This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Span of Restriction of Hilbert Theta Functions

Gabriele Bogo, Yingkun Li Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgartenstrasse 7, D–64289 Darmstadt, Germany [email protected] [email protected]
Abstract.

In this paper, we study the diagonal restrictions of certain Hilbert theta series for a totally real field FF, and prove that they span the corresponding space of elliptic modular forms when the FF is quadratic or cubic. Furthermore, we give evidence of this phenomenon when FF is quartic, quintic and sextic.

1. Introduction

Theta functions are classical examples of holomorphic modular forms. Given a positive definite, unimodular \mathbb{Z}-lattice LL of rank 8m8m with mm\in\mathbb{N}, the associated theta function

(1.1) θL(τ):=λLqQ(λ),q:=𝐞(τ):=e2πiτ,\theta_{L}(\tau):=\sum_{\lambda\in L}q^{Q(\lambda)},~{}q:={\mathbf{e}}(\tau):=e^{2\pi i\tau},

is in M4mM_{4m}, the space of elliptic modular forms of weight 4m4m on SL2(){\mathrm{SL}}_{2}(\mathbb{Z}). For example, the theta functions associated to the E8E_{8} lattice and Leech lattice Λ24\Lambda_{24} are explicitly given as

(1.2) θE8(τ)=E4(τ),θΛ24(τ)=E4(τ)3720Δ(τ),\theta_{E_{8}}(\tau)=E_{4}(\tau),~{}\theta_{\Lambda_{24}}(\tau)=E_{4}(\tau)^{3}-720\Delta(\tau),

where E2k(τ)E_{2k}(\tau) is the Eisenstein series of weight 2k2k and Δ(τ)\Delta(\tau) is the Ramanujan Δ\Delta-function.

For NN\in\mathbb{N}, we denote

(1.3) (N):=kMNk{\mathcal{M}}^{(N)}_{\mathbb{Q}}:=\bigoplus_{k\in\mathbb{N}}M_{Nk}

the finitely generated graded algebra of elliptic modular forms with weights divisible by NN, and would like to consider the subalgebra θ(4){\mathcal{M}}^{\theta}_{\mathbb{Q}}\subset{\mathcal{M}}^{(4)}_{\mathbb{Q}} generated by theta functions of unimodular lattices. Using the relation

(1.4) θL1L2(τ)=θL1(τ)θL2(τ).\theta_{L_{1}\oplus L_{2}}(\tau)=\theta_{L_{1}}(\tau)\theta_{L_{2}}(\tau).

for any two unimodular lattices L1,L2L_{1},L_{2}, we see that θ{\mathcal{M}}^{\theta}_{\mathbb{Q}} is simply the span of such theta functions. Equation (1.2) and the fact (4)=[E4,Δ]{\mathcal{M}}^{(4)}_{\mathbb{Q}}=\mathbb{C}[E_{4},\Delta] imply that

(1.5) θ=(4).{\mathcal{M}}^{\theta}_{\mathbb{Q}}={\mathcal{M}}^{(4)}_{\mathbb{Q}}.

The construction of theta functions also extends to the case of Hilbert modular forms. Let FF be a totally real field of degree dd with ring of integers 𝒪F{\mathcal{O}_{F}}, and denote αj\alpha_{j}\in\mathbb{R} the real embeddings of αF\alpha\in F for 1jd1\leq j\leq d. For NN\in\mathbb{N}, denote F(N){\mathcal{M}}_{F}^{(N)} the algebra of holomorphic Hilbert modular forms of parallel weight NkNk for kk\in\mathbb{N}. Given a totally positive definite, \mathbb{Z}-unimodular 𝒪F{\mathcal{O}_{F}}-lattice LL of rank 8m8m (see Definition 1), the associated theta function

(1.6) θL(τ):=λLj=1dqjQ(λ)j,τ=(τ1,,τd)d,qj:=𝐞(τj),\theta_{L}(\tau):=\sum_{\lambda\in L}\prod_{j=1}^{d}q_{j}^{Q(\lambda)_{j}},~{}\tau=(\tau_{1},\dots,\tau_{d})\in\mathbb{H}^{d},~{}q_{j}:={\mathbf{e}}(\tau_{j}),

is a Hilbert modular form of parallel weight 4m4m on SL2(𝒪F){\mathrm{SL}}_{2}({\mathcal{O}_{F}}). It is well-known that such lattice exists precisely when

(1.7) m1d2,d2:=gcd(2,d)m\in\frac{1}{d_{2}}\mathbb{N},~{}d_{2}:=\gcd(2,d)

(see Prop. 2.1). However, their explicit constructions and classification have only been carried out when dd is small (see e.g. [Sch94, Wan14]). As a result, the relationship between F(4/d2){\mathcal{M}}_{F}^{(4/d_{2})} and the subalgebra Fθ{\mathcal{M}}^{\theta}_{F} generated by such θL\theta_{L} is not clear.

On the other hand, we have the following diagonal restriction map

F(N)\displaystyle{\mathcal{M}}^{(N)}_{F} (Nd)\displaystyle\to{\mathcal{M}}^{(Nd)}_{\mathbb{Q}}
f\displaystyle f fΔ(τ):=f(τΔ),\displaystyle\mapsto f^{\Delta}(\tau):=f(\tau^{\Delta}),

where τΔ=(τ,,τ)d\tau^{\Delta}=(\tau,\dots,\tau)\in\mathbb{H}^{d}. In this note, we will investigate the question about the image of Fθ{\mathcal{M}}^{\theta}_{F} under this map, which is denoted by (Fθ)Δ({\mathcal{M}}^{\theta}_{F})^{\Delta} and contained in (4d/d2){\mathcal{M}}^{(4d/d_{2})}_{\mathbb{Q}}. The main result is as follows.

Theorem 1.1.

For a totally real field FF of degree d=2,3d=2,3, we have

(1.8) (Fθ)Δ=(4d/d2).({\mathcal{M}}_{F}^{\theta})^{\Delta}={\mathcal{M}}^{(4d/d_{2})}_{\mathbb{Q}}.

Based on this, it is then natural to make the following conjecture.

Conjecture 1.

Equation (1.8) holds for any totally real field FF of degree dd.

To prove Theorem 1.1, we apply an instance of the Siegel-Weil formula to see that the Hecke Eisenstein series EF,kE_{F,k} defined in (2.5) is contained in Fθ{\mathcal{M}}^{\theta}_{F} for all k(4/d2)k\in(4/d_{2})\mathbb{N}. Then we calculate the Petersson inner product between the diagonal restriction of EF,kE_{F,k} and an elliptic cusp form. For d=2d=2, this inner product is related to Fourier coefficients of half-integral weight modular forms by a result of Kohnen-Zagier [KZ84]. For d3d\geq 3, we give an expression for this inner product in terms of a sum over the double coset ΓF,\ΓF/Γ\Gamma_{F,\infty}\backslash\Gamma_{F}/\Gamma_{\mathbb{Q}} (see Prop. 3.1). When d=3d=3, we related this double coset to orders in a cubic field FF (see section 4). Using these results, we show that when d=2,3d=2,3, (4d/d2){\mathcal{M}}_{\mathbb{Q}}^{(4d/d_{2})} can be generated by EF,kΔE_{F,k}^{\Delta} and θLΔ\theta_{L}^{\Delta} for a \mathbb{Z}-unimodular 𝒪F{\mathcal{O}_{F}}-lattice LL.

The same approach can be used to check conjecture 1 numerically when d{4,5,6,8,10}d\in\{4,5,6,8,10\}. We list some results for d=4,5,6d=4,5,6 and FF has small discriminants in the last section (see Theorem 6.1).

Acknowledgement: We thank Jan Bruinier and Tonghai Yang for helpful discussion about Prop. 2.3. The authors are supported by the LOEWE research unit USAG, and by the Deutsche Forschungsgemeinschaft (DFG) through the Collaborative Research Centre TRR 326 “Geometry and Arithmetic of Uniformized Structures”, project number 444845124.

2. Preliminary

Let FF be a totally real field of degree dd with ring of integers 𝒪F{\mathcal{O}_{F}} and different 𝔡F\mathfrak{d}_{F}. Denote Cl(F){\mathrm{Cl}}(F) the (wide) class group of FF. Let (V,Q)(V,Q) be an FF-quadratic space of dimension nn. We say that VV is totally positive if Vι(F)V\otimes_{\iota(F)}\mathbb{R} is totally positive for every real embedding ι:F\iota:F\hookrightarrow\mathbb{R}. In that case, SOV(){\mathrm{SO}}_{V}(\mathbb{R}) is compact and the double quotient SOV(F)\SOV(F^)/K{\mathrm{SO}}_{V}(F)\backslash{\mathrm{SO}}_{V}(\hat{F})/K is a finite set for any open compact subgroup KSOV(F^)K\subset{\mathrm{SO}}_{V}(\hat{F}). Here 𝔸F\mathbb{A}_{F} and F^\hat{F} are the adele and finite adele of FF.

A finitely generated 𝒪F{\mathcal{O}_{F}}-module LVL\subset V is called a (𝒪F{\mathcal{O}_{F}}-)lattice if L𝒪FF=VL\otimes_{\mathcal{O}_{F}}F=V. We denote L^:=L^V^=V^\hat{L}:=L\otimes\hat{\mathbb{Z}}\subset\hat{V}=V\otimes\hat{\mathbb{Q}}. If Q(L)𝔡F1Q(L)\subset\mathfrak{d}_{F}^{-1}, we say that LL is \mathbb{Z}-even integral and call the lattice

(2.1) L:={yV:(y,L)𝔡F1}L^{\prime}:=\{y\in V:(y,L)\subset\mathfrak{d}_{F}^{-1}\}

its \mathbb{Z}-dual. Viewed as a \mathbb{Z}-lattice with respect to Q(x):=trF/Q(x)Q_{\mathbb{Q}}(x):=\mathrm{tr}_{F/\mathbb{Q}}Q(x), such LL is even integral with dual LL^{\prime}.

Definition 1.

An 𝒪F{\mathcal{O}_{F}}-lattice LL is said to be \mathbb{Z}-unimodular if L=LL^{\prime}=L.

As a convention, the trivial lattice in the trivial FF-vector space is totally positive and \mathbb{Z}-unimodular. Consider the monoid

(2.2) 𝒰F+:={(L,Q):L is an even -unimodular 𝒪F-lattice and totally positive definite}{\mathcal{U}}^{+}_{F}:=\{(L,Q):L\text{ is an even }\mathbb{Z}\text{-unimodular }{\mathcal{O}_{F}}\text{-lattice and totally positive definite}\}

with respect to \oplus, and denote 𝒰F+,n𝒰F+{\mathcal{U}}^{+,n}_{F}\subset{\mathcal{U}}^{+}_{F} the subset of lattices of rank nn. We first have the following result.

Proposition 2.1.

The set 𝒰F+,n{\mathcal{U}}^{+,n}_{F} is non-empty precisely when (8/d2)n(8/d_{2})\mid n.

Proof.

Satz 1 in [Cha70] implies that there exists definite, unimodular 𝒪F{\mathcal{O}_{F}}-lattices in the sense loc. cit. if and only if (8/d2)n(8/d_{2})\mid n. Furthermore since nn is even, all of the 2d2^{d} possible definite signatures will appear in the set of definite, unimodular 𝒪F{\mathcal{O}_{F}}-lattices of rank nn. One can then use the fact that the class 𝔡F\mathfrak{d}_{F} in the class group is a square to translate this result to the existence \mathbb{Z}-unimodular lattices. (see the proof of Prop. 2.5 in [Li21] for details). ∎

Remark 2.2.

