This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Some observations on the FGH theorem

Taishi Kurahashi111Email: [email protected] 222Graduate School of System Informatics, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
Abstract

We investigate the Friedman–Goldfarb–Harrington theorem from two perspectives. Firstly, in the frameworks of classical and modal propositional logics, we study the forms of sentences whose existence is guaranteed by the FGH theorem. Secondly, we prove some variations of the FGH theorem with respect to Rosser provability predicates.

1 Introduction

The notion of the weak representability of computably enumerable (c.e.) sets plays an important role in a proof of Gödel’s first incompleteness theorem. We say that a set XX of natural numbers is weakly representable in a theory TT if there exists a formula φX(v)\varphi_{X}(v) such that for any natural number nn, nXn\in X if and only if TφX(n¯)T\vdash\varphi_{X}(\overline{n}). If a set XX, which is c.e. but not computable, is weakly representable in a c.e. theory TT, then it is shown that there exists a natural number nn such that TφX(n¯)T\nvdash\varphi_{X}(\overline{n}) and T¬φX(n¯)T\nvdash\neg\varphi_{X}(\overline{n}). Therefore, such a theory TT is incomplete.

It is easily shown that every c.e. set is weakly representable in every Σ1\Sigma_{1}-sound c.e. extension of 𝖯𝖠\mathsf{PA} because of Σ1\Sigma_{1}-soundness and Σ1\Sigma_{1}-completeness. Furthermore, Ehrenfeucht and Feferman [3] proved the weak representability of c.e. sets in every consistent c.e. extension of 𝖯𝖠\mathsf{PA} (see also Shepherdson [14]).

Theorem 1.1 (Ehrenfeucht and Feferman).

Let TT be any consistent c.e. extension of 𝖯𝖠\mathsf{PA}. Then, every c.e. set of natural numbers is weakly representable in TT.

Ehrenfeucht and Feferman’s theorem is a metamathematical result, but is formalizable and also provable in 𝖯𝖠\mathsf{PA}. This fact is called the FGH theorem (see Smoryński [15, p.366], Visser [17, Theorem 4.1], [18, Section 3] and Lindström [11, Exercise 2.26 (a)]).

Theorem 1.2 (The FGH theorem).

Let TT be any consistent c.e. extension of 𝖯𝖠\mathsf{PA}. Then, for any Σ1\Sigma_{1} sentence σ\sigma, there exists a sentence φ\varphi such that

𝖯𝖠+ConTσPrT(φ).\mathsf{PA}+\mathrm{Con}_{T}\vdash\sigma\leftrightarrow\mathrm{Pr}_{T}(\ulcorner\varphi\urcorner).

Here PrT(x)\mathrm{Pr}_{T}(x) is a natural Σ1\Sigma_{1} provability predicate of TT which expresses the provability of TT, and ConT\mathrm{Con}_{T} is the Π1\Pi_{1} sentence ¬PrT(0=1)\neg\mathrm{Pr}_{T}(\ulcorner 0=1\urcorner) expressing the consistency of TT. “FGH” stands for Friedman, Goldfarb and Harrington. Harrington and Friedman pointed out that φ\varphi in the statement is found as Π1\Pi_{1} and Σ1\Sigma_{1}, respectively. For a history of the FGH theorem, see Visser [18]. The FGH theorem has been used in the literature (for example, in papers by the author, it appears in [8, 10]).

A version of the FGH theorem with a parameter is also proved. That is, by modifying the usual proof of the FGH theorem, it is proved that for any Σ1\Sigma_{1} formula σ(v)\sigma(v) with the only free variable vv, there exists a formula φ(v)\varphi(v) such that 𝖯𝖠+ConT\mathsf{PA}+\mathrm{Con}_{T} proves v(σ(v)PrT(φ(v˙)))\forall v\,\bigl{(}\sigma(v)\leftrightarrow\mathrm{Pr}_{T}(\ulcorner\varphi(\dot{v})\urcorner)\bigr{)}. Here φ(v˙)\ulcorner\varphi(\dot{v})\urcorner is a primitive recursive term corresponding to a primitive recursive function calculating the Gödel number of φ(n¯)\varphi(\overline{n}) from nn. If TT is consistent, then the theory 𝖯𝖠+ConT\mathsf{PA}+\mathrm{Con}_{T} is sound, and hence the weak representability of c.e. sets in TT follows from this parameterized version of the FGH theorem.

In the present paper, we analyze the FGH theorem from two perspectives. The first perspective is the “form” of the sentence φ\varphi in the statement of the FGH theorem. Let TrueΣ1(v)\mathrm{True}_{\Sigma_{1}}(v) be a partial truth definition for Σ1\Sigma_{1} sentences, that is, TrueΣ1(v)\mathrm{True}_{\Sigma_{1}}(v) is a Σ1\Sigma_{1} formula such that for any Σ1\Sigma_{1} sentence σ\sigma, 𝖯𝖠\mathsf{PA} proves σTrueΣ1(σ)\sigma\leftrightarrow\mathrm{True}_{\Sigma_{1}}(\ulcorner\sigma\urcorner) (cf. Lindström [11, Fact 10]). By the parameterized version of the FGH theorem, there exists a formula ξ(v)\xi(v) such that 𝖯𝖠+ConTv(TrueΣ1(v)PrT(ξ(v˙)))\mathsf{PA}+\mathrm{Con}_{T}\vdash\forall v\,\bigl{(}\mathrm{True}_{\Sigma_{1}}(v)\leftrightarrow\mathrm{Pr}_{T}(\ulcorner\xi(\dot{v})\urcorner)\bigr{)}. Then, for any Σ1\Sigma_{1} sentence σ\sigma, 𝖯𝖠+ConTσPrT(ξ(σ))\mathsf{PA}+\mathrm{Con}_{T}\vdash\sigma\leftrightarrow\mathrm{Pr}_{T}(\ulcorner\xi(\ulcorner\sigma\urcorner)\urcorner). Therefore, φ\varphi in the FGH theorem can be taken in the form ξ()\xi(\cdot) uniformly regardless of σ\sigma.

From the above observation, we consider the following question: What form of the sentence φ\varphi in the FGH theorem can we find? In Section 2, we investigate this question in the framework of classical propositional logic. Specifically, we study the following rephrased question: What is a propositional formula AA such that φ\varphi in the FGH theorem can be taken uniformly in the form AA regardless of σ\sigma? In Section 3, we investigate this rephrased question in the framework of modal propositional logic. However, unlike the case of classical propositional logic, the formula AA may contain the modal operator \Box. Therefore, the interpretation of \Box in arithmetic should be clearly defined. As is usually done in the study of provability logic, in the present paper, \Box is interpreted by PrT(x)\mathrm{Pr}_{T}(x). Then, our proofs of theorems in Section 3 are modifications of that of Solovay’s arithmetical completeness theorem [16] which is one of the most remarkable theorems in the research of provability logic.

The second perspective is the choice of provability predicates. Joosten [7] generalized the FGH theorem by proving similar statements concerning several nonstandard provability predicates such as a formula expressing the provability in TT together with all true Σn+2\Sigma_{n+2} sentences. In the last section, we study some variations of the FGH theorem with respect to Rosser provability predicates.

Sections 2, 3, and 4 can be read independently. We close the introduction with common preparations for reading these sections. Let A\mathcal{L}_{A} denote the language of first-order arithmetic containing the symbols 0,S,+,×,0,S,+,\times,\leq. We do not specify what exactly A\mathcal{L}_{A} is, but it may be assumed to have as many function symbols for primitive recursive functions as necessary. Throughout the present paper, we fix a consistent c.e. extension TT of Peano Arithmetic 𝖯𝖠\mathsf{PA} in the language A\mathcal{L}_{A}. Let ω\omega denote the set of all natural numbers. For each nωn\in\omega, let n¯\overline{n} denote the numeral S(S(S(0)))S(S(\cdots S(0)\cdots)) (nn times applications of SS) for nn. We fix a primitive recursive formula ProofT(x,y)\mathrm{Proof}_{T}(x,y) naturally expressing that “yy is a TT-proof of xx”. Our Σ1\Sigma_{1} provability predicate PrT(x)\mathrm{Pr}_{T}(x) of TT is defined by yProofT(x,y)\exists y\,\mathrm{Proof}_{T}(x,y), saying that “xx is TT-provable”. Then, we may assume that the provability predicate PrT(x)\mathrm{Pr}_{T}(x) satisfies the following clauses (see Boolos [2]):

  • If TφT\vdash\varphi, then 𝖯𝖠PrT(φ)\mathsf{PA}\vdash\mathrm{Pr}_{T}(\ulcorner\varphi\urcorner),

  • 𝖯𝖠PrT(φψ)(PrT(φ)PrT(ψ))\mathsf{PA}\vdash\mathrm{Pr}_{T}(\ulcorner\varphi\to\psi\urcorner)\to\bigl{(}\mathrm{Pr}_{T}(\ulcorner\varphi\urcorner)\to\mathrm{Pr}_{T}(\ulcorner\psi\urcorner)\bigr{)},

  • If φ\varphi is a Σ1\Sigma_{1} sentence, then 𝖯𝖠φPrT(φ)\mathsf{PA}\vdash\varphi\to\mathrm{Pr}_{T}(\ulcorner\varphi\urcorner).

We may also assume that 𝖯𝖠\mathsf{PA} verifies that every theorem of TT has infinitely many proofs, that is, 𝖯𝖠xy(ProofT(x,y)z>yProofT(x,z))\mathsf{PA}\vdash\forall x\forall y\,\bigl{(}\mathrm{Proof}_{T}(x,y)\to\exists z\,{>}\,y\,\mathrm{Proof}_{T}(x,z)\bigr{)}.

We introduce witness comparison notation (cf. Lindström [11, Lemma 1.3]).

Definition 1.3 (Witness comparison notation).

Suppose that A\mathcal{L}_{A}-formulas φ\varphi and ψ\psi are of the forms xφ(x)\exists x\,\varphi^{\prime}(x) and yψ(y)\exists y\,\psi^{\prime}(y), respectively.

  • φψ\varphi\preccurlyeq\psi is an abbreviation for x(φ(x)y<x¬ψ(y))\exists x\,\bigl{(}\varphi^{\prime}(x)\land\forall y\,{<}\,x\,\neg\psi^{\prime}(y)\bigr{)}.

  • φψ\varphi\prec\psi is an abbreviation for x(φ(x)yx¬ψ(y))\exists x\,\bigl{(}\varphi^{\prime}(x)\land\forall y\,{\leq}\,x\,\neg\psi^{\prime}(y)\bigr{)}.

It is easily verified that 𝖯𝖠\mathsf{PA} proves the formulas ¬(φψψφ)\neg(\varphi\preccurlyeq\psi\land\psi\prec\varphi) and φψ(φψψφ)\varphi\lor\psi\to(\varphi\preccurlyeq\psi\lor\psi\prec\varphi).

2 On the form of a sentence in the FGH theorem
– the case of classical propositional logic

In this section, we investigate the following question mentioned in the introduction: What is a propositional formula AA such that φ\varphi in the FGH theorem can be taken uniformly in the form AA regardless of σ\sigma?

The language of classical propositional logic consists of countably many propositional variables p1,p2,,q1,q2,p_{1},p_{2},\ldots,q_{1},q_{2},\ldots, propositional constants ,\top,\bot, and propositional connectives ,,¬,,\land,\lor,\neg,\to,\leftrightarrow. For each propositional formula AA, let A\models A mean that AA is a tautology. We say AA is unsatisfiable if ¬A\models\neg A. We say that a propositional formula is contingent if it is neither a tautology nor unsatisfiable.

For any propositional formula A(p1,,pn)A(p_{1},\ldots,p_{n}) containing only the indicated propositional variables and any A\mathcal{L}_{A}-sentences φ1,,φn\varphi_{1},\ldots,\varphi_{n}, let A(φ1,,φn)A(\varphi_{1},\ldots,\varphi_{n}) denote the A\mathcal{L}_{A}-sentence obtained by simultaneously replacing all the occurrences of pip_{i} in AA by φi\varphi_{i}, for each i{1,,n}i\in\{1,\ldots,n\}.

We introduce the following sets in order to simplify our descriptions.

Definition 2.1.

For each Σ1\Sigma_{1} sentence σ\sigma, let FGHT(σ)\mathrm{FGH}_{T}(\sigma) be the set of all A\mathcal{L}_{A}-sentences φ\varphi such that 𝖯𝖠+ConTσPrT(φ)\mathsf{PA}+\mathrm{Con}_{T}\vdash\sigma\leftrightarrow\Pr_{T}(\ulcorner\varphi\urcorner).

Then, the FGH theorem states that for any Σ1\Sigma_{1} sentence σ\sigma, the set FGHT(σ)\mathrm{FGH}_{T}(\sigma) is non-empty. We show that the set FGH(σ)\mathrm{FGH}(\sigma) is closed under the TT-provable equivalence.

Proposition 2.2.

For any Σ1\Sigma_{1} sentence σ\sigma and any A\mathcal{L}_{A}-sentences φ\varphi and ψ\psi, if φFGHT(σ)\varphi\in\mathrm{FGH}_{T}(\sigma) and TφψT\vdash\varphi\leftrightarrow\psi, then ψFGHT(σ)\psi\in\mathrm{FGH}_{T}(\sigma).

Proof.

Suppose φFGHT(σ)\varphi\in\mathrm{FGH}_{T}(\sigma) and TφψT\vdash\varphi\leftrightarrow\psi. Then, the equivalence PrT(φ)PrT(ψ)\mathrm{Pr}_{T}(\ulcorner\varphi\urcorner)\leftrightarrow\mathrm{Pr}_{T}(\ulcorner\psi\urcorner) is provable in 𝖯𝖠\mathsf{PA}. Since 𝖯𝖠+ConTσPrT(φ)\mathsf{PA}+\mathrm{Con}_{T}\vdash\sigma\leftrightarrow\mathrm{Pr}_{T}(\ulcorner\varphi\urcorner), we obtain 𝖯𝖠+ConTσPrT(ψ)\mathsf{PA}+\mathrm{Con}_{T}\vdash\sigma\leftrightarrow\mathrm{Pr}_{T}(\ulcorner\psi\urcorner), and hence ψFGHT(σ)\psi\in\mathrm{FGH}_{T}(\sigma).

First, we prove the following introductory theorem.

Theorem 2.3.

Let A(p1,,pn)A(p_{1},\ldots,p_{n}) be any propositional formula with only the indicated propositional variables. Then, the following are equivalent:

  1. 1.

    A(p1,,pn)A(p_{1},\ldots,p_{n}) is contingent.

  2. 2.

    For any Σ1\Sigma_{1} sentence σ\sigma, there exist A\mathcal{L}_{A}-sentences φ1,,φn\varphi_{1},\ldots,\varphi_{n} such that A(φ1,,φn)FGHT(σ)A(\varphi_{1},\ldots,\varphi_{n})\in\mathrm{FGH}_{T}(\sigma).

For each formula AA, let A0A^{0} and A1A^{1} be ¬A\neg A and AA, respectively. Theorem 2.3 follows from the following lemma.

Lemma 2.4.

Let A(p1,,pn)A(p_{1},\ldots,p_{n}) be any propositional formula with only the indicated propositional variables and let rr be any propositional variable not contained in AA. If A(p1,,pn)A(p_{1},\ldots,p_{n}) is contingent, then there exist propositional formulas B1(r),,Bn(r)B_{1}(r),\ldots,B_{n}(r) such that rA(B1(r),,Bn(r))\models r\leftrightarrow A(B_{1}(r),\ldots,B_{n}(r)).

Proof.

Suppose that A(p1,,pn)A(p_{1},\ldots,p_{n}) is contingent. Let ff and gg be mappings from {1,,n}\{1,\ldots,n\} to {0,1}\{0,1\} such that A(f(1),,f(n))\models A(\top^{f(1)},\ldots,\top^{f(n)}) and ¬A(g(1),,g(n))\models\neg A(\top^{g(1)},\ldots,\top^{g(n)}). For each ii (1in1\leq i\leq n), let Bi(r)B_{i}(r) be the propositional formula (rf(i))(¬rg(i))(r\land\top^{f(i)})\lor(\neg r\land\top^{g(i)}). Then, r(Bi(r)f(i))\models r\to(B_{i}(r)\leftrightarrow\top^{f(i)}) and ¬r(Bi(r)g(i))\models\neg r\to(B_{i}(r)\leftrightarrow\top^{g(i)}) hold. Thus, we have

r(A(B1(r),,Bn(r))A(f(1),,f(n)))\models r\to\bigl{(}A(B_{1}(r),\ldots,B_{n}(r))\leftrightarrow A(\top^{f(1)},\ldots,\top^{f(n)})\bigr{)}

and

¬r(A(B1(r),,Bn(r))A(g(1),,g(n))).\models\neg r\to\bigl{(}A(B_{1}(r),\ldots,B_{n}(r))\leftrightarrow A(\top^{g(1)},\ldots,\top^{g(n)})\bigr{)}.

Since A(f(1),,f(n))\models A(\top^{f(1)},\ldots,\top^{f(n)}) and ¬A(g(1),,g(n))\models\neg A(\top^{g(1)},\ldots,\top^{g(n)}), we obtain

rA(B1(r),,Bn(r))and¬r¬A(B1(r),,Bn(r)).\models r\to A(B_{1}(r),\ldots,B_{n}(r))\ \text{and}\ \models\neg r\to\neg A(B_{1}(r),\ldots,B_{n}(r)).
Proof of Theorem 2.3.

