbox{or}\,s\neq t.

By Definition 1, the moment characteristics of arbitrary order nn (n1)(n\geq 1) can be easily attained for stdpps, e.g. the intensity function is given by ρ(u,t)=C((u,t),(u,t))\rho(u,t)=C((u,t),(u,t)) and the second-order product density is given by

ρ(2)((u1,t1),(u2,t2))\displaystyle\rho^{(2)}((u_{1},t_{1}),(u_{2},t_{2})) =C((u1,t1),(u1,t1))C((u2,t2),(u2,t2))\displaystyle=C\left((u_{1},t_{1}),(u_{1},t_{1})\right)C((u_{2},t_{2}),(u_{2},t_{2}))
C((u1,t1),(u2,t2))C((u1,t1),(u2,t2)).\displaystyle-C((u_{1},t_{1}),(u_{2},t_{2}))C((u_{1},t_{1}),(u_{2},t_{2})).

In what follows, we assume that the kernel function is of the form

C((u1,t1),(u2,t2))=ρ(u1,t1)R((u1,t1)/αs,(u2,t2)/αt)ρ(u2,t2),\displaystyle C((u_{1},t_{1}),(u_{2},t_{2}))=\sqrt{\rho(u_{1},t_{1})}R\Big{(}(u_{1},t_{1})/\alpha_{s},(u_{2},t_{2})/\alpha_{t}\Big{)}\sqrt{\rho(u_{2},t_{2})},

where ρ\rho plays the role of the intensity function of the process, αs>0\alpha_{s}>0 and αt>0\alpha_{t}>0 are the spatial and temporal correlation parameters respectively, and R()R(\cdot) is the correlation function correspondent to CC. Then, the (inhomogeneous space-time) pair correlation function is given by

g((u1,t1),(u2,t2))\displaystyle g((u_{1},t_{1}),(u_{2},t_{2})) =ρ(2)((u1,t1),(u2,t2))ρ(u1,t1)ρ(u2,t2)\displaystyle=\frac{\rho^{(2)}((u_{1},t_{1}),(u_{2},t_{2}))}{\rho(u_{1},t_{1})\rho(u_{2},t_{2})} (1)
=1|R((u1,t1)/αs,(u2,t2)/αt)|21.\displaystyle=1-\Big{\lvert}R\Big{(}(u_{1},t_{1})/\alpha_{s},(u_{2},t_{2})/\alpha_{t}\Big{)}\Big{\rvert}^{2}\leq 1. (2)

Since g1g\leq 1, the points of XX repel each other, which is a characteristic of regular point patterns.

In general, a stdpp is called second-order intensity reweighted stationary (soirs) if its space-time pair correlation function is a function of the spatial difference u=u2u1u=u_{2}-u_{1} and the temporal difference t=t2t1t=t_{2}-t_{1} (see, e.g. Ghorbani, 2013, and the references therein). Thus, a stdpp with kernel function CC is soirs if the correlation function RR is a function of uu and rr only, i.e. if RR takes the form R((u1,t1),(u2,t2))=R0(u,t)R((u_{1},t_{1}),(u_{2},t_{2}))=R_{0}(u,t) for some function R0R_{0}. For a soirs stdpp(C), R0(0,0)=1R_{0}(0,0)=1, and hence ρ(u,t)=C(0,0)\rho(u,t)=C(0,0). If in addition, the correlation function R0R_{0} is invariant under rotation, i.e. isotropic, then it as well as the pair correlation function (1) depend only on the spatial distance u\lVert u\rVert and the temporal lag |t|\lvert t\rvert. The pair correlation function is then given by

g(u,t)=1|R0(u/αs,|t|/αt)|2.\displaystyle g(u,t)=1-\Big{\lvert}R_{0}(\|u\|/\alpha_{s},\lvert t\rvert/\alpha_{t})\Big{\rvert}^{2}. (3)

Further, the space-time KK-function (see e.g. Gabriel and Diggle, 2009; Møller and Ghorbani, 2012) is given by

K(u,t)\displaystyle K(u,t) =2π0t0ug(u,t)ududt\displaystyle=2\pi\int_{0}^{t}\int_{0}^{u}g(u^{\prime},t^{\prime})u^{\prime}\mathrm{d}u^{\prime}\mathrm{d}t^{\prime} (4)
=πu2t0u0t|R0(u/αs,|t|/αt)|2ududt.\displaystyle=\pi u^{2}t-\int_{0}^{u}\int_{0}^{t}\lvert R_{0}(\|u^{\prime}\|/\alpha_{s},\lvert t^{\prime}\rvert/\alpha_{t})\rvert^{2}u^{\prime}\mathrm{d}u^{\prime}\mathrm{d}t^{\prime}. (5)

If the intensity ρ\rho is constant, i.e. ρ(u,t)=ρ\rho(u,t)=\rho, then the process is stationary and the corresponding stationary space-time gg- and KK-functions obtain the same formulas (3) and (4) under the isotropy assumption.