For L𝒰F+,nL\in{\mathcal{U}}^{+,n}_{F} and hSOV(^)h\in{\mathrm{SO}}_{V}(\hat{\mathbb{Q}}) with V=L𝒪FFV=L\otimes_{\mathcal{O}_{F}}F, the lattice

(2.3) hL:=(hL^)VVh\cdot L:=(h\cdot\hat{L})\cap V\subset V

is also in 𝒰F+,n{\mathcal{U}}^{+,n}_{F}.

For each L𝒰F+,nL\in{\mathcal{U}}^{+,n}_{F}, let θL(τ)\theta_{L}(\tau) be the associated theta function defined in (1.6). It is a Hilbert modular form of parallel weight n/2n/2 for SL2(𝒪F){\mathrm{SL}}_{2}({\mathcal{O}_{F}}). Now, the Siegel-Weil formula [Sie66, Wei65] gives us the following result.

Proposition 2.3.

Let FF be a totally real field of degree dd. Then

(2.4) SOV(F)\SOV(𝔸F)/SOV()θhL(τ)𝑑h=κEF,n/2(τ),\int_{{\mathrm{SO}}_{V}(F)\backslash{\mathrm{SO}}_{V}(\mathbb{A}_{F})/{\mathrm{SO}}_{V}(\mathbb{R})}\theta_{h\cdot L}(\tau)dh=\kappa E_{F,n/2}(\tau),

for some positive constant κ\kappa, where EF,kE_{F,k} is the Hecke Eisenstein series of parallel weight kk defined by

(2.5) EF,k(τ):=1+ζF(k)1𝒜=[𝔞]Cl(F)Nm(𝔞)k(c,d)𝔞2/𝒪F×,c0j=1d(cjτj+dj)k\begin{split}E_{F,k}(\tau)&:=1+\zeta_{F}(k)^{-1}\sum_{{\mathcal{A}}=[\mathfrak{a}]\in{\mathrm{Cl}}(F)}{\mathrm{Nm}}(\mathfrak{a})^{k}\sum_{(c,d)\in\mathfrak{a}^{2}/\mathcal{O}_{F}^{\times},~{}c\neq 0}\prod_{j=1}^{d}(c_{j}\tau_{j}+d_{j})^{-k}\end{split}

In particular, EF,kFθE_{F,k}\in{\mathcal{M}}^{\theta}_{F} for all k(4/d2)k\in(4/d_{2})\mathbb{N}.

Remark 2.4.

The Hecke Eisenstein series have the following well-known Fourier expansion (see [Sie69, Zag76])

(2.6) EF,k(τ)=1+2dζF(1k)t𝔡F1,t0σk1(t𝔡F)j=1dqjtjτjE_{F,k}(\tau)=1+\frac{2^{d}}{\zeta_{F}(1-k)}\sum_{t\in\mathfrak{d}_{F}^{-1},~{}t\gg 0}\sigma_{k-1}(t\mathfrak{d}_{F})\prod_{j=1}^{d}q_{j}^{t_{j}\tau_{j}}

with σr(𝔞):=𝔟|𝔞,𝔟𝒪FNm(𝔟)r\sigma_{r}(\mathfrak{a}):=\sum_{{\mathfrak{b}|\mathfrak{a},~{}\mathfrak{b}\subset\mathcal{O}_{F}}}{{\mathrm{Nm}}(\mathfrak{b})^{r}} for any integral ideal 𝔞\mathfrak{a} and rr\in\mathbb{N}.

Proof.

By the Siegel-Weil formula, the left hand side of (2.4) equals to the Eisenstein series

EL(τ)=vn/4γB(F)\SL2(F)ΦL(γgτ,n/21),E_{L}(\tau)=v^{-n/4}\sum_{\gamma\in B(F)\backslash{\mathrm{SL}}_{2}(F)}\Phi_{L}(\gamma g_{\tau},n/2-1),

where BSL2B\subset{\mathrm{SL}}_{2} is the standard Borel subgroup, and ΦL\Phi_{L} is the Siegel-Weil section associated to the lattice LL (see e.g. [Kud08, section I.3]). For tF×t\in F^{\times}, the tt-th Fourier coefficient of ELE_{L} is given by

𝔭<Wt,𝔭(1,n/21,ΦL,𝔭)\prod_{\mathfrak{p}<\infty}W_{t,\mathfrak{p}}(1,n/2-1,\Phi_{L,\mathfrak{p}})

up to constant independent of tt. Here Wt,𝔭(g,s,ϕ)W_{t,\mathfrak{p}}(g,s,\phi) is the local Whittaker function (see e.g. [Yan05]). Since LL is \mathbb{Z}-unimodular, the local lattice L𝒪F,𝔭L\otimes\mathcal{O}_{F,\mathfrak{p}} in VF𝔭V\otimes F_{\mathfrak{p}} is self-dual for every finite place 𝔭\mathfrak{p}. Standard calculations (see e.g. [KY10]) then gives us

Wt,𝔭(1,s,ΦL,𝔭)=m=0ord𝔭(t𝔡F𝔭)Nm(𝔭)sW_{t,\mathfrak{p}}(1,s,\Phi_{L,\mathfrak{p}})=\sum_{m=0}^{{\mathrm{ord}}_{\mathfrak{p}}(t\mathfrak{d}_{F_{\mathfrak{p}}})}{\mathrm{Nm}}(\mathfrak{p})^{s}

when t𝔡F𝔭1t\in\mathfrak{d}_{F_{\mathfrak{p}}}^{-1}, and zero otherwise. So up to a constant, the Eisenstein series ELE_{L} and EF,n/2E_{F,n/2} have the same non-constant term Fourier coefficients, hence agree. Now the left hand side of (2.4) is just a sum of θLj\theta_{L_{j}} over certain Lj𝒰F+,nL_{j}\in{\mathcal{U}}^{+,n}_{F} by Remark 2.2. Combining this with Prop. 2.1 finishes the proof. ∎

We can rewrite the Hecke-Eisenstein series EF,kE_{F,k} as

EF,k(τ):=1+𝒜=[𝔞]Cl(F)(c,d)𝔞2/𝒪F×c0𝒪Fc+𝒪Fd=𝔞(Nm(𝔞)Nm(c))kj=1d(τj+dj/cj)kE_{F,k}(\tau):=1+\sum_{\begin{subarray}{c}{\mathcal{A}}=[\mathfrak{a}]\in{\mathrm{Cl}}(F)\\ (c,d)\in\mathfrak{a}^{2}/\mathcal{O}_{F}^{\times}\\ c\neq 0\\ {\mathcal{O}_{F}}c+{\mathcal{O}_{F}}d=\mathfrak{a}\end{subarray}}\left(\frac{{\mathrm{Nm}}(\mathfrak{a})}{{\mathrm{Nm}}(c)}\right)^{k}\prod_{j=1}^{d}(\tau_{j}+d_{j}/c_{j})^{-k}

For any βF\beta\in F, there is unique 𝒜=[𝔞]{\mathcal{A}}=[\mathfrak{a}] and (c,d)𝔞2/𝒪F×(c,d)\in\mathfrak{a}^{2}/\mathcal{O}_{F}^{\times} with c0c\neq 0 such that 𝔞=𝒪Fc+𝒪Fd\mathfrak{a}={\mathcal{O}_{F}}c+{\mathcal{O}_{F}}d and β=d/c\beta=d/c. Therefore, we denote

(2.7) Aβ:=Nm(c)Nm(𝔞){0}.A_{\beta}:=\frac{{\mathrm{Nm}}(c)}{{\mathrm{Nm}}(\mathfrak{a})}\in\mathbb{Z}-\{0\}.

It is easy to check this definition does not depend on the choice of the representative 𝔞\mathfrak{a}, and

(2.8) Aβ+a,k=Aβ,kA_{\beta+a,k}=A_{\beta,k}

for all aa\in\mathbb{Z}. Then we have

(2.9) EF,k(τ)=1+βFAβkj=1d(τj+βj)k.E_{F,k}(\tau)=1+\sum_{\beta\in F}A_{\beta}^{-k}\prod_{j=1}^{d}(\tau_{j}+\beta_{j})^{-k}.

3. Petersson Inner Product Calculations

In this section, let F/F/\mathbb{Q} be totally real with degree d3d\geq 3. We will give an expression for the Petersson inner product between the diagonal restriction of the Hecke Eisenstein series EF,kE_{F,k} and an elliptic cusp form ff of weight dkdk.

For αMm,n(F)\alpha\in M_{m,n}(F) and 1jd1\leq j\leq d, we write αjMm,n()\alpha_{j}\in M_{m,n}(\mathbb{R}) with 1jd1\leq j\leq d for the real embeddings of α\alpha. We identify 1(F)B(F)\SL2(F)\mathbb{P}^{1}(F)\cong B(F)\backslash{\mathrm{SL}}_{2}(F) via

(3.1) β{(1β)βF,(01)β=.\beta\mapsto\begin{cases}\left(\begin{smallmatrix}*&*\\ 1&\beta\end{smallmatrix}\right)&\beta\in F,\\ \left(\begin{smallmatrix}*&*\\ 0&1\end{smallmatrix}\right)&\beta=\infty.\end{cases}

Let S0{}1(F)S_{0}\cup\{\infty\}\subset\mathbb{P}^{1}(F) be a set of representatives of the double coset B(F)\SL2(F)/SL2()B(F)\backslash{\mathrm{SL}}_{2}(F)/{\mathrm{SL}}_{2}(\mathbb{Z}). Then S0FS_{0}\subset F-\mathbb{Q} and we can use (2.9) to express the diagonal restriction of EF,kE_{F,k} as

(3.2) EF,kΔ(τ)=Edk+βS0EF,k,β(τ),EF,k,β(τ):=γSL2()Aγ1(βj)kj=1d(τγ1(βj))kE_{F,k}^{\Delta}(\tau)=E_{dk}+\sum_{\beta\in S_{0}}E_{F,k,\beta}(\tau),~{}E_{F,k,\beta}(\tau):=\sum_{\gamma\in{\mathrm{SL}}_{2}(\mathbb{Z})}A_{-\gamma^{-1}\cdot(-\beta_{j})}^{-k}\prod_{j=1}^{d}(\tau-\gamma^{-1}\cdot(-\beta_{j}))^{-k}

with τ\tau\in\mathbb{H}. Note that EdkE_{dk} is just the elliptic Eisenstein series of weight dkdk.