(12)(1\Rightarrow 2): Suppose that A(p1,,pn)A(p_{1},\ldots,p_{n}) is contingent and let σ\sigma be any Σ1\Sigma_{1} sentence. Then, by Lemma 2.4, there exist propositional formulas B1(r),,Bn(r)B_{1}(r),\ldots,B_{n}(r) such that

rA(B1(r),,Bn(r)).\models r\leftrightarrow A(B_{1}(r),\ldots,B_{n}(r)). (1)

By the FGH theorem, there exists an A\mathcal{L}_{A}-sentence φFGHT(σ)\varphi\in\mathrm{FGH}_{T}(\sigma). For each ii (1in1\leq i\leq n), let φi\varphi_{i} be the A\mathcal{L}_{A}-sentence Bi(φ)B_{i}(\varphi). Then, by the equivalence (1), we obtain

𝖯𝖠φA(φ1,,φn).\mathsf{PA}\vdash\varphi\leftrightarrow A(\varphi_{1},\ldots,\varphi_{n}).

By Proposition 2.2, we conclude A(φ1,,φn)FGHT(σ)A(\varphi_{1},\ldots,\varphi_{n})\in\mathrm{FGH}_{T}(\sigma) by Proposition 2.2.

(21)(2\Rightarrow 1): Suppose that A(p1,,pn)A(p_{1},\ldots,p_{n}) is not contingent. Then, for any A\mathcal{L}_{A}-sentences φ1,,φn\varphi_{1},\ldots,\varphi_{n}, either A(φ1,,φn)A(\varphi_{1},\ldots,\varphi_{n}) or ¬A(φ1,,φn)\neg A(\varphi_{1},\ldots,\varphi_{n}) is provable in 𝖯𝖠\mathsf{PA}. Let σ\sigma be any Σ1\Sigma_{1} sentence independent of 𝖯𝖠+ConT\mathsf{PA}+\mathrm{Con}_{T}. Then, A(φ1,,φn)A(\varphi_{1},\ldots,\varphi_{n}) is not in FGHT(σ)\mathrm{FGH}_{T}(\sigma) for all A\mathcal{L}_{A}-sentences φ1,,φn\varphi_{1},\ldots,\varphi_{n}.

As mentioned in the introduction, the FGH theorem and the weak representability theorem are related to each other. In particular, we can also prove the following theorem by a similar proof.

Theorem 2.5.

Let A(p1,,pn)A(p_{1},\ldots,p_{n}) be any propositional formula with only the indicated propositional variables. Then, the following are equivalent:

  1. 1.

    A(p1,,pn)A(p_{1},\ldots,p_{n}) is contingent.

  2. 2.

    For any c.e. set XX, there exist A\mathcal{L}_{A}-formulas φ1(v),,φn(v)\varphi_{1}(v),\ldots,\varphi_{n}(v) such that A(φ1(v),,φn(v))A(\varphi_{1}(v),\ldots,\varphi_{n}(v)) weakly represents XX in TT.

Theorem 2.3 will be extended to the framework of modal propositional logic in the next section. In this section, we further improve Theorem 2.3 in the framework of classical propositional logic. For any propositional formula A(p1,,pn,q1,,qm)A(p_{1},\ldots,p_{n},q_{1},\ldots,q_{m}) with the only indicated propositional variables, let 𝖥𝖦𝖧T[A;q1,,qm]\mathsf{FGH}_{T}[A;q_{1},\ldots,q_{m}] denote the metamathematical statement “for any A\mathcal{L}_{A}-sentences ψ1,,ψm\psi_{1},\ldots,\psi_{m} and for any Σ1\Sigma_{1} sentence σ\sigma, there exist A\mathcal{L}_{A}-sentences φ1,,φn\varphi_{1},\ldots,\varphi_{n} such that A(φ1,,φn,ψ1,,ψm)FGHT(σ)A(\varphi_{1},\ldots,\varphi_{n},\psi_{1},\ldots,\psi_{m})\in\mathrm{FGH}_{T}(\sigma)”, and we provide a necessary and sufficient condition for 𝖥𝖦𝖧T[A;q1,,qm]\mathsf{FGH}_{T}[A;q_{1},\ldots,q_{m}]. From this, we obtain more detailed information about the elements of FGH(σ)\mathrm{FGH}(\sigma) and the first incompleteness theorem (see Corollary 2.8).

Let m\mathcal{F}_{m} denote the set of all functions f:{1,,m}{0,1}f:\{1,\ldots,m\}\to\{0,1\}. We prove the following theorem which is one of main theorems of the present paper.

Theorem 2.6.

For any propositional formula A(p1,,pn,q1,,qm)A(p_{1},\ldots,p_{n},q_{1},\ldots,q_{m}), the following are equivalent:

  1. 1.

    For all fmf\in\mathcal{F}_{m}, A(p1,,pn,f(1),,f(m))A(p_{1},\ldots,p_{n},\top^{f(1)},\ldots,\top^{f(m)}) are contingent.

  2. 2.

    𝖥𝖦𝖧T[A;q1,,qm]\mathsf{FGH}_{T}[A;q_{1},\ldots,q_{m}] holds.

Theorem 2.6 also follows from the following lemma that is an improvement of Lemma 2.4. For the sake of simplicity, we sometimes abbreviate the tuples p1,,pnp_{1},\ldots,p_{n} and q1,,qmq_{1},\ldots,q_{m} as p\vec{p} and q\vec{q}, respectively.

Lemma 2.7.

Let A(p,q)A(\vec{p},\vec{q}) be any propositional formula with only the indicated propositional variables and let rr be any propositional variable not contained in AA. If A(p,f(1),,f(m))A(\vec{p},\top^{f(1)},\ldots,\top^{f(m)}) is contingent for all fmf\in\mathcal{F}_{m}, then there exist propositional formulas B1(r,q),,Bn(r,q)B_{1}(r,\vec{q}),\ldots,B_{n}(r,\vec{q}) such that

rA(B1(r,q),,Bn(r,q),q).\models r\leftrightarrow A(B_{1}(r,\vec{q}),\ldots,B_{n}(r,\vec{q}),\vec{q}).
Proof.

For each fmf\in\mathcal{F}_{m}, let Qf(q)Q^{f}(\vec{q}) denote the formula q1f(1)qmf(m)q_{1}^{f(1)}\land\cdots\land q_{m}^{f(m)}. Notice that for each distinct elements f,gf,g of m\mathcal{F}_{m}, ¬(Qf(q)Qg(q))\models\neg\bigl{(}Q^{f}(\vec{q})\land Q^{g}(\vec{q})\bigr{)}. Also fmQf(q)\models\bigvee_{f\in\mathcal{F}_{m}}Q^{f}(\vec{q}).

Suppose that A(p,f(1),,f(m))A(\vec{p},\top^{f(1)},\ldots,\top^{f(m)}) is contingent for all fmf\in\mathcal{F}_{m}. For each gmg\in\mathcal{F}_{m}, there exist propositional formulas C1g(r),,Cng(r)C_{1}^{g}(r),\ldots,C_{n}^{g}(r) such that

rA(C1g(r),,Cng(r),g(1),,g(m))\models r\leftrightarrow A(C_{1}^{g}(r),\ldots,C_{n}^{g}(r),\top^{g(1)},\ldots,\top^{g(m)}) (2)

by Lemma 2.4. For each ii (1in1\leq i\leq n), let Bi(r,q)B_{i}(r,\vec{q}) be the propositional formla fm(Cif(r)Qf(q))\bigvee_{f\in\mathcal{F}_{m}}\bigl{(}C_{i}^{f}(r)\land Q^{f}(\vec{q})\bigr{)}. Then, Qg(q)(Bi(r,q)Cig(r))\models Q^{g}(\vec{q})\to\bigl{(}B_{i}(r,\vec{q})\leftrightarrow C_{i}^{g}(r)\bigr{)} and Qg(q)(qig(i))\models Q^{g}(\vec{q})\to(q_{i}\leftrightarrow\top^{g(i)}). By the equivalence (2), we obtain

Qg(q)(rA(B1(r,q),,Bn(r,q),q)).\models Q^{g}(\vec{q})\to\bigl{(}r\leftrightarrow A(B_{1}(r,\vec{q}),\ldots,B_{n}(r,\vec{q}),\vec{q})\bigr{)}.

Then,

fmQf(q)(rA(B1(r,q),,Bn(r,q),q)).\models\bigvee_{f\in\mathcal{F}_{m}}Q^{f}(\vec{q})\to\bigl{(}r\leftrightarrow A(B_{1}(r,\vec{q}),\ldots,B_{n}(r,\vec{q}),\vec{q})\bigr{)}.

Since fmQf(q)\models\bigvee_{f\in\mathcal{F}_{m}}Q^{f}(\vec{q}), we conclude

rA(B1(r,q),,Bn(r,q),q).\models r\leftrightarrow A(B_{1}(r,\vec{q}),\ldots,B_{n}(r,\vec{q}),\vec{q}).
Proof of Theorem 2.6.

(12)(1\Rightarrow 2): Suppose that A(p,f(1),,f(m))A(\vec{p},\top^{f(1)},\ldots,\top^{f(m)}) is contingent for all fmf\in\mathcal{F}_{m}. Let ψ1,,ψm\psi_{1},\ldots,\psi_{m} be any A\mathcal{L}_{A}-sentences and let σ\sigma be any Σ1\Sigma_{1} sentence. By Lemma 2.7, there exist propositional formulas B1(r,q),,Bn(r,q)B_{1}(r,\vec{q}),\ldots,B_{n}(r,\vec{q}) such that

rA(B1(r,q),,Bn(r,q),q).\models r\leftrightarrow A(B_{1}(r,\vec{q}),\ldots,B_{n}(r,\vec{q}),\vec{q}). (2)

By the FGH theorem, there exists an A\mathcal{L}_{A}-sentence φFGHT(σ)\varphi\in\mathrm{FGH}_{T}(\sigma). For each ii (1in1\leq i\leq n), let φi\varphi_{i} be the A\mathcal{L}_{A}-sentence Bi(φ,ψ1,,ψm)B_{i}(\varphi,\psi_{1},\ldots,\psi_{m}). Then, by the equivalence (2),

𝖯𝖠φA(φ1,,φn,ψ1,,ψm).\mathsf{PA}\vdash\varphi\leftrightarrow A(\varphi_{1},\ldots,\varphi_{n},\psi_{1},\ldots,\psi_{m}).

By Proposition 2.2, we have A(φ1,,φn,ψ1,,ψm)FGHT(σ)A(\varphi_{1},\ldots,\varphi_{n},\psi_{1},\ldots,\psi_{m})\in\mathrm{FGH}_{T}(\sigma). Therefore, we conclude that 𝖥𝖦𝖧T[A;q]\mathsf{FGH}_{T}[A;\vec{q}] holds.

(21)(2\Rightarrow 1): Suppose that A(p1,,pn,f(1),,f(m))A(p_{1},\ldots,p_{n},\top^{f(1)},\ldots,\top^{f(m)}) is either a tautology or unsatisfiable for some fmf\in\mathcal{F}_{m}. For i{1,,m}i\in\{1,\ldots,m\}, let ψi\psi_{i} be the A\mathcal{L}_{A}-sentence 0=0f(i)0=0^{f(i)}. Then, for any A\mathcal{L}_{A}-sentences φ1,,φn\varphi_{1},\ldots,\varphi_{n}, the A\mathcal{L}_{A}-sentence A(φ1,,φn,ψ1,,ψm)A(\varphi_{1},\ldots,\varphi_{n},\psi_{1},\ldots,\psi_{m}) is either provable or refutable in 𝖯𝖠\mathsf{PA}. Let σ\sigma be any Σ1\Sigma_{1} sentence independent of 𝖯𝖠+ConT\mathsf{PA}+\mathrm{Con}_{T}. Then, A(φ1,,φn,ψ1,,ψm)FGHT(σ)A(\varphi_{1},\ldots,\varphi_{n},\psi_{1},\ldots,\psi_{m})\notin\mathrm{FGH}_{T}(\sigma). Therefore 𝖥𝖦𝖧T[A;q1,,qm]\mathsf{FGH}_{T}[A;q_{1},\ldots,q_{m}] does not hold.

For example, let A(p,q)A(p,q) be the propositional formula pqp\leftrightarrow q. Since both pp\leftrightarrow\top and pp\leftrightarrow\bot are contingent, 𝖥𝖦𝖧T[A;q]\mathsf{FGH}_{T}[A;q] holds by Theorem 2.6. That is, for any A\mathcal{L}_{A}-sentence ψ\psi and any Σ1\Sigma_{1} sentence σ\sigma, there exists an A\mathcal{L}_{A}-sentence φ\varphi such that φψFGHT(σ)\varphi\leftrightarrow\psi\in\mathrm{FGH}_{T}(\sigma). Another interesting corollary to Theorem 2.6 is the following version of the first incompleteness theorem.

Corollary 2.8.

Let A(p1,,pn,q1,,qm)A(p_{1},\ldots,p_{n},q_{1},\ldots,q_{m}) be any propositional formula. If A(p1,,pn,f(1),,f(m))A(p_{1},\ldots,p_{n},\top^{f(1)},\ldots,\top^{f(m)}) are contingent for all fmf\in\mathcal{F}_{m}, then for any A\mathcal{L}_{A}-sentences ψ1,,ψm\psi_{1},\ldots,\psi_{m}, there exist A\mathcal{L}_{A}-sentences φ1,,φn\varphi_{1},\ldots,\varphi_{n} such that A(φ1,,φn,ψ1,,ψm)A(\varphi_{1},\ldots,\varphi_{n},\psi_{1},\ldots,\psi_{m}) is independent of TT.

Proof.

Let σ\sigma be a Σ1\Sigma_{1} sentence independent of 𝖯𝖠+ConT\mathsf{PA}+\mathrm{Con}_{T} and ψ1,,ψm\psi_{1},\ldots,\psi_{m} be any A\mathcal{L}_{A}-sentences. By Theorem 2.6, there exist A\mathcal{L}_{A}-sentences φ1,,φn\varphi_{1},\ldots,\varphi_{n} such that

𝖯𝖠+ConTσPrT(A(φ1,,φn,ψ1,,ψm)).\mathsf{PA}+\mathrm{Con}_{T}\vdash\sigma\leftrightarrow\mathrm{Pr}_{T}(\ulcorner A(\varphi_{1},\ldots,\varphi_{n},\psi_{1},\ldots,\psi_{m})\urcorner).

Then, it is easy to show that A(φ1,,φn,ψ1,,ψm)A(\varphi_{1},\ldots,\varphi_{n},\psi_{1},\ldots,\psi_{m}) is independent of TT.

Notice that we can also prove the parameterized version and the weak representability version of Theorem 2.6.

3 On the form of a sentence in the FGH theorem
– the case of modal propositional logic

In this section, we extend Theorem 2.3 to the framework of modal propositional logic. This section consists of three subsections. First, we give some preparations which are needed for our arguments. In the second subsection, we prove our modal version of Theorem 2.3. Finally, we also investigate our modal version for A\mathcal{L}_{A}-theories with finite heights.

Here we define the height of theories. The sequence ConTnnω\langle\mathrm{Con}_{T}^{n}\rangle_{n\in\omega} of A\mathcal{L}_{A}-sentences is recursively defined as follows: ConT0\mathrm{Con}_{T}^{0} is 0=00=0; and ConTn+1\mathrm{Con}_{T}^{n+1} is ¬PrT(¬ConTn)\neg\mathrm{Pr}_{T}(\ulcorner\neg\mathrm{Con}_{T}^{n}\urcorner). Notice that ConT1\mathrm{Con}_{T}^{1} is 𝖯𝖠\mathsf{PA}-provably equivalent to ConT\mathrm{Con}_{T}. If there exists a natural number k1k\geq 1 such that T¬ConTkT\vdash\neg\mathrm{Con}_{T}^{k}, then the least such a number kk is called the height of TT. If not, we say that the height of TT is \infty.

3.1 Preparations

The language of modal propositional logic is that of classical propositional logic equipped with the unary modal operation \Box. For each modal formula AA, let 𝖲𝗎𝖻(A)\mathsf{Sub}(A) be the set of all subformulas of AA. Let 𝔠(A)\mathfrak{c}(A) be the cardinality of the set {B𝖲𝗎𝖻(A)B\{B\in\mathsf{Sub}(A)\mid B is of the form C}\Box C\}. The modal formula nA\Box^{n}A is recursively defined as follows: 0A\Box^{0}A is AA; and n+1A\Box^{n+1}A is nA\Box\Box^{n}A. The formula nA\Diamond^{n}A is an abbreviation for ¬n¬A\neg\Box^{n}\neg A.

The base logic of our investigations in this section is the Gödel–Löb logic 𝐆𝐋\mathbf{GL} which is known as the logic of provability. The axioms of 𝐆𝐋\mathbf{GL} are as follows:

  1. 1.

    All propositional tautologies in the language of modal propositional logic,

  2. 2.

    (pq)(pq)\Box(p\to q)\to(\Box p\to\Box q),

  3. 3.

    (pp)p\Box(\Box p\to p)\to\Box p.