3 Examples of spatio-temporal determinantal point processes

Section 3.1 recalls the relationship between the covariance function and its spectral density. Then, in Sections 3.2 and 3.3, the Fourier transform of positive finite measures, i.e. spectral measures, are used to construct stationary spatio-temporal covariance functions, and characteristics of stdpps with these kernels are derived.

3.1 The covariance function and its spectral density

The covariance function of a stationary process can be represented as a Fourier transform of a positive finite measure. According to the Wiener-Khintchine theorem (see, e.g. Rasmussen and Williams, 2006), if the spectral density function φ(,)\varphi(\cdot,\cdot) exists, the covariance function C(,)C(\cdot,\cdot) and the spectral density φ(,)\varphi(\cdot,\cdot) are Fourier duals of each other given by

C(u,t)\displaystyle C(u,t) =d+1e2πi(ωTu+τt)φ(ω,τ)dωdτ,\displaystyle=\int_{\mathbb{R}^{d+1}}e^{2\pi i(\omega^{T}u+\tau t)}\varphi(\omega,\tau)\mathrm{d}\omega\mathrm{d}\tau, (6)
φ(ω,τ)\displaystyle\varphi(\omega,\tau) =d+1e2πi(ωTu+τt)C(u,t)dudt,\displaystyle=\int_{\mathbb{R}^{d+1}}e^{-2\pi i(\omega^{T}u+\tau t)}C(u,t)\mathrm{d}u\mathrm{d}t, (7)

where TT stands for transpose, ω\omega is the dd-dimensional spatial component and τ\tau is the temporal component.

A straightforward generalization of Proposition 3.1 in Lavancier et al. (2015) to the spatio-temporal setting, under continuity and stationarity of C(u,t)C(u,t), when C(u,t)𝕃2(d×+)C(u,t)\in\mathbb{L}^{2}(\mathbb{R}^{d}\times\mathbb{R}^{+}), implies that a stdpp with kernel CC exists if the corresponding spectral density satisfies

φ(ω,τ)1.\displaystyle\varphi(\omega,\tau)\leq 1. (8)

3.2 Separable spatio-temporal covariance functions

A class of separable spatio-temporal covariance functions is usually given by

C0(u,t)C0s(u)C0t(t),\displaystyle C_{0}(u,t)\propto C_{0}^{s}(u)C_{0}^{t}(t), (9)

which is valid (i.e. a positive definite function) if both the spatial covariance function, C0s(u)C_{0}^{s}(u), and the temporal covariance function, C0t(t)C_{0}^{t}(t), are valid covariance functions. For a separable class of covariance functions, the spectral density φ(ω,τ)\varphi(\omega,\tau) has also a separable form, namely

φ(ω,τ)[de2πiωTuC0s(u)du]×[e2πiτtC0t(t)dt]=φ0s(ω)φ0t(τ),\displaystyle\varphi(\omega,\tau)\propto\Big{[}\int_{\mathbb{R}^{d}}e^{-2\pi i\omega^{T}u}C_{0}^{s}(u)\mathrm{d}u\Big{]}\times\Big{[}\int_{\mathbb{R}}e^{-2\pi i\tau t}C_{0}^{t}(t)\mathrm{d}t\Big{]}=\varphi_{0}^{s}(\omega)\varphi_{0}^{t}(\tau),

where φ0s(ω)\varphi_{0}^{s}(\omega) and φ0t(τ)\varphi_{0}^{t}(\tau) are the spatial and temporal spectral densities, respectively. According to (8), the condition φ0s(ω)φ0t(τ)<1\varphi_{0}^{s}(\omega)\varphi_{0}^{t}(\tau)<1 must be satisfied for a stdpp with kernel (9) to exist. Further, for this class, the pair correlation function takes the following simple form

g(u,t)=1|R0s(u/αs)|2|R0t(|t|/αt)|2,g(u,t)=1-\lvert R_{0}^{s}(\|u\|/\alpha_{s})\rvert^{2}\lvert R_{0}^{t}(\lvert t\rvert/\alpha_{t})\rvert^{2},

where R0sR_{0}^{s} and R0tR_{0}^{t} are the correlation functions in space and time corresponding to C0sC_{0}^{s} and C0tC_{0}^{t}, respectively. Therefore, by (4) the corresponding KK-function is given by