Let f(τ)=n1cnqnSdkf(\tau)=\sum_{n\geq 1}c_{n}q^{n}\in S_{dk} be a cusp form. We are interested in estimating its inner product with EF,kΔE^{\Delta}_{F,k}. By the usual unfolding process, we obtain

EF,kΔ,f\displaystyle\langle E^{\Delta}_{F,k},f\rangle =βS0Γ\EF,k,β(τ)f(τ)¯vdkdudvv2\displaystyle=\sum_{\beta\in S_{0}}\int_{\Gamma_{\infty}\backslash\mathbb{H}}E^{\infty}_{F,k,\beta}(\tau)\overline{f(\tau)}v^{dk}\frac{dudv}{v^{2}}
=βS00n1cn¯aF,k,β(n,v)e2πnvvdk1dvv,\displaystyle=\sum_{\beta\in S_{0}}\int_{0}^{\infty}\sum_{n\geq 1}\overline{c_{n}}a_{F,k,\beta}(n,v)e^{-2\pi nv}v^{dk-1}\frac{dv}{v},

where Γ:=B()SL2()\Gamma_{\infty}:=B(\mathbb{Q})\cap{\mathrm{SL}}_{2}(\mathbb{Z}) and

(3.3) EF,k,β(τ):=γΓAγ1(β)kj=1d(τγ1(βj))k=2Aβkj=1d(τ+βj+b)k=naF,k,β(n,v)𝐞(nu).\begin{split}E^{\infty}_{F,k,\beta}(\tau)&:=\sum_{\gamma\in\Gamma_{\infty}}A_{-\gamma^{-1}\cdot(-\beta)}^{-k}\prod_{j=1}^{d}(\tau-\gamma^{-1}\cdot(-\beta_{j}))^{-k}\\ &=2A_{\beta}^{-k}\prod_{j=1}^{d}(\tau+\beta_{j}+b)^{-k}=\sum_{n\in\mathbb{Z}}a_{F,k,\beta}(n,v){\mathbf{e}}(nu).\end{split}

for β=d/cS0\beta=d/c\in S_{0}. Here we have rγ(β)=rβr_{-\gamma\cdot(-\beta)}=r_{\beta} for all γΓ\gamma\in\Gamma_{\infty} by (2.8). It is easy to see that

(3.4) aF,k,β(n,v)=2Aβkj=1d(u+iv+βj)k𝐞(nu)du=4πi(Aβ)kzZ(β)Resx=z(𝐞(nx)j=1d(x(βj+iv))k),\begin{split}a_{F,k,\beta}(n,v)&=2A_{\beta}^{-k}\int_{\mathbb{R}}\prod_{j=1}^{d}(u+iv+\beta_{j})^{-k}{\mathbf{e}}(-nu)du\\ &=4\pi i(-A_{\beta})^{-k}\sum_{z\in Z(\beta)}\mathrm{Res}_{x=z}\left({\mathbf{e}}(nx)\prod_{j=1}^{d}(x-(\beta_{j}+iv))^{-k}\right),\end{split}

where Z(β):={βj+iv:1jd}Z(\beta):=\{\beta_{j}+iv:1\leq j\leq d\}\subset\mathbb{H} since

(3.5) zZ(β)Resx=z(𝐞(nx)j=1d(xzj)k)=12πi𝐞(nx)j=1d(xzj)kdx.\sum_{z\in Z(\beta)}\mathrm{Res}_{x=z}\left({\mathbf{e}}(nx)\prod_{j=1}^{d}(x-z_{j})^{-k}\right)=\frac{1}{2\pi i}\int_{\mathbb{R}}{\mathbf{e}}(nx)\prod_{j=1}^{d}(x-z_{j})^{-k}dx.

Suppose βj\beta_{j}’s are all distinct. Then

zZ(β)Resx=z\displaystyle\sum_{z\in Z(\beta)}\mathrm{Res}_{x=z} (𝐞(nx)j=1d(x(βj+iv))k)=1Γ(k)j=1d(ddx)k1(𝐞(nx)j=1,jjd(x(βj+iv))k)x=βj+iv\displaystyle\left({\mathbf{e}}(nx)\prod_{j=1}^{d}(x-(\beta_{j}+iv))^{-k}\right)=\frac{1}{\Gamma(k)}\sum_{j=1}^{d}\left(\frac{d}{dx}\right)^{k-1}\left(\frac{{\mathbf{e}}(nx)}{\prod_{j^{\prime}=1,~{}j^{\prime}\neq j}^{d}(x-(\beta_{j^{\prime}}+iv))^{k}}\right)\mid_{x=\beta_{j^{\prime}}+iv}
=𝐞(niv)Γ(k)j=1d=0k1(2πin)k1𝐞(nβj)e2πnv(k1)(Pd1,k,Qd1,k+)(βjβ1,,βjβd),\displaystyle=\frac{{\mathbf{e}}(niv)}{\Gamma(k)}\sum_{j=1}^{d}\sum_{\ell=0}^{k-1}(2\pi in)^{k-1-\ell}{{\mathbf{e}}(n\beta_{j})e^{-2\pi nv}}\binom{k-1}{\ell}\left(\frac{P_{d-1,k,\ell}}{Q_{d-1,k+\ell}}\right)(\beta_{j}-\beta_{1},\dots,\beta_{j}-\beta_{d}),

where Pm,k,,Qm,r[x1,,xm]P_{m,k,\ell},Q_{m,r}\in\mathbb{Q}[x_{1},\dots,x_{m}] are symmetric polynomials of degrees (m1)(m-1)\ell and mrmr defined by

(3.6) Pm,k,(x1,,xm):=(x1xm)k+(x1++xm)(x1xm)k,Qm,r(x1,,xm):=(x1xm)r.\begin{split}P_{m,k,\ell}(x_{1},\dots,x_{m})&:=(x_{1}\dots x_{m})^{k+\ell}(\partial_{x_{1}}+\dots+\partial_{x_{m}})^{\ell}(x_{1}\dots x_{m})^{-k},\\ Q_{m,r}(x_{1},\dots,x_{m})&:=(x_{1}\dots x_{m})^{r}.\end{split}

Note that

(3.7) Pm,k,Qm,k+(x1,,xm)=(1)!r=(rj)m,jrj=((kr))j=1mxjkrj,\frac{P_{m,k,\ell}}{Q_{m,k+\ell}}(x_{1},\dots,x_{m})=(-1)^{\ell}{\ell!}\sum_{r=(r_{j})\in\mathbb{N}^{m},~{}\sum_{j}r_{j}=\ell}\left(\!\!\binom{k}{r}\!\!\right)\prod_{j=1}^{m}x_{j}^{-k-r_{j}},

where ((kr)):=k(r1)k(rm)r1!rm!\left(\!\!\binom{k}{r}\!\!\right):=\frac{k^{(r_{1})}\dots k^{(r_{m})}}{r_{1}!\dots r_{m}!} for r=(r1,,rm)mr=(r_{1},\dots,r_{m})\in\mathbb{N}^{m} with k(n):=k(k+1)(k+n1)k^{(n)}:=k(k+1)\dots(k+n-1). Substituting this into the unfolding gives us the following result.

Proposition 3.1.

Suppose FF is a totally real field of degree d3d\geq 3 and there is no intermediate field between FF and \mathbb{Q}. For any k2k\in 2\mathbb{N} and f(τ)=n1c(n)qnSdkf(\tau)=\sum_{n\geq 1}c(n)q^{n}\in S_{dk}, we have

(3.8) EF,kΔ,f=iΓ(dk1)(4π)dk2Γ(k)=0k1(2πi)k1βS0Aβk×j=1d(Pd1,k,Qd1,k+)(βjβ1,,βjβj1,βjβj+1,,βjβd)n1𝐞(nβj)cn¯n(d1)k+,\begin{split}&\langle E^{\Delta}_{F,k},f\rangle=\frac{i\Gamma(dk-1)}{(4\pi)^{dk-2}\Gamma(k)}\sum_{\ell=0}^{k-1}(2\pi i)^{k-1-\ell}\sum_{\beta\in S_{0}}A_{\beta}^{-k}\\ &\times\sum_{j=1}^{d}\left(\frac{P_{d-1,k,\ell}}{Q_{d-1,k+\ell}}\right)(\beta_{j}-\beta_{1},\dots,\beta_{j}-\beta_{j-1},\beta_{j}-\beta_{j+1},\dots,\beta_{j}-\beta_{d})\sum_{n\geq 1}\frac{{\mathbf{e}}(n\beta_{j})\overline{c_{n}}}{n^{(d-1)k+\ell}},\end{split}

where the polynomials Pm,k,P_{m,k,\ell} and Qm,rQ_{m,r} are defined in (3.6).

Remark 3.2.

The condition that there is no intermediate field between FF and \mathbb{Q} implies that βi=βj\beta_{i}=\beta_{j} if and only if i=ji=j for all βF\beta\in F-\mathbb{Q}. A similar but more complicated formula for the inner product can be derived without this condition.

Example 3.3.

Let d=3d=3 and k=2k=2. Then

Pd1,k,Qd1,k+(x,y)={1/(xy)2,=0,2(x+y)/(xy)3,=1.\frac{P_{d-1,k,\ell}}{Q_{d-1,k+\ell}}(x,y)=\begin{cases}1/(xy)^{2},&\ell=0,\\ -2(x+y)/(xy)^{3},&\ell=1.\end{cases}

Set γ1:=β2β3,γ2:=β3β1,γ3:=β1β2\gamma_{1}:=\beta_{2}-\beta_{3},\gamma_{2}:=\beta_{3}-\beta_{1},\gamma_{3}:=\beta_{1}-\beta_{2}, we have

=0k1(2πin)k1j=1dPd1,k,Qd1,k+(βjβ1,,βjβd)𝐞(nβj)\displaystyle\sum_{\ell=0}^{k-1}(2\pi in)^{k-1-\ell}\sum_{j=1}^{d}\frac{P_{d-1,k,\ell}}{Q_{d-1,k+\ell}}(\beta_{j}-\beta_{1},\dots,\beta_{j}-\beta_{d}){\mathbf{e}}(n\beta_{j})
=(2πin(γ2γ3)2+2(γ3γ2)(γ2γ3)3)𝐞(nβ1)+(2πin(γ1γ3)2+2(γ1γ3)(γ1γ3)3)𝐞(nβ2)+(2πin(γ1γ2)2+2(γ2γ1)(γ1γ2)3)𝐞(nβ3).\displaystyle=\left(\frac{2\pi in}{(\gamma_{2}\gamma_{3})^{2}}+\frac{2(\gamma_{3}-\gamma_{2})}{(\gamma_{2}\gamma_{3})^{3}}\right){\mathbf{e}}(n\beta_{1})+\left(\frac{2\pi in}{(\gamma_{1}\gamma_{3})^{2}}+\frac{2(\gamma_{1}-\gamma_{3})}{(\gamma_{1}\gamma_{3})^{3}}\right){\mathbf{e}}(n\beta_{2})+\left(\frac{2\pi in}{(\gamma_{1}\gamma_{2})^{2}}+\frac{2(\gamma_{2}-\gamma_{1})}{(\gamma_{1}\gamma_{2})^{3}}\right){\mathbf{e}}(n\beta_{3}).

For d=3d=3 and k10k-1\geq\ell\geq 0, we can write explicitly

j=1dPd1,k,Qd1,k+(βjβ1,,βjβd)𝐞(nβj)\displaystyle\sum_{j=1}^{d}\frac{P_{d-1,k,\ell}}{Q_{d-1,k+\ell}}(\beta_{j}-\beta_{1},\dots,\beta_{j}-\beta_{d}){\mathbf{e}}(n\beta_{j})
=P2,k,Q2,k+(γ3,γ2)𝐞(nβ1)+P2,k,Q2,k+(γ3,γ1)𝐞(nβ2)+P2,k,Q2,k+(γ2,γ1)𝐞(nβ3).\displaystyle=\frac{P_{2,k,\ell}}{Q_{2,k+\ell}}(\gamma_{3},-\gamma_{2}){\mathbf{e}}(n\beta_{1})+\frac{P_{2,k,\ell}}{Q_{2,k+\ell}}(-\gamma_{3},\gamma_{1}){\mathbf{e}}(n\beta_{2})+\frac{P_{2,k,\ell}}{Q_{2,k+\ell}}(-\gamma_{2},-\gamma_{1}){\mathbf{e}}(n\beta_{3}).