The inference rules of 𝐆𝐋\mathbf{GL} are modus ponens, necessitation, and uniform substitution.

A 𝐆𝐋\mathbf{GL}-frame is a tuple W,,r\langle W,\sqsubset,r\rangle where WW is a nonempty finite set, \sqsubset is a transitive irreflexive binary relation on WW and rr is an element of WW with rxr\sqsubset x for all xW{r}x\in W\setminus\{r\}. Such an element rr is called the root of the frame. A 𝐆𝐋\mathbf{GL}-model is a tuple M=W,,r,M=\langle W,\sqsubset,r,\Vdash\rangle where W,,r\langle W,\sqsubset,r\rangle is a 𝐆𝐋\mathbf{GL}-frame, and \Vdash is a binary relation between WW and the set of all modal formulas satisfying the usual conditions for satisfaction and the following condition: aAa\Vdash\Box A if and only if for all bWb\in W, bAb\Vdash A if aba\sqsubset b. It is known that 𝐆𝐋\mathbf{GL} is sound and complete with respect to the class of all 𝐆𝐋\mathbf{GL}-frames (cf. Segerberg [12]). Moreover, the proof of the Kripke completeness of 𝐆𝐋\mathbf{GL} given in the textbook [2] by Boolos shows that the following theorem holds.

Theorem 3.1.

For any modal formula AA, if 𝐆𝐋A\mathbf{GL}\nvdash A, then there exists a 𝐆𝐋\mathbf{GL}-model W,,r,\langle W,\sqsubset,r,\Vdash\rangle such that r𝔠(A)+1r\Vdash\Box^{\mathfrak{c}(A)+1}\bot and rAr\nVdash A.

For each set Γ\Gamma of modal formulas, let 𝐆𝐋+Γ\mathbf{GL}+\Gamma denote the logic whose axioms are all theorems of 𝐆𝐋\mathbf{GL} and all elements of Γ\Gamma, and whose inference rules are modus ponens and uniform substitution. We identify each axiomatic system of modal propositional logic with the set of all its theorems. We introduce the following two extensions of 𝐆𝐋\mathbf{GL} which are studied in the context of the classification of propositional provability logics (cf. Artemov and Beklemishev [1]).

  • 𝐆𝐋ω:=𝐆𝐋+{nnω}\mathbf{GL}_{\omega}:=\mathbf{GL}+\{\Diamond^{n}\top\mid n\in\omega\}.

  • 𝐒:=𝐆𝐋+{pp}\mathbf{S}:=\mathbf{GL}+\{\Box p\to p\}.

Notice 𝐆𝐋𝐆𝐋ω𝐒\mathbf{GL}\subseteq\mathbf{GL}_{\omega}\subseteq\mathbf{S}. To connect these logics with arithmetic, we introduce the notion of arithmetical interpretation.

Definition 3.2 (Arithmetical interpretations).

A mapping from the set of all propositional variables to a set of A\mathcal{L}_{A}-sentences is called an arithmetical interpretation. Each arithmetical interpretation ff is uniquely extended to the mapping fTf_{T} from the set of all modal formulas to a set of A\mathcal{L}_{A}-sentences by the following clauses:

  1. 1.

    fT()f_{T}(\bot) is 0=10=1,

  2. 2.

    fT(¬A)f_{T}(\neg A) is ¬fT(A)\neg f_{T}(A),

  3. 3.

    fT(AB)f_{T}(A\circ B) is fT(A)fT(B)f_{T}(A)\circ f_{T}(B) for {,,,}\circ\in\{\land,\lor,\to,\leftrightarrow\},

  4. 4.

    fT(A)f_{T}(\Box A) is PrT(fT(A))\mathrm{Pr}_{T}(\ulcorner f_{T}(A)\urcorner).

The logics 𝐆𝐋\mathbf{GL}, 𝐆𝐋ω\mathbf{GL}_{\omega} and 𝐒\mathbf{S} are sound with respect to arithmetical interpretations. Let \mathbb{N} denote the standard model of arithmetic.

Fact 3.3 (Arithmetical soundness (cf. Artemov and Beklemishev [1])).

Let AA be any modal formula.

  1. 1.

    If 𝐆𝐋A\mathbf{GL}\vdash A, then 𝖯𝖠fT(A)\mathsf{PA}\vdash f_{T}(A) for any arithmetical interpretation ff.

  2. 2.

    If the height of TT is \infty and 𝐆𝐋ωA\mathbf{GL}_{\omega}\vdash A, then fT(A)\mathbb{N}\models f_{T}(A) for any arithmetical interpretation ff.

  3. 3.

    If TT is sound and 𝐒A\mathbf{S}\vdash A, then fT(A)\mathbb{N}\models f_{T}(A) for any arithmetical interpretation ff.

We show some interrelationships between these logics. For each modal formula AA, let Rfn(A)\mathrm{Rfn}(A) denote the set {BBB𝖲𝗎𝖻(A)}\{\Box B\to B\mid\Box B\in\mathsf{Sub}(A)\}. Notice that the cardinality of the set Rfn(A)\mathrm{Rfn}(A) is exactly 𝔠(A)\mathfrak{c}(A).

Fact 3.4 (Solovay [16]).

For any modal formula AA, the following are equivalent:

  1. 1.

    𝐒A\mathbf{S}\vdash A.

  2. 2.

    𝐆𝐋Rfn(A)A\mathbf{GL}\vdash\bigwedge\mathrm{Rfn}(A)\to A.

The following fact is a kind of folklore which is proved through arithmetical interpretations.

Fact 3.5.

For any modal formula AA, the following are equivalent:

  1. 1.

    𝐆𝐋A\mathbf{GL}\vdash A.

  2. 2.

    𝐆𝐋ωA\mathbf{GL}_{\omega}\vdash\Box A.

  3. 3.

    𝐒A\mathbf{S}\vdash\Box A.

Lemma 3.6.

For any modal formula AA, the following are equivalent:

  1. 1.

    𝐆𝐋Rfn(A)¬A\mathbf{GL}\vdash\bigwedge\mathrm{Rfn}(\Box A)\to\neg\Box A.

  2. 2.

    𝐆𝐋𝔠(A)+1¬A\mathbf{GL}\vdash\Diamond^{\mathfrak{c}(A)+1}\top\to\neg\Box A.

  3. 3.

    𝐆𝐋ω¬A\mathbf{GL}_{\omega}\vdash\neg\Box A.

  4. 4.

    𝐒¬A\mathbf{S}\vdash\neg\Box A.

Proof.

(12)(1\Rightarrow 2): Suppose 𝐆𝐋Rfn(A)¬A\mathbf{GL}\vdash\bigwedge\mathrm{Rfn}(\Box A)\to\neg\Box A. It is known that 𝐆𝐋\mathbf{GL} proves 𝔠(A)Rfn(A)Rfn(A)\Diamond^{\mathfrak{c}(\Box A)}\top\to\bigwedge\mathrm{Rfn}(\Box A)\lor\Diamond\bigwedge\mathrm{Rfn}(\Box A) (cf. [1, Lemma 26]). Then, 𝐆𝐋𝔠(A)¬A¬A\mathbf{GL}\vdash\Diamond^{\mathfrak{c}(\Box A)}\top\to\neg\Box A\lor\Diamond\neg\Box A. Since 𝐆𝐋¬A¬A\mathbf{GL}\vdash\Diamond\neg\Box A\to\neg\Box A, we have 𝐆𝐋𝔠(A)¬A\mathbf{GL}\vdash\Diamond^{\mathfrak{c}(\Box A)}\top\to\neg\Box A. Hence, 𝐆𝐋𝔠(A)+1¬A\mathbf{GL}\vdash\Diamond^{\mathfrak{c}(A)+1}\top\to\neg\Box A because 𝔠(A)=𝔠(A)+1\mathfrak{c}(\Box A)=\mathfrak{c}(A)+1.

(23)(2\Rightarrow 3) and (34)(3\Rightarrow 4): Obvious.

(41)(4\Rightarrow 1): By Fact 3.4 and Rfn(A)=Rfn(¬A)\mathrm{Rfn}(\Box A)=\mathrm{Rfn}(\neg\Box A).

The conditions “𝐆𝐋A\mathbf{GL}\vdash A” and “𝐆𝐋ω¬A\mathbf{GL}_{\omega}\vdash\neg\Box A” are also characterized by provability in other extensions of 𝐆𝐋\mathbf{GL}.

Definition 3.7.

Let FsF_{s} be the modal formula s+1s\Box^{s+1}\bot\to\Box^{s}\bot.

Lemma 3.8.

For any modal formula AA and any natural number ss with s>𝔠(A)s>\mathfrak{c}(A), the following are equivalent:

  1. 1.

    𝐆𝐋A\mathbf{GL}\vdash A.

  2. 2.

    𝐆𝐋+{¬Fs}A\mathbf{GL}+\{\neg F_{s}\}\vdash\Box A.

Proof.

(12)(1\Rightarrow 2): Obvious.

(21)(2\Rightarrow 1): If 𝐆𝐋A\mathbf{GL}\nvdash A, then there exists a 𝐆𝐋\mathbf{GL}-model W,,r,\langle W,\sqsubset,r,\Vdash\rangle such that r𝔠(A)+1¬Ar\Vdash\Box^{\mathfrak{c}(A)+1}\bot\land\neg A by Theorem 3.1. Let W,,r,\langle W^{\prime},\sqsubset^{\prime},r^{\prime},\Vdash^{\prime}\rangle be a 𝐆𝐋\mathbf{GL}-model obtained from W,,r,\langle W,\sqsubset,r,\Vdash\rangle by adding a chain of new elements below rr so that rs+1sr^{\prime}\Vdash^{\prime}\Box^{s+1}\bot\land\Diamond^{s}\top. Such a model exists because s>𝔠(A)s>\mathfrak{c}(A). Since r¬Ar^{\prime}\Vdash^{\prime}\neg\Box A, we obtain 𝐆𝐋+{¬Fs}A\mathbf{GL}+\{\neg F_{s}\}\nvdash\Box A.

Lemma 3.9.

For any modal formula AA and any natural number ss with s>𝔠(A)s>\mathfrak{c}(A), the following are equivalent:

  1. 1.

    𝐆𝐋ω¬A\mathbf{GL}_{\omega}\vdash\neg\Box A.

  2. 2.

    𝐆𝐋+{¬Fs}¬A\mathbf{GL}+\{\neg F_{s}\}\vdash\neg\Box A.

Proof.

(12)(1\Rightarrow 2): If 𝐆𝐋ω¬A\mathbf{GL}_{\omega}\vdash\neg\Box A, then by Lemma 3.6, 𝔠(A)+1¬A\Diamond^{\mathfrak{c}(A)+1}\top\to\neg\Box A is proved in 𝐆𝐋\mathbf{GL}, and thus 𝐆𝐋+{¬Fs}¬A\mathbf{GL}+\{\neg F_{s}\}\vdash\neg\Box A because s𝔠(A)+1s\geq\mathfrak{c}(A)+1.

(21)(2\Rightarrow 1): Suppose 𝐆𝐋+{¬Fs}¬A\mathbf{GL}+\{\neg F_{s}\}\vdash\neg\Box A, then 𝐆𝐋AFs\mathbf{GL}\vdash\Box A\to F_{s}, that is, 𝐆𝐋A(s+1s)\mathbf{GL}\vdash\Box A\to(\Box^{s+1}\bot\to\Box^{s}\bot). Then, 𝐆𝐋A(s+1s)\mathbf{GL}\vdash\Box\Box A\to\Box(\Box^{s+1}\bot\to\Box^{s}\bot). By Löb’s principle, we get 𝐆𝐋As+1\mathbf{GL}\vdash\Box\Box A\to\Box^{s+1}\bot. Then, 𝐆𝐋As+1\mathbf{GL}\vdash\Box A\to\Box^{s+1}\bot, and hence 𝐆𝐋s+1¬A\mathbf{GL}\vdash\Diamond^{s+1}\top\to\neg\Box A. We obtain 𝐆𝐋ω¬A\mathbf{GL}_{\omega}\vdash\neg\Box A.

Here we introduce a notion that will be central in this section.

Definition 3.10.

A modal formula AA is said to be nontrifling if 𝐆𝐋ωAA\mathbf{GL}_{\omega}\nvdash\Box\Box A\to\Box A.

Then, this notion is characterized in many ways as follows.

Proposition 3.11.

For any modal formula AA and any number s>𝔠(A)s>\mathfrak{c}(A), the following are equivalent:

  1. 1.

    AA is nontrifling.

  2. 2.

    𝐆𝐋ωA\mathbf{GL}_{\omega}\nvdash\Box A and 𝐆𝐋ω¬A\mathbf{GL}_{\omega}\nvdash\neg\Box A.

  3. 3.

    𝐒A\mathbf{S}\nvdash\Box A and 𝐒¬A\mathbf{S}\nvdash\neg\Box A.

  4. 4.

    𝐆𝐋+{¬Fs}A\mathbf{GL}+\{\neg F_{s}\}\nvdash\Box A and 𝐆𝐋+{¬Fs}¬A\mathbf{GL}+\{\neg F_{s}\}\nvdash\neg\Box A.

  5. 5.

    𝐆𝐋A\mathbf{GL}\nvdash A and 𝐆𝐋Rfn(A)¬A\mathbf{GL}\nvdash\bigwedge\mathrm{Rfn}(\Box A)\to\neg\Box A.

Proof.

(12)(1\Rightarrow 2): We prove the contrapositive. If 𝐆𝐋ωA\mathbf{GL}_{\omega}\vdash\Box A, then 𝐆𝐋ωAA\mathbf{GL}_{\omega}\vdash\Box\Box A\to\Box A is obvious. Suppose 𝐆𝐋ω¬A\mathbf{GL}_{\omega}\vdash\neg\Box A. By Lemma 3.6, we have 𝐆𝐋𝔠(A)+1¬A\mathbf{GL}\vdash\Diamond^{\mathfrak{c}(A)+1}\top\to\neg\Box A. Then, 𝐆𝐋𝔠(A)+2¬A\mathbf{GL}\vdash\Diamond^{\mathfrak{c}(A)+2}\top\to\neg\Box\Box A. We obtain 𝐆𝐋ω¬A\mathbf{GL}_{\omega}\vdash\neg\Box\Box A, and hence 𝐆𝐋ωAA\mathbf{GL}_{\omega}\vdash\Box\Box A\to\Box A.

(2345)(2\Leftrightarrow 3\Leftrightarrow 4\Leftrightarrow 5): By Fact 3.5 and Lemmas 3.6, 3.8, and 3.9.

(51)(5\Rightarrow 1): Suppose 𝐆𝐋A\mathbf{GL}\nvdash A and 𝐆𝐋Rfn(A)¬A\mathbf{GL}\nvdash\bigwedge\mathrm{Rfn}(\Box A)\to\neg\Box A. Then, 𝐆𝐋AA\mathbf{GL}\nvdash\Box A\to A. By Theorem 3.1, there exist 𝐆𝐋\mathbf{GL}-models M=W,,r,M=\langle W,\sqsubset,r,\Vdash\rangle and M0=W0,0,r0,0M_{0}=\langle W_{0},\sqsubset_{0},r_{0},\Vdash_{0}\rangle such that rA¬Ar\Vdash\Box A\land\neg A and r00Rfn(A)Ar_{0}\Vdash_{0}\mathrm{Rfn}(\Box A)\land\Box A. We merge these two models MM and M0M_{0} into one model MM^{*}, which is illustrated in Fig 1. We give the precise definition of the 𝐆𝐋\mathbf{GL}-model M=W,,r,M^{*}=\langle W^{*},\sqsubset^{*},r^{*},\Vdash^{*}\rangle as follows:

  • W=WW0{rii1}{r}W^{*}=W\cup W_{0}\cup\{r_{i}\mid i\geq 1\}\cup\{r^{*}\},

  • \sqsubset^{*} is the transitive closure of

    0{(ri,rj)i>j}{(r,ri)iω}{(r,r)},\sqsubset\cup\sqsubset_{0}\cup\{(r_{i},r_{j})\mid i>j\}\cup\{(r^{*},r_{i})\mid i\in\omega\}\cup\{(r^{*},r)\},
  • for aWa\in W, apa\Vdash^{*}p if and only if apa\Vdash p,
    for aW0a\in W_{0}, apa\Vdash^{*}p if and only if a0pa\Vdash_{0}p, and
    for a{rii1}{r}a\in\{r_{i}\mid i\geq 1\}\cup\{r^{*}\}, apa\Vdash^{*}p if and only if r00pr_{0}\Vdash_{0}p.

rr^{*}rrr0r_{0}r1r_{1}r2r_{2}\vdotsA¬A\Box A\land\neg ARfn(A)A\bigwedge\mathrm{Rfn}(\Box A)\land\Box AWWW0W_{0}
Figure 1: The 𝐆𝐋\mathbf{GL}-model MM^{*}

It is easy to show that rA¬Ar\Vdash^{*}\Box A\land\neg A and r0Rfn(A)Ar_{0}\Vdash^{*}\mathrm{Rfn}(\Box A)\land\Box A. Since rnr^{*}\Vdash^{*}\Diamond^{n}\top for all nωn\in\omega, every theorem of 𝐆𝐋ω\mathbf{GL}_{\omega} is true in rr^{*}. Thus, it suffices to show that rAAr^{*}\nVdash^{*}\Box\Box A\to\Box A. For this purpose, we prove the following lemma.

