This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Some properties of rectangle and a random point

Quang Hung Tran High School for Gifted Students
Vietnam National University
182 Luong The Vinh
Hanoi
Vietnam
[email protected]
Abstract.

We establish a relationship between the two important central lines of the triangle, the Euler line and the Brocard axis, in a configuration with an arbitrary rectangle and a random point. The classical Cartesian coordinate system method shows its strength in these theorems. Along with that, some related problems on rectangles and a random point are proposed with similar solutions using Cartesian coordinate system.

2010 Mathematics Subject Classification:
51M04, 51-03

1. Introduction

In the geometry of triangles, the Euler line [8] plays an important role and is almost the most classic concept in this field. The Euler line passes through the centroid, orthocenter, and circumcenter of the triangle. The symmedian point [9] of a triangle is the concurrent point of its symmedian lines, the Brocard axis [10] is the line connecting the circumcircle and the symmedian point of that triangle. The Brocard axis is also a central line that plays an important role in the geometry of triangle.

The coordinate method was invented by René Descartes from the 17th century [2], up to now, the classical coordinate method of Descartes is still one of the most important method of mathematics and geometry.

In this paper, we apply Cartesian coordinate system to solve an interesting theorem for an arbitrary rectangle and a random point in which two important central lines in the triangle are mentioned as follows. The idea of using the Cartesian coordinate system is also used in a similar way to solve the new problems we introduced in Section 3.

2. Main theorem and proof

Theorem 1.

Let ABCDABCD be a rectangle with center II. Let PP be a random point in its plane.

  • 1)

    Euler line of triangles PABPAB and PCDPCD meet at QQ. Euler line of triangles PBCPBC and PADPAD meet at RR. Then, line QRQR goes through center II.

  • 2)

    Brocard axis of triangles PABPAB and PCDPCD meet at MM. Brocard axis of triangles PBCPBC and PADPAD meet at NN. Then, line MNMN goes through PP.

Proof.

We will use Cartesian coordinate for the solutions. Since ABCDABCD is an arbitrary rectangle and PP is a random point, we can take P(0,0)P(0,0), A(a,b)A(a,b), B(c,b)B(c,b), C(c,d)C(c,d), and D(a,d)D(a,d) for all real numbers aa, bb, cc, and dd.

We get perpendicular bisectors dad_{a}, dbd_{b}, dcd_{c}, and ddd_{d} of PAPA, PBPB, PCPC, and PDPD, respectively, are

(2.1) da:y=a2+b22babx,d_{a}:\ y=\frac{a^{2}+b^{2}}{2b}-\frac{a}{b}\cdot x,
(2.2) db:y=b2+c22bcbx,d_{b}:\ y=\frac{b^{2}+c^{2}}{2b}-\frac{c}{b}\cdot x,
(2.3) dc:y=c2+d22dcdx,d_{c}:\ y=\frac{c^{2}+d^{2}}{2d}-\frac{c}{d}\cdot x,
(2.4) dd:y=a2+d22dadx.d_{d}:\ y=\frac{a^{2}+d^{2}}{2d}-\frac{a}{d}\cdot x.

Thus circumcenters OaO_{a}, ObO_{b}, OcO_{c}, and OdO_{d} of triangles PABPAB, PBCPBC, PCDPCD, and PDAPDA, respectively, are

(2.5) Oa=dadb=(a+c2,ac+b22b),O_{a}=d_{a}\cap d_{b}=\left(\frac{a+c}{2},\frac{-ac+b^{2}}{2b}\right),
(2.6) Ob=dbdc=(bd+c22c,b+d2),O_{b}=d_{b}\cap d_{c}=\left(\frac{-bd+c^{2}}{2c},\frac{b+d}{2}\right),
(2.7) Oc=dcdd=(a+c2,ac+d22d),O_{c}=d_{c}\cap d_{d}=\left(\frac{a+c}{2},\frac{-ac+d^{2}}{2d}\right),
(2.8) Od=ddda=(bd+a22a,b+d2).O_{d}=d_{d}\cap d_{a}=\left(\frac{-bd+a^{2}}{2a},\frac{b+d}{2}\right).
Refer to caption
Figure 1. Rectangle with Euler lines