Using the inequalities k(a)k(b)k(a+b)k^{(a)}k^{(b)}\leq k^{(a+b)}, (x1+x2+x3)23(x12+x22+x32)(x_{1}+x_{2}+x_{3})^{2}\leq 3(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}),

(3.9) σS3xσ(1)axσ(2)bxσ(3)ca!b!c!(a+b+c)!(x1+x2+x3)a+b+c,xi,a,b,c0\sum_{\sigma\in S_{3}}x_{\sigma(1)}^{a}x_{\sigma(2)}^{b}x_{\sigma(3)}^{c}\leq\frac{a!b!c!}{(a+b+c)!}(x_{1}+x_{2}+x_{3})^{a+b+c},~{}x_{i},a,b,c\geq 0

and Equation (3.7), we obtain the bound

|j=1dPd1,k,Qd1,k+(βjβ1,,βjβd)𝐞(nβj)|\displaystyle\left|\sum_{j=1}^{d}\frac{P_{d-1,k,\ell}}{Q_{d-1,k+\ell}}(\beta_{j}-\beta_{1},\dots,\beta_{j}-\beta_{d}){\mathbf{e}}(n\beta_{j})\right|
|P2,k,Q2,k+(γ3,γ2)|+|P2,k,Q2,k+(γ3,γ1)|+|P2,k,Q2,k+(γ2,γ1)|\displaystyle\leq\left|\frac{P_{2,k,\ell}}{Q_{2,k+\ell}}(\gamma_{3},-\gamma_{2})\right|+\left|\frac{P_{2,k,\ell}}{Q_{2,k+\ell}}(-\gamma_{3},\gamma_{1})\right|+\left|\frac{P_{2,k,\ell}}{Q_{2,k+\ell}}(-\gamma_{2},-\gamma_{1})\right|
!|γ1γ2γ3|k+a+b=k(a)k(b)a!b!(|γ1bγ2aγ3k+|+|γ2bγ3aγ1k+|+|γ3bγ1aγ2k+|)\displaystyle\leq\frac{\ell!}{|\gamma_{1}\gamma_{2}\gamma_{3}|^{k+\ell}}\sum_{a+b=\ell}\frac{k^{(a)}k^{(b)}}{a!b!}\left(|\gamma_{1}^{b}\gamma_{2}^{a}\gamma_{3}^{k+\ell}|+|\gamma_{2}^{b}\gamma_{3}^{a}\gamma_{1}^{k+\ell}|+|\gamma_{3}^{b}\gamma_{1}^{a}\gamma_{2}^{k+\ell}|\right)
!(|γ1|+|γ2|+|γ3|)k+2|γ1γ2γ3|k+(k+)!(k+2)!+12k()(k1+)(k+2)(+1)!3k/2+2(γ12+γ22+γ32)k/2+|γ1γ2γ3|k+.\displaystyle\leq\ell!\frac{(|\gamma_{1}|+|\gamma_{2}|+|\gamma_{3}|)^{k+2\ell}}{|\gamma_{1}\gamma_{2}\gamma_{3}|^{k+\ell}}\frac{(k+\ell)!}{(k+2\ell)!}\frac{\ell+1}{2}k^{(\ell)}\leq\frac{\binom{k-1+\ell}{\ell}}{\binom{k+2\ell}{\ell}}(\ell+1)!\frac{3^{k/2+\ell}}{2}\frac{(\gamma_{1}^{2}+\gamma_{2}^{2}+\gamma_{3}^{2})^{k/2+\ell}}{|\gamma_{1}\gamma_{2}\gamma_{3}|^{k+\ell}}.

4. Double Coset and Binary Cubic Forms

When d=3d=3, we can identify the double coset B(F)\SL2(F)/SL2(){}B(F)\backslash{\mathrm{SL}}_{2}(F)/{\mathrm{SL}}_{2}(\mathbb{Z})-\{\infty\} with orders in 𝒪F{\mathcal{O}_{F}} in the following way. Let

𝒬F:={f(X,Y)=AX3+BX2Y+CXY2+DY3[X,Y]:f(β,1)=0 for some βF\}\mathcal{Q}_{F}:=\{f(X,Y)=AX^{3}+BX^{2}Y+CXY^{2}+DY^{3}\in\mathbb{Z}[X,Y]:f(\beta,1)=0\text{ for some }\beta\in F\backslash\mathbb{Q}\}

be the set of integral binary cubic forms with a root in FF-\mathbb{Q}. A form is primitive if its coefficients have no common factor. There is a natural action of SL2(){\mathrm{SL}}_{2}(\mathbb{Z}) on 𝒬F\mathcal{Q}_{F} that preserves the discriminant

(4.1) Δ(f):=A6((β1β2)(β1β3)(β2β3))2=18ABCD+B2C24AC34B3D27A2D2,\begin{split}\Delta(f)&:=A^{6}((\beta_{1}-\beta_{2})(\beta_{1}-\beta_{3})(\beta_{2}-\beta_{3}))^{2}\\ &=18ABCD+B^{2}C^{2}-4AC^{3}-4B^{3}D-27A^{2}D^{2},\end{split}

and the subset of primitive forms. The quantity

(4.2) P(f):=B23AC>0P(f):=B^{2}-3AC>0

is the leading coefficient of the Hessian of ff, which is a positive definite quadratic form and a coinvariant of ff. For every f𝒬Ff\in\mathcal{Q}_{F}, Prop. 2 in [Cre99] gives us fSL2()ff^{\prime}\sim_{{\mathrm{SL}}_{2}(\mathbb{Z})}f satisfying

(4.3) P(f)Δ(f)=Δ(f).P(f^{\prime})\leq\sqrt{\Delta(f^{\prime})}=\sqrt{\Delta(f)}.

Given βF\beta\in F-\mathbb{Q}, we can associate to it a primitive element fβ𝒬Ff_{\beta}\in\mathcal{Q}_{F} defined by

(4.4) fβ(X,Y):=Aβj=13(XβjY)=AβX3+BβX2Y+CβXY2+DβY3𝒬F.f_{\beta}(X,Y):=A_{\beta}\prod_{j=1}^{3}(X-\beta_{j}Y)=A_{\beta}X^{3}+B_{\beta}X^{2}Y+C_{\beta}XY^{2}+D_{\beta}Y^{3}\in\mathcal{Q}_{F}.

Note that fβ(β,1)=0f_{\beta}(\beta,1)=0 and the right action of SL2(){\mathrm{SL}}_{2}(\mathbb{Z}) on B(F)\SL2(F)B(F)\backslash{\mathrm{SL}}_{2}(F) corresponds to its natural action on 𝒬F\mathcal{Q}_{F}.

To any binary cubic form ff with non-zero discriminant and f(β,1)=0f(\beta,1)=0 we can associate the free \mathbb{Z}-module of rank 3

(4.5) 𝒪f:=+Aβ+(Aβ2+Bβ+C)(β),\mathcal{O}_{f}:=\mathbb{Z}+\mathbb{Z}A\beta+\mathbb{Z}(A\beta^{2}+B\beta+C)\subset\mathbb{Q}(\beta),

which is also a commutative ring. A classical result of Delone and Faddeev tells us that this gives a bijection between GL2(){\mathrm{GL}}_{2}(\mathbb{Z})-classes of binary cubic forms with non-zero discriminants and isomorphism classes of commutative rings that are free \mathbb{Z}-modules of rank 3 [DF64]. If we restrict β\beta to be in a fixed field FF, then 𝒪f\mathcal{O}_{f} is an order in 𝒪F{\mathcal{O}_{F}}, and 𝒪f1,𝒪f2𝒪F\mathcal{O}_{f_{1}},\mathcal{O}_{f_{2}}\subset{\mathcal{O}_{F}} are the same if and only if f1,f2𝒬Ff_{1},f_{2}\in\mathcal{Q}_{F} are GL2(){\mathrm{GL}}_{2}(\mathbb{Z})-equivalent (see e.g. [Nak98, Lemma 3.1]). Furthermore, we have

(4.6) Δ(f)=Δ(𝒪f)=DF[𝒪F:𝒪f]2\Delta(f)=\Delta(\mathcal{O}_{f})=D_{F}[{\mathcal{O}_{F}}:\mathcal{O}_{f}]^{2}

with Δ()\Delta(\cdot) the discriminant. For s=[β]1(F)/SL2(){}s=[\beta]\in\mathbb{P}^{1}(F)/{\mathrm{SL}}_{2}(\mathbb{Z})-\{\infty\}, we then denote

(4.7) 𝒪s:=𝒪fβ,Δ(s):=Δ(𝒪s).\mathcal{O}_{s}:=\mathcal{O}_{f_{\beta}},\Delta(s):=\Delta(\mathcal{O}_{s}).

The discussions above lead to the following result.

Proposition 4.1.

The map

1(F)/SL2(){}\displaystyle\mathbb{P}^{1}(F)/{\mathrm{SL}}_{2}(\mathbb{Z})-\{\infty\} {𝒪:𝒪𝒪F is an order}/\displaystyle\to\{\mathcal{O}:\mathcal{O}\subset{\mathcal{O}_{F}}\text{ is an order}\}/\cong
s\displaystyle s 𝒪s\displaystyle\mapsto\mathcal{O}_{s}

is well-defined and (2|Aut(𝒪F)|)(2|\mathrm{Aut}({\mathcal{O}_{F}})|)-to-1.

Remark 4.2.

The quantity |Aut(𝒪F)||\mathrm{Aut}({\mathcal{O}_{F}})| is either 3 or 1 depending on F/F/\mathbb{Q} is Galois or not.

Finally, the following Dirichlet series

(4.8) ηF(s):=𝒪𝒪F order[𝒪F:𝒪]s=𝒪𝒪F orderDFs/2Δ(𝒪)s/2.\begin{split}\eta_{F}(s)&:=\sum_{\mathcal{O}\subset{\mathcal{O}_{F}}\text{ order}}[{\mathcal{O}_{F}}:\mathcal{O}]^{-s}=\sum_{\mathcal{O}\subset{\mathcal{O}_{F}}\text{ order}}\frac{D_{F}^{s/2}}{\Delta(\mathcal{O})^{s/2}}.\end{split}

can be factorized in the following way by a result of Datskovsky and Wright [DW86] (see [Nak98, Lemma 3.2])

(4.9) ηF(s)=ζF(s)ζF(2s)ζ(2s)ζ(3s1).\eta_{F}(s)=\frac{\zeta_{F}(s)}{\zeta_{F}(2s)}\zeta(2s)\zeta(3s-1).

5. Proof of Theorem 1.1

We are now ready to prove Theorem 1.1. The cases of d=2,3d=2,3 are proved separately.

Proof of Theorem 1.1 for d=2d=2.

For k=2,4k=2,4, the space M2kM_{2k} is 1-dimensional and spanned by the Eisenstein series E2kE_{2k}. Since θLΔ\theta_{L}^{\Delta} is non-trivial for any L𝒰F+L\in{\mathcal{U}}^{+}_{F}, the claim follows in these two base cases as MF,kθM^{\theta}_{F,k} is non-trivial by Prop. 2.1 (see also [Sch94] for an explicit construction). More generally, we know that (4)=[E4,Δ]{\mathcal{M}}_{\mathbb{Q}}^{(4)}=\mathbb{Q}[E_{4},\Delta]. Therefore, it suffices to show that ΔS12\Delta\in S_{12} is in (MF,6θ)Δ(M^{\theta}_{F,6})^{\Delta}. As M12M_{12} is 2-dimensional and

(5.1) E43=E12+432000691Δ(MF,6θ)Δ,E_{4}^{3}=E_{12}+\frac{432000}{691}\Delta\in(M^{\theta}_{F,6})^{\Delta},

we just need to produce a form f(MF,6θ)Δf\in(M^{\theta}_{F,6})^{\Delta} linearly independent from E43E_{4}^{3}. For this purpose, we apply Prop. 2.3 with k=6k=6 to get

f(τ):=(EF,6Δ)(τ)=1+4ζF(5)m1qmν𝔡F1,ν0,tr(ν)=mσ5((ν)𝔡F).f(\tau):=(E_{F,6}^{\Delta})(\tau)=1+\frac{4}{\zeta_{F}(-5)}\sum_{m\geq 1}q^{m}\sum_{\nu\in\mathfrak{d}_{F}^{-1},~{}\nu\gg 0,~{}\mathrm{tr}(\nu)=m}\sigma_{5}((\nu)\mathfrak{d}_{F}).