Lemma 3.12.

For any iωi\in\omega and any subformula BB of A\Box A, riBr_{i}\Vdash^{*}B if and only if r0Br_{0}\Vdash^{*}B.

Proof.

We prove the lemma by induction on ii. For i=0i=0, the lemma is trivial. Suppose that the lemma holds for ii, and we prove the case of i+1i+1 by induction on the construction of the subformula BB of A\Box A. The case that BB is a propositional variable is obvious from the definition of \Vdash^{*}. The cases for propositional connectives are easily proved by the induction hypothesis. We only give a proof of the case that BB is of the form C\Box C, that is, we prove ri+1Cr_{i+1}\Vdash^{*}\Box C if and only if r0Cr_{0}\Vdash^{*}\Box C.

()(\Rightarrow): Suppose ri+1Cr_{i+1}\Vdash^{*}\Box C, then ri+1Cr_{i+1}\Vdash^{*}\Box\Box C because \sqsubset^{*} is transitive. Since ri+1r0r_{i+1}\sqsubset^{*}r_{0}, we obtain r0Cr_{0}\Vdash^{*}\Box C.

()(\Leftarrow): Suppose ri+1Cr_{i+1}\nVdash^{*}\Box C. Then, aCa\nVdash^{*}C for some aWa\in W^{*} with ri+1ar_{i+1}\sqsubset^{*}a. We distinguish the following three cases:

  • r0ar_{0}\sqsubset^{*}a.
    Then, r0Cr_{0}\nVdash^{*}\Box C trivially holds.

  • a=r0a=r_{0}.
    We have r0CCr_{0}\Vdash^{*}\Box C\to C because r0Rfn(A)r_{0}\Vdash^{*}\mathrm{Rfn}(\Box A). Thus, r0Cr_{0}\nVdash^{*}\Box C.

  • a=rja=r_{j} for 0<j<i+10<j<i+1.
    By the induction hypothesis for jj, we have r0Cr_{0}\nVdash^{*}C. Then, rjCr_{j}\nVdash^{*}\Box C. By the induction hypothesis for jj again, we obtain r0Cr_{0}\nVdash^{*}\Box C.

We are ready to prove rAAr^{*}\nVdash^{*}\Box\Box A\to\Box A. Let aWa\in W^{*} be any element such that rar^{*}\sqsubset^{*}a. If aWa\in W, then aAa\Vdash^{*}\Box A because rAr\Vdash^{*}\Box A. If aW0a\in W_{0}, then aAa\Vdash^{*}\Box A because r0Ar_{0}\Vdash^{*}\Box A. If a{rii1}a\in\{r_{i}\mid i\geq 1\}, then aAa\Vdash^{*}\Box A by Lemma 3.12. Therefore, we obtain rAr^{*}\Vdash^{*}\Box\Box A. Since rrr^{*}\sqsubset^{*}r and rAr\nVdash^{*}A, we get rAr^{*}\nVdash^{*}\Box A. Thus, we conclude rAAr^{*}\nVdash^{*}\Box\Box A\to\Box A, and hence AA is nontrifling.

If a formula AA does not contain \Box, then the following proposition holds.

Proposition 3.13.

A propositional formula AA is contingent if and only if AA is nontrifling.

Proof.

()(\Rightarrow): Let 𝗏0\mathsf{v}_{0} be a truth assignment in classical propositional logic such that 𝗏0(A)\mathsf{v}_{0}(A) is false. Let W0,0,r0,0\langle W_{0},\sqsubset_{0},r_{0},\Vdash_{0}\rangle be a 𝐆𝐋\mathbf{GL}-model satisfying W0={r0}W_{0}=\{r_{0}\}, 0=\sqsubset_{0}=\varnothing, and r00pr_{0}\Vdash_{0}p if and only if 𝗏0(p)\mathsf{v}_{0}(p) is true. Then r00Ar_{0}\nVdash_{0}A, and hence 𝐆𝐋A\mathbf{GL}\nvdash A.

Let 𝗏1\mathsf{v}_{1} be a truth assignment such that 𝗏1(A)\mathsf{v}_{1}(A) is true. Let W1,1,r1,1\langle W_{1},\sqsubset_{1},r_{1},\Vdash_{1}\rangle be a 𝐆𝐋\mathbf{GL}-model satisfying W1={r1,a}W_{1}=\{r_{1},a\}, r11ar_{1}\sqsubset_{1}a, and for each wW1w\in W_{1}, w1pw\Vdash_{1}p if and only if 𝗏1(p)\mathsf{v}_{1}(p) is true. Then, r11Ar_{1}\Vdash_{1}\Diamond\top\land\Box A. Since 𝔠(A)=0\mathfrak{c}(A)=0, we have 𝐆𝐋𝔠(A)+1¬A\mathbf{GL}\nvdash\Diamond^{\mathfrak{c}(A)+1}\top\to\neg\Box A. By Lemma 3.6, 𝐆𝐋ω¬A\mathbf{GL}_{\omega}\nvdash\neg\Box A. By Proposition 3.11, AA is nontrifling.

()(\Leftarrow): If AA is a tautology, then 𝐆𝐋A\mathbf{GL}\vdash A. If AA is unsatisfiable, then 𝐆𝐋¬A\mathbf{GL}\vdash\neg A, and 𝐆𝐋¬A\mathbf{GL}\vdash\Diamond\top\to\neg\Box A. Hence, 𝐆𝐋ω¬A\mathbf{GL}_{\omega}\vdash\neg\Box A. In either case, AA is not nontrifling by Proposition 3.11.

3.2 A modal version of the FGH theorem

We are ready to prove an extension of Theorem 2.3.

Theorem 3.14.

For any modal formula AA, if AA is nontrifling, then for any Σ1\Sigma_{1} sentence σ\sigma, there exists an arithmetical interpretation ff such that

(a)

𝖯𝖠σfT(A)\mathsf{PA}\vdash\sigma\to f_{T}(\Box A), and

(b)

𝖯𝖠+ConT𝔠(A)+1fT(A)σ\mathsf{PA}+\mathrm{Con}_{T}^{\mathfrak{c}(A)+1}\vdash f_{T}(\Box A)\to\sigma.

Proof.

Suppose that AA is nontrifling and let σ\sigma be any Σ1\Sigma_{1} sentence. We may assume that σ\sigma is of the form xδ(x)\exists x\,\delta(x) for some Δ0\Delta_{0} formula δ(x)\delta(x). By Proposition 3.11, we have 𝐆𝐋A\mathbf{GL}\nvdash A and 𝐆𝐋Rfn(A)¬A\mathbf{GL}\nvdash\bigwedge\mathrm{Rfn}(\Box A)\to\neg\Box A. By Theorem 3.1, there exist 𝐆𝐋\mathbf{GL}-models M0=W0,0,r0,0M_{0}=\langle W_{0},\sqsubset_{0},r_{0},\Vdash_{0}\rangle and M1=W1,1,r1,1M_{1}=\langle W_{1},\sqsubset_{1},r_{1},\Vdash_{1}\rangle such that r00𝔠(A)+1¬Ar_{0}\Vdash_{0}\Box^{\mathfrak{c}(A)+1}\bot\land\neg A and r11Rfn(A)Ar_{1}\Vdash_{1}\bigwedge\mathrm{Rfn}(\Box A)\land\Box A.

Let ,\langle\cdot,\cdot\rangle be a natural injective mapping from ω2\omega^{2} to ω\omega. Also let π0\pi_{0} and π1\pi_{1} be natural mappings such that π0(i,j)=i\pi_{0}(\langle i,j\rangle)=i and π1(i,j)=j\pi_{1}(\langle i,j\rangle)=j. We may assume that 0 is not in the range of the mapping ,\langle\cdot,\cdot\rangle and is not in the domain of the mappings π0\pi_{0} and π1\pi_{1}. Let n0n_{0} and n1n_{1} be the cardinalities of W0W_{0} and W1W_{1}, respectively. Without loss of generality, we may assume

  • W0={0,1,0,2,,0,n0}W_{0}=\{\langle 0,1\rangle,\langle 0,2\rangle,\ldots,\langle 0,n_{0}\rangle\}, r0=0,1r_{0}=\langle 0,1\rangle, and

  • W1={1,1,1,2,,1,n1}W_{1}=\{\langle 1,1\rangle,\langle 1,2\rangle,\ldots,\langle 1,n_{1}\rangle\}, r1=1,1r_{1}=\langle 1,1\rangle.

We merge the two models M0M_{0} and M1M_{1} into one 𝐆𝐋\mathbf{GL}-model MM, which is visualized in Figure 2. The definition of M=W,,0,M=\langle W^{\prime},\sqsubset^{\prime},0,\Vdash^{\prime}\rangle is as follows:

  • W=W0W1{0,0,0,1,0}W^{\prime}=W_{0}\cup W_{1}\cup\{0,\langle 0,0\rangle,\langle 1,0\rangle\},

  • =01{(0,a)aW{0}}{(i,0,a)i{0,1},aWi}\sqsubset^{\prime}=\sqsubset_{0}\cup\sqsubset_{1}\cup\{(0,a)\mid a\in W^{\prime}\setminus\{0\}\}\cup\{(\langle i,0\rangle,a)\mid i\in\{0,1\},a\in W_{i}\},

  • For i,jWi\langle i,j\rangle\in W_{i}, i,jp\langle i,j\rangle\Vdash^{\prime}p if and only if i,jip\langle i,j\rangle\Vdash_{i}p.
    Also 0p0\Vdash^{\prime}p, and i,0p\langle i,0\rangle\Vdash^{\prime}p if and only if i,1ip\langle i,1\rangle\Vdash_{i}p.

00,0\langle 0,0\rangle0,1\langle 0,1\rangle1,0\langle 1,0\rangle1,1\langle 1,1\rangle𝔠(A)+1¬A\Box^{\mathfrak{c}(A)+1}\bot\land\neg ARfn(¬A)A\bigwedge\mathrm{Rfn}(\neg\Box A)\land\Box AW0W_{0}W1W_{1}
Figure 2: The 𝐆𝐋\mathbf{GL}-model MM^{\prime}

Then, it is easy to show that 0,1𝔠(A)+1¬A\langle 0,1\rangle\Vdash^{\prime}\Box^{\mathfrak{c}(A)+1}\bot\land\neg A and 1,1Rfn(¬A)A\langle 1,1\rangle\Vdash^{\prime}\bigwedge\mathrm{Rfn}(\neg\Box A)\land\Box A. As in the usual proof of Solovay’s arithmetical completeness theorem, we recursively define a primitive recursive function h:ωWh:\omega\to W^{\prime} by referring to TT-proofs. In the definition of hh, we use the formula λ(x)yzy(h(z)=x)\lambda(x)\equiv\exists y\,\forall z\,{\geq}y\,(h(z)=x) and the sentence fT(A)f_{T}(A) for the arithmetical interpretation ff defined by f(p)aWapλ(a¯)f(p)\equiv\bigvee_{\begin{subarray}{c}a\in W^{\prime}\\ a\Vdash^{\prime}p\end{subarray}}\lambda(\overline{a}). This is done by the aid of the Fixed Point Lemma or the recursion theorem as in the proof of Solovay’s theorem because such λ(x)\lambda(x) and fT(A)f_{T}(A) are effectively computable from hh (see Boolos [2]).

Here we give the definition of the function hh. Let h(0):=0h(0):=0. Suppose that the value of h(x)h(x) has already been defined. We define the value of h(x+1)h(x+1). If yx¬δ(y)\forall y\,{\leq}\,x\,\neg\delta(y) holds and there exists no TT-proof of fT(A)f_{T}(A) smaller than or equal to xx, let h(x+1):=0h(x+1):=0. That is, the output of hh remains 0 unless the smallest witness of δ(x)\delta(x) or the smallest TT-proof of fT(A)f_{T}(A) appears.

After such a witness appears, hh changes its value. At the first stage when the smallest witness xx of δ(x)\delta(x) or the smallest TT-proof xx of fT(A)f_{T}(A) appears, we distinguish the following two cases:

  • Case 1: y<x¬δ(y)\forall y\,{<}\,x\,\neg\delta(y) holds and xx is the smallest TT-proof of fT(A)f_{T}(A).
    Let h(x+1):=0,0h(x+1):=\langle 0,0\rangle.

  • Case 2: y<x¬δ(y)\forall y\,{<}\,x\,\neg\delta(y) and δ(x)\delta(x) hold and there is no proof of fT(A)f_{T}(A) less than or equal to xx.
    Let h(x+1):=1,0h(x+1):=\langle 1,0\rangle.

That is, Cases 1 and 2 correspond to the situations PrT(fT(A))σ\mathrm{Pr}_{T}(\ulcorner f_{T}(A)\urcorner)\preccurlyeq\sigma and σPrT(fT(A))\sigma\prec\mathrm{Pr}_{T}(\ulcorner f_{T}(A)\urcorner), respectively.

After that, we define the value of h(x+1)h(x+1) as follows:

h(x+1):={aifh(x)a&xis aT-proof of¬λ(a¯);h(x)otherwise.h(x+1):=\begin{cases}a&\text{if}\ h(x)\sqsubset^{\prime}a\ \&\ x\ \text{is a}\ T\text{-proof of}\ \neg\lambda(\overline{a});\\ h(x)&\text{otherwise.}\end{cases}

The definition of hh is hereby completed.

We introduce three lemmas. The first lemma concerns the general properties of the function h(x)h(x), the formula λ(x)\lambda(x), and the arithmetical interpretation fTf_{T}.

Lemma 3.15.

Let a,bWa,b\in W^{\prime}.

  1. 1.

    If aba\neq b, then 𝖯𝖠λ(a¯)¬λ(b¯)\mathsf{PA}\vdash\lambda(\overline{a})\to\neg\lambda(\overline{b}),

  2. 2.

    𝖯𝖠h(x)=a¯λ(a¯)acλ(c¯)\displaystyle\mathsf{PA}\vdash h(x)=\overline{a}\to\lambda(\overline{a})\lor\bigvee_{a\sqsubset^{\prime}c}\lambda(\overline{c}),

  3. 3.

    𝖯𝖠PrT(fT(A))σπ0(c)=0λ(c¯)\displaystyle\mathsf{PA}\vdash\mathrm{Pr}_{T}(\ulcorner f_{T}(A)\urcorner)\preccurlyeq\sigma\leftrightarrow\bigvee_{\pi_{0}(c)=0}\lambda(\overline{c}),

  4. 4.

    𝖯𝖠σPrT(fT(A))π0(c)=1λ(c¯)\displaystyle\mathsf{PA}\vdash\sigma\prec\mathrm{Pr}_{T}(\ulcorner f_{T}(A)\urcorner)\leftrightarrow\bigvee_{\pi_{0}(c)=1}\lambda(\overline{c}),

  5. 5.

    If aba\sqsubset^{\prime}b, then 𝖯𝖠λ(a¯)¬PrT(¬λ(b¯))\mathsf{PA}\vdash\lambda(\overline{a})\to\neg\mathrm{Pr}_{T}(\ulcorner\neg\lambda(\overline{b})\urcorner),

  6. 6.

    If π1(a)1\pi_{1}(a)\geq 1, then 𝖯𝖠λ(a¯)PrT(¬λ(a¯))\mathsf{PA}\vdash\lambda(\overline{a})\to\mathrm{Pr}_{T}(\ulcorner\neg\lambda(\overline{a})\urcorner),

  7. 7.

    If π1(a)1\pi_{1}(a)\geq 1, then 𝖯𝖠λ(a¯)PrT(acλ(c¯))\mathsf{PA}\vdash\lambda(\overline{a})\to\mathrm{Pr}_{T}(\ulcorner\bigvee_{a\sqsubset^{\prime}c}\lambda(\overline{c})\urcorner).

Proof.

Except the implications \leftarrow in Clauses 3 and 4, these statements are proved in a similar way as in the usual proof of Solovay’s arithmetical completeness theorem (cf. [1, 2, 6, 16]).

For the implication \leftarrow in Clause 3, we argue in 𝖯𝖠\mathsf{PA}: Suppose that λ(c¯)\lambda(\overline{c}) holds and π0(c)=0\pi_{0}(c)=0. Then, h(k)=ch(k)=c for some kk. If ¬σ\neg\sigma and ¬PrT(fT(A))\neg\mathrm{Pr}_{T}(\ulcorner f_{T}(A)\urcorner) hold, then xh(x)=0\forall x\,h(x)=0 holds, a contradiction. Hence, PrT(fT(A))σ\mathrm{Pr}_{T}(\ulcorner f_{T}(A)\urcorner)\preccurlyeq\sigma or σPrT(fT(A))\sigma\prec\mathrm{Pr}_{T}(\ulcorner f_{T}(A)\urcorner) holds. By Clause 1, we have ¬π0(d)=1λ(d¯)\neg\bigvee_{\pi_{0}(d)=1}\lambda(\overline{d}). Then, by the implication \to in Clause 4, σPrT(fT(A))\sigma\prec\mathrm{Pr}_{T}(\ulcorner f_{T}(A)\urcorner) does not hold. Therefore, PrT(fT(A))σ\mathrm{Pr}_{T}(\ulcorner f_{T}(A)\urcorner)\preccurlyeq\sigma holds.

The implication \leftarrow in Clause 4 is also proved similarly.