1) (See Figure 1). We have that centroid GaG_{a}, GbG_{b}, GcG_{c}, and GdG_{d} of triangles PABPAB, PBCPBC, PCDPCD, and PDAPDA, respectively, are

(2.9) Ga=(a+c3,2b3),G_{a}=\left(\frac{a+c}{3},\frac{2b}{3}\right),
(2.10) Gb=(2c3,b+d3),G_{b}=\left(\frac{2c}{3},\frac{b+d}{3}\right),
(2.11) Gc=(a+c3,2d3),G_{c}=\left(\frac{a+c}{3},\frac{2d}{3}\right),
(2.12) Gd=(2a3,b+d3).G_{d}=\left(\frac{2a}{3},\frac{b+d}{3}\right).

Therfore, Euler lines ϵa\epsilon_{a}, ϵb\epsilon_{b}, ϵc\epsilon_{c}, and ϵd\epsilon_{d} of triangles PABPAB, PBCPBC, PCDPCD, and PDAPDA, respectively, are

(2.13) ϵa:y=b2+acbb2+3acab+bcx,\epsilon_{a}:\,y=\frac{b^{2}+ac}{b}-\frac{b^{2}+3ac}{ab+bc}\cdot x,
(2.14) ϵb:y=bc2+bd2+b2d+c2dc2+3bdbc+cdc2+3bdx,\epsilon_{b}:\,y=\frac{bc^{2}+bd^{2}+b^{2}d+c^{2}d}{c^{2}+3bd}-\frac{bc+cd}{c^{2}+3bd}\cdot x,
(2.15) ϵc:y=d2+acdd2+3acad+cdx,\epsilon_{c}:\,y=\frac{d^{2}+ac}{d}-\frac{d^{2}+3ac}{ad+cd}\cdot x,
(2.16) ϵd:y=bd2+a2b+a2d+b2da2+3bdab+ada2+3bdx.\epsilon_{d}:\,y=\frac{bd^{2}+a^{2}b+a^{2}d+b^{2}d}{a^{2}+3bd}-\frac{ab+ad}{a^{2}+3bd}\cdot x.

We get the intersections

(2.17) Q=ϵaϵc=(a2cabd+ac2bcd3acbd,2abc+2acd3acbd),Q=\epsilon_{a}\cap\epsilon_{c}=\left(\frac{a^{2}c-abd+ac^{2}-bcd}{3ac-bd},\frac{2abc+2acd}{3ac-bd}\right),
(2.18) R=ϵbϵd=(2abd2bcdac3bd,abc+acdb2dbd2ac3bd),R=\epsilon_{b}\cap\epsilon_{d}=\left(\frac{-2abd-2bcd}{ac-3bd},\frac{abc+acd-b^{2}d-bd^{2}}{ac-3bd}\right),

and then the line connecting points QQ and RR is

(2.19) QR:y=b+da+cx+b+d.QR:\ y=-\frac{b+d}{a+c}x+b+d.

Now it not hard to see that line PQPQ goes through center I(a+c2,b+d2)I\left(\frac{a+c}{2},\frac{b+d}{2}\right).

Refer to caption
Figure 2. Rectangle with Brocard axis

2) (See Figure 2). Using the barycentric coordinates of symmedian point in [9], we have that the coordinates of symmedian points SaS_{a}, SbS_{b}, ScS_{c}, and SdS_{d} of triangles PABPAB, PBCPBC, PCDPCD, and PDAPDA, respectively, are