K(u,t)=πu2t0uu|R0s(u/αs)|2du0t|R0t(t/αt)|2dt.K(u,t)=\pi u^{2}t-\int_{0}^{u}u^{\prime}\lvert R_{0}^{s}(u^{\prime}/\alpha_{s})\rvert^{2}\mathrm{d}u^{\prime}\int_{0}^{t}\lvert R_{0}^{t}(t^{\prime}/\alpha_{t})\rvert^{2}\mathrm{d}t^{\prime}.

There are a large number of classes of valid spatial and valid temporal covariance functions in the literature, for example the Matérn, power exponential and Gaussian classes, to name a few (see, e.g. Cressie and Wikle, 2011). As an example, we consider the Gaussian covariance function C0s(u)=ρσs2exp(u2/αs)C_{0}^{s}(u)=\sqrt{\rho}\sigma^{2}_{s}\exp(-\|u\|^{2}/\alpha_{s}), u2u\in\mathbb{R}^{2}, with spectral density φ0s(ω)=ρπσs2αs2exp(π2αs2ω2)\varphi_{0}^{s}(\omega)=\sqrt{\rho}\pi\sigma^{2}_{s}\alpha_{s}^{2}\exp(-\pi^{2}\alpha_{s}^{2}\|\omega\|^{2}), and the exponential covariance function C0t(t)=ρσt2exp(|t|/αt)C_{0}^{t}(t)=\sqrt{\rho}\sigma^{2}_{t}\exp(-\lvert t\rvert/\alpha_{t}), t+,t\in\mathbb{R}^{+}, with spectral density φ0t(τ)=(2ρσt2αt)/(1+4π2αt2|τ|2)\varphi_{0}^{t}(\tau)=(2\sqrt{\rho}\sigma^{2}_{t}\alpha_{t})/(1+4\pi^{2}\alpha_{t}^{2}\lvert\tau\rvert^{2}). Here σs2\sigma^{2}_{s} and σt2\sigma^{2}_{t} are the variance parameters of the spatial and time components, respectively, and αs>0\alpha_{s}>0 and αt>0\alpha_{t}>0 are the corresponding range parameters. A stationary stdpp with intensity ρ\rho and the separable covariance function (9) with these components, i.e

C0(u,t)=ρσs2σt2exp(u2αs|t|αt)\displaystyle C_{0}(u,t)=\rho\sigma^{2}_{s}\sigma^{2}_{t}\exp\Big{(}-\frac{\|u\|^{2}}{\alpha_{s}}-\frac{\lvert t\rvert}{\alpha_{t}}\Big{)} (10)

will exist if

φsep(ω,τ)=2πραs2αtσs2σt2(1+4π2αt2τ2)exp(π2αs2ω2)<1.\displaystyle\varphi_{sep}(\omega,\tau)=\frac{2\pi\rho\alpha_{s}^{2}\alpha_{t}\sigma^{2}_{s}\sigma^{2}_{t}}{(1+4\pi^{2}\alpha_{t}^{2}\tau^{2})}\exp{\left(-\pi^{2}\alpha_{s}^{2}\|\omega\|^{2}\right)}<1.

Since the maximum of the spectral density occurs at (0,0)(0,0), so a stdpp(C0C_{0}) exists if φsep(0,0)<1\varphi_{sep}(0,0)<1, which implies that ρ<(2παs2αtσs2σt2)1\rho<(2\pi\alpha_{s}^{2}\alpha_{t}\sigma^{2}_{s}\sigma^{2}_{t})^{-1}, and hence the maximal intensity is ρmax=(2παs2αtσs2σt2)1.\rho_{\max}=(2\pi\alpha_{s}^{2}\alpha_{t}\sigma^{2}_{s}\sigma^{2}_{t})^{-1}. For this process the pair correlation function is simply given by

g(u,t)=1exp(2u2αs2|t|αt).\displaystyle g(u,t)=1-\exp\Big{(}-\frac{2\|u\|^{2}}{\alpha_{s}}-\frac{2\lvert t\rvert}{\alpha_{t}}\Big{)}. (11)

The corresponding KK-function also has a closed-form expression, which is given in A.