The second lemma states that the satisfaction relation for aWa\in W^{\prime} with π1(a)1\pi_{1}(a)\geq 1 is embedded into 𝖯𝖠\mathsf{PA}.

Lemma 3.16.

Let aWa\in W^{\prime} with π1(a)1\pi_{1}(a)\geq 1 and let BB be a modal formula.

  1. 1.

    If aBa\Vdash^{\prime}B, then 𝖯𝖠λ(a¯)fT(B)\mathsf{PA}\vdash\lambda(\overline{a})\to f_{T}(B).

  2. 2.

    If aBa\nVdash^{\prime}B, then 𝖯𝖠λ(a¯)¬fT(B)\mathsf{PA}\vdash\lambda(\overline{a})\to\neg f_{T}(B).

Proof.

Clauses 1 and 2 are proved by induction on the construction of BB simultaneously as in the usual proof of Solovay’s theorem.

The third lemma concerns the satisfaction relation for the element 1,1\langle 1,1\rangle.

Lemma 3.17.

Let BB be any subformula of A\Box A.

  1. 1.

    If 1,1B\langle 1,1\rangle\Vdash^{\prime}B, then 𝖯𝖠λ(1,0¯)fT(B)\mathsf{PA}\vdash\lambda(\overline{\langle 1,0\rangle})\to f_{T}(B),

  2. 2.

    If BB is C\Box C and 1,1C\langle 1,1\rangle\Vdash^{\prime}\Box C, then 𝖯𝖠σPrT(fT(A))fT(C)\mathsf{PA}\vdash\sigma\prec\mathrm{Pr}_{T}(\ulcorner f_{T}(A)\urcorner)\to f_{T}(\Box C),

  3. 3.

    If 1,1B\langle 1,1\rangle\nVdash^{\prime}B, then 𝖯𝖠λ(1,0¯)¬fT(B)\mathsf{PA}\vdash\lambda(\overline{\langle 1,0\rangle})\to\neg f_{T}(B).

Proof.

We prove Clauses 1, 2 and 3 by induction on the construction of B𝖲𝗎𝖻(A)B\in\mathsf{Sub}(\Box A) simultaneously. We only give a proof of the case that BB is C\Box C.

1 and 2: Suppose 1,1C\langle 1,1\rangle\Vdash^{\prime}\Box C. Since C𝖲𝗎𝖻(A)\Box C\in\mathsf{Sub}(\Box A), we have 1,1CC\langle 1,1\rangle\Vdash^{\prime}\Box C\to C because 1,1Rfn(A)\langle 1,1\rangle\Vdash^{\prime}\bigwedge\mathrm{Rfn}(\Box A). Then, 1,1C\langle 1,1\rangle\Vdash^{\prime}C. Hence, for all aWa\in W^{\prime} with π0(a)=1\pi_{0}(a)=1 and π1(a)1\pi_{1}(a)\geq 1, we have aCa\Vdash^{\prime}C. By Lemma 3.16.1, 𝖯𝖠π0(a)=1π1(a)1λ(a¯)fT(C)\mathsf{PA}\vdash\bigvee_{\begin{subarray}{c}\pi_{0}(a)=1\\ \pi_{1}(a)\geq 1\end{subarray}}\lambda(\overline{a})\to f_{T}(C). Also, by the induction hypothesis, 𝖯𝖠λ(1,0¯)fT(C)\mathsf{PA}\vdash\lambda(\overline{\langle 1,0\rangle})\to f_{T}(C). Thus,

𝖯𝖠π0(a)=1λ(a¯)fT(C).\mathsf{PA}\vdash\bigvee_{\pi_{0}(a)=1}\lambda(\overline{a})\to f_{T}(C).

By Lemma 3.15.4,

𝖯𝖠σPrT(fT(A))fT(C).\mathsf{PA}\vdash\sigma\prec\mathrm{Pr}_{T}(\ulcorner f_{T}(A)\urcorner)\to f_{T}(C).

Then,

𝖯𝖠PrT(σPrT(fT(A)))fT(C).\mathsf{PA}\vdash\mathrm{Pr}_{T}(\ulcorner\sigma\prec\mathrm{Pr}_{T}(\ulcorner f_{T}(A)\urcorner)\urcorner)\to f_{T}(\Box C).

Since σPrT(fT(A))\sigma\prec\mathrm{Pr}_{T}(\ulcorner f_{T}(A)\urcorner) is a Σ1\Sigma_{1} sentence, we have

𝖯𝖠σPrT(fT(A))fT(C).\mathsf{PA}\vdash\sigma\prec\mathrm{Pr}_{T}(\ulcorner f_{T}(A)\urcorner)\to f_{T}(\Box C).

This completes the proof of Clause 2. 𝖯𝖠λ(1,0¯)σPrT(fT(A))\mathsf{PA}\vdash\lambda(\overline{\langle 1,0\rangle})\to\sigma\prec\mathrm{Pr}_{T}(\ulcorner f_{T}(A)\urcorner) by Lemma 3.15.4, and hence Clause 1 also holds.

3: Suppose 1,1C\langle 1,1\rangle\nVdash^{\prime}\Box C. Then, aCa\nVdash^{\prime}C for some aWa\in W^{\prime} with 1,1a\langle 1,1\rangle\sqsubset^{\prime}a. By Lemma 3.16.2, we have

𝖯𝖠λ(a¯)¬fT(C).\mathsf{PA}\vdash\lambda(\overline{a})\to\neg f_{T}(C).

Then,

𝖯𝖠¬PrT(¬λ(a¯))¬fT(C).\mathsf{PA}\vdash\neg\mathrm{Pr}_{T}(\ulcorner\neg\lambda(\overline{a})\urcorner)\to\neg f_{T}(\Box C).

Since 1,0a\langle 1,0\rangle\sqsubset^{\prime}a, by Lemma 3.15.5,

𝖯𝖠λ(1,0¯)¬PrT(¬λ(a¯)).\mathsf{PA}\vdash\lambda(\overline{\langle 1,0\rangle})\to\neg\mathrm{Pr}_{T}(\ulcorner\neg\lambda(\overline{a})\urcorner).

Therefore, 𝖯𝖠λ(1,0¯)¬fT(C)\mathsf{PA}\vdash\lambda(\overline{\langle 1,0\rangle})\to\neg f_{T}(\Box C).

We are ready to show the required two statements: (a) 𝖯𝖠σfT(A)\mathsf{PA}\vdash\sigma\to f_{T}(\Box A) and (b) 𝖯𝖠+ConT𝔠(A)+1fT(A)σ\mathsf{PA}+\mathrm{Con}_{T}^{\mathfrak{c}(A)+1}\vdash f_{T}(\Box A)\to\sigma.

(a): Since 1,1A\langle 1,1\rangle\Vdash^{\prime}\Box A, by Lemma 3.17.2,

𝖯𝖠σPrT(fT(A))fT(A).\mathsf{PA}\vdash\sigma\prec\mathrm{Pr}_{T}(\ulcorner f_{T}(A)\urcorner)\to f_{T}(\Box A).

Since

𝖯𝖠σ¬fT(A)σPrT(fT(A)),\mathsf{PA}\vdash\sigma\land\neg f_{T}(\Box A)\to\sigma\prec\mathrm{Pr}_{T}(\ulcorner f_{T}(A)\urcorner),

we have

𝖯𝖠σ¬fT(A)fT(A),\mathsf{PA}\vdash\sigma\land\neg f_{T}(\Box A)\to f_{T}(\Box A),

and hence we obtain 𝖯𝖠σfT(A)\mathsf{PA}\vdash\sigma\to f_{T}(\Box A).

(b): Since 0,1𝔠(A)+1\langle 0,1\rangle\Vdash^{\prime}\Box^{\mathfrak{c}(A)+1}\bot, for all aWa\in W^{\prime} with π0(a)=0\pi_{0}(a)=0 and π1(a)1\pi_{1}(a)\geq 1, we have a𝔠(A)+1a\Vdash^{\prime}\Box^{\mathfrak{c}(A)+1}\bot. By Lemma 3.16.1,

𝖯𝖠π0(a)=0π1(a)1λ(a¯)¬ConT𝔠(A)+1,\mathsf{PA}\vdash\bigvee_{\begin{subarray}{c}\pi_{0}(a)=0\\ \pi_{1}(a)\geq 1\end{subarray}}\lambda(\overline{a})\to\neg\mathrm{Con}_{T}^{\mathfrak{c}(A)+1},

and thus

𝖯𝖠+ConT𝔠(A)+1π0(a)=0π1(a)1¬λ(a¯).\displaystyle\mathsf{PA}+\mathrm{Con}_{T}^{\mathfrak{c}(A)+1}\vdash\bigwedge_{\begin{subarray}{c}\pi_{0}(a)=0\\ \pi_{1}(a)\geq 1\end{subarray}}\neg\lambda(\overline{a}). (3)

Since

𝖯𝖠fT(A)¬σPrT(fT(A))σ,\mathsf{PA}\vdash f_{T}(\Box A)\land\neg\sigma\to\mathrm{Pr}_{T}(\ulcorner f_{T}(A)\urcorner)\preccurlyeq\sigma,

by Lemma 3.15.3, we have

𝖯𝖠fT(A)¬σπ0(a)=0λ(a¯).\mathsf{PA}\vdash f_{T}(\Box A)\land\neg\sigma\to\bigvee_{\pi_{0}(a)=0}\lambda(\overline{a}).

By combining this with (3), we obtain

𝖯𝖠+ConT𝔠(A)+1fT(A)¬σλ(0,0¯).\displaystyle\mathsf{PA}+\mathrm{Con}_{T}^{\mathfrak{c}(A)+1}\vdash f_{T}(\Box A)\land\neg\sigma\to\lambda(\overline{\langle 0,0\rangle}). (4)

Since 0,1A\langle 0,1\rangle\nVdash^{\prime}A, by Lemma 3.16.2, 𝖯𝖠λ(0,1¯)¬fT(A)\mathsf{PA}\vdash\lambda(\overline{\langle 0,1\rangle})\to\neg f_{T}(A). Then,

𝖯𝖠¬PrT(¬λ(0,1¯))¬fT(A).\mathsf{PA}\vdash\neg\mathrm{Pr}_{T}(\ulcorner\neg\lambda(\overline{\langle 0,1\rangle})\urcorner)\to\neg f_{T}(\Box A).

Since 0,00,1\langle 0,0\rangle\sqsubset^{\prime}\langle 0,1\rangle, by Lemma 3.15.5,

𝖯𝖠λ(0,0¯)¬PrT(¬λ(0,1¯)),\mathsf{PA}\vdash\lambda(\overline{\langle 0,0\rangle})\to\neg\mathrm{Pr}_{T}(\ulcorner\neg\lambda(\overline{\langle 0,1\rangle})\urcorner),

and hence we have 𝖯𝖠λ(0,0¯)¬fT(A)\mathsf{PA}\vdash\lambda(\overline{\langle 0,0\rangle})\to\neg f_{T}(\Box A). From this with (4), we obtain 𝖯𝖠+ConT𝔠(A)+1fT(A)¬σ¬fT(A)\mathsf{PA}+\mathrm{Con}_{T}^{\mathfrak{c}(A)+1}\vdash f_{T}(\Box A)\land\neg\sigma\to\neg f_{T}(\Box A). We conclude 𝖯𝖠+ConT𝔠(A)+1fT(A)σ\mathsf{PA}+\mathrm{Con}_{T}^{\mathfrak{c}(A)+1}\vdash f_{T}(\Box A)\to\sigma.

If the height of TT is larger than 𝔠(A)\mathfrak{c}(A), then the converse of Theorem 3.14 also holds.

Proposition 3.18.

Let AA be any modal formula. Suppose that the height of TT is larger than 𝔠(A)\mathfrak{c}(A) and, for any Σ1\Sigma_{1} sentence σ\sigma, there exists an arithmetical interpretation ff such that 𝖯𝖠σfT(A)\mathsf{PA}\vdash\sigma\to f_{T}(\Box A) and 𝖯𝖠+ConT𝔠(A)+1fT(A)σ\mathsf{PA}+\mathrm{Con}_{T}^{\mathfrak{c}(A)+1}\vdash f_{T}(\Box A)\to\sigma. Then, AA is nontrifling.

Proof.

Since 0=10=1 is a Σ1\Sigma_{1} sentence, there exists an arithmetical interpretation ff such that 𝖯𝖠+ConT𝔠(A)+1fT(A)0=1\mathsf{PA}+\mathrm{Con}_{T}^{\mathfrak{c}(A)+1}\vdash f_{T}(\Box A)\to 0=1. Since ConT𝔠(A)+1\mathbb{N}\models\mathrm{Con}_{T}^{\mathfrak{c}(A)+1}, we have ¬fT(A)\mathbb{N}\models\neg f_{T}(\Box A). Thus, TfT(A)T\nvdash f_{T}(A). By Fact 3.3.1, 𝐆𝐋A\mathbf{GL}\nvdash A.

Also, since 0=00=0 is a Σ1\Sigma_{1} sentence, there exists an arithmetical interpretation gg such that 𝖯𝖠0=0gT(A)\mathsf{PA}\vdash 0=0\to g_{T}(\Box A). Then, 𝖯𝖠gT(A)\mathsf{PA}\vdash g_{T}(\Box A). Since ConT𝔠(A)+1\mathbb{N}\models\mathrm{Con}_{T}^{\mathfrak{c}(A)+1}, 𝖯𝖠¬ConT𝔠(A)+1\mathsf{PA}\nvdash\neg\mathrm{Con}_{T}^{\mathfrak{c}(A)+1}, and thus 𝖯𝖠ConT𝔠(A)+1¬gT(A)\mathsf{PA}\nvdash\mathrm{Con}_{T}^{\mathfrak{c}(A)+1}\to\neg g_{T}(\Box A). By Fact 3.3.1, 𝐆𝐋𝔠(A)+1¬A\mathbf{GL}\nvdash\Diamond^{\mathfrak{c}(A)+1}\top\to\neg\Box A. By Lemma 3.6, 𝐆𝐋ω¬A\mathbf{GL}_{\omega}\nvdash\neg\Box A. Then, by Proposition 3.11, AA is nontrifling.

For any classical propositional formula AA, we have 𝔠(A)=0\mathfrak{c}(A)=0. So Proposition 3.13 shows that Theorem 3.14 is actually an extension of Theorem 2.3.

For a variable vv of first-order logic, an vv-arithmetical interpretation ff is a mapping where for each propositional variable pp, f(p)f(p) is an A\mathcal{L}_{A}-formula φ(v)\varphi(v) with only the free variable vv. Each vv-arithmetical interpretation ff is uniquely extended to the mapping fTf_{T} from the set of all modal formulas to a set of A\mathcal{L}_{A}-formulas with at most the free variable vv as the usual arithmetical interpretations with the clause fT(A)(v)PrT(fT(A)(v˙))f_{T}(\Box A)(v)\equiv\mathrm{Pr}_{T}(\ulcorner f_{T}(A)(\dot{v})\urcorner). By tracing the proof of Theorem 3.14 entirely using the function h(x,v)h(x,v) and the formula λ(x,v)\lambda(x,v), the following parameterized version of Theorem 3.14 is also proved.

Theorem 3.19.

For any modal formula AA, if AA is nontrifling, then for any Σ1\Sigma_{1} formula σ(v)\sigma(v), there exists an vv-arithmetical interpretation ff such that

  1. 1.

    𝖯𝖠v(σ(v)fT(A)(v))\mathsf{PA}\vdash\forall v\,\bigl{(}\sigma(v)\to f_{T}(\Box A)(v)\bigr{)}, and

  2. 2.

    𝖯𝖠+ConT𝔠(A)+1v(fT(A)(v)σ(v))\mathsf{PA}+\mathrm{Con}_{T}^{\mathfrak{c}(A)+1}\vdash\forall v\,\bigl{(}f_{T}(\Box A)(v)\to\sigma(v)\bigr{)}.

From Theorem 3.19, we obtain an extension of Theorem 2.5 to the framework of modal logic.

Theorem 3.20.

Let AA be any modal formula AA. If AA is nontrifling and the height of TT is larger than 𝔠(A)\mathfrak{c}(A), then for any c.e. set XX, there exists an vv-arithmetical interpretation ff such that fT(A)(v)f_{T}(A)(v) weakly represents XX in TT.

Proof.

Let σ(v)\sigma(v) be a Σ1\Sigma_{1} formula defining XX over \mathbb{N}. By Theorem 3.19, there exists an vv-arithmetical interpretation ff such that

  1. 1.

    𝖯𝖠v(σ(v)fT(A)(v))\mathsf{PA}\vdash\forall v\,\bigl{(}\sigma(v)\to f_{T}(\Box A)(v)\bigr{)}, and

  2. 2.

    𝖯𝖠+ConT𝔠(A)+1v(fT(A)(v)σ(v))\mathsf{PA}+\mathrm{Con}_{T}^{\mathfrak{c}(A)+1}\vdash\forall v\,\bigl{(}f_{T}(\Box A)(v)\to\sigma(v)\bigr{)}.

Since ConT𝔠(A)+1\mathbb{N}\models\mathrm{Con}_{T}^{\mathfrak{c}(A)+1}, we have v(σ(v)fT(A)(v))\mathbb{N}\models\forall v\,\bigl{(}\sigma(v)\leftrightarrow f_{T}(\Box A)(v)\bigr{)}. Then, for any kωk\in\omega, kXk\in X if and only if TfT(A)(k¯)T\vdash f_{T}(A)(\overline{k}). This means that fT(A)(v)f_{T}(A)(v) weakly represents XX in TT.