By Theorem 6 in [KZ84], we know that

(5.2) f=E1212691c(D)ζF(5)Δ,f=E_{12}-\frac{12}{691}\frac{c(D)}{\zeta_{F}(-5)}\Delta,

where c(D)c(D) is the DD-th Fourier coefficient of the half-integral weight form

g(τ)=Dc(D)qD:=18πi(2E4(4τ)θ(τ)E4(4τ)θ(τ))g(\tau)=\sum_{D\in\mathbb{N}}c(D)q^{D}:=\frac{1}{8\pi i}(2E_{4}(4\tau)\theta^{\prime}(\tau)-E_{4}^{\prime}(4\tau)\theta(\tau))

spanning the Kohnen plus space S13/2+S_{13/2}^{+}. Now using the easy estimate L(k,χD)>2ζ(k)L(k,\chi_{D})>2-\zeta(k) for k2k\geq 2 (see e.g. Equation (3) in [CK13]) we know that ζF(1k)=Dk1/24Γ(k)2(4π)kζF(k)\zeta_{F}(1-k)=D^{k-1/2}\frac{4\Gamma(k)^{2}}{(-4\pi)^{k}}\zeta_{F}(k) satisfies

|ζF(5)|>0.01D11/2.|\zeta_{F}(-5)|>0.01\cdot D^{11/2}.

On the other hand, the Hecke bound for c(D)c(D) yields

|c(D)|cD13/4,c:=e2πmaxτ|g(τ)|v13/4<10|c(D)|\leq c\cdot D^{13/4},~{}c:=e^{2\pi}\max_{\tau\in\mathbb{H}}|g(\tau)|v^{13/4}<10

Comparing with (5.1), it is clear that ff and E43E_{4}^{3} are linearly independent for all fundamental discriminant D>0D>0. This finishes the proof of Theorem 1.1 for d=2d=2. ∎

Using the calculation in section 3 and the correspondence in section 4, we can prove the following lemma.

Lemma 5.1.

For d=3,k3d=3,k\geq 3 and f(τ)=n1cf(n)qnS3kf(\tau)=\sum_{n\geq 1}c_{f}(n)q^{n}\in S_{3k}, let cf>0c_{f}>0 be a constant such that

|cf(n)|cfn3k/2|c_{f}(n)|\leq c_{f}\cdot n^{3k/2}

for all n1n\geq 1. Then we have the bound

(5.3) |EF,kΔ,f|CkcfDFk/4|\langle E^{\Delta}_{F,k},f\rangle|\leq C_{k}c_{f}D_{F}^{-k/4}

for all cubic field FF, with Ck:=6ckζ(k/2)3ζ(k)2ζ(3k/21)C_{k}:=6c_{k}\frac{\zeta(k/2)^{3}}{\zeta(k)^{2}}\zeta(3k/2-1) and the constant ckc_{k} given in (5.4).

Proof.

Let ak:=Γ(3k1)Γ(k)(4π)23ka_{k}:=\tfrac{\Gamma(3k-1)}{\Gamma(k)}(4\pi)^{2-3k}. For βS0F\beta\in S_{0}\subset F, recall that fβf_{\beta} is the binary cubic form associated to it in (4.4), which has coefficients Aβ,Bβ,Cβ,DβA_{\beta},B_{\beta},C_{\beta},D_{\beta}. Using (3.8), the estimate in Example 3.3 and (4.3), we obtain the bound

|EF,kΔ,f|\displaystyle|\langle E^{\Delta}_{F,k},f\rangle| ak=0k1(2π)k1n1|cf(n)|n2k+βS0Aβk|j=1dPd1,k,Qd1,k+(βjβ1,,βjβd)𝐞(nβj)|\displaystyle\leq a_{k}\sum_{\ell=0}^{k-1}(2\pi)^{k-1-\ell}\sum_{n\geq 1}\frac{|c_{f}(n)|}{n^{2k+\ell}}\sum_{\beta\in S_{0}}A_{\beta}^{-k}\left|\sum_{j^{\prime}=1}^{d}\frac{P_{d-1,k,\ell}}{Q_{d-1,k+\ell}}(\beta_{j^{\prime}}-\beta_{1},\dots,\beta_{j^{\prime}}-\beta_{d}){\mathbf{e}}(n\beta_{j^{\prime}})\right|
cfak=0k1(2π)k1ζ(k/2+)(k1+)(k+2)(+1)!3k/2+2\displaystyle\leq c_{f}\cdot a_{k}\sum_{\ell=0}^{k-1}(2\pi)^{k-1-\ell}\zeta(k/2+\ell)\frac{\binom{k-1+\ell}{\ell}}{\binom{k+2\ell}{\ell}}(\ell+1)!\frac{3^{k/2+\ell}}{2}
×βS0Aβk((β1β2)2+(β2β3)2+(β3β1)2)k/2+((β1β2)2(β2β3)2(β3β1)2)(k+)/2\displaystyle\times\sum_{\beta\in S_{0}}A_{\beta}^{-k}\frac{((\beta_{1}-\beta_{2})^{2}+(\beta_{2}-\beta_{3})^{2}+(\beta_{3}-\beta_{1})^{2})^{k/2+\ell}}{((\beta_{1}-\beta_{2})^{2}(\beta_{2}-\beta_{3})^{2}(\beta_{3}-\beta_{1})^{2})^{(k+\ell)/2}}
21cfak=0k1(2π)k1ζ(k/2+)(k1+)(k+2)(+1)!6k/2+βS0P(fβ)k/2+Δ(fβ)(k+)/2\displaystyle\leq 2^{-1}c_{f}\cdot a_{k}\sum_{\ell=0}^{k-1}(2\pi)^{k-1-\ell}\zeta(k/2+\ell)\frac{\binom{k-1+\ell}{\ell}}{\binom{k+2\ell}{\ell}}(\ell+1)!6^{k/2+\ell}\sum_{\beta\in S_{0}}\frac{P(f_{\beta})^{k/2+\ell}}{\Delta(f_{\beta})^{(k+\ell)/2}}
cfckβS0Δ(fβ)k/4cfck2|Aut(𝒪F)|DFk/4ηF(k2)\displaystyle\leq c_{f}\cdot c_{k}\sum_{\beta\in S_{0}}\Delta(f_{\beta})^{-k/4}\leq c_{f}\cdot c_{k}\cdot 2|{\mathrm{Aut}}(\mathcal{O}_{F})|\cdot D_{F}^{-k/4}\eta_{F}\left(\tfrac{k}{2}\right)

Here the constant ckc_{k} is defined by

(5.4) ck:=Γ(3k1)2Γ(k)(4π)23k=0k1(2π)k1ζ(k/2+)(k1+)(k+2)(+1)!6k/2+.c_{k}:=\frac{\Gamma(3k-1)}{2\Gamma(k)}(4\pi)^{2-3k}\sum_{\ell=0}^{k-1}(2\pi)^{k-1-\ell}\zeta(k/2+\ell)\frac{\binom{k-1+\ell}{\ell}}{\binom{k+2\ell}{\ell}}(\ell+1)!6^{k/2+\ell}.

For the last steps, we used Prop. 4.1. Combining this with (4.9) and applying ζF(s)ζ(s)3\zeta_{F}(s)\leq\zeta(s)^{3} for s>1s>1, we have

|EF,kΔ,f|\displaystyle|\langle E^{\Delta}_{F,k},f\rangle| cfck2|Aut(𝒪F)|ζF(k2)ζF(k)ζ(k)ζ(3k21)DFk/46cfckζ(k2)3ζ(k)2ζ(3k21)DFk/4\displaystyle\leq c_{f}c_{k}2|{\mathrm{Aut}}(\mathcal{O}_{F})|\frac{\zeta_{F}\bigl{(}\tfrac{k}{2}\bigr{)}}{\zeta_{F}(k)}\zeta(k)\zeta\bigl{(}\tfrac{3k}{2}-1\bigr{)}D_{F}^{-k/4}\leq 6c_{f}c_{k}\frac{\zeta\bigl{(}\tfrac{k}{2}\bigr{)}^{3}}{\zeta(k)^{2}}\zeta\bigl{(}\tfrac{3k}{2}-1\bigr{)}D_{F}^{-k/4}

for k3k\geq 3. This finishes the proof. ∎

Remark 5.2.

For k=4k=4, the bound above gives C4<5.79C_{4}<5.79. We can obtain a better bound by estimating the second to the last line in Example 3.3 case by case for each =0,1,2,3\ell=0,1,2,3, instead of using (3.9). The improved bound is

|EF,4Δ,f|0.067cfDF1|\langle E^{\Delta}_{F,4},f\rangle|\leq 0.067c_{f}D_{F}^{-1}

for all totally real cubic field FF.

Now we are ready to prove Theorem 1.1 in the cubic case.

Proof of Theorem 1.1 for d=3d=3.

Since (12)=[E12,Δ]{\mathcal{M}}_{\mathbb{Q}}^{(12)}=\mathbb{C}[E_{12},\Delta], we only have to check that (Fθ)Δ(12)({\mathcal{M}}^{\theta}_{F})^{\Delta}\cap{\mathcal{M}}_{\mathbb{Q}}^{(12)} is 2 dimensional. For any L𝒰F+L\in{\mathcal{U}}^{+}_{F}, the diagonal restriction θLΔ\theta^{\Delta}_{L} is the theta function for a unimodular lattice PP over \mathbb{Z}. So we know that θP(Fθ)Δ\theta_{P}\in({\mathcal{M}}^{\theta}_{F})^{\Delta} for some Niemeier lattice PP. To see that it is linearly independent from EF,4Δ=1+c(1)q+O(q2)E_{F,4}^{\Delta}=1+c(1)q+O(q^{2}), it suffices to show that c(1)c(1) is not integral. We have checked this numerically for any cubic FF with DF<70000D_{F}<70000.

More generally, we have

θP=E12+(N2(P)65520/691)Δ,\theta_{P}=E_{12}+(N_{2}(P)-65520/691)\Delta,

with N2(P)N_{2}(P) is the number of norm 2 vectors in PP. From Table V in [CS82], we obtain a list of N2(P)N_{2}(P) and

|θP,Δ|=|N2(P)65520/691|Δ,Δ>1.22×106|\langle\theta_{P},\Delta\rangle|=|N_{2}(P)-65520/691|\langle\Delta,\Delta\rangle>1.22\times 10^{-6}

for any Niemeier lattice PP. On the other hand by taking cΔ=1c_{\Delta}=1, the upper bound found in Lemma 5.1 and improved in Remark 5.2 gives us

|EF,4Δ,Δ|<0.067DF.|\langle E^{\Delta}_{F,4},\Delta\rangle|\;<\;\frac{0.067}{D_{F}}.