Figure 1 (top row) shows that the values of the pair correlation function (11) decrease by the increase of the spatial range αs\alpha_{s} and the temporal delay αt\alpha_{t}. Thus, these parameters determine the degree of repulsion for the above separable model.

Refer to caption
Figure 1: Theoretical pair correlation functions (11) (top row), (15) (middle row) and (18) (bottom row) for different values of the parameters given on top of the plots.

3.3 Non-separable spatio-temporal covariance function

Following Fuentes et al. (2007), we consider the spatio-temporal spectral density

φϵ(ω,τ)=γ(αs2αt2+αt2|ω|2+αs2τ2+ϵ|ω|2τ2)ν,\displaystyle\varphi_{\epsilon}(\omega,\tau)=\gamma(\alpha_{s}^{2}\alpha_{t}^{2}+\alpha_{t}^{2}\lvert\omega\rvert^{2}+\alpha_{s}^{2}\tau^{2}+\epsilon\lvert\omega\rvert^{2}\tau^{2})^{-\nu}, (12)

which is an extension of the commonly used Matérn spectral density (Cressie and Wikle, 2011). Here, the non-negative parameter αs1\alpha_{s}^{-1} (spatial range) explains the rate of decay of the spatial correlation, the non-negative parameter αt1\alpha_{t}^{-1} (temporal delay) explains the rate of decay for the temporal correlation. Further, γ>0\gamma>0 is a scale parameter. The parameter ν\nu measures the degree of smoothness of the process and it should be larger than (d+1)/2(d+1)/2 to have a well-defined spectral density. The parameter ϵ\epsilon controls the interaction between the spatial and temporal components. For 0ϵ<10\leq\epsilon<1 the spectral density is non-separable while it is separable when ϵ=1\epsilon=1. The maximum of the spectral density is γ(αs2αt2)ν\gamma(\alpha_{s}^{2}\alpha_{t}^{2})^{-\nu} and accordingly a stdpp with spectral density (12) exists if γ<(αs2αt2)ν\gamma<(\alpha_{s}^{2}\alpha_{t}^{2})^{\nu}.

In the separable case, i.e. when ϵ=1\epsilon=1, the spectral density is given by

φϵ=1(ω,τ)=γ(αs2+ω2)ν(αt2+τ2)ν=φ0s(ω)φ0t(τ).\displaystyle\varphi_{\epsilon=1}(\omega,\tau)=\gamma(\alpha_{s}^{2}+\|\omega\|^{2})^{-\nu}(\alpha_{t}^{2}+\tau^{2})^{-\nu}=\varphi_{0}^{s}(\omega)\varphi_{0}^{t}(\tau). (13)

In this case, φ0s(ω)\varphi_{0}^{s}(\omega) and φ0t(τ)\varphi_{0}^{t}(\tau) are Matérn-type spectral densities in space and time, respectively. Consequently, the corresponding separable spatio-temporal covariance function, combining (6), and (13) and using the equations 6.726.4 and 8.432.5 in Gradshteyn and Ryzhik (2007) and setting d=2d=2, is given by

C0(u,t)\displaystyle C_{0}(u,t) =4γππ22ν1/2(Γ(ν))2(2π|t|αt)ν1/2(2πuαs)ν1\displaystyle=\frac{4\gamma\pi\sqrt{\pi}}{2^{2\nu-1/2}(\Gamma(\nu))^{2}}\Big{(}\frac{2\pi\lvert t\rvert}{\alpha_{t}}\Big{)}^{\nu-1/2}\Big{(}\frac{2\pi\|u\|}{\alpha_{s}}\Big{)}^{\nu-1}
×𝒦ν12(2παt|t|)𝒦ν1(2παsu),\displaystyle\times\mathcal{K}_{\nu-\frac{1}{2}}\Big{(}2\pi\alpha_{t}\lvert t\rvert\Big{)}\mathcal{K}_{\nu-1}\Big{(}2\pi\alpha_{s}\|u\|\Big{)},

where 𝒦ν()\mathcal{K}_{\nu}(\cdot) is the modified Bessel function of the second kind of order ν\nu. C0(u,t)C_{0}(u,t) is proportional to the product of Matérn covariance functions in space and time. Using the special cases, 𝒦12(r)=er(2r/π)1/2\mathcal{K}_{\frac{1}{2}}(r)=e^{-r}(2r/\pi)^{-1/2} and 𝒦32(r)=er(1+r1)(2r/π)1/2\mathcal{K}_{\frac{3}{2}}(r)=e^{-r}(1+r^{-1})(2r/\pi)^{-1/2} (Abramowitz and Stegun, 1992), the above covariance function for ν=2\nu=2 can be presented as