3.3 A modal version of the FGH theorem for theories with finite heights

Notice that Theorem 3.20 requires the assumption that the height of TT is larger than 𝔠(A)\mathfrak{c}(A). In this subsection, we investigate variations of Theorems 3.14 and 3.20, keeping in mind theories with finite heights.

It is already proved in Proposition 3.11 that for any natural number ss with s>𝔠(A)s>\mathfrak{c}(A), AA is nontrifling if and only if 𝐆𝐋+{¬Fs}A\mathbf{GL}+\{\neg F_{s}\}\nvdash\Box A and 𝐆𝐋+{¬Fs}¬A\mathbf{GL}+\{\neg F_{s}\}\nvdash\neg\Box A. On the other hand, even for a natural number ss with s𝔠(A)s\leq\mathfrak{c}(A), we prove the following version of the FGH theorem concerning the condition “𝐆𝐋+{¬Fs}A\mathbf{GL}+\{\neg F_{s}\}\nvdash\Box A and 𝐆𝐋+{¬Fs}¬A\mathbf{GL}+\{\neg F_{s}\}\nvdash\neg\Box A”.

Theorem 3.21.

For any modal formula AA, if 𝐆𝐋+{¬Fs}A\mathbf{GL}+\{\neg F_{s}\}\nvdash\Box A and 𝐆𝐋+{¬Fs}¬A\mathbf{GL}+\{\neg F_{s}\}\nvdash\neg\Box A, then for any Σ1\Sigma_{1} sentence σ\sigma, there exists an arithmetical interpretation ff such that

𝖯𝖠+¬ConTs+1+ConTsσfT(A).\mathsf{PA}+\neg\mathrm{Con}_{T}^{s+1}+\mathrm{Con}_{T}^{s}\vdash\sigma\leftrightarrow f_{T}(\Box A).
Proof.

Suppose 𝐆𝐋+{¬Fs}A\mathbf{GL}+\{\neg F_{s}\}\nvdash\Box A and 𝐆𝐋+{¬Fs}¬A\mathbf{GL}+\{\neg F_{s}\}\nvdash\neg\Box A, that is, 𝐆𝐋s+1sA\mathbf{GL}\nvdash\Box^{s+1}\bot\land\Diamond^{s}\top\to\Box A and 𝐆𝐋s+1s¬A\mathbf{GL}\nvdash\Box^{s+1}\bot\land\Diamond^{s}\top\to\neg\Box A. By the Kripke completeness of 𝐆𝐋\mathbf{GL}, there exist 𝐆𝐋\mathbf{GL}-models M0=W0,0,r0,0M_{0}=\langle W_{0},\sqsubset_{0},r_{0},\Vdash_{0}\rangle and M1=W1,1,r1,1M_{1}=\langle W_{1},\sqsubset_{1},r_{1},\Vdash_{1}\rangle such that r00s+1s¬Ar_{0}\Vdash_{0}\Box^{s+1}\bot\land\Diamond^{s}\top\land\neg\Box A and r11s+1sAr_{1}\Vdash_{1}\Box^{s+1}\bot\land\Diamond^{s}\top\land\Box A. Let n0n_{0} and n1n_{1} be the cardinalities of W0W_{0} and W1W_{1} respectively, and we may assume that

  • W0={0,1,0,2,,0,n0}W_{0}=\{\langle 0,1\rangle,\langle 0,2\rangle,\ldots,\langle 0,n_{0}\rangle\}, r0=0,1r_{0}=\langle 0,1\rangle, and

  • W1={1,1,1,2,,1,n1}W_{1}=\{\langle 1,1\rangle,\langle 1,2\rangle,\ldots,\langle 1,n_{1}\rangle\}, r1=1,1r_{1}=\langle 1,1\rangle.

Let M=W,,0,M^{\prime}=\langle W^{\prime},\sqsubset^{\prime},0,\Vdash^{\prime}\rangle be the 𝐆𝐋\mathbf{GL}-model obtained from M0M_{0} and M1M_{1} as in the proof of Theorem 3.14. Then, 0,1s+1s¬A\langle 0,1\rangle\Vdash^{\prime}\Box^{s+1}\bot\land\Diamond^{s}\top\land\neg\Box A and 1,1s+1sA\langle 1,1\rangle\Vdash^{\prime}\Box^{s+1}\bot\land\Diamond^{s}\top\land\Box A.

We can define a function hh, a formula λ(x)\lambda(x), and an arithmetical interpretation ff from the 𝐆𝐋\mathbf{GL}-model MM^{\prime} in the same way as in the proof of Theorem 3.14. Then, the same results as Lemmas 3.15, 3.16 and 3.17 can also be proved.

For each aWa\in W^{\prime} with π1(a)>1\pi_{1}(a)>1, since asa\Vdash^{\prime}\Box^{s}\bot, we have that 𝖯𝖠\mathsf{PA} proves λ(a¯)¬ConTs\lambda(\overline{a})\to\neg\mathrm{Con}_{T}^{s}, and thus

𝖯𝖠+ConTsπ1(a)>1¬λ(a¯).\mathsf{PA}+\mathrm{Con}_{T}^{s}\vdash\bigwedge_{\pi_{1}(a)>1}\neg\lambda(\overline{a}).

Also, since i,1s\langle i,1\rangle\Vdash^{\prime}\Diamond^{s}\top, we have 𝖯𝖠λ(i,1¯)ConTs\mathsf{PA}\vdash\lambda(\overline{\langle i,1\rangle})\to\mathrm{Con}_{T}^{s}. Then, 𝖯𝖠\mathsf{PA} proves ¬PrT(¬λ(i,1¯))ConTs+1\neg\mathrm{Pr}_{T}(\ulcorner\neg\lambda(\overline{\langle i,1\rangle})\urcorner)\to\mathrm{Con}_{T}^{s+1}. Also, 𝖯𝖠λ(i,0¯)¬PrT(¬λ(i,1¯))\mathsf{PA}\vdash\lambda(\overline{\langle i,0\rangle})\to\neg\mathrm{Pr}_{T}(\ulcorner\neg\lambda(\overline{\langle i,1\rangle})\urcorner) because i,0i,1\langle i,0\rangle\sqsubset^{\prime}\langle i,1\rangle, and hence 𝖯𝖠λ(i,0¯)ConTs+1\mathsf{PA}\vdash\lambda(\overline{\langle i,0\rangle})\to\mathrm{Con}_{T}^{s+1}. Therefore, we obtain

𝖯𝖠+¬ConTs+1+ConTsπ1(a)1¬λ(a¯).\displaystyle\mathsf{PA}+\neg\mathrm{Con}_{T}^{s+1}+\mathrm{Con}_{T}^{s}\vdash\bigwedge_{\pi_{1}(a)\neq 1}\neg\lambda(\overline{a}). (5)

We prove 𝖯𝖠+¬ConTs+1+ConTsσfT(A)\mathsf{PA}+\neg\mathrm{Con}_{T}^{s+1}+\mathrm{Con}_{T}^{s}\vdash\sigma\leftrightarrow f_{T}(\Box A).

()(\rightarrow): Since 𝖯𝖠σPrT(fT(A))π0(a)=1λ(a¯)\mathsf{PA}\vdash\sigma\prec\mathrm{Pr}_{T}(\ulcorner f_{T}(A)\urcorner)\to\bigvee_{\pi_{0}(a)=1}\lambda(\overline{a}), from (5), we have

𝖯𝖠+¬ConTs+1+ConTsσPrT(fT(A))λ(1,1¯).\mathsf{PA}+\neg\mathrm{Con}_{T}^{s+1}+\mathrm{Con}_{T}^{s}\vdash\sigma\prec\mathrm{Pr}_{T}(\ulcorner f_{T}(A)\urcorner)\to\lambda(\overline{\langle 1,1\rangle}).

Since 1,1A\langle 1,1\rangle\Vdash^{\prime}\Box A, we have 𝖯𝖠λ(1,1¯)fT(A)\mathsf{PA}\vdash\lambda(\overline{\langle 1,1\rangle})\to f_{T}(\Box A). Hence,

𝖯𝖠+¬ConTs+1+ConTsσPrT(fT(A))fT(A).\mathsf{PA}+\neg\mathrm{Con}_{T}^{s+1}+\mathrm{Con}_{T}^{s}\vdash\sigma\prec\mathrm{Pr}_{T}(\ulcorner f_{T}(A)\urcorner)\to f_{T}(\Box A).

Here 𝖯𝖠σ¬fT(A)σPrT(fT(A))\mathsf{PA}\vdash\sigma\land\neg f_{T}(\Box A)\to\sigma\prec\mathrm{Pr}_{T}(\ulcorner f_{T}(A)\urcorner), and thus

𝖯𝖠+¬ConTs+1+ConTsσ¬fT(A)fT(A).\mathsf{PA}+\neg\mathrm{Con}_{T}^{s+1}+\mathrm{Con}_{T}^{s}\vdash\sigma\land\neg f_{T}(\Box A)\to f_{T}(\Box A).

We obtain 𝖯𝖠+¬ConTs+1+ConTsσfT(A)\mathsf{PA}+\neg\mathrm{Con}_{T}^{s+1}+\mathrm{Con}_{T}^{s}\vdash\sigma\to f_{T}(\Box A).

()(\leftarrow): Since 𝖯𝖠PrT(fT(A))σπ0(a)=0λ(a¯)\mathsf{PA}\vdash\mathrm{Pr}_{T}(\ulcorner f_{T}(A)\urcorner)\preccurlyeq\sigma\to\bigvee_{\pi_{0}(a)=0}\lambda(\overline{a}), from (5),

𝖯𝖠+¬ConTs+1+ConTsPrT(fT(A))σλ(0,1¯).\mathsf{PA}+\neg\mathrm{Con}_{T}^{s+1}+\mathrm{Con}_{T}^{s}\vdash\mathrm{Pr}_{T}(\ulcorner f_{T}(A)\urcorner)\preccurlyeq\sigma\to\lambda(\overline{\langle 0,1\rangle}).

Since 0,1A\langle 0,1\rangle\nVdash^{\prime}\Box A, 𝖯𝖠λ(0,1¯)¬fT(A)\mathsf{PA}\vdash\lambda(\overline{\langle 0,1\rangle})\to\neg f_{T}(\Box A). Therefore,

𝖯𝖠+¬ConTs+1+ConTsPrT(fT(A))σ¬fT(A),\mathsf{PA}+\neg\mathrm{Con}_{T}^{s+1}+\mathrm{Con}_{T}^{s}\vdash\mathrm{Pr}_{T}(\ulcorner f_{T}(A)\urcorner)\preccurlyeq\sigma\to\neg f_{T}(\Box A),

and hence

𝖯𝖠+¬ConTs+1+ConTsfT(A)¬σ¬fT(A).\mathsf{PA}+\neg\mathrm{Con}_{T}^{s+1}+\mathrm{Con}_{T}^{s}\vdash f_{T}(\Box A)\land\neg\sigma\to\neg f_{T}(\Box A).

We conclude 𝖯𝖠+¬ConTs+1+ConTsfT(A)σ\mathsf{PA}+\neg\mathrm{Con}_{T}^{s+1}+\mathrm{Con}_{T}^{s}\vdash f_{T}(\Box A)\to\sigma.

If the height of TT is larger than or equal to ss, then the converse of Theorem 3.21 also holds.

Proposition 3.22.

Suppose that the height of TT is larger than or equal to ss. For any modal formula AA, if for any Σ1\Sigma_{1} sentence σ\sigma, there exists an arithmetical interpretation ff such that 𝖯𝖠+¬ConTs+1+ConTsσfT(A)\mathsf{PA}+\neg\mathrm{Con}_{T}^{s+1}+\mathrm{Con}_{T}^{s}\vdash\sigma\leftrightarrow f_{T}(\Box A), then 𝐆𝐋+{¬Fs}A\mathbf{GL}+\{\neg F_{s}\}\nvdash\Box A and 𝐆𝐋+{¬Fs}¬A\mathbf{GL}+\{\neg F_{s}\}\nvdash\neg\Box A.

Proof.

If the height of TT is larger than ss, then T¬ConTsT\nvdash\neg\mathrm{Con}_{T}^{s}. By Löb’s theorem, T¬ConTs+1¬ConTsT\nvdash\neg\mathrm{Con}_{T}^{s+1}\to\neg\mathrm{Con}_{T}^{s}. Thus, the theory T+¬ConTs+1+ConTsT+\neg\mathrm{Con}_{T}^{s+1}+\mathrm{Con}_{T}^{s} is consistent. Also, if the height of TT is exactly ss, then ¬ConTs+1ConTs\mathbb{N}\models\neg\mathrm{Con}_{T}^{s+1}\land\mathrm{Con}_{T}^{s}. Thus, 𝖯𝖠+¬ConTs+1+ConTs\mathsf{PA}+\neg\mathrm{Con}_{T}^{s+1}+\mathrm{Con}_{T}^{s} is consistent. In either case, the theory 𝖯𝖠+¬ConTs+1+ConTs\mathsf{PA}+\neg\mathrm{Con}_{T}^{s+1}+\mathrm{Con}_{T}^{s} is consistent.

Let σ\sigma be any Σ1\Sigma_{1} sentence independent of 𝖯𝖠+¬ConTs+1+ConTs\mathsf{PA}+\neg\mathrm{Con}_{T}^{s+1}+\mathrm{Con}_{T}^{s}. Then, we have an arithmetical interpretation ff such that

𝖯𝖠+¬ConTs+1+ConTsσfT(A).\mathsf{PA}+\neg\mathrm{Con}_{T}^{s+1}+\mathrm{Con}_{T}^{s}\vdash\sigma\leftrightarrow f_{T}(\Box A).

Then, 𝖯𝖠+¬ConTs+1+ConTs\mathsf{PA}+\neg\mathrm{Con}_{T}^{s+1}+\mathrm{Con}_{T}^{s} proves neither fT(A)f_{T}(\Box A) nor ¬fT(A)\neg f_{T}(\Box A). By Fact 3.3.1, 𝐆𝐋\mathbf{GL} proves neither ¬FsA\neg F_{s}\to\Box A nor ¬Fs¬A\neg F_{s}\to\neg\Box A.

In the same way as in the proof of Theorem 3.21, the parameterized version of Theorem 3.21 can also be proved, and hence we obtain the following theorem.

Theorem 3.23.

Suppose that the height of TT is ss. For any modal formula AA, if 𝐆𝐋+{¬Fs}A\mathbf{GL}+\{\neg F_{s}\}\nvdash\Box A and 𝐆𝐋+{¬Fs}¬A\mathbf{GL}+\{\neg F_{s}\}\nvdash\neg\Box A, then for any c.e. set XX, there exists an vv-arithmetical interpretation ff such that fT(A)(v)f_{T}(A)(v) weakly represents XX in TT.

Proof.

Let σ(v)\sigma(v) be a Σ1\Sigma_{1} formula defining XX over \mathbb{N}. Then, from the parameterized version of Theorem 3.21, there exists an vv-arithmetical interpretation ff such that

𝖯𝖠+¬ConTs+1+ConTsv(σ(v)fT(A)(v)).\mathsf{PA}+\neg\mathrm{Con}_{T}^{s+1}+\mathrm{Con}_{T}^{s}\vdash\forall v\,\bigl{(}\sigma(v)\leftrightarrow f_{T}(\Box A)(v)\bigr{)}.

Since the height of TT is ss, ¬ConTs+1ConTs\mathbb{N}\models\neg\mathrm{Con}_{T}^{s+1}\land\mathrm{Con}_{T}^{s}. Then, we have that v(σ(v)fT(A)(v))\mathbb{N}\models\forall v\,\bigl{(}\sigma(v)\leftrightarrow f_{T}(\Box A)(v)\bigr{)}. It follows that fT(A)(v)f_{T}(A)(v) weakly represents XX in TT.

We close this section with two problems. In Section 2, we proved Theorem 2.3 by using Lemma 2.4. On the other hand, in this section, we proved Theorem 3.14 that is a modal extension of Theorem 2.3 without using modal version of Lemma 2.4. If a modal version of Lemma 2.4 is proved, then a proof of Theorem 3.14, as well as the proof of our Theorem 2.3 in Section 2, would be substantially simplified.

Problem 3.24.

Can we prove a modal version of Lemma 2.4?

In Section 2, we proved Theorem 2.6 that is an improvement of Theorem 2.3. Then, it is natural to ask the following problem.

Problem 3.25.

Can we extend Theorem 2.6 to the framework of modal propositional logic?

4 Rosser-type FGH theorems

In this section, we investigate some variations of Rosser-type FGH theorems. Recall that ProofT(x,y)\mathrm{Proof}_{T}(x,y) is a natural formula saying that yy is a TT-proof of xx and PrT(x)\mathrm{Pr}_{T}(x) is of the form yProofT(x,y)\exists y\,\mathrm{Proof}_{T}(x,y). Besides ProofT(x,y)\mathrm{Proof}_{T}(x,y), we consider formulas that witness PrT(x)\mathrm{Pr}_{T}(x). We say a formula PrfT(x,y)\mathrm{Prf}_{T}(x,y) is a proof predicate of TT if PrfT(x,y)\mathrm{Prf}_{T}(x,y) satisfies the following conditions:

  1. 1.