(2.20) Sa=PA2B+PB2A+AB2PPA2+PB2+AB2=(a2c+ab2+ac2+b2c2a22ac+2b2+2c2,a2b+2b3+bc22a22ac+2b2+2c2),S_{a}=\frac{PA^{2}\cdot B+PB^{2}\cdot A+AB^{2}\cdot P}{PA^{2}+PB^{2}+AB^{2}}=\left(\frac{a^{2}c+ab^{2}+ac^{2}+b^{2}c}{2a^{2}-2ac+2b^{2}+2c^{2}},\frac{a^{2}b+2b^{3}+bc^{2}}{2a^{2}-2ac+2b^{2}+2c^{2}}\right),
(2.21) Sb=PB2C+PC2B+BC2PPB2+PC2+BC2=(b2c+2c3+cd22b22bd+2c2+2d2,b2d+bc2+bd2+c2d2b22bd+2c2+2d2),S_{b}=\frac{PB^{2}\cdot C+PC^{2}\cdot B+BC^{2}\cdot P}{PB^{2}+PC^{2}+BC^{2}}=\left(\frac{b^{2}c+2c^{3}+cd^{2}}{2b^{2}-2bd+2c^{2}+2d^{2}},\frac{b^{2}d+bc^{2}+bd^{2}+c^{2}d}{2b^{2}-2bd+2c^{2}+2d^{2}}\right),
(2.22) Sc=PC2D+PD2C+CD2PPC2+PD2+CD2=(a2c+ac2+ad2+cd22a22ac+2c2+2d2,a2d+c2d+2d32a22ac+2c2+2d2),S_{c}=\frac{PC^{2}\cdot D+PD^{2}\cdot C+CD^{2}\cdot P}{PC^{2}+PD^{2}+CD^{2}}=\left(\frac{a^{2}c+ac^{2}+ad^{2}+cd^{2}}{2a^{2}-2ac+2c^{2}+2d^{2}},\frac{a^{2}d+c^{2}d+2d^{3}}{2a^{2}-2ac+2c^{2}+2d^{2}}\right),
(2.23) Sd=PD2A+PA2D+DA2PPD2+PA2+DA2=(2a3+ab2+ad22a2+2b22bd+2d2,a2b+a2d+b2d+bd22a2+2b22bd+2d2).S_{d}=\frac{PD^{2}\cdot A+PA^{2}\cdot D+DA^{2}\cdot P}{PD^{2}+PA^{2}+DA^{2}}=\left(\frac{2a^{3}+ab^{2}+ad^{2}}{2a^{2}+2b^{2}-2bd+2d^{2}},\frac{a^{2}b+a^{2}d+b^{2}d+bd^{2}}{2a^{2}+2b^{2}-2bd+2d^{2}}\right).

Therfore, Brocard axis βa\beta_{a}, βb\beta_{b}, βc\beta_{c}, and βd\beta_{d} of triangles PABPAB, PBCPBC, PCDPCD, and PDAPDA, respectively, are

(2.24) βa:y=b4+a2b2+a2c2+b2c22bc2+2a2b4abc+b4ac3+a2c2a3c2ab2cbc3+a3babc2a2bcx,\beta_{a}:\,y=\frac{b^{4}+a^{2}b^{2}+a^{2}c^{2}+b^{2}c^{2}}{2bc^{2}+2a^{2}b-4abc}+\frac{-b^{4}-ac^{3}+a^{2}c^{2}-a^{3}c-2ab^{2}c}{bc^{3}+a^{3}b-abc^{2}-a^{2}bc}\cdot x,
(2.25) βb:y=bc4+b2d3+b3c2+b3d2++c2d3+c4d+bc2d2+b2c2d2c4+2bd32b2d2+2b3d+4bc2d+cd3b3c+bcd2+b2cdc4+bd3b2d2+b3d+2bc2dx,\beta_{b}:\,y=\frac{\begin{aligned} bc^{4}+b^{2}d^{3}+b^{3}c^{2}+b^{3}d^{2}+\\ +c^{2}d^{3}+c^{4}d+bc^{2}d^{2}+b^{2}c^{2}d\end{aligned}}{2c^{4}+2bd^{3}-2b^{2}d^{2}+2b^{3}d+4bc^{2}d}+\frac{-cd^{3}-b^{3}c+bcd^{2}+b^{2}cd}{c^{4}+bd^{3}-b^{2}d^{2}+b^{3}d+2bc^{2}d}\cdot x,
(2.26) βc:y=d4+a2c2+a2d2+c2d22a2d+2c2d4acd+d4ac3+a2c2a3c2acd2a3d+c3dac2da2cdx,\beta_{c}:\,y=\frac{d^{4}+a^{2}c^{2}+a^{2}d^{2}+c^{2}d^{2}}{2a^{2}d+2c^{2}d-4acd}+\frac{-d^{4}-ac^{3}+a^{2}c^{2}-a^{3}c-2acd^{2}}{a^{3}d+c^{3}d-ac^{2}d-a^{2}cd}\cdot x,
(2.27) βd:y=a2b3+a2d3+a4b+a4d++b2d3+b3d2+a2bd2+a2b2d2a4+2bd32b2d2+2b3d+4a2bd+ab3ad3+abd2+ab2da4+bd3b2d2+b3d+2a2bdx.\beta_{d}:\,y=\frac{\begin{aligned} a^{2}b^{3}+a^{2}d^{3}+a^{4}b+a^{4}d+\\ +b^{2}d^{3}+b^{3}d^{2}+a^{2}bd^{2}+a^{2}b^{2}d\end{aligned}}{2a^{4}+2bd^{3}-2b^{2}d^{2}+2b^{3}d+4a^{2}bd}+\frac{-ab^{3}-ad^{3}+abd^{2}+ab^{2}d}{a^{4}+bd^{3}-b^{2}d^{2}+b^{3}d+2a^{2}bd}\cdot x.