C0(u,t)=γπ24αs2αt3(2παt|t|+1)exp(2παt|t|)(2παsu)𝒦1(2παsu).\displaystyle C_{0}(u,t)=\frac{\gamma\pi^{2}}{4\alpha_{s}^{2}\alpha_{t}^{3}}(2\pi\alpha_{t}\lvert t\rvert+1)\exp(-2\pi\alpha_{t}\lvert t\rvert)(2\pi\alpha_{s}\|u\|)\mathcal{K}_{1}(2\pi\alpha_{s}\|u\|). (14)

For this case, considering the fact that limx0x𝒦1(x)=1\lim_{x\rightarrow 0}x\mathcal{K}_{1}(x)=1 (Yang and Chu, 2017), the intensity of the process is ρ=C0(0,0)=(γπ2)/(4αs2αt3)\rho=C_{0}(0,0)=(\gamma\pi^{2})/(4\alpha_{s}^{2}\alpha_{t}^{3}). Hence, taking into account that γ<αs4αt4\gamma<\alpha_{s}^{4}\alpha_{t}^{4}, a stdpp with kernel (14) exists if 4ρπ2αs2αt4\rho\leq\pi^{2}\alpha_{s}^{2}\alpha_{t}. For this separable case with ϵ=1\epsilon=1, considering (3), the pair correlation function is

g(u,t)=1(2παt|t|+1)2exp(4παt|t|)[(2παsu)𝒦1(2παsu)]2.\displaystyle g(u,t)=1-(2\pi\alpha_{t}\lvert t\rvert+1)^{2}\exp(-4\pi\alpha_{t}\lvert t\rvert)\Big{[}(2\pi\alpha_{s}\|u\|)\mathcal{K}_{1}(2\pi\alpha_{s}\|u\|)\Big{]}^{2}. (15)

For ϵ(0,1)\epsilon\in(0,1) the spatio-temporal covariance function corresponding to (12) should be computed numerically as there is no exact closed-form expression. For the case ϵ=0\epsilon=0, the stationary non-separable spatial-temporal spectral density is given by

φϵ=0(ω,τ)=γ(αs2αt2+αt2|ω|2+αs2τ2)ν.\displaystyle\varphi_{\epsilon=0}(\omega,\tau)=\gamma(\alpha_{s}^{2}\alpha_{t}^{2}+\alpha_{t}^{2}\lvert\omega\rvert^{2}+\alpha_{s}^{2}\tau^{2})^{-\nu}. (16)

Combining (6) and (16), and using the equations 6.726.4 and 8.432.5 in Gradshteyn and Ryzhik (2007), the covariance function when ϵ=0\epsilon=0 is

C0(u,t)\displaystyle C_{0}(u,t) =γπd+122νd+12Γ(ν)αs(2νd)αt(2ν1){2παs((αtαst)2+u2)1/2}νd+12\displaystyle=\frac{\gamma\pi^{\frac{d+1}{2}}}{2^{\nu-\frac{d+1}{2}}\Gamma(\nu)\alpha_{s}^{(2\nu-d)}\alpha_{t}^{(2\nu-1)}}\left\{2\pi\alpha_{s}\Big{(}(\frac{\alpha_{t}}{\alpha_{s}}t)^{2}+\|u\|^{2}\Big{)}^{1/2}\right\}^{\nu-\frac{d+1}{2}}
×𝒦νd+12(2παs((αtαst)2+u2)1/2).\displaystyle\times\mathcal{K}_{\nu-\frac{d+1}{2}}\left(2\pi\alpha_{s}\Big{(}(\frac{\alpha_{t}}{\alpha_{s}}t)^{2}+\|u\|^{2}\Big{)}^{1/2}\right).