So EF,4ΔE^{\Delta}_{F,4} and θP\theta_{P} are linearly independent for DF60000D_{F}\geq 60000. This finishes the proof. ∎

6. Numerical Evidence for Conjecture 1

In this section, we approach numerically Conjecture 1 in the case FF is a totally real field of degree d{4,5,6}d\in\{4,5,6\}. For these choices of dd the space (4d/d2)\mathcal{M}_{\mathbb{Q}}^{(4d/d_{2})} can be in principle generated by the restriction of Eisenstein series and of (at most) one theta function θL\theta_{L} of rank 8/d28/d_{2}. Conjecture 1 reduces then to the verification of the linear independence of θLΔ\theta_{L}^{\Delta} and EF,4/d2ΔE_{F,4/d_{2}}^{\Delta} for d=5,6d=5,6, and of monomials in θLΔ,EF,4d/d2Δ\theta_{L}^{\Delta},E_{F,4d/d_{2}}^{\Delta} and EF,kΔE_{F,k}^{\Delta} in general for suitable weights kk. This approach gives data supporting Conjecture 1 in the case d=4,5d=4,5, and in the case d=6d=6 except for two fields FF. Our result, for which evidence is given in this final section, is the following.

Theorem 6.1.

Conjecture 1 holds for

  1. (1)

    d=4d=4 and DF105D_{F}\leq 10^{5};

  2. (2)

    d=5d=5 and DF2×106D_{F}\leq 2\times 10^{6};

  3. (3)

    d=6d=6 and DF5×106D_{F}\leq 5\times 10^{6} except for the fields of discriminant 453789453789 and 13974931397493.

6.1. A note on the computations

For l,k0l,k\in\mathbb{Z}_{\geq 0}, let σk1\sigma_{k-1} be as in Remark 2.4 and define

slF(k):=ν𝔡F1ν0tr(ν)=lσk1((ν)𝔡F).s_{l}^{F}(k)\;:=\;\sum_{\begin{subarray}{c}\nu\in\mathfrak{d}_{F}^{-1}\\ \nu\gg 0\\ \mathrm{tr}(\nu)=l\end{subarray}}\sigma_{k-1}\bigl{(}(\nu)\mathfrak{d}_{F}\bigr{)}\,.

Then the diagonal restriction of EF,kE_{F,k} has the following qq-expansion at \infty by (2.6)

(6.1) EF,kΔ(τ)= 1+2dζK(1k)l=0slF(k).E_{F,k}^{\Delta}(\tau)\;=\;1\;+\;\frac{2^{d}}{\zeta_{K}(1-k)}\sum_{l=0}^{\infty}{s^{F}_{l}(k)}\,.

We computed the first few coefficients of the above expansion with PARI/GP [The21]. As (6.1) shows, this reduces to the determination of the functions slF(k)s^{F}_{l}(k) for small values of ll (up to l=5l=5 in the case d=5d=5) and different values of kk. The main difficulty is to find the totally positive ν𝔡F1\nu\in\mathfrak{d}_{F}^{-1} of fixed trace ll. Let (ν1,,νd)(\nu_{1},\dots,\nu_{d}) be an integral basis for 𝔡F1\mathfrak{d}_{F}^{-1}. Then any ν𝔡F1\nu\in\mathfrak{d}_{F}^{-1} is of the form ν=v1ν1++vdνd\nu=v_{1}\nu_{1}+\cdots+v_{d}\nu_{d} for (v1,,vd)d(v_{1},\dots,v_{d})\in\mathbb{Z}^{d} and conversely every vector in d\mathbb{Z}^{d} gives an element ν𝔡F1\nu\in\mathfrak{d}_{F}^{-1}. If Q(x1,,xd)Q(x_{1},\dots,x_{d}) denotes the quadratic form x12+xd2x_{1}^{2}+\dots x_{d}^{2}, we have, for a totally positive ν𝔡F1\nu\in\mathfrak{d}_{F}^{-1}, that Q(σ1(ν),,σd(ν))<tr(ν)2Q(\sigma_{1}(\nu),\dots,\sigma_{d}(\nu))<\mathrm{tr}(\nu)^{2}. This implies that if A=(σi(νj))i,jA=(\sigma_{i}(\nu_{j}))_{i,j} denotes the matrix of the real embeddings of the basis of 𝔡F1\mathfrak{d}_{F}^{-1}, we can search the totally positive ν𝔡F1\nu\in\mathfrak{d}_{F}^{-1} of fixed trace ll among of vectors v=(v1,,vd)dv=(v_{1},\dots,v_{d})\in\mathbb{Z}^{d} satisfying

vT(ATA)v=Q(ν)<l2.v^{T}(A^{T}A)v\;=\;Q(\nu)\;<\;l^{2}\,.

This gives a finite (but large as ll and DFD_{F} grow) set of vectors on which we can perform the final search. Once the suitable ν𝔡F1\nu\in\mathfrak{d}_{F}^{-1} have been determined, it is straightforward to compute σk((ν)𝔡F)\sigma_{k}\bigl{(}(\nu)\mathfrak{d}_{F}\bigr{)} for every value of kk by using the basic PARI functions.

Remark 6.2.

It is possible to investigate also the cases d=8,10d=8,10 with the method outlined at the beginning of this section. For the case d=8d=8 we need to compute five coefficients of the qq-expansion (6.1), while for d=10d=10 we need to compute six coefficients. This, together with the size of the discriminants of these fields (DF282300416D_{F}\geq 282300416 for d=8d=8 and DF443952558373D_{F}\geq 443952558373 for d=10d=10), makes it hard to collect significant data in these cases.

6.2. Tables

d=4

Let FF be a totally real field with [F:]=4[F:\mathbb{Q}]=4. In this case, the proof of Conjecture 1 reduces to the statement that (8)\mathcal{M}_{\mathbb{Q}}^{(8)} is spanned by restrictions of Hilbert Eisenstein series on ΓF\Gamma_{F}. It is easy to see that {E42,ΔE4,Δ2}\{E_{4}^{2},\Delta E_{4},\Delta^{2}\}is a generating set for (8)\mathcal{M}_{\mathbb{Q}}^{(8)}. By a dimension argument, EF,2Δ=E42E_{F,2}^{\Delta}=E_{4}^{2}. It follows that ΔE4\Delta E_{4} and Δ2\Delta^{2} can be obtained by restriction of Eisenstein series on ΓF\Gamma_{F} respectively if the sets {EF,4Δ,(EF,2Δ)2}\{E_{F,4}^{\Delta},(E_{F,2}^{\Delta})^{2}\}, and {(EF,2Δ)3,EF,2ΔEF,4Δ,EF,6Δ}\{(E_{F,2}^{\Delta})^{3},E_{F,2}^{\Delta}E_{F,4}^{\Delta},E_{F,6}^{\Delta}\} are both linearly independent.

In order to study this problem, we compute the restriction of EF,kE_{F,k} for k=4,6k=4,6. As bases for M16M_{16} and M24M_{24}, we choose {E44,E4Δ}\{E_{4}^{4},E_{4}\Delta\} and {E46,E43Δ,Δ2}\{E_{4}^{6},E_{4}^{3}\Delta,\Delta^{2}\} respectively. We have

(6.2) EF,4Δ\displaystyle E_{F,4}^{\Delta} =E44+bE4Δ,\displaystyle\;=\;E_{4}^{4}\;+\;bE_{4}\Delta\,,
EF,6Δ\displaystyle E_{F,6}^{\Delta} =E46c1E43Δ+c2Δ2,\displaystyle\;=\;E_{4}^{6}\;-\;c_{1}E_{4}^{3}\Delta\;+\;c_{2}\Delta^{2}\,,

for some coefficients b,c1,c2b,c_{1},c_{2}\in\mathbb{Q} that depend on FF. To prove Conjecture 1, it suffices to check that bb and c2c_{2} are both non-zero. We computed the coefficients b,c1,c2b,c_{1},c_{2} for the first 3030 totally real quartic fields FF. The results are reported in Table 1. For these fields it is enough to specify the discriminant DFD_{F} to uniquely identify the field FF (check the number field database [LMF22]). This remark applies also for the fields we consider in the cases d=5,6d=5,6.

It turns out that the numerical values of b,c1b,c_{1}, and c2c_{2} are very close to 955,1439955,1439, and 129930-129930 respectively. These numbers are related to the Eisenstein series of weight 1616 and 2424 since

E16=E44+b(E16)E4Δ,E24=E45+c1(E24)E42Δ+c2(E24)Δ2,E_{16}\;=\;E_{4}^{4}+b(E_{16})E_{4}\Delta\,,\quad E_{24}\;=\;E_{4}^{5}+c_{1}(E_{24})E_{4}^{2}\Delta+c_{2}(E_{24})\Delta^{2},

with

b(E16)=34560003617955,c1(E24)=3403641600002363640911439,c2(E24)=30710845440000236364091129930.b(E_{16})=-\tfrac{3456000}{3617}\sim 955\,,\;c_{1}(E_{24})=\tfrac{340364160000}{236364091}\sim 1439\,,\;c_{2}(E_{24})=-\tfrac{30710845440000}{236364091}\sim 129930\,.

In other words, it seems that the diagonal restriction of EF,4E_{F,4} and EF,6E_{F,6} are close to E16E_{16} and E24E_{24} respectively. In analogy with the proof of Theorem 1.1 in the case d=3d=3, Conjecture 1 holds for DF0D_{F}\gg 0 if the Petersson products of EF,4ΔE_{F,4}^{\Delta} and EF,6ΔE_{F,6}^{\Delta} with all cusp forms of weight 1616 and 2424 respectively can be bounded by small quantities as DFD_{F}\to\infty. If FF ranges over the totally real quartic fields with no non-trivial subfields, the decay of the Petersson products as DFD_{F}\to\infty can be observed from the data. We expect similar strategy for the proof of Theorem 1.1 when d=3d=3 to work in this case. When FF ranges instead over extensions of the form KF\mathbb{Q}\subset K\subset F, where KK is a fixed real quadratic field, the data suggest that

EF,kΔ,fEK,2kΔ,fas disc(F).\langle E_{F,k}^{\Delta},f\rangle\rightarrow\langle E_{K,2k}^{\Delta},f\rangle\quad\text{as }\mathrm{disc}(F)\to\infty\,.

The proof of Conjecture 1 may be obtained then in two steps: first proving that EF,kE_{F,k} restrict to the Hilbert Eisenstein series EK,2kE_{K,2k} on ΓK\Gamma_{K} as FF\to\infty, and then using Theorem 1.1 for the real quadratic field KK.