We get the intersections

(2.28) M=βaβc=(a3bd+a3c2a2bcd+a2c3ab3dab2d2abc2dabd3b3cdb2cd2bc3dbcd32a3c2a2c24abcd++2ac32b3d2b2d22bd3,a3bc+a3cd+a2bc2+a2c2d++ab3c+ab2cd+abc3+abcd2++ac3d+acd3b3d2b2d32a3c2a2c24abcd++2ac32b3d2b2d22bd3),M=\beta_{a}\cap\beta_{c}=\left(\frac{\begin{aligned} -a^{3}bd+a^{3}c^{2}-a^{2}bcd+a^{2}c^{3}-\\ -ab^{3}d-ab^{2}d^{2}-abc^{2}d-abd^{3}-\\ -b^{3}cd-b^{2}cd^{2}-bc^{3}d-bcd^{3}\end{aligned}}{\begin{aligned} 2a^{3}c-2a^{2}c^{2}-4abcd+\\ +2ac^{3}-2b^{3}d-2b^{2}d^{2}-2bd^{3}\end{aligned}},\frac{\begin{aligned} a^{3}bc+a^{3}cd+a^{2}bc^{2}+a^{2}c^{2}d+\\ +ab^{3}c+ab^{2}cd+abc^{3}+abcd^{2}+\\ +ac^{3}d+acd^{3}-b^{3}d^{2}-b^{2}d^{3}\end{aligned}}{\begin{aligned} 2a^{3}c-2a^{2}c^{2}-4abcd+\\ +2ac^{3}-2b^{3}d-2b^{2}d^{2}-2bd^{3}\end{aligned}}\right),
(2.29) N=βbβd=(a3bd+a3c2a2bcd+a2c3ab3dab2d2abc2dabd3b3cdb2cd2bc3dbcd32a3c+2a2c2+4abcd++2ac32b3d+2b2d22bd3,a3bc+a3cd+a2bc2+a2c2d++ab3c+ab2cd+abc3+abcd2++ac3d+acd3b3d2b2d32a3c+2a2c2+4abcd++2ac32b3d+2b2d22bd3),N=\beta_{b}\cap\beta_{d}=\left(\frac{\begin{aligned} -a^{3}bd+a^{3}c^{2}-a^{2}bcd+a^{2}c^{3}-\\ -ab^{3}d-ab^{2}d^{2}-abc^{2}d-abd^{3}-\\ -b^{3}cd-b^{2}cd^{2}-bc^{3}d-bcd^{3}\end{aligned}}{\begin{aligned} 2a^{3}c+2a^{2}c^{2}+4abcd+\\ +2ac^{3}-2b^{3}d+2b^{2}d^{2}-2bd^{3}\end{aligned}},\frac{\begin{aligned} a^{3}bc+a^{3}cd+a^{2}bc^{2}+a^{2}c^{2}d+\\ +ab^{3}c+ab^{2}cd+abc^{3}+abcd^{2}+\\ +ac^{3}d+acd^{3}-b^{3}d^{2}-b^{2}d^{3}\end{aligned}}{\begin{aligned} 2a^{3}c+2a^{2}c^{2}+4abcd+\\ +2ac^{3}-2b^{3}d+2b^{2}d^{2}-2bd^{3}\end{aligned}}\right),