According to (8), for d=2d=2 and ν=2\nu=2, there exists a stdpp with kernel

C0(u,t)=γπ22αs2αt3exp(2π(αt2|t|2+αs2u2)1/2)\displaystyle C_{0}(u,t)=\frac{\gamma\pi^{2}}{2\alpha_{s}^{2}\alpha_{t}^{3}}\exp\left(-2\pi\Big{(}\alpha_{t}^{2}\lvert t\rvert^{2}+\alpha_{s}^{2}\|u\|^{2}\Big{)}^{1/2}\right) (17)

if and only if γ<αs4αt4\gamma<\alpha_{s}^{4}\alpha_{t}^{4}. Further, it holds that ρ=C0(0,0)=(γπ2)/(2αs2αt3)\rho=C_{0}(0,0)=(\gamma\pi^{2})/(2\alpha_{s}^{2}\alpha_{t}^{3}) for the covariance functions (17). Thus, under the condition γ<αs4αt4\gamma<\alpha_{s}^{4}\alpha_{t}^{4}, it holds that 2ρπ2αs2αt2\rho\leq\pi^{2}\alpha_{s}^{2}\alpha_{t}. Therefore, for a stdpp with the above covariance function, the intensity should be at most ρmax=π2αs2αt/2\rho_{max}=\pi^{2}\alpha_{s}^{2}\alpha_{t}/2. Further, for this process the pair correlation function is simply given by

g(u,t)=1exp(4π(αt2|t|2+αs2u2)1/2).\displaystyle g(u,t)=1-\exp\left(-4\pi\Big{(}\alpha_{t}^{2}\lvert t\rvert^{2}+\alpha_{s}^{2}\|u\|^{2}\Big{)}^{1/2}\right). (18)

The expression for the corresponding KK-function can be found in A.

Figure 1 (middle and bottom rows) shows that the values of the theoretical pair correlations (15) and (18) decrease as αs1\alpha_{s}^{-1} and αt1\alpha_{t}^{-1} increase. Thus, for these models, the parameters αs1\alpha_{s}^{-1} and αt1\alpha_{t}^{-1} play the role of spatial range and time delay that determine the degree of repulsion. Moreover, for fixed range parameters, the separable covariance model with (15) leads to smaller values of the pair correlation function and thus more repulsive patterns than the non-separable model with (18). While the separable covariance function controls to repulsiveness of points in space and time separately, in the non-separable case the points repel each other in the 3D space. This leads to the different small scale interactions.

4 Discussion and conclusion

The different forms of covariance functions presented here allow for stdpps with different types of repulsion. While empirical experiments in the spatio-temporal setting are to be conducted in future work, model fitting for dpps is available through the maximum likelihood or minimum contrast methods (Lavancier et al., 2015) based on the summary functions such as the pair correlation function presented here for the given examples, and for model assessment, e.g. the global envelope test (Myllymäki et al., 2017) can be employed.

Acknowledgement

The authors are grateful to Frederic Lavancier and Ege Rubak for good discussions. MG was financially supported by the Kempe Foundations (JCSMK22-0134) and MM by the Academy of Finland (project numbers 295100 and 327211).

Appendix A KK-functions of the proposed models

Here we give the KK-functions for two covariance models discussed in Section 3. The KK-function of the model with the separable covariance function model (10), and correspondent to the pair correlation function (11), has the following closed-form expression:

K(u,t)\displaystyle K(u,t) =πu2t0u0texp(2u2αs2tαt)ududt\displaystyle=\pi u^{2}t-\int_{0}^{u}\int_{0}^{t}\exp\Big{(}\frac{-2u^{\prime 2}}{\alpha_{s}}-\frac{2t^{\prime}}{\alpha_{t}}\Big{)}u^{\prime}\mathrm{d}u^{\prime}\mathrm{d}t^{\prime} (19)
=πu2tαsαt/[8(1e(2u2/αs))(1e(2t/αt))].\displaystyle=\pi u^{2}t-\alpha_{s}\alpha_{t}/\Big{[}8\Big{(}1-e^{(-2u^{2}/\alpha_{s})}\Big{)}\Big{(}1-e^{(-2t/\alpha_{t})}\Big{)}\Big{]}. (20)

Employing the general formula of the KK-function (4) for the covariance model (17), the space-time KK-function correspondent to the pair correlation function (18) is given by