Table 1. d=4d=4

DFEF,4ΔEF,6Δb|bb(E16)||c1c1(E24)||c2c2(E24)|7255184005412.73753490.0005031373225.8864981125120960012613.75072600.0005452511881.739221160016588800173470.804180800.0002160033372.2079921957337996835410.964392550.0003859489217.4535732000362880037931.22175500.0002521482255.822134204883358720874392.15227660.0008600043617.1573012225440640046012.21687330.0004441759965.9449972304699648073371.89931320.0007810782434.635539252540953600427871.66256290.0003867943060.388956262431242240326810.487669880.0001676043111.280096277730326400317390.00526829442.49791×1053.19161733600394080041171.71387250.0003216327463.391164398122598400236510.00650880421.13683×10516.924484420581112320849370.517583647.99169×10520.235531422531168800325671.57899620.0003646880764.303710435214613696153010.406867650.000429776362.388019644002871936003000171.76978190.0003404718863.57658445253157056003297172.01679580.0004197130362.764065475294772160991070.773037370.000196940527.401127749133585720963754370.408703174.15983×1052.8025931512524364800254531.75871650.00003750801263.19677352252623104002739711.95058760.0003942870163.49051057257169472007488831.86744790.0004236283863.44745457447276262407617370.268206017.42018×1055.616096661254546368004749131.81746990.0004224097663.16212862242048094722143570.0282870482.32205×1055.7256495680987570720917230.757753120.000199442857.09786867053150415488015737510.288944240.000136453482.084813570561910347202001230.901444170.0003786213411.70930071686701045767018550.725841680.000330001043.6107465\begin{array}[]{lcccc}\hline\cr\hline\cr D_{F}&\lx@intercol\hfil E_{F,4}^{\Delta}\hfil\lx@intercol&\lx@intercol\hfil E_{F,6}^{\Delta}\hfil\lx@intercol\\[4.30554pt] &-b&|b-b(E_{16})|&|c_{1}-c_{1}(E_{24})|&|c_{2}-c_{2}(E_{24})|\\ \hline\cr 725&\frac{518400}{541}&2.7375349&0.00050313732&25.886498\\[4.30554pt] 1125&\frac{1209600}{1261}&3.7507260&0.00054525118&81.739221\\[4.30554pt] 1600&\frac{16588800}{17347}&0.80418080&0.00021600333&72.207992\\[4.30554pt] 1957&\frac{3379968}{3541}&0.96439255&0.00038594892&17.453573\\[4.30554pt] 2000&\frac{3628800}{3793}&1.2217550&0.00025214822&55.822134\\[4.30554pt] 2048&\frac{83358720}{87439}&2.1522766&0.00086000436&17.157301\\[4.30554pt] 2225&\frac{4406400}{4601}&2.2168733&0.00044417599&65.944997\\[4.30554pt] 2304&\frac{6996480}{7337}&1.8993132&0.00078107824&34.635539\\[4.30554pt] 2525&\frac{40953600}{42787}&1.6625629&0.00038679430&60.388956\\[4.30554pt] 2624&\frac{31242240}{32681}&0.48766988&0.00016760431&11.280096\\[4.30554pt] 2777&\frac{30326400}{31739}&0.0052682944&2.49791\times 10^{-5}&3.1916173\\[4.30554pt] 3600&\frac{3940800}{4117}&1.7138725&0.00032163274&63.391164\\[4.30554pt] 3981&\frac{22598400}{23651}&0.0065088042&1.13683\times 10^{-5}&16.924484\\[4.30554pt] 4205&\frac{81112320}{84937}&0.51758364&7.99169\times 10^{-5}&20.235531\\[4.30554pt] 4225&\frac{31168800}{32567}&1.5789962&0.00036468807&64.303710\\[4.30554pt] 4352&\frac{14613696}{15301}&0.40686765&0.00042977636&2.3880196\\[4.30554pt] 4400&\frac{287193600}{300017}&1.7697819&0.00034047188&63.576584\\[4.30554pt] 4525&\frac{315705600}{329717}&2.0167958&0.00041971303&62.764065\\[4.30554pt] 4752&\frac{94772160}{99107}&0.77303737&0.00019694052&7.4011277\\[4.30554pt] 4913&\frac{358572096}{375437}&0.40870317&4.15983\times 10^{-5}&2.8025931\\[4.30554pt] 5125&\frac{24364800}{25453}&1.7587165&0.000037508012&63.196773\\[4.30554pt] 5225&\frac{262310400}{273971}&1.9505876&0.00039428701&63.490510\\[4.30554pt] 5725&\frac{716947200}{748883}&1.8674479&0.00042362838&63.447454\\[4.30554pt] 5744&\frac{727626240}{761737}&0.26820601&7.42018\times 10^{-5}&5.6160966\\[4.30554pt] 6125&\frac{454636800}{474913}&1.8174699&0.00042240976&63.162128\\[4.30554pt] 6224&\frac{204809472}{214357}&0.028287048&2.32205\times 10^{-5}&5.7256495\\[4.30554pt] 6809&\frac{87570720}{91723}&0.75775312&0.00019944285&7.0978686\\[4.30554pt] 7053&\frac{1504154880}{1573751}&0.28894424&0.00013645348&2.0848135\\[4.30554pt] 7056&\frac{191034720}{200123}&0.90144417&0.00037862134&11.709300\\[4.30554pt] 7168&\frac{670104576}{701855}&0.72584168&0.00033000104&3.6107465\\[4.30554pt] \hline\cr\hline\cr\end{array}

d=5

Let FF be a totally real field of degree 55. The space (20)\mathcal{M}_{\mathbb{Q}}^{(20)} is generated by the set {E20,E8Δ,E4Δ3,Δ5}\{E_{20},E_{8}\Delta,E_{4}\Delta^{3},\Delta^{5}\}. In order to get this space by restriction of Hilbert theta series (Conjecture 1), we only need to consider a Hilbert theta function θL\theta_{L} for L𝒰F+,8L\in{\mathcal{U}}^{+,8}_{F} and the Eisenstein series EF,4,EF,8,E_{F,4},E_{F,8}, and EF,12E_{F,12}. Fixing basis for M20,M40,M_{20},M_{40}, and M60M_{60}, we find the expressions

(6.3) EF,4Δ\displaystyle E_{F,4}^{\Delta} =E45+bE42Δ,\displaystyle\;=\;E_{4}^{5}\;+\;bE_{4}^{2}\Delta\,,
EF,8Δ\displaystyle E_{F,8}^{\Delta} =E410+c1E47Δ+c2E44Δ2+c3E4Δ3,\displaystyle\;=\;E_{4}^{10}\;+\;c_{1}E_{4}^{7}\Delta\;+\;c_{2}E_{4}^{4}\Delta^{2}\;+\;c_{3}E_{4}\Delta^{3}\,,
EF,12Δ\displaystyle E_{F,12}^{\Delta} =E415+d1E412Δ+d2E49Δ2+d3E46Δ3+d4E43Δ4+d5Δ5,\displaystyle\;=\;E_{4}^{15}\;+\;d_{1}E_{4}^{12}\Delta\;+\;d_{2}E_{4}^{9}\Delta^{2}\;+\;d_{3}E_{4}^{6}\Delta^{3}\;+\;d_{4}E_{4}^{3}\Delta^{4}\;+\;d_{5}\Delta^{5}\,,

for b,ci,dib,c_{i},d_{i}\in\mathbb{Q} that depends on FF. Since θLΔ=1+n1anqn\theta_{L}^{\Delta}=1+\sum_{n\geq 1}{a_{n}q^{n}} with ana_{n}\in\mathbb{Z}, in order to prove linear independence of θLΔ\theta_{L}^{\Delta} and EF,4ΔE_{F,4}^{\Delta}, it suffices to show that bb\not\in\mathbb{Z}. If this holds true, we only need that c30c_{3}\neq 0 and d50d_{5}\neq 0 to prove Conjecture 1. The results of the computation of b,c3,b,c_{3}, and d5d_{5}, for the first 30 totally real quintic fields FF (ordered by discriminant) can be found in Table (2). Similarly to the case d=4d=4, the numerical values of b,ci,dib,c_{i},d_{i} are close to the coefficients appearing in the expression of the Eisenstein series E20,E40E_{20},E_{40}, and E60E_{60} with respect to the bases specified above:

E20=E45+b(E20)E42Δ,E40=E410+i=13ci(E40)E4103iΔi,E60=E415+i=15di(E60)E4153iΔi,E_{20}=E_{4}^{5}+b(E_{20})E_{4}^{2}\Delta\,,\;E_{40}=E_{4}^{10}+\sum_{i=1}^{3}{c_{i}(E_{40})E_{4}^{10-3i}\Delta^{i}}\,,\;E_{60}=E_{4}^{15}+\sum_{i=1}^{5}{d_{i}(E_{60})E_{4}^{15-3i}\Delta^{i}}\,,

the relevant values being

b(E20)\displaystyle b(E_{20}) =2095200001746111199,c3(E40)=27014542428753690624000000000261082718496449122051103471200\displaystyle=\tfrac{209520000}{174611}\sim 1199\,,\quad c_{3}(E_{40})=\tfrac{27014542428753690624000000000}{261082718496449122051}\sim 103471200
d5(E60)\displaystyle d_{5}(E_{60}) =142315225390473939360215781817402093731840000000000000012152331404837555720403049940798202460414911171094011917.\displaystyle=\tfrac{1423152253904739393602157818174020937318400000000000000}{1215233140483755572040304994079820246041491}\sim 1171094011917\,.

In Table 2 we do not write the numerical values of c3,d5c_{3},d_{5}, but of their difference with the coefficients c3(E40)c_{3}(E_{40}) and d5(E60)d_{5}(E_{60}) respectively. Analogously to the case d=4d=4, it seems that the diagonal restriction of EF,4,EF,8E_{F,4},E_{F,8}, and EF,12E_{F,12} are close to the Eisenstein series E20,E40E_{20},E_{40}, and E60E_{60} respectively. In particular, since E20,E42Δ=0\langle E_{20},E_{4}^{2}\Delta\rangle=0, this implies that the Petersson product

EF,4Δ,E42Δ=|bb(E20)|E4Δ2,E42Δ\langle E_{F,4}^{\Delta},E_{4}^{2}\Delta\rangle\;=\bigl{|}b-b(E_{20})\bigr{|}\langle E_{4}\Delta^{2},E_{4}^{2}\Delta\rangle\

is small for any field FF and may decay as DFD_{F}\to\infty. Similar considerations apply to the cases EF,8ΔE_{F,8}^{\Delta} and EF,12ΔE_{F,12}^{\Delta}.