and then the line connecting points MM and NN is

(2.30) MN:y=b2d3+b3d2abc3acd3ab3cac3da2bc2a2c2da3bca3cdabcd2ab2cda2c3a3c2+abd3+ab2d2+ab3d+bcd3++bc3d+a3bd+b2cd2+b3cd+abc2d+a2bcdx.MN:\ y=\frac{\begin{aligned} b^{2}d^{3}+b^{3}d^{2}-abc^{3}-acd^{3}-ab^{3}c-ac^{3}d-\\ -a^{2}bc^{2}-a^{2}c^{2}d-a^{3}bc-a^{3}cd-abcd^{2}-ab^{2}cd\end{aligned}}{\begin{aligned} -a^{2}c^{3}-a^{3}c^{2}+abd^{3}+ab^{2}d^{2}+ab^{3}d+bcd^{3}+\\ +bc^{3}d+a^{3}bd+b^{2}cd^{2}+b^{3}cd+abc^{2}d+a^{2}bcd\end{aligned}}\cdot x.

It is easy to see that MNMN goes through P(0,0)P(0,0). This completes the proof. ∎

3. Some others theorems on rectangle and a random point

We introduce some more theorems on rectangle and a random point, all of them can be solved by Cartesian coordinate as we work above.

Theorem 2 (Generalization of Theorem 1).

Let A1B1C1D1A_{1}B_{1}C_{1}D_{1} and A2B2C2D2A_{2}B_{2}C_{2}D_{2} be two rectangles with the same center II. Let PP be a random point in its plane. Euler lines of triangles PA1B1PA_{1}B_{1} and PC1D1PC_{1}D_{1} meet at QQ. Euler lines of triangles PA2D2PA_{2}D_{2} and PB2C2PB_{2}C_{2} meet at RR. Then, three points QQ, RR, and II are collinear (See Figure 3).

Refer to caption
Figure 3.
Theorem 3.

Let ABCDABCD be a rectangle with center II. Let PP be a random point in its plane. Let HaH_{a}, HbH_{b}, HcH_{c}, and HdH_{d} be the orthocenters of triangles PABPAB, PBCPBC, PCDPCD, and PDAPDA, respectively. Let QQ and RR be the midpoints of HaHcH_{a}H_{c} and HbHdH_{b}H_{d}, respectively. Then, three points QQ, RR, and II are collinear (See Figure 4).

Refer to caption
Figure 4.
Theorem 4.

Let ABCDABCD be a rectangle with center II. Let PP be a random point in its plane. Let OaO_{a}, ObO_{b}, OcO_{c}, and OdO_{d} be the circumcenters of triangles PABPAB, PBCPBC, PCDPCD, and PDAPDA, respectively. Let QQ and RR be the midpoints of OaOcO_{a}O_{c} and ObOdO_{b}O_{d}, respectively. Let SS be the midpoint of QRQR. Circumcircles of triangles POaOcPO_{a}O_{c} and PObOdPO_{b}O_{d} meets again at TT. Then, three points SS, TT, and II are collinear (See Figure 5).

Refer to caption
Figure 5.
Theorem 5.

Let ABCDABCD be a rectangle with center II. Let PP be a random point in its plane. Let NaN_{a}, NbN_{b}, NcN_{c}, and NdN_{d} be the nine-point centers of triangles PABPAB, PBCPBC, PCDPCD, and PDAPDA, respectively. Let MM and NN be the midpoints of NaNcN_{a}N_{c} and NbNdN_{b}N_{d}, respectively. Let QQ be intersection of perpendicular bisectors of NaNcN_{a}N_{c} and NbNdN_{b}N_{d}. Then, lines MNMN and IQIQ are parallel (See Figure 6).

Refer to caption
Figure 6.
Theorem 6.

Let ABCDABCD be a rectangle with center II. Let PP be a random point in its plane. Let PaP_{a}, PbP_{b}, PcP_{c}, and PdP_{d} be the isogonal conjugate of II with respect to triangles PABPAB, PBCPBC, PCDPCD, and PDAPDA, respectively. Then, line IPIP bisects the segments PaPcP_{a}P_{c} and PbPdP_{b}P_{d} (See Figure 7).