    PrfT(x,y)\mathrm{Prf}_{T}(x,y) is a primitive recursive formula,

  2. 2.

    𝖯𝖠x(PrT(x)yPrfT(x,y))\mathsf{PA}\vdash\forall x\,\bigl{(}\mathrm{Pr}_{T}(x)\leftrightarrow\exists y\,\mathrm{Prf}_{T}(x,y)\bigr{)},

  3. 3.

    𝖯𝖠xxy(PrfT(x,y)PrfT(x,y)x=x)\mathsf{PA}\vdash\forall x\,\forall x^{\prime}\,\forall y\,\bigl{(}\mathrm{Prf}_{T}(x,y)\land\mathrm{Prf}_{T}(x^{\prime},y)\to x=x^{\prime}\bigr{)}.

For each proof predicate PrfT(x,y)\mathrm{Prf}_{T}(x,y) of TT, the Σ1\Sigma_{1} formula PrTR(x)\mathrm{Pr}_{T}^{\mathrm{R}}(x) defined by

PrTR(x):y(PrfT(x,y)z<y¬PrfT(¬˙x,z))\mathrm{Pr}_{T}^{\mathrm{R}}(x):\equiv\exists y\,\bigl{(}\mathrm{Prf}_{T}(x,y)\land\forall z\,{<}\,y\,\neg\mathrm{Prf}_{T}(\dot{\neg}x,z)\bigr{)}

is called the Rosser provability predicate of PrfT(x,y)\mathrm{Prf}_{T}(x,y) or a Rosser provability predicate of TT. Here ¬˙x\dot{\neg}x is a primitive recursive term corresponding to a primitive recursive function calculating the Gödel number of ¬φ\neg\varphi from the Gödel number of an A\mathcal{L}_{A}-formula φ\varphi such that 𝖯𝖠\mathsf{PA} proves ¬˙ψ=¬ψ\dot{\neg}\ulcorner\psi\urcorner=\ulcorner\neg\psi\urcorner for each A\mathcal{L}_{A}-formula ψ\psi. In view of witness comparison, we also introduce an auxiliary Σ1\Sigma_{1} formula PrTR(¬˙x)\mathrm{Pr}_{T}^{\scriptsize{\reflectbox{{\rm R}}}}(\dot{\neg}x) as follows:

PrTR(¬˙x):y(PrfT(¬˙x,y)zy¬PrfT(x,z)).\mathrm{Pr}_{T}^{\scriptsize{\reflectbox{{\rm R}}}}(\dot{\neg}x):\equiv\exists y\,\bigl{(}\mathrm{Prf}_{T}(\dot{\neg}x,y)\land\forall z\,{\leq}\,y\,\neg\mathrm{Prf}_{T}(x,z)\bigr{)}.

Then, for any A\mathcal{L}_{A}-formula φ\varphi, 𝖯𝖠\mathsf{PA} proves ¬(PrTR(φ)PrTR(¬φ))\neg\bigl{(}\mathrm{Pr}_{T}^{\mathrm{R}}(\ulcorner\varphi\urcorner)\land\mathrm{Pr}_{T}^{\scriptsize{\reflectbox{{\rm R}}}}(\ulcorner\neg\varphi\urcorner)\bigr{)} and PrT(φ)PrT(¬φ)PrTR(φ)PrTR(¬φ)\mathrm{Pr}_{T}(\ulcorner\varphi\urcorner)\lor\mathrm{Pr}_{T}(\ulcorner\neg\varphi\urcorner)\to\mathrm{Pr}_{T}^{\mathrm{R}}(\ulcorner\varphi\urcorner)\lor\mathrm{Pr}_{T}^{\scriptsize{\reflectbox{{\rm R}}}}(\ulcorner\neg\varphi\urcorner).

In a study of Rosser-type Henkin sentences, the following result was proved.

Fact 4.1 (Kurahashi [9, Theorem 3.5]).

For any Σ1\Sigma_{1} sentence σ\sigma, the following are equivalent:

  1. 1.

    There exists a Σ1\Sigma_{1} sentence σ\sigma^{\prime} such that 𝖯𝖠¬(σσ)\mathsf{PA}\vdash\neg(\sigma\land\sigma^{\prime}) and 𝖯𝖠PrT(σ)PrT(σ)σσ\mathsf{PA}\vdash\mathrm{Pr}_{T}(\ulcorner\sigma\urcorner)\lor\mathrm{Pr}_{T}(\ulcorner\sigma^{\prime}\urcorner)\to\sigma\lor\sigma^{\prime}.

  2. 2.

    There exists a Rosser provability predicate PrTR(x)\mathrm{Pr}_{T}^{\mathrm{R}}(x) of TT such that 𝖯𝖠σPrTR(σ)\mathsf{PA}\vdash\sigma\leftrightarrow\mathrm{Pr}_{T}^{\mathrm{R}}(\ulcorner\sigma\urcorner).

This fact can be seen as a kind of the FGH theorem for Rosser provability predicates because it deals with the equivalence σPrTR(φ)\sigma\leftrightarrow\mathrm{Pr}_{T}^{\mathrm{R}}(\ulcorner\varphi\urcorner) where φ\varphi is in particular σ\sigma. Inspired by this fact, we prove the following theorem.

Theorem 4.2.

For any Σ1\Sigma_{1} sentences σ0\sigma_{0} and σ1\sigma_{1}, the following are equivalent:

  1. 1.

    𝖯𝖠¬(σ0σ1)\mathsf{PA}\vdash\neg(\sigma_{0}\land\sigma_{1}) and 𝖯𝖠¬ConTσ0σ1\mathsf{PA}\vdash\neg\mathrm{Con}_{T}\to\sigma_{0}\lor\sigma_{1}.

  2. 2.

    There are a Rosser provability predicate PrTR(x)\mathrm{Pr}_{T}^{\mathrm{R}}(x) of TT and an A\mathcal{L}_{A}-sentence φ\varphi such that

    𝖯𝖠σ0PrTR(φ)and𝖯𝖠σ1PrTR(¬φ).\mathsf{PA}\vdash\sigma_{0}\leftrightarrow\mathrm{Pr}_{T}^{\mathrm{R}}(\ulcorner\varphi\urcorner)\ \text{and}\ \mathsf{PA}\vdash\sigma_{1}\leftrightarrow\mathrm{Pr}_{T}^{\scriptsize{\reflectbox{{\rm R}}}}(\ulcorner\neg\varphi\urcorner).
Proof.

(21)(2\Rightarrow 1): This implication follows from the properties of witness comparison formulas.

(12)(1\Rightarrow 2): We may assume that σ0\sigma_{0} and σ1\sigma_{1} are of the forms xτ0(x)\exists x\,\tau_{0}(x) and xτ1(x)\exists x\,\tau_{1}(x) for some Δ0\Delta_{0} formulas τ0(x)\tau_{0}(x) and τ1(x)\tau_{1}(x), respectively. By the Fixed Point Lemma, let φ\varphi be a Σ1\Sigma_{1} sentence satisfying the following equivalence:

𝖯𝖠φy[(ProofT(¬φ,y)τ0(y))zy(¬ProofT(φ,z)¬τ1(z))].\mathsf{PA}\vdash\varphi\leftrightarrow\exists y\,\bigl{[}(\mathrm{Proof}_{T}(\ulcorner\neg\varphi\urcorner,y)\lor\tau_{0}(y))\land\forall z\,{\leq}\,y\,(\neg\mathrm{Proof}_{T}(\ulcorner\varphi\urcorner,z)\land\neg\tau_{1}(z))\bigr{]}.

Also, let φ\varphi^{*} be the Σ1\Sigma_{1} sentence

z[(ProofT(φ,z)τ1(z))y<z(¬ProofT(¬φ,y)¬τ0(y))].\exists z\,\bigl{[}(\mathrm{Proof}_{T}(\ulcorner\varphi\urcorner,z)\lor\tau_{1}(z))\land\forall y\,{<}\,z\,(\neg\mathrm{Proof}_{T}(\ulcorner\neg\varphi\urcorner,y)\land\neg\tau_{0}(y))\bigr{]}.
Lemma 4.3.

𝖯𝖠PrT(φ)PrT(¬φ)σ0σ1\mathsf{PA}\vdash\mathrm{Pr}_{T}(\ulcorner\varphi\urcorner)\lor\mathrm{Pr}_{T}(\ulcorner\neg\varphi\urcorner)\to\sigma_{0}\lor\sigma_{1}.

Proof.

Let ProvTR(x)\mathrm{Prov}_{T}^{\mathrm{R}}(x) be the Rosser provability predicate of ProofT(x,y)\mathrm{Proof}_{T}(x,y). Then, 𝖯𝖠PrT(φ)PrT(¬φ)ProvTR(φ)ProvTR(¬φ)\mathsf{PA}\vdash\mathrm{Pr}_{T}(\ulcorner\varphi\urcorner)\lor\mathrm{Pr}_{T}(\ulcorner\neg\varphi\urcorner)\to\mathrm{Prov}_{T}^{\mathrm{R}}(\ulcorner\varphi\urcorner)\lor\mathrm{Prov}_{T}^{\scriptsize{\reflectbox{{\rm R}}}}(\ulcorner\neg\varphi\urcorner). By the definition of φ\varphi^{*},

𝖯𝖠ProvTR(φ)¬σ0φ.\mathsf{PA}\vdash\mathrm{Prov}_{T}^{\mathrm{R}}(\ulcorner\varphi\urcorner)\land\neg\sigma_{0}\to\varphi^{*}.

Then,

𝖯𝖠ProvTR(φ)¬σ0PrT(φ)\mathsf{PA}\vdash\mathrm{Prov}_{T}^{\mathrm{R}}(\ulcorner\varphi\urcorner)\land\neg\sigma_{0}\to\mathrm{Pr}_{T}(\ulcorner\varphi^{*}\urcorner)

because φ\varphi^{*} is a Σ1\Sigma_{1} sentence. Since 𝖯𝖠¬(φφ)\mathsf{PA}\vdash\neg(\varphi\land\varphi^{*}), we have

𝖯𝖠ProvTR(φ)¬σ0¬ConT.\displaystyle\mathsf{PA}\vdash\mathrm{Prov}_{T}^{\mathrm{R}}(\ulcorner\varphi\urcorner)\land\neg\sigma_{0}\to\neg\mathrm{Con}_{T}. (6)

By the choice of φ\varphi,

𝖯𝖠ProvTR(¬φ)¬σ1φ,\mathsf{PA}\vdash\mathrm{Prov}_{T}^{\scriptsize{\reflectbox{{\rm R}}}}(\ulcorner\neg\varphi\urcorner)\land\neg\sigma_{1}\to\varphi,

and we also obtain

𝖯𝖠ProvTR(¬φ)¬σ1¬ConT.\mathsf{PA}\vdash\mathrm{Prov}_{T}^{\scriptsize{\reflectbox{{\rm R}}}}(\ulcorner\neg\varphi\urcorner)\land\neg\sigma_{1}\to\neg\mathrm{Con}_{T}.

From this with (6),

𝖯𝖠+ConTProvTR(φ)ProvTR(¬φ)σ0σ1.\mathsf{PA}+\mathrm{Con}_{T}\vdash\mathrm{Prov}_{T}^{\mathrm{R}}(\ulcorner\varphi\urcorner)\lor\mathrm{Prov}_{T}^{\scriptsize{\reflectbox{{\rm R}}}}(\ulcorner\neg\varphi\urcorner)\to\sigma_{0}\lor\sigma_{1}.

Thus,

𝖯𝖠+ConTPrT(φ)PrT(¬φ)σ0σ1.\mathsf{PA}+\mathrm{Con}_{T}\vdash\mathrm{Pr}_{T}(\ulcorner\varphi\urcorner)\lor\mathrm{Pr}_{T}(\ulcorner\neg\varphi\urcorner)\to\sigma_{0}\lor\sigma_{1}.

Since 𝖯𝖠+¬ConTσ0σ1\mathsf{PA}+\neg\mathrm{Con}_{T}\vdash\sigma_{0}\lor\sigma_{1}, we conclude

𝖯𝖠PrT(φ)PrT(¬φ)σ0σ1.\mathsf{PA}\vdash\mathrm{Pr}_{T}(\ulcorner\varphi\urcorner)\lor\mathrm{Pr}_{T}(\ulcorner\neg\varphi\urcorner)\to\sigma_{0}\lor\sigma_{1}.

We proceed with the main proof. We recursively define a primitive recursive function hh and an increasing sequence kiiω\langle k_{i}\rangle_{i\in\omega} of natural numbers simultaneously by referring to TT-proofs in stages. The function hh will be defined to output all theorems of TT and the Rosser predicate of the proof predicate x=h(y)x=h(y) will be a required one. At the beginning of Stage mm, the values of k0,,km1,kmk_{0},\ldots,k_{m-1},k_{m} and h(0),,h(km1)h(0),\ldots,h(k_{m-1}) have already been defined.

Here we give our definition of the function hh. In the definition, we identify each A\mathcal{L}_{A}-formula with its Gödel number. First, let k0=0k_{0}=0.

At Stage mm,

  • If mm is not a TT-proof of any A\mathcal{L}_{A}-formula, then let km+1:=kmk_{m+1}:=k_{m} and go to Stage m+1m+1.

  • If mm is a TT-proof of an A\mathcal{L}_{A}-formula ξ\xi which is neither φ\varphi nor ¬φ\neg\varphi, then let km+1:=km+1k_{m+1}:=k_{m}+1 and h(km):=ξh(k_{m}):=\xi, and go to the next stage.

  • If mm is a TT-proof of an A\mathcal{L}_{A}-sentence ξ\xi which is either φ\varphi or ¬φ\neg\varphi, and hh already outputs at least one of φ\varphi or ¬φ\neg\varphi before Stage mm, then let km+1:=km+1k_{m+1}:=k_{m}+1 and h(km):=ξh(k_{m}):=\xi, and go to Stage m+1m+1.

  • If mm is a TT-proof of either φ\varphi or ¬φ\neg\varphi, and ff does not output φ\varphi and ¬φ\neg\varphi before Stage mm, then we distinguish the following three cases:

    (a)

    If zmτ0(z)\exists z\,{\leq m}\,\tau_{0}(z) holds, then let km+1:=km+1k_{m+1}:=k_{m}+1 and h(km):=φh(k_{m}):=\varphi.

    (b)

    If zmτ1(z)\exists z\,{\leq m}\,\tau_{1}(z) holds, then let km+1:=km+1k_{m+1}:=k_{m}+1 and h(km):=¬φh(k_{m}):=\neg\varphi.

    (c)

    Otherwise, let km+1:=kmk_{m+1}:=k_{m}.

    Go to the next Stage m+1m+1.

This completes our definition the function hh. Since 𝖯𝖠¬(σ0σ1)\mathsf{PA}\vdash\neg(\sigma_{0}\land\sigma_{1}), we have that 𝖯𝖠\mathsf{PA} proves that there is no mm satisfying both zmτ0(z)\exists z\,{\leq}\,m\,\tau_{0}(z) and zmτ1(z)\exists z\,{\leq}\,m\,\tau_{1}(z). Thus Cases (a) and (b) in the definition of hh are mutually exclusive.

We show that the formula x=h(y)x=h(y) is a proof predicate of TT. It suffices to show the following lemma:

Lemma 4.4.

𝖯𝖠x(PrT(x)y(x=h(y)))\mathsf{PA}\vdash\forall x\,\bigl{(}\mathrm{Pr}_{T}(x)\leftrightarrow\exists y\,(x=h(y))\bigr{)}.

Proof.

We argue in 𝖯𝖠\mathsf{PA}.

()(\rightarrow): Suppose that ξ\xi is provable in TT.

If ξ\xi is neither φ\varphi nor ¬φ\neg\varphi, then for a TT-proof mm of ξ\xi, h(km)=ξh(k_{m})=\xi.

If ξ\xi is either φ\varphi or ¬φ\neg\varphi, then by Lemma 4.3, σ0σ1\sigma_{0}\lor\sigma_{1} holds. However, σ0\sigma_{0} and σ1\sigma_{1} cannot be true at the same time. We show that ξ\xi is output by hh. We distinguish the following two cases:

  • Case 1: σ0\sigma_{0} holds.
    Let nn be the least number such that τ0(n)\tau_{0}(n) holds, and let mm be the least number such that mnm\geq n and mm is a TT-proof of either φ\varphi or ¬φ\neg\varphi. Then, h(km)=φh(k_{m})=\varphi by the definition of hh. If ξ\xi is φ\varphi, we are done. If ξ\xi is ¬φ\neg\varphi, then let m>mm^{\prime}>m be a TT-proof of ¬φ\neg\varphi. Such an mm^{\prime} exists because ¬φ\neg\varphi has infinitely many TT-proofs. Since hh already outputs φ\varphi before Stage mm^{\prime}, by the definition of hh, h(km)=¬φh(k_{m^{\prime}})=\neg\varphi.

  • Case 2: σ1\sigma_{1} holds.
    It is proved that hh outputs ξ\xi as in the proof of Case 1 by considering the least number nn such that τ1(n)\tau_{1}(n) holds.

()(\leftarrow): Suppose that ξ\xi is output by hh. If ξ\xi is neither φ\varphi nor ¬φ\neg\varphi, then h(km)=ξh(k_{m})=\xi implies that mm is a TT-proof of ξ\xi, and so ξ\xi is provable in TT.