Table 2. d=5d=5

DFEF,4ΔEF,8ΔEF,12Δb|bb(E20)||c3c3(E40)||d5d5(E60)|1464110173600008478110.06002710420.049846602.44929242175390841604492630.00561533143.0959986626.69793364972289980161908470.0207318613.7691249625.7935738569137267136011440270.0651692977.139996153.5938116565717909631360149262590.0503183951.495675421.4472537060122786945920189899390.0239439976.350943757.58062781509125516304010460470.0136536800.1487166033.681371815891574271451311980.00409210293.76337735.584479389417329993352027500930.0108424380.886864117.141579410183327422375040228534370.000950298752.8922290147.56474106069841677696070143010.0208170981.23976936.232086611768872647616960605449630.0290964900.02432853911.486101122821264659616022055990.0199926693.396520446.8632351248171694744467201412369230.00577860831.26729306.78272471260321869097939201557690410.00821516430.3623059311.68837013507639368816640328098230.0149543190.3502752021.03403013813642439256640353685230.00840350310.1515137821.20247413891730923687520257711270.0109940823.3294478176.2709214420935105335200292566110.0132038311.22461315.001938414710979422612480661899110.00418473121.42370438.32627471491693162495225602635515830.0286341171.819426015.03309715342424509153664204251870.0231742773.401647325.40279215745776544072064637905770.00316685481.04123357.27474061608014112361964803427163410.00728145680.2981908210.519558161121665397312055453090.00388194280.1288578518.1086231707011256952816001047543470.0192424122.2046583104.809271735135300599046404417347730.0261937540.1035686142.2476141762811873871366401561664890.00540770651.988173726.79838017668460248727936502109210.0115809171.038740012.8612391790246385108435205321322290.0142894680.341145991.2188617\begin{array}[]{ccccc}\hline\cr\hline\cr D_{F}&\lx@intercol\hfil E_{F,4}^{\Delta}\hfil\lx@intercol&E_{F,8}^{\Delta}&E_{F,12}^{\Delta}\\ &-b&|b-b(E_{20})|&|c_{3}-c_{3}(E_{40})|&|d_{5}-d_{5}(E_{60})|\\ \hline\cr 14641&\frac{1017360000}{847811}&0.060027104&20.049846&602.44929\\[4.30554pt] 24217&\frac{539084160}{449263}&0.0056153314&3.0959986&626.69793\\[4.30554pt] 36497&\frac{228998016}{190847}&0.020731861&3.7691249&625.79357\\[4.30554pt] 38569&\frac{1372671360}{1144027}&0.065169297&7.1399961&53.593811\\[4.30554pt] 65657&\frac{17909631360}{14926259}&0.050318395&1.4956754&21.447253\\[4.30554pt] 70601&\frac{22786945920}{18989939}&0.023943997&6.3509437&57.580627\\[4.30554pt] 81509&\frac{1255163040}{1046047}&0.013653680&0.14871660&33.681371\\[4.30554pt] 81589&\frac{157427145}{131198}&0.0040921029&3.7633773&5.5844793\\[4.30554pt] 89417&\frac{3299933520}{2750093}&0.010842438&0.88686411&7.1415794\\[4.30554pt] 101833&\frac{27422375040}{22853437}&0.00095029875&2.8922290&147.56474\\[4.30554pt] 106069&\frac{8416776960}{7014301}&0.020817098&1.2397693&6.2320866\\[4.30554pt] 117688&\frac{72647616960}{60544963}&0.029096490&0.024328539&11.486101\\[4.30554pt] 122821&\frac{2646596160}{2205599}&0.019992669&3.3965204&46.863235\\[4.30554pt] 124817&\frac{169474446720}{141236923}&0.0057786083&1.2672930&6.7827247\\[4.30554pt] 126032&\frac{186909793920}{155769041}&0.0082151643&0.36230593&11.688370\\[4.30554pt] 135076&\frac{39368816640}{32809823}&0.014954319&0.35027520&21.034030\\[4.30554pt] 138136&\frac{42439256640}{35368523}&0.0084035031&0.15151378&21.202474\\[4.30554pt] 138917&\frac{30923687520}{25771127}&0.010994082&3.3294478&176.27092\\[4.30554pt] 144209&\frac{35105335200}{29256611}&0.013203831&1.2246131&5.0019384\\[4.30554pt] 147109&\frac{79422612480}{66189911}&0.0041847312&1.4237043&8.3262747\\[4.30554pt] 149169&\frac{316249522560}{263551583}&0.028634117&1.8194260&15.033097\\[4.30554pt] 153424&\frac{24509153664}{20425187}&0.023174277&3.4016473&25.402792\\[4.30554pt] 157457&\frac{76544072064}{63790577}&0.0031668548&1.0412335&7.2747406\\[4.30554pt] 160801&\frac{411236196480}{342716341}&0.0072814568&0.29819082&10.519558\\[4.30554pt] 161121&\frac{6653973120}{5545309}&0.0038819428&0.12885785&18.108623\\[4.30554pt] 170701&\frac{125695281600}{104754347}&0.019242412&2.2046583&104.80927\\[4.30554pt] 173513&\frac{530059904640}{441734773}&0.026193754&0.10356861&42.247614\\[4.30554pt] 176281&\frac{187387136640}{156166489}&0.0054077065&1.9881737&26.798380\\[4.30554pt] 176684&\frac{60248727936}{50210921}&0.011580917&1.0387400&12.861239\\[4.30554pt] 179024&\frac{638510843520}{532132229}&0.014289468&0.34114599&1.2188617\\[4.30554pt] \hline\cr\hline\cr\end{array}

d=6

We have that 12=[E43,Δ]\mathcal{M}_{\mathbb{Q}}^{12}=\mathbb{C}[E_{4}^{3},\Delta]. We have only to check that

EF,2Δ=E43+bΔE_{F,2}^{\Delta}\;=\;E_{4}^{3}\;+\;b\cdot\Delta

is not the restriction of a Hilbert theta function θL\theta_{L}. We know this is the case if bb is not an integer, as explained in the proof of Theorem 1.1 in the case d=3d=3. However, looking at the values of bb computed for the first 3030 totally real sextic fields FF in Table (3), this is not always the case. Since θLΔ=1+N2(L)q+\theta_{L}^{\Delta}=1+N_{2}(L)q+\cdots, we have to compare, for integral values of bb, the number 720+b720+b with the possible values of N2(L)N_{2}(L) listed in table V of [CS82] to check whether they differ or not. This happens in all cases but two: the field of discriminant 453789453789 has 720+b=0=N2(Λ24)720+b=0=N_{2}(\Lambda_{24}), the field of discriminant 13974931397493 has 720+b=72=N2(A212)720+b=72=N_{2}(A^{12}_{2}). For these fields our argument can not confirm the validity of Conjecture 1. We checked fields up to DF=5×106D_{F}=5\times 10^{6} (144 fields) and found no other such instances.

As in the cases d=4,5d=4,5, in table (3) we also compare the value of bb with b(E12)=432000691b(E_{12})=-\tfrac{432000}{691} (see (5.1)).

Table 3. d=6d=6
DFEF,2Δb|bb(E12)|300125216003741.39711337129311808193.707213043458183521317.28064145378972094.81910348512572001129.36455759266167246.8191037034932048357.4857697220004800760.5333888104483456566.019103820125432007333.4000759051773348544.41910396612567549.81910398012567549.819103107564883521317.28064110818563072510.780897DFEF,2Δb|bb(E12)|113438968458.819103120293360817.180897122931227264438.86561441241125288004712.4149401259712172803167.7615421279733117361765.1720441292517164162959.111932131262590001367.126795138702969670.819103139749364822.819103141612512000196.39805011528713120961911.450682154158183521317.2806411683101650881036.74143281767625252004110.546751\begin{array}[]{ccc}\hline\cr\hline\cr D_{F}&\lx@intercol\hfil E_{F,2}^{\Delta}\hfil\lx@intercol\\ &-b&|b-b(E_{12})|\\ \hline\cr 300125&\frac{21600}{37}&41.397113\\[4.30554pt] 371293&\frac{11808}{19}&3.7072130\\[4.30554pt] 434581&\frac{8352}{13}&17.280641\\[4.30554pt] 453789&720&94.819103\\[4.30554pt] 485125&\frac{7200}{11}&29.364557\\[4.30554pt] 592661&672&46.819103\\[4.30554pt] 703493&\frac{2048}{3}&57.485769\\[4.30554pt] 722000&\frac{4800}{7}&60.533388\\[4.30554pt] 810448&\frac{3456}{5}&66.019103\\[4.30554pt] 820125&\frac{43200}{73}&33.400075\\[4.30554pt] 905177&\frac{3348}{5}&44.419103\\[4.30554pt] 966125&675&49.819103\\[4.30554pt] 980125&675&49.819103\\[4.30554pt] 1075648&\frac{8352}{13}&17.280641\\[4.30554pt] 1081856&\frac{3072}{5}&10.780897\\[4.30554pt] \hline\cr\hline\cr\end{array}\quad\begin{array}[]{ccc}\hline\cr\hline\cr D_{F}&\lx@intercol\hfil E_{F,2}^{\Delta}\hfil\lx@intercol\\ &-b&|b-b(E_{12})|\\ \hline\cr 1134389&684&58.819103\\[4.30554pt] 1202933&608&17.180897\\[4.30554pt] 1229312&\frac{27264}{43}&8.8656144\\[4.30554pt] 1241125&\frac{28800}{47}&12.414940\\[4.30554pt] 1259712&\frac{17280}{31}&67.761542\\[4.30554pt] 1279733&\frac{11736}{17}&65.172044\\[4.30554pt] 1292517&\frac{16416}{29}&59.111932\\[4.30554pt] 1312625&\frac{9000}{13}&67.126795\\[4.30554pt] 1387029&696&70.819103\\[4.30554pt] 1397493&648&22.819103\\[4.30554pt] 1416125&\frac{12000}{19}&6.3980501\\[4.30554pt] 1528713&\frac{12096}{19}&11.450682\\[4.30554pt] 1541581&\frac{8352}{13}&17.280641\\[4.30554pt] 1683101&\frac{65088}{103}&6.7414328\\[4.30554pt] 1767625&\frac{25200}{41}&10.546751\\[4.30554pt] \hline\cr\hline\cr\end{array}

References

  • [Cha70] Kwong-shin Chang. Diskriminanten und Signaturen gerader quadratischer Formen. Arch. Math. (Basel), 21:59–65, 1970.
  • [CK13] Young Ju Choie and Winfried Kohnen. On the Fourier coefficients of modular forms of half-integral weight. Int. J. Number Theory, 9(8):1879–1883, 2013.
  • [Cre99] J. E. Cremona. Reduction of binary cubic and quartic forms. LMS J. Comput. Math., 2:64–94, 1999.
  • [CS82] J. H. Conway and N. J. A. Sloane. On the enumeration of lattices of determinant one. J. Number Theory, 15(1):83–94, 1982.
  • [DF64] B. N. Delone and D. K. Faddeev. The theory of irrationalities of the third degree. Translations of Mathematical Monographs, Vol. 10. American Mathematical Society, Providence, R.I., 1964.
  • [DW86] Boris Datskovsky and David J. Wright. The adelic zeta function associated to the space of binary cubic forms. II. Local theory. J. Reine Angew. Math., 367:27–75, 1986.
  • [Kud08] Stephen S. Kudla. Some extensions of the Siegel-Weil formula. In Eisenstein series and applications, volume 258 of Progr. Math., pages 205–237. Birkhäuser Boston, Boston, MA, 2008.
  • [KY10] Stephen S. Kudla and TongHai Yang. Eisenstein series for SL(2). Sci. China Math., 53(9):2275–2316, 2010.
  • [KZ84] W. Kohnen and D. Zagier. Modular forms with rational periods. In Modular forms (Durham, 1983), Ellis Horwood Ser. Math. Appl.: Statist. Oper. Res., pages 197–249. Horwood, Chichester, 1984.
  • [Li21] Yingkun Li. Algebraicity of higher Green functions at a CM point. arXiv:2106.13653, submitted, 2021.
  • [LMF22] The LMFDB Collaboration. The L-functions and modular forms database. http://www.lmfdb.org, 2022.
  • [Nak98] Jin Nakagawa. On the relations among the class numbers of binary cubic forms. Invent. Math., 134(1):101–138, 1998.
  • [Sch94] Rudolf Scharlau. Unimodular lattices over real quadratic fields. Math. Z., 216(3):437–452, 1994.
  • [Sie66] Carl Ludwig Siegel. Gesammelte Abhandlungen. Bände I, II, III. Springer-Verlag, Berlin-New York, 1966. Herausgegeben von K. Chandrasekharan und H. Maass.
  • [Sie69] Carl Ludwig Siegel. Berechnung von Zetafunktionen an ganzzahligen Stellen. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1969:87–102, 1969.
  • [The21] The PARI Group, Univ. Bordeaux. PARI/GP version 2.13.1, 2021. available from http://pari.math.u-bordeaux.fr/.
  • [Wan14] Ruiqing Wang. The classification of positive definite unimodular lattices over totally real algebraic fields. Acta Math. Sin., Chin. Ser., 57(6):1147–1160, 2014.
  • [Wei65] André Weil. Sur la formule de Siegel dans la théorie des groupes classiques. Acta Math., 113:1–87, 1965.
  • [Yan05] Tonghai Yang. CM number fields and modular forms. Pure Appl. Math. Q., 1(2, Special Issue: In memory of Armand Borel. Part 1):305–340, 2005.
  • [Zag76] Don Zagier. On the values at negative integers of the zeta-function of a real quadratic field. Enseign. Math. (2), 22(1-2):55–95, 1976.