Refer to caption
Figure 7.
Theorem 7.

Let ABCDABCD be a rectangle with center II. Let PP be a random point in its plane. Let PaP_{a}, PbP_{b}, PcP_{c}, and PdP_{d} be the reflections of PP in the lines ABAB, BCBC, CDCD, and DADA, respectively. Euler line of triangles PaABP_{a}AB and PcCDP_{c}CD meet at QQ. Euler line of triangles PbBCP_{b}BC and PdDAP_{d}DA meet at RR. Then, line IPIP bisects the segment QRQR (See Figure 8).

Refer to caption
Figure 8.
Theorem 8.

Let ABCDABCD be a rectangle with center II. Let PP be a random point in its plane. Let PaP_{a}, PbP_{b}, PcP_{c}, and PdP_{d} be the reflections of PP in the midpoints of sides ABAB, BCBC, CDCD, and DADA, respectively. Euler line of triangles PaABP_{a}AB and PcCDP_{c}CD meet at QQ. Euler line of triangles PbBCP_{b}BC and PdDAP_{d}DA meet at RR. Then, reflection of PP in II lies on line QRQR (See Figure 9).

Refer to caption
Figure 9.
Theorem 9.

Let ABCDABCD be a rectangle with center II. Let PP be a random point in its plane. Let PaP_{a}, PbP_{b}, PcP_{c}, PdP_{d}, PacP_{ac}, and PbdP_{bd} be the reflections of PP in the lines ABAB, BCBC, CDCD, DADA, ACAC, and BDBD, respectively. Orthogonal projections of PacP_{ac} on sides of quadrilateral PaPbPcPdP_{a}P_{b}P_{c}P_{d} form a quadrilateral which has two diagonals meet at QQ. Orthogonal projections of PbdP_{bd} on sides of quadrilateral PaPbPcPdP_{a}P_{b}P_{c}P_{d} form a quadrilateral which has two diagonals meet at RR (See Figure 10). Then,

  • i)

    Two points PacP_{ac} and PbdP_{bd} are isogonal conjugate with respect to quadrilateral PaPbPcPdP_{a}P_{b}P_{c}P_{d}.

  • ii)

    There point PP, QQ, and RR are collinear.

  • iii)

    Two lines QPacQP_{ac} and RPbdRP_{bd} are parallel.

Refer to caption
Figure 10.

References

  • [1] René Descartes, Discourse de la Méthode (Leiden, Netherlands): Jan Maire, 1637, appended book: La Géométrie, book one, p. 299.
  • [2] Sorell, T.: Descartes: A Very Short Introduction (2000). New York: Oxford University Press. p. 19.
  • [3] Coxeter, H. S. M. and Greitzer, S. L.: Geometry Revisited, Washington, DC: Math. Assoc. Amer., 1967., p. 53.
  • [4] Johnson, R. A.: Modern Geometry: An Elementary Treatise on the Geometry of the Triangle and the Circle, Boston, MA: Houghton Mifflin, 1929., p. 172.
  • [5] Coxeter, H. S. M.: Projective geometry, Blaisdell, New York, 1964., p. 78.
  • [6] Coxeter, H. S. M.: Non-Euclidean Geometry, University of Toronto Press, 1942., p. 29.
  • [7] Weisstein, E. W.: Rectangle, from MathWorld–A Wolfram Web Resource, https://mathworld.wolfram.com/Rectangle.html.
  • [8] Weisstein, E. W.: Euler Line, from MathWorld–A Wolfram Web Resource, https://mathworld.wolfram.com/EulerLine.html.
  • [9] Weisstein, E. W.: Symmedian Point, from MathWorld–A Wolfram Web Resource, https://mathworld.wolfram.com/SymmedianPoint.html.
  • [10] Weisstein, E. W.: Brocard Axis, from MathWorld–A Wolfram Web Resource, https://mathworld.wolfram.com/BrocardAxis.html.
  • [11] Q. H. Tran and L. González, Two generalizations of the Butterfly Theorem, arXiv:2012.08365 [math.HO].
  • [12] Geogebra Geometry, https://www.geogebra.org/geometry.
  • [13] Sage Notebook v6.10, http://sagemath.org.