If ξ\xi is φ\varphi or ¬φ\neg\varphi, then let mm be the least number such that h(km)h(k_{m}) is either φ\varphi or ¬φ\neg\varphi. We show that ξ\xi is provable in TT. We distinguish the following four cases:

  • Case 1: ξ\xi is φ\varphi and h(km)=φh(k_{m})=\varphi.
    By the definition of hh, zmτ0(z)\exists z\,{\leq}\,m\,\tau_{0}(z) holds. Then, σ0\sigma_{0} and ¬σ1\neg\sigma_{1} hold. Suppose that φ\varphi is not provable in TT, then φ\varphi holds by the definition. Since φ\varphi is a Σ1\Sigma_{1} sentence, it is provable in TT, a contradiction. Therefore, φ\varphi is provable in TT.

  • Case 2: ξ\xi is φ\varphi and h(km)=¬φh(k_{m})=\neg\varphi.
    Then, h(km)=φh(k_{m^{\prime}})=\varphi for some m>mm^{\prime}>m. Since ¬φ\neg\varphi is already output before Stage mm^{\prime}, we find that mm^{\prime} is a TT-proof of φ\varphi, and hence φ\varphi is provable in TT.

  • Case 3: ξ\xi is ¬φ\neg\varphi and h(km)=φh(k_{m})=\varphi.
    Then, for some TT-proof m>mm^{\prime}>m of ¬φ\neg\varphi, h(km)=¬φh(k_{m^{\prime}})=\neg\varphi. Thus, ¬φ\neg\varphi is provable in TT.

  • Case 4: ξ\xi is ¬φ\neg\varphi and h(km)=¬φh(k_{m})=\neg\varphi.
    Then, zmτ1(z)\exists z\,{\leq}\,m\,\tau_{1}(z) holds, and so σ1\sigma_{1} and ¬σ0\neg\sigma_{0} hold. Suppose that ¬φ\neg\varphi is not provable in TT. Then, φ\varphi^{*} holds, and is provable in TT. Since φ¬φ\varphi^{*}\to\neg\varphi is TT-provable, ¬φ\neg\varphi is also TT-provable. This is a contradiction. Therefore, ¬φ\neg\varphi is provable in TT.

We resume the main proof. Let PrhR(x)\mathrm{Pr}_{h}^{\mathrm{R}}(x) be the Rosser provability predicate of the proof predicate x=h(y)x=h(y) of TT. Finally, we show that 𝖯𝖠\mathsf{PA} proves σ0PrhR(φ)\sigma_{0}\leftrightarrow\mathrm{Pr}_{h}^{\mathrm{R}}(\ulcorner\varphi\urcorner). A proof of 𝖯𝖠σ1PrhR(¬φ)\mathsf{PA}\vdash\sigma_{1}\leftrightarrow\mathrm{Pr}_{h}^{\scriptsize{\reflectbox{{\rm R}}}}(\ulcorner\neg\varphi\urcorner) is similar, and we omit it. We argue in 𝖯𝖠\mathsf{PA}.

()(\rightarrow): Suppose that σ0\sigma_{0} holds. Let nn be the least number such that τ0(n)\tau_{0}(n) holds. Then, either φ\varphi or φ\varphi^{*} holds, and hence either one of them is provable in TT. Then, either φ\varphi or ¬φ\neg\varphi is TT-provable. Let mm be the least number such that mnm\geq n and mm is a TT-proof of φ\varphi or ¬φ\neg\varphi. Then, hh does not output ¬φ\neg\varphi before Stage mm, and h(km)=φh(k_{m})=\varphi. This means PrhR(φ)\mathrm{Pr}_{h}^{\mathrm{R}}(\ulcorner\varphi\urcorner) holds.

()(\leftarrow): Suppose that h(km)=φh(k_{m})=\varphi and before Stage mm, hh does not output ¬φ\neg\varphi. For the least such an mm, zmτ0(z)\exists z\,{\leq}\,m\,\tau_{0}(z) holds, and thus σ0\sigma_{0} holds.

Corollary 4.5.

For any Σ1\Sigma_{1} sentence σ\sigma, the following are equivalent:

  1. 1.

    There exists a Σ1\Sigma_{1} sentence σ\sigma^{\prime} such that 𝖯𝖠¬(σσ)\mathsf{PA}\vdash\neg(\sigma\land\sigma^{\prime}) and 𝖯𝖠¬ConTσσ\mathsf{PA}\vdash\neg\mathrm{Con}_{T}\to\sigma\lor\sigma^{\prime}.

  2. 2.

    There exists a Rosser provability predicate PrTR(x)\mathrm{Pr}_{T}^{\mathrm{R}}(x) of TT and an A\mathcal{L}_{A}-sentence φ\varphi such that 𝖯𝖠σPrTR(φ)\mathsf{PA}\vdash\sigma\leftrightarrow\mathrm{Pr}_{T}^{\mathrm{R}}(\ulcorner\varphi\urcorner).

Proof.

(12)(1\Rightarrow 2): Immediate from Theorem 4.2.

(21)(2\Rightarrow 1): This implication is derived by letting σ\sigma^{\prime} be the Σ1\Sigma_{1} sentence PrTR(¬φ)\mathrm{Pr}_{T}^{\scriptsize{\reflectbox{{\rm R}}}}(\ulcorner\neg\varphi\urcorner).

The (𝖯𝖠+ConT)(\mathsf{PA}+\mathrm{Con}_{T})-provable equivalence in the statement of the FGH theorem is equivalent to 𝖯𝖠(σ¬ConT)PrT(φ)\mathsf{PA}\vdash(\sigma\lor\neg\mathrm{Con}_{T})\leftrightarrow\mathrm{Pr}_{T}(\ulcorner\varphi\urcorner). In this viewpoint, the following corollary seems to be a natural counterpart of the FGH theorem in terms of Rosser provability predicates.

Corollary 4.6.

For any Σ1\Sigma_{1} sentence σ\sigma, there exist a Rosser provability predicate PrTR(x)\mathrm{Pr}_{T}^{\mathrm{R}}(x) of TT and an A\mathcal{L}_{A}-sentence φ\varphi such that

𝖯𝖠(σ¬ConT)PrTR(φ).\mathsf{PA}\vdash(\sigma\lor\neg\mathrm{Con}_{T})\leftrightarrow\mathrm{Pr}_{T}^{\mathrm{R}}(\ulcorner\varphi\urcorner).
Proof.

For the Σ1\Sigma_{1} sentences σ¬ConT\sigma\lor\neg\mathrm{Con}_{T} and 0=10=1, we have that 𝖯𝖠\mathsf{PA} proves ¬((σ¬ConT)0=1)\neg\bigl{(}(\sigma\lor\neg\mathrm{Con}_{T})\land 0=1\bigr{)} and ¬ConT(σ¬ConT)0=1\neg\mathrm{Con}_{T}\to(\sigma\lor\neg\mathrm{Con}_{T})\lor 0=1. By Corollary 4.5, there exist a Rosser provability predicate PrTR(x)\mathrm{Pr}_{T}^{\mathrm{R}}(x) of TT and an A\mathcal{L}_{A}-sentence φ\varphi such that 𝖯𝖠(σ¬ConT)PrTR(φ)\mathsf{PA}\vdash(\sigma\lor\neg\mathrm{Con}_{T})\leftrightarrow\mathrm{Pr}_{T}^{\mathrm{R}}(\ulcorner\varphi\urcorner).

Since 𝖯𝖠+ConTPrT(φ)PrTR(φ)\mathsf{PA}+\mathrm{Con}_{T}\vdash\mathrm{Pr}_{T}(\ulcorner\varphi\urcorner)\leftrightarrow\mathrm{Pr}_{T}^{\mathrm{R}}(\ulcorner\varphi\urcorner), the FGH theorem directly follows from Corollary 4.6.

We show a version of the FGH theorem with respect to Rosser provability predicates corresponding to the representability of computable sets.

Corollary 4.7.

For any Δ1(𝖯𝖠)\Delta_{1}(\mathsf{PA}) sentence δ\delta, there exist a Rosser provability predicate PrTR(x)\mathrm{Pr}_{T}^{\mathrm{R}}(x) of TT and an A\mathcal{L}_{A}-sentence φ\varphi such that

𝖯𝖠δPrTR(φ)and𝖯𝖠¬δPrTR(¬φ).\mathsf{PA}\vdash\delta\leftrightarrow\mathrm{Pr}_{T}^{\mathrm{R}}(\ulcorner\varphi\urcorner)\ \text{and}\ \mathsf{PA}\vdash\neg\delta\leftrightarrow\mathrm{Pr}_{T}^{\scriptsize{\reflectbox{{\rm R}}}}(\ulcorner\neg\varphi\urcorner).
Proof.

Since δ\delta is Δ1(𝖯𝖠)\Delta_{1}(\mathsf{PA}), there exist Σ1\Sigma_{1} sentences σ0\sigma_{0} and σ1\sigma_{1} such that 𝖯𝖠δσ0\mathsf{PA}\vdash\delta\leftrightarrow\sigma_{0} and 𝖯𝖠¬δσ1\mathsf{PA}\vdash\neg\delta\leftrightarrow\sigma_{1}. Then, we have 𝖯𝖠¬(σ0σ1)\mathsf{PA}\vdash\neg(\sigma_{0}\land\sigma_{1}) and 𝖯𝖠σ0σ1\mathsf{PA}\vdash\sigma_{0}\lor\sigma_{1}. By Theorem 4.2, there exists a Rosser provability predicate PrTR(x)\mathrm{Pr}_{T}^{\mathrm{R}}(x) of TT and an A\mathcal{L}_{A}-sentence φ\varphi such that

𝖯𝖠σ0PrTR(φ)and𝖯𝖠σ1PrTR(¬φ).\mathsf{PA}\vdash\sigma_{0}\leftrightarrow\mathrm{Pr}_{T}^{\mathrm{R}}(\ulcorner\varphi\urcorner)\ \text{and}\ \mathsf{PA}\vdash\sigma_{1}\leftrightarrow\mathrm{Pr}_{T}^{\scriptsize{\reflectbox{{\rm R}}}}(\ulcorner\neg\varphi\urcorner).

Corollary 4.7 says that if a Σ1\Sigma_{1} sentence σ\sigma is Δ1(𝖯𝖠)\Delta_{1}(\mathsf{PA}), then there exist a Rosser provability predicate PrTR(x)\mathrm{Pr}_{T}^{\mathrm{R}}(x) of TT and an A\mathcal{L}_{A}-sentence φ\varphi such that 𝖯𝖠σPrTR(φ)\mathsf{PA}\vdash\sigma\leftrightarrow\mathrm{Pr}_{T}^{\mathrm{R}}(\ulcorner\varphi\urcorner). Does this hold for all Σ1\Sigma_{1} sentences? By Corollary 4.5, this question is rephrased as follows: For any Σ1\Sigma_{1} sentence σ\sigma, does there exists a Σ1\Sigma_{1} sentence σ\sigma^{\prime} such that 𝖯𝖠¬(σσ)\mathsf{PA}\vdash\neg(\sigma\land\sigma^{\prime}) and 𝖯𝖠¬ConTσσ\mathsf{PA}\vdash\neg\mathrm{Con}_{T}\to\sigma\lor\sigma^{\prime}? We show that this is not the case.

Proposition 4.8.

There exists a Σ1\Sigma_{1} sentence σ\sigma such that for all Σ1\Sigma_{1} sentences σ\sigma^{\prime}, neither 𝖯𝖠¬(σσ)\mathsf{PA}\vdash\neg(\sigma\land\sigma^{\prime}) nor 𝖯𝖠¬ConTσσ\mathsf{PA}\vdash\neg\mathrm{Con}_{T}\to\sigma\lor\sigma^{\prime}. That is, for all Rosser provability predicates PrTR(x)\mathrm{Pr}_{T}^{\mathrm{R}}(x) of TT and all A\mathcal{L}_{A}-sentences φ\varphi, 𝖯𝖠σPrTR(φ)\mathsf{PA}\nvdash\sigma\leftrightarrow\mathrm{Pr}_{T}^{\mathrm{R}}(\ulcorner\varphi\urcorner).

Proof.

Let σ\sigma be a Σ1\Sigma_{1} sentence which is Π1\Pi_{1}-conservative over 𝖯𝖠\mathsf{PA} such that 𝖯𝖠+¬ConTσ\mathsf{PA}+\neg\mathrm{Con}_{T}\nvdash\sigma. The existence of such a sentence is proved by Guaspari [4, Theorem 2.4] (see also Lindström [11, Exercise 5.5 (b)]). Suppose that for some Σ1\Sigma_{1} sentence σ\sigma^{\prime}, 𝖯𝖠¬(σσ)\mathsf{PA}\vdash\neg(\sigma\land\sigma^{\prime}) and 𝖯𝖠¬ConTσσ\mathsf{PA}\vdash\neg\mathrm{Con}_{T}\to\sigma\lor\sigma^{\prime}. Then, 𝖯𝖠+σ¬σ\mathsf{PA}+\sigma\vdash\neg\sigma^{\prime}, and hence 𝖯𝖠¬σ\mathsf{PA}\vdash\neg\sigma^{\prime} by Π1\Pi_{1}-conservativity. Thus, 𝖯𝖠+¬ConTσ\mathsf{PA}+\neg\mathrm{Con}_{T}\vdash\sigma. This is a contradiction.

Guaspari and Solovay [5] introduced the logic 𝐑\mathbf{R} of witness comparison formulas, and also Shavrukov [13] introduced the bimodal logic 𝐆𝐑\mathbf{GR} of usual and Rosser provability predicates. As in our observations in Section 3, it may also be possible to extend Theorem 4.2 to the framework of modal logic via these logics. For example, for 𝐑\mathbf{R}, we expect that the condition 𝐑+{nnω}AA\mathbf{R}+\{\Diamond^{n}\top\mid n\in\omega\}\nvdash\Box\Box A\to\Box A works well.

Acknowledgements

This work was partly supported by JSPS KAKENHI Grant Number JP19K14586. The author would like to thank Sohei Iwata, Haruka Kogure, and Yuya Okawa for their helpful comments. The author would also like to thank the anonymous referees for their valuable comments and suggestions. In particular, the current proofs of Theorems 2.3 and 2.6 using Lemmas 2.4 and 2.7 are based on the ideas of one of the referees, which made the proofs significantly simpler and easier to understand.

References

  • [1] Sergei N. Artemov and Lev D. Beklemishev. Provability logic. In D. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic, volume 13, pages 189–360. Springer, Dordrecht, 2nd edition, 2005.
  • [2] George Boolos. The logic of provability. Cambridge: Cambridge University Press, 1993.
  • [3] Andrzej Ehrenfeucht and Solomon Feferman. Representability of recursively enumerable sets in formal theories. Archiv für Mathematische Logik und Grundlagenforschung, 5:37–41, 1961.
  • [4] David Guaspari. Partially conservative extensions of arithmetic. Transactions of the American Mathematical Society, 254:47–68, 1979.
  • [5] David Guaspari and Robert M. Solovay. Rosser sentences. Annals of Mathematical Logic, 16:81–99, 1979.
  • [6] Giorgi Japaridze and Dick de Jongh. The logic of provability. In Handbook of proof theory, pages 475–546. Amsterdam: Elsevier, 1998.
  • [7] Joost J. Joosten. Turing jumps through provability. In Evolving computability. 11th conference on computability in Europe, CiE 2015, Bucharest, Romania, June 29 – July 3, 2015. Proceedings, pages 216–225. Cham: Springer, 2015.
  • [8] Makoto Kikuchi and Taishi Kurahashi. Illusory models of Peano arithmetic. The Journal of Symbolic Logic, 81(3):1163–1175, 2016.
  • [9] Taishi Kurahashi. Henkin sentences and local reflection principles for Rosser provability. Annals of Pure and Applied Logic, 167(2):73–94, 2016.
  • [10] Taishi Kurahashi. Provability logics relative to a fixed extension of Peano arithmetic. The Journal of Symbolic Logic, 83(3):1229–1246, 2018.
  • [11] Per Lindström. Aspects of incompleteness., volume 10. Natick, MA: Association for Symbolic Logic, 2003.
  • [12] Krister Segerberg. An essay in classical modal logic. Vol. 1, 2, 3. Filosofiska Studier. No. 13. Uppsala: University of Uppsala., 1971.
  • [13] V. Yu. Shavrukov. On Rosser’s provability predicate. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 37(4):317–330, 1991.
  • [14] John C. Shepherdson. Representability of recursively enumerable sets in formal theories. Archiv für Mathematische Logik und Grundlagenforschung, 5:119–127, 1961.
  • [15] Craig Smoryński. Fifty years of self-reference in arithmetic. Notre Dame Journal of Formal Logic, 22:357–374, 1981.
  • [16] Robert M. Solovay. Provability interpretations of modal logic. Israel Journal of Mathematics, 25:287–304, 1976.
  • [17] Albert Visser. The provability logics of recursively enumerable theories extending Peano arithmetic at arbitrary theories extending Peano arithmetic. Journal of Philosophical Logic, 13:97–113, 1984.
  • [18] Albert Visser. Faith & falsity. Annals of Pure and Applied Logic, 131(1-3):103–131, 2005.