K(u,t)\displaystyle K(u,t) =2π0u0t(1|R(u/αs,t/αt)|2)ududt\displaystyle=2\pi\int_{0}^{u}\int_{0}^{t}\Big{(}1-|R(u^{\prime}/\alpha_{s},t^{\prime}/\alpha_{t})|^{2}\Big{)}u^{\prime}\mathrm{d}u^{\prime}\mathrm{d}t^{\prime} (21)
=πu2t2πρ20u0t|C0(u,t)|2ududt\displaystyle=\pi u^{2}t-\frac{2\pi}{\rho^{2}}\int_{0}^{u}\int_{0}^{t}|C_{0}(u^{\prime},t^{\prime})|^{2}u^{\prime}\mathrm{d}u^{\prime}\mathrm{d}t^{\prime} (22)
=πu2tγ2π38ρ2αs6αt6[e4παtt(2παtt+e4παtt12παt)\displaystyle=\pi u^{2}t-\frac{\gamma^{2}\pi^{3}}{8\rho^{2}\alpha_{s}^{6}\alpha_{t}^{6}}\Big{[}e^{-4\pi\alpha_{t}t}\Big{(}\frac{-2\pi\alpha_{t}t+e^{4\pi\alpha_{t}t}-1}{2\pi\alpha_{t}}\Big{)} (23)
(αsuαt+4παs2u2αtsinhnt2nn!(n+1(n+1)!)!)J1(4π,t)],\displaystyle-\Big{(}\frac{\alpha_{s}u}{\alpha_{t}}+\frac{4\pi\alpha_{s}^{2}u^{2}}{\alpha_{t}}\frac{\sinh nt}{2nn!(n+1-(n+1)!)!}\Big{)}J_{1}(4\pi,t)\Big{]}, (24)

where J1(4π,t)=n=0(2π)nm=0nsinh(1+n2m)tm!(nm!)!(1+n2m)J_{1}(4\pi,t)=\sum_{n=0}^{\infty}(-2\pi)^{n}\sum_{m=0}^{n}\frac{\sinh(1+n-2m)t}{m!(n-m!)!(1+n-2m)} is an incomplete Bessel function (see more details in Jones (2007)).

References

  • (1)
  • Abramowitz and Stegun (1992) Abramowitz, M. and Stegun, I. A. (1992). Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover Publications Inc., New York.
  • Cressie and Wikle (2011) Cressie, N. and Wikle, C. K. (2011). Statistics for spatio-temporal data, John Wiley and Sons.
  • Fuentes et al. (2007) Fuentes, M., Chen, L. and Davis, J. (2007). A class of nonseparable and nonstationary spatial temporal covariance functions, Environmetrics 9: 487–507.
  • Gabriel and Diggle (2009) Gabriel, E. and Diggle, P. J. (2009). Second-order analysis of inhomogeneous spatio-temporal point process data, Statistica Neerlandica 63: 43–51.
  • Ghorbani (2013) Ghorbani, M. (2013). Testing the weak stationarity of a spatio-temporal point process, Stochastic Environonmental Research and Risk Assessesment 27: 517–524.
  • Gradshteyn and Ryzhik (2007) Gradshteyn, I. S. and Ryzhik, I. M. (2007). Table of Integrals, Series, and Products., 7th edn, Academic Press.
  • Jones (2007) Jones, D. S. (2007). Incomplete Bessel functions. I, Proceedings of the Edinburgh Mathematical Society 50: 173–183.
  • Lavancier et al. (2015) Lavancier, F., Møller, J. and Rubak, E. (2015). Determinantal point process models and statistical inference, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 77(4): 853–877.
  • Macchi (1975) Macchi, O. (1975). The coincidence approach to stochastic point processes, Advances in Applied Probability 7: 83–122.
  • Møller and Ghorbani (2012) Møller, J. and Ghorbani, M. (2012). Aspects of second-order analysis of structured inhomogeneous spatio-temporal point processes, Statistica Neerlandica 66(4): 472–491.
  • Myllymäki et al. (2017) Myllymäki, M., Mrkvička, T., Grabarnik, P., Seijo, H. and Hahn, U. (2017). Global envelope tests for spatial processes, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 79(2): 381–404.
  • Radhakrishna Rao and Bhaskara Rao (1998) Radhakrishna Rao, C. and Bhaskara Rao, M. (1998). Matrix Algebra and Its Applications to Statistics and Econometrics, World Scientific Publishing Co.
  • Rasmussen and Williams (2006) Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian processes for machine learning, The MIT Press, London.
  • Yang and Chu (2017) Yang, Z. H. and Chu, Y. M. (2017). On approximating the modified bessel function of the second kind, Journal of Inequalities and Applications